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PERFORMANCE MEASURES FOR MULTIPROCESSOR
CONTROLLERS

ABSTRACT

Performance measures used in contemporary analyses suffer
from a number of shortcomings when real-time multiprocessors
are considered. Most of these measures do not take account of the
needs of the application, except perhaps in a subjective manner.

In this paper, we consider some new performance measures to
characterize fault-tolerant multiprocessors used in the control of
critical processes. Our performance indices are based on con-
troller response time. By relating this to the needs of the applica-
tion, we have been able to derive indices that faithfully reflect the
performance of the multiprocessor in the contezt of the applica-
tion. that permit the objective comparison of rival computer sys-
tems, and that can either be definitively estimated or objectively
measured.

An example of a controller in an idealized satellite application
is provided.
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Table of Notations
Definition

Set of states in which failure is not certain (i.e.,
in which expected response time is finite).

Set of states in which failure is certain

Cost accrued in executing a version of task i
when multiprocessor response time is ¢.

Contribution te T of a single version
of task i with the multiprocessor in state a€A.

Number of processors in multiprocessor (in Example)
Extant time of Z;;
Finite cost function of task i.

Distribution function of sojourn time of the multiprocessor
in state a when the mission lifetime is T {in Example.)

Cost Index

Cost Index for task i

Modified Cost Index

Modilied Cost Index for task i
Distribution function for mission lifetime
Vean Cost

Mean Cost for task i

Mean Mcodified Cost
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i, Mean Modified Cost for task i

n Maximum number of working precessors for which
failure is certain (in Example)

nyy State of the controller when version j of *ask is triggered.
P.(t) Probability of controller being in state a at time t
Pl(t) Probability of controller being in state a € A at time t,

given that in a mission lifetime of ¢, it
never enters a state in B.

Pdyn Probability of dynamic failure

q Number of buses in mu!tiprocessor {in Example)

q;(t) Number of triggers of task i in the interval '0.t]

Q Set of all states of multiprocessor

r Total number of different tasks in controller software
RESP(i;) Response time associated with Z;; {assuming execution is completed).
syst gtot(i)

tas Hard deadline associated with task i, if critical

tot(i) Value of ™, over a mission lifetime \—//

v Variance Cost

Vi Variance Cost associated with task i

v Variance Vodified Cost




)/ Vana ce Modified Cost associated with task i

Wiz Response time probability density function when
the multiprocessor is in state x (x>0) (in Example)

i’ | Cumulative cost function associated with task i
(t)
Ty(t) ?1 &(RESP(i))

A 3R

i=1

N Poisson trigger rate for task i (in Fxample)

W Exponential task execution rate {in Example)

Mp Exponeri.al despatcher failure rate {in Example)
Kp Exponential bus failure rate (in Example)

Up Exponential processor failure rate (in Example)
TiJ Time at which Z;; was triggered

C) Version j of task i
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1. Intreduction

1.1. Motivation

Over the last few years, inexpensive, powerful, and reliable microprocessors
have become available. At the same time, analytical, simulation and modelling
techniques for use in computer communication networks have been developed.
Multiprocessors are therefore becoming attractive. One special application to

which they can contribute a great deal is reliable control.

Several reliable multiprocessors have been proposed and a smaller number
built. Among the latter, one might mention the Fault Tolerant Multiprocessor
(FTMP) [1] and the Software Implemented Fault Tolerance (SIFT) machine [2],
both built under contract to NASA for the control of civilian aircraft of the next
decade. Reliability requirements are stringent: the benchmark figure employed
by NASA is that the probability of controller failure should not exceed 10~? for a
ten hour flight. Naturally, such a benchmark begs the question of how "failure”
or the "“performance” of a complex multiprocessor system is to be defined. In
this paper, we present some measures that are appropriate in this context and
by extension, in the context of other control applications — nuclear reactors,
life-support sysi.ms, etc. -- where controller failure can !ead to catastrophic

consequences.

1.2. The Nature of the Control Function

A computer controller consists of three communicating parts. These are
the data acquisition, data processing and output sections. The data acquisition
section consists of sensors, input panels and other associated equipment; the
processing section consists of the computer (in our case the multiprocessor)
and the output section consists of mechanical actuators, displays and other out-

put devices. The system may logically be regarded as a three-stage pipe’.

1. Indeed, the M®FCS system [18] of the United States Air Force is physically configured in
this manner.
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The set of tasks to be executed by a contrel svstem is predetermined and
the nature and behavior of the software kn~wn in advance -- a;t. least in outline -
to the designer. The multiprocessor controller is therefore a rather specialized

device; it might indeed be considered custom-built for a particular application.

This frct makes it both easier and more necessary to obtain a reasonably good |

performance analysis of the syster.

The controller software in the processing section consists of a set of tasks,
each of which corresponds to some job to be performed in response to particu-

lar sets of environmental stimuli.

1.3. The Need For New Performance Indices

The determining characteristic of a computer controller's performance is
a combination of reliability and high throughput. The throughput requirements
arise from ‘he need fgr quick system response to environmental stimuli. Speed
is of the essence in a real-time controller since lailure can occur not only
through hardware failure in the system, but also on account of the system not
responding fast enough to events in the environment. This fact imposes a prem-
ijum on controller response time and leads naturally to the work presented in

this paper.

As a result of these special performance requirements, performance meas-
ures used to characterize general-purpose uniprocessor systems are no longer
appropriate for multiprocessor controllers. Conventional reliability, throughput
and availability by themselves alone have little meaning in the context of con-
trol; a suitable combination of these is necessar,. New performance measures
are required; measures that are congruent to the application, permit the
expression of specifications that reflect without contortion the true system
characteristics and application requirements, in addition to allowing an objec-

tive comparison of rival systems for particular applications.
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We cannot stress too heavily that it is meaningless to speak of the perfor-
mance of a computer out of the context of its application. The form the perfor-
mance measures take must reflect the needs of the application, and the com-
puter system must be modelled within this context. The multiprocessor con-
troller and the controlled process form a synergestic pair, and any effort to

study the one must take account of the needs of the other.

It is important that performance measures should depend on parameters
that can be definitively estitnated or objectively measur~d. Much of the work
published so far on characterizing the “goodness of fit ' between the attributes
offered by a computer system (reliability, throughput, etc.) and those required
by the application depends on parameters obtained through essentially subjec-
tive analyses. (See, for example, [3]). It has been our policy in this paper, how-
ever, to always base performance indices on experimentally-measureable quan-

tities, i.e., system response time for the various system tasks.

1.4. Organization of Paper

In Section 2, we discuss our new performance measures and in Section 3
means for practically obtaining these quantities. An example is presented in

Section 4, and the paper concludss with Section 5.

2. Performance Measures

2.1. Survey

The concept of systems that are, through built-in redundancy, much more
reliable than any of their components is not new. Some pioneering work was

done by von Neumann (4] and by Moore and Shannon [5], both in 1958.

Work in modelling fault-tolerant multiprocessors was done by Bouricius et.

al, (8], who took into account the impact of transient and permanent failures,
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Borgerson and Frietas, (7], who studied the PRIME computer as a gracefully

degrading system, and other researchers who, like their precursors, used Mar-

kov models in the representation of these systems [8]-[11].

VWith only one exception ([£]), the work referred to above assumed tradi-
tional performance measures. Other workers recognized the shortcomings of
these and defined new ones. Among these, one might mention Beaudry [12] and
Meyer [13].

The chief drawback of Beaudry's measures is that they express the capabil-
ity of the system as a whole, not with respect to particular tasks. The computer
is treated as a monolith in terms of the services it delivers. The implicit presup-
position is that all tasks are qualitiatively of the same form and have practically
the same "cost" as a function of the response time®. However, the tasks that a
real-time computer controller executes are typically widely varying both in
terms of the demands they make on various entities of the multiprocessor and
in the fact that they are of unequal impertance. The performance measures of
Beaudry thus express the performance of the computer without reference to the

particular needs of the application.

Meyer's concept of performability represente . useful advance in the
search for appropriate -erformance measures. However, the actual perfor-
mance measures used sometimes require further refinement. For example, in
(18], Meyer employs as the performance measure, Y,, the fraction of arrived
tasks that are processed by a system S in an interval of time [0,t]. This, as in the
case of Beaudry's performance measures allows for no discrimination between

individual controller tasks.

To remove, at least partially, the limitations of the work cited above, we

present here some new performance measures.

2. Or equivalently, that it does not matter if they do not.
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2.8. Definitions and Basic Conoepts

Because of the stochastic nature of the-transient and/or permanent
failures ¢f components in a multiprocessor, the load-dependent blocking at
shared resources, and conditional branches in the software, a probabilistic
model ig required to properly represent the behavior of a multiprocessor con-
troller. A state-space model can be formulated, with the states representing the
current operational capacity of the system®. Multiprocessor response time is a
function of the state. (Response time is the time interval between the moment of

task initiation and the actuator and/or display result that occurs.)

A task is triggered when some set of events in the operating environment
initiates its execution. If the environment is stochastically stationary, there are

intertrigger distributions.

Every time a task is triggered, a unique version of it is created. This version
is called an eztant version until its execution is complete. Versions are num-
bered in sequence of triggering: successive versions of task i being denoted by
Z.1, 23 etc. The response time associated with a version Z,; is denoted by
RESP(j)). under the assumption that the system continues operating until the
version completes executing. (This is clearly cnly valia so far as the expected
response time is finite). The exztant time of a particular extant version of task i
is the difference between the absolute (or system) time at present and that at
the moment of tr.ggering. When an extant version finishes executing, its extant
time is frozen by definition. Thus, the extant time at t of a version Z;, that was
triggered at time r; with the system in state n, is defined by

EXT[ZU.T“.n. .t]'mh"t-‘l’u. RESP(‘,)]

A controller task may be critical or non-critical. A critical task has a hard

3. The aciue! definition of the stuies depends on the sysiem that is deing modelled. Choosing
asuitable formuiation to facilitate system analysis is often a challenging task.
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deadline [15], the violation of which leads to dynamic failurs. The deadlines are
generally random variables. Non-critical tasks have no such deadlines* .

The mission lifetime is the duration of operation between successive ser-

vice stages.

2.3. The Performance Measures

We define a cost function C,(¢) associated with system response time ¢ for

task i. For critical tasks, the cost function takes the following form:

60 =0 s &
where g(¢) is a suitable continuous function of ¢ that increases monotonically in
(0, ta), is zero for all ¢>ty, and we recognize t, as the hard deadline associated
with critical task 1.3 For noncritical tasks, C(¢) is continuous and therefore
always bounded for a finite response time. For consistency, we assume that the
costs accrue as execution proceeds. In other words, if task i was triggered =
units ago and has not yet been completed, its contribution to the cost so far

accrued is C (7).

The cumulative cost function associated with task i, I(t), is defined as fol-

lows:

w(t)
y(t) = ’.2' C,(EX'I‘(".-.'L,.T,,,. nu.'.)) ) (2)

where there have been q(t) triggers for task i in the interval [0,t]. The system

cost function in a system with r different tasks is delired as:

4. Note that dynamic failure encompasses the traditional notion of catastrophic hardware
failure a3 well as otner .auses (software crashes, system reconfiguration, electromagnetic in-
terference on the communications network, etc.) of missing one or more hard deadiine.

8. In practice. all that can be assured of the behavior of gi(¢) is that it !a monotonically non-
decreasing in [0, t: |. However, we shai! need .o invert the cost ‘unction, and so, we assume
astrictiy increasing cost function in [0, tg).
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4
S(t) = I Ti(¢). (3)

i}
Let L(t) = Prob | Mission Lifetime < t |, Q the set of states of the controller, and
A C Q the subset of states in which failure is not certain. Note that failure is cer-
tain when the expected response time goes to infinity. Define B = Q-A. Our per-

formance measures are then®

Cost Index, K(x) = _Z'ProbiS(t) < x} dL(t) (4)
Prubabillity of dynamic failure, paya= zProb {S(t) = 00} dL(t) (5)
Mean Cost, M m _Z'EtS(t) |system never enters state set BjdL(t) (8)
Variance Cost. V= _ZV.r!S(t) | system never enters state set BjdL(t) (7)

We define also the following auxiliary measures:

Cost Index for Task i, Ki(y) = _[ Prob{ly(t) = y}dL(t) (8)
Mean Cost for Task |, M; = _[ E{ly(t) | system never erters state set BjdL(t) (2)

Variance Cost for Task i.V‘--ZIVartl"‘(t) | system never enters state set B{dL(t) (10)
The auxiliary measurer are principally for use during the design phase.

The mean and variance costs and the co=t indices can be extremely tedious
to compute. In their place, it is often useful to substitute the following modificd

paramaters:

Modified Cost Index, K(x) = t.[ProbiS(t) % MlAL{OI = pend forx <=

Péyn for y=e (12)

Mean Modified Cost, fl= f E{S(t) | systam never enters state set BjdL(t) (12)
°

Variance Modilied Cost, V = [VAR!g(t) | system never enters state set B{dL(t),(13)

6. The Cost Index s generally only ‘or use when rival muitiproccmsors are being compared.
. =the evaluaion of a singls system, the other three measures are su'ficient.
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and the auxiliary measures K, fl,, and ¥, are defined analogvusly, with

: W '
ry(t) = E: 8:(RES(1)) (14)
1
and S(t) -g?‘,(t). Also, from physical considerations, there exists a T<e such

that for all taT, L(t)=1, so that the above integrals always converge.

For values of t much greater th:.1 either the mean task completion time or
intertrizger interval, thr. modified costs are good approximations to their exact
counterparts. This is of value, since it applies most mise on lifetimes, (for air-
craft, mission lifetime can range irom 30 minutes to 10 hours, while for space-
craft, it can range up tc several months) and the modified parameters ure much
easier to compute. In the examples presented in this paper, we evaluate modi-

fied values throughout.

Let P,(t) be the probability that at time t the system is in state v € Q, and
PS"(&) the probability that the system is in state a € A, given that in a mission
lifetime of ¢, it never enters a state iIn B Let Puxy(t)dt be the probability of
arrival of one version of task i ia [t,t+dt], and v, and W, the density and distri-
bution functions, respectively, of the controller response time for task i when in
state a Further, denote the distribution of the hard deadline for task i, if criti-
cal, by Fy. Then,

§ -
pu-(o".% !. ’[. 'II-WL.(u)]Pf"(t)Pm;(t) dtdL(t)dF.,(c)#Er[P.(t)dt (15)

~ P paemy = (=1 tp t)dt 16

Piya ”z'«w) (r=1)Y J Pylt) (18)

where the approximations hold whenever (as is almost invariably the case in
practice) each of the integrals is much less than one.

Let €, be a random variable denoting the cor.. bution to T of a single ver-

sion of task i, with the system in state a € A, tot(1) the value of T, over a mission
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lifetime given that the system remains in state-set A throughout, and
sysi = gtot(l). Let MMyrpy(u.9) be the probability of u arrivals of versions of task i in

an 'nterval of length ¥, and Hf the distribution for the sojourn time of the system
in state v in a mission of length ¢.

Then, define the following characteristic functions:

- 50
[. e*%w, . (27'(q))dq dFy(t) if task i is critical
ve, (s) = “e (17)
l ‘.[o e™*%w, (g,"'(q))dq otherwise
for all a € A,
= T-\ T A b
pu® =T T [ [log G Nuy(w9) aH() AL (18)
and
Poynls) = f;mn(s) (19)

The reader will have noticed two mplicit assumptions: {a) that the service
time for a task is much less than the sojourn time of the system at any one

state,” and (b) that costs incurred by each task-version are independent.

The Cost Indices can now be determined by inverting ¢.x)(s) and g,n(s). and

weighting with the appropriate probability of dynamic failure.

2.4. Application of the Performance Measures

The mean cost, variance cost and the probability of dynamic failure can all
be used in the d:sign and evaluation of individual systems. Every such design is
the result of a multiplicity of decisions reg rding scheduling strategy, individual

component redundancies, speed differentials, etc. The performance measures

7. State changes occur when hardware or software 'ailures occur in the system. The rate at
which these occur s far smalier than the mean tas« compietion time. \.so, of course, g, is
invertible in [0, ta).
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can be used u. optimization oriteria in this context.

It is suggested that the measures be used in‘a two-stage process. First, the
probability of dynamic failure of the designed system is computed and this com-
pared with that required by the specifications. In the event that the system
meets the dynamic failure requirements, expressions for the mean and variance
costs are derived, and fine-tuning of the design carried out by studying the sen-
sitivily of ! e measures to changes in system structure, speed, etc. If the sys-
tem does not meet the dynamic failure requirements, the mean and varimpe
costs are not computed. Instead, the system is redesigned to the point where
the failure requirements are met before mean and variance costs are con-

sidered. Figure 1a summarizes the approach.

The System and the Task Cost Indices may be regarded as the distribution
functions of random variables that we shall call the system capability and the
task capability respectively. The system capability can be used in the com-
parison of two or more rival computer systems. Figure 1b e:plains the pro-

cedure. The task capabilities are used more subtly. See Section 3.3.

3. Remarks on Determining the Performance Measures

In what follows, the system consists of the controlled process (often
referred to simply as the "process") and the controller (i.e., the multiproces-

sor).

Four items need to be determined, prior to computing the performance
indices. These are the distribution of the hard deadlines tg4 for each critical task
i, the finite cost function g, for each task j, the multiprocessor response time
distribution as a function of its state, and the P,(t) for all v € Q. We concentrate
here on the first two, referring the reader to the example presented in Section 4

and the queueing theory and probability literature for the last two.
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3.1. Derivation of the Hard Deadiines B

Typically, critical tasks are associated with life-critical-activity and so one
is especially concerned in finding practical means for accurately estimating P
In o *der to do so, the hard deadlines must first be derived. In most cases, since
the environment is only stochastically known, this takes the form of probability
distributions.

To explain the derivation of the distribution of t,, a state-variable approach

is useful. /.generai process may be described as
x(t) = f(x(t), u(t), t) (20)
where x is the state vector, u is "he input vector, and t represents time. The

input vector can be partitioned thus:

u' = [uf | ] (21)
where ug is the environment input subvector®. It repre-ents the effects of the
environment on the controlled process. For example, a gust of air is an environ-

mental input when the controlled process is an aircraft.

uc is the control input subvector. It represents the input delivered under
controller command in response to an environmental input. For obvious reasons,

it is always bounded.

The process is required to perform within a certain subset of the state-
space. Let the admissible set of the state vector be bounded and denoted by X,.

Note that the admissible state-space is not necessarily static.

The control u¢ is employed to keep the process in X;. The control is clearly
a function of ug. Since X, is bounded, there is a bound on the controller
response time allowed. This bound is the hard deadline. Since the process

dynamics and the distribution of ug are known, the distribution of each hard

8. By definition, an input from an [/0 panel is also an environmenta!l input.
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deadline can in theary be determined.

For clarity, we restate the above. The interval between a trigger and the
termination of the resulting controller response can be divided into two por-
tions: controller think-time€ (i.e., the response time) and the actuation time dw-
ing which the process reacts to the environmental trigger under controller
directives. The hard deadline t, associated with a control task i which i3 trig-
gered by an environmental input is the maximum controller think time permit-
ted, consistent wilh environmental conditions, the process dynamics and the

requirement to keep the system within the admissible state-space, X,.

Clearly, 1n order to derive the hard deadlines, a precise formulation of the
process dynamics is required. Since such a formulation is a required part in the
design of a critical process, no additional requirements are imposed on the sys-

tem designer.

For an erample in determining hard deadlines, the reader is directed to

Section 4.

3.2. Derivation of Finite Cost Functions

Very little work I as been published in this area. Cost functions of this type
are usually -- and if at all -- specified in an ad-hoc manner. The main problem
here is that the cost functions must be linked to the controlled process to have
any concrete meaning. Contemporary workers (e.g., [3]) have skirted the prob-
lem -- with less than convincing results -- by ascribing qualitatively-defined
"weights"” to controller attributes (conventional reliability, throughput, etec.) and
attempting to match these to corresponding weights for the application (also

qualitatively obtained).

Controlled processes have performance measures that are functionals of

system state and input, and which express the cost of running the process [17],
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[18]. The traditional formulation is:
I(t) = t(x(t), u(t), t)" (22)
where J(t) is the instantaneous performance measure , f, the functional and the

other symbols have their usual meanings.

The cost of running the process over, say, an interval [t,, t],

Yy
0= {J(t)dt (23)
We claim that a good representation for g(¢) is given by®

0(¢) — Q(0) for Osésty
&) = ¥ 0 @ oot;erwise (24)

where:

0(n) = Expected contribution of ugto 8 if RESP(i)=7, and
ug = control input subvector associated with task i.

See Section 4 for an example.

3.3. Discussion

By connecting the activity of the control system with that of the controlled
process, a proper foundation has been provided for the definition of controller
performance. All quantitites relating to the performance measures can be calcu-
lated from quantities that may be estimated or measured. It is true that our
methods presuppose a knowledge of the controlled process and its dynamics
that may not at first be accurately available. However -- and this is the crucial
point — an understanding of the dynamics of the process will surely increase

with experience (say with a mathematical model or a prototype). There is

9. It is easy to see that many other suitable representations of the cost function can exist.
For instance, one can modify ((n) to include higher moments of the contribution to 9. How-
ever, lor most practical purposes, the above measure should suffice, It is usually only when
the intertrigger or service time distributions exhibit strongly non-Markovian behavior that
such a modification needs to be considered. Also, g, is O for values of response time greater
than the associated hard deadline since to speak of finite cost after failure has occurred is
meaningless.
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therefore a learning curve associated with process operation and hence by
induction another for the performance measures: Note that we are here consid-
ering critical processes such as nuclear reactors or aircraft and that such
processes call for extensive testing and analysis before release or installation.
Also, the operating environment for these critical processes is usually well

known, so that a good model generally exists for the intertrigger distributions.

One can express uncertainty about the accuracy of the individual cost func-
tions in terms of a confidence measure. The sensitivity of the system capability
to changes in the cost functions is given indirectly by the individual task capa-
bilities . The latter oan therefore be used with confidence intervals for the cost

functions to obtain a confidence interval for the system capability.

4. Example

In this section, we present an example for the determination of hard dead-
line distributions, mean and variance costs, and the analysis of a multiprocessor
system. Both the example process and the multiprocessor are somewhat ideal-

ized, the principal purpose being to illustrate what has gone before.
4.1. The Process

4.1.1. Description

The controlled process is a« communications satellite of mass m, floating in
free space. One critical controller task (task 1) is to keep it within a sphere of
radius R centred on a "rest position"”, x,, The environment is characterized by a
series of impulses, deriving from mel.orite impacts, and arriving along random
directions. The meteorites arrive according to a Poisson distribution with
parameter A. The satellite must be restored to rest at x; before the next meteor-

ite comes in. The energy the meteorites impart to the satellite is assumed to be
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constant at k units per impact.

The controller employs rockets to respond to the impulses and can impose
a maximum thrust of a units of force in any direction. The rockets must be

adjusted to the right direction, and this deployment takes 7, units of time.

The performance index with respect to this one task is 8 = total energy
expended by the rockets. The problem is to determine the distributioa of t,, and

the finite cost function, g,(t).

4.1.2. Derivation of t4, Distribution

Catastrophic failure will occur either if the satellite is not restored to rest
at x; by the time the next impulse comes along, or if the satellite leaves the

admissible state space.

tq; is the maximum think-time, and finding it is equivalent to solving for the
minimum actuation time. We clearly have a bang-bang control solution. Using
standard methods from optimal control theory, we conclude that
ta = max | min[A(7), t,], 0} (26)
where

T is the interval between succeseive meteorite arrivals,

vZkm
M) = 7-ree Y o /T TVRRED (26)
=~/ mg_k
ty= V 2k R pe (27)
The distribution function for ty, is given by:
0 ifr¢<o
Fa(¢) = {1 - e™7'@ jfos ¢ <t, (28)
l 1 otherwise

4.1.3. Derivation of g,

Notice that since the environment is stochastic, the controller will always
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order maximum thrust. The duration for which the thrust is maintained will
depend on the response time, {. All computations are made under the condition
that ¢sty;. Using the laws of mechanics, we arrive at the following result, which
the reader may easily verify:

Expected contribution of u, to © if response time = ¢,

0u(0) = 000 + \/ Zat (29)

We can therefore now write:

00 =/ ZEag tor oststa (30)
The cost function C4(¢) is now completely determined. It only remains for us to
obtain the controller response time distribution and state probability functions.
Remark: Notice the tradeoff between t4, and g;,. As the rocket thrust, a, is
increased, the expected value of t1) incresses, meaning that more time is avail-

able for the controller, and the chances of catastrophic failure are reduced.
This is paid for in the form of increased operating cost, i.c., g; rises faster.

4.2. The Multiprocessor

4.2.1. Description

The multiprocessor is configured a: shown in Figure 2. It consists of a
despatéher with an infinite buffer which dynamically assigns tasks to processors
as they come in and the processors become free. Input rate is Poisson, with
parameter ) for task i. There are r tasks in the system, and all are critical. All
tasks have an identical service time distribution’. There is no common memory
in the system, each processor is assumed to have all the system applications

software stored in its private memory''. The despatcher schedule is FIFO.

10. This assumption (used by many authors eg., [14] )is removed by us in [20].

11. This assumption is not as unrealistic as it might seem. With memory densities rising, and
costs falling, there are emerging designs based on this idea (eg., CM®FCS system [29]). The
remova. of Lthis assurnption entai's analysis of a biocking prodlem. For a study of this type of
system, see [22].




Processors fail at an exponential rate of up; the despatcher (which is assumed to
have internal redundancy) with rate up, and each of the q redundant buses (of
which only one is active at any one time) with rate u3. Components fail indepen-
dently of each other, and coverage is 100X. Queueing delays at buses are small
enough to be ignored'®.

4.2.2. Determining Task Execution Rate

The time taken to execute a task on a processor is a random variable whose
distribution is affected by operating conditions and system parameters. The dis-
tribution is determined by operating system characteristics, processor failure
rates (both transient and permanent) and the probability of incorrect transmis-
sion over the intercommunication medium together with the conditional

branches within the executed code.

In any reliable system, the effects of the pertubations due to hardware
failures or electromaghetic interference are very small due to their low proba-
bility of occurrence. It is generally assumed in analyses of this type that the
software execution time assuming no pertubation due to hardware failure or
interference is exponentially distributed. Since the pertubations are small, we
approximate them by assuming the service rate still to be exponential, but shift-
ing its parameter slightly to allow for the pertubations. Let this parameter be u.
To determine u, we use the probability model shown in Figure 3. mp is the den-
sity function for the execution time of the software assuming no pertubations
due to failure, incorrect transmissions, etc. This quantity can be derived
through experiment, and naturally depends on the nature of the code. m is the
density function of the j-th pertubation and a; is the probability that this pertu-

bation occurs during one execution of the code. Both these quantities can be

12. This is characteristic of this tyre o!f system. essages transmitted are invariably either
control messages or very small packets of data.
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determined by experiment and/or analysis. Assuming, for analytical simplicity,
that the pertubations are mutually independent, the characteristic function of
the service time pdf for the code, &,, can be written down by inspection as:

Gq(s) = $o(s) * III[A,.‘(I)'PI-C’} (31)
where

€)(s) is the Laplace transform of m(t).

The mean and variance of th : executiun time can be determined from &,(s).

Let them be M and V, respectively. Then, the value of u is taken to be

mln[l/ M 1/ V]. This is generally a rather conservative estimate.

4.2.3. Analysis of the Multiprocessor

(a) Response Time Density Function: System failure occurs when the

r
. P
despatcher fails, all buses fail, or when there are n=[-’%j processors or less

functioning. The state description is: y=0 when there is system failure, and
y=n+1, ..., ¢, when there is no system failure, and there are n+1, ... ,c, proces-

sors respectively functioning in the system. Clearly, A={n+1, ..., ¢}, and B={0].

r
Let A = YA, The system at state x (x>0) is essentially an M/M/x queue when
im1

the (small) despatcher service time is ignored. Therefore, the pdf of the
response time of the system in state x (x>0) for each taski =1, ..., r is given by
[23]:

pe P A=xu+uly(0)] — [1-W,(0)J[A=xu]ue~(m-Mn

wis(t) = A= =il '

(32)

where:

_ 12 Ao xe ™
W.(0)=1- -%(—5)7‘-){2”#]‘ I )l;;j_i;]] (33)

27N
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(b) State Probability Functions:

Let pp(t). pp(t), and pp(t) be the probability of failure of a processor,
despatcher and bus by time t respectively, where: .

pr(t) = 1 — ™ (34)
pat) =1 - (38)
po(t) = 1 = ¢ 0" (38)
Then, the probability of the system being in state 0 at time t,

Po(t) ™ g[:]tpr(t)l"‘[l-pr(t)]' + [pa(t))* + po(t) (37)

and, the corresponding probability for state a, for a=n+1, ..., c,
Py(t) m [1 = {[pa(t)]%po(t)]( :][Pr(l)]"'ll-pp(t)]‘]- and (38)
PO = —2) __ (39)

1= ESP‘“)

() Sojourn Time Density Function, HJ(t): The derivation is conceptually
straightforward. We therefore present only the result.

For a=n+1, ..., c-1,

0 for t<0
HX(t) = 1-?..('r-t)u—r....(t)u1-!-'.;..(&); for 0st<T (40)
1 for taT
where
for t<0
Fo (1) = DA 1-e MY rorogt<T (41)
1
1 for t>T
o = (=1)let
At ) (j=1)(c-a=j)'a!(a+j) (42)
for t<0
Fi’.'(t) = t_e"“r" for t30 (¢3)
Fa-e (t) = 1 = [Fy (k=t)dFe(k) (44)
K=t

Folt) = e *'(1-e )1 4 (1-e ) (1-{1~e *'|9) + (1-e ) (1-e7*7) (45)
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Also,
, for t<0
HI(t) = «‘-'.(t)-ﬂ‘.(t)-!‘-{..(t)r.(t) for OSt<T (48)
‘ 1 for t3T
where
Fpalt) = 1 - o (47)

The expressions follow from a realization that when the mission lifetime is

given, the sojourn times are no longer independent random variables.

4.3. Numerical Results

The parameters used for the process are r=78, A=.5 for all tasks, u=20
k=1, m=2, a=1, and R=1.75. The contrcller parameters are us = 108, ug= 107%,

and up = 107 All tasks are assumed to be critical with the cost function of the

task in the example in Section 4.1.

For a system of this type, the only design vaciables are the number of pro-
cessors the number of buses, and the speed of the hardware. The graphs that
make up Figure 4 show the marginal benefit to be gained from the addition of
processors. Addition of buses, it was found, has practically no impact on the pro-
bability of dynamic failure or on the mean and variance costs. (Mean and vari-

ance costs are equal in this system).

The marginal benefit to be gained Irom raising the processor strength from
2 to 3 is considerable; above a processor count of 4, the marginal benefits are
practically non-existent for probability of dynamic failure. Similarly, above a
processor count of 5, there is virtually no benefit to be accrued in adding pro-
cessnrs. (Keep in mind that these re narks hold good only for mission lifetimes
in the range considered.) The lailure rate at the asymptotic level of infinite pro-
cessors is principally due to the probability of working processors exceeding the

hard deadline, and the mean and variance costs become the cost associated

e ————————— ——
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with mean processor service time. If better performance than that provided by

the asymptotic level is required, it can only be obtained by the introduction of
faster hardware.

6. Discussion

In this paper, we have presented performance indices that are objective in
the iny they measure performance. Due to this objectivity, they can be used to
advantage in both the design and evaluation phases of the development of a con-

troller system.

As for design, the measures should help i1dentifly quasi-optimal architec-
tures and operating systems. In the former category are included decisions
regarding the interconnection structure and component speed differentials. In
the latter category, we include the choice of schedule in the access of shared
resources, the design of failure recovery procedures --especially the optimal
placement of recovery points— and algorithms contrelling the allocation and
realiocetion of tasks to the individual processors. The lack of objective indices so
far has forced contemporary workers to employ overly simplistic performance
indices, most notably in salving the task allocation problem (such as ascribi:g

unit cost to each transac'ion on the inl.rconnection network .24). )

In the sphere of evaluation, the measures can be used to provide either an
absolute or relative index to controller performance. In the former case, the
performance functional, f,, has to be defined with particular care, and the
indices provide a measure of the overhead cost incurred in control. A second
important application is the comparison of rival controller systems for particu-

lar applications.
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/* A={A,, ..., Ap} are the systems to be compared. */ OF POOR QUALm
fori=1 tomdo
begin
CALL SELECTION (A)
RANK(i) « SELECT
A = A - {SELECT}
end

end COMPARISON;

PROCEDURE: SELECTION (A)
/*SC; is the system capability of system A;.
A=fA,, .... A,} are the systems to be compared. */
CHOSENM‘- 0
fori=1 t:o ndo
begin

min §SC

..........

define PROB(i) = Prob § SC; < MIN(i) }
if PROB(i) > CHOSEN then
begin
CHOSEN « PROB(i)
SELECT « i
end
end

end SELCCTION;

Fig 1lb: Comparing Rival Systems
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