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ANALYSIS OF A FINITE DIFFERENCE GRID 

Goetz H. Klopfer 
Nielsen Engineering & Research, Inc • 

SUl-1MARY 

Some means of assessing the suitabilit~ of a mesh network 

for a finite difference calculation are investigated in this 

study. This has been done by a study of ~he nonlinear trunca­
tion errors of the scheme. It turns out that the mesh can 

not be properly assessed a priori. The effect of the mesh on 
the numerical solution depends on several factors including 
the mesh itself, the numerical algorithm, and the solution. 
Several recommendations are made with regard to generating the 
mesh and to assessi~g its suitability for a particular numerical 
calculation. 

INTRODUCTION 

One of the most important problems that arises in finite 

difference solutions to physical problems is the-quality of the 
grid used in the calculation. For simple configurations, e.g., 

two dimensional problems, a conformal transformation which gives 
an orthogonal grid can be used. This still leaves the q~estions 

of the adequacy of the grid clustering unanswered. In complex 
problems the grid may not be orthogonal, and a question of the 

effect of grid skewness on the solution accuracy arise. In 

addition to these problems of grid clustering and skewness, it 
is desirable to determine whether the grid is sufficiently fine 
to capture the detailed physics of the flow, especially if the 
location of phenomena like shock waves change during the solu­

tion. Other critiera (e.g., smoothness) may also be important. 

At present the only way of determining the suitability of 
a grid is by v~sual examinatiol"'l, and while this may be 
sat~sfac~ory for simple geometries, it is an almost impossible 



task for complex geometries. It would be extremely useful, 

therefore, to derive some criteria to measure the suitability 
of a grid that could be de~ermined computationally. The 

quality of a complex three dimensional grid could thus be 

determined before a lengthy flow solution is attempted. 

In a general two dimensional grid the coordinate trans­

formation t = t, ~ = ~(t,x,y), n a nCt,x,y) permits clustering 

and spreading of the points in two-dimensions. The components 

of the Jacobian transformation matrix (hereafter called 

"metrics") x,;,yE; and xT'l'Yn can be examined to determine the 
quality of a ~rid. The main problem is to decide the attributes 

of a good grid: it is anticipated that quantities such as 

curvature variation, Jacobian variation, skewness and volume 
of grid cells, in addition to other geometric quantities will 

be important. 

First the attributes of a good grid are determined, and 

second, means of quantifying the grid quality are developed. 

In addition to this purely geometric problem, it is likely 
that the relative q~ality of a grid will depend on the algorithm 

in the code since the major aim is to reduce the trun~ation 

error. Since different algorithms have different truncation 

errors it is probable that grid quality is dependent on the 

algorithm and the solution. A particular algorithm is chosen 

for more detailed study. 

Finally, a feasibility analysis on the extension of the 

above criteria to three dimensions is undertaken. 

COMMENTS ON HESH CRITERIA 

Before some criteria ca~ be established which will serve 

to quantify a "good" mesh, it is necessary to discuss the various 

purposes a ~esh needs to serve. Th~s w~ll be do~e in this 

section. The discussion will be limited to problems applicable 
1n computational flu1d dynamics. 
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For an ideal incompressible flow, finding the solution is 

tantamount to finding the coordinate lines. This is of co~rse 

the motivation of conformal mappings. The solution and the 

mesh are given in terms of level curves of potential and stream 
functions. Extensions of this idea to compressible flows has 
not been as su~ces~ful. For example, the "contour dynamics" 

scheme of Harlow (Ref. 1) recast the problem as fir.ding the 

locations of level curves of c~nsity, pressure, and velocities. 
While the problem of establishing the mesh is circumvented, 

other more severe and less tractable difficulties arose. 

Another method of avoiding the mesh generation problem is 

by the use of Lagrangia~ variables (Ref. 2). In these 
variables the mesh node points move with the fluid velocity 

and thus the mesh is automatically generated. The unsolved 
problem with this approach is the excessive mesh distortion 

at stagnation points or in the viscous layer. This distortion 
causes accuracy and stability problems. Attempts have been made 

to solve this problem by remeshing before loss cf accuracy 
occurs. These methods are cal~ed Euler-Lagrange methods by 

the Los Alamos school (Ref. 3). 

Other uses of meshes for numerical algorithms are to reduce 

the trunaction errors of finite difference schemes. In other 
words, the mesh of fixed number of node points is adapted so as 

to improve the accuracy of the numerical solution. This has 
been the motivation of the work of Brackbill (Ref. 4), Klopfer 

(Ref. 5), and others. Hindman (Ref. 6) established certain 

properties that the transformation and the metrics must sat­

isfy for certain mesh dependent truncation errors to vanish. He 

showed how these differ if the governing equations are written 
in various different forms, e.g., strongly and weakly conserva­

tive forms to name only two. This indicates that the form of 
the governing equation can also have an effect on establi~hing 

mesh criteria. 

3 
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If·conservation is important, as is usually the case for gas 

dynamics, wherp. shock waves and tangential discontinuity surfaces 

are to be captured by the n~erical scheme, then the mesh must be 

such that numerical conservation is maintained to a certain level 
of approximation. This requirement precludes rapid changes in 
mesh cell size. The changes must be smooth and gradual if con­

servation is required . 

Another use of adaptive meshes is to keep track of fluid 

interfaces such flame fronts Dwyer (Ref. 7) and water waves. Here 
the accuracy of the solution is strongly dependent on the proper 
resolution of the flame front temperature gradient or air-water 
interface. The truncation error of the flow variables is not the 
problem here. The difficulty is obtaining the source terms 

accurately for the chemical kinetic equations or the boundary 
surface for the wave problem. The mesh effect on the accuracy of 
these flow fields will be different than those based purely on 

truncation errors. 

Another purpose of a finite difference mesh is to control 

the stability, well-posedness, or convergence properties of num­
erical schemes. For example, Hagin (Ref. 8) used this method to 

keep an integral equation method well posed. Preconditioning 
methods or multi-grid methods also make indirect use of this 

mesh property to increase the convergence rate of numerical 

schemes Lomax (Ref. 9). 

From this brief survey it is obvious that there are too many 

different requirements that a mesh has to satisfy. To establish 
criteria based on all these functions of the mesh is a far too 
ambitious undertaking. For this reason the remainder of this 
study will focus attention on meshes adapted to reduce the trun­
cation errors only. The governing equations considered will be 
in strongly conservative form with no source terms due to physi­

cal processes. In the transformed or computational space the 
equations considered will be both strongly and weakly conserva­
tive. The source term for the latter form will be due to the 

transformation metrics only . 

4 
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In the next sections the transformation, governing equations 

and truncation errors of a simple numerical scheme are derived. 

Metric Tensor 

CURVILINEAR COORDINATE SYSTEMS AND 
GOVERNING DIFFERENTIAL EQUATIONS 

In any two dimensional surface with local coordinates 

t i = (~,nl we have ~ local element of length 

2 i i 
ds = gijdt d~ i,j = 1,2 

2 2 = glldt + 2gl2d~dn + g22dn 

If imbedded in·a plane "physical" space with coordinates 

xi = (x,yl then the components of the metric tensor gij are 
given by 

gll = x~ + y~ 

g12 = x~xn + y~yn 

g22 = x; + y~ 

(1) 

(2) 

so that ds 2 = dx2 + dy2. The determinant of the metric tenso= 

is 

where J is the Jacobian of the t~ansfo~ation between the two 

coordinate systems. If the mapi i:jg between the two systems is to 
be one-to-one, then J ~ 0 and J- l ~ 0 must be satisfied. 
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With this transformation a mesh can be laid out with the 

node points at (conve~ient) integer values of (~,n). This mesh 

is simply a cartesian mesh with square cells and will be taken 
to be the computational mesh and (~,n) are the computational vari­

ables. The metric tensor components can be given a physican 

interpretation. The gij can be rewritten as 

gll = J2 (Vn • Vnl 

g12 = .J2 (Vn . V~) (4) 

g22 = J2 tv F; • V F;} . 

Thus gll gives a measure of the length (squared) of the 

side of the cell parallel to the F; coordinate, g22 for the 

length of the side parallel to the n coordinate, and g12 is a 
measure of the orthogonality between the cell sid~s. The metric 

tensor components however do not completely describe the trans­

formation between the two spaces. The orientation of the (~,n) 

coordinate system relative to the (x,7) system is not fixed by 

g .. and must be specified separately. One such specification 
~J 

can be the angle between ~-axis and the x-axis as given by 

x~ 
cos¢ = 

Jx~ + y~ 
(5) 

Other re9resentations are possible but this one is simple 

and with a surface conforming curvilinear coordinate system it 

gives the angle between the tangent plane of the surface and the 

x-axis. It will be called the "soli~-body" rotation angle. 

This solid body rotation is only defined for flat 2D surfaces. 
On a curved surface the inte9ral of the rotation about a closed 

contour is equal to the integral of the curvature of the surface 

enclosed. 

6 
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For later reference is useful to have the transformation 
metrics in terms of g .. and ~ • 

1) , 

Xt = 1911 cos~ 

Yt = {gl1 sin.p 

-1 (g12 cos~ + /g sin~) xl"J = 
{gIl 

and 

Y = 11 
I e/g cos; - g12 sin$) 

Ig
11 

The latter two become for an orthogonal system (g12 = 0). 

x11 = -/g22 sin~ 

Y11 = /g22 cos~ 

Note the strong dependence of the metrics on the solid body 
rotation. 

The metric tensor can be rewritten or split in various 
different ways. For example, 

[
a coshB 

9ij = .] sinhB k sinhS] 
coshB 

where a is the cell aspect rat~o, B is a measure of orthogo­
nality and,] the cell volume (area) 

and 
a = ,1g11/9 22 

sinh = (912 1.]) 

(6) 

7 
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Or gij can be split into dilation and shear components 

where the first matrix represents a uniform dilation and the 

second the shear. T and R are the strength of the dilation and 

shear respectively. T is, of course, the trace of 9ij' that is 

also 

and 

where 

and 

B = 

With these definitions of the metric tensor, certain mesh 

criteria can be established. 

MESH CRITERIA 

In recent years curvilinear coordinate systems have become 

important for improvins the efficiency of numerical solutions of 

flow fields aro~nd arbitrarily shaped bodi~s. In generating 

these mesh~s many workers have incorporated various ?roperties 
they considered desirable into the mesh. It is not clear why 

these properties are required for a mesh to be ngood" for a 

certain numerical scheme. 

Brackbill (Ref. 4) generates two dimensional meshes 
such that several of the mesh pro~·:.. ::ies are simultaneously 
optimized. For example, he considers cell volume, J; the trace 
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of g., which he calls cell smoothness, T; and orthogonality, g12 
'.J 

to be important. In other words he generates a mesh such that 

the conflicts among the three requirements are minimized. 

Yanenko (Ref. 10) also cons~ders orthogonality and a specified 

variation of cell vol~e to be important. However, he d~es not 

use the cell smoothness, instead he conside~s a mesh "non­

Lagrangian-ness" which is the difference between th~ ~luid veloc­
ity and the mesh node velocities. Steger, et al, (Ref. 11) have 

developed a very rapid mesh generator by satisfyi~g only two 
properties, for example, orthogonality and a simple variation 

of cell volume. Ablcw (Ref. 12) and rfuite (Ref. 131 use the 
solution in a dirdct manner to generate the mesh. In other words, 
the solution and mesh are solved simultaneously such that the 
measure of "difficulty" of the method is spread out uniformly 
over the computational domain. The "difficulty" can take on 

several meanings, fo'r example, equal arc length along the solu­

tion curve, truncation error, single step error, or a number of 

other things. If the differential equation is the Poisson 
equation and one takes the truncation error to be the measure of 

"difficulty", then Ablow (Ref. 12) consider g11' g12' 922' J, 
along with the higher order derivatives of ~~e solution to be 
the important mesh criteria. Thompson (Ref. 14) have considered 

arc lengths between coordinate lines (i.e., gl: and g22) and 
orthogonality as mesh criteria. These six works are probably 
the state-of-the-art in mesh generation with cer~ain oesirable 

properties explicitly built in~o them. 

It should be apparent that if the mesh is solution adapted 
and the solution is a vector, then there should be a mesh for 
each component of the solution vector. This of course involves 

': the additional expense of generating and storing mUltiple meshes 
•. in addition to tha extra burden of interpolating among the 

meshes. These types of difficulties were experienced by Harlow 

• 

· . 
(Ref. 1) with his "contour dynamics" method. .While multiple 
meshes may be unnecessarily c~~ersome and expensive they should 
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not be rejected out of hand for they ma7 be advantageous for 

certain kinds of problems. But, in general, a single solution 

adapted mesh is generated based on some scalar composite of the 

solut~on vector, e.g., pressure. 

It is not evident that any of these properties are in any 

way desirable for a "good" mesh. The very notion of a good mesh 

is vague. The function of any mesh networ~, dynamic or station­

ary, is to discretize a system of governing partial (usually, 

non-linear) differential equations so that they can ce solved 

by a numerical algorithm. In this report only finite difference 

schemes will be considered. For finite difference schemes the 

mesh should minimize the truncation error for a given n~eT of 

discretization points. This is because one can not easily add 

or delete mesh points during a calculation. Since the trunca­

tion error depends on the transformation metrics, the solution, 

and the numerical scheme, it may be expected that the desirable 

mesh properties will be scheme and solution dependent. 

It is also possible that the mesh criter~a may depend on the 

order of the differential equations. For this reason twc types 

of differential equatio~s will be cons~dered. The first type 

will be a system of nonlinear first order partial differential 

equations, such as the Euler equations of gas dynamic~. The 

second type will be a scalar second order partial differential 

equation such as the steady full potential equations for tran­

sonic flows. 

TRUNCATION ERROR 

First Order Differential System 
F.rst Order Scheme 

In the following sections the truncation error of two 

algorithms on an arbitrary curvilinear mesh will be derivec. 
From the trun~ation error the desirable. form of the transforma­

tion metrics will be extracted. The govern~ng equat~ons wil~ be 

conservation law form 
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uhere 1 and g are nonlinear functions of w. 

A generalized coordinate transformation is introduced 

't = t 

t = (t,x,yl 

Tl = (t,x,y) 

(7) 

!S) 

The transformed g~verning equ~tions are written in ~wo forms, 
the strong conservation law (SeL) and the weak conservation law 
(WeL) forms: 

Strong conservation la\T (SeL) , 

~'t(WJ) = ;~{yn(1 - xw) - Xn!q - yw)} 

+ aan{-Y~(f - xw) + xtCg - VW}} = 0 (9) 

Weak conservation law (HeL) 

~W + ~o· .j-l{Cyx - ~y )w + y f - x 9} 0' c~ n n n n 

+ a~ J-l{:~y; - YX~)w - Y~f + X~q} 

- {[J-1IYXo . XYol], + [J-1IXY, - YX,l]o}W 

- {IJ-1Yol, - IJ-:y,lo}' - {1-J-1Xol, + IJ-1X,lo}g - a 
(10) 

11 
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To both of these forms the mesh velocities (x,Y) must be given 

• 
x't - X = 0 

(11) . 
"iT - Y = 0 

For convenience in determining the truncation error the me~h 
accelerations (x,Y) are also given 

. 
(x) 't - x = 0 

. (12) 
(Y)'t - Y = 0 

Here x, YI X, yare given functions of W, w I W I W,Y. 

Both of these forms are written in terms of new dependent 
variables and fluxes as 

For the SCL form 

WJ 

x 

w = Y f = . 
x . 
"1 

-"1 f; (F - xw) + 

0 

"g = 0 

0 

0 

12 

x~ (g - yw) 
to 

o 
o 
o 
o 

h = 

(13) 

(lt1 ) 

0 . 
x . 
"j 

x 
y 

- : ... ;" .' 

" I 
, 

\ 
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and for tile t'lCL form 

and 

-l{ - .- - x (g w J Yl\(f- xw) 
l'\ 

w = 

x 0 

Y f • 0 . 
x 0 . 
Y 0 

J-l{_y~(f - xw) + x~(g - yw)} 
o 

g = 0 
o· 
(i 

- yW)} 

(last three terms of equation (10) . 
x . 

h ~ Y 

x 

Solving system (13) by a first order numerical scheme 

n+1 wn 
w - + 

6.1 

one obtains the following modified equation 

where w2"t = 

report. 

W 
"C"C 

This notation will be used throughout this 

(15) 

(16) 
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By eliminating w2T in terms of spatial derivatives one 
obtains 

w + f~ + 9 + h + 6f,; f + 62n g2 + 6T (-S ) = 0(6 2) 
T .. n 2 2t n 2 T 

2 2 2 2 where 0(6 ) represents O(6~,~ ,~ ,~~~ ). .. n T .. ., 

Here s = ff,; + gn + hand (-sT) is given by 

(-s ) = [hw + fwww t + fww wf,;~ + fww w ~ + a w + S w~ T n Tl 
~ww ww~ n ~ n 

+ a w] • s + [fw + h + f w~ + f2W~ w2~ ~wwTl nn w~ w~w 

(17) 

The meaning of these terms should be made clear. Terms with 

subscripts; or ~, e.g., s~i' are 

Terms with subscriPts \0/, ~oI~, W , etc. are the Jacobian coeffi-- .. n 
cient matrices or flux Jacobians (not to be confused with the 
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Jacobian of the coordinate transformation). For example 

: This term is a third order tensor containing 8x8x8 terms if w is 
a 4-component vector as for example in the two-dimentional 

equations of gas dynamics. 

As can be seen this modified equation is a rather complicated 
function of the spatial derivatives of the metrics and the flow 

variables. It is far too complicated for one to readily extract 

any useful information. ·It is. presented, however, to emphasize 
the additional effects that a dynamic mesh has on the truncation 
error. Thus one should not be surprised by difficulties experi­

enced with dynamic meshes. as used for example by the Space 
Shuttle codes Kutler (Ref. 15) or the parabolized ~avier-Stokes 

codes, Schiff (Ref. 19). 

If we specialize the problem to an unsteady flow on a fixed 

mesh then we obtain 

(19) 

Note that for this case all of the coefficient matrix Jacobians 
derived from the spatial derivatives of \-/ vani&h. 

Comparing the two modified equations immediately reveals 

that the truncation error contains derivatives of one higher order 
for the dynamic mesh. Thus determining proper mesh criteria are 
more restrictive for a dynamic mesh than for a fixed mesh. If we 
further simplify the problem to steady flow then we obtain 
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(20) 

There is no further reduction in the order of the derivative 
in the truncation error. The equations are recast as 

(21) 

White (Ref. 13) speaks of an ieeal mesh for a one-dimensional 

problem as one where the numerical and exact solutions are iden­
tical. That is the truncation error vanishes. The ideal mesh 

for the above first order numerical scheme is one that eliminates 
both of the truncation errors. That is, the mesh is such that f 
and 9 are linear in ~ and n, respectively: 

f = Kl~ + K2 

9 = K3n + K4 

where Kl = -K 3 = constant and K2 and K4 are arbitrary functions 
of ~ and n, respectively. 

For the SCL Form 

f = Ynf - xn9 

9 = -Yr. f + X~g 

Thus a system of differential equation for x and Y in terms of 

"known" solutions f and 9 is obtained. 

16 
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This, of course, has no solutions for nontrivial f and g. Thus 
the ideal mesh dces not exist. The effect of the metrics on the 
truncation error can be seen by examining the truncation in ex­

panded form. For the SCL form the er~ors are ~ft~~ and ~nn' 

(22) 

I , 

,. Similarly 

l 
f 
I 

.. 
! 
; 

t • ... 

• 

= -y f + Xr- g + 2 (-Yr-nfn + x g) -Y f + x a ~nn ,nn , ~n n ~ nn ~·nn 
(23) 

The truncation errors for the SCL form depend linearly on 

the metrics and their derivatives. The errors do not depend in 
any direct way on the Jacobian, orthogonality or cell smoothness 
parameters except through the metrics. They do, however, depend 
more directly on the solid body rotation and cell side lengths, 

gll and 922 (individually, not combined into a smoothness 
parameter) . 

For the t']CL forl!l the errors are 

r[J-l{v f Xn9 }] C'n) f C'; )~~9 fE;E; ... :2 

H2 -n J ~~ 

(V ) (:~): g~ (Yn)- (Xn)_ -n - (24) + 2 T =~- + T f~; - T g~; 
~ ., 
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(25) 

The errors here depend linearly on the metrics and inversely 
on the transformation Jacobian and their derivatives. It can be 
expected that the WCL forms will require meshes with smoother 

Jacobians than the SCL forms of the governing equations. This 
conclusion, of course, assumes that the metrics in the source 
term are computed exactly. 

For both forms the me·sh. cell aspect ratio does not enter into 

the individual truncation errors. However, if the error along one 

coordinate line is much larger than along the other then the ratios 

y~ and ~ need not be near unity. The ratios of the metrics for 
Yn xn 
an orthogonal mesh are determined by the cell aspect ratio and tha 
solid body rotation angle. 

Fixed mesh-unsteady :low 

In this section the expanded form of equation (19) will be 

examined. To keep the algebra within reasonable bounds, the 

governing equations will be limited to the linear scalar convec­

tion equation, i.e., 

u + c u + c u =. 0 t x x y y 

18 
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where Cx and cy are constant convection velocities in the x- and 
y-direction, respectively. For this example the over barred 
quantities corresponding to equation (7) are 

W :0 U 

The transformed equation is given by equation (13) and for 
a fixed mesh the transformed variables are for the SCL for.m 

SCL 

w = Ju ' 

f = eX:n c x ) - T Ju 

(-C~y~ Cyx~) g = + c; Ju 
J 

and 
h = 0 

The flux Jacobian matrices become 

cxYn - c~xn 
f = = A 

w J 

-cxY~ + C~Xt; 
g = = \I 

W J 

fww = 0 

and 
9ww = 0 

Therefore the modified equation is now 

(26a) 

(26b) 
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In expanded form the modified equation is 

JUL + (JA)UC + eJv)u~ + 6i{(JA)U2C + 2eJA)~U~ + eJX)2CU} 

+ 6i{(JV)U2~ + 2(Jv)~u~ + eJV)2nU} + 62L{X[eJA)U2f; + (JX)Cu~ 

where A and v are given by equation (26a). 

(27) 

There are several ways this equation can be simplified for 

particular cases. Suppose the mesh is to be such that it induces 

no truncation errors when the flow is uniform. This is called 

the uniform free stream test by Hindman (Ref. 6). Applying the 

uniform free stream test u = 1 yields: 

Thi~ ~qua~~on gives the first order trw1cation error due to 

the mesh above for a uniform solution u = 1. Note that there is 

no mesh error with a 6L dependence as all those terms cancel. 
This equation also gives the requirement that u = O(~2), that is 

the metrics must be smooth enough such that 

20 
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If these conditions are not met then the free stream value 
of u = 1 will not be recovered to the formal order of accuracy 

of the numerical scheme. This uniform flow test is one method 
of testing the adequacy of a discretization mesh and is similar 
to the approach taken by Hindman (Ref. 6). nindrnan's approach 

differs in that he tried to satisfy u
T 

= 0 by special differ­
encing of the cetrics for the various form of the governing 
equations. In the present approach the metrics are differenced 
no differently than the flow variables and it was only required 
that u

T 
~ 0(6 2) for the first order numerical scheme used. 

It is quite obvious tha~ the uniform free stream test is 
artificial and somewhat meaningless for a nonuniform flow field. 
If the flow field is uniform there is no need for the numerical 
schp.me. As shown by equation (27) the mesh dependency of the 

truncation error appears in a much more complicated manner and 
it is somewhat difficult to separate the mesh truncation errors 
from those caused by t~~ ~olution. This will be attempted in a 
later section for a second order scheme and a steady state 
solution. 

For the WCL form of the transformed equation, the trans­

forMed variables are 

WCL 

w = u 

f = (cx: _ cvx) 
~u 

(-c v ex) x~ 

+~u g = 
J 

21 
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The Jacobian rnetrices are now 

f 
= cxYn _ cyxn = ' 

W J J 1\ 

and 

9 = W 

The modified equation is now 

+ !J.T{h • S + 
2 w 

where s = f~ + 9n + h. 

(u y! 0) 

fw • s + 9 • 
~ w 

This equation may be expanded to obtain 

UT + ().)u~ + (\I)un + ¥{().)U2~ + 2(A~)U~ + (A)2~U} 

+ !J.2
n

{C\I)U
2n 

+ 2(\I)n un + (\I)2
n

U } + !J.2
T

{[(A
2

);::; + (A\I)n 

22 
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For the WCL form the uniform free stream test gives 

cyxj -' = 0 (t.) 
2n 

This result is similar to the SCL form equation 
requirements for no mesh error are now 

(~y -0 x ~ xn yn '" 
J 2t; 

O(t.) 

and 

(-OxY< ; o~x<j ~ o (t.) . 
211 

(31) 

(28) • The 

These conditions are probably rr.ore restrictive than for the 
SCL forms in that the Jacobian must also be smooth. These con­

clusions are similar to those reached by Hindman (Ref. 6). Eere 
we conclude that t~e optimum mesh (optimum based, ~.g., on the 

uniform free stream test) depends on the form of the translormed 

equation used. Hindman concludes that to recover the free stream 
values the metrics must be differenced differently depencing on 
the form of the transformed equation solved. Ot course, the mesh 

based on this test is not optimum in the sense of minimum trunca­
tion error of the numerical solution. For this the flow field 

solution and the lower order derivatives of the metric~ must also 

be considered. 

It is of interest to see how the truncation errors and thus 

possible mesh criteria change as a higher order numerical 3cheme 
is used to obtain the numerical solution. The derivation of the 

23 
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modified equations both in general and expanded form for a second 
order accurate leap frog scheme and system (13) have been rele­

gated to the Appendix. The majoL effect of the higher order 
scheme can be seen by comparing the er~or terms of equation (A-5) 
to the errors given by equations (22) and (23). The major dif­
ferences, besides the additional terms, are the appearance of 
derivatives of one higher order for both the solution and the 

metrics. This indicates that for higher order schemes, the 

higher order derivative of the metrics must be smoother t~an for 

a lower order scheme. 

Dynamic mesh - unsteady flow 

The expanded form of the modified equation for the dynamic 
mesh will not be given. The algebra is nearly intractable. A 
complete study of the dynami~ mesh case requires the use of 

machine algebra and that is beyond the scope of this study. It 

is also doubtful whether anything useful in way of a solution 
independent mesh criteria will evolve from such a study. It is 
clear that it is not possible for the stationary mesh case covered 

above. 

Second Order Differential Equ~tion 
Second Order Scheme 

In this section a scalar second order partial differential 
equation solved by a simple second order accurate nlli~e=ical 

scheme will be examined. The steady state version of the full 
potential equation for transonic flow is the model equation, 

Holst (Ref. 16). 

The full potential equation written in strong conservation 

law for:n is 

(O~x) + ( O<b
y

) = 0 
x y 

:. = [1 _ 1..-=-1. ( ... 2 + ¢:\f! (32) 
24 
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whe::e the density, p, and the v(tlocit~· components 4>.x' 4>y' are 
nondimensionalizad with rospect to the stagnation density, ~o' 

and the critical so~nd opecd, a*, ~a~pectivolYf x and yare the 

Cartesian coordinates and y is the s~ecific heat ratio. 

In tho ~ransformed spaca [given by ~ • t(x,y) and n • n(x,y») 
tho equ~tion b~comes 

( 33) 

whore 

The dofinitions of g11' g12' 9 22' and J are givon by oqua­
tions (:.:) <lnd (3), The density is now 

(34) 

It should btl notad that for this second ordor ditforential 
equation th"t the "traditlonal" mesh crittlri~ reappear directly, 

n~Mely, J, 911' 922' and 912' ThlS lS ~nl1ko a first ord~r 
differontial systom wherd only thd metrlcs and J ~ppoar, 

Since for full putential cquatlons tho density is usually 

tho dusire~ ~olution from which tho prossur~ and M~ch numbers 
~an be detc~."lncd we will dX<lmlnC tho truncat10n ~rror af 
C'iU.lt1on (3~) only, For slmpl1clty silnpl~ cantral Jifftlrenclng 

will be uSl~d througho1tt the ontlrc now fi~ld whet.hdr tho local 
:-1ach nuMbers <lre sub- or supersonic, Lilt tho .. tlx.tct" densl tr be 

':l1\,on by 0E and tlie numerlc,,"lly Jer1\'(hi don:nty b~' "~' Tho 
rol~tlon b~twe~n the two is 
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PE • PN+ Ap + higher order terms 

• PN(l + ~:) 

The Ap can be derived from the mod~fiQd equation form of 
equation (34). Replacing all the derivatives by central differ­

ences and ~xpandin9 in a Taylor series obtains the Inodified 
equation of (34) as 

wharc 

~(~D • 
~C2 
J¢~¢3f; 

" " 
~(':-~~I)) ~n" .. ~C . --.-~.~~ btn~3f; b :'..)1) 

~ (~~) 
~I) 

2 
• -y-.tn':- 3rl 

'(7) , ,(. " + l'V ) 
g.,., 

"' "1.)n .,. 3n 
- ~~J • so, 

3 J" 3J 3 
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Note that the effect of tho truncation errors cf,the metrics 
and the solution (t) are somewhat separable. In equation (35) 
the first group of terms on the right hand side is the truncation 
due to the solution. This part of the error still has the rnotrics 
as coefficiants. The second group of terms is the mesh induced 
truncation error and also dopends on the solution. Only in this 
sense are the two errors separable. ThUS, for a given solution 
one could check th~ adequacy of a mesh by computing the two 
separate errors .!os a,hove <lnd require th",t the mesh induced errors 
be no l",rger than the solution induced errors over the ent1re 

solution domain. 

This is root a very sati~factory result in that a mesh in­
duced truncat10n error only has meaning w1th respect to a p~rti­
cular flow field solution. A numerical example for the full 
potential equation is presented in a later sect10n. 

MESH-INDUCED NUNERICAL INSTABILITY 

The usc of curvilinear mesh or ", nonuniform Cartesian mesh 

can introduce what will be called mesh-induced numerical insta­
bility. Although a numerical sche~e may be stable for a unlform 
Cartesian mesh, there is no guarantee lt will remaln stable on 
anot'ler type of mesh. This assertlon can be qUlckly verified by 

exami~ing the m~~!!ied equation (A-S). In this equation thero 
are four ~issipative terms whose coefficients depend on tho local 
metrics and tt:ei.r derivativ/!s. These four terms are 

! 
~, I i 

. I 
l;;;:}'~;:;;::t:~'~i:il8):~;;\~'tr;;;:i~,~!~':;:;1fJ{I;Zf;1;::r;:;:;!i1:t:i:' ,~~i)JX: ;.Li;l'?;;~;t:;:~ 
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6(2 ( _) 
3T 3Yntf2( 

\\2 (-3Xntg2t) 

6n
2 

( ) 3T - 3Ytn1'2n 

and 

~ -2 ( ) 3! 3xCn g2n • 

These terms can act as either damping or destabilizing terms 

depending on the signs of x~ and Y~. If they are destabilizing, ... n .. n 
then t~ey must be stabilized by either the inherent dissipation 
of the scheme (which the leap frog scheme does not have) or by 

the artificial dissipation usually appendec .0 t~e scheme. In 

some cases for which the metrics vary rapidly enough, the num­
erical or artificial dissipation may not be suffic~ent and thus 

a mesh induced instability can occur. An example of this occur­

rence has been shown by Hindman (Ref. 6). 

This unpleasant problem does not occur for uniform Cartesian 
meshes and no solution is offered here. We simply wish to raise 
a warn~ng flag that even though a mesh is generated according to 

some criteria based on truncation error~ there is no guarantee 
that the numerical scheme will be stable. 

NUMERICAL RESULTS 

Some numerical results will be presented here. The results 
will be in terms of a post-mortem. For a given mesh and numeri­
cal solution based on the full potential code (Holst, Ref. 16) 

as modified by Dougherty (Ref. 17) the truncation errors will be 
analyzed to see if the mesh indeed was adequate. 
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The grid is shown in Figure 1. Shown is a C-type mesh 
around a NACA 0012 airfoil. The far field boundaries (not shown) 
are approximately six chord lengths from the airfoil in all 
directions. I~ consists of 175 x 31 node points and is generated 
by use of the Poisson equation with some grid control (Sorenson, 
Ref. 18). A solution in terms of density is shown in Figures 2 
and 3 for a free stream Mach number ~~ = 0.80 and angle of attack 
a = 0°. These results are presentee as carpet plots with the 
computational variables I, J (representing ~, n, respectively) 

as the independent variables. The airfoil surface is given by 
J = 31 and the far field boundary by J = 1. The leading edge of 
the airfoil at I = 88 and the tra~ling edge at I = 31. The plots 
are distorted but this should cause no confusion. The viewpoint 
of Figure 2 is thus at the far field boundary and the leading 
edge. In other words, from the right hand siee of Figure 1. The 
viewpoint of Figure 3 and all the subsequent figures is from the 
far field boundary and the trailing edge, or the lower left hand 
corner of Figure 1. The rise of the density at the leading edge 
stagnation point and at the shock wave is quite apparent. 

The next set of three figures presents some of the tradi­

tional mesh criteria. These are the smoothness (gIl + g22) in 
Figure 4, the Jacobian (plotted inversely) in Figure 5, and the 
orthogonality (g12' labelled as "skew") in Figure 6. The p~ots 
have all been normalized with the normalization constants shown 
on the plots. These figures show that the smoothness parameter 
is very uniform near the airfoil and becoming less so at the 
far field boundary. The Jacobian plot, Figure 5, indicates that 
most of the variat~on occurs near the leading edge and relatively 
little elsewhere. The mesh is nearly orthogonal except at the 
trailing edge and far field boundary, as shown by Figure 6. 

Figures 7 and 8 present the variations of gIl and g22. As 
shown they are nearly uniform except at the trailing edge and 
far field boundary, with g22 being an order of magnitude more 
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· important (its normalization factor is 10 times larger). The 
solid body rotation, cos~, is shown in Figure 9 and is labelled 
as ROTAT. The cell aspect ratio, {gll/g22' labelled ASPECT, is 
given in the following figure. Both of these indicate large 
variations near the trailing edge and the leading edge. 

The following set of four figures present the metrics 

directly. These are Yn' xn' y~, and x~ in Figures 11, 12, 13, 
and 14, respectively. These figures indicate that the largest 

variations of the metrics occur near the trailing edge and at 
the far field boundary. The~ are quite uniform near the leading 
edge. This indicates that the mesh has been sufficiently re­
fined there to reduce the solid body angle variation to accept­
able levels. It may be possible, however, that the extra 
resolution is needed to resolvG the peak of stagnation density 
adequately. 

Based on these results one would expect most of the mesh 
induced truncation errors to occur near the trailing edge and 
at the far field boundary. That this is indeed the case is con­
firmed in Figure 15. Shown here is the second group of terms 
of equation (35) in terms of percentage of PN (the numerically 
computed density). The mesh induced errors occur mostly near 
the trailing edge and the far field boundary. They are on the 
order of 2 to 3%. 

The solution induced truncation er~or [first group of terms 
of equation (35») is shown in Figure 16. These er~ors are much 
larger. They are on the order of 1-2% near the leading edge, 
5% at the shock wave, <5% at the trail~ng edge, and 2\ at the 
far field. The total error is shown in Figure 17. As can be 

seen some of the errors at the trailing edge and far field have 
been cancelled. This is, however, a fortuitous circumstance and, 
in general, should not be expected to occur. The errors are 

still approximately 2% at the leading and trailing edges and 
5% at the shock wave. 
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One concludes that the mesh of Figure 1 is probably more 

than adequate for controlling the mesh induced errors, if 5% 

solution errors are acceptable. If drag calculations are to be 

attempted with this mesh and numerical procedure, then 2% accu­

racy at the trailing and leading edge is probably not acceptable. 

The er~ors would need to be reduced by further mesh refinement. 

RECOl1MENDATIONS 

Based on the results of this study the following recommen­

dations ar~ offered: 

1) Generate a mesh based on acceptable variations of either 

a) x~, Yn' xn ' y~ for first order differential systems, or 

b) gll' g22' g12' cos~ for second order differential 
systems. 

Acceptable variations can be checked by plots made as shown by 

Figures 4 through 11. 

2) Once the converged numerical solution has been obtained 

(hopefully the scheme is still stable) do the truncation error 

analysis and numerically compute the mesh and solution induced 

truncation errors. If these are not at acceptable levels, then 

a new mesh needs to be generated until acceptable error levels 

are obtained. (It should be standard practice for any numerical 

computation that th~ truncation errors are also computed.) 

3) For higher numerical schemes the variations of the me~h 

criteria must be less than for lower order schemes. 

4) For dynamic meshes the variations of the mesh criteria 

must again be less than for stationary schemes . 

EXTENSION TO THREE-DIMENSIONS 

The extensions of the above results is straight forward in 

the sense tha~ one can read~ly ide~tify the additional parameters 
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that can make up the mesh criteria. For the 3-D systems, there 

are six components to the metric tensor, i.e., 

and there are nine metric terms, i.e. 

acx,y,z) 
a (E;,n, r;) 

i,j = 1,2,3 

If the metric tensors are used as the mesh criteria, then 

three solid body rotation angles need to be included to conpletely 

describe the mesh properties. 

t~ile the additional elements for the 3-D case are ob~ious, 

deriving the truncation errors is probably impossible to do by 

hand. The use of machine algebra woulc be nandatory. 

CONCLUSIONS 

In this study an attempt has been made to establish some 

criteria for generating finite difference grids. However, it 

has been shown by truncation error analysis that it is not pos­

sible to do so independently of the numerical solution obtained 

on the mesh. The study has been limited to mesh criteria which 

reduce the truncation errors. Th~se truncation errors depend on 
the order of the differential system, the solution, the form of 

the transformed equation, the order and type of numeric~l scheme, 
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and the mesh itself. The results of this study show that prob­
ably the best strategy is to follow the procedure giv~n in the 
recommendations section. The mesh cannot be judged by itself. 

Its use must also be considered. 
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APPENDIX A 

In this appendix the modified equation for a higher order 
numerical solution to the system of equations (13) is derived • 
The numerican scheme is the leap frog scheme. Although this 
scheme is in general unstable, it is second order accurate both 
spatially and temporarily, and thus is represents a typical 
second order scheme. It is much simpler to analyze than say 
MacCormack's scheme. 

The leap frog sch~me is given by 

n+l n-l w - w 
261" 

The modified equation for this scheme and system (13) is 

Eliminating the higher order time derivatives obtains, 
after considerable algebra, the final modified equation. 

• 5 

+ 2f s· sr- + f (-5 ) + fw (-s ... r-> + f (-5 >] 
w~wn n ~ w 1" E; \~ wn"Tn 

(.A-ll 

• s 

(Conti~ued on next page) 
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+ 29ww sn 
I'l 

05+ 29w ~n 0 S~ + 9Wl-s ¥) + 9WrC-S1r) + 9
Wn 

(-Stn )] 
tWn" ... • .. .. " " 

- 6;:[hWl-S t ) + hwct-StC) + hWn (-s1n) + hWttC-Sttt) 

+ 9
Wtn 

(-S'tn) + h
Wnn 

(-S,nn)] - "j,2[h2WS • S + h2Wt St • S t 

+ h2 S 0 Sn + 2hWW Sr Wn n t .. 
• S + 2h S~ 0 Sn W_W .. 

c;. n 

where 

and 
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The following observations are made: 

1. The time dependent part makes an awful mess of the 

situation. We may want to consider steady solution first. But 
they also show why adaptive meshes can slow convergence to steady 
state and cause other difficulties • 

2. There are several flux Jacobian metrices, i.e., 

fw' fw ' f , 9'w' gw~ 9'w 
E: w

Tl ~ Tl 
hw' hw ' 

E: 
hw ' 

Tl 
hw ' 

~f; 
~r ' E:n ~"nTl 

and the higher order Jacobians. 

The terms involving :w are due to the solution, those in­
volving a! etc. are due the metrics (i.e., mesh). The terms 

E: 
involving both (Wi~l the higher order Jacobians) are due to both 
the solution and th9 rnetrics. 

3. The terms involving s contain the effects of both the 
solution and the mesh. 

4. The observations made for the first order scherr.e apply 
here also. 

To simplify the modified equation to a reasonable level 
assume that the mesh is fixed with time, but still consider time 
variations of the so~ut~on. In this case the modified equation 
reduces to 

(A-3) 
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The modified eqQation for the leap frog scheme on a fixed 

mesh given above is similar to that of the first order scheme, 

equation (19). The truncation errors are of course of one 

higher order. Thus it =an be concluded that the higher order 

derivatives of the meshes must be smoother for higher order 

schemes than for lower order schemes. 

steady state form of equation. (A-3). 

To see this consider the 

(A-4 ) 

Now need to specialize this modified equation to either the SCL 

or t~CL form. Doing the SCL form first. 

w = w 
J 

f = Yn 
f - xng 

g = -y f + xf;g f; 

h = 0 . 
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(Ynt - Xng)~ + (-y~t + X~9)n + Q3\2{Yn3~r - xn3~g + 3Yn2~r~ 

3xn~g2~ + YnI3~ - Xng3~} 

(A-51 

The error terms of this equation should be compared with the 
first order scheme error terms given by equations (22) and t23). 

Similar results are obtained for the tiCL form of the transformed 
equations. 

WCL 

w = w 

f = J-l(Ynf - x g) 
n 

g = J-l (-y;f + x;g) 

[ -1 -1 ] h = - (J y) - (J Y ~) 11 f 
n E,; 

[ -1 -1 ] - - (J 'x) + (J x~) g 
n E,; 11 

The ~CL modified equation becomes 
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+ "3",2 {(_J-l}. < )3/ + (J-l.() 3n;; + 3( -J-1Ye )2n 1" + 3(J-l.( )2" 9n 

+ 3(-J-1Y~)nl:!n + (J-IX~)'lg2n + (_.;-1::'~)13n + (J-1
X C)93n} 

(A-G) 

where 
-, 

J - .. x ,. -
t.ln 

1 

The error terms of this equation should be ~ompared with 

the first order scheme error terms given by equations (24) ~nd 

(~S) • 
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Figure 2. Carpet plot of density solution as solved by TAIRC (ref.l7 ) on lower 
half of NASA 0012 airfoil, Mm = 0.80, a = 0°. 

Viewpoint is from leading edge. 
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Figure 3. Carpet plot of density SOl\ltion as solved by TAIRC (ref. 17) on lower 
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Figure 16. Solution induced truncation error of density 
solution in Figures 2 and 3. 
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