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Overvi eIg

During 1982, in conjunction With NASA/GSFC Software

Engineering Laboratory (SEA), research Was conducted in 4

areas: Software Development Predictors, Error Analysis,

Reliability Models and Software Metric Analysis. Summaries

of the projects follow below.

1. 29f twart Development Predictors

A study is being done on the use of dynamic charac-

teristics as predictors for software development.	 It is

hoped that by examining a set of readily available charac-

teristics, the project manager may be able to determine such

things as when a project is in trouble and evaluate the

quality of the product as it is being designed.

Project DEB was selected as the control for the project

since it was considered falriy successful and is well docu-

mented. Information found in the history files and resource

summary files was initially utilized. 	 These files were

chosen because the information they contain is readily

accessible to the manager (ie.	 number of lines of code,

manpower, computer time, etc.). 	 Several profiles of project

DEB were then made using this information. Project DEA's

profile: were then compared with these results. 	 This rro—

,sect was chosen because it was very similar to DEB but was

considered less successful.
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The history file Was first examined to see if any

growth pattern existed for the lines of code. 	 The initial

look at DEA and DEB looked hopeful but further investigation

of other project* showed no discernible pattern. Other

examinations of this file yielded similar results.

When a comparison of the information in the history and

resource summary files was made some differences did appear.

Initial plots used accumulative totals versus different time

factors.	 These plots did demonstrate visible differences

between the two projects. 	 Further investigation using

weekly totals instead of accumulative totals showed an even

larger difference between the projects.

Project DEA had a higher frequency of changes at

the beginning of the pro iect, while at the same timer the

number of hours of manpower reported for the interval was

less.	 The number of computer runs made was higher for DEB

in the part of the project where DEA was experiencing the

higher number of changes per manpower.	 In all, project DEA

appears to have had less effort placed during the early

phase of the project	 m&y of led to the problems in the

end.	 Another important aspect of project DEA was that

several thousand lines of code appear to have been tran-

sported.	 Adaptation of this code may explain the high

number of changes initially seen in DEA.

r
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From this examination the following general goals

and hypothesis have been generated:

A) The manpower usage in the SEL environment is a discerni-
ble pattern and may be used as a predictor.

1) The ideal staffing fo^ a successful project is a two
hump curve with the second hump beginning roughly 2/3
into the project.

2) The two humps mentioned in hypothesis i should peak
at approximately the same height.

3) The maximum peak height of the first hump is propor-
tional to the final size of the project. This also hold
for the second hump based on hypothesis two.

4) The location of the two peaks is constant with rela-
tion to the amount of manpower utilized.

5) The amount of manpower expended between the two
peaks is constant.

b) Pro ,)e:ts deemed less successful by subjective
analysis have sharp changes in the amount of manpowe-
spent per change.

H) The pattern of changes in relation to manpower, computer
runs, lines of code, etc. may be used as a predictor in the
SEL environment.

1) The amount of manpower to make a change should
incrQase toward the end of a project and be stable at
the beginning.

?) The manpower per change should be lower in the
beginning of the project. 	 See also goal D.

3) Projects deemed less successful by subjective
analysis have sharp changes in the amount of manpower
spent per change.

4) The ratio of changes to computer run should decrease
as the project evolves.

5) The amount of computer time spent on detecting ind
correcting a give. change will remain constant

C) The number of computer runs is closely related to the
development of a p roject and may be used to ,fudge project
development.

r
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1) The number of computer runs remains constant during
the initial hump of the staffing curve. The number of
computer runs will drop during the second hump of the
staffing curve.

2) The ratio of changes to computer run g should
decrease as the project evolves.

D) A close examination of the types of changes and the pat-
tern they make over time should be a good indication of the
success of a given project.

i) Time consuming charges that occur late in the pro-
ject more often appear in modified co#@.

2) Unit tenting is not as extensive on modules with
modified code. Undetected errors may cause major prob-
lems latter in deve:opment.

3) The types of changes vary across the development of
a project.

4) The number of changes per hour of manpower is
related to the type of charges being done.

5) The types of change that require more time to
correct occur during the second staffing hump.

Several projects will now examined to test the validity

of these finds.	 The change report forms will also be exam -

ined to see if the information in them yields any useful

predictors.

To conclude, the study has completed its initial

analysis of the two projects.	 It appears there are some

significant factors that could be useful as predictors.

Further analysis may yield some in f ormation that would be

useful to a project manager.

V
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A). Publication of existing results -- Three papers are

being prepared from earlier work on error analysis conducted

by the SEL laboratory.	 One is on the data collection

methodology and the validation of the accuracy of the data,

the second one is on the analysis of the SEL projects

directly and the third one is a comparison of the SEL pro -

jects with projects of the Naval Research Laboratory. 	 These

papers are currently being submitted for publication and

will be published as University of Maryland Technical

Reports in the interim.

B). A study on software errors and complexity -- The dis-

tribution and relationships derived from the change data

collected during the development of the medium scale satel-

lite project shows that meaningful results can be obtained

which allow insight into software traits and the environment

in which it is developed	 The projec t studied in this case

was GIIAS.	 Mo^jified and new modules were shown to behave

similarly.	 An abstract classification scheme for errors

which allows a better understanding of the overall traits of

a software project was also provided.	 Finally, 3arious size

and complexity metrics are examined with respect to errors

detected within the software yielding some interesting

results. A University of Maryland Technical Report describ-

ing these results was published CBasB2 3. This paper has been

submitted for publication.

r ^-
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C). A further examination of the error characteristics of

the DE-A and DE -P projecti is current'y being undertaken.

This error analysis is being conducted using the techniques

developed and documented in CWei613 and CPer823. The focal

point of this research effort is to characterize errors in

the NASA/GSFC software development environment.

A preliminary review of a sample of the Change Report

Forms from both DE_A and DE_B has been conducted. The sam-

ple included only those CRF's for which an error change was

reported.	 The p.;"pose of this review was to 'get a flavor'

for the data collected and to preliminarily assess the con-

sistency of that data with the results found to date by SEL

personnel.

i

The sample included 98 CRF's from DE_A and 90 CRF's

from DE-B. Of the 98 CRF's from DE-A, 63 (64.3X) of the

errors were classified as an 'error in the design or imple-

mentation of a single component.' Of the 90 CRF's from

DE-B, 16 errors were reported as 'clerical errors.' Of the

remaining 74 DE-B errors (non-clerical errors), 61 (84.2%)

i
of the errors were also classified as 'errors in the design

or implementation of a single component.'

Although the percentage classified as 'errors in a sin-

gle component' for DE-B was higher than the other studies,

these preliminary results appear to follow the results of

previous analyses [Wei81]. As in that previous work, the

,M
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distribution of errors in other categories does not neatly

fit a pattern.	 In fact, there are too few events in the

other categories to draw any initial conclusions. 	 It will

be interesting to explore the reason(s) DE ._p experienced a	 1.

substantially larger number of 'clerical errors.,

there are marked differences in the remaining DE —A and

DE—B error reports. This may be attributable to the

reported differences in the two projects.	 It is not possi-

ble at this time to conjecture an more tangible causes for

the differences.	 The full set of error change reports will

have to be examined, for both projects.

It is worth noting here that for DE —A, 31 of 98 error

reports (31.6X) examined were classified as being an 'error

in the design or implementation of more than one component.'

Based on previous results cited above, this is an unusually

high percentage.	 Only 4 components (4 1%) had errors

reported that were not in the design or implementation of

component s) categories.

As part of the preliminary work toward the above goal,

the related literature released by SE! was reviewed. 	 A con-

clusion reached was that the definitions of several critical

terms were not necessarily consistent, and often times the	 '

technical reports make too great an assumption about the

uniformity of use of software engineering terms.
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'Interface' provides a good example of an ill-defined

yet oft used term.	 Using the definition from CWeiBI3 (tNo

same definition is used in CBas80b3 and CGlo79]) it is argu-

able that interface errors can be captured five ways from

the CRF:

-an error involving more than one component;

-an error involving a common routine;

-from textual comments in the CRF (eg: a CRF for which
the error Was entered as having affected one component
but the text indicated that the error wrs in a subrou-
tine call statement);

-an error reported as having been located in one com-
ponent but the change required to repair the error
affected more than one component; and

-a change that caused an error bscause either the
change invalidated an assumption made elsewhere in the
software or an assumption made about the rest of the
software in the design of the change w-as incorrect
(contingent on ability to capture supporting text and
ability to distinguish from erroneous assumptions made
about a single component).

An effort is currently underway to develop a more res-

trictive set of definitions for software o r ;.neering terms,

specifically those that apply to error analysis.	 The basis

of this @;fort is the set of definitions published in

CBas803 and CGlo793 and will be modiFied, as necessary, in

consultation with those persons associated with SEL in the

past and present, whose work is or was related to the error

analysis effort.



A study is being performcd in the area of reliability

models.	 This research includes the field of program testing

Lecause the validity of some reliability models depends on

the answers to some unanswered questions about testing.

The eventual goal of this research is to understand how

and when to use reliability models.	 we are investigating

the use of functional testing because some reliability

models make assumptions about the way program testing is

accomplished CMusa].	 It is not known if functional testing

satisfies the random testing assumptions made by the relia -

bility models.	 The validity of reliability models that use

data generated by functional testing is uncertain until this

question is answered.

We are using structural coverage metrics to gain

further insight into the effecti of functionai testing. 	 A

structural coverage metric is a measure of how much of a

program was executed for given input data.	 Studying the

coveraae metric may allow us to develop other measures of

reliability.

An additional bonus of this research is that it allows

US to compare functional testing and structural testing. 	 It

is nct known how these two methods of testing are related.

The results of this investigation may answer that question.

t
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Since January background materia has been studied with

regard to r eliability models, and functional and structural

testing [Mueller]. A FORTRAN preprocessor has been written

to calculates the structural coverage metrics of GSFC FORTRAN

source code.

the preprocessor calculates the simplest metric, the

percent of executable code that is executed.	 There are

several ways to measure coverage CAL:erbach]. 	 One method

uses interpretation of the source code.	 The interpreter-

records which statements are executed.	 At the and of

interpretation, it writes a list of executed statements.

The second method uses "switches", small sections of

code that are inserted into the source program text wherever

the flow of control diverges or converges.	 The switch has 2

values: 0 if it was not executed, 1 if it was executed.	 The

value of the switches is output after execution.
Avs example:

INTEGER SWITCH ( N )

FOR I - 1, N
SWITCH (I) - 0

READ ( J )
IF ( even ( J ))

THFN
SWITCH ( 1 'r - 1:

ELSE
SWITCH ( 2 ) - 1;
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ENDIF

R I = 1, N

WRITE ( SWITCH ( I )i;
D

hen this program is exacuted, one of the two branches

if statement will be executed. 	 By examining the

values tf the arrau i4WITCH, we can determine what code was

executed.	 By analyzing the coda and counting statements,

the number of statements executed can be determined. 	 In

practice, the amount of data generated will be large.

Software tocls are needed to help ana:yze the data,

the switches can be inserted by a preprocessor (before

compilation) or by a compiler (during compilation). 	 The

switches may be in-line code (as in tha example) or a call

to a switch subroutine that records the flow of control

This latter approach was tallon and a preprocessor was

developed that runs on VAX/Unix at UM P.	 The preprocessor

takes a copy of the input sourc4 cote- and modifies it

This modified copy will be returned t^ the source computer

(at QSFC) where it Will be compiled an 4l executed	 The exe-

cution produces the desired coverage data. 	 The coverage

data will be returned to the Universi*y for analysis.

I

Many things remain to be dome before we reach our goal

of understanding how and when try use T eliability models.
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The immediate goal is to try to answer the functional test-

ing / reliability model question. The pro j ect RADMAS has

been chosen as an experimental system [CSC]. The preproces-

sor must be used to modify the RADMAS source code.	 (Tte

RADMAS project and its functionally-generated acceptance

tests have been made available for the coveroge experiment.)

The modified RADMAS cede must be executed at GSFC using t:1e

functionally-generated acceptance tests.

This experiment should answer these questions about

functional testing and reliability models:

-What is the percent cov+rage of functional testing?

-Does functional testing meet the randomness require-
ments

of the MTTF models? If not, can it be made to'?

-Do the structural metrics show any useful patterns in

the way that functional testing tests programs' 	 How

does the coverage set grow"7' At what rate does the cov-
erage set glow?	

1

1

-How independont are individual tests from a coverags

p int of view?P	 ^

The results of this experiment will raise further ques-

tions about functional testing and reliability models This

Will require more experimentation. 	 If these qurstions are

answered, there is more work to do concerning how and when

to use reliability models.
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B9 f Sy aLl Metrics,

The attraction of the ability	 to predict	 the effort	 in

developing	 or explain the quality of	 software has	 led	 to	 the
I\

proposal	 of	 several	 theories and metrics	 CHal77,	 McC76.	 Oaf.

Che78,	 Cur791.	 In the Software Engineering Laboratory,	 the

Halstead	 metrics,	 McCabe't	 cyclomatic 	 complexity	 and	 various

standard metrics have been analysed 	 for	 their	 relation	 to

effort,	 development errors and 	 one another	 C8as62a3	 This

study examined	 data collected	 From so-ven SEL	 (FORTRAN)	 pro-

jects and	 applied	 three	 effort reporting	 accuracy	 checks	 to

demonstrate	 the need	 to	 validate	 a	 database.
I

The	 investigation examined 	 the	 correlations	 or	 the ^s

-ariotis metrics	 With	 effort	 (functional	 specifications

through	 acceptance	 testing)	 and	 :@v*lzpm@nt	 errors	 (both j
I

discrete and	 weighted	 according	 to	 am^)Lnt	 of	 time	 to	 locate
f

and	 fix)	 across	 several	 pro,)ecti	 at	 once,	 Within	 tndividual

projects	 and	 for	 individual	 programme r s	 across	 projects

In order to remove the 4ependenc 4 of the distribution

1

a
of the correlation..  coefficients an the actual measures of

effort and errors, the non-paramotrlc Spearman rank-order •	 1

correlation coefficients wero ,ekamined CKen'97	 The

metrics' correlations with actual effort seem to be strong-

est when modules developed entirely by individual program-

mers or taken fro., _*rtain validated cro,)ects are con-

sidered	 When examining modules developed totally by indi-



.	 ORIGINAL PAGE It
i ^	 OF POOR QUALITY

vidual programmers, two averages formed from the proposed
4

validity ratios induce a statisticalll significant ordering

of the magnitude of several of the metrics' correlations.

The systematic application of one of the data reliability

checks (the frequency of effort reporting) substantially

j	 improves either all or several of the projects' effort

correlation with the metrics. In addition to these rela-

tionships, the Halstead metri-s seem to possess reasonable

correspondence with their estimators, although some of them

have size dependent properties. In comparing the strongest

correlations, neither Halstead ' s E metric, McCabes'

cyclomatic complexity nor sou-ce line; of code relates con-

vincingly better with effort than the others.

The metrics examined in this study were calculated from

primitive measures derived from a source analyzing program

(SAP -- Revision I) CDec821 An earlier version of this

static analyzer implemented a less comprehensive definition

of Halstead opeTators and operat,ds1O'Ne787. 	 Some work has

been done comparing the metrics" correlations when they have

been Vetermined from the difrerent interpretations of the

primitive measures.

This investigation has been submitted for publication

to the Transactions on Software Engineering and will appear

as a University of Maryland Technical Report.
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