
General Disclaimer 

One or more of the Following Statements may affect this Document 

 

 This document has been reproduced from the best copy furnished by the 

organizational source. It is being released in the interest of making available as 

much information as possible. 

 

 This document may contain data, which exceeds the sheet parameters. It was 

furnished in this condition by the organizational source and is the best copy 

available. 

 

 This document may contain tone-on-tone or color graphs, charts and/or pictures, 

which have been reproduced in black and white. 

 

 This document is paginated as submitted by the original source. 

 

 Portions of this document are not fully legible due to the historical nature of some 

of the material. However, it is the best reproduction available from the original 

submission. 

 

 

 

 

 

 

 

Produced by the NASA Center for Aerospace Information (CASI) 



_ 

t

IVASA—CB-169482) PIEFORHANCE H IASUSES FOR	 W83-12868

HULTIPFCCESSOR CUITRCLLESS (HIChigan UBiT-)

33 p HC A03/HF A01	 CSCL 09B
Un cl as

G3/0 01077

PERFORMANCE MEASURES FOR MULTIPROCESSOR
CONTROLLERS

C. M. Krishna.
K. G. Shin

Department of Electrical and Computer Engineering
The University of Michigan

Ann Arbor, MI 48:09

iLF mac'

Tais work was supported'iy NASA Gran- No. ',4G 1-216. Al: correspondence sho 'd be ad-
dressed to ?ro'essor K. G. Sti:n.

F

f

Ep

F

E



PERFORMANCE MEASURES FOR ]RULTIPROCESSOR
CONTROLLERS

ABSTRACT

Performance measures used in contemporary analyses suffer
from a number of shortcomings when real-time multiprocessors
are considered. Most of these measures do not take account of the
needs of the application. except perhaps in a subjective manner.

In this paper, we consider some new performance measures to
characterize fault-tolerant multiprocessors used in the control of
critical processes. Our performance indices are based on con-
troller response time. By relating this to the needs of the applica-
tion, we have been able to derive indices that faithfully reflect the
performance of the multiprocessor in the context of the applica-
tion. that permit the objective comparison of rival computer sys-
tems, and that can either bE definitively estimated or objectively
measured.

An example of a controller in an idealized satellite application
is provided.

I
i

7
i

i

1



Table R AWiano

Nam- Definition

A Set of states in which failure is not certain (i.e.,
in which expected response time is finite).

H Set of states in which failure is certain

CAA Cost accrued in executing a version of task i
when multiprocessor response time is ^.

Contribution to ry of a single version
of task i with the multiprocessor in state aEA.

c Number of processors in multiprocessor (in Example)

EX17('E ; j , Ti,j ,ng.Q Extant time of —;j

g; Finite cost function of task i.

HT(t) Distribution function of sojourn time of the multiprocessor
in state a when the mission lifetime is T (in Example.)

K Cost Index

Ki Cost Index for task i

R Modified Cost Index

Y4 Modiried Cost Index for task i

L Distribution function for mission lifetime

M wean Cost

M; Mean Cost for task i

a Mean Vodified Cost



OMrol PAGE 18

OF POOR QUALM
g^ Mean Modif led Cott for task i

n Maximum number of working processors for which
failure is certain (in Example)

ni a State of the controller when version j of 'ask is triggered.

P.W Probability of controller being in state a at time t

P.10 (t) Probability of controller being in state a C a at time t,
given that in a mission lifetime of t, it
never enters a state in B.

pd" Probability of dynamic failure

q Number of buses in multiprocessor (in Example)

q;(t) Number of triggers of task i in the interval 'O.t]

Q Set of all states of multiprocessor

r Total number of different tasks in controller software

RESP(ii ) Response time associated with =;a (assuming execution is completed).

syst
r

tot(i)
1=1

td, Hard deadline associated with task i, if critical

tot(i) Value of'"; over a mission lifetime

V Variance Cost

c

t

V,	 Variance Cost associated with task i

Variance Vodified Cost



C, Van a tee Modified Cost associated with task i

wts Response time probability density function when
the multiprocessor is in state x (x>0) (in Example)

I't Cumulative cost function associated with task i

PA) Y
W

gt(RESP(il)
1n t

t^ t

Poisson trigger rate for task i (in Fxample)

µ Exponential task execution rate (in Example)

µD Exponeri .a1 despatcher failure rate (in Example)

µg Exponential bus failure rate (in Example)

µP Exponential processor failure rate (in Example)

Tij Time at which "► •l was triggered

F-i l Version j of task i



1. Introduction

ORIGINAL PAGE W
OF POOR QUALITY,

1.1. Motivation

Over the last few years, inexpensive, powerful, and reliable microprocessors

have become available. At the same time, analytical, simulation and modelling

techniques for use in computer communication networks have been developed.

Multiprocessors are therefore becoming attractive. One special application to

which they can contribute a great deal is reliable control.

Several reliable multiprocessors have been proposed and a smaller number

built. Among the latter, one might mention the Fault Tolerant Multiprocessor

(FTMP) [ 1] and the Software Implemented Fault Tolerance (SIFT) machine [2],

both built under contract to NASA for the control of civilian aircraft of the next

decade. Reliability requirements are stringent: the benchmark figure employed	 i
I

by NASA is that the probability of controller failure should not exceed 10- 9 for a

ten hour flight. Naturally, such a benchmark begs the question of how "failure"

or the "performance" of a complex multiprocessor system is to be defined. In

this paper, we present some measures that are appropriate in this context and

by extension, in the context of other control applications — nuclear reactors,

life-support sys_^ms, etc. -- where controller failure can lead to catastrophic

consequences.

1.2. The Nature of the Control vunction

A computer controller consists of three communicating parts. These are

the data acquisition, data processing and output sections. The data acquisition

section consists of sensors, input panels and other associated equipment; the

processing section consists of the computer (in our case the multiprocessor)

and the output section consists of mechanical actuators, displays and other out-

put devices. The system may logically be regarded as a three-stage pipe'.

1. Indeed, the MTCS system [18] of the United States Air Force is physically configured in
this manner.



OMOMIAL PAGE 8
-	 OF POOR QUALITY

The set of tasks to be executed by a control svotem is predetermined and

the nature and behavior of the software known in advance -- at least in outline --

to the designer. The multiprocessor controller is therefore a rather specialized

device; it might indeed be considered custom-built for a particular application.

This feet makes it both easier and more necessary to obtain a reasonably good

performance analysis of the system.

The controller software in the processing section consists of a set of tasks,

each of which corresponds to some job to be performed in response to particu-

lar sets of environmental stimuli.

1.9. The Need F^nr New Performance Indices

The determining characteristic of a computer controller's performance is

a combination of reliability and high throughput. The throughput requirements

arise from '_.he need for quick system response to environmental stimuli. Speed

is of the essence in a real-time controller since failure can occur not only

through hardware failure in the system, but also on account of the system not

responding fast enough to events in the environment. This fact imposes a prem-

ium on controller response time and leads naturally to the work presented in

this paper.

As a result of these special performance requirements, performance meas-

ures used to characterize general-purpose uniprocessor systems are no longer

appropriate for multiprocessor controllers. Conventional reliability, throughput

and availability by themselves alone have little meaning in the context of con-

trol; a suitable combination of these is necessar ) . New performance measures

are required; measures that are congruent to the application, permit the

expression of specifications that reflect without contortion the true system

characteristics and application requirements, in addition to allowing an objec-

tive comparison of rival systems for particular applications.



OrAQWAL PAGE W
OF POOR QUALITY

-9-

We cannot stress too heavily that it is meaningless to speak of the perfor-

mance of a computer out of the context of its application. The form the perfor-

mance measures take must reflect the needs of the application, and the com-,;

pater system must be modelled within this context. The multiprocessor con-

troller and the controlled process form a synergestic pair, and any effort to

study the one must take account of the needs of the other.

It is important that performance measures should depend on parameters

that can be definitively estimated or objectively measur id. Much of the work

published so far on characterizing the "goodness of fit' between the attributes

offered by a computer system (reliability, throughput, etc.) and those required

by the application depends on parameters obtained through essentially subjec-

tive analyses. (See, for example, [3]). It has been our policy in this paper, how-

ever, to always base performance indices on expe rim entally-measureable quan-

tities, i.e., system response time for the various System tasks.

1.4. Organisation of Paper

In Section 2, we discuss our new performance measures and in Section 3

means for practically obtaining these quantities. An example is presented in

Section 4, and the paper concludes with Section 5.

2. Performance Measures

0.1. Survey

The concept of systems chat are, through built-in redundancy, much more

reliable than any of their components is not new. Some pioneering work was

done by von Neumann [4] and by Moore and Shannon [5], both in 1956.

Work in modelling fault-tolerant multiprocessors was done by Bouricius et. 	 j

al, :6], who took into account the impact of transient and permanent failures,



-

ORIGINAL PAGE IS
.4- 	 OF POOR QUALITY

Borgerson and Frietas, [7], who studied the PRIME computer as a gracefully

degrading system, and ether researchers who, like their precursors, used Mar

kov models in the representation of these systems [8]-[11].

With only one exception ([t]), the work referred to above assumed tradi-

tional performance measures. Other workers recognized the shortcomings of

these and defined new ones. Among these, one might mention Beaudry [12] and

Meyer [ 13].

The chief drawback of Beaudry's measures is that they express the capabil-

ity of the system as a whole, not with respect to particular tasks. The computer

is treated as a monolith in terms of the services it delivers. The implicit presup-

position is that all tasks are qualitiatively of the same form and have practically

the same "cost" as a function of the response time2. However, the tusks that a

real-time computer controller executes are typically widely varying both in

terms of the demands they make on various entities of the multiprocessor and

in the fact that they are of unequal imper :ance. The performance measures of

Beaudry thus express the performance of the computer without reference to the

particular needs of the application.

Meyer's concept of performability represent- , useful advance in the

search for appropriate ?erformance measures. However, the actual perfor-

mance measures used sometimes require further refinement. For example, in

[ 13], Meyer employs as the performance measure, Y„ the fraction of arrived

tasks that are processed by a system S in an interval of time -0,t]. This, as in the

case of Beaudry's performance measures allows for no discrimination between

individual controller tasks.

To remove, at least partially, the lirr_itations of the work cited above, we

present here some new performance measures.

2. Or equivalenCy, gnat it does not matter if .hey do not.



oiNNuAL PAGE a
s -	 of POOR Qum

i
9-8. DetWUons and Bask Conoepts

Because of the stochastic nature of the - transient and/or permanent

failures c f components in a multiprocessor, the load-dependent blocking at

shared resources, and conditional branches in the software, a probabilistic

model is required to properly represent the behavior of a multiprocessor con-

troller. A state-space model can be formulated, with the states representing the

current operational capacity of the system s. Multiprocessor response time is a

function of the state. (Response time is the time interval between the moment of

task initiation and the actuator and/or display result that occurs.)

A task is triggered when some set of events in the operating environment

initiates its execution. If the environment is stochastically stationary, there are

intertrigger distributions.

Every time a task is triggered, a unique version of it is created. This version

is called an extant version until its execution is complete. Versions are num-

bered in sequence of triggering: successive versions of task i being denoted by

4 1, 4s, etc. The response time associated with a version =w is denoted by

REaP(i), under the assumption that the system continues operating until the

version completes executing. (This is clearly only valia so far as the expected

response time is finite). The extant time of a particular extant version of task i

is the difference between the absolute (or system) time at present and that at

the :-foment of triggering. When an extant version finishes executing, its extant

time is frozen by definition. Thus, the extant time at t of a version 3 1,1 that was

triggered at time T; ,i with the system in state nti is defined by

EXT['ij , Ti,i ,nt ,i ,t]=cif, f t —TLi, RESP(ii)].

A controller task may be critical or non-critical. A critical task has a hard

3. :-ne actor.: de ..".naion o' t`ie sw.es depends on tae syrerr that is being :r.ode::ed- Caoos:ng
a suitable ,'ormu;etion to faciUate system wua ys:s is often a chaLeng:ng task.

r



- • -	 OF POOR QUALITY

dea Line [ 15], the violation of which leads to dynamdc faUvirs. The deadlines are

generally random variables. Non-critical tasks have no such deadline*' -

The mission KJetime is the duration of operation between successive ser-

vice stages.

ES. The Performance Measures

We define a cost function C,Q) associated with system response time E for

task i. For critical tasks, the cost function takes the following form:

R) if f s to	
1)G(() ' " otherwise

where g,Q) is a suitable continuous function of t that increases monotonically in

[0, tu], is zero for all (>t d,, and we recognize t d. as the hard deadline associated

with critical task i. 5 ,For noncritical tasks, C,(f) is continuous and therefore

always bounded for a finite response time. For consistency, we assume that the

costs accrue as execution proceeds. In other words, if task i was triggered :-

units ago and has not yet been completed, its contribution to the cost so far

accrued is L.(r).

The cumulative cost Junction associated with task i. r;(t), is defined as fol-

lows:

4,(t)

ro) w	 Cs(EXT(=i,),rv.r.;j,t)) 	 ^2))•t

where there have been %(t) triggers for task i in the interval ;O,t]. The system

cost Junction in a system with r different tasks is defined as:

4. Note trust dynamic failure encompasses the tra&t:onai notion of catastrophic hordwa-e
failure a3 well as otaer , &uses (software crashes, system reconfiguration, electromagnetic in-
terference on the communications network. etc.) of misa:.ni one or more hard dead:ine.
5. In practice, all that can be assured of the behavio r of g,(E) is that it is rnonotonica: y non-
decreasing : n (0, t,. j. 'lowever, we inns`. -iced .,a invert tae root 'unction, and so, we asrumt,
a s»-ict.y inc-ear. ng cost func t'.on :n [0, tj J.

J.

I\



1

_ 7 _	 OM MM PAN 10
()F PON QUALM

	9(t) a ENO.	 (3)
lot

Lot L(t) = Prob ( Miirsion Lifetime s t 1. Q the set of states of the controller, and

A C Q the subset of states in which failure is not certain. Note that failure is cer-

tain when the expected response time goes to infinity. Define B = Q-A. Our per-

formance measures are Lhens:

w

Cost Index, K(X) isO robj%t) i XI dVt)	 (4)

Prrbabllity of dynimic failure, pya= Prob IS(t) a 00 ; dL(t)	 (5)
'b

Mean Cost, M = EIS(t) I system never enters state set B;dL(t) 	 (8)
1

Variance Cost. V = f Varf S ( t) I system never enters state set B ( dL(t)	 (7)	 I
0

We define also the following auxiliary measures:

Cost Index for Task i, &(y) = r Prob i ri(t) s yjdL ( t)	 (t^)	 t

Mean Cost for Task i, M, = rEjr,(Q I system never enters state set B { dL(t)	 (B^

Variance Cost for Task i,Vj
al

V aril"I (t)  I system never enters state set B ► dL(t) (101

The auxiliary mee9Lrer are principally for use during the design phase.

The mean and variance costs and the co-! indices can be extremely tedious

to compute. In their place, it is often useful to substitute the following modificd

parameters:

Modified Cost Index, R(x) w J rProbj g ( t) s XjdL ( t)j11 — pirnl for X <a
`b	

t, I : )

	

Pdrn	 for X=-

Mean Modified Cost, q n IE19( t) system never enters state set B {dL(t)	 (12)
0

Variance Modified Cost, d n f VAR19(t) I system never enters state set e1dL ( t),(:3)

6. :ae Cat Index : 9, denera.:y on:y !or ume xtien -'val -ru * t:,rocc ssors are being cocr.?&red.
the evalun•.ion o! u vinyls system., the other three measures tire %X!Icien..



-

___

d -	 ORiAML PAGE is
OP POOR QUALITY

and the auxiliary measures 1l',, 01, and VI are defined analogously, with

rs
r

and 1(t) • Ztj(t). Also, from physical considerations, there exists a T<•• such
i-1

that for all taT, L(t)-1, so that the above integrals always converge.

For values of t much greater W . z either the mean task completion time or

intertr:7,ger interval, the. modi fied cc.sts are good approximations to their exact

counterparts. This is of value, since it applies most mice on lifetimes, (for air-

craft, mission lifetime can range from 30 minutes to 10 hours, while for space-

craft, it can ran ee up to several months) and the modified parameters ore much

easier to compute. In the examples presented in this paper, we evaluate modi-

fied values throughout.

Let P.(t) be the probability that at time, t the system is in state v E Q. and

P;t1(t) the probability that the system is in state a E A. given that in a mission

UfeUme of (, it never enters a state in H Let P.Ku(t)dt be the probability of

arrival of one version of task i in (t,t+dt), and w, ,. and N,,. the density and distri-

bution functions, respetAively, of the controller response time for task i when in

state a Further, denote the distribution of the hard deadline for task I. if crit.i-

cal, by FO . Then,

PardU ~	 ,f	 r(1—NL.(u))P;n(t)P.r,tq(t) dtdQt)dF.,(cj) + r rP^(t)dt 	 (16)
ea w0 0 Cn 0 	 Ks"0

Pd7 ► 14^..,{q — (r-1)	 f Nt)dt	 (18)
1.1	 w3

where the approximations hold whenever (as is almost invariably the case in

practice) each of the integrals is much less than one.

Lot ,,. be a random var i abie denoting, the cor .. bution to ?'; of a sing?!j..le ver-

sion of task i, with the system in state a c A. tot(1) the value of ?', over a mission



IV

ORMNAL PAGE ISM

- 
D •
	 OF POOR QUALITY

lifetime given that the system remains in state-set A throughout. and

r
Brat • Ztot(i). Let nw O)(u,d) be the probability of u arrt:als of versions of task i in

an `nterval of length -3, and HS the distribution for the sojourn time of the system

in state v in a mission of length E.

Then, define the following characteristic functions:

Mcy

f e--%w1^(k- 1 (q) )dq dE..(t) if task i is critical

4
e-"wj..(g1- 1(q))dq	 otherwise

for all a E A.

r
^tet(L)(s) _	 ,/ f (^^t (

s)]° I1.rr(q(u.-J) dH.(d) dL ( t)	 (18)
-a .•o t•0 0

and

ri
flyst(3) = ii (p tot(t)(9 )	 (19)

Lai

The reader will have noticed two nplicit assumptions: ( a) that the service

time for a task is much less than the sojourn time of the system at any one

state,' and (b) that costs incurred by each task -version are independent. 	
I

	

The Cost Indices can now be determined by invertingv , (s) and n(s), and	 Itom()	 n

weighting with the appropriate probability of dynamic failure.

2.4. Application of the Performance Measures

The mean cost, variance cost and the probability of dynamic failure can all

be used in the a !sign and evaluation of individual systems. Every such design is

the result of a multiplicity of decisions reg )rding scheduling strategy, individual

component redundancies, speed differentials, etc. The performance measures

7. State c^umges occur whcn hardware or so'tware .'al'ares occur `.-i the system. -he rate at
whl cn t'tese occur '.9 "Or 9-niL.er .han t -1C meth -.USA COT. )XL1Orl t:.T.e. A.so, o! co ,,rse,	 .9
invertible in [0, til].

t



51

-	 _ TIM 	 -	 j

PAGE t^. 10- off. 
OF POOR QUALITY

can be used tw optimisation criteria in this context. 	 i

It is suggested that the measures be used in'a two-stage process. First, the

probability of dynamic failure of the designed system is computed and this com-

par ad with that required by the specifications. In the event that the system

meets the dynamic failure requirements, expressions for the mean and variance
i

costs are derived, and fine-tuning of the design carried out by studying the sen-

sitivity of ' e measures to changes in system structure, speed, etc. If the sys-

tem does not meet the dynamic failure requirements, the mean and variance	 I

costs are not computed. Instead, the system is redesigned to the point where

the failure requirements are met before mean and variance costs are con-

sidered. Figure la summarizes the approach.

The System and the Task Cost Indices may be regarded as the distribution

functions of random variables that we shall call the system capability and the

task capability respectively. The system capability can be used in the com-

parison of two or more rival computer systems. Figure _b e:;plains the pro-

cedure. The task capabilities are used more subtly. See Section 3.3.

3. Remarks on Determining the Performance Measures

In what follows, the system consists of the controlled process (often

referred to simply as the "process") and the controller (i.e., the multiproces-

sor).

Four items need to be determined, prior to computing the performance

indices. These are the distribution of the hard deadlines Ld, for each critical task

i, the finite cost function gj for each task j, the multiprocessor response time

distribution as a iunction of its state, and the P,,(t) for all t/ E Q. We concentrate

here on the first two, Meferrinb the reader to the example presented in Section 4

and the queueing theory and probability literature for the last two.



Typically. critical tasks are associated with life-critical -activity and so one

is especially concerned in finding practical means for accurately estimating pys.

In o -der to do so, the hard deadlines must first be derived. In most cases, since

the environment is only stochastically known, this takes the form of probability

distributions.

To explain the derivation of the distribution of t4,, a state-variable approach

is useful. t. generai process may be described as

kt) = f(z(t), u(t), t)	 (20)

where z is the state vector, u is '.he input vector, and t represents time. The

input vector can be partitioned thus:

nT = [ul I Uzi	 (21)
where us is the environment input subvector°. It repre°eats the effects of the

environment on the controlled process. For example, a gust of air is an environ-

mental input when the controlled process is an aircraft.

uc is the control input subvector. It represents the input delivered under

controller command in response to an environmental input. For obvious reasons,

it is always bounded.

The process is required to perform within a certain subset of the state-

space. Let the admissible set of the state vector be bounded and denoted by XA.

Note that the admissible state-space is not necessarily static.

The control uc is employed to keep the process in X k. The control is clearly

a function of us. Since 7(A is bounded, there is a bound on the controller

response time allowed. This bound is the hard deadline. Since the process

dynamics and the distribution of us are known, the distribution of each hard

B. 9y defirution, an input from an I/O panel is al so an environmental input.

r



12-

deadline can in theary be determined.

For clarity, we restate the above. The interval between a trigger and the

termination of the resulting controller response can be divided into two por-

tions: controller think-timE (i.e., the response time) and the actuation time dur-

ing which the process reacts to the environmental trigger under controller

directives. The hard deadline to associated with a control task i which U trig-

gered by an environmental input is the maximum controller think time permit-

ted, consistent with environmental conditions, the process dynamics and the

requirement to keep the system within the admissible state-space, NA.

Clearly, in order to derive the hard deadlines, a precise formulation of the

process dynamics is required. Since such a formulation is a required part in the

design of a critical process, no additional requirements are imposed on the sys-

tem designer.

For an e., c,imple in determining hard deadlines, the reader is directed to

Section 4.

3.2. Derivation of Finite Cost Functions

Very little work r 3s been published in this area. Cost functions of this type

are usually -- and if at all -- specified in an ad-hoc manner. The mair. problem

here is that the cost functions must be linked to the controlled process to have

any cor,.:rete meaning. Contemporary workers (e.g., L 3]) have skirted the prob-

lem -- with less than convincing results -- by ascribing qualitatively-define'

"weights" to controller attributes (conventional reliability, throughput, etc.) and

attempting to match these to corresponding weights for the application (also

qualitatively obtained).

Controlled processes have performance measures that are funct.ionals of

system state and input, and which express the cost of running the process [17],

ti



i	 _

OOOML PAGE N
OF POOR QUAUTV

[ 18). The traditional formulation is:

J( t) = 4Gdt), n(t). t) . (22)
where J(Q is the instantaneous performance measure , f. the functional and the

other symbols have their usual meanings.

The cost of running the process over, say, an interval [ta Q.

4
A = 4J(t)dt	 (23)

We claim that a good representation for L({) is given byl

1

0(t) — ()(0) for Os^'ste
g1U, — 	0	 otherwise	 (24)

where:

D(i7) = Expected contribution of into 0 if RESP(i)=v7, and

	

nd = control input subvector associated with task i. 	 t
See Section 4 for an example.

3.3. Discussion

By connecting the activity of the control system with that of the controlled

process, a proper foundation has been provided for the definition of controller

performance. All quantitites relating to the performance measures can be calcu-

lated from quantities that may be estimated or measured. It is true that our

methods presuppose a knowledge of the controlled process and its dynamics

that may not at first be accurately available. However -- and this is the crucial

point — an understanding of the dynamics of the process will surely increase

with experience (say with a mathematical model or a prototype). There is

9. It is easy to see that many other suitable representations of the cost function can exist.
For instance, one can modify 0(77) to include higher moments o f the contribution to 0. How-
ever, for moot practical purposes, the above measure shou:d sufn:e. it is usually only when
the intertrigger or service time distributions exhibit strongly non-Narkovian behavior that
such a modification needs to be considered. Also, g i is 0 for values of response time greater
than the associated hard deadline since *o ay eak o' finite cos: a'ter 'ailure has occurred is
meaningless.

1



y . -j

-14-

therefore a learning curve associated with process operation and hence by

induction another for the performance measures: Note that we are here consid-

ering critical processes such as nuclear reactors or aircraft and that such

processes call for extensive testing and analysis before release or installation.

Also, the operating environment for these critical processes is u--ually well

known, so that a good model generally exists for the intertrigger distributions.

One can express uncertainty about the accuracy of the individual cost func-

tions in terms of a confidence measure. The sensitivity of the system capability

to changes in the cost functions is given indirectly by the individual task capa-

bilities . The latter o-tn therefore be used with confidence intervals for the cost

functions to obtain a confidence interval for the system capability.

4. Example

In this section, we present an example for the determination of hard dead-

line distributions, mean and variance costs, and the analysis of a multiprocessor

system. Both the example process and the multiprocessor are somewhat ideal-

ized, the principal purpose being to illustrate what has gone before.

4.1. The Process

4.1.1. Description

The controlled process is a communications satellite of mass m, floating in

free space. One critical controller task (task 1) is to keep it within a sphere of

radius R centred on a "rest position", so. The environment is characterized by a

series of impulses, deriving from meb orite impacts, and arriving along random

directions. The meteorites arrive according to a Poisson distribution with

parameter X. The satellite must be restored to rest at xo before the next meteor-

ite comes in. The energy the meteorites impart to the satellite is assumed to be



3^!°'1C3'YS--4^^s"si^r ;^-^-'-^^
	 --4--:.ssr+fi-•-^^ -	 _ _- ' ° -.	 -	 _	 ^ ^	

^- _
	 ^	 _	 --- v	 - '^E _ _ ..	 ..	 .. _..^_ .«_^.	 -_

r	 ^

OR ISM PAGE IS
Of POOR QUALM

constant at k units per impact.

The controller employs rockets to respond to the impulses and can impose

a maximum thrust of a units of force in any direction. The rockets must be

adjusted to the right direction, and this deployment takes T. units of time.

The performance index with respect to this one task is 8 = total energy

expended by the rockets. The problem is to determine the distribution of t d, and

the finite cost function, g,(t).

4.1.2. Derivation of tj, Distribution

Catastrophic failure will occur either if the satellite is not restored to rest

at io by the time the next impulse comes along, or if the satellite leaves the

admissible state space.

td, is the maximum think-time, and finding it is equivalent to solving for the
t

minimum actuation time. We clearly have a bang -bang control solution. Using

standard methods from optimal control theory, we conclude that

tdi = mdx ! min[A(r), t,], 0 1	 (25)

where

r is the interval between successive meteorite arrivals,

	

A(T) = T—T,+ 
V MM — ,2 _ /KIWI } T_ 4TM	 (28)

	

a	 vV a Y	 a

t,	 2k+ — a	 (27)
i

The distribution function for t d , is given by:

0	 ifC <0
FdIR) = 1 — e-4A-i(t) if Os (&t,	 (28)

1	 otherwise

4.1.3. Derivation of g,

Notice that since the environment is stochastic, the controller will always
j

I



ORIAMtAL PACE 18
Of POOR QUALM

- 1a

order maximum thrust. The duration for which the thrust is maintained will

depend on the response time, (. All computations are made under the condition

that tat". Using the laws of mechanics, we arrive at the following result, which

the reader may easily verity:

Expected contribution of u. l to 0 if response time = ^,
r

nt(f) = n i (C) +at
	

(29)

We can therefore now write:

SILM - -\/Eat a for Osl;stdi (30)

The cost function C l(() is now completely determined. It only remains for us to

obtain the controller response time distribution and state probability functions.

Remark: Notwd the tradeoff between t4  and g r. As the rocket thrust, a, is
iner•ass 1. the ezpeoted value at tdl ineresss% meaning that more time is atdl-
ahle for the controller, and the chances of catastrophic failure are reduoed.
This is paid for in the form of increased operating cost, i.e., Q I rises faster.

4.2. The Multiprocessor

4.2.1. Description

The multiprocessor is configured a ,j shown in Figure 2. It consists of a

despatcher with an infinite buffer which dynamically assigns tasks to processors

as they come in and the processors become free. Input rate is Poisson, with

parameter Aj for task i. There are r tasks in the system, and all are critical. All

tasks have an identical service time distribution 1*. There is no common memory

in the system, each processor is assumed to have all the system applications

software stored in its private memory". The despatcher schedule is FIFO

10.This assumption (used by many authors eg., [14) ) is removed by us in 1201.
11.This assumption is not as unrealistic as it might seem. With memory densities rising, and
costs falling, there are emerging designs based on this idea (eg., CMsF'CS system [291). The
remova. o.' t_zis assurnption entai:s analysis of a olocking prooiem. =or a study of this type of
system, "e [^2].



{	 xyss

ORIGINAL PAGE 9
17 -	 OF POOR QUAUff

Processors fail at an exponential rate of W. the despatoher (which is assumed to

have internal redundancy) with rate pm and each of the q redundant buses (of

which only one is active at any one time) with rate pg. Components fail indepen-

dently of each other, and coverage is 100x. Queueing delays at buses are small

enough to be ignored".

4.2.2. Determining Tbsk fecution Rate

The time taken to execute a task on a processor is a random variable whose

distribution is affected by operating conditions and system parameters. The dis-

tribution is determined by operating system characteristics, processor failure

rates (bos h transient and permanent) and the probability of incorrect transmis-

sion over the intercommunication medium together with the conditional

branches within the executed code.

In any reliable system, the effects of the pertubations due to hardware

failures or electromagnetic interference are very small due to their low proba-

bility of occurrence. It is generally assumed in analyses of this type that the

software execution time assuming no pertubation due to hardware failure or

interference is exponentially distributed. Since the pertubations are small, we

approximate them by assuming the service rate still to be exponential, but shift-

ing its parameter slightly to allow for the pertubations. Let this parameter be µ.

To determine µ, we use the probability model shown in Figure 3. no is the den-

sity function for the execution time of the software assuming no pertubations

due to failure, incorrect transmissions, etc. This quantity can be derived

through experiment, and naturally depends on the nature of the code. 7r, is the

densit;, function of the j-th pertubation and a, is the probability that this pertu-

bation occurs during one execution of the code. Both these quantities can be

12. This is characteristic o' this tyre of system. Messages transmitted are invariably either
control messages or very sma_i packets of data.



Wa.(t) - 
Ae	 \—xµ+.U.R►.(a)l — [ i—w a)

A — (X— 0;&

(	 Il)

where:

[23]:

/

	

	 ONIO lAL PAGE 18
OF POOR QUALITY

determined by experiment and/or analysis. Assuming, for analytical simplicity,

that the pertubations are mutually independent, the characteristic function of

the service time pdf for the code, 4* , can be written down by inspection as:

^^(s) = i^o(s) • rj{a^^^(a)+i— ai^	 (31)

where

4J(s) is the Laplace transform of ffj(t).

The mean and variance of th i executwn time can be determined from fq(s).

Let them be M and V, respectively. Then, the value of µ is taken to be

min{1/M, 1 /V
1
. This is generally a rather conservative estimate.

4.13. Analysis of the Multiprocessor

(a) Response Time Density Function: System failure occurs when the

r
E a,

	

despatcher fails, all buses fail, or when there are n = ^''µ J processors or less	 1

functioning. The state description is: y=0 when there is system failure, and

7=n+1, ..., c, when there is no system failure, and there are n+1, ... ,c, proces-

sors respectively functioning in the system. Clearly, A=jn +1, ..., c;, and H=101.

r
Let A _ F,,\1 . The system at state x (x>0) is essentially an M/M/x queue when

i•

the (small) despatcher service time is ignored. Therefore, the pdf of the

response time of the system in state x (x>0) for each task i = 1, ..., r is given by



- i -	 OOMNAL PAGE TM

of PooR QUA
(b) State Probability Funotionr.

Lot pp(t), pD(t), and ps(t) be the probability of failure of a processor,

despatcher and bus by time t respectively, where:

	

PP(t) = 1 - ems`	 (34)

	

Ps(t) - 1 - e""s`	(35)

	

PD(t) s 1 - e-00^	 (36)
Then, the probability of the system being in state 0 at time t,

	

NO N 011PA011-1 1 -PP(t)r + [Ps( t)], + PD( t)	 (37)

and, the corresponding probability for state a, for &=n +1, ..., c,

i

P.(t) [ 1 — f[Ps(t)]'+Pn(t ) f][(,,[PP(t)1'-'[1—PP (t)J'), and`	 (38)

Nt) (t) =	 pa(t)	 (39)
1 - ;N0

(^) Sojourn Time Density Function, H;(t): The derivation is conceptually

straightforward. We therefore present only the result.

For a=n+1, ..., c-1,

0	 for t<0
H;(t) = 1-F,^(T-t)f I- F.,^(t)f 11 -F^(t)f for Ut<T	 (40)

1	 ,	 for t tT

where

for t<0

F,.(t) _ EAJ }1 -e	 f tor0st<T	 (41)

1	 for t>T

A(.) _

	

	 (-l)J-lc!	 142)
(j -1)!(c-a -j)!a!(a+j)

for t<0	 ^L

F . (t) = 1-e `r'P` for t>,0	 .3)

F,-,,, (t) = I - it F ,,(k-t)dF,(k)	 (44)

F,(t) - e OD`(1-e "3`) Q + (1-e "^^(1 -^1-e "F'` f 4) + (1-e '3*)(1-e "3t) a	 (45)



WPWW

,VII1.'.

_20-	 OlgMIAL PAGE IS
Of POOR QUALITY

Also,

for t<O
HZW _	 ( t)+F,(t)—F1: (t)F.(t) for Odt<T 	(46)

1	 for t*T
where

Fr_(t) = 1 — e-WII`	 (47)

The expressions follow from a realization that when the mission lifetime is

given, the sojourn times are no longer independent random variables.

4.& Numerical Results

The parameters used for the process are r=78, X i=.5 for all tasks, µ=20

k=1, m=2, a=1, and R=1.75. The contrcller parameters are gp = 10-5, µg = 10♦,

and µp = 10♦ All tasks are assumed to be critical with the cost function of the

task in the example in Section 4.1.

For a system of this type, the only design variables are the number of pro-

cessors the number of buses, and the speed of the hardware. The graphs that

make up Figure 4 show the marginal benefit to be gained from the addition of

processors. Addition of buses, it was found, has practically no impact on the pro-

bability of dynamic failure or on the mean and variance costs. (Mean and vari-

ance costs are equal in this system).

The marginal benefit to be gained from raising the processor strength from

2 to 3 is considerable; above a processor count of 4, the marginal benefits are

practically non-existent for probability of dynamic failure. Similarly, above a

processor count of 5, there is virtually no benefit to be accrued in adding pro-

cessnrs. (Keep in mind that these re narks hold good only for mission lifetimes

in the range considered.) The failure rate at the asymptotic level of infinite pro-

cessors is principally due to the probability of working processors exceeding the

hard deadline, and the mean and variance costs become the cost associated



i	 3	 z

-21.

with mean processor service time. It better performance than that provided by

the aRymptotic level is required, it can only be obtained by the introduction of

faster hardware,

5. Dimundan

In this paper, we have presented performance indices that are objective in

the way they measure pertormance. Due to this objectivity, they can be used to

advantage in both th@ design and evaluation phases of the development of a eon-

troller system.

As for design, the measures should help identity quasi-optional architec-

tures and operating systems. In the former category are inclueed decisions

regarding the interconnection structure and component speed differentials. In

the latter category, we include the choice of schedule in the access of shared

resources, the design of failure recovery procedures --especially the optimal

placement of recovery points— and algorithms controlling the allocation and

reallocation of tasks to the individual processors. The lack of objective Indices so

far has forced contemporary workers to employ overly simplistic performance

indices, moat notably in solving the task allocation problem (such as ascribi-.:g

unit cost to each transac`.ion on the inL ,zconnection network :24]. )

In the sphere of evaluation, the measures can be used to provide either an

absolute or relative index to controller performance. In the former case, the

performance functional, f., has to be defined with particular care, and the

indices provide a measure of the overhead cost incurred in control. A second

important application is the comparison of rival controller systems for particu-

lar applications.

Aaknowledgaments

I%

The authors wish to thank Ricky Butler and Milton Holt of the 'NASA Langley



.
f r

4x
I,

<4

^I

OMO M PAGE W
.22- 	 OF POOR QUALITY

Research Center and Y. H. Lee of The University of Michigan for tccbnical discus-

sions.

Referenow"

1. A. L. Hopkins, st. at, "FTMP -- A Highly Reliable Fault-Tolerant Multiprocessor
for Airc: aft", Proc. IEEE, Vol. 65, No. 10, pp. 1221-1239, October :978.

2. J. H. wenseley, at. at, "SIFT - Software Implemented Fault Tolerance," Proc.
IEEE, Vol. 66, No. 10, pp. 1240-1256, October 1978.

3. M. J. Gonzalez and B. W. Jordan, " ► Framework for the Quantitative Evaluation
of Distributed Computer Systems", IEEE Trans. Cbmput.. Vol C-0, No. 12, Dec.
1980, pp. 1087-1094.

4. J. von Neumann. "Probabilistic logics and the Synthet is of Reliable Organisms
from Unreliable Components", in Automata Studies, pp. 43-98, Princeton Univer-
sity Press, Princeton, NJ 1958.

5. E. E. )Accra and C. E. Shannon, "Reliable Circuits Using Less Reliable Relays",
J. 1}anktin Inst., Pt. I, Vol. 262, pp. 191-208, and Pt. 1I, pp. 281-297, 1958.

S. W. G. Bottricius, et, W. "Reliability Modelling Techniques for Self - Repairing
Carnpui.er Systems," Proc, ACM 1969Annual Conj., pp. 295-309. August :989.

7. R. R. Porgerson and R. F. Frietas, "A Reliability V:Qel for Gracefully Degrading
and Standby-Sparing Systems," IEEE Trans. Comput., Vol. C-24, pp. 517-525.
May 1975.

8. G. N. Cherkesov, "Semi-Markovian Models of Reliability of Multichannel Sys-
tems with L'nreplenishable Reserve of Time," Engineering Cybernetics, Vol. :8,
pp. 65-78. Mar /April 1980.

9. J. Losq, "Effects of Failures on Gracefully Degradable Systems," Seventh Anenu.
Intl Conf. on Fault-Tolerant Computing, Los Angeles, CA. pp. 29-34. March 1977.

10. R. Troy, "Dynamic Reconfiguration: An Algorithm and its Efficiency Evalua-
tion," op. cit, pp. 44-49.

11. J. F. Meyer, et. at, "Perform ability Evaluation of the SIFT Computer," IEEE
7^=s. Comput., Vol. C-29, To. 6, pp. 501-509, June :980.

12. M. D. Beaudry, "Performance-Ralated Reliabilit y .V,easures for Computing
Systems," IEEE Trans. Comput., Vol. C-27, No. 6, pp. 540-547, June 1978.

13. J. F. Meyer, "On Evaluating the Perforrnability of Degrading Computer Sys-
tems," IEEE. Trani. Comput., V-1. C-29, pp. 720 -731, August 1980,

». -o .r.a;n:.am nnonyrra:y during the rew..e* process, Werenews 80 and 22 are -to: `.-ic:.ided
in this .'m.



-1d3-

14. J. F. Meyer. "Closed-Form Solutions of Performabillty," IEEE Trans, Cbmput.,
Vol. C-31, No. 7, pp. 649-657, July 1988.

15. G. K. Manacher, "Production and Stabilisation cf Real-Time Task Schedules,"
J. ACM, Vol. 14, No. 3, July 1967, pp. 439-465.

16. J. A. White, et. al, "Multim-croprocessor Flight Control: System Architectural
Concepts." Proc. AIAA Cbmp. in Aerosp. Conf., pp. 87-92, October 1979.

17. D. E. Kirk, Optimal Cbntrol Theory, Prentice Hall, Englewood Cliffs, NJ, 1970.

18. A. P. Sage, Optimum Systems Control, Prentice Hall, Englewood Cliffs, NJ,
1977.

19. M. Reiser and K. M. Chandy, eds., Computer Performance, North-Holland
Publishing Co., Amsterdam, 1977.

20, 22: (Our forthcoming papers: see Footnote 13.)

21. S. J. Larimer and S. K. Maher, " The Continuously Reconfiguring Multiproces-
sor," NATO-AGARD Meeting on Tactical Airborne Computing, Roros, Norway,
1981.

23. D. Gross and C. M. Harris, Fundamentals of Queueing Theory, John Wiley,
New York, 1974.

24. W. W. Chu, et. al, "Task A'Iocation in Diatrtbuted Data Processing," Computer,
Vol. 13, No. 11 1, pp. 57-70, Nov ;980.



i	 .

pp101PiAL PAGE 13
OF POOR QUALITY

M 

Fig la: System Refinement



r

1A1. PAGE 13

OF 
S)OR QUALITY

PROCEDURE: COMPARISON(A)

/• A=f A l , .... Amj are the systems to be compared. •/

!or i=1 to m do

begin

CALL SELECTION (A)

RAl\'K(i) - SELECT

A=A - ISELECT(

end

end COMPARISON;

PROCEDURE: SELECTION (A)

/'SC; is the system capability of system A;.

A = JA I . ... , A,,; are the systems to be compared.
t

CHOSEN -0

for i= 1 to n do

begin

define MiIN (i) =
	 min	 5C

define PROB(i) = Prob I SCj s MIN(i)

if PROB(i) > CHOSEN then

begin

CHOSEN PROB(i)

SELECT i

end

end

end SELECTION;

Fig lb: Comparing Rival Systems



1	 1

Processors

To Actuators

•

ORS' PAGE i3

OF pDm QUALITY

7Af. i=1..... r

Fig 2: The Multiprocessor



0
E:

E4

m
c

a^

a
x
U)
to
E4

ap
V.

c

a^

v
ca

M

w

It

AinvnO mood d0
91 3JVd IVNIMSO



A *u's &

INN.

00'rM'SZ	 DOW	 ISE"03IJI00ROW	 co -S

a
mi

W

SFI

O

cKn
V)

tv

I V I

m
4J
P-1

V

ep

C14

%	 -1

.	 I

Emoso

a
ci

9

LL

ry

SAR

38niiu3 omitao JO AlIlleUBOUd
I


	0011A02.pdf
	0011A03.pdf
	0011A04.pdf
	0011A05.pdf
	0011A06.pdf
	0011A07.pdf
	0011A08.pdf
	0011A09.pdf
	0011A10.pdf
	0011A11.pdf
	0011A12.pdf
	0011A13.pdf
	0011A14.pdf
	0011B01.pdf
	0011B02.pdf
	0011B03.pdf
	0011B04.pdf
	0011B05.pdf
	0011B06.pdf
	0011B07.pdf
	0011B08.pdf
	0011B09.pdf
	0011B10.pdf
	0011B11.pdf
	0011B12.pdf
	0011B13.pdf
	0011B14.pdf
	0011C01.pdf
	0011C02.pdf
	0011C03.pdf
	0011C04.pdf
	0011C05.pdf
	0011C06.pdf

