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A Study  of  the  Feasibility  of  Statistical  Analysis 
of  Airport  Performance  Simulation 

I. Introduction 

The  main  objectives  of  studies  planned  by  FAA/NASA  implicitly  re- 

quire  an  adequate  definition  of  airport  capacity  with  view  toward  sorting 

out  the  roles  of  pilot,  ground  controller,  and  other'  factors  that  might 

influence  the  overall  safety  of  our  aviation  system.  Any  future  proposed 

simulation  studies  by  NASA  and FAA should,  of  course,  be  carried  out  with 

the  aid of sound  statistical  tools.  The  study  described  here  is a funda- 

mental  one  in  which  the  feasibility  of  conducting  statistical  analysis 

of  such  simulation  experiments  is  investigated. 

At  the  outset  of  the  study,  we  attempt  to  study  the  form  of  the 

distribution  of  airport  capacity  in  the  standard  simulation  model (Ref. 

(2)). This  capacity  measure  would be the  basic  response  in  any  planned 

simulation  experiment  designed  to  study  the  roles Qf such  variables  as 

number of pllots,  number  of  controllers,  number of planes,  environmental 

conditions,  etc.  on  airport  performance, 

After  the  distribution  of  throughput  capacity  is  assessed,  an  attempt 

is  made  to  determine  how  effective  standard  experimental  design  and  analysis 

of variance  techniques  would  be  in  detecting  capacity  changes  when  conditions 

vary.  In  particular,  the  crucial  problem  here  is  to  first  determine  the 

effect of the  non-Gaussian  Distribution of capacity  on  standard  analysis 

of  variance  techniques  and  power  calculations.  Adjustments  must  be  made 

in  power  calculations  to  account  for  the  natural  heterogeneity  of  variance 

in  capacity.  Secondly,  power  computations  must  be  made  in  order  to 



determine  how  economic  simulation experbents would  be  if  they  are  designed 

to  detect  capacity  changes  from  condition  to  condition. In the  latter, 

we  are  preoccupied  with  determining  the  number  of  replications in the sim- 

ulation  experiments  that  will  result  in  an  effective  study,  i.e.,  one 

that  is  able  to  detect  small  or  moderate  changes  in  mean  capacity. 

Many  of  the  conclusions  drawn  here  are  a  result  of  statistical sim- 

ulation  studies,  i.e.,  studies  in  which  significance  level  and  power  of 

standard  tests  are  empirically  studied  on  the  computer  via  Monte-Carlo 

Techniques,  and  non  standard  conditions  (non  Gaussian  and  hetereogeneous 

variance)  are  buflt  into  the  simulatfon, 

11. Capacity  Measure 

The  capacity  measure  to  be  used  is  given  by  the  airport  throughput 

rate 

C = no.  of  vehicles/hour , (2.1) 

Hereafter  the  measure  C  will  denote  the  mean  throughput,  a  population 

parameter  often  called  capacity.  The  inter-arrival  time, IAT, repre- 

sents  the  time  between  touchdowns.  Because of the  procedure  inherent 

to  the  sirqulation  that  "buffers"  the  touchdowns,  one  can  realistically 

assume  that IAT follows  a  normal  distribution  with  parameters (p,~). 

In  addition,  the  buffer  provldes  that p and u be  related  in  the  simula- 

tlon  through  the  following  relationshfp  (ref. 2) 

3600s 
" 

%AT V + 'B'IAT 
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where 

s = separation  in  nautical  miles 

v = approach  velocity,  knots 

ZB = buffer  factor  (Gaussian  probability  factor) 

P 

If s = 2, v = 140 and ZB = 1.96,  the  following  approximate  relationships 

hold : 

%AT = 51.4 + 1 . 9 6 ~ 1 ~ ~ ~  

c = -  3600 .. 

and 

%AT is  measured  in  seconds.  The  capacities of interest  in  this  study 

range from 20 to 60 vehicles/hour. 

(a)  Distribution  of  Capacity 

It is of interest  to  initially  constder  the  distribution of through- 

put  rate,  which  of  course  is  a  random  variable.  Let IAT be a random 

variable  denoted  by  y.  Strictly  speaking,  y  has  a  practical  lower 

bound  and  thus  follows  a  truncated  normal  distribution.  For  now,  assume 

the  point  of  truncation  to  be 6; thus  the  density  of  y  is  known  to  be 

Y>6 

where 

to begin,  we  need  the  distribution of the  throughput z = l/y.  Following 

standard  procedures 
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One  can  easily  see  that  the  above  density,  that of the  inverse of a 

truncated  normal,  integrates  to  unity.  For,  we  can  write 

and  invoke  the  transformation ; = w, allowing  dz = -z2dw.  Thus  (2.5) 

is  written 

I 

e  dw = -K and  thus ( 2 . 5 )  equals  unity. 
J w  

Figures I - VI give  an  indication of the  appearance of the  distri- 
bution  of z. Note of course  that in many  cases  the  throughput  is  far 

from  Gaussian. 

It is of interest  to  work  out  the  moments  of  the'distribution of 

z and also  attempt  to  gain  some  insight  on  the  distribution  shape. An 

approximation for the variance  of  the  distribution  can  be  helpful in 

what  follows.  For  the  first  moment 
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Allowing ; = v,  w e  have 1 

Similarly,   one  can show t h a t  

The above   sugges t   t ha t   i n   ce r t a in   s i t ua t ions ,  a simple  approximation of 

Var ( z )  = o2 might  be  found i n  terms of the  parameters of i n t e r - a r r i v a l  

time,  namely p and a. A Taylor  Series  approximation  approach  should  be 

q u i t e  good f o r   c a s e s  where u>>a. For example,  expanding  l/y2  and l / y  

i n  a Taylor  Series  around y = p, 

z 

Thus we can  approximate 0: by E(f - E[ (7) ] and 1-1 which  gives 1 1 
Z 



This  type of approximation of inverse  moments  is  not  uncommon for cases 

where p > 30 (See  Kendall & Stuart [l]). In  our  situation,  our  mean 

capacity  range of 20 - 60 results  In  the  followlng  approximate  ranges 

on l.~ and u. 

C (veh/hr) 
60 

5 1  

45 
40 
36 
30 
25.7 

20  

vIAT(Sec) 
60 

70 

80 
90 
100 
120 
140 
180 

uIAT(Sec) 

5 

10 

15 
20 
25 
35 
45 
65 

It is clear  that  this  approximation  for  Var(z)  should  be  quite  good 

until we reach  the  very  low  end of the  capacity  specifically  when  capac- 

ity is near 20 veh./hr.  The  approximation  itself  can  be  "checked"  by 

simulation  results.  The  purpose  of  the  approximation  lies  in  its  use 

in developing  an  algorithm  for  computing  power.  This  will  be  discussed 

in a later  section. 

111. Review  of  Analysis  of  Variance  Principles 

As  we  mentioned  earlier, It is  necessary  to  investigate a wide 

variety  of  conditions on mean  throughput  to  determine  if  indeed  one  can 

effectively  and  economically  compare  capacity  statistically  from  con- 

dition to condition  with  simulation  experiments.  The  analysis of 

variance  procedure  results in obvious  problems.  These  problems  will 

I 
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be more obvious  after  we  review  anqlysfs of variance  procedures  and  the 

calculation  of  power  of  the  analysis. 

(a)  Model  and  Assumptions 

Briefly,  when k group  means  are  to  be  compared  in  an  analysfs of 

variance, a model i s  assumed  of  the  type 

where y is  the  group  population  mean, is the  disturbance  or  random 

error  term  of  the  model.  The z ls  the  basic  response  measurement 

under  the j th observation  In  the 1 group.  For  our  case, of course, 

would  represent  the jth simulated  throughput  in  the  ith  group  and 

y the  mean  throughput  or  capacity  for  the  ith.  One  is  interested  in 

testing  then 

i Efj 

ij 
th 

zij 

i 

Ho : 

H1:  There is a difference  In  the  means 

The  analysis  of  variance  procedure  then  (see  Walpole  and  Myers 123) 

provides a methodology  for  testlng  this  hypothesis.  The  usual  test 

statistic is an  F-statistic.  One  can  consult  [2]  for  the  details. 

Actually,  in  our  application  it  is  quite  1,lkely  that  the  model  in 

equation  (3.1)  could  and  should  be  extended  to  cover  the  study  of 

several  groups  simultaneously.  For  example  in a so-called  two  way 

classification,  one  might  want t o  slmultaneously  study  number of pilots 

and nmber of  ground  controllers  (and  perhaps  interaction) as far  as 
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their  effect on capacity is concerned, 

Regardless  of  the  number  of  factors  involved,  certain  strict  assump- 

tions  must  be  considered  in  analysls of variance  problems.  They  need  to 

be  discussed  here,  simply  because  they  fail  to  hold  in  the  setting of our 

problem.  In  the  model  of  equation (3.1) it  is  assumed  that  the E are 

Gaussian  with  mean  zero  and  common  varlance a2. These  assumptions  are 

necessary  in  order  that  the  F-test  used  in  the  procedure  be  valid. 

ij 

(b) Power  of  the  Analysis  of  Variance 

The  analysis  of  variance  procedure  discussed  here  actually  entails 

a test  of  the  hypothesis  that  the  means  of  each  group,  or  the  so-called 

"treatment  means"  do  not  differ  from  one  another.  Since  the  methodology 

falls  into  this  traditional  framework,  the  decision  regarding  the  number 

of  simulation  runs,  i.e.,  replications,  the  number  of  treatments  or 

treatment  combinations  (number  of  conditions  in  our  case)  should  be 

made  with  view  toward  obtaining a certain  power of the  test.  The  power 

of a test  is  defined  as  follows 

P(a ,v  ,v2,@) = Pr[reject  HolH1l. 
1 

The  power  calculation is not a difftcult  one,  in  general,  and  if  all  of 

the  above  assumptions  hold,  involves  the  use  of  the  non-central F dis- 

tribution [ 3 ] .  The  distribution  involves  the  following  four  parameters, 

k = number of treatments 

v = numerator  degress  of  freedom = k-1 

v2 = denominator  degrees of freedom = N-k, where N As the  total 
1 

number  of  observations 

, 

. 
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Q =  I ! .  
The  quantity 4 is  called  the  non-centrality  parameter.  The  power  of  the 

test  Increases  monotonically  with  an  increase  in v and  of  course 

the  parameter @. As one  can  easily  see,  the  test  becomes  more 
powerful  or  more  sensitive to mean  differences  as  the  treatment  means 

become  more  dispersed  and  as u2 becomes  smaller,  and  as  the  number  of 

replications  becomes  larger. 

1’ v2p 

The  most  popular  mode  for  finding  the  power  of  analysis of variance 

is  the  use  of  Operating  Characteristic  Curves  or O.C. curves.  Examples 

are  displayed  in  Figures V I 1  - X. The  ordinate  on  the  plots  is  actually 

the  probability  of  making a Type I1 error,  or  the  probability  of  false 

acceptance  of H Thus  the  power  is  found  by  calculating  the  complement 

of the  number  found  on  the  abscissa.  For  example,  let  us  assume  that 

all  standard  conditions  are  met  for  analysis  of  variance  and  that  there 

are 4 treatments  to  compare  with 5 observations or replications  per 

treatment.  In  addition,  let  us  assume  that  the  treatment  means  are 

0’ 

Y1 = 55’ Y2 = 58, yg I= 61, and y4 = 64. The  parameter 4 Is  given  by 

(assume u2 = 25) 

If  one  uses a significance  level  of  the  test  of a = 0.05, the  power  from 

the  chart  for v1 = 3 and v = 16 is  found  to  be 1 - 0.3 = 0 . 7 .  The 2 
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implication  is  that  if  the  real  world  situation  provides  a  set of means 

given  by  the y above,  there  will be 0.7 probability of rejecting H 01: 

detecting  a  significant  difference  in  the  means. 
i 0 

In  our  application  the  data  to  be  analyzed  would  be  simulation 

data,  and  the  yi  would  be  mean  throughput or capacity.  In  the  follow- 

ing  section  we  deal  with  the  problem  of  failure  of  the  analysis of 

variance  assumptions. 

IV.  Failure  of  Analysts  of  Variance  Assumptions 

As we  indicated  earlier,  normality  of  the  sij, i.e., normality  of 

the  treatment  population  is  essential  in  order  that  the  theory  associated 

with  the  analysis of variance  be  intact.  Also,  the  homogeneous  varlance 

assumption  must  hold.  These  assumptions al low one  to  use  the  F- 

test  in  analysis  of  variance. If they  do  not  hold,  analysis of variance 

is  not  correct  in  the  sense  that  the  distribution  of  the  usual  test 

statistic  does  not  follow  an Fv -distribution  and  thus  an F would 

only be an  approximation.  That is, if  one  used  an F, his  true  signifi- 

cance  level  would  theoretically  not  exactly  be  what  he  thinks  it  is. 

The same, of course,  would  be  true  of  the  power  since  the  validity.of 

the  non-central  F  relies  on  the  same  assumptions.  The  problem  then  be- 

comes one of assessing  how  robust  (or  insensitive)  the  procedure  of 

analysis  of  variance  is  to  these  assumptions.  If  there  is  a  lack  of 

robustness,  then  how  can  one  adjust  some  feature of the  total  methodology 

in  order to recapture  validity. 

lSV2 

10 
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It is known  that  analysts  of varhnce i s  falrly  robust to departures 

frm the noma1 dlstributfon  assumptron.  However,  there is no known work 

that  investigates  this  robustness of analysis  of  variance  to  the  dlstri- 

bution  involved  here,  namely  the  inverse of a  truncated  normal.  In  the 

case of the  homogeneous  variance  assumptfon,  there  is  no  effect  on  'the 

signiftcance  level  of  the  test  since  under  the  condition  of Ho (equal 

means)  the  variances  in - = - y  IAT wfll  be  the  same  for  each  group  (.each 

treatment  being  identically  dlstributed).  However,  when Ho is  not  true, 

there 2s a  lack  of  homogeneity of variance.  Indeed,  for IAT n N(pIAT,aIAT), 

we  found  from  II(a)  that  the  approximate  variance of throughput.(on  an 

hourly  basis) is given  by 

where  IAT  is  measured  as sedvehicle. Clearly,  then,  when  one  is  testing 

the  hypothesis  that  mean  throughput  (capacity)  dlffers  from  condition  to 

condition,  he  must  cope  with  the  fact  that  when  H1  is  true,  the  variances 

also  differ.  Thug  the  computation  of  the  power  of  the  test  cannot  be 

made  in  the  usual  fashion  because  the  non  centrality  parameter  in ( 3 . 2 )  

does  not  apply;  indeed,  there  is  no  constant o2 IAT (aiAT here  playing  the 

role Of Var -1. Thus,  some  adjustment  in  the  computation of the  power 

must  be  made. 

3600 
Y 

(a) Sfmulation  Study of Significance  Level  of  Analysis of Variance 

As was  indicated  earller,  there  is  a  need  to  determine  the  adequacy 

of analysis of variance  procedures  when  the  basic  measurement i s  through- 



put, y 3600 . A simulation study'was designed  to  determine  how  robust  the 
significance  level  of  the  usual  analysis of variance  is  to  departures 

from  the  Gaussian  assumption,  There  is  no  need  to  be  concerned  about 

heterogeneous  variance  here  because  the  significance  level u = 

Pr(reject HolHo) would  be  studied  by  simulating  distributions  of - 3600 
Y 

under  the  condition  that  the  capacities  are  equal. 

Various  conditions  on  capacities,  number  of  treatments,  number of 

observations  per  treatment  (number  of  touchdowns  at  that  condition),  etc. 

were  fixed  to  use  in  the  computer  simulation,  The (vIAT,aIAT) combina- 

tions  were  controlled  in  order  to  establish  the  desired  conditions on 

capacity.  Basically,  the  model  of  equation (3.1) was  used  to  generate 

data  with  each z being - 3600 and  ynN(vIAT,OIAT).  In  order  to  provide 
ij Y 

a practical  truncation of the  normal  random  variable,  the  Monte  Carlo 

Procedure  truncated  the  normal  variate  at  51,  i.e.,  effectively  allow- 

ing  no IAT below  51. A computer  program  was  then  written  to  compute  the 

F-statistic  for 2000 cases  for  each  condition.  The  distribution  of  the 

F-statistic  was  then  simulated  and  the  probability of exceeding  the  "true" 

F percentage  point  was  found.  This  then  represents  the  significance 

level  of  the  tests  for  analysis  of  variance  in  which  the  basic  random 

variable  is  vehicle  throughput,  The  results  are  given  in  Tables I and 

11. As  one  can  easily  see,  the  results  strongly  suggest  that  doing 

analysis of variance  is  quite  good  even  when  the  basic  measurement  is 

not  Gaussian  but  rather  the  inverse  of a Guassian  variate.  The  column 

headed  "advertised a" is  the  significance  level  that  one  proceeds  with 

in  the  analysis  of  variance  methodology.  The ?I values  indicate  statis- 

tical  fluctuation  in  the  simulated  significance  level. 

1 
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Capacities 

60 
51.4286 
45 
36 
30 
40 
60 
51.4286 
45 
40 

30 
60 
51.4286 
45 
40 
36 
30 
25.7143 

Table I 

Simulated  Significance  Level 
5 Treatments,  10  Observations  per  Treatment 

%AT 
60 
70 
80 
100 
120 

90 
60 
70 
80 

90 
120 
60 
70 
80 
90 
100 
120 
140 

0 IAT 
5 
10 
15 
25 
30 

20 
5 
10 
15 
20 
30 
5 
10 
15 
20 
25 
30 
45 

Advertised a 

0.05 
0.05 
0.05 
0.05 
0.05 
0.05 
0.10 
0.10 
0.10 
0.10 
0.10 
0.20 
0.20 
0.20 
0.20 
0.20 
0.20 
0.05 

Actual a 
(Simulation) 
0.0448+0.0024 
0.0516+0.0034 
0.0494+0.00307 
0.0496+0.00208 
0.0434+0.00291 
0.0528k0.00298 
0.1005+0.0055 
0.0988+0.0022 

0.099k0.0033 
0.1002+0.0045 
0.0978+0.0038 
0.1998k0.0040 
0.193k0.0041 
0.1876+0.0053 
0.1988+0.0038 
0.192+0.00322 
0.1984+0.0054 
0.048k0.0035 



Table IX 

Simulated Sfgnifgcance Level 

4 Treatments, 10 Observations per Treatment 

C CT 
Actual a 

- %AT - TAT Advertised a (Simulation) 

20 180 65 0.05  0.0458+0,0029 

2 Treatments, 10 Observations per Treatment 

C 0 Advertised a Actual a 
- %AT IAT ( S imula t ion) 

20  180 65 0.05 0.0435+0.0085 

20 180 65 0.10 0.0968+0.0031 

14 

L 



(b) Simulation  Study  for  Power of Analysis  of  Variance 

Of  course'  knowing  that  the  true  significance  level of the  analysis 

of variance  is  very  close  to  the  one  applied  in  the  methodology  is  very 

comforting,  but  does  not  necessarily  imply  that  one  can  generate a 

reasonable  procedure  for  computing  the  power  of  the  test;  particularly 

since  under H i.e.,  when  the  treatments  differ,  varying  values of 

imply  heterogeneous  variances.  We  would  still  like  to  be  able  to  use 

the O.C. charts  in  Figures VI1 - X. The  question  then  becomes  "What 

is  the  effective  value  of u2 in  the  expression  for  the  non  centrality 

parameter  in  equation (3 .2 )?"  However,  when  one  fixes  conditions  on 

the  capacities  with  varying p and CY, this  variance  is  not  constant, 

As an  adhoc  methodology  to  apply  in  the  calculation  of Q y  conslder  the 

use of mean pIAT (vIAT> mean arAT (u;~~), and 

1' 

- 2 - 

thus  giving  us  for 0, the  relation 3 . 2  with u2 replaced  by  the 

"effective" u: above.  Again,  simulation  was  done  to  study  the  appro- 

priateness of this  approximation  of  the  power.  Table 111 gives the 

results  of  this  study. 

The  results  in  Table III are  promislng  in  that It does  Indicate 

a very  definite  procedure  through  the  use  of O.C. charts for approximat- 

ing  the  power  of  the  analysis of variance  test  even  though  the  standard 

conditions  ofanalysis of variance  are  not  met, It should  be  emphasized 

that  the  above is not  exhaustive  and  computer  simulation  costs  would 



Table I11 

Simulated  and  Computed  Power of Analysis of Variance 

Nominal  Capacity 60, 
4 treatments, 5 observations  per  treatment 0 

Actual  Capacities %AT U L  
IAT 

y1 y 2  y 3  y 4  % v 2  3 p4 
- 

u2 1 0.2-u; 2 u; 
"" 

55 58 61 64 6K45  6z06 59.01 5z24 51.39 2K58  lc07  670 

a 02 a2 Computed  Power  Simulated  Power z - - - 
0.05 25 2.3 GO. 70 0.704 k 0.0068 
0.01 25 2.3 GO. 42  0.4368k0.0059 

"""""""""""""""""""""""""""""""""""" 

Same  as  Above,  but 10 observations  per  treatment 
a U2 02 Computed  Power  Simulated  Power z - - - 

0.05  15  4.6 ZO. 98  0.9796+0.0055 

R""_."""""""""~"""~"""""""""""""""""""" 

Nominal  Capacity f 45, 
5 treatments, 5 observations  per  treatment 

Actual  Capacities IAT 
y1 y 2  y 3  y 4  y 5  p1 p 2  p3 p 4  p5 1 2 3 

0 2  0 2 . 2  0; u; 
""- 
39 42  45  48 51 9x3 8K 7  80 75 7 E 6  435.4  306.3  212.9  145 96 

-"" 

a U2 Q2 Computed  Power  Simulated  Power z - 
0.05 72 1.25 10.36 0.393+0.0057 

"""""""""""""""""""""""""""""""""""" 

Same  as  Above,  but 10 observations  per  treatment 
a U2 a2 Computed  Power  Simulated  Power 

- z - 
0.05 72 2.5 00.75  0.7508+0.0047 

"""""""""""""""""""""""""""""""""""" 

Same  as  Above,  but 20 observations  per  treatment 

U U2 Q2 Computed  Power z Simulated  Power - - - 
0.05 72 5.0  20.99 0.97820.006 

$' 

Q. 
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Table I11 continued 

Simulated and Computed Power of Analysis of Variance 

Nominal Capacity 9 20 
4 treatments, 5 observations per treatment 

IAT Actual Capacities %AT U2 

U2 U2" y1  y2  y3  y4 % u2 p3 v4 2 "23 .2 1 
2 c 7   2 x 5  18 1 c 4  140 160 200  200 2043.4  3070.1  5748.1  5748.1 

0.05 53 

Computed Power Simulated Power 

GO. 28 0.2636+0.0049 

"""""""""""""""""""""""""""""""""""" 

ITominal Capacity 20, 
2 treatments, 10 observations per treatment 

Actual Capacities %AT 02 

U2 - IAT 
y1 y2 Vl u2 1 "22 
2 K 7  1z4 140 220 2043.1  7399.5 

a U2 

0.05 53 
- - z 

Computed Power Simulated Power 

s0.42 0.386+0.0095 

"""""""""""""""""""""""""""""""""""" 

l h :  



certainly  not  allow  all  types of relevant  combinations, In  addition, 

this  is  not  intended as a  study  of  the  economic  practicality of doing 

analysis of variance for detectfng  change  in  capacity,  only  as  an  assess- 
ment  of  a  method  for  approximating  power. A study  of  how  costly  such 

anova  procedures  would  be  (.ln  terms  of  number of replications)  will  be 

" - 

the  subject  of  the  next  section. 

V. The  Practical  Use  of  Anova  in  Designed  Simulation 

Experiments  for  Detecting  Changes  in  Capacity 

All  of  the  preceeding  results  were  designed  to  lead  us  to  this 

section.  Here  we  discuss  the  economic  implication  of  designing  slmu- 

lation  experiments  to  detect  dffferences  in  capacity  from  one  condition 

to  the  other.  The  basic  idea is to  get  some  notion  of  how  much simu- 

.lation  effort  (number  of  touchdowns)  is  necessary  in  order  to  have 

a  successful  simulation  experiment.  Of  course  the  key  here is to  rely 

on  the  fact  that  we  can  conduct an analysis  of  variance  and  compute  the 

power of the  test  on  equality  of  capacity  across  conditions,  We  will 

assume  at  the  outset  that  a  significance  level  of a = 0.05 would  be  used 

and  that  a  successful  test  is  one  that  would  detect  changes  in  capacity 

of 2-3 vehicles  per  hour  with  a  high  probability,  say  close  to 0.95. 

In  other  words,  we  shall  display  how  many  touchdowns  per  con- 

dition  are  required  in  order  that  one  achieve  a  power  of  the  test  of 

0.95  with  a  significance  level  of 0.05. It should  be  emphasized  that 

this  represents,  by  most  standards,  a  very  successful  experiment.  The 

procedure  for  computing  the  power  involves  the  use  of  the O.C. charts 

and  the  computation  of Q as  described  In  the  previous  section,  In  what 

18 



follows  we  attempt  to  tabulate  requirements  on  number  of  replications 

that  result  in  a  successful  or  near-successful  experiment.  These  tabu- 

lations  will  be  followed  by  some  general  conclusions.  Table IV gives 

results  on  n  (number  of  observations  per  treatment)  for  various  values 

of  nominal  capacity,  number  of  treatments,  that  give  specifled  power. 

Certain  things  become  very  obvious  from  the  table.  There is a  more 

demanding  sample  size  requirement  for  small  capacities  than  for  large 

capacities.  The  most  demanding  capacity  is 30 (not 20) because a: 

reaches  its  maximum  at  a  value  of  approximately 30. In  the  case of 

comparing  two  treatments  a  fairly  large  number of replications  is  re- 

quired  in  order  to  achieve  the  high  power  when  nominal  capacity  is 

below 60. It  would  seem  reasonable  that  for  the  case  of  two  treatments, 

a  higher  significance  level  should  be  used  in  the  test.  Even  the  case 

of 3 treatments  can  require  a  fairly  costly  number of replications  for 

low  capacities  while  for  four  and  five  treatments,  the  number of repli- 

cations  required  are  not so demanding. 

The  above  would  suggest  that  the  most  efficient  simulation  experi- 

ment  might  involve  the  use  of  more  than  one  factor.  For  example,  two 

factors  with 3 levels  each  (equivalent  to  six  treatments)  would  be  com- 

parable to a  study  with 3 treatments  and 3 n  replications,  where  n  is 

the  number of observations  in  each  combination.  For  experiments  that 

must  stay  simple,  say  two  or  three  treatments at low  capacity,  one  must 

sacrifice  something,  perhaps  using  a  somewhat  higher  significance  level. 



Nominal 
Capacity 

60 

60  

60  

60  

60  

60 

60 

60  

60  

50  

50 

45 

45 

45 

30 

30 

30 

30 

30 

20 

20 

20 

20 

20 

20 

20 

Table IV 

Sample  Size  Requirements for  Specified Power 

NO. of 
Treatments 

5 

5 

5 

4 

3 

3 

2 

2 

2 

2 

2 

5 

4 

3 

5 

5 

4 

4 

3 

5 

5 

4 

4 

3 

2 

2 

Significance 
Level 

0.05 

0.05 

0.05 

0.05 

0.05 

0.05 

0.05 

0.10 

0.10 

0.05 

0.10. 

0.05 

0.05 

0.05 

0.05 

0.05 

0.05 

0.05 

0.05 

0.05 

0.05 

0.05 

0.05 

0.05 

0.05 

0.05 

Capacities 

56,58,60,62,64 

56,58,60,62,64 

56,58,60,62,64 

55,58,61,64 

57,60,63 

57,60,63 

58,62 

58,62 

58,62 

48,52 

48,52 

36,38,40,42,44 

40,43,46,49 

42,45,48 

26,28,30,32,34 

26,28,30,32,34 

25.5,28.5,31.5,34.5 

25.5,28.5,31.5,34.5 

27,30,33 

16,18,20,22,24 

16,18,20,22,24 

15.5,18.5,21.5,24.5 

15.5,18.5,21.5,24.5 

17,20,23 

18 ,22  

n  Power 
” 

10   0 .83  

12  0 .93 

1 5  >O. 95 

10  >0.95 

10 0.62 

20  0.93 

30  0.84 

20  0.82 

30  0.94 

80  >0.95 

70 >0.95 

20 >o. 95 

25 0.95 

60  0.95 

30  0.9 

35  >0.95 

30 0.93 

35 >0.95 

60  0.93 

20 0.85 

25 0.94 

20  0.92 

25 0.99 

50  0.95 

70 0 . 9 1  

18,22 80 0.95 
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In this  section  we  illustrate  the  foregoing  methodology  with  three 

examples  that  represent  actual  hypothetical  simulation  experiments  that 

might  be  of  interest  to  NASA  Langley  personnel.  (See  Ref.. 2) .  

example 1 

Suppose  it is of interest  to  compare  two  controller  conditions, 

condltion A being M&S (metering  and  spaclng)  and  condition B being 

vectoring.  Suppose B has a capacity  of  38.6  vehicles  per  hour,  resulting 

from LI = 93.3 seconds  and Q = 18 seconds  with ZB representing a 1% 

Gaussian  Buffer.  Condition A has a capacity of 46.7  vehicles  per  hour 

resulting  from 1.1 = 77.1  seconds  and u = 11  seconds  and ZB repre- 

sents a 1%  Gaussian  Buffer.  Both A and B have s = 2 miles. In calcula- 

tion  of  the  value of n, the  number  of  arrivals  required  to  give  adequate 

power,  we  have 

TAT  IAT 

IAT  IAT 

(.3600) 2z$AT 
02 = - 

Z 
= 51.803 

%T 

and  thus 

-J [(38,6-42.65)2+(46.7-42.65)2]n 2(51.803) 

Using  the  0,C.  Charts  in  Figure X gives n=24 arrivals  required  per  con- 

dition  in  order  to  achieve a power  of 0.95 with a significance  level  of 

0.05.  This is required  in  order  that  there  be a good  probability of 
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detecting  differencesbetween  capacrty  at  saturation  when Pn fact  the 

stated  conditions A and B exist,  These 24 arrivals  will  requtre  approxi- 

mately 0.6hours per  condition. 

example 2 

Consider  two  conditions A and B with  both  representing  vectoring 

conditlons  with s = 2 miles  for  condition  A  and s = 3 for  condition B. 

Allow 2 to  represent  a  1%  buffer  for  condition  A  and 5% for  condition 

B. For  condition A we  have  a  capacity  of 38.6 vehicles  per  hour  with 

'IAT 
of 33.7 vehicles  per  hour, = 106.75 seconds,  and uIAT = 18 seconds. 

Using  the  same  approach  as  illustrated  in  example 1, we require  n = 47 

B 

= 93.3 seconds, u = 18 seconds,  while  conditions B has  a  capacity IAT 

%AT 

in  order  to  achieve  a  value  of @ = 2.6 required  to  achieve  a  power of 

0.95 with  a  significance  level of 0.05. This  value  of 47 arrivals  requires 

approximately 1.3 hours  per  condition. 

example 3 

Let  condition  A  represent  metering  and  spacing  with  a  capacity  of 

46.7 vehicles  per  second, uIAT = 77.1  seconds, u = 11  seconds  with  a 

1%  buffer.  Let  condition B represent  Cockpit  Display of Traffic  Informa- 
IAT 

tion  (CDTI),  with a capacity  of 52.9 vehicles  per  hour = 68 seconds, %AT 
U IAT = 3 seconds,  representing a near 0% buffer. s = 2 miles  for  each 

condition.  A  value  of  n = 27 arrivals  produces 0 = 2.65, required  for  a 

power  of 0.95. As a  result, 0.6 hours  would  be  required  for  each  con- 

dit fon . 
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VII. Conclusions 

We  have  demonstrated  that  one  can  effectively  use  analysis  of 

variance  to  do  significance  testing  in  simulation  experiments  where 

vehicle  throughput is the  basic  response.  The  difficulty  with  the  fail- 

ure  of  the  normality  assumption  presents  no  serious  problem  in  conducting 

the  statistical  tests. In computing  the  power  of  the  tests,  one  needs  to 

make  an  adjustment  in  the  computation of the  non  centrality  parameter 4 

in  using  standard  operating  characteristic  curves.  The  adjustment  results 

in  an  approximate  power  and  takes  into  account  the  heterogenous  variances 

that  are  implicit  in  testing  for  differences  in  capacity  between  various 

conditions. 

For  designing  experiments  that  compare  capacities,  it  turns  out  that 

in  order  to  achieve  an  exceedingly  high  power  for  moderate  changes  in 

capacity  (2-4  vehicles  per  hour), a moderate  number  of  replications  are 

needed  when  at  least  four  or  five  "treatment  combinations"  are  to  be 

studied  in  the  design.  For  only  two  treatments,  the  number  of  replica- 

tions  are  probably  prohibitive,  except  for  very  high  capacities. 
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ANALYBIB OF VARIANCE 

+(for a = 0.01) -1 2 3 4 5 
OC curves for the  analysis of variance with Y = 5. 

FIGURE VIII. 



ANALYSIS OF VARIANCE 

3 - #(for a = 0.05) 
#(for a = 0.01)- 1 2 3 4 

OC curve8 for the analysis of variance with Y = 6. 

OC curves for the  analysis of variance with Y = 7. 

FIGURE IX 
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OC curves for the analysis of variance with Y = 1. 

FIGURE X 
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