General Disclaimer

One or more of the Following Statements may affect this Document

e This document has been reproduced from the best copy furnished by the
organizational source. It is being released in the interest of making available as
much information as possible.

e This document may contain data, which exceeds the sheet parameters. It was
furnished in this condition by the organizational source and is the best copy
available.

e This document may contain tone-on-tone or color graphs, charts and/or pictures,
which have been reproduced in black and white.

e This document is paginated as submitted by the original source.

e Portions of this document are not fully legible due to the historical nature of some
of the material. However, it is the best reproduction available from the original
submission.

Produced by the NASA Center for Aerospace Information (CASI)

TECHNICAL SUMMARY
1982

L,.
REPORT TO THE NATIONAL AERONAUTICS
AND SPACE ADMINISTRATION

NSG-5123 ~

Department of Computer Science :
University of Maryland
College Park. MD 20742

Principal Investigator:
Dr. Victor Basili

(NAS2-CR-165476) SCFTWARE ENGINFEFING N83-12880

LABOEATORKY (SEL) REECRT 10 THE NATICHNAL

AERONAUTICS ANLC SPACE ADMINISTEFATICH

(taryland Univ.) 17 p HC AO2/MF AQ! Unclas
CSCL GY9E G3,61 01049

40 L i et 3 i S - e N 5 4 e e Sl - - == .2 e L

ORIGINAL PAGE IS

Qverview

During 1982, in conjunction with NASA/GSFC Software
Engineering Laboratory (SEL): research was conducted in 4
areas: Software Development Predictors, Error Analysis,
Reliability Models and Software Metric Analysis. Summaries

of the projects follow below.

1. Software Develgpment Predictors

A study is being done an the use of dynamic charac-
teristics as predictors for software development. It is
hoped that by examining a set of readily available charac-
teristics, the project manager may be able to determine such
things as when a project is in trouble and evaluate the

quality of the product as it is being designed.

Project DEB was selected as the control for the project
since it was considered fairly successful and is well docu-
mented. Information found in the history files and resource
summary files was initially utilized. These files were
chosen because the information they contain is readily
accessible to the manager (ie. number of lines of coade.
manpower, computer time, etc.). Several profiles of project
DEB were then made using this information. Project DEA's
profiles were then compared with these results. This pro-
Jject was chosen because it was very similar to DEB but was

considered less successful.

ORIGINAL PAGE I8
3 OF POOR QUALITY
The history file was first examined to see i¢ any
growth pattern existed for the lines of code. The initial
look at DEA and DEB looked hopeful but further investigation
of other projects showed no discernible pattern. Other

examinations of this file yielded similar results.

When a comparison of the information in the history and
resource summary files was made some differences did appear.
Initial plots used accumulative totals versus different time
factors. These plots did demonstrate visible differences
between the two projects. Further investigation using
weekly totals instead of accumuiative totals showed an even

larger difference between the projects.

Project DEA had a higher frequency of changes at
the beginning of the project. while at the same time. the
number of hours of manpower reparted for the interval was
less. The number of computer runs made was higher for DEB
in the part of the project where DEA was experiencing the
higher number of changes per manpower. In all, project DEA
appears to have had less effort placed during the early
phase of the project wiich may of led to the problems in the
end. Another important aspect aof project DEA was that
several thousand lines of code appear to have been tran-
sported. Adaptation of this code may explain the high

number of changes initially seen in DEA.

e AN TR SIS G R StV S W RIREEL, 4 sas St Y 2

i S > e

- A g
Bl Nk W ™t S 0 N B e s i e e i e e e e e Wi, o s % -

‘ ORIGINAL PAGE IS
OF POOR QUALITY

From this examination the following general goals

and hypothesis have been generated:

A) The manpower usage in the SEL environment is a discerni-
ble pattern and may be used as a predictor.

1) The ideal staffing for a successful project is a two
hump curve with the second hump beginning roughly 2/3
into the project.

2) The two humps mentioned in hypothesis 1 should peak
at approximately the same height.

3) The maximum peak height of the first hump is propor-
tional to the final size of the project. This also hold
for the second hump based on hypothesis two.

4) The location of the two peaks is constant with rela-
tion to the amount of manpower utilized.

S5) The amount of manpower expended between the two
peaks is constant.

6) Proje-ts deemed less successful by subjective
analysis have sharp changes in the amount of manpower
spent per change.

B) The pattern of changes in relation to manpower. computer
runs: lines of code, etc. may be used as a predictor in the
SEL environment.

1) The amount of manpower to make a change should
increase toward the end of a project and be stable at
the beginning.

2) The manpower per change should be lower in the
beginning of the project. See also goal D.

3) Projects deemed less successful bty subjective
analysis have sharp changes in the amount of manpower
spent per change.

4) The ratio of changes to computer run should decrease
as the project evolves.

9) The amount of computer time spent on detacting and
correcting a giver change will remain constant

C) The number of computer runs is closely related to the
development of a project and may be used to judge project
development,

s

ORIGINAL PAGE 1§
s OF POOR QuALITY

1) The number of computer runs remains constant during
the initial hump of the staffing curve. The number of
computer runs will drop during the second hump of the
staffing curve.

2) The ratio of changes to computer runs should
decrease as the project evolves.

D) A close examination of the types of changes and the pat-
tern they make over time should be a good indication of the
success of a given project.

1) Time consuming char.es that occur late in the pro-
Ject more often appear in modified code.

2) Unit testing is not as extensive on modules with
modified cody. Undetected errors may cause major prob-
lems latter in deve.opment.

3) The types of changes vary across the development of
a project.

4) The number of changes per hour of manpower is
related to the type of changes being done.

S) The types of change that require more time to

correct occur during the second staffing hump.

Several projects will now eramined to test the validity
of these finds. The change report forms will aleo be exam-
ined to see if the information in themn yields any useful

predictors.

To conclude, the study has completed its initial
analysis of the two projects. It appears there are some
gsignificant factors that could be useful as predictors.
Further analysis may yield some information that would be

useful to a project manager.

=
e
2

i
R '

ORIGINAL PAGE IS

€ Errer Analusis

A). Publication of existing results —- Three papers are
being prepared from earlicr work on error analysis conducted
by the SEL laboratory. One is on tha data collection
methodology and the validation aof the accuracy of the data.
the second one is on the analysis of the SEL projects
directly and the third one is a comparison of the SEL pro-
jects with projects of the Naval Research Laboratory. These
papers are currently being submitted for publication and
will be published as University of Maryland Technical

Reports in the interim.

B). A study on software errors and ccmplexity -~ The dis-
tribution and relationships derived from the change data
collected during the development of the medium scale satel-
lite project shows that meaningful results can be obtained
which allow insight into software traits and the environment
in which it is developed The project studied in this case
was GMAS. Mouified and new modules were shown to behave
similarly. An abstract classification scheme for errors
which allows a better understanding of the overall traits of
a software project was also provided. Finally, various size
and complexity metrics are examined with respect to errors
detected within the software yielding some interesting
results. A University of Maryland Technical Report describ-
ing these results was published (Bas82]. This paper has been

submitted for publication.

—— ":-re-m.u.al

TR T Y I yp——y
.

ORIGINAL PAGE I8

OF POOR QUALITY

C). A further examination of the error characteristics of
the DE_A and DE_B projects is currentiy being undertaken.
This error analysis is being conducted using the techniques
developed and documented in (WeiB1] and (Per82]. The focal

point of this research effort is to characterize errors in

the NASA/GEFC software development environment.

A preliminary review of a sample of the Change Report
Forms from both DE_A and DE_B has been conducted. The sam-
ple included only those CRF’s for which an error change was
reported. The ;urpose of this review was to ‘get a flavor’
for the data collected and to preliminarily assess the con-
sistency of that data with the results found to date by SEL

personnel.

The sample included 98 CRF's from DE_A and 90 CRF's
from DE_B. Of the 98 CRF‘s from DE_A. 63 (64.3%) of the
errors were classified as an ‘error in the design or imple-
mentation of a single component. © Of the 90 CRF's from
DE_B, 16 errors were reported as ‘clerical errors. ' Of the
remaining 74 DE_B errors (non-clerical errors), &1 (84 2%)
of the errors were also classified as ‘errors in the design

or implementation of a single camponent. '

Although the percentage classified as ‘errors in a sin-
gle component’ for DE_B was higher than the other studies,
these preliminary results appear to follow the results of

previous analyses [WeiBl]l. As in that previous work. the

. OF POOR QUALITY

distribution of errors in other categories does not neatly
#it a pattern. In fact, there ar; too few events in the

other categories to draw any initial conclusions. It will
be interesting to explore the reason(s) DE_B experienced a

substantially larger number of ‘clerical errors. ’

There ars marked differences in the remaining DE_A and
DE_B error reports. This may be attributable to the
reported differences in the two projects. It is not possi-
ble at this time to conjecture an more tangible causes for
the differences. The full set of error change reports will

have to be examined, for both projects

It is worth noting here that for DE_A, 31 of 98 error
reports (31.6%4) examined were rlassified as being an ‘error
in the design or implementation of more than one component. ‘
Based on previous results cited above, this is an unusually
high percentage. Only 4 components (4. 1%) had errors
reported that were not in the design or im;iementation of

component(s) categories.

As part of the preliminary work toward the above goal,
the related literature released by SEL was reviewed. A con-
clusion reached was that the definiticns of several critical
terms were not necessarily consistent, and often times the
technical reports make too great an assumption about the

uniformity of use of software engineering terms.

e S R AL - Ll

T R PR R L T S S s SR e . e Eas— . - PSSR, <+

‘Interface’ provides a good example of an ill-defined
3 yet oft used term. Using the definition from [(WeiBl] (t\e
same definition is used in (BasBOb] and [Glo79])) it is argu-
able that interface errors can be captured five ways from
the CRF:

—an error involving more than one component:;

-an error involving a common routine;

-from textual comments in the CRF (eg: a CRF for which
the error was entered as having affected one component
but the text indicated that the error was in a subrou-
tine call statement);

—an error reported as having been located in one com-
ponent but the change required to repair the error
affected more than one companent: and

~a change that caused an error bscause either the
change invalidated an assumptinn made elsewhere in the
software or an assumption made about the rest of the
software in the design of the change was incorrect
(contingent on ability to capture supporting text and
ability to distinguish from erroneous assumptions made
about a single component).

An effort is currently underway to develop a more res-
trictive set of definitions for software er-.neering terms,
specifically those that apply to error analysis. The basis
of this effort is the set of definitions published in
(BasB0] and [GClo79] and will be modified, as necessary, in
consultation with those persons associated with SEL in the

past and present, whose work is or was related to the error

| analysis effort.

-~
—a e as

— e 1 v e R ==

ORIGINAL PAGE IS
10 9% POOR QUALITY

2 Beliability Godels :

A study is being performed in the area of reliability
models. This research includes the field of program testing
tecause the validity of some reliability models depends on

the answers to some unanswered questions about testing.

The eventual goal of this research is to understand how
and when to use reliability models. We are investigating
the use of functional testing because some reliability
models make assumptions about the way program testing is
accomplished (Musal. It is not knowr if functional testing
satisfies the random testing assumptions made by the relia-
bility models. The validity of reliability models that use
data genersted by functional testing is uncertain until this

question is answered.

We are using structural coverage metrics to gain
further insight into the effects of functionali testing. A
structural coverage metric is a measure of how mucn of a
program was executed for given input data. Studying the
cover>age metric m3y allow us to develop other measures of

reliability.

An additional bonus of this research is that it allouws
us to compare functional testing and structural testing. It
is nct known how these two methods of testing are related

The results of this investigatiorn may answer that question

ORIGINAL PAGE 15
11 OF POOR QUALITY

Since Janvary background material has been studied with
regard to reliability models, and functional and structural
testing (Mueller]l]. A FORTRAN preprocessor has been written
to calculate the structural coverage metrics of GSFC FORTRAN

source code.

The preprocessor calculates the simplest metric, the
percent of executable code that is executed. There are
several ways to measure coverage [Averbachl. One method
uses interpretation of the source code. The interpreter
records which statements are exacuted At the eond of

interpretation, it writes a list of executed statements

The second methcd uses “"switches", small sections of
code that are inserted into the source program text wherever
the flow of control diverges or converges. The switch has 2
values: O if it was not executed, 1 if it was executed. The
value of the switches is ocutput after executior.

An example:

INTEGER SWITCH (N)

FOR I = 1, N
SWITCH (I) = O

READ (J)i
IF (even (J))
THEN
SWITCH (1 | = 1;

ELSE
SWITCH (2) = 1;

e i st s ARSI R R i

3 P . .
SIBA. st e s LS e B . b8 08 s [S ST A U 25 SO o cadiy .. i U S

12 ORIGINAL PAGE IS
OF POOR QUALITY

ENDIF

FOR I = 1, N
WRITE (S8WITCH (I)):

END

When this prograem is exacuted, one of the two Hranches
of the if statement will be executed. By examining the
values c¢f the arrau SWITCH, we can determine what code was
executed. By analyizing the coda and counting statements.
the number of statements executad can be determined. In

practice, the amount of data generated will be large.

Software tocls are needed to help analyze the data.

The switches can be inserted by a preprocessor (before
compilation) or by @ compiler (during compilation). The
switches may be in-line code (as in tha example) or a call

to a switch subroutine that recurds the flow of control

This lactter approach was taken and a preprocessor was
developed that runs on VAX/Unix at UMCP, The preprocessor
takes a copy of the input sourc2? coje. and modifies it
This modified copy will be recturned ta the source computer
(at GSFC) where it will be compiled and executed. The ere-
cution produces the desired coverage datz. The coverage

data will be returned to the University for analysis.

Many things remain to be done befcre we reach our goal

of understanding how and when tu use veliability models.

- OF POOR QUALITY

The immediate goal is to try to answer the functional test-
ing /7 reliability model question. The project RADMAS has
been chosen as an experimental system (C8B8C]. The preproces-
sor must be used to modify the RADMAS source code. (The
RADMAS project and its functionally=generated acceptance
tests have been made available for the coverage experiment.)
The modified RADMAS code must be executed at GSFC using the

functionally-generated acceptance tests.

This experiment should answer these questions about
functiona! testing and reliability models:
-What is the percent coverage of functional testing?

=Does functional testing maet the randomness require-
ments

of the MTTF mcdels? If not, can it be made to?
-Do the structural metrics show any useful patterns in
the way that functional testing tests programs? How

does the coverage set grow™ At uwhat rate does the cov-
erage set gvow?

~How independent are individual tests from a coverage

point of view?

The results of this oxperiment will raise further ques-
tions about functional testing and reliability models This
will require more experimentation. If these questions are
answercd, there is more work to do concerning how and when

to use reliability models.

e v v e . e A

ORIGINAL PAGE 18
14 OF POCR QUALITY

4 SofSware lUstrics

The attraction of the ability to predict the effort in
developing or explain the quality of software has led to the
proposal of several theories and metrics (Hal?7, McC76, Gaf.
Che78, Cur79). In the Software Engineering Laboratory. the
Halstead metrices:, McCabe’s cuclomatic complexity and various
standard metrics have been analyred far their relation to
eféort, development errors and one another [(BasB2al) This
study exarmined data collected from seven SEL (FORTRAN) pro-
Jects and applied three effort reporting accuracy checks to

demonstrate the need to validata a datadbase.

The investigation examined the correlations of the
various metrics with effort (functional specifications
through acceptance testing) and ‘evelopment errors (both
discrete and weighted according to amouvnt of time to locate
and fix) across several projects at once, within tndividual

projects and for individual programmers across projects

In order to remove the Jependency of the distribution
of the correlation coefficients on the actual measures of
vffort and errors, the non-parametric Spearman rank-order
correlation coefficients were eramined [Ken79) The
metrics’ correlations with actuval effort seem to be strong-
est when modules developed entirely by individual program-
mers or taken €fro: _ertain validated orojects are con-

sidered When examining modules developed totally by i1ndi-

o © 00 IR e AT

e e N SR B S g i A e S A =2t . = r

s g:.euurmn

vidval programmers: two averages formed from the proposed
validity ratios induce a statistically significarli ordering
of the magnitude of several of the metrics’ correlations.
The systenatic application of one of the data v :liability
checks (the frequency of effort reporting) substantially
improves either all or several of the projects’ effort
correlation with the metrics. In addition to these rela-
tionships, the Halstead metri-: seem to possess reasonable
correspondence with their estimators, although some of them
have size dependent properties. In comparing the strongest
correlations, neither Halstead’s E metric, McCabes’
cyclomatic complexity nor sou~ce2 lines of code relates con-

vincingly better with effort than the others.

The metrics examined in this study were calculated fram

primitive measures derived from a source analyzing program
(SAP -- Revision I) [DecB82] An earlier version of this
static analyzer implemented a less comprehensive definition .
of Halstead operators and operandslO‘Ne781]. Some work has
been done comparing the metrics’ correlations when they havs
been Jetermined from the different interpretations of the

primitive measures

This investigation has been submitted for publication
to the Transactions on Software Enginsering and will appear

#s a University of Maryland Technical Report.

R e L o I e T T VTSN e S UL Ve e, B T R R T S T W e A

» ORIGINAL PAGE IS
OF POOR QUALITY

2 Refgrences

CAuerbach] Auerbach Publishers Inc.. “Practical Measures for
Program Testing Thoroughness", 1977.

CBas80] V. Basili, Tutorial on Models and Metrics for

Software Management and Engingering. p. 340. 1EEE
1980

C(BasB2al] V. Basili, R. Selby and T. Phillips, "Data Valida-
tion in a Software Metric Analysis of FORTRAN

Modules, " ~- to appear IEEE Transactions gn
Software Engineering, July 1982.

C(BasB82b]l] V. Basili and B. Perricone. "Scftware Errors and
Complexity: An Empirical Investigation:" The
Software Enginzering Laboratory, University of
Maryland Technical Report TR-1195, August 1982

[BasB2c] V. Basili, "An Assessment of Software Measures in
the Software Engineering Laboratory, " presented at
Goddard Space Flight Center., January 1982.

[Card82]1 Card, D., F.McGarry and J. Page, "Evalvation of
Management Measures of Software Development," Vol
I & II, Software Engineering Laboratory Series,
SEL - 82 - 001, Goddard Space Flight Center, Sep-
tember 1982.

LChen 78] E. T. Chen. "Program Camplexity and Programmer

Productivity, " IEEE Transacticns on Software
Engineering, Vol. SE-4, Nn. 3, pp. 1837-194 (May
1978).

[CSC) Computer Sciences Corporation, RADMAS User’'s Guide. .
September 1981.

[(Curtis et al 79] Curtis, Sheppard and Milliman, “Third Time
Charm: Strcnger Prediction of Programmer Perfor-
mance by Software Complexity Metrics, " Proceedings
of the Fourth International on Software Engineer-—
ing, pp. 3396-360 (1979).

[Decker % Taylor 821 W. J Decker and W. A Taylor, "FORTRAN
Static Source Code Analyzer Program (SAP) User’s
Guide (Revision 1)," SEL-78-102: Software
Engineering Laboratory., (May 1982).

[(Gaffney % Heller 1 J. Gaffney and 6. L. Heller, "Macro
Variable Software Models for Application to
Improved Software Development Management, "
Proceedings of Workshop gon Guantitative Software
Models for Reliability Complexjty and Cost, IEEE

R R R R R R R ST SRR e EETY: &N ™ R TP S T SERY S D

17 mm'

Computer Society.

(610791 S. Gloss-Soler. The DRACS @lossaru -- A Biblicaraphy
of Software Eneineering Ierms. Rata apd Analusis
Center for Software, p. %6, October 1979

C(Halstead 771 M. Halstead:. Elements of Software Science.
Elsevier North- Holland, New York (1977).

CKendall & Stuart 791 M. Kendall and A. Stuart, The Advanced
Theory of Statistics, Vol. 2, Fourth Ed., MacMil-
lian, New York. 1979, pp. S03-308.

CMcCabe 761 T. J. McCabe, "A Complexity Measure. " JEEE Tran-

sactions on Software Engineering. Vol. SE-2. pp.
308-320 (December 1976).

CMueller] Mueller. Barbara. "Test Data Selection: A Com-
parison of Structural and Functional Testing".
April 1980, private paper.

[Musal Musa, John, D., "Software Reliability Management".
Software Life Cycle Management Workshop. August
1977.

[O’Neill et al 78] E. M. O‘Neill, S. R. Waligora and C. E.
Gaoorevich, "FORTRAN Static Saurce Code Analyzer
(SAP) User’s Guide. " SEL-78-002, Software
Engineering Laboratory (February 1978).

[PicB2] G Picassc, "The Rayleigh Curve as a Model for
Effort Distribution Over the Life of Medium Scale
Software Systems, " Department of Computer Science,
University of Maryland Technical Report TR-1186.
July 1982.

[WeiBll L. Weiss, "Evaluating Software Development by
Analysis of Change Data," The Software Enginee-ing
Laboratory, University of Maryland Technical
Report TR-1120, November 1981

	0010A02.pdf
	0010A03.pdf
	0010A04.pdf
	0010A05.pdf
	0010A06.pdf
	0010A07.pdf
	0010A08.pdf
	0010A09.pdf
	0010A10.pdf
	0010A11.pdf
	0010A12.pdf
	0010A13.pdf
	0010A14.pdf
	0010B01.pdf
	0010B02.pdf
	0010B03.pdf
	0010B04.pdf

