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1. INTRODUCTION 

The following report represents backgroun,d research for, and techni.cal 

embellishments of, a comprehensive computational model of·a multispectral 

remote sensing system. This model is being developed as a tool for de~igning 

smart sensors which are able to process, edit and classify the data that they 

acquired. This report provides a forum for details and analyses that have 

not bee~ suitable for reporting in other formats during the progress of the 

work. Consequently the reader will be assumed to be familiar with both the 

computational model and experimental results reported up to this date; (Huck, 

et al., 1982 and Aherron, et al., 1981). In addition to the two above 

reports the AIAA (Breckenridge, 1979) and the SPIE (Barbe, 1979)· have both 

published a collection of papers concerning smart sensors and the philosophy 

behind them. 

Accurately predicting the signal produced by a sensor observing a par­

ticular target under a specific set of conditions is a very important goal 

for a model of this nature. Still more important is formulating a model 

that properly characterizes the stochastic properties of the signal that will 

likely be encountered. It is the physical nature of the interacting media 

that is considered to be variable and thus driving the derived quantities such 

as radiances. A quantity such as path radiance is not considered to have any 

inherent variability. Accounting for these variabilities introduced a special 

set of evaluation criteria in choosing a method of dealing with two of the 

major elements in the remote sensing system model: 1) atmospheric radiative 

transfer; 2) surface reflectance. 

In particular the implementation of the simulation required that the 

sensor irradiance be calculated for every simulated pixel with its associated 

random atmospheric conditions, or equivalently the equation of transfer 
j 

needed to be solved for every pixel simulated. This need of course discrim-

inated heavily against lengthy iterative solutions to the transfer equation, 

accuracy not withstanding. An analysis of various atmospheric radiative 

transfer models will be presented. 

It is impossible to over emphasize the importance of the spectral re­

flectance of the targets in remote sensing work. Nevertheless, given the 



amount of research about and gathering of spectral reflectances taking 

place, particularly with respect to vegetation, it is amazing to find there 

is virtually no data report concerning. the variability of spectral reflec­

tances. Theoretical work concerning spectral reflectance has also been 

rather sparse. Several functional forms for reflectance variability will 

be examined and a collection of target reflectances will be cataloged. 

A goal established early in the development of smart sensor systems 

was the ability to detect cloud pixels. This ability would allow several 

options concerning data load reduction or choosing alternate imaging sites. 

The category of snow/clouds can usually be distinguished in either the visible. 

or near-infrared. To distinguish between snow and clouds alone requires 

a spectral channel at a wavelength longer than 1.0 ~m. 

The papers by Huck, et al., (1982) and Aherron, et al., (1981) cover 

two sets of experiments performed over the period of this contract. The 

Huck, et al. paper concentrated on classifying pixels into fairly specific 

classes such as wheat and dark loam. The Aherron, et al. paper concentrated 

on the task of assigning pixels from any number of different substances into 

four broad categories which were: bareland, water, vegetation and snow/cloud. 

An enhancement implementing aerosol attenuation coefficients has produced 

results updated from those in Aherron, et al. A partial set of updated 

results for that work are presented. Results for a simple cloud detection 

algorithm will also be presented. 
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2. COMPUTATIONAL ATMOSPHERIC RADIATIVE TRANSFER 

2.1 Background 

The atmosphere is a significant element in the overall remote sensing 

model. A comprehensive treatment of this element incurs the greatest com­

putational costs of any model element. Numerous assumptions and simplifi­

cations are usually made to facilitate "reasonable" limits to the complexity 

and cost of radiative transfer modeling. Different sets of these assumptions 

are manifest in the various atmospheric models currently available. Below, 

a brief discussion is presented of the problem and several computational 

models in use in remote sensing are highlighted and compared. From these 

discussions the justification for the chosen model should be apparent. 

Those not familiar with the equations and terminology of atmospheric radia­

tive transfer should consult Liou (1980) or Wolfe and Zissis (1978) for a 

background development. The terminology and notation used in this and 

related papers is almost identical to that used in Chapter 4 of Wolfe and 

Zissis (1978) which makes it particularly good as an introduction. 

The fundamental equation of remote s"ensing after Slater (1980) 

where E - E (A) is the solar spectral irradiance at the top of the atmo­
o 0 

(2-1) 

sphere, T = T (A,T,~ ) is the atmospheric transmittance along the incident 
o 0 0 

path from the sun to the surface (solar zenith angle = So' ~o = cos So); 

Ld = Ld(Eo,A,T,~o'p) is the diffuse sky spectral radiance which results from 

all radiation scattered downward onto the surface (i.e., integrated at the· 

target over elevation and azimuth); p = p(A) is the spectral reflectance 

of the surface (sometimes called "signature"); T = T (A, T, ~). is the atmosphere 

transmittance along the exitant path from the surface to the sensor (zenith 

angle = S, ~ = cosS); and L = L (E ,A,T,~ ,~,~) is the path spectr~l rad-
p p 0 0 

iance which results from all radiation scattered upward along the path from 

the surface to the sensor. The other parameters are wavelength, A, optical 

thickness of the atmosphere T = T(A), and azimuth angle ~ between the planes 

of incidence and exitance. The component of the total radiance L which arises 
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from radiation reflected from the target is referred to as the beam spectral 

radiance Lb , that is Lb =.L - Lp' and Lb:: Lb(Eo,t..;r,llo,ll,P). 

Now the equation of radiative transfer.for a plane parallel atmosphere 

(Malila, et al., 1971) is given by 

dL 
~ = L(T,ll,¢) 

W (T) 
o 
41f 

J21fJll P(T,ll,¢,ll' ,¢')L(T,ll' ,¢')dll'd¢' - (l-w (T»B(T) 
0-0 

(2-2) 

where W (T) is the single scattering albedo which is the ratio of the sum 
o 

of the scattering coefficients to the sum of the scatt·ering and absorption 

coefficients. B(T) is the Plank radiation function for thermal self-emission. 

The single-scattering phase function p(.) can be described as a probability 

density function for the particular direction a photon will scatter relative 

to the original direction of travel. The function usually has a highly 

irregular (radially asymmetric) shape. The straight numerical solution of 

this equation is very time consuming. The first assumption made for even 

the complex form shown is that the atmosphere is plane-parallel, that is it 

is an infinite slab bounded below by the ground. For near-nadir looking 

sensor systems this is not an unreasonable assumption. Several uses of 

atmospheric radiative transfer models in the remote sensing literature and 

the methods of a solution for equation will now be examined. First, atten­

tion will be focused on the solution of the equation of radiative transfer 

as implemented in the various methods. Assumptions and approximations con­

cerning the atmosphere will be discussed later. 

2.2 Radiative Transfer Models 

The models discussed will be limited to those that have received 

attention in the remote sensing literature. Probably the most widely known 

model is the one developed by Turner (Malila, et al., 1971 and Turner, 1974) used 

in early systematic remote sensing studies. Another model receiving more 

recent attention was developed by Dave (1978) and has been applied to both 

remote sensing problems, Dave (1979), and solar insolation. O'Neill, et al. 

(1977, 1978) implemented Liou's (1973) model and compared it to Turner's 

model and to actual LANDSAT data. Kiang (1980) implemented Hansen's (1969) 

model for tests concerning atmospheric effects on Thematic Mapper data. The 

other less general models were encountered, due to Otterman, et al. (1980), and 
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Lampley and Blattner (1978), upon which discussion will be delayed. Attention 

will be concentrated on those models that account for all the terms in Eq. 

2-1. In dealing with the atmosphere in strictly a transmissive mode, that 

is accounting for only the first term in Eq.2-l, LOWTRAN (Selby, et al., 

1978) has become the accepted standard model. 

The fundamental character of,~and difference between most approximate 

methods of solution for the full equation is in the form and order of 

approximation of the phase function. This approximation is to allow the 

elimination of the integration in Eq. 2-2. The phase function determines the 

directional characteristics of all scattered radiation. Wolfe and Zissis 

(1978) show plots of some typical phase functions that demonstrate their 

pronounced. asymmetry. Turner used two Dirac delta-functions one forward 

and one backward to approximate the phase function. Liou (1973) expanded 

the phase function into a series of N Legendre polynomials in his Discrete 

Ordinate Method (DOM). References to this model frequently are of the form 

"2N-stream approximation" where N is an integer. Dave (Dave and Canosa, 

1974) used the method of Spherical Harmonics where the phase function and 

the intensity were expanded into a series of L + 1 Legendre polynomials. 

Krook (1955) shows that the DOM and Spherical Harmonic methods are equivalent. 

The accuracy of these equivalent methods can be made arbitrarily high by 

increasing the number of terms in the expansion (O'Neill, et al., 1977). 

The typical scattering phase function is a highly "peaked" function and 

thus rich in harmonics. In essence the Legendre based methods approximated 

the phase function with some finite set of polynomials (i.e., harmonics) 

while the Turner method approximated the function with an infinite set of 

harmonics in the form of the dirac-delta function. All of the above methods 

can be defined for a single homogeneous layer of any reasonable optical 

thickness. Hansen (1969) approximated the phase function at 20 discrete 

directions. The other fundemental difference is the intermediate solutions 

reached are valid only for an optically thin layer where multiple scattering 

can be ignored. The properties of an optically thick layer are arrived by 

aggregating the thin layers. Hansen's model accounts for polarization which 

is unique for the models discussed. 
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2.3 Model Comparisons 

Ronnholm, et al. (1980) implemented a form closely related to each of 

the models discussed. The implementation of the radiative transfer ~qdels 

by Ronnholm, et al. assumed several things about the atmosphere. First an 

analytical form for the "real" phase function was used (Henyey-Greenstein). 

Second, the atmosphere was assumed to be vertically and horizontally homo­

geneous. All of the models except Turner's have been implemented with 

vertical inhomogeneity capabilities but this restriction was necessary for 

comparison. Each model was run for the same set of atmospheric conditions. 

(The Ronnholm, et al. literature citations will not' be duplicated). Ronnholm, 

et al. used Twomey's doubling method model as a benchmark or "truth" so to 

speak, considering it to be more accurate than the other methods compared. 

Hansen's (1969) and Twomey's models are comparable. A delta-Eddington 

approximation by Joseph was included which is similar to the Turner model. 

The Discrete Ordinate Method for 4 streams was implemented using the ana­

lytical solution (Liou, 1974). Since the form of the differential equations 

solved for the DaM and Spherical Harmonics methods are similiar, the DaM's 

computational times will be considered representative of the Spherical 

Harmonics Method (when L = N). 

One of the major findings of Ronnholm, et al. was the relative compu­

tational burden for the three classes of methods. The results. are sum-

marized in Table 2.1. The results in Table 2.1 can only be meaningful 

within the context of the relative accuracy of the various met"hods. Ronnholm, 

et al. compare the three methods for various conditions and concludes " ... the 

factor of 20 in computation time saved by the delta-Eddington was judged more 

valuable than the greater accuracy of the four-stream method." They add 

" .•. if optical depths, single scattering albedos or asymmetry factors are 

either uncertain or known to be flucuating;. with relative standard deviations 

of 10% or greater, then little real benefit is added' by the use of compu­

tationally precise, but costly, many-stream radiation-transfer algorithms." 

An important point that should be made here, is that Ronnholm, et al. com­

pare values of reflection, diffuse transmission, and absorption for the 

atmosphere and thus net fluxes are being compared. For aerosol laden atmo­

spheres, and their highly anisotropic scattering properties, the jump from 

6 



TABLE 2.1 

Relative computation burden of radiative 

transfer models used by remote sensing 

investigators analogy to methods implemented 

by Ronnholm, et al. 

INVESTIGATOR RONNHOLM'S ANALOG REL. COMPUTER TIME 

TURNER DELTA-EDDINGTON 1 

LIOU DOM 20 

DAVE DOM 20 

KIANG TWOMEY 104 
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comparing fluxes to comparing intensities with directional dependences is 

not straight forward. For example, the radiation field incident on a scat­

tering volume has only two components in a two stream approximation and for 

highly anistropic scattering this is an inadequate approximation for calcu­

lating the scattering into the high1y·specific direction of the sensor. In 

general, themore anisotropic the scattering phase function, the more accu­

rate~y it needs to be approximated in order to determine the radiation field 

within the atmosphere. For the Turner model, the radiation field within the 

atmosphere is approximated utilizing the double-delta phase function. The 

actual path radiance contribution of a scattering volume is calculated using 

that simplified radiation field and interpolated values of the scattering 

phase function. The hemispherical integration for flux quantities implicit 

in Ronnho1m, et a1. tends to mask the inaccuracies. This provides some 

explanation for the disagreement between Ronnho1m, et a1., who found little 

difference between methods for flux quantities, and O'Neill, et a1., who 

found significant differences between the predicted path radiances for the 

DOM and Turner's model. Even so the remarks by Ronnho1m, et a1. concerning 

the uncertainty about atmospheric conditions should not go unheeded, par­

ticularly for the case of errors in approximations of the scattering phase 

function. 

It is useful to elaborate on the efforts of O'Neill, et al. concerning 

calculation of path radiance (O'Neill, et al. 1977, 1978). In O'Neill, 

et al. (1977) Turner's method and Lieu's DOM were implemented assuming 

vertical homogeneity. The results were fairly comparable for low aerosol 

optical depths but were divergent as optical depth increased. They attrib­

uted this to the crude angular approximations used by Turner and their 

increasing importance at greater optical depths. In O'Neill, et al. (1978) 

path radiances computed by the DOM were found to be in good agreement with 

path radiances determined from LANDSAT data using clear lake reflectors. 

The DOM performed considerably better than the Turner method for the same 

set of data. Horvath, et al.(1972) found that the Turner method had 

systematic errors in predicting atmospheric effects on aircraft multispectral 

scanner data. The input data used in Horvath, et al. was not of as high a 

quality as for the O'Neill, et al. work. 
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The assumption of vertical homogeneity within the atmosphere does not 

seem plausible considering the distribution of aerosols. Neither Ronnholm, 

et al. (1980) nor Liou (1975) could demonstrate much difference in modeling 

results, for flux related quantities, between the lesser and more "accurate" 

methods of calculation. No test of the assumption's effect, in terms of 

model results, on radiance values was found.. 0 'Neill, et a1. achieved good 

agreement between LANDSAT determined and model predicted path radiances 

under the vertical homogeneity assumption. 

By far the more important atmospheric constituent in terms of its 

effect on remote sensing is the aerosols. In certain wavelength regions 

though, absorption by other constituents becomes important. The major 

ones being water vapor, ozone,. and oxygen in the visible and near infrared 

regions. Accurately accounting for absorption by the constituents is not 

a trivial task (Selby, et al., 1978; Dave, 1978). Turner treats the ozone 

absorption, occuring in the upper atmosphere, as a phenomena separate from 

the scattering, which takes place in the lower atmosphere. Except for Turner 

those models that do deal with molecular absorption utilize the Air Force 

Geophysics Lab's model LOWTRAN (Selby, et al., 1978) or data from that model. 

2.4 Special Models 

As was mentioned before, two other less general models of transfer 

were found in the literature. The Otterman, et al. (1980) work was mostly 

illustrative in nature, dealing only with low optical thickness atmospheres, 

and is rather unique in its solution. Both Otterman, et al. and Lampley 

and Blattner (1978) deal only with single scattering. This assumption 

greatly simplifies the characterization of the radiation field within the 

atmosphere. For the 'case of optically thin atmospheres this is not a bad 

assumption but likely to be encountered only in more arid regions on a 

regular basis. This assumption, for thin layers, is the basis of the dou­

bling method discussed earlier. Eliminating the effects of mUltiple scat­

tering. is...judged_to .. he .. too.large a source of error when dealing with atmo­

spheres optically thick enough to cause significant image degredation. 

2:.5 Model Selection 

One of the evaluation criteria set for evaluation of various atmospheric 

models was their suitability for use as a computer subroutine for a remote 
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sensing system simulation. One other approach suggested by O'Neill, et al. 

(1978) and inferred by Dave (1978) is the use. of table-lookup method. For 

certain problems this could be a very useful technique. But for a general 

purpose source of radiance data for a stochastic simulation, with many of 

the input parameters being random variables, it would likely. prove excessive 

in its storage requirements. To define the size of radiance data base needed 

to satisfy the modeling requirements would require knowledge as to how fine 

a grid, or subdivision, in each parameter, would be necessary to retain the 

desired accuracy. This knowledge is not available a priori and would only 

come from careful and laborious sensitivity analysis for the input para­

meters. It may be possible to gain increased accuracy, over say the Turner 

model, by implementing a table lookup scheme for a more accurate model 

but it would be better to pay the greater price for the subroutine method 

and get the full benefit of increased accuracy. 

From what has been discussed one can see that the Turner model of 

radiative transfer introduces significant errors to the approximation of 

sensor incident radiation compared to other more comprehensive models (i.e. 

DOM). There is though, an estimated twenty fold reduction in computing 

time realized. \Vhether or not the error introduced by the Turner model is 

significant in the light of the uncertainties in the atmospheric parameters 

has yet to be determined. Ronnholm, et al. showed that, for flux calcul­

ations, these errors were not significant. For an initial implementation 

of a model with multiple scattering capabilities within a comprehensive 

remote sensing system model, the Turner model is the logical choice. Once 

greater knowledge of the interrelationships and sensitivities of the various 

system entities is established, it would probably be best to upgrade to 

the Dave model. 

2.6 Model Implementation 

The Turner model was implemented as a subroutine within the computer 

simulation code. The model is available for purchase from the Environmental 

Research Institute of.Michigan (ERIM) located in Ann Arbor, Michigan. Scat­

tering phase function data files which are distributed with the model were 

used. Input to the Turner model, as implemented. consists of nine parameters 

and one function (table form). Those parameters considered to be deterministic 
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(fixed for a particular run) were E - Solar Irradiance, e = Solar Zenith 
0 0 

Angle, <P = Azimuth angle between incident and exitant vecto.rs, e·= Sensor 

Zenith Angle, w - Single Scattering Albedo. The scattering phase function 
0 

was also deterministic. All simulation to date have been performed with. 

phase functions from a continental type aerosol model with a co~plex index 

of refraction of m = 1.5 - .Oli. The single-scattering albedo was chosen 

to be .9 and is constant. Simulations have been confined to nadir looking 

sensors with solar zenith angles in the range of 30° - 50°. 

There are four stochastic parameters consisting of Pb ~ background re­

flectance, PT = target reflectance, LR = Rayleigh optical thickness and 

LT = total optical thickness. The background used was a bare land target. 

Both reflectances are generated according to the functional form discussed 

earlier. The optical thicknesses are generated by the method discussed in 

Huck, et al. (1982). It is necessary to separate the Rayleigh component 

because the phase function used is a weighted mean of the Rayleigh and 

aerosol phase functions. 

The single-scattering albedo used is constant over wavelength which 

requires a word of warning •. The single-scattering albedo defines the rela­

tive mix of scattering and absorption in the contribution to attenuation. 

Therefore in moving ~rom spectral regions characterized by scattering to 

those with significant absor~tion the Single-scattering albedo changes. 

A method for varying the single-scattering albedo has not been implemented. 

The single-scattering albedo chosen (.9) is reasonable for regions of the 

spectrum without significant absorption. It is therefore necessary to 

restrict radiative transfer modeling to non-absorbing regions at the present 

time. 

11 



3. SPECTRAL REFLECTANCE MODELS 

Ultimately it is the spectral reflectance characteristics of targets, 

perhaps in concert with spatial distribution characteristics, that provides 

the information to users of remotely sensed data. It is therefore important 

that the target reflectance properties introduced to a simulation be as 

realistic as possible. This is particularly true for optimization studies 

where optimizing a system for a set of "artificial" targets is of more 

academic interest than practical use. 

There were two major tasks to be addressed in the area of reflectances. 

One concerned characterizing the deterministic nature of spectral ref1ec­

tances which consisted of assembling representative spectral reflectance 

curves for a number of targets of interest. The other task dealt with 

characterizing the stochastic nature of spectral ref1ectances by selecting 

and parameterizing functional forms for describing reflectance variability. 

3.1 Reflectance Functions 

The quantity utilized in the simulation is. the spectral diffuse re­

flectance defined by Slater (1980). 

p(A) = 7f L (A) 
E (A) 

where the target is assumed to have Lambertian characteristics. The quan­

tity actually measured in the field, depending on the particular measurement 

program, is more likely the hemispherical-conical reflectance factor which 

is then normalized to some standard reflector (Smith and Ranson, 1979). 

Present work has been limited to the Lambertian target assumption though 

natural targets have been demonstrated to deviate significantly from this 

assumption (Smith and Ranson, 1979). In general Slater (1980) offers a 

very good introduction to surface reflectance and its importance in remote 

sensing and presents a brief introduction to several efforts aimed at 

modeling plant canopy reflectance. Smith and Ranson (1979) offers a fairly 

comprehensive review of the literature concerning data and/or models of the 

directional reflectance characteristics of natural surfaces. 

In order to produce spectral ref1ectances with stochastic characteristics 
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it was necessary to choose an analytical form for reflectance. The func­

tional form chosen for the reflectance is given by 

-8 (A)X 
peA) = Po (A) e 0 (3-1) 

This is the same functional form (Bouguer's Law) as used f'or atmospheric 

transmission. The wavelength dependence of reflectance will be omitted in 

subsequent notation. This form was used because of its analytical tract­

ability and compatibility with the concurrent atmospheric modeling efforts 

and because the family of curves generated were qualitatively similar to 

sets of field data (Park, et al., 1980). The parameters of the distribution 

are P (A) and 8 (A). This is identical toa form for spectral reflectance o 0 

proposed by Tucker and Maxwell (1976) for vegetation canopies in regions 

of the spectrum characterized by canopy absorption (Le., the chlorophyll 

absorption regions). Within the same spectral region and dependent on the 

value of X, Tucker (1977) and Tucker and Maxwell (1976) found that 

-1 
P=P +8X o 0 

was also a useful functional relationship. 

In Tucker's work X represented anyone of several plant canopy char­

acteristics including several biomass measures, leaf water content and 

chlorophyll content. For the near infrared region from .74 m to 100 m which 

is characterized by little absorption and relatively high refle~tance due 

to scattering, Tucker (1977) found, again dependent on the value of X, the 

following two equations to be good approximations of reflectance 

P = P + 8 X o 0 

P + 8X. 
( 

0 0·-p.= S 1 -.e ) 

Where S represents the asymptotic reflectance of the vegetative canopy. 

(3-3) 

(3-4) 

This is the reflectance that an infinitely thick canopy would display. Park 

and Deering (198l) developed a set of differential equations (modifications 

of the Kubelka-Munk model) for describing the interaction of light with 
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plant canopies that is remeniscent of the Eddington Approximation for atmo­

spheric radiative transfer. If the background reflectance is taken to be 

zero then the diffuse reflectance formula of Park (retaining previous 

notation) 

p 

-8 X 
1

00 
- e 

1 
S 

Se 
-8 X o 0 

Of the above functional forms, only Eqs. 3-2, 3-3, and 3-4 display 

asymptotic nature. Equation 3-2 asymptotes for large values of X and 

(3-5) 

Eqs. 3-3 and 3-4 asymptote for small and large positive values of X. 

Ideally if X is some vegetative measure such as biomass per unit area then 

the reflectance functions should asymptote to the background reflectance 

for small X and approach the vegetative reflectance asymptote for large X. 

These three equations were formulated to be driven by inherently positive 

plant characteristics such as canopy weight. Equation 3~1 is driven by 

an artificial variable taking positive and negative values. As was pre­

viously stated, the resulting curves were qualitatively acceptable. 

Target reflectance phenomenon represent a special case of radiative 

transfer, a subject which has received a great deal of attention over the 

years. Commenting on the dearth of surface reflectance modeling efforts 

Smith and Ranson (1979) hypothesize "probably, this is a recognition of the 

difficulty of specifying the appropriate phase function in both a sufficient 

and tractable manner and further, performing the necessary measurements to 

determining the phase functions". They were commenting on the difficulty 

of specifying and measuring the phase function of such things as twigs and 

leaves. Smith and Ranson (1979) discuss the formulation development of two 

major vegetative canopy models, Smith and Oliver (1972) and Suits (1972), 

taking care to link the " •.• analytical and physical reasoning of canopy 

radiation interactions to the broader mainstream of radiative transfer 

theory". A better und~rstanding and overview can be gained by reading 

their unified discussion prior to working with the original papers. The 

radiative transfer methods used in these models can be classed as those that 

use simplistic approximations to the phase function such as the Eddington 

approximation. 
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The following development.outlines the parameterization of Eq. 3-1. 

We assume X is a (standard) normal random variable with·mean ~ = 0 o . . p 
and variance ° =.1. Repeating the formula for·reflectance. The assumption 

p 
of normality for X will be discussed more completely in a later section. 

When X is assumed to be a normal variate the reflectance, given by Eq. 3-1, 

has a log-normal distribution. 

-8 X 
p P e 

0 

0 (3-6) 

then 

_~82 
0 

~p p e 
0 

(3-7) 

2 82 

0p = ~p (e 0 1) (3-8) 

A A 

If we have estimates for ~p and 0p denoted ~p and 0p' respectively, 

then by substituting the estimates into the above formulas yields estimates 

of the parameters. 

p 
o 

~p 

(3-9) 

(3-10) 

Finding da~a to define the variability of spectral reflectances (i.e., 

0p) has not been very fruitful. As of yet, no data has been found. on the 

covariance (between wavelengths) of spectral reflectance for various targets. 

Values for the variancp. (i.e., the diagonal terms of the covariance matrix) 

can be estimated from data, for wheat, reported by Collins (1978) through 

the following reasoning as shown below. 

A simple expression for the remote sensing equation for vertical sun 

and sensor can be defined as 
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L = ~ E T2 P +Lp 
7T 0 

(With notation as before in atmospheric section). Over small geographical 

areas it can be assumed that all the terms are constant except p. Allowing 

the calculation of 

L = ~ E T2 - + Lp 
7T 0 P 

Collins reports data for medium altitude aircraft in a fairly dry area 

(Imperial Valley) thus Lp is ignored and thus dividing Eq. 3-12 by Eq. 

3-3 gives 

a
L 

a 
-=- = -fl = Coefficient of variation (CV) 
L P 

Collins reports CV as percent standard deviation of measure radiance which 

determines ~ necessary for formulas 9 and 10. Since Collins was working 

with radiances an estimate of p necessary for Eq. 3-10 is not available. 

Rao, et al. (1978) similarly reported reflectance CV's for grain crops 

and soil. The data was for variation over several months and encompassed 

atmospheric corrections of unknown nature making it unsuitable for present 

efforts. A CV of .1 was chosen for all agricultrual crops after reviewing 

Collins data. 

As a note of explanation, Smith and Oliver (1972) developed a stochas­

tic vegetation canopy model but more appropriately should be termed a Monte 

Carlo model in that the photon interaction with various canopy constituents 

(canopy orientation and distribution) was treated as a random process but 

then the canopy composition was constant and thus is fundamentally different 

than the model being discussed. 

So far discussions of reflectance have centered on vegetation. The 

same function was also used for the other targets. For soil Condit (1970) 

was a valuable source of spectral reflectances. The nature of the curves 

presented allowed an estimate of reflectance variability to be made. Each 

soil was characterized by two spectral reflectance curves: one for dry 
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soii and one for wet soil. The mean and variance for that soil was deter­

mined by the following 

Pdry + Pwet 
2 

In general, variances were chosen for other targets in order to achieve 

"Reasonable families" of curves in .a stochastic simulation. One significant 

modification of the parameters was made for vegetation. The reflectance 

variability 0p was made proportional. to reflectance. That is CV was constant 

(.1) and multiplied by p to yield 0 for estimating Band p. The effect P 0 0 

of this modification can be seen in the difference in variability behaviour 

between vegetation and sand in Fig. 4 of Huck, et ale (1982). ·As one can 

see this introduces variations in 0 over wavelength. It should be noted 
P 

that the ± sigma plots of Fig. 4 (Huck, et al., 1982) are for ±o and not 
x 

±Op such that they enclose ~67% of the simulated reflectance values even 

though p is not normally distributed. This should become clear in the 

section on statistical characteristics. 

as 

for 

The reflectance covariance matrix ~ for targets in general is defined 
p 

A. i = 1, 2, 3, ••. , n 
1 

and where .I
n 

= n x n· identity :matrix-·and- 0p' is· constant, .. but. defining ., ,:~,.,~,:;, .:~ 

-2 -2 
P = PA . 

1 -2 
PA 2 

0 

-2 
p~ 

3 

o 

-2 
PA 
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(J 

and CV = ...B. 
p 

the covariance matrix for vegetation is 

L = CV2 I - 2 
P n P 

where CV is taken to be constant. 

It is particularly important that the off-diagonal terms of the reflec­

tance covariance matrix be approximated in future work and especially for 

investigation concerning the optimum choice of spectral channels. It has 

frequently been observed, or bemoaned if you will, that several of the 

LANDSAT channels are redundant. This is due in part to the high correlation 

of reflectance in the different channels. For example both LANDSAT channel 

6 (.7 - .8) and channel 7 (.8 - .11) fall in the spectral region for vege­

tation characterized by the same reflectance phenomenon. Thus changes in 

the nature of the plant. that affect reflectance in channel 6 affect channel 

7 in almost the same way. This spectral reflectance correlation for channel 

6 and channel 7 is true for most targets and therefore one of the channels 

is fairly redundant. 

Wiersma and Landgrebe (1979) make an important contribution to remote 

sensing where they "develop an analytical procedure for the design of the 

spectral channels for multispectral remote sensor systems". Though neve~ 

explicitly stated, it appears their analysis is based on spectral radiance 

data. The important point to this discussion is that they chose an optimal 

(mean-square) set of spectral channels where the analysis was based on the 

spectral radiance covariance matrix and is aimed at reducing channel re­

dundancy. By reducing correlation between the channels they increase the 

information available from a fixed number of channels. This is shown by 

the techniques of Information Theory. Their radiance data does not allow 

the estimation of the spectral reflectance covariance neces~ary for the 

present modeling efforts. 

3.1 Target Reflectance Curves 

As was indicated, the target reflectances represent an important el-' 

ement in the remote sensing simulation. A collection of target reflectances 
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was gathered and subsequently used in simulations reported to date •. Data 

collected was limited to in situ reflectances for single or collections 

of whole plants. Only data available in the open literature was utilized. 

There exists a large body of reflectance data produced for NASA, in raw 

form, that has yet to be utilized. 

Examination of remote sensing literature from the early 60's to present 

shows the tendency to report ref1ectances to longer wavelengths in the in­

frared. Even with this tendency, very little reflectance data is published 

for wavelengths longer than 1.1 ~m which happens to correspond to the limit 

of LANDSAT spectral coverage. Some data utilized in the cloud detection 

tests, which required data out to 1.60 ~m, was of rather crude spectral 

resolution especially in the .50 ~m to .80 ~m range that is so important 

for the BAM categorization discussed in Aherron, et a1. (1981). The sources 

of reflectance data are listed in Table 3.1 along with the figure number(s) 

for the plot(s) of that data. 
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TABLE 3.1 

REFLECTANCE DATA 

FIGURE NUMBERS SOURCE OF DATA 

FIG. 3.1 3.4 Lansing, 19.70 

FIG. 3.5 - 3.6 Condit, 1970 

FIG. 3. 7 Vlcek, 1974 

FIG. 3.8 Suits and Safir, 1972 

FIG. 3.9 . (Silt Loam) Bowers and Hanks, 1965 

FIG. 3.9 Orr, et al. , 1963 

FIG. 3.10 O'Brien and Munis, 1975 

FIG. 3.11 Hansen, 1969 

FIG. 3.12 Novos'e1' tsev , 1965 

FIG. 3.13 Leeman, e tal. , 1971 
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f.. CLOUD DETECTION 

4.1 Background 

For an Earth resource observation system clouds present a major 

limitation to the collection of data. Worldwide cloud cover is approximately 

45% (Barnes et aI., 1968), which represents a very significant potential 

for obscuration of ground targets. The ability to indentify clouds reliably 

would allow several options for smart sensor systems including the ability 

to avoid imaging of cloudy areas and to eliminate cloud pixels from the data 

to be transmitted to ground stations. An even more sophisticated task for a 

sensor system with reliable cloud detection capability would be the selection 

of alternate imaging areas in the event that the primary target is cloud 

covered. 

In order to identify clouds they must be adequately characterized spect­

rally. As one can imagine, determining the spectral reflectance of a cloud 

is no easy task. The reflectance data available for clouds has generally 

been the product of radiative transfer modeling (Hansen 1969, Novoseltsev, 

1965). In the visible and near-~nfrared region of the spectrum both snow 

and clouds form a single category of what might be called bright white 

targets. Within this spectral region the two classes have such closely 

similar spectral characteristics as to make the'identification of clouds 

as a class unreliable. Only in the longer infrared wavelengths do the. two 

classes show significant differences. 

Valovcin (1978) made a important comprehensive study of the snow/cloud 

discrimination problem specifically aimed at potential on-board methods. 

Valovcin utilized, for his analysis, spectral radiance data from cummulus 

and cirrus clouds and snow obtained fr:om a high flying aircraft. He analyz,ed 

several different discrimination tasks including identifying different cloud 

types. For the simple cloud v.ersus snow discrimination he found th~t a 

radiance threshold for a .1~ llm bandwidth spectral channel centered at 1.56 llm 

achieved an 85% + accuracy_ Thot,lgh nO.test results were reported for such, he 

suggests that moving the channel center to 1.525 llm might impr.ove results,. 

4~2 Test 

Based on results and data reported by Valovcin (1978) a new channel was 
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added to the basic set of two channels used in the target categorization 

tests reported in Aherro~et al. (1981). Those charinels consisted of one 

centered at .6511m and one centered at .85 llm with a bandwidth of .02 llm. 

The new channel for cloud detection was centered at 1.55.11mwith a .1 llm 

bandwidth. 

As was indicated above the reflectance data utilized in the modeling 

was the result of theoretical investigations. Hansen (1969) used the doubling 

method solution to the radiative transfer equations, discussed in the section 

concerning atmospheric radiative transfer, to determine the diffuse spectral 

reflectance of ice clouds of various optical thickness. Novolsel'tsev cal­

culated the spectral reflectance of a cloud composed of water droplets. 

Zander (1966) measured the reflectance of laboratory generated ice clouds and 

his data compares favorably with that report by Hansen (1969). Stochastically 

clouds are treated the same as non-vegetated surfaces. 

A cloud detection algorithm was formulated based on the 3 above channels. 

The algorithm is basically a two level decision tree. First, the snow/cloud 

category is seperated from the other categories based on a thresho~d radiance 

in the .65 llm channel. This is the method previously used in simple categori­

zation (Aherron, et al. 1981). The second level decision of snow versus cloud 

is based on a threshold in the 1.55 channel. Figure 4.1 shows the covariance 

elipse plots for a collection of targets similar to those used in Aherron, et a1. (1981) 

simulated for 23 Ian visual range. The first level categorization boundaries 

are indicated by dotted lines. Included in the snow/cloud category are a snow 

target, an optically thick water droplet cloud, and four ic.e clouds of various 

optical thicknesses. The ice clouds are indicated on the ellipse plot accord­

ing to optical thickness. 

The ill-placed clouds are a manifestation of two problems in dealing with 

clouds. First is the problem of thin clouds. It is an arbitrary decision as 

to what constitutes a cloud and what is merely haze in terms of the magnitude 

of their effect on the received signaL Secondly, the method by which clouds 

are simulated assumes a perfectly absorbing background (immediately behind the 

target as opposed to that outside the field of view). Thus clouds of low 

optical thickness, with a corresponding significant transmissive contribution 

to radiance will be simulated as having too Iowa radiance, by a magnitude 
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dependent on the intended ,background. The cloud set used to test the algorithm 

was limited to those with optical thickness of 16 or greater in order to make 

the results of snow versus cloud more meaningful. This limits the test of 

the ability 'to distinguish snow versus clouds to those pixels that can be 

reliably categorized as snow/clouds. 

Figure 4.2 shows the • 65 ~m versus 1. 55 ~m ellipse plots for a similar but 

smaller set of data as used for Figure 4.1. The cloud and snow classes have 

been indicated. A threshold value' in the 1. 55 ~m channel can be seen to 

seperate snow and clouds fairly well. This algorithm was implemented and 

tested for the three atmospheric conditions (as qualified by visual range), 

and used two solar zenith angles for testing in Aherron, et ale (1981). 

Overall the snow versus cloud discrimination accuracy was very good. 

The worst case was for a visual range of 5 km but the difference between 

5 km, 10 km, and 23 km results was insignificant. Table 4.1 shows the snow 

and cloud confusion matrix for the 5 km case. 

The above test has served to show that given 'perfect snow/cloud versus 

other categorization the snow versus cloud discrimination is simple and ac­

curate. In practical applications the snow/cloud versus other categorization 

can be rather unreliable. It will be the major source of error in dealing 

with clouds. 
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TABLE 4.1 

Snow versus Cloud confusion matrix for 

5 km visual range and 30° solar zenith 

angle. 

SNOW 

CLOUD 

SNOW 

198 

o 

DECISION 

CLOUD 

2 

346 
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5. MODEL ENHANCEMENT TESTS 

Subsequent to the publication of Aherron, et al. (1981) an enhancement 

was made to the aerosol and Rayleigh attenuation coefficients (ai(A) ) which 

altered the spectral radiance signatures produced by the simulation. Figure 

4.1 represents signatures produced utilizing the new coefficients. Two of 

the three experiments in Aherron, et al. were repeated with enhanced coef­

ficients and are summarized in Table 5.1. 

Table 5.1(A), which corresponds to Figure 8(B). of Aherron, et al., shows 

results for the 7 class set. There are two major conclusions that can be 

drawn from this figure. One is that. the MLH (Maximum Likelihood) aggregation 

method is fairly sensitive to changes in solar zenith angle. Second, recalling 

that the BAM (Boundary Approximation Method) is substantially cheaper computat­

ionally, the BAM is the best method of the three for the task of categorization 

for this set of classes. 

Figure 5.l(B), which corresponds to Figure 8(C) of Aherron, et al., 

shows results for a larger set of 20 classes. Again the MLH method proves 

susceptable to changes in solar zenith angle. The MSD (mean square distance) 

aggregation method gave the highest accuracy but with the increased cost over 

the BAM. These new results show even more dramatically the importance of the 

mix of classes ( i.e task assignment) in determining sensor system performance. 

Ultimately the mix of cl~sses on which sensor systems are tested should be 

based on realistic probability of occurrence data. This final point will be 

elaborated on in Section 6. 
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TABLE 5.1 (A) 

CATEGORIZATION ACCURACIES FOR 3 VISUAL RANGES 

AND TWO SOLAR ZENITH ANGLES FOR 17 CLASSES. 

SOLAR ZENITH ANGLE 

VISUAL 30° 40° RANGE 

MLH MSD BAM MLH MSD BAM 

23 krn l. .96 .99 .91 .96 .98 

10 l. .96 .99 .91 .95 .98 

5 l. .96 .99 .9l .96 .98 

TABLE 5.1 (B) 

CATEGORIZATION ACCURACIES FOR 3 VISUAL RANGES 

AND TWO SOLAR ZENITH ANGLES FOR 20 CLASSES. 

SOLAR ZENITH ANGLE 

VISUAL 30° 40° RANGE 

MLH MSD BAM MLH MSD BAM 

23km .96 ~93 .86 .85 .90 .86 

10 .95 .91 .86 .85 .90 .86 

5 .96 .92 .87 .85 .91 .86 

ALL TRAINING SETS GENERATED FOR 23 krn VISUAL RANGE 

AND 30° SOLAR ZENITH ANGLE. 
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6. STOCHASTIC'MODELING 

6.1 Introduction 

This section deals with the stochastic nature of the remote sensing 

system simulation. The analytical details of the stochstic properties of 

the model have been discussed in other sections or in other papers (Huck, 

et al., 1982). Included in this section are observations and discussions 

concerning the limitations encountered and the implications of various 

assumptions made in the treatment of stochastic model properties. 

The general philosophy in addressing the statistical properties of 

the remote sensing system has been to statistically characterize the fund­

amental values or processes within each model element. For instance, during 

the discussion of atmospheric radiative transfer models, it was stated that 

it was the amount and characteristics of the atmospheric constituents that 

was "driving" variation in radiance quantities. The limit of resolution to 

which this fundamental characterization is carried is defined by practical 

realization, as opposed to availability considerations. For plants it is 

realistic to collect statistical data on biomass for good size data sets. 

It is unrealistic to expect statistical data on the number of leaves and 

their orientation, twig volume, and number of flowers or fruits for anything 

but a small collection of cases. Due to the scarcity of good statistical 

data on target characteristics (i.e., biomass, water content) reflectance 

variability was driven by an artifical variable. Statistical data at the 

process resolution desired was not always available or complete and estimates 

were used where necessary. For targets, statistical data was not available 

for the fundamental characteristics or for the reflectances. 

6.2 Statistical Distribution Characteristics 

The assumption of the normality of statistical distriubtions in remote 

sensing work is almost universal. For those quantities, such as sensor 

irradiance, which are a function of many independently (perhaps) distributed 

quantities, the central limit theory of statistics would provide some jus­

tification· for that assumption. 
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Strictly speaking, the normal distribution is not valid for quantities 

such as path radiance because of the exclusion of. negative' radiances. The 

normal distriubtion was chosen for the distribution of the atmospheric con­

stituent amounts and reflectance artificial variables. For atmospheric 

constituent amounts this assumption is intuitively pleasing. The case of 

reflectance variables does not offer such appeal. One problem concerns 

the rather arbitrary nature.by which targets are identified. For instance, 

one may ask at what point does thin yegetation become bare land or what 

is the difference' between a thin cloud and thick haze. If for example, the 

reflectance variable for vegetation were biomass, there seems no intuitive 

justification for assuming that it is normally distributed. A more likely 

case would be an asymmetrical distribution that peaked at the biomass deemed 

to be the necessary minimum to be classified vegetation. The second major' 

limitation with regards to reflectance artificial variables is the restric­

tion of reflectance to the range of 0 to 1. For a particular portion of 

the spectral reflectance curve for a target characterized by low or high 

mean reflectance, the range of possible reflectances is truncated. If the 

normal assumption is used for the artificial variable in this situation, 

the allowable size of the reflectance variability is unduly restricted. 

The failure of the normal assumption for radiance data has been 

demonstarted both' in field and computational experiments. Valovcin (1978) 

plotted mean radiance and ±l sigma radiance curves for snow and cirrus 

clouds. Both of the minus sigma curves showed radiances below zero which 

are physically impossible. Presenting ± sigma curves (or bars) suggests 

things about the statistical distribution that mayor may not be true. 

Sigma curves, which are symmetric about the mean, lead the reader to believe 

that the probability density function (PDF) is symmetrical. The plots 

presented by Valovcin clearly preclude the assumption of a symmetrical PDF 

and therefore rule out the normal assumption. Similarily the 1 sigma 

ellipses for several simulated classes in Fig. 4.1 enclose negative radiances 

in the same manner as Valovcin's data. 

6.3 Distribution Parameters 

It was mentioned briefly in the section on reflectance there is a cor-, 

respondence on covariance between channels and their redundancy. The exact 

redundancy is a function of the probability density functions of the channels. 
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For a multivariate normal distribution the channel redundancy is speci-

fied exactly by the covariance matrix (see for ex~mple a text 'on Infor­

mation Theory) and this is the distribution that will be assumed for 

illustrative purposes. Using the same normality assumption, Wiersma and 

Landgrebe (1979) attributed all the covariance for a set of spectral radi­

ance data to covarying reflectances, with one exception. The atmospheric 

water vapor absorption bands were eliminated from the analysis. The 

sophistication and rigor of their analysis is almost unparalled in the 

remote sensing literature, and should be reviewed to understand the impor­

tance of covariance "structure" in determining optimal spectral channels. 

One of the shortcomings of Wiersma and Landgrebe's analysis is the lack of 

consideration given to the contribution of the atmospheric variability to 

the spectral radiance covariance structure. This shortcoming is almost 

cert~inly due to the lack of data to quantify and statistically characterize 

the atmospheric effects present in the data. 

The simulation that has been discussed herein has the capability to 

combine the effects of the reflectance and the atmosphere on the spectral 

radiance covariance structure. The reflectance covariance structure was 

discussed in the surface reflectance section. Defining the atmospheric 

contribution to radiance covariance has been no more fruitful than for the 

reflectance. The model utilized for atmospheric radiative transfer vari­

ability requires that the covariance of atmospheric constituent amounts be 

defined. For example, it would be necessary to define the correlation 

between atmospheric water vapor content and aerosol burden. So far no 

such data has been found. Simulations run to date have assumed all consti­

tuents to be uncorrelated with the exception of aerosols and water vapor 

which are assumed to have perfect positive correlation. Fraser (1975) re­

ports covariance data for optical depths determined from solar attenuation 

data. By assuming some model for the various atmospheric constituents 

contributions to optical depth, it might be possible to invert the covariance 

data for the constituent amounts but so far efforts in this area have not 

been successful. 

6.4 Decision Theory Considerations 

It became apparent during the work represented in Aherron, et ale (1981) 

and cloud detection algorithm performance reported herein that classification 
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or categorization accuracies where highly dependent.on the probability of 

encountering various targets. This is a familiar subject to those with 

knowledge of Bayesian decision theory. -The two statistical values necessary 

for Bayesian decisibn calculations are the conditional probability of a 

signal given that it was produced by a certain class and the a priori pro­

bability of encountering that class (Duda and Hart, 1973). The statistical 

characterizations and models discussed to date have been concerned with 

defining the conditional probability function for a class. The algorithm 

performance evaluation model utilized thus far has been a simple overall 

classification or categorization accuracy. These figures have been based 

on equal a priori probabilities for classes. When classes are aggregated 

into categories the a priori probabilities are not necessary equal. This 

point must be kept in mind when comparing the reported overall decision 

accuracies. 

Discussion of the Boundary Approximation Method (BAM) decision 

algorithm in Aherron, et ale (1981) points out the need for class a priori 

probabilities in balancing the type I and type II errors of categorization 

when formulating the exact algorithm parameters. As the overall remote 

sensing model becomes more realistic and accurate in future work, it will 

be necessary to include realistic a priori probabilities of occurence for 

both classes and categories. At least two potential methods for channel 

bandwidth and location selection will require such knowledge. One of these, 

an information theory based method, was used by Kondratyev (1975) for 

choosing spectral channels. Kondratyev's analysis was fairly crude and 

the method he used is still relatively unexplored. Secondly, Bayesian 

Decision Theory, as was discussed before, requires the same class 

probability data .. 
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7. SUMMARY & CONCLUPING REMARKS 

This report has presented supporting research and data for a previously 

reported comprehensive remote sensing system simulation (Huck, et· al. 1982). 

A review of various .models of atmospheric radiative transfer was presented •. 

The qualitative accuracy and the quantitiye computational complexity of the 

various models was compared. Using those comparis?ns a~d evaluation criteria 

that included recognition of the uncertainties about atmospheric parameters, 

the Turner (1974) model was chosen for use in the remote sensing system simu­

lations. A detailed discussion of the stochastic implementation of the Turner 

model was given. Various functional forms for spectral diffuse reflectance 

that allow introduction of variability were given and discussion was made of 

certain properties of reflectance variability that are desirable in dealing 

with realistic targets. A compilation of various spectral reflectance curves 

utilized in simulations was presented. 

The special problem of detecting clouds reliably has been examined. For 

optically thick clouds a test of a preliminary detection algorithm has shoWn 

very high accuracy. Thin clouds pose a problem in detection that needs to be 

examined more closely. The detection algorithm tested requires a spectral 

channel at .65 ~m and 1.55 ~m. As was pointed out in Huck, et al., (1982), 

the remote sensing system simulation being developed is unique in its treatment 

of the stochastic elements of the remote sensing system. The lack of good data 

for parameterizing the statistical nature of the atmosphere and target reflect­

ances was discussed especially as it pertained to defining the wavelength covariance 

matrix for radiances. The need for a priori probability of occurence data for 

targets was discussed. Finally, a partially updated set of categorization 

results for the experiment reported in Aherron, et al. (1981) was presented . . . 
which showed the simplest method of categorization performing even better 

relative to the other methods than previously reported. 

Hopefully modeling efforts such as described provide ~nsight ~o the over­

all sensor systems design effort as well as those people involved in basic 

research concerning fundamental process~s. 

One r?le that remote sensing system modeling plays in r~search is ~o 

encourage ~ more insightful look at available data and more careful defini­

tion of needs for future data collection. Speciff~ally the statistical nature 
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of the various system elements becomes more important as the modeling 
- . 

becomes more refined and generalized. And finally, modeling should help to 

make informed decisions as to the importance of various effects and error 

sources within remote sensing systems. 
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