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ANALYSIS OF A FINITE DIFFERENCE GRID

Goetz H. Klopfer
Nielsen Engineering & Research, Inc.

SUMMARY

Some means of assessing the suitability of a mesh network
for a finite difference calculation are investigated in this
study. This has been done by a study of the nonlinear trunca-
tion errors of the scheme. It turns out that the mesh can
not be properly assessed a priori. The effect of the mesh on
the numerical solution depends on several factors including
the mesh itself, the nuﬁerical algorithm, and the solution.
Several recommendations are made with regard to generating the
mesh and to assessing its suitability for a particular numerical
calculation.

INTRODUCTIGCN

One of the most important problems that arises in finite
difference solutions to physical problems is the-quality of the
grid used in the calculation. For simple configurations, e.gqg.,
two dimensional problems, a conformal transformation which gives
an orthogcnal grid can be used. This still leaves the gquestions
of the adeguacy of the grid clustering unanswered. In complex
problems the grid may not be orthogonal, and a guestion of the
effect of grid skewness on the solution accuracy arise. In
addition to these problems of grid clustering and skewness, it
is desirable to determine whether the grid is sufficiently fine
to capture the detailed physics of the flow, especially if the
location of phenomena like shock waves change during the solu-
tion. Other critiera (e.g., smoothness) may also be important.

At present the only way of determining the suitability of
a grid is by visual examination, and while this may be
satisfactory for simple geometries, it is an almost impossible
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task for complex geometries. It would be extremely useful,
therefore, to derive some criteria to measure the suitability
of a grid that could be de.ermined computationally. The
quality of a complex three dimensional grid could thus be
determined before a lengthy flow solution is attempted.

In a general two dimensional grid the coordinate trans-
formation t = t, § = £(t,x,y), n = n(¢t,x,v) permits clustering
and spreading of the points in two-dimensions. The components
of the Jacobian transformation matrix (hereafter called
"metrics") Xeo¥g and Xp,yn can be examined to determine the
quality of a grid. The main problem is to decide the attributes
of a good grid; it is anticipated that quantities such as
curvature variation, Jacobian variation, skewness and volume
of grid cells, in addition to other geometric gquantities will
be important.

First the attributes of a good grid are determined, and
second, means of quantifying the grid quality are developed.
In addition to this purely geometric problem, it is likely
that the relative guality of a grid will depend on the algorithm
in the code since the major aim is to reduce the truncation
error. Since different algorithms have different truncation
errors it is probable that grid quality is dependent on the
algorithm and the solution. A particular algorithm is chosen
for more detailed study.

Finally, a feasibility analysis on the extension of the
above criteria to three dimensions is undertaken.

CCMMENTS ON MESH CRITERIA

Before some criteria can be established which will serve

to guantify a "good" mesh, it is necessary to discuss the various

surposes a mesh needs to serve. This will be done in this
section. The discussion will be limited to problems applicable
in computational £fluid dynamics.
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For an ideal incompressible flow, finding the solution is
tantamount to finding the coordinate lines. This is of course
the motivation of conformal mappings. The solution and the
mesh are given in terms of level curves of potential and stream
functions. Extensions of this idea to compressible flows has
not been as successful. For example, the "contour dynamics”
scheme of Harlow (Ref. 1) recast the problem as firnding the
locations of level curves of d2nsity, pressure, and velocities.
While the problem of establishing the mesh is circumvented,
other more severe and less tractable difficulties arose.

Another method of avoiding the mesh generaticn problem is
by the use of Lagrangian variables (Ref. 2). In these
variables the mesh node points move with the fluid velocity
and thus the mesh is automatically generated. The unsolved
problem with this approach is the excessive mesh distortion
at stagnation pointé or in the viscous layer. This distortion
causes accuracy and stability problems. Attempts have been made
to solve this problem by remeshing before loss c¢f accuracy
occurs. These methods are calied Euler-Lagrange methods by
the Los Alamos school (Ref. 3).

Other uses of meshes for numerical algorithms are to reduce
the trunaction errors of finite difference schemes. 1In other
words, the mesh of fixed number of node points is adapted so as
to improve the accuracy of the numerical solution. This has
been the motivation of the work of Brackbill (Ref. 4), Klopfer
(Ref. 5), and others. Hindman (Ref. 6) established certain
prorerties that the transformation and the metrics must sat-
isfy for certain mesh dependent truncation errors to vanish. He
showed how these differ if the governing equations are written
in various different forms, e.g., strongly and weakly conserva-
tive forms to name only two. This indicates that the form of
the governing equation can also have an effect on establishing

mesh criteria.
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If conservation is important, as is usually the case for gas
dynamics, where shock waves and tangential discontinuity surfaces
are to be captured by the numerical scheme, then the mesh must be
such that numerical conservation is maintained to a certain level
of approximation. This requirement precludes rapid changes in
mesh cell size. The changes must be smooth and gradual if con-
servation is required.

Another use of adaptive meshes is to keep track of fluid
interfaces such flame fronts Dwyer (Ref. 7) and water waves. Here
the accuracy of the solution is strongly dependent on the proper
resolution of the flame front temperature gradient or air-water
interface. The truncation error of the flow variables is not the
problem here. The difficulty is obtaining the source terms
accurately for the chemical kinetic equations or the boundary
surface for the wave problem. The mesh effect on the accuracy of
these flow fields will be different than those based purely on
truncation errors.

Another purpose of a finite difference mesh is toc control
the stability, well-posedness, or convergence properties of num-
erical schemes. For example, Hagin (Ref. 8) used this method to
keep an integral equation method well posed. Preconditioning
methods or multi-grid methods also make indirect use of this
mesh property to increase the convergence rate of numerical
schemes Lomax (Ref. 9).

From this brief survey it is obvious that there are too many
different requirements that a mesh has to satisfy. 7To establish
criteria based on all these functions of the mesh is a far too
ambitiocus undertaking. For this reason the remainder of this
study will focus attention on meshes adapted to reduce the trun-
cation errors only. The governing eguations considered will be
in strongly conservative form with no source terms due to physi-
cal prccesses. In the transformed or computational space the
eguations considered will be both strongly and weakly conserva-
tive. The source term for the latter form will be due to the
transformation metrics only.
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In the next sections the transformation, governing equations
and truncation errors of a simple numerical scheme are derived.

CURVILINEAR COORDINATE SYSTEMS AND
GOVERNING DIFFERENTIAL EQUATIONS

Metric Tensor

In any two dimensional surface with local coordinates
£Y = (£,n) we have u local element of length

as® = g; 448 A8 i, =1,2

_ 2 : 2 .
= 911d5 + Zglszdn + gzzdn (1)

If imbedded in .a plane "physical" space with coordinates
i

%X~ = (x,y! then the components of the metric tensor 913 are
given by
912 T Xg¥n * ¥e¥y (2)
923 = % * ¥
so that d52 = dx2 + dyz. The determinant of the metric tensor
is

_ - 2 _ o L2 _ 2
g = [gijl Jo o= gllgl2 912 = (xsyn anE) {3)

where J is the Jacobian of the tiansformation between the two

coordinate systems. If the map; ing between the two systems is to

-1

be one-to-one, then J # 0 and J # 0 must be satisfied.
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With this transformation a mesh can be laid out with the
node voints at (convenient) integer values of (§,n). This mesh :
is simply a cartesian mesh with square cells and will be taken
to be the computational mesh and (§,n) are the computational vari-
ables. The metric tensor components can be given a physican
interpretation. The gij can be rewritten as

gll = Jz (Vn * Ynl} N
.2

912 = J2%(n - VE) (4)
_ <2

Thus 9,1 gives a measure of the length (squared) of the
side of the cell parallel to the & coordinate, 955 for the
length of the side parallel to the n coordinate, and 955 is a
measure of the orthogonality between the cell sides. The metric
tensor components however do not completely describe the trans-
formation between the two spaces. The orientation of the (¢,n)
coordinate system relative to the (x,7) system is noct fixed by
gij and must be specified separately. One such specification
can be the angle between £-axis and the x-axis as given by

X
cos¢ = S - (5)

g+ v

Other remresentations are possible but this one is simple
and with a surface conforming curvilinear coordinate system it
gives the angle between the tangent plane of the surface and the .
x-axis. It will be called the "solicd-body" rotation angle.
This soliéd body rotation is only defined for flat 2D surfaces.
Oon a curved surface the integral of the rotation about a closed
contour is egqual to the integral of the curvature of the surface

enclosed.
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1.
For later reference is useful to have the transformation
? metrics in terms of gij and ¢.
|
|- —
% xE = Y9y, cos¢
: * YE = 'gll sing
! -1 (6)
o, x_ = —— (g,, cos$¢ + ¥g sin¢)
: n 12
b 11
' and
1 .
] y. = —— (/g cos$ - g,, sing¢)
4 n q;II 12
! The latter two become for an orthogonal system (glz = 0).
! X, = —/322 sin¢
A\ -
. Yn = Y9, cos¢
? Note the strong dependence of the metrics on the solid body
' rotation.
} The metric tensor can be rewritten or split in various
. different ways. For example,
-
P a coshB sinhg
; 9535 = J|sinn8 % coshB
E where a is the cell aspect ratio, B is a measure of orthogo-
et nality and J the cell volume (area)
i
P @ = v911/922
. and
: : sinh = (glz/J)
a
|
. ;
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Or gij

can be split into dilation and shear components
= (10 sinf cos8
gij 2[0 1] *+ R[coss -sine]

where the first matrix represents a uniform dilation and the
second the shear. T and R are the strength of the dilation and

shear respectively. T is, of course, the trace of gij’ that is
T=95 %9
also
r=aZ + 82
and ’
sin® = a4/a® + B2
where
A= (g9,, =~ 95,)/2
and
B =

912 -

With these definitions of the metric tensor, certain mesh
criteria can be established.

MESH CRITERIA

In recent years curvilinear ccordinate systems have become
important for improving the efficiency of numerical solutions of
flow f£ields around arbitrarily shaped bodies. In generating
these meshes many workers have incorporated various properties
they considered desirable into the mesh. It is not clear why
these properties are required for a mesh to be "good" for a
certain numerical scheme.

Brackbill (Ref. 4) generates two dimensional meshes
such that several of the mesh pro;.i. zies are simultaneously
optimized. For example, he considers cell vclume, J; the trace
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of <;5j which he calls cell smoothness, T; and orthogonality, g
to be important. 1In other wocrds he generates a mesh such that

12

the conflicts among the three requirements are minimized.
Yanenko (Ref. 10) also considers orthogonality and a specified
variation of cell volume to be imporiant. However, he dces not
use the cell smoothness, instead he considers a mesh "non-
Lagrangian-ness" which is the difference between th: fluid veloc-
ity and the mesh node velocities. Steger, et al, (Ref. 1ll) have
developed a very rapid mesh generator by satisfying only two
properties, for example, orthogonality and a simple variation

of cell volume. Ablcw (Ref. 12) and White (Ref. 13) use the
solution in a direct manner to generate the mesh. In other words,
the solution and mesh are solvea simultaneously such that the
measure of "difficulty" of the method is spread out uniformly
over the computational domain. The "difficulty" can take on
several meanings, for example, equal arc length along the solu-
tion curve, truncation error, single step error, or a number of
other things. If the differential equation is the Poisson
eguation and one takes the truncation error to be the measure of
"difficulty", then Ablow (Ref. 12) consider 933+ 9327 G327 J,
along with the higher order derivatives of .he solution to be
the important mesh criteria. Thompson (Ref. 14) have considered
arc lengths between coordinate lines (i.e., 9y, and 922) and
orthogonality as mesh criteria. These six works are probably
the state-of-the-art in mesh generation with certain desirable
properties explicitly built in%to them.

It should be apparent that if the mesh is solution adapted
and the solution is a vector, then there should be a mesh for
each component of the solution vector. This of course involves
the additicnal expense of generating ané storing multiple meshes
in addition to the extra burden of interpolating among the
meshes. These types of difficulties were experienced by Harlow
(Ref. 1) with his "contour dynamics" method. While multiple

meshes may be unnecessarily cumberscme and expensive they should
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not be rejected out of hand for they may be advantageous for
certain kinds of problems. But, in general, a~single solution
adapted mesh is generated based on some scalar composite of the
solution vector, e.g., pressure.

It is not evident that any of these properties are in any
way desirable for a "good" mesh. The very notion of a good mesh
is vague. The function of any mesh.network, dynamic or station-
ary, is to discretize a system of gdverning partial (usually,
non-linear) differential equations so that they can pe solved
by a numerical algorithm. In this report only finite difference
schemes will be considered. For finite difference schemes the
mesh should minimize the truncation error for a given number of
discretization points. This is because one can not easily add
or delete mesh points during a calculation. Since the trunca-
tion error depends on the transformation metrics, the solution,
and the numerical scheme, it may be expected that the desirable
mesh properties will be scheme and solution dependent.

It is also possible that the mesh criteria may depend on the
order of the differential equations. For this reason twc types
of differential equations will be considered. The first type
will be a system of nonlinear first order partial differential
equations, such as the Euler equations of gas dynamics. The
second type will be a scalar second order partial differential
equation such as the steady full potential eguations for tran-
sonic flows.

TRUNCATION ERROR

First Order Differential System -~
F.rst Order Scheme

In the following sections the truncation error of two
algorithms on an arbitrary curvilinear mesh will be gerivecd.
From the truncation error the desirable form of the transforma-
tion metrics will be extracted. The governing eguations wili be
conservation law form

10
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wt+fx+gy'° {7)

vhere T and g are nonlinear functions of w.

A generalized coordinate transformation is introduced

T =t
£ = (t,x,y) (8)
n= (tlx'Y)

The transformed giverning equitions are written in two forms,
the strong conservation law (SCL) and the weak conservation law
(WCL) forms:

Strong conservation lavr (SCL)

- _ ) - ® — - - _ o

'5;(wJ) = gg{yn(? XW) xn(q yw)’

+ -y (T - %D + x.(F - vl = o (9)
an 3 13

Weak conservation law (WCL)

aw & .-1l},: _ = s _ =
3T Y 5o 9 {(yxn xyn)w + v, £ xng}

3 _.1 . . - - -—
+ 37 J {\xyg - yxE)w - ygf + xsg}

-1, . -1,- . -
[J (yxn xyn)]r + [J (xyE yxa)]n}w

>

(J'ly ) - (J-:ya) }
13 n

rh

-1 ~1 -
= (=3 "x_ ) + (J “x.) }g = 0
n { g 13 n

/‘MN‘

(10)
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To both of these forms the mesh velocities (5:,3") nust be given

X, = X =0
. (11)
Ye =¥ = 0
For convenience in determining the truncation error the mesh
accelerations (X%,y) are also given
(x)_ - % =0
. . (12)
(y), -¥=0

. . e e . I3 — — —
Here x, y, %X, ¥ are given functions of w, w , w , w,Yy.

Both of these forms are written in terms of new dependent
variables and fluxes as

wr+f€+gn+h=° (13)
For the SCL form
W3 yn(f - xw) - xn(g - yw)
x 0
w=1ly]| : £ = 0 :
X 0
Y] i 0 ]
{14)
r'-yg(? - W)+ % (F - W) 0
0 x
g = 0 : h=|7
0 X
L 0 i M
12
PUTREAASS SR e Xt iy R o £,y b

1
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and for tne WCL form

] My, & - &) - %, @ - ¥l ]
X 0
w= |yl : £= 0 :
X 0
M i 0 J
=~ -l -— ® o -— e -
3 {-yg(f - W)+ % (3 - yw)}
0
g = 0 : (15)
0.
L 6 4
and
-(last three terms of equation (10)7
x
h = y
%
i ¥ i
Solving system (13) by a first order numerical scheme
n+l n £ -2 gt -q7
W - W i+l i 341 ‘3 n _
X + TE + i + k" =0 (16)
one obtains the following modified equation
at 14 An o o (a2
we ¥ fE M % th+ 7 Var T3 f2£ * 2 92 0(a%)
where Wor T W This notation will be used throughout this
report.
13
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By eliminating War in terms of spatial derivatives one
obtains

AE aAn At - 2
wo o+ fE t g+ h + =2 f2E + 5 gzn + 5 (=s.) = 0(87) (17)

2 2 .,2 .2
where 0(A®) represents G(AE'AH'AT'AEAH)'

Bere s = fE + 9y * h and (-sT) is given by

(-s.) = [hw + fwwwg + £, Weg + iy Vg * gwwwn + gwwEwEn

3 n

* e wnn] TSt [fw *h, +£% wie * Eau Vot

n A 4 £
+ £ w + g + g w + g w s
WeW, ng wgw n 2w5 En WeWn 2n] g
+ [9w + hwn + £ nwwE + fwnwEwE, +-f2wnwn£ + _wnwwn

The meaning of these terms should be made clear. Terms with

subscripts § or n, e.qg., 561' are
a2 32
s = (s) = —— (£, + g_ + h) .
En 363 ann & n

Terms with subscripts w, ws, wﬂ, etc. are the Jacobian coeffi-
cient matrices or £flux Jacobians (not to be confused with the

14
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Jacobian of the coordinate transformation). For example

: This term is a third order tensor containing 8x8x8 terms if W is

a 4-component vector as for example in the two-dimentional

' equations of gas dynamics.

As can be seen this modified equation is a rather complicated
function of the spatial derivatives of the metrics and the flow
variables. It is far too complicated for one to readily extract
any useful information. .It is'presented, however, to emphasize
the additional effects that a dynamic mesh has on the truncation
error. Thus one should not be surprised by difficulties experi-
enced with dynamic meshes. as used for example by the Space
Shuttle codes Kutler (Ref. 15) or the parabolized Navier-Stokes
codes, Schiff (Ref. 19).

If we specialize the problem to an unsteady flow on a f£ixed
mesh then we cbtain

AE 4n
wo + fE + 9 + h + 17f2€ + 292
+ AT {5 £ w. + wls+ £s, +g.s | =0(% (19)
2 |{"w “ww Furw''n wog Fw®n

Note that for this case all of the coefficient matrix Jacobians
derived from the spatial derivatives of w vanish.

Comparing the two modified equations immediately reveals
that the truncation error contains derivatives of one higher order
for the dynamic mesh. Thus determining proper mesh criteria are
more restrictive for a dynamic mesh than for a fixed mesh. If we
further simplify the problem toc steady £low then we obtain

15
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fE +g, +h+ 7§f2€ = ngzn = 0(8%) (20)

There is no further reduction in the order of the derivative
in the truncation error. The equations are recast as

[f + %;55]5 + [g * %§9n] + h = 0% (21)
n

White (Ref. 13) speaks of an ideal mesh for a one-dimensional
problem as one where the numerical and exact solutions are iden-
tical. That is the truncation error vanishes. The ideal mesh
for the above first order numerical scheme is one that eliminates
both of the truncation errors. That is, the mesh is such that £
and g are linear in £ and n, respectively:

Hh
]

KlE + K

2
g=K3n+K4
where Kl = -K3 = constant and K2 and K4 are arbitrary functions

of £ and n, respectively.

For the SCL Form

Thus a system of differential equaticn for x and y in terms of

"known" solutions f and g is obtained.

- §x, = K& + K, (£)

-fyE + gx5 = —Klw + Kz(q)

16
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and
Xe¥p = X Ye # 0 or #=
This, of course, has no solutions for nontrivial T and g. Thus
the ideal mesh dves not exist. The effect of the metrics on the

truncation error can be seen by examining the truncation in ex-

panded form. For the SCL form the errors are %§f55 and %?gnn'

32 = =
feg = ;Eﬁ[ynf B xng]

th)

= Ynegf = Xqegd *o2lyqgfe 7 Xpg9g) *oypfep - X 9gy (22)

Similarly

vt <
a —1=-y. £ + x.g
nn anz € g

= “Yeant * Xgan9 t 2('y5nfn * xEngn)-yEfnn * X9 (23)

The truncation errors for the SCL form depend linearly on
the metrics and their derivatives. The errors do not depend in
any direct way on the Jacobian, orthogcnality or cell smoothness
parameters except through the metrics. They do, however, depend
more directly on the solid body rotation and cell side lengths,
913 and 955 (individually, not combined into a smoothness

parameter).

For the VICL form the errors are

Yy - X - - -
+ 2 (t%)sfs - (19),95 * (T?)fes - (1?)955 (24)
7 17
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-y x -y [x
J /on I /an J /g m I/n
-y X
= El=
+ ( J )fnn + ('J_)gnn (25)

The errors here depend linearly on the metrics and inversely
on the transformation Jacobian and their derivatives. 1t can be
expected that the WCL forms will require meshes with smoother

and

i

nn

Q
[
T~

Jacobians than the SCL forms of the governing equations. This
conclusion, of course, assumes that the metrics in the source
term are computed exactly.

For both forms the mesh cell aspect ratio does not enter into
the individual truncation errors. However, if the error along one
coordinate line is much larger than along the other then the ratios
Y x
;5 and ;5 need not be near unity. The ratios of the metrics for

n n
an orthogonal mesh are determined by the cell aspect ratio and the

solid body rotation angle.

Y g

-—E =’V a_l'l'. tan¢
yn Z22

Xe _/%11
xn 922 tane

rixed mesh-unsteadv flow

In this section the expanded form of eguation (19) will be
examined. To keep the algebra within reasonable bounds, the
governing equations will be limited tec the linear scalar convec-

tion equation, i.e.,

18
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where Cy and cy are constant convection velocities in the x- and
y-direction, respectively. For this example the over barred
guantities corresponding to equation (7) are

=)
noon
0 ¢
=

al
]
0
[

The transformed equation is given by equation (13) and for
a fixed mesh the transformed variables are for the SCL form

SCL
w = Ju
c.yY c.X
= | XN . ¥ n
£ ( 3 5 )Ju
-c VY C X,
= X & yg
and
h=20

The flux Jacobian matrices become

s XN Y Do

fw J
-c_ Y, + ¢ X

- X5 vE
9, = ] =V (26a)
fww=0’

and

I o .

Therefore the modified equation is now

N _A_£ an A_T‘C . . l:“
“’*f’gn*zfzg*‘z‘gzn*z]‘ Sg * 9y " Sy T ol

.

4]
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where

Sg = fyp * ggy

and

Sn = fgn * 9oy

In expanded form the modified equation is

AE
Ju.r + (J)\)uE + (Jv)un + —i—{(JA)uZE + Z(J”EuE + (Jk)zeu}

4an At ,
+ 1T{OJV)u2n + 2(Jv)nun + (JV)2nu} + ?r{k[(Jk)uzg + (Jl)gug

+ (Jv)sun] + \)[(J\:)u2n + (Jv)nun + (Jx)nuz]

+ (3N) (v)[zugn]} = 0082 ) (27)

where A and v are given by equation (26a).

There are several ways this eguation can be simplified for
particular cases. Suppose the mesh is to be such that it induces
no truncation errors when the flow is uniform. This is called
the uniform free stream test by Hindman (Ref. 6). Applying the
uniform free stream test v = 1 yields:

AE _ An}, _ - = 2
Ju, + T{(cxyn cyxn)zg} + 2 {( c,¥; ¥ cyxa)m} 0(a°) (28)

This &quation gives the first order truncation errcr due to
the mesh above for a uniform solution u = 1. MNote that there is
no mesh error with a 4t dependence as all those terms cancel.
This equation also gives the regquirement that u = O(Az), that is
the metrics must be smooth enough such that

(cxyn - cyxn)2, A~ 0(a)

]
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and
(—cxys + cyxE)Zn A~ 0(A) N

If these conditions are not met then the free stream value
of u = 1 will not be recovered to the formal order of accuracy
of the numerical scheme. This uniform flow test is one method
of testing the adequacy of a discretization mesh and is similar
to the approach taken bv Hindman (Ref. 6). &Hindman's approach
differs in that he tried to satisfy u, = 0 by svecial differ-
encing of the metrics for the various form of the governing
equations. In the present approach the metrics are differenced
no differently than the flow variables and it was only required
that u. 3 O(Az) for the f;rst order numerical scheme used.

It is quite obvious that the uniform free stream test is
artificial and somewhat meaningless for a nonuniform flow field.
If the flow field is uniform there is no need for the numerical
scheme. As shown by equaticn (27) the mesh dependency of the
truncation error appears in a much more complicated manner and
it is somewhat difficult to separate the mesh truncation errors
from those caused by th2 ~clution. This will be attempted in a
later section for a second order scheme and a steady state
solution.

For the WCL form of the transformed eguation, the trans-

formed variables are

WCL

21
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and

-

The Jacobian metrices are now

c c.x
f=xyn—_ul=x
W J J

“c_ Y c.x
w e Ry
hw = h/u (u # 0)

and

Iw = Sww = hww =0 .

where s = fE + gn + h.

This equation may be expanded to

u, + (A)us

+ +
Tt (v)un

%{muzg +

An

+

h 2
+ Zk-ﬁ]ug + [(v )n + ()‘\J)E + 2v

0(a?)
22

obtain

2(kg)u

At

—=<¢(v)u + 2{v)_u_ + (v) u} + =
2{ 2n an 2n 2

h
g]un

§

{

r
L

+ A%

+ ()\)2 u

o (@Ffer {3, - (3o

(29)

)

2
(X )6 + ()\v)n

2 2 + 2)\\)1.15ﬂ + vzuz }
g n

(30)
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For the WCL form the uniform free stream test gives

A% xIn ¥'n
u, + =
T 2 B | 2
-c.y, + ¢ % .
SO0 X8 YR o ga) (31)
2 J 2n

This result is similar to the SCL form equation (28). The
requirements for no mesh error are now

c.Y. = ¢. X

Xn _ yn A 0(A)
J 2€
and
-c.y, + c.x \
x'§ bl N 0(a)
3 .
2n

These conditions are prcbably moré restrictive than for the
SCL forms in that the Jacobian must also be smooth. These con-
clusions are similar to those reached by Hindman (Ref. 6). Eere
we conclude that the optimum mesh (optimum based, e.g., on the
uniform free stream test) depends on the form of the transtformed
equation used. Hindman concludes that to recover the free stream
values the metrics must be differenced differently depending on
the form of the transformed equation solved. Of course, the mesh
based on this test is not optimum in the sense of minimum trunca-
tion error of the numerical sclution. For this the flow field
sclution and the lower order derivatives of the metrics must also

be considered.

It is of interest to see how the truncaticn errors and thus
possible mesh criteria change as a higher order numerical scheme
is used to obtain the numerical solution. The derivation of the

23
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modified equations both in general and expanded form for a second
order accurate leap frog scheme and system (13) have been rele- . )
gated to the Appendix. The major effect of the higher ordex
scheme can be seen by comparing the erior terms of equation (A-5)
to the errors given by equations (22) and (23). The major dif-
ferences, besides the additional terms, are the appearance of
derivatives of one higher order for both the solution and the
metrics. This indicates that for higher order schemes, the
higher order derivative of the metrics must be smoother than for

a lower order scheme.

Dynamic mesh — unsteady flow ’

The expanded form of the modified eguation for the dynamic
mesh will not be given. The algebra is nearly intractable. A
complete study of the dynamic mesh case requires the use of
machine algebra and that is beyond the scope of this study. It
is also doubtful whether anything useful in way of a solution
independent mesh criteria will evolve from such a study. It is
clear that it is not possible for the stationary mesh case covered
above.

Second Order Differential Equation -
Second Order Scheme
In this section a scalar second order partial differential
equation solved by a simple second order accurate numerical
scheme will be examined. The steady state version of the full
potential equation for transonic flow is the model equation,
Holst (Ref. 16).

The full potential eguation written in strong conservation

law form is

(o¢x) + (pd.)) =0 .
X Yy

(32)
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: where the density, p, and the velocity components °x' °y' are
.f nondimensionalized with respect to the stagnation density, Po
; ) and the critical sound gpeed, a*, respectively: x and y are the
¢ N Cartesian coordinates and y is the specific heat ratio.
|
In the transformed space [given by § = £(x,y) and n = n(x,y))
i the equation bacomas
1 (JoU)€ + (JDV)n =0 (33)
l whare
. ]
2
]
' The doefinitions of 9117 9y1ar Faar and J are given by aqua-

tions (%) and {3). The density is now

(34)

! It should be noted that for this saecond order differantial

' equation that the "traditional" mesh criteria reappear directly,
namely, J, d1y1 Saze and 9y12° This 1s anlike a first order

. differential svstem where only the metr:ics and J appeoar.

Since for full potential egquations the density is usually
the desired -olution from which tho pressure and Mach numbers
can be deteraaned we will examine the truncation arror of
equation (34) only. For saimplicity simple central diffarencing
k will be used throughont the entire flow field whether the local

Mach numbers are sub- or supersonic. Luat the "exact" density be
. given by op and the numeraically derived density by oy The

relation betwean the two is
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Pp = Pyt 4p + higher order terms

- Ao
= o |1 ¢+ —
N( °N)

The Ap can be derived from the modified eguation form of
equation (34). Replacing all the derivatives by central differ-
ences and expanding in a Taylor series obtains the modified
equation of (34) as

J
1 2, (%22 912 2./%11
- mgﬁsd(?—> - 2‘.”:@\,5(?) + Q‘nﬁ(';‘:‘ (35)
whore
pd
Q AL
5(‘“:) " T3t
An: AE:
A(‘“:%) BCIAEAE TN I
A I
2 n*
A ) = 3% %3
a, ) A= [ ¥a¥3n * Ya¥an 922 ‘
_\ —+‘ ) " 3 - ~ - 3.\J
J* J* 33
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A(912) . A;z(f;xsg * Yg{ag) oy,
3° 3 34 333

and

- 2 - 2 -
8F = AT (xpy3, = ¥eXg ) + 8ET(y Xge = X ¥qe) .

Note that the effect of the truncation errors cf, the matrics
and the solution (¢) are somewhat separable. 1In equaéion (35)
the first group of terms on the right hand side is the truncation
due to the solution. This part of the error still has the metrics
as coefficients. The second group of terms is the mesh induced
truncation error and also depends on the solution. Only in this
sense are the two errors separable. Thus, for a given solution
ona could check the adeguacy of a mesh by computing the two
separate errors as above and require that the mesh induced errors
be no larger than the solution induced errors over the entire
solution domain.

This is not a very satisfactory result in that a mesh in-
duced truncation error only has meaning with respect to a parti-
cular flow field solution. A numerical example for the full
potential equation is presented in a later section.

MESH-INDUCED NUMERICAL INSTABILITY

The use of curvilinear nesh or a nenuniform Cartesian mesh
can introduce what will be called mesh-induced numerical iasta-
bility. Although a numerical scheme may be stable for a un:iform
Cartesian mesh, there is no guarantee 1t will remain stable on
another type of mesh. This assertion can be gquickly verified by
examining the mcdified egquation (A-5). In this equation there
are four Jdissipative terms whose coefficients depend on the local
metrics and their derivatives. These four terms are
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These terms can act as either damping or destabilizing terms -

depending on the signs Of.xin and Yen® If they are destabilizing,
then they must be stabiiized by either the inherent dissipation
of the scheme (which the leap frog scheme does not have) or by
the artificial dissipation usually appendec .o t“e scheme. In
some cases for which the metrics vary rapidly enough, the num-
erical or artificial dissipation may not be sufficient and thus

a mesh induced instability can occur. An example of this occur-
rence has been shown by Hindman (Ref. 6).

This unpleasant problem does not cccur for uniform Cartesian
meshes and no solution is offered here. We simply wish to raise
a warn.ng flag that even though a mesh is generated according to
some criteria based on truncation errors there is no guarantee
that the numerical scheme will be stable.

NUMERICAL RESULTS

Some numerical results will be presented here. The results
will be in terms of a post-mortem. For a given mesh and numeri-
cal solution based on the full potential code (Holst, Ref. 16}
as modified by Dougherty (Ref. 17) the truncation errors will be
analyzed to see if the mesh indeed was adequate.
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The grid is shown in Figure 1. Shown is a C-type mesh
around a NACA 0012 airfoil. The far field boundaries (not shown)
are approximately six chord lengths from the airfoil in all
directions. It consists of 175 x 31 node points and is generated
by use of the Poisson equation with some grid control (Sorenson,
Ref. 18). A solution in terms of density is shown in Figures 2
and 3 for a free stream Mach numker M_, = 0.80 and angle of attack
a = 0°, These results are presented as carpet plots with the
computational variables I, J (representing £, n, respectively)
as the independent variables. The airfoil surface is given by
J = 31 and the far field boundary by J = 1. The lieading edge of
the airfoil at I = 88 and the trailing edge at I = 31. The plots
are distorted but this should cause no confusion. The viewpoint
of Figure 2 is thus at the far field boundary and the leading
edge. In other words, from the right hand side of Figure 1. The
viewpoint of Figure 3 and all the subsequent figures is from the
far field boundary and the trailing edge, or the lower left hand
corner of Figure 1. The rise of the density at the leading edge
stagnation point and at the shock wave is qguite apparent.

The next set of three figures presents some of the tradi-
tional mesh criteria. These are the smoothness (gll + 922) in
Figure 4, the Jacobian (plotted inversely) in Figure 5, and the
orthogonality (glz, labelled as "skew") in Figure 6. The pilots
have all been normalized with the nermalization constants shown
on the plots. These figures show that the smoothness parameter
is very uniform near the airfoil and becoming less so at the
far field boundary. The Jacobian plot, Figure 5, indicates that
most of the variation occurs near the leading edge and relatively
little elsewhere. The mesh is nearly orthogonal except at the
trailing edge and far field boundary, as shown by Figure 6.

Figures 7 and 8 present the variations of 911 and PP As
shown they are nearly uniform except at the trailing edge and
far field boundary, with S22 being an order of magnitude more
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* important (its normalization factor is 10 times larger). The
solid body rotation, cos¢, is shown in Figure 9 and is labelled
as ROTAT. The cell aspect ratio, /EII?E;;, labelled ASPECT, is
given in the following figure. Both of these indicate large
variations near the trailing edge and the leading edge.

The following set of four figures present the metrics
directly. These are Ynr %40 Yeo and Xg in Figures 11, 12, 13,
and 14, respectively. These figures indicate that the largest
variations of the metrics occur near the trailing edge and at
the far field boundary. Thev are guite uniform near the leading
edge. This indicates that the mesh has been sufficiently re-
fined there to reduce the solid body angle variation to accept-
able levels. It may be possible, however, that the extra
resolution is needed to resclve the peak of stagnation density
adequately.

Based on these results one would expect most of the mesh
induced truncation errors to occur near the trailing edge and
at the far field boundary. That this is indeed the case is con-
firmed in Figure 15. Shown here is the second group of terms
of equation (35) in terms of percentage of Pn (the numerically
computed density). The mesh induced errors occur mostly near
the trailing edge and the far field boundary. They are on the
order of 2 to 3%.

The solution induced truncation error [first group of terms
of equation (35)] is shown in Figure 16. These errors are much
larger. They are on the order of 1-2% near the leading edge,

5% at the shock wave, <5% at the trailing edge, and 2% at the
far field. The total errcr is shown in Figure 17. As can be
seen some of the errors at the trailing edge and far field have
been cancelled. This is, however, a fortuitous circumstance and,
in general, should not be expected to occur. The errors are
still approximately 2% at the leading and trailing edges and

5% at the shock wave.

30

P » cl NIel oy Y oA
DA TV i gt
o e L S e o




One concludes that the mesh of Figure 1 is prcbably more
than adequate for controlling the mesh induced errors, if 5%
solution errors are acceptable. If drag calculations are to be
attempted with this mesh and numerical procedure, then 2% accu-
racy at the trailing and leading edge is probably not acceptable.
The ervors would need to be reduced by further mesh refinement.

RECOMMENDATIONS

Based on the results of this study the following recommen-
dations are offered:

l) Generate a mesh based on acceptable variations of either
a) xE. Yo Xpo Ye for first order differential systems, or

b) 913+ 9230 Iy2¢ cos$ for second order differential
systems.

Acceptable variations can be checked by plots made as shown by
Figures 4 through 1l1l.

2} Once the converged numerical solution has been obtained
(hopefully the scheme is still stable) do the truncation error
analysis and numerically compute the mesh and solution induced
truncation errors. If these are not at acceptable levels, then
a new mesh needs to be generated until acceptable error levels
are obtained. (It should be standard practice for any numerical
computation that the truncation errors are also computed.)

3) For higher numerical schemes the variations of the mesh
criteria must be less than for lower order schemes.

4) For dynamic meshes the variations of the mesh criteria
must again be less than for stationary schemes.

EXTENSION TO THREE-DIMENSIONS

The extensions of the above results is straight forward in

the sense that one can readily identify the additional parameters

§
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that can make up the mesh criteria. For the 3-D systems, there
are six components to the metric tensor, i.e.,

as? = gijdsldél i,5 = 1,2,3

2
= glldE + 2g12dEdn + 2gl3dEdc
2

+ 2923dndc + gzzdnz + g33dc

and there are nine metric terms, i.e.

( ) XE xn xc

dl{x,v.2 =

3(E,n,%) Yg ¥y Yg
ZE zn ZE

If the metric tensors are used as the mesh criteria, then
three solid body rotation angles need to be included to completely

describe the mesh properties.

While the additional elements for the 3-D case are obvious,
deriving the truncation errors is probably impossible to do by
hand. The use of machine algebra would be mandatory.

CONCLUSIONS

In this study an attempt has been made to establish some
criteria for generating finite difference grids. However, it
has been shown by truncation error analysis that it is not pos-
sible to do so independently of the numerical solution obtained
on the mesh. The study has been limited to mesh criteria which
reduce the truncation errors. Thase truncation errors depend on
the order of the differential system, the solution, the form of
the transformed equation, the order and type of numerical scheme,

32

ST e e Wt g ettt ml o d & PR Sl spe oty B R AL 3 3 e e o
SRR e e e e A A S B SR B R G
o

s 3 kALy T iy LT e
alk TSRy ""“,f-wj‘.m@v;{t‘,

[

s oy

-y - .




.
*
“w
3
i

.
PRIV SIS

and the mesh itself. The results of this study show that prob-
ably the best strategy is to follow the procedure given in the

recommendations section. The mesh cannot be judged by itself.
Its use must also be considered.
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APPENDIX A

.

In this appendix the modified equation for a hicher order
numerical solution to the system of equations (13) is derived.
The numerican scheme is the leap frog scheme. Although this
scheme is in general unstable, it is second order accurate both
spatially and temporarily, and thus is represents a typical
second order scheme. It is much simpler to analyze than say
MacCormack's scheme.

The leap frog scheme is given by

n n __n
S P £, T O L A1)
24T 248 24n

The modified equation for this scheme and system (13) is

AT 8E an - 4
wod £+ g+ hor Swg o+ Sy g, 0(a")

Eliminating the higher order time derivatives obtains,
after considerable algebra, the final modified equation.

{Continued on next page)
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3w T wE 1€ wn n w&E <§8
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where

and

36 .




[ B S

LB h A T

RV NS U G S E UU SURpIR  SE FRSR S AT T s

ORIG’NAL FACT

OF POOR Quprry

The following observations are made:

1. The time dependent part makes an awful mess of the
situvation. Ve may want to consider steady solution first. But
they also show why adaptive meshes can slow convergence to steady
state and cause other difficulties.

2. There are several flux Jacnbian metrices, i.e.,

f r f e’ f ’ g ’ g g

w WE hwn hw Ws wn
h ] h ’ [} 14 ’

w w £ wn w E 5 b\lgn hwn n

and the higher order Jacobians.

The terms involving g% are due to the solution, those in-

volving -2 etc. are due the metrics (i.e., mesh). The terms

aw
involving both (with the higher order Jacobians) are due to both
the solution and the metrics.

3. The terms involving s contain the effects of both the
solution and the mesh.

4. The observations made for the first order scheme apply
here also.

To simplify the modified equation to a reasonable level
assume that the mesh is fixed with time, but still consider time
variations of the soiution. In this case the modified eguation
reduces to
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4
where

s = fg + 9 + h

and
3

-sT=-a—€-[fw-s]+%[gw-s]+hw-s

The modified eguation for the leap frog scheme on a fixed
mesh given above is similar to that of the first order scheme,
equation (19). The truncation errors are of course of one
higher order. Thus it can be concluded that the higher order
derivatives of the meshes must be smoother for higher order
schemes than for lower order schemes. To see this consider the
steady state form of equation. (A-3).

2 2
] AE” An - 4 _
£+ 9p 't B+ iy ¥ 579, = 02) (A=d)

Now need to specialize this modified equation to either the SCL
or WCL form. Doing the SCL form first.

SCL

38

. o Sl i e x . PR o i i R e B e - Z s ka3 AT SV n Lt ik 0)

W Bvwe



P I L R PR -y = . P B l-,.-;-zv~-7'-.;:‘1‘j.,:_’!‘71'\"{£_:"r‘ 'Y:."'"“g

N st e ~ 4 et e Sam 4 erecr i o L T - — P

- -1

ORIGLEL |-~ .
OF POCR QUALMY

2
-x3 - - v - I
(ynf' xng)E + ( ye? + xeg>n + 3 {Yn3€f X 3¢9 + 3yn2EEE

= 3%nagTg * Wpglag = 9 * Y Ese - xngss}

2
[ = - = -
* 3 { Yeant * Xg3n9 = Wgonfn * 3xzpn9y — eI t 3%, 9,
- — _ 4 -
Y€f3n + ng3n} = 0(a7) (A-5]

The error terms of this equation should be compared with the
first order scheme error terms given by equations (22) and (23).
Similar results are obtained for the WCL form of the transformed
equations.

WCL

=-l - o
£ J (ynf xjg)
g = J-l(-ygf + xgg)
-1 ~1
h=-}(J "y) - (J Y)]f
[ g 5 n

The WCL mocdified egquation becomes

[J—l(yn? - XnE)]_ + [J—l(—y,? - x,E)J + h
> 7 dn
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The error terms of this equation should be compared with

the first order scheme error terms given by equations (24) and
(25).
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Grid plot of a C-mesh around a NACA 0012 airfoil — 175 * 31 mesh points.
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Figure 2. <Jarpet plot of density solution as solved by TAIRC (ref.17 ) on lower
half of NASA 0012 airfoil, M_ = 0.80, a = 0°.
Viewpoint is from leading edge.
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Figure 3. Carpet plot of densit
half of NACA 0012 airfoil, M, = 0.80, a = 0°,

near the trailing edge and far field soundary

(lower left hand corner of figure 1.)
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Carpet plot of the inverse of the transformation
Jacobian normalized by 32460.
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Figure 7. Carpet plot of length parameter 971 normalized by 0.03143.
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Carpet plot, of solid body rotation parameter cos¢ normalized by 1.00.
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Mesh induced truncation error of density solution
shown in figures 2 and 3.
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