
NASA CR-163117
NASA-CR-163117
19830004843

ADVANCED FLIGHT CONTROL SYSTEM STUDY

G. L. Hartmann, J. E. Hall, Jr., E. R. Rang,
H. P. Lee, R. W. Schulte, and W. K. Ng

Contract NAS4-2876
November 1982

NI\SI\

LfBRARY COpy

I.l,r~GLEY RESEARCH CE/\ TER
L!3~ARY. NASA

"'uo.I.~~TOt~L VIRGIWJ\.

NF02066

/03, /1'7
..J

NASA CR-163117

ADVANCED FLIGHT CONTROL SYSTEM STUDY

G. L. Hartmann, J. E. Wall, Jr., and E. R. Rang
Honeywell Systems and Research Center
Minneapolis, Minnesota

and

H. P. Lee, R. W. Schulte, and W. K. Ng
Lockheed-California Company
Burbank, California

Prepared for
Ames Research Center
Dryden Flight Research Facility
under Contract NAS4-2R76

NI\SI\
National Aeronautics and
Space Administration

1982

,A/13- /3113#

Use of trade names or names of manufacturers in this report does not
constitute an official endorsement of such products or manufacturers, either
expressed or implied, by the National Aeronautics and Space Administration.

ii

CONTENTS

s UM1w1A.R Y •

SECTION l--INTRODUCTION ••••••••••••••.•••••••••••••.••.••.••••••••••••.••

1.1

1.2

1.3

Objectives and Requirements •••...•..•.•••••••••.••••••.••.•.•....•.

Report Organization ••

Acknowledgements ••••••••••••••• .
SECTION 2--DEVELOPMENT OF AN ADVANCED ARCHITECTURE •••••••••••••••••••••••

2.1 Reliability and Maintainability Issues •••••••••••••••••••••••••••••

2.2 Recommended Architecture •••••••••••••••••••••••••.•••••••••••••.••.

2.2.1 Overview ..•.......................•............................

2.2.2 Sensors•..•...•.•..•.••.•••...•.•........•.......•.•.....

2.2.3 Computers •..•....•.•.•..•••••.•••••••••.•.......••......•.•....

2.2.4 Actuators ••

2.3 Recommended Implementation •••.•••••••••••••.••••••••••.•.•..•.•..••

2.3.1 Sensors ..•.•.•••.••••.••••••••••.•••••••••••••••••••••.••.•.•..

2.3.2 Computers •.•••.•••.•••••.••••.•••••••••••••••••••••.•••.••.....

2.3.3 Actuators ••••••••••••.•••.••••••.•••.•••••.•.•.••.••••.••.•••••

SECTION 3--SYSTEM SPECIFICATION AND VALIDATION •••••••••••••••••••••••••••

3.1 Methodology Overview .••••..•••....•••.•••.•...•••...•....•..•••...•

3.1.1 System Requirements ••••••.••••••••••••••••••••••••••••••••••••.

3.1.2 Description of the Hardware/Software Interface •••••••••••••••••

3.1.3 Software Requirements •••••••.•.•••••••••.••••.•.•••••.••.•.•..•

3.2 System Specifications ••

3.2.1 Current Specifications •..•.••.•••••••.•.••.•••••.•.•.••..•••.•.

3.2.2 Functional Descriptions ••.•.•.•..••.•.••.•..•.•.••••••••.•..•.•

3.3 Functional Specification for the Remote Terminal •••••••••••••••••••

3.3.1 Top-Level Function of the Remote Terminal ••••••••••••••••••••••

1

1

1

3

4

4

4

8

8

10

16

19

22

22

23

27

34

35

38

38

38

39

40

43

46

47

iii

3.3.2

3.3.3

CONTENTS (continued)

Hierarchy of Functions

Finite-State Machine Description •••••••••••••

Page

47

49

SECTION 4--SYSTEM RELIABILITy.. 51

4.1 Reliability Estimation ••••.••..•.••..••.•.•••.••••••...•...••.•.... 51

4.1.1 Fault-Tree Analysis •• 52

4.1.2 Analysis of the Advanced Fly-by-wire System •••••••••••••••••••• 59

4.2 Reliability Validation.. 64

4.2.1

4.2.2

4.2.3

Component Reliability Validation •••••••••••••••••••••••••••••••

Fault Tolerance Validation ••••••••••••••••••••••
Accelerated Life Test •••••.•••••••.•••••••.•...•.•.••••.....••.

64

65

66

SECTION 5--S0FTWARE DESIGN AND VALIDATION •••••••••••••••••••••••••••••••• 69

5.1 Flight Control Functions •....•..............•...................... 69

5.2

5.3

Tools and Techniques for Verification and Validation •••••••••••••••

Software Development .. .

72

74

5.3.1 Software Design.. 76

5. 3 • 2 Cod ing • . • • . . • . • • 7. 7

5.3.3. Testing the Code.. 77

SECTION 6--SYSTEM PERFORMANCE AND FUNCTIONAL VERIFICATION TESTING •••••••• 78

6.1 Overview... 78

6.2 Design of Test Cases •••.•

6.2.1

6.2.2

Use of Finite-State Machines •••••••••••••••••••••••••••••••••••

Use of Fault-Tree Analysis •••••••••••••••••••••••••••••••••••.•

6.3 Automated Iron Bird Testing

6.3.1

6.3.2

S-3A Iron Bird•...................................

Automated Testing

6.4 Flight Testing .. .

iv

6.4.1

6.4.2

6.4.3

Performance Verification Flight Testing ••••••••••••••••••••••••

Failure Mode Flight Testing ••••••••••••••••••••••.•••••••••••••

Flight Test Support ••

80

82

83

89

90

92

98

99

99

99

CONTENTS (concluded)

Page

SECTION 7--S-3A INTERFACE ..•.•..••••.•.•.••••••.•.•..•..••..••.•...•...•. 100

7.1 Flight Control System Integration •••••••••••••••••••••••••••••••••• 100

7.2 Cockpit Controls Integration ••••••••••••••••••••••••••••••••••••••• 110

7.3 Sensor Integration ••• 110

7.4 Avionics Integration ••• 112

7.5 Hydraulic System... 115

7.6 Electrical System •• 117

SECTION 8--CONCLUSIONS AND RECOMMENDATIONS ••••••••••••••••••••••••••••••• 117

8.1 Recommended Follow-on •••••••••••••••••••••••••..•••.••.••••••.•.•.• 121

8.2 Expansion Technologies •••••••••••••••••••••••••••••••••.••••.••.•.. 124

8.2.1

8.2.2

8.2.3

8.2.4

8.2.5

Active Control and Advanced Wing Technology •••••••••••••••••••• 124

Flight Management and Air Traffic Control Technology ••••••••••• 126

Propulsion Control Technology •••••••••••••••••••••••••••••••••• 126

Display Technology ... ~•.......... e,. • • • • • • • • • • • •• 126

Secondary Power Technology ••••••••••••••••••••••••••••••••••••• 127

Appendix A. Examples of Finite-State Machines for Specifying
Flight Control Functions •••••••••••••••••••••••••••••••• 129

Appendix B. Sample Iron Bird Test Plan ••••••••••••••••••••••••••••••••• 155

REFERENCES. •• 161

v

LIST OF ILLUSTRATIONS

Figure P 3g '=

1 Flight control elements--single string ..••................. 7

2 Reliability trends of redundant flight control systems..... 7

3 Overview of ADFBW architecture ••••••••••••••.•..•..•••••..• 9

4 ADFBW reliability predictions •••••••••••••••••.••••••.••.•. 11

5 Sensor unreliability trends ••••••••••••.••••.••••.•...•..•. 12

6 Sensor maintenance trends •••••••••••••••••••••••••••••••.•• 13

7 Unreliability trends in digital channels ••••••••••••••••••• 19

8 Maintenance trends in digital channels ••••••.•••••••••••••• 20

9 Maintenance characteristics of servos •••••••••••••••••••••• 21

10 F9450 logic symbol ... 25

11 sixteen-bit microprocessor comparison ••••••••••••••••••.••• 26

12 One servo channel •• 28

13 One servo channel including self-diagnosis ••••••••••••••••• 32

14 Example of channel health monitor and engage/bypass valve
control. .. 33

15 Methodology overview....................................... 36

16 A finite-state machine ••••••••••••••••••••••••••••••••••••• 44

17 Hierarchy chart of specifications for the remote terminal •• 48

18 Finite-state model for the remote terminal ••••••••••••••••• 50

19 Sample fault tree .. 55

20 Reliability life curve .••.••••••••••••••••••••••••••••••••• 67

21 Accelerated and normal life curves ••••••••••••••••••••••••• 68

22 The validation of an ultra-reliable system depends on
indirect testing ••••••.•••••••••••••••••••••••••••••••.••.• 79

23 conceptual system states •••••••••••••••••••••••••••.•••.••. 81

vi

LIST OF ILLUSTRATIONS (concluded)

Figure Page

24 Any combination of component failures is either a cut set
or a test set ... 85

25 There are only three groupings of the elements of cut sets
3, 4, 5 into maximal test sets •••••••••••••••••••••••••••••• 88

26 S-3A iron bird overv1ew ••••••••••••••••••••••••••••••••••••• 91

27 Robotic system concept ..•••.•.•••••.••••..•..•.•.•.•.••..... 94

28 Actuator interface.. 95

29 Robotic system interface •••••••••••••••••••••••••••••••••••• 97

30 Longitudinal primary control system ••••••••••••••••••••••••• 10l

31 Directional primary control system •••••••••••••••••••••••••• 10l

32 Lateral primary control system •••••••••••••••••••••••••••••• 102

33 Elevator secondary actuator installation •••••••••••••••••••• 105

34 Rudder secondary actuator installation •••••••••••••••••••••• 106

35 Aileron secondary actuator installation ••••••••••••••••••••• 107

36 Active-control actuator installation •••••••••••••••••••••••• 109

37 Summary flight control changes ••••••••••••••••••••••••• ~ •••• lll

38 Air data system interface••.•........•..•.•..••..•..... !13

39 Pitot-static system ...•••..•.•..••.•••..•••..............•.• 114

40 Hydraulic distribution system (dual-channel) •••••••••••••••• 116

41 Electrical power system •.•••••••••••••••••••••.•••••••.•••.• 118

42 Options for computer expansion •••••••••••••.•••••••••••••••• 120

43 Recommended follow-on activities with options ••••••••••••••• 122

44 Expansion technology flow chart ••••••••••••••••••••••••••••• 125

vii

Table

1

2

3

4

5

6

7

8

9

10

11

viii

LIST OF TABLES

Page

Reliability characteristics of flight control elements .••..• 6

Fairchild l750A CPU features •••••••••••••••••••••••••••••••. 24

Active on-line logic .. 30

Historical differences in hardware and software development
practices ... 39

Organization of an NRL specification ••••••••••••••.••••••••. 41

ADFBW fault tree primitives ••••••••••••••••••••••••••••••••• 62

Functions for self-checking architecture •••••••••••••••••••• 72

Tools. .. 73

Techniques •• 75

Minimal cut set data in descending order of probability ••••• 86

Maximal Test Sets for the Example are Constructed
as the Union of One Subset from Each of the Eight
Independent Groups •••••.••.••••••••.••••••••••••••••••••.••. 87

ADVANCED FLIGHT CONTROL SYSTEM STUDY

G.L. Hartmann; J.E. Wall, Jr.; and E.R. Rang*

H.P. Lee; R.W. Schulte; and W.K. Ngt

SUt-1HARY

This study defines a new fly-by-wire flight control system architecture

designed for high reliability. Spare sensor and computer elements are

included to permit safe dispatch with failed elements, thereby reducing

unscheduled maintenance. This program also formulated a methodology capable

of demonstrating that the architecture does achieve the predicted performance

characteristics. This methodology consists of a hierarchy of activities

ranging from analytical calculations of system reliability and formal methods

of software verification to iron bird testing followed by flight evaluation.

This study concludes with a section on interfacing this architecture to the

Lockheed S-3A aircraft for flight test. This testbed vehicle can be expanded

to support flight experiments in advanced aerodynamics, electromechanical

actuators, secondary power systems, flight management, new displays, and air

traffic control concepts.

SECTION l--INTRODUCTION

1.1 OBJECTIVES AND REQUIREMENTS

In broad terms, the objective of this program is twofold. One objective

is to define a new fly-by-wire (FBW) flight control system architecture that

possesses the integrity required by future commercial applications. Future

energy-efficient aircraft will require:

;Honeywell Systems and Research Center, Minneapolis, Minnesota.
Lockheed California Company, Burbank, California.

(1) Reliable digital FEW control

(2) Electromechanical actuators

(3) All-electric secondary power technology

The redundant, self-checking architecture defined in this study achieves

the first element and is compatible with developments in the second and third

areas. A second objective of this program is to formulate a methodology

capable of demonstrating that the architecture does achieve the required level

of performance. This hierarchical methodology ranges from analytical

calculations of theoretical system reliability and formal methods for

verifying software to laboratory and iron bird tests and actual flight

experiments. A commitment to the proposed level of structure and rigor will

lead to a validatable flight control system.

The definition of an advanced digital fly-by-wire (ADFBW) architecture is

a technology integration task. State-of-the-art assessments and trends in the

underlying computer, sensing, and actuation areas were used to select from a

number of design alternatives.

In later sections of this report, the Lockheed S-3A aircraft is discussed

as a potential testbed vehicle. However, the ADFEW architecture was not

developed specifically for the S-3A. A generic FBW system is assumed for an

aircraft requiring three axes augmentation, gain scheduling based on air data

measurements, and angle-of-attack limiting consistent with reduced static

stability airframe designs. Therefore, a sensor suite will include pilot

transducers, body rates and accelerations, and air data measurements.

The pacing requirements for all FEW systems are the reliability-related

qualities of flight safety, mission reliability, and availability. Numerous

programs have developed redundancy structures for both military and commercial

applications that satisfy flight safety and mission reliability through

various combinations of triplex and quad redundancy, all of which produce at

least dual-fail-operative performance. The failure rates of current

components indicate the necessity for considerable unscheduled maintenance.

For example, the mean-time-between-maintenance for flight control sensors plus

electronics will be approximately 250 to 1000 operating hours, depending on

system complexity and design maturity. In a commercial application with 2000

hours every six months, a potential dispatch problem is evident.

2

The reliability of the advanced flight control system should be such that

its loss would not be expected during the lifetime of a large commercial fleet
,

of aircraft using it. This requirement, when reduced to a probability of loss

per flight hour, produces a figure on the order of 10-
9

• For example,

assuming 10 flight hours per day produces 3600 hours per year per aircraft. A

fleet of 200 aircraft operating for 15 years accumulates about 10
7

flight
-9

hours. Allowing a 1% loss probability results in the 10 per hour figure.

The desired maintenance quality implies fault tolerance in excess of that

needed for flight safety. Various strategies are conceivable for achieving

this. Since flight safety is of first priority, no aircraft will be

dispatched if the flight control status is not adequate. Consequently, the

maintenance requirements may be posed in terms of an allowed probability of

unscheduled maintenance over a given period. For this study the period was

defined as six months, or about 2000 hours for a commercial aircraft. If this

probability is low, then the system maintenance quality is adequate. It seems

reasonable that a large percentage of a commercial fleet should not require

unscheduled maintenance over the stated period, perhaps 90%. If such a level

were achieved (a six-month unscheduled maintenance probability of 0.1), a

dramatic improvement in maintenance quality of current FB'~ systems would be

realized.

1.2 REPORT ORGANIZATION

This report is organized in eight sections plus two appendixes. Section

1 is the introduction. Section 2 presents the recommended architecture and

implementation. section 3 starts the discussion of the validation methodology

by addressing system and interface specifications. Section 4 presents a

method of reliability prediction. Section 5 concentrates on the software

development process. Section 6 concludes the validation methodology by

addressing the system test phase. Section 7 presents the S-3A interface to

the recommended architecture and discusses the interface to the electrical and

hydraulic systems. Section 8 presents conclusions and recommends development

and flight test of the ADFBW architecture.

3

1.3 ACKNOWLEDGEMENTS

This study was the product of the efforts and diverse talents of a

number of people working at Honeywell, Lockheed-California, and NASA.

The authors wish to express their thanks to these people, especially to

Mr. J.C. Larson of Honeywell's Avionics Division and Mr. R.L. Heimbold of

Lockheed-California. Appreciation is also expressed to the technical

management at the Hugh L. Dryden Flight Research Center, in particular to

Mr. K.J. Szalai, Mr. A.F. Myers, and Mr. L.W. Abbott.

SECTION 2--DEVELOPMENT OF AN ADVANCED ARCHITECTURE

The ADFBW flight control architecture must exhibit ultra-reliability with

low maintenance and must be validated and verified to a high degree of

confidence. To achieve the ultra-reliability objective, redundant elements

are used. The system must be able to tolerate multiple faults while

maintaining undegraded operation. In designing this fault-tolerant system,

reliability analysis plays a major role in the system architecture selection

process. Section 2.1 summarizes design tradeoffs in terms of preliminary

reliability and maintenance characteristics. A more detailed analysis of the

recommended architecture is made using fault tree analysis in section 4. The

generic ADFBW architecture is defined in section 2.2, based on our design

objectives of ultra-reliability plus ease and confidence of validation. An

implementation of the recommended architecture for the S-3A testbed is

contained in section 2.3.

2.1 RELIABILITY AND ~mINTAINABILITY ISSUES

Advanced flight control architectures are built on advances in the

underlying sensor, computer, and actuator technologies. Honeywell

participated in a study of 1990 flight control technologies as part of a study

of integrated application of active controls technology to an advanced

4

subsonic transport (ref. 1). In this study, we assessed the trends in the

following technologies:

(l) Sensors

- rlir data

- Angular rate

- Accelerometers

(2) Airborne computer technology

- Instruction set and higher-order language trends

- Integrated circuit advances

- Buses (including fiber optics)

(3) Design and validation

- Flight control functions

- Formal specifications

- Software design and code

- Verification and validation

(4) Actuators

- Hydraulic power sources

- Electric power sources

An in-depth treatment of this technology status and its trends may be found in

reference 1.

Several conclusions from this investigation are pertinent to the design

of an ADFBW architecture. Hardware improvements will not remove the need for

sensor redundancy. Reliable sensing can be achieved through sensor redundancy

and an increased use of the computer system. Present aircraft actuation

systems use redundant hydraulic elements to achieve sufficient reliability for

FBW requirements. New actuator developments are aimed at improving efficiency

through the use of electromechanical actuators. The ADFBW architecture must

be compatible with both types of actuation systems. Significant advances in

computer hardware are expected through developments in large-scale integrated

circuit technology. Software costs are expected to continue to dominate

hardware costs in DOD/NASA applications. This trend emphasizes the need to

carefully trade off whether a particular system function is to be performed in

hardware, software, or some combination of both.

5

The reliability of typical components for a flight control system is

shown in table 1. These values are projected for the mid-1980's. A single

string of sensors, computer, and hydraulic actuator--as illustrated in figure

l--has a mean time between failures (MTBF) of approximately 1500 hours, orders

of magnitude less than our requirement. Hence, replication of sensing,

computing, and actuation elements is mandatory.

Next consider a triple set of these elements and assume that the

redundancy management allows operation with only one of the three channels

functional. If there is no crossfeeding of sensor and computer to the
-9 .

actuation, the unreliability is about 0.28 x 10 at one hour correspondlng

to failure of the three channels. If the redundant elements are fully

crossfed, the number of success paths increases. In this case the

unreliability decreases by more than a factor of 20 to 0.013 x 10-
9

at one

hour. These trends are shown in figure 2, which illustrates that redundant

elements with crossfeeds improve overall system reliability.

TABLE 1. - RELIABILITY CHARACTERISTICS OF FLIGHT CONTROL ELEMENTS

Element

Air Data Computer

Pilot Transducers

Rate Gyros

Accelerometers

Serial Data Buses

Computer

Actuator

Failure Rate Comments
(x 10-6)

91. Three-year extrapolation of
existing products

40. Pitch, roll, yaw sensors* plus
AID electronics

30. State of the art

30. Precision floated pendulum
or quartz fiber

10.

200.

90.-140.

Estimate based on chip count

Estimate of self-checking
microprocessor

Based on state-of-the-art (includes
electronic and hydraulic components)

*These position sensors could be a linear variable differential transformer
(LVDT) •

6

I SENSORS

I 1 OIGITAL

I 1 ACTUATOR I COMPUTER

• 3 GYROS Ac = 200 X 10.6 A = 140 x 10.6

• 3 ACCELEROMETERS
a

• PILOT TRANSOUCER
• aIR DATA CDMPUT~R
A = 311 X 10.6

5

SING LE CHANNEL A = 651 X 10.6 PER HOUR
FAILURE RATE

Figure 1. - Flight control elements--single string.

SINGLE.:~

- CHANNEL

18-4

11- 18-6

-
...
>-
oC
or: ...
or:

THREE.~ . CHANNel

'"
18-& ~

\OJ

'" oC
or:
\OJ
>
oC

18-18

V--
:.---

- / ~

-----'/
",....

THREE·

. CHANNEL WITH
CROSSFEEDS

~l T . I

8 2 4 6 9 18 12
TIME Iho"n)

Figure 2. - Reliability trends of redundant flight control systems.

7

Sufficient redundancy must be provided to meet both the flight safety

requirement and the low maintenance goal. As explained in section I, the goal

of 10lv maintenance is taken to mean that the probability or unscheduled

maintenance is less than 10% over 2000 flight hours. Thus, two distinct

reliability issues enter the design process:

o Probability of catastrophic failure «10-9/hr)

o Probability of unscheduled maintenance «0.1/2000 hrs)

Both probabilities impact the recommended architecture.

For design purposes, it is useful to apportion these two probabilities

among the various components of the flight control system. This is somewhat

analogous to the well-known error budgeting process. The probability of

catastrophic failure is apportioned roughly evenly between the sensor suite,

computers, and actuators. For the sensors, this probability is further broken

down into contributions from air data computers, pilot transducers, and

inertial sensors. The probability of unscheduled maintenance is about evenly

divided between sensors and computers. This is because it was impractical to

reduce the probability of unscheduled maintenance for the actuators to near

10% per 2000 hours.

The next sections will summarize the design decisions in the organization

of the redundant sensing, computing, and actuation elements. In selecting the

recommended architecture from the various design alternatives, experience with

other systems and interpretation of the technology trends play a large role in

weighting the benefits of one approach against another.

2.2 RECOMMENDED ARCHITECTURE

2.2.1 Overview

The recommended flight control system architecture is shown in figure 3.

This advanced, self-checking architecture is capable of meeting the

flight-critical safety requirements and the goal of low system maintenance.

Further, the proposed structure facilitates verification and validation of the

system's performance.

8

I
I

I

PILOT
TRANSDUCERS

I
I

I
I

AIR DATA

I

SKEWED
GYRO
ACCEL
TRAIDS

~

~

J-!EDUNDANT
SERIAL SENSOR
BUSES
PROVIDE ALL SENSORS
TO EACH PROCESSOR PAIR

I CONTROL I OUTPUT BUS
PANEL BROADCASTS

TO ALL
SERVO CHANNELS

r
I

I
~

_L
en SELF·CHECKING en - REMOTE
:) :) ... SERVO = FAIRCHILD 1750A = ..
a: I- - TERMINAL
0 M PROCESSOR :)

en Q" ..
z PAIR I-

~ --w :)

en 0 - I-.. - I-

PROCESSOR PAIRS FORM RTMONITORS

ASYNCHRONOUS DIGITAL CHANNELS SERVOS AND

PERFORM SENSOR RM
RECONFIGURATION

CONTROL LAW COMPUTATION

Figure 3. - Overview of ADFBW architecture.

-~
; CYLINDER

TRIPLEX
SECONDARY
ACTUATORS
OPERATE IN

'ACTIVE/ONL INE
MODE

The baseline suite of sensors consists of six sets of pilot input

transducers, six air data computers, and three skewed triads of inertial

sensors. Spare sensors are treated as cold spares and reconfigured only

during preflight. The sensors interface with the computer channels via six

serial sensor buses. Six parallel computer channels of self-checking

microprocessor pairs are proposed. Spare processors operate as hot spares.

The bus controller for each sensor bus is included within a computer channel.

The computers broadcast over redundant command buses to triplex servo

terminals. The number of such triplex servo terminals is dependent on the

specific application. The remote terminals are compatible with either

conventional hydraulically powered actuators or electromechanical actuators.

The following subsections provide more detail on the individual elements

of this architecture:

Sensors

computers

Actuators

Figure 4 provides a summary of the total unreliability for the ADFBW

architecture. This curve is obtained by summing the sensor, computer, and

servo contributions and excludes electric and hydraulic power sources. The

individual reliability characteristics are developed below. A more detailed

analysis of reliability using fault tree modeling is presented in section 4.

2.2.2 Sensors

The basic control mode in this study requires pilot input transducers,

body rates and accelerations, and air data. The initial assignment of sensor

redundancy was made based on flight safety considerations. For pilot input

and air data sensing, replication to the desired level of redundancy to permit

dispatch with failed elements is required. For the rates and acceleration

measurements, a skewed sensor assembly is recommended.

Air data. - The air data computers provide angle of attack plus the usual

air data derived quantities. Current production air data systems are expected

to achieve, within three years, a MTBF of 11 000 hours. Hence, the failure
-6

rate is 91 x 10 per hour (table 1).

10

>
~ :;

18-8~---______ ~ _________ ~ _______ ~ ____ ~~ ____ -T _______ ~

~ 18-18~ ________ ~~~~~~ ____ ~ ______ ~ ______ ~ ______ ~
...
II:
Z
~

18-11~~~~~ _______ ~ _____ -+ ________ ~ ________ ~ _____ ~

II .,
TIME (hounl

Figure 4. - ADFBW reliability predictions.

Estimates of the probability of loss of air data are used to decide the

minimum level of redundancy for safe dispatch. Comparison monitoring is used

to detect and isolate failures of the air data computers. With quad

redundancy, a loss of air data occurs when three of the four units have

failed. This probability is estimated as

Q = (43) Q3 (1 - Q)
air data

-9 = 0.048 x 10 (averaged over 4 hours)

11

This unreliability is plotted as a function of flight duration in figure

5. A triplex system loses air data when two of three units fail, and this

probability is too high. Therefore, the following requirement for safe

dispatch is established:

At least four air data computers must be operating for dispatch.

Spare air data computers are supplied in order to satisfy the maintenance

objective. Maintenance of the air data computers is required when the number

of failed units exceeds the number of spares. The recommended architecture

has six air data computers--that is, two spaces are provided. Maintenance is

required when three of the six units fail preflight checks. The probability

of this event is shown in figure 6. At 2000 flight hours, the probability of

unscheduled maintenance on the air data computers is about 5%.

Pilot input transducers. - The pilot input transducers include pitch and

roll stick and pedal transducers. The transducers are LVDTs. The pilot input

terminal includes the electronics for accepting three axes of commands,

performing AID conversion, and interfacing with the sensor bus. Table 1
-6 shows the expected failure rate to be 40 x 10 per hour.

19-8-T-------r------~------~----~~----_,------_,

~R DATA

]1 - 19-19

w
c(
0:
w
0:

t ::::I
-'

! PllDT
w

19-12
TRANSDUCERS

'" c(
0:
w
>
c(

2 4 6 8 19 12
TIME (houn)

Figure 5. - Sensor unreliability trends.

12

·86-T----------~----------~----------~----------~

...
u .84 z
c
z
z :c
::I ...
Q

> ..
::::;
iii .. • • 82 Q
II: ...

TIME (hounl

Figure 6. - Sensor maintenance trends.

The self-test coverage of these devices is 100%. This means that

operation with only one unit is possible. With a triplex system, the

probability of loss of pilot sensors equals the probability of three failures

out of three units.

-12
= 1.02 x 10 per hour (averaged over 4 hours)

This probability is plotted in figure 5, and is negligible. The probability

of loss of pilot sensors with only a dual system, however, is too great. This

leads to the requirement that

At least three pilot sensor terminals must be operating for dispatch.

Once again, maintenance is required when the number of failed units

exceeds the number of spares. With the six units included in the

architecture, three spares are provided, and maintenance is required only

after four failures. The probability of unscheduled maintenance on the pilot

input transducers is plotted in figure 6 and is shown to be less than 1% after

2000 hours.
13

Inertial sensors. - Body rate and acceleration measurements are required

in three axes. The failure rate for each of these six sensors is 30 x 10-
6

per hour (table 1).

Comparison monitoring is used to detect and isolate failures of the

inertial sensors. This scheme results in the loss of inertial sensing when

all but one of the sensors of any type fail. For a quad-redundant system, the

probability that three of four sensors fail is simply

QIS = (~) Q3(1_Q)

= 0.01 x 10-9 per hour (averaged over 4 hours)

Figure 5 shows this reliability as a function of flight duration. A

triplex system has an unacceptably large probability of loss of inertial

sensing, so for safe dispatch we require that

At least four inertial sensors of each of six types must be operating.

The three components of figure 5 were combined to yield the sensor curve shown

previously in figure 4.

By providing two spares, maintenance is required when three sensors of any

type have failed. The probability of this event is plotted in figure 6. A 2%

probability of unscheduled maintenance for the inertial sensors occurs at 2000

hours. This suite of gyros satisfies our reliability and sparing goals.

However, it does involve a large number of sensors:

Rate gyros:

Accelerometers:

3 axes x 6 = 18 total

3 axes x 6 = 18 total

In order to achieve some reduction in hardware, we recommend skewed

sensors. Two skewed triads (six sensors) can provide dual-fail-operational

capability. Three skewed triads provide sparing and can permit safe dispatch

with up to three sensors failed. Basically, sparing is accomplished by

configuring a hexad arrangement from the nine sensors as part of a preflight

check. The two triads are oriented such that each axis of the triad makes an

equal angle with the aircraft x-axis and no three axes of any set are

co-planar.

Skewed sensors are presently receiving increased attention (ref. 2, 3,

and 4). Skewed sensors require higher resolution and dynamic range than

conventional configurations and must avoid saturation. It is felt that gyro

14

and accelerometer technology has advanced such that the additional demands

placed on sensors if they are skewed can be satisfied. Honeywell is currently

working three major areas involving skewed sensor assemblies:

(1) Multifunction control reference system. - This is an Air Force program

to flight test on an F-lS hexad (two orthogonal triads) composed of six

accel~rometers and six ring laser gyros. The "boxes" consisting of sensors

plus computer are skewed (ref. 2 and 3).

(2) Integrated sensor assembly. - This Navy program uses a different

architecture. Five boxes are used--two for integrated sensor assemblies,

three for flight computers. One computer is dedicated to the strapdown

navigation computations; the other two perform flight control. In this

architecture only the sensor assemblies are skewed. Flight test is planned on

an F-14 or F-18.

(3) Integrated inertial reference assembly. - This Air Force program is in

a study phase with the objective of defining future skewed sensor requirements

for the 1990's.

with the commitment to skewed sensors in the aircraft community, we feel

such a sensor approach is viable for our architecture and provides an elegant

solution to the inertial sensor redundancy problem.

Sensor redundancy management. - The redundancy management of the sensors

is replicated in each digital channel. Each processor can independently

detect and isolate sensor faults. During preflight, a sensor suite will be

identified. Redundant sensors in excess of the dispatch requirements will be

ignored. This eliminates the need for mid-value selecting from up to six

signals. The redundancy levels required are:

(1) Pilot transducer terminals

- Three terminals

(2) Air data computers

- Four compares

(3) Skewed gyros/accelerometers

- Two triads

The pilot input transducers and air data quantities use conventional

comparison monitoring. Since the digital channels operate asynchronously,

data skew between the signals being monitored is to be expected. This data

15

skew will result in a time delay (less than one-half the sampling period) for

mid-value selected signals. Sampling rates will be selected so this delay

does not compromise phase and gain margins.

Management of the skewed sensors would be based on the use of parity

equations (ref. 2). Parity equations take advantage of the fact that sensor

skewing provides redundant information. Basically, the outputs of any four

sensors may be linearly combined (via direction cosines that describe

geometry) to form a parity equation. In the absence of sensor errors the

parity equations equal zero. The number of parity equations available for

sensor redundancy management is computed from N sensors taken four at a time.

Thus, six sensors yield 15 parity equations.

The multifunction control reference system skewed assembly is being

applied to a high-performance fighter and the sensor triads have been

separated to demonstrate the concept in a nworst-casen installation. Thus

compensation for various moment-arm effects has been included to allow low

decision thresholds. In addition, effort has been expended to tailor parity

equations for real-time use (ref. 2). At each sample time, subsets of the

parity equations are used based on a table look-up calculated from the failure

status of the previous pass. This approach yields the following advantages:

(1) Minimum processor usage (redundancy management decisions are computed

off-line and stored in look-up tables)

(2) Ability to deal with dual simultaneous failures

(3) Noise immunity (via the use of trip levels)

(4) Flexibility (look-up tables and trip levels are easily adjusted)

(5) Two-level operation--acceptable sensitivity without false alarms

(6) Decisions based on the status of all parity equations computed

Skewed sensor technology has made significant progress. Our architecture

will be able to integrate this technology to provide cost-effective sparing

of the inertial information.

2.2.3 Computers

The recommended computer system consists of six redundant, parallel

computer channels. Each channel is a self-checking microprocessor pair that

implements all of the flight control modes. Each self-checking pair listens

16

to all the sensor data on each of the six sensor buses. Each channel

independently performs sensor selection and control law computations. Each

pair also transmits, on the sensor bus it controls, various integrator values

for cross-channel equalization. This transmission is necessary because the

six computer channels run asynchronously. The software to perform these

functions is estimated to require a computer loading of less than 400 kops.

The major design alternatives considered are:

(1) Distributed processing with spares versus redundant channels

performing identical tasks

(2) Single or multiprocessor channels

(3) Fault detection and isolation

(4) The number of channels required to achieve high reliability and

provide sparing for low maintenance

Each of these areas is discussed below.

The first design alternative involves options in defining a philosophy for

managing the computers. Two options are:

(1) A distributed system with an operating system that distributes tasks

among healthy processors. This approach requires the distributed system to

reconfigure to remove failed processors. Examples of such systems are given

in references 5 and 6.

(2) A fixed tasking structure with a planned fallback to redundant copies

of tasks running in parallel in separate processors. This option uses

redundant channels of computers. Many current systems are implemented in this

manner.

The second option is a simpler alternative. Its software is far less

complicated and its operation in response to failures is easier to verify.

This alternative must be favored in an architecture seeking ultra-reliability

and complete validation, particularly if the redundant channels are single

processors.

The second design issue is whether a channel should be implemented as

single or multiple processors. We believe that valid software can be produced

for either arrangement by proper definition of software modules and control of

their interfaces. Historically, problems arise when the processors start to

become heavily loaded and modules are compromised to "fit everything in." We

17

have estimated the software load for a generic FEW system, and have concluded

that with advanced microprocessor technology, a single processor will be less

than 50% loaded. In addition, our architecture has been defined to eliminate

and simplify software, especially in the redundancy management functions.

Thus, we are led to recommend the simple alternative of performing all the

computations in a single processor. As will be explained in the next section,

the selected processor is readily expandable to a multiple processor

configuration should the throughput requirements grow.

The next issue involves the fault-tolerant operation of the multichannels.

The two major design alternatives are majority voting and self-test. Either

option may be implemented in a hardware-intensive or software-intensive

fashion. To date, most redundant flight control computers have used voting to

detect first faults, since software self-test of processors has never claimed

100% coverage.

In past designs some computers have used duplication of key circuits as a

way of providing self-test. with today's microprocesor technology it is

attractive to duplicate single-chip processors to provide complete coverage.

We have been developing such an approach for the Air Force since 1978 (ref.

7). The self-checking microprocessor pair (SCMP) is a processor with 100%

self-test via hardware duplication at the integrated circuit (IC) level.

Various tradeoffs have determined that if a SCMP fails, it should be removed

from the system. No attempt is made to identify the healthy half and pair it

with a spare processor to form a new SCMP. The latter option is possible, but

was found to compromise the simplicity of the SCMP design. We recommend

self-test as implemented in the SCMP.

The remaining design issue concerns the number of parallel channels needed

to satisfy reliability and low maintenance demands. Figure 7 shows a plot of

the failure probability of a triple-channel configuration of SCMPs. This

curve appeared previously in figure 4. This arrangement is dual

fail-operational and allows operation with one digital channel. The

probability that the three digital channels fail is less than 0.13 x 10-
9

per hour (averaged over a four-hour flight). For safe dispatch, we impose the

following requirement:

That at least three SCMPs must be operating.

18

18-"

/'
F·B DIGITAL

18-6

F·B FBW

... ..
:::l

18-8 iii
cC
:::l ..
0:
Z

"

18-18 ADFBW

TIME (h •• n)

Figure 7. - Unreliability trends in digital channels.

Figure 7 also shows the unreliability of the F-8 digital system and the F-8

FBW system (digital plus analog backup). The ADFBW offers a significant

improvement by virtue of MTBF advances due to very high-speed integrated

circuit (VHSIC) technology and by permitting single-channel digital operation

due to self-checking hardware.

Maintenance trends are shown in figure 8, which compares maintenance

probabilities if first failures must be fixed. Curves for computers with a

HTBF of 1450 hours (F-8 DFBW) and 5000 hours (SCMP) are shown. If three spare

SCMPs are provided, then maintenance is required after the fourth failure

rather than the first. In this recommended situation, the probability of

unscheduled maintenance for the computers is less than 8% for 2000 hours of

operating time.

2.2.4 Actuators

This subsection defines the elements of the architecture that interface

the computers to the surfaces. Present aircraft have a hydraulic power

19

w
u
Z

'" Z
z
::(
:I

e.8~-----------?----------~----------~----------~

8.6-+----------~----------+_----~~~----------~

~ 8.4-i------------~----~~----+_----------~~----------~
>-
5
;;;
o
a: ...
8.2~------~--+_--------_+~~~----4_--------~

ADFBW (SIX·CHANNELl

8 388 1ege 1399 2989
TIME (haunl

Figure 8. - Maintenance trends in digital channels.

generation and distribution system that has evolved over many design cycles.

It is reliable and relatively easy to maintain. We recognize, however, that

the long-term trend will be to use electromechanical actuators for energy

efficiency. At this time, electromechanical actuators are not sufficiently

mature to be considered for the ADFBW architecture. The proposed

implementation uses conventional hydraulically powered actuators.

There are advantages in defining a simple, clean interface between the

digital channels and the servo electronics. Our recommendation is to use a

remote terminal that provides this interface via a digital serial bus. The

remote terminal can provide all the redundancy management and reconfiguration

required of the servos. This simplifies the computer software since it is not

involved in the servo loop closing or redundancy management. The remote

terminal can be simply specified, built, and tested. The remote terminal

commands surface position and provides the loop closure for each servo

actuator. Details of the remote terminal are given in section 2.3.

20

For this application triple-servo channels and actuators are used. This

is consistent with our baseline testbed, the S-3A. Servo monitoring is

provided to allow operation down to one channel. The projected unreliability

for a triple-servo channel was plotted previously in figure 4 as one of the

components of the ADFBW reliability. The assumed failure rate includes both

electronic and hydraulic components (table 1). The failure probability is
-9 0.22 x 10 per hour (averaged over a four-hour flight). Thus, it is not

safe to dispatch with a failed servo channel and obtain a failure rate less
-9 than 10 per hour.

Maintenance actions are required after a first failure. This yields the

probability of unscheduled maintenance shown in figure 9. A range of

probabilities is shown for a triple channel with a servo-channel MTBF between

7140 hours and 11 000 hours. If a fourth servo channel were provided such

that maintenance occurs after the second failure, there is still a 60%

probability of unscheduled maintenance over 2000 operating hours. The servo

channel MTBF would have to improve by another factor of three to 33 000 hours

before the probability of unscheduled maintenance approaches 10%. Based on

the cost and difficulty of replicating hydraulic actuation of the various

surfaces, a triplex arrangement is recommended.

1.9T---I--I~~;;-::::J:~~~~

9.8-+-----------4----~~~~~~~~--~~--------~

~
u
Z

"" ~ 9.6 ..
z
C
~ ...
0

> g 9.4
:
0

:::

9.2-r~~------~--------~G-------~--------~
QU~ (33,3001

9. 9 j[r-t==::;:::::;::::t:~=;=:d=w=;::::;:::=i~::=:J
9 599 1999 1599 2999

TIME (hounl

Figure 9. - Maintenance characteristics of servos.

21

2.3 RECOMMENDED IMPLEMENTATION

The key features of the recommended advanced, self-checking architecture are:

(1) Skewed gyro/accelerometer sensor assemblies

(2) Redundant serial buses to provide all sensor data to each computer

(3) Redundant, self-checking microprocessor pairs

(4) Serial command buses to remote terminals

(5) Remote terminals to provide command distribution and redundancy

management of each hydraulic servo actuator

This section provides details on a recommended implementation of this

architecture for the S-3A. Particular attention is given to the servo remote

terminal as an illustration of self-checking approaches and the overall design

methodology of section 3. This section emphasizes the key features and does

not go into detail on preflight testing and other built-in tests that would be

a part of the final detailed design.

2.3.1 Sensors

Six pilot input terminals and air data computers are included in the

architecture. The proposed implementation uses standard LVDTs and air data

computers. Each terminal and air data computer interfaces with one of the six

sensor buses.

The body rate and· acceleration mesurements are derived from three skewed

triads. The individual sensor data in these triads will appear on redundant

buses to reduce the effects of bus failures. For example, each sensor could

be read out on four of the six buses.

The rate gyro is a Honeywell-developed ring laser gyro. The laser gyro

output is a 9600 Hz digital signal consisting of a string of pulses, each

representing an increment of integrated aircraft angular rate. These pulses

are summed in an accumulator to provide angular displacement over the

preceding 0.02-second sample interval. This quantity is converted to a signal

proportional to angular rate.

22

The accelerometers will also be high-quality instruments, compatible with

skewing requirements. Candidates include either floated pendulum devices

(Sundstrand QA 2000, Donner 4852) or quartz fiber devices (like Honeywell's

GG326) .

Serial data bus. - Six independent serial buses were shown in figure 3.

The bus controller logic is packaged with the digital computers. However, it

will continue to manage the bus after a SCMP fails. A 1553B type of protocol

has been assumed, whereby the sensors supply data in a command/response mode.

There are some advantages in using 1553B since it is a standard, and several

manufacturers are offering chip sets that provide the interface. These

hardware elements permit a high degree of redundacy without an inordinate

hardware (size, weight, power) penalty.

A recommendation to use wire or fiber-optic buses has not been made.

Ultimately, fiber optics will be used. It may be appropriate to use wire in

earlier phases.

2.3.2 Computers

This architecture has been built around SCMPs. Six channels of SCMPs run

asynchronously. For protection from hazards, they should be packaged as two

channels per 1/2 ATR box. We have identified the Fairchild 1750A as the

leading candidate microprocessor. This selection is based on several

considerations:

(1) In view of today's processors, the Fairchild 1750A offers a dramatic

improvement in throughput. This offers the opportunity to do all the flight

control software in a higher-order language (HOL) in a single processor and

still have room to grow. Its availability is consistent with the schedule of

this program.

(2) 1750A is an Air Force standard, and may evolve to the Joint Services

standard for 16-bit machines. By virtue of its being a standard, there is a

commitment to the development of extensive support tools, maintenance of a

HOL, etc. In contrast, NASA developed its own HOL for Shuttle, and as the

only user has had to provide all the maintenance and compiler upgrades.

23

The Fairchild l750A is a 3-micron, isoplanar integrated injection logic

(I3L) device, based on the Fairchild 9445. Its characteristics are

summarized in table 2. The logic symbol showing the pins and their functions

is shown in figure 10, taken from reference 8.

24

TABLE 2. - FAIRCHILD 1750A CPU FEATURES

o Single 64-pin microprocessor implements MIL-STD-1750A instruction set
architecture

o High-performance over military temperature range (200 nsec add: 1.8 wsec
16 x 16 multiply; 970 kips DAIS mix:* 1.5 mips DAIS mix)

o Single- and double-precision arithmetic (16 and 32 bits--16
general-purpose registers)

o 32- and 48-bit floating point arithmetic implemented on-chip

o Real-time processing with 16 levels of interrupt vectors, direct memory
access, 128 input/output channels, and two programmable timers

o Directly addresses 64K words; extendable to 1M words with memory
management unit

o Extensive fault detection and debugging capability with microcoded console
support and self-test

o I 3L-II (3-micron) technology with 10 5 radiation tolerance

o Static operation with clock frequency 0-20 MHz

o Low-power' Schottky input/output with multiprocessing capabilities

o Single SV supply (additional injector current source required): power
dissipation 2.5W

o Uses existing F9445 support circuits

*DAIS Mix is an Air Force specified set of instructions.

FAULTS

DMA
CONTROL [
INTERAU'" [

RESET EXT REQUEST

CPU CLK

TIMER CLK
-"' ADDRESS/DATA/16

ADDRESS STROBE

MEMORY PROTECT ERR ..READY ADDRESS
F9450

MEMORY PARITY ERR .~ (175OA CPU) DATA STROBE

PIO CHNL PARITY ERR ..READY DATA
r

DMA CHNL PARITY ERR DIRECTION

EXT ADDR ERR MEMORY/IO

PIO CHNL XMSN ERR .. INST/DATA

FAULT BIT 7 SYNC

SYSTEM FAULT BUS BUSY

DMA REQUEST AS/PS I 4

DMA ACKNOWLEDGE NML PWR UP

DMA ENABLE MAJOR ERR

UNRECOVERABLE ERR
PWR DOWN ..
USER I 6 BUS REQUEST

IOL 12 .. BUS LOCK

BUS GRANT

Figure 10. - F9450 logic symbol.

r

r

]

"J

)

MEMORY/IO
BUS

STATUS
BUS

MUL TI·
PROCESSOR
INTERFACE

Trends in microprocessor throughput are shown in figure 11. The 1750A

throughput for an Air Force specified instruction mix (including floating

point) is 970 kops. This is comfortably in excess of flight control

requirements (estimated as no more than 400 kops).

In addition to the Fairchild l750A, other VHSIC programs are directed at

the l750A standard instruction set and will provide upgrades to our

architecture.

Software development. - It is important to use a HOL for developing

software. At present, the l750A is supported by JOVIAL-J73. Our compiler was

written in FORTRAN and developed by Software Engineering Associates under Air

Force Avionics Laboratory Sponsorship. The compiler is presently hosted on

IBM 360/370 computers.

JOVTI\L is considered an interim language as the 000 makes the transition

to Ada. Effective use of Ada requires an Ada Programming Support (APS)

environment. Such tools are in development, but may require several years of

25

1600

1400

1200

1000
en a..
0
::III::

I- 800
:I
a..
::z:
c
:I
0
a: 600
::z:
I-

400

200

26

SSP 9900
C

1978

iAPX286

o
F1750A
20 MHz

F9445 ~ COLLINS

I AAMP
N16032 D

MC68000 ,

o Zg~6MH ~
O iAPX186

. (8086)
o o ZBOOO-4MH

8086 (JAPX86)
SBP 9989

Figure 11. - Sixteen-bit microprocessor comparison.

FIRST
AVAILABILITY

effort. A hard look at using Ada as the HOL is recommended. It is felt that

a significant contribution could be made by applying Ada to a real-time,

ultra-reliable system.

2.3.3 Actuators

Triplex servo channels are employed for each control surface--rudder,

aileron, and elevator. The servo interface uses a remote terminal, as shown

previously in figure 3. The number of such remote servo terminals will depend

on the particular application. For the S-3A, a mid-fuselage location for the

ailerons and an aft terminal for the rudder and elevator seem appropriate.

The basic overall function of the remote terminal is to select a suitable

signal from six or less computer channels and drive the surface accordingly.

A detailed functional specification for the remote terminal is given in

section 3.3 as an illustration of the design methodology. This paragraph

summarizes those specifications. The terminal must receive and interpret

serial digital transmissions from the computer channels. It must compute the

control command for the electro-hydraulic servo valve (EHSV). This command

must be sent to the servo amplifier and monitored. The remote terminal also

must monitor each actuator channel.

This section presents some implementation details on a servo terminal that

accomplishes these functions. The recommended implementation has three

self-checking servo channels. Associated with each channel is self-testing

health monitoring logic, which disengages the channel when a failure occurs.

The health monitor sends back a discrete to the control panel for status

monitoring. The three channels operate in an active/on-line mode. These

features are discussed below.

One channel of basic servo electronics and actuation is shown in figure

12. Six serial buses from the self-checking computers are optically isolated

and enter the multiplex chip. Anyone of the six received digital commands

can be converted and used. The particular input that is used depends on the

address generated by the priority encoder. The selected input goes to the

receiver (UART) , the D/A, and the servo amp. The receiver contains a time-out

feature such that if no message is received on the priority digital channel, a

27

OPTICAL
ISOLATION

MUX
CHIP

UART
CHIP

Figure 12.

D/A
CHIP

ACTIVE
ON·LlNE
LOGIC

,
--- ----,

,

SURFACE POSITION SENSOR

I

, ,
, ON·LlNE

One servo channel.

predetermined alternate is used. The servo amp provides an analog signal that

positions the EHSV. This valve controls the flow of hydraulic fluid to

position the cylinder connected to the surface.

Active/on-line control. - Any single servo channel is sufficient to

position the surface. As shown in figure 12, all engaged cylinders are

force-summed to drive the surface. Active/on-line control is a mechanism to

relieve the force fight among the force-summed cylinders. One cylinder is in

control of the surface position, or active, while the other engaged cylinders

are on-line.

Ideally, the several actuation channels could operate in concert with one

another in an each-channel-active configuration. However, because of the

high-pressure gain characteristics of actuator valves, small tolerances in the

actuator control loops would lead to significant force opposition between

channels.

Maximum actuator capability force opposition could occur over a small

deflection either side of the commanded position. No precise control

capability exists while maximum force opposition is occurring. A hysteresis

type of nonlinearity would be observed when the actuator command is cycled

back and forth.

The pressure feedback path in the on-line channels must overcome this

force-fight tendency by driving the on-line actuators towards a zero force

output condition under normal operating conditions. A limiter is provided in

the pressure feedback path, as shown in figure 12. This limiter is set at a

value such that the pressure feedback signal can slightly exceed the maximum

tolerance between channels. Based on prior studies, the maximum tolerance

between channels of actuation was estimated to be 2.8 rnA when + 8 rnA

full-scale valves were considered. A pressure feedback limit equivalent to +4

rnA was selected for the on-line actuator. The 4 rnA limit would be exceeded

for 1/2 percent of full travel errant motion, after which the on-line actuator

channel will oppose the motion.

Thus the pressure feedback is effective in allowing the output actuators

to operate in harmony with one another. However, the on-line actuator (or

actuators) will oppose any active channel malfunction.

29

Upon detection of any failure in the active channel by the monitor, one of

the on-line channels will be switched to the active status as the

malfunctioning channel is bypassed.

Active or on-line status for all healthy servo channels is assigned on the

basis of the channel health monitor signals. If a channel is bypassed, active

and on-line have no meaning. Table 3 shows a logic table description of servo

channel status as a function of failure status. This table reduces to the

following simple boolean functions, which can be implemented in hardware:

A Active = A Eng

B Active = A Eng • B Eng

C Active = A Eng . B Eng • C Eng

Because of the limiting of the !::.P signal, assignment of active or on-line

status is not critical. The "two active" and "none active" states are not

flight-critical, so this logic is not required to be redundant. There is a

slight preference to have failure modes set more than one channel active

(force fight) in the event of a malfunction of the logic.

TABLE 3. - ACTIVE ON-LINE LOGIC

Condition Servo Channel Status

A B C Active On-Line Bypassed

No Failures OK OK OK A B,C None

F OK OK B C A

First Failures OK F OK A e B

OK OK F A B C

OK F F A - B,C

Second Failures F OK F B - A,e

F F OK C - A,B

30

Self-checking health monitor. - The channel health monitor is responsible

for detecting single errors in the channel and cutting off the channel (by the

engage/bypass valve) if an error is detected. Once the engage/bypass valve is

in the bypass position, it remains so unless there is a master system reset

(probably a manual action). Therefore, it is sufficient for the channel

health monitor to be able to detect only single failures in an unbypassed

servo set. Multiple simultaneous failures are too improbable to consider.

The bypass action clears each failure as it is detected.

It is essential that the channel health monitor be self-testing, though

not necessarily failure-operational. This means that if there is a single

fault in the channel health monitor logic, it is detected and forces the

engage/bypass valve to the bypass position. Thus a servo channel is removed

whenever a fault is detected in the channel or the channel health monitor.

With three redundant channels, failures in up to two channels can be

tolerated, thus satisfying the primary requirement of the servo actuator

system.

The complete diagram of one servo channel is shown in figure 13. This

figure adds the self-checking electronics and health monitor to the

electronics and valves of figure 12. The path from the computer command to

EHSV position is checked by a parallel path consisting of a redundant

multiplexer and D/A chip and a model of the servo amp and valve. Note that

the servo amp input includes a 6P signal that does not appear as an input to

the model since this signal is not involved in positioning the EHSV. The

cylinder position, EHSV spool position, and ~p measurements are made by

LVDTs. These signals are monitored by validity discretes. If the measured

EHSV position compares with the model prediction, and if the LVDTS are valid,

the health monitor decides the servo channel is healthy and should be

engaged. If the channel is not healthy, the monitor bypasses the channel.

This is affected through a solenoid-held engage/bypass valve that controls the

status of the cylinder.

An example design of the channel health monitor is shown in figure 14.

The hardware is duplicated in one-out-of-two codes in order to detect all

single faults and all multiple undirectional faults (e.g., due to power

loss). The engage/bypass valve is engaged only when the two signals Channel

OK and Channel Fail are respectively 1 and O. In all other cases (11, 01, and

31

W
tv

'" ...J
W
Z
Z
c:(
:z:
u
a:
w
I
::l
D..
:E
c
u

x
en

OPTICAL
ISOLATION

MUX
CHIP

MUX
CHIP

UART
CHIP

UART
CHIP

D/A
CHIP

ACTIVE
ON·LlNE
LOGIC

D/A
CHIP

--- ____ I

+

SURFACE POSITION SENSOR

I
I

I ,
/ON·LlNE

MODEl
HEALTH
MONITOR

SURFACE POSITION SENSOR

Figure 13. - One servo channel including self-diagnosis.

w
w

LVDT AND HYDRAULIC
MECHANICAL VALIDITY SIGNALS POWER SUPPLY

EHSV POSITION - ----IN
L[CHANNEL OK ELECTROMECHANICAL

MOOEL
OUTPUT

COMPARATOR

-r-I-I~----.J COMPARE

INVERTING
COMPARATOR

RELAY SWITCH Rt

CHANNEL FAIL ELECTROMECHANICAL

COMPLEMENT OF LVDT AND
HYDRAULIC MECHANICAL VALIDITY
SIGNALS

RELAY SWITCH R2

MECHANICAL LINK
~~-------------, I

I
I

SYST~E~M;-;R~ES~E~T:-"~--~~~~~~::!:~=~=I
SWITCH ENGAG E/BYPAS I

VALVE CONTROt=' BYPASS
SOLENOID

ENGAGE

Figure 14. - Example of channel health monitor and engage/bypass valve control.

00) the valve should be disengaged. This logic function can be realized, as

shown in figure 14, by putting two electromechanical relay switches in

series. When the signals Channel OK and Channel Fail are respectively logic 1

and 0, both the switches are closed and current flows in the solenoid, keeping

the engage/bypass valve in the engage position. For all other values of these

signals, at least one switch will be open, causing the valve to go to the

bypass position. The switch SM is a mechanical switch directly controlled by

the position of the engage/bypass valve. It is open when the valve is in

bypass position.

This example is presented to illustrate that self-testing mechanisms can

be realized using simple coding techniques such as the one-out-of-two code.

The necessary logic and coding functions can be achieved using any appropriate

combination of digital electronics, analog electronics, electromechanical

hardware, or mechanical hardware. Several design solutions exist. The actual

solution to be used will depend on the detailed design tradeoffs, reliability

of components, and requirements/constraints of a particular system. using a

coding technique allows the design of mechanisms that can test single

failures, multiple undirectional failures, loss of power, open circuits, etc.

Thus, the channel monitor/engage circuit can be implemented as a fault-secure

circuit with the preferred failure state being a bypassed channel.

This completes the description of the recommended implementation. This

implementation is compatible with use of the S-3A as a testbed and is based on

components that could be available for flight test in the mid-1980's. The

architecture could be implemented with other components and can assimilate

upgraded processors, new sensors, or electromechanical actuators. A

methodology for validating this architecture is detailed in the following

sections.

SECTION 3--SYSTEM SPECIFICATION AND VALIDATION

Methodologies for the design and verification of general software systems

have received much attention (ref. 9). There are heavy economic incentives

34

for reliability and maintainability. For flight controls, safety is the

issue. The spectre of a single software error shutting down a multichannel

redundant system haunts the avionics industry. \ve claim that this chimera

should be banished for current synchronized-channel architectures (ref. 10)

and certainly for the self-checking channel architecture described in the

previous section. This confidence is not gained without cost. The system and

its software must be designed to have simple, auditable, and testable

structures. The reviews and tests must be done with a discipline that only

the ultimate flight test can inspire. This section and sections 4 through 6

present a methodology for achieving and demonstrating this level of

performance.

This section discusses the system specification and the definition of the

hardware/software interface. Our methodology suggests an approach to making

the system specification precise and complete (ref. 11), then adds more detail

to describe the hardware/software interface (ref. 12). The ADFBW remote

terminal is used as an example to conclude this section.

Section 4 addresses system reliability. Techniques for predicting

reliability are recommended. The fault tree approach described is applied to

the ADFBW architecture defined in section 2. Laboratory methods for

validating reliability predictions conclude section 4.

Section 5 is concerned with software design and validation. It is noted

that software is a paper business--a structure must be imposed. Suggestions

for preparing the software specifications and designing, coding, and testing

the software are given.

Section 6 considers the analysis and testing of the integrated system.

Techniques for identifying test cases are presented. It is shown that much of

this work can be automated to provide rapid and complete reviews of the

performance and establish the correctness of the hardware and software.

3.1 METHODOLOGY OVERVIEW

An overview of the methodology proposed for developing the ADFBW system is

shown in figure 15. This methodology is not novel; much of it is current

35

w
0'1

SYSTEM
REOUIREMENTS
REVIEW

SYSTEM SPEC

SYSTEM REOUIREMENTS

HARDWARE
REQUIREMENTS

SOFTWARE REQUIREMENTS

SOFTWARE REQUIREMENTS
REVIEW

SOFTWARE FUNCTIONAL DESIGN
REVIEW
PRELIMINARY DESIGN REVIEW

MODULE CODE REVIEW

SOFTWARE OESIGN

COOING

MODULE TESTS

FINAL DESIGN REVIEW

INTEGRATION TESTS

HARDWARE DEVELOPMENT

INTERFACE DESIGN SPEC

PROGRAM DESIGN SPEC
DATA BASE DESIGN

PROGRAM DESCRIPTION DOCUMENT

DEBUGGED
PROGRAM DESCRIPTION DOCUMENT

TEST
PROGRAM DE~GN MANUAL

INTEGRATION

VERIFICATION

PRELIMINARY QUALIFICATION TESTING

FORMAL QUALIFICATION TESTING OPERATIONS

Figure 15. - Methodology overview.

practice. The methodology provides two key attributes of a successful

development cycle:

(1) The cycle has a series of definable phases

(2) Each phase has unique, measurable outputs

The methodology presented in figure 15 requires the following activities:

System requirements review

Software requirements review

Preliminary design review

Software functional design review

Module code review

Module tests

Integration tests

Preliminary qualification tests

Formal qualification tests

These activities audit the transmission of the system requirements from the

customer to the contractor, the translation of the customer requirements into

system specifications, the extraction of software specifications into

functional modules, the definition of hardware/software interfaces, and the

further elaboration of detailed software design and testing. The first three

phases relate to establishing the system requirements, hardware/software

interface, and software requirements. They are outlined below. The remaining

items, concerning the design and test of the software, are the subject of

section 5.

Figure 15 shows typical documents produced in each phase. Most of these

documents are used in the next step of the cycle. In addition, each phase

requires some support functions (reviews) that need attention. Finally,

various feedback paths (not shown) exist at each phase to resolve problems.

The reviews at each step of the process are intended to remove errors at the

most cost-effective level.

Since there is much experience in the design and coding of flight control

software, there is confidence that the test and reviews will detect any errors.

37

3.1.1 System Requirements

This phase is conducted to determine the degree of completion of the

concept definition, to review changes authorized by the customer, and to

provide the details and background for preparing the system specifications.

The requirements review provides an opportunity to impress on the customer

that changes are expensive and that they should not be requested casually or

capriciously.

3.1.2 Description of the Hardware/Software Interface

We recommend that the system be specified to the detail of identifying

states, transitions, and inputs/outputs for all flight control functions

abstractly without regard to hardware or software mechanizations. Of course,

the allocation of functions between hardware and software is largely

determined for the particular architecture, and from experience with similar

systems. The object here is to add details and to make the description of the

hardware/software interface complete and precise. After the interface has

been defined, the software specifications are written. Sometimes a formal

hardware specification is also prepared. The verification step must show that

a system operating according to the hardware and software descriptions

fulfills the original system specifications.

3.1.3 Software Requirements

The software specifications are written from the system specifications and

the allocation of functions to hardware or software implementation. This

defines the hardware/software interface. The software requirements review is

informal; it will be conducted early in the program to ensure that the

requirements are complete, necessary, and consistent. An informal

demonstration will be made to show that the software as specified, plus the

hardware functions, will fulfill the system specifications.

To summarize, it is our position that the knowledge and techniques exist

to produce a validatable flight control system. The process requires a

commitment of resources and the discipline to succeed. There are many

historical differences in hardware and software development practices, as

illustrated in table 4. Our proposed methodology imposes the same level of

38

TABLE 4. - HISTORICAL DIFFERENCES IN HARDWARE AND SOFTWARE
DEVELOPMENT PRACTICES

o Hardware proofs requirements with breadboards

--Software typically attempts one continuous development

o Hardware requirements "freeze" prior to build

--Software often tolerates requirements changes throughout design,

coding, and checkout

o Hardware makes design review compulsory

--Software has loosely defined design review points

o Hardware uses firm test procedures

--Software often debugs by engineering judgment

o Hardware uses standard parts

--Software is largely new sequences of computer instructions

o Hardware is built from prints

--Software generally has less detail provided at the design stage

The programmer has near-infinite variation available in

implementing the design

structure and rigor on software as has evolved in the hardware area. This is

the key to successfully developing flight-critical computer systems.

3.2 SYSTEM SPECIFICATIONS

Many studies have shown that precise and complete specifications return,

many times over, the investment in their preparation. The terms

"requirements" and "specifications" are not completely defined. We generally

use requirements to mean the informal statements about the functions and

performance of a system. These are prepared by the customer and are often not

precise or complete. The specifications, or requirements specification, are

the documents that try to outline the requirements in a more formal manner.

These must be as complete and precise as needed to ensure the success of a

project. Indeed, many errors are made in obtaining the correct description of

what a system is supposed to do. The final validation of a system returns to

these specifications.

39

In converting from requirements to specifications, there are varying

degrees of formality. These range from formal languages like SRI's SPECIAL

(ref. 13) to documents prepared according to various military standards (ref.

14) •

3.2.1 Current Specifications

Many engineering projects use one of the military standards as a guide in

writing specifications. The major shortcomings in following military

standards are that some items may be omitted. There are no procedures to

enforce completeness. In addition, the description of functions is left

open. In this section specifications following NRL guidelines (ref. 15 and

16) and MIL-STD-483 are reviewed. Recommendations are made for specifying the

various flight control functions. Finite-state machines are shown to be

useful for describing mode switching, signal selection, and failure management

functions.

To understand the limitations MIL-STD-483 imposes, the specifications for

the NASA Demonstration Advanced Avionics System (DAAS) flight controls were

written in the two styles (ref. 16) of MIL-STD-483 and the Naval Research

Laboratory (ref. 17). The NRL style included the use of finite-state machines

to specify the control modes.

The organization of the NRL specification is shown in table 5. The NRL

suggests that we should:

(1) Specify only external behavior without implying a particular

implementation.

(2) Specify constraints on the implementation, especially the details of

the hardware interfaces.

(3) Write the document so that it is easy to change and may be kept

current throughout the life cycle of the system; also so that it will serve

as a reference to answer specific questions quickly, rather than to explain in

general what the program does.

(4) Record forethought about the life cycle of the system, particularly to

anticipate and facilitate later changes.

(5) Characterize acceptable responses to undesired events and not leave

this to invention by the programmer.

40

o

I

2

3

4

5

6

7

8

9

10

11

TABLE 5. - ORGANIZATION OF AN NRL SPECIFICATION

Introduction

Computer Characteristics

Hardware Interfaces

Software Functions

Timing Constraints

Accuracy Constraints

Response to Undesired
Events

Subsets

Fundamental Assumptions

Changes

Glossary

Sources

Organization principles, abstracts for
other sections, notation guide

If the computer is predetermined, a general
description with particular attention to its
idiosynchrasies: otherwise, a summary of its
required characteristics

Concise description of information received
or transmitted by the computer

What the software must do to meet its
requirements, in various situations and in
response to various events

How often and how fast each function must
be performed: this section is separate from
section 3 because "what" and "when" can
change independently

How close output values must be to ideal
values to be acceptable

What the software must do if sensors go
down, the pilot keys in invalid data, etc

What the program should do if it cannot
do everything

The characteristics of the program that will
stay the same, no matter what changes are made

The types of changes that have been made or
are expected

All documentation is fraught with acronyms
and technical terms. At first we prepared
this guide for ourselves; as we learned the
language, we retained it for newcomers

Annotated list of documentation and
personnel, indicating the types of questions
each can answer

41

(6) Formulate questions before trying to answer them.

(7) Separate concerns so that the scope of changes is limited.

(8) Be as formal as possible by using precise and consistent notation.

MIL-STD-483 calls for two documents. In part I the requirements for

design, development, functional performance, test, and qualification are

given. In part II the details of the configuration and the program itself are

recorded as the final documentation for the item.

From the application to the DAAS flight controls, the following

conclusions were drawn. Both approaches place great emphasis on getting the

hardware interfaces clearly announced. It was found that very minor items in

the interface have profound implications for the structure of the system and

the software. Both approaches require careful annunciation of inputs and

outputs. The military standard requires this for each function; the NRL

seems to tend toward this at the software systems level.

Generally, the military standard was found to be inflexible and awkward,

while the NRL style had the flexibility to fit the application. Many of the

requirements set down in the military standard were answered by pat formulas

which had very little real content. The section on testing is usually written

this way, with promises that have no substance. until a definitive

methodology for validation is worked out for flight controls, this will be the

case.

The NRL specifications do not consider the testing problem. Motivation

and general descriptions were harder to include in the NRL outline. It was

found that when changes came through, it was easy to change the finite-state

machine descriptions, but it was hard to keep the general descriptions

consistent throughout the documentation.

The recommendation is to use the outline of MIL-STD-483, but to use the

suggestions from NRL and others to make a more complete and meaningful

document. The flight control functions should be described in a manner that

best fits each particular function. Some alternate modes of description are

reviewed below.

42

3.2.2 Functional Descriptions

Any information or signal processing system may be thought to be made up

of two flows--one is the information or data being processed by the system,

the other is the sequence of control actions that manipulates the data (ref.

17) •

Petri nets (ref. 18) and LOGOS (ref. 19 and 20) are two graphical

techniques for describing flows. A Petri net is a directed, bipartite graph

of alternating vertices called places and transitions. It provides an

abstract model of information and control flows. The major applications of

Petri nets have been for systems of events in which some of the events occur

concurrently, but with constraints on the concurrence, predecence, or

frequency of the events. Petri nets are sketched as circles and bars, called

places and transitions. The places represent states; the transitions are

labeled with the events that enable the transition. The graphical technique

LOGOS portrays these two flows in parallel graphs. The control graph

initiates, sequences, and synchronizes the data operations on the data graph.

LOGOS has been used to analyze very complicated systems, including the Air

Force DAIS architecture (ref. 21).

In many systems the structure for producing one of the flows is more

complicated or fundamental to the system than the other. For example, in

handling huge quantities of data, the organization of the data is central in

designing efficient algorithms. One might say in this case that the data flow

dominates the design considerations. For flight controls, the calculations on

the data are not complicated, but the structure for controlling the

computations is. Control flow dominates. The design will then be concerned

chiefly with the control structure; the data flow will follow along naturally.

Both LOGOS and Petri nets were found to be awkward, very complicated, and

difficult to change or analyze without a great amount of effort. Finite-state

machines or other direct descriptions appear to be appropriate for flight

controls.

A finite-state machine is the simplest computing structure. At the next

level are the push-down automata, which have stack memories. The most general

theoretical computing structure is the Turing machine. Finite-state machines

use two expressions, called states and events. The states correspond to the

43

sequential circuits of the electronics engineer. Events represent an input to

the control structure, signalling some important point of activity in its

environment.

The advantage of the finite-state machine representation is that it is

precise and may be easily reviewed by control engineers for completeness. It

may be used to describe system-level functions; it is not limited only to

hardware or software. The states must be clearly identified and the events

causing transitions must be defined. This provides a structure that may be

completely tested. Fortunately, all flight control functions are either

straight-line calculations requiring no past data, or calculations requiring

only a fixed, finite set of past data. Hence, the latter functions may be

represented as finite-state machines.

A general finite-state machine is diagrammed in figure 16. When inputs

are received, outputs are calculated as functions of the current values of the

state variables and the inputs. Then the machine switches to a new state,

again as a function of the current state and the input quantities. It is

often useful to produce outputs associated with these state transitions; for

44

START
OR

RESET

INPUTS

" CALCULATION

" ~ OF
~ STATE TRANSITIONS

"A~
w

el- en ...let I-ot;
It

2:

'V
w
:>
w

'" CALCULATION

" OF
~ , EVENTS AND OUTPUTS

Figure 16. - A finite-state machine.

'" NEW STATE
,

" OUTPUTS
/

exarrple, a warning to the pilot upon automatic change of mode with loss of an

input signal. These representations were found to be very natural for mode

switching, signal selection, synchronization, and failure management.

Finite-state machines are represented in two different ways--as a directed

graph or a table. The directed graph approach is more intuitive because it is

a picture. As the number of states, events, and state transitions grows, this

advantage is effectively negated by the complexity of the diagrams. states

are represented in the diagram as circles; legal state transitions are

displayed as directed arrows connecting one state with another. The event

that triggers a particular state transition is labeled on the arrow. The

diagrams are interpreted in this way. At any time, the finite-state machine

is in a current state. When an event is detected and received, the machine

will make the state change indicated by the outgoing arrow labeled with that

event. For a deterministic machine there can be at most one such arrow. When

no such labeled arrow exists for the current state, this represents an error,

and the machine will attempt to recover. The most simple recovery action is

to ignore the event. The action sequence performed by the machine while

changing state is generally not included in the diagram.

The alternative representation is to describe the state transitions with a

table or matrix. The entries in the matrix contain the number of the new

state and an ordered list of actions to be performed to effect a change in

state (possibly null). Blank entries are illegal state transitions and could

contain some code to assist recovery.

As the number of states and events grows larger, there is a need to

partition the state machine so that each part is more manageable. To increase

the clarity of the control structure, this partition should be done based on

logical properties, and not in an arbitrary manner. The remote terminal

function in section 3.3 illustrates how complex state machines can be

partitioned into simpler ones.

It has been shown on the DAAS flight controls that describing mode logic

as a finite-state machine is very effective. It makes all design decisions

visible for review and helps prevent errors of omission. Signal selection

algorithms may also be precisely described as finite-state machines. An

example is given in appendix A. These representations were also used to

45

analyze synchronization schemes. This application is also recorded in the

appendix. Part of a triply-redundant failure management segment for data

exchange and voting is analyzed in the appendix by tracing the syndromes

caused by component failures. However, while many of the functions in flight

controls are finite-state machines, we can be flexible and use whatever is

most appropriate.

The functions for flight control fall into categories for which general

verification requirements will be prescribed:

(1) The executive structure (initialize, branch in the rate tree, reCOver

from power interrupts, equalize integrations, maintain the dynamic filter

states, annunciate system status)

(2) Data transfers (input, output, exchange data between channels)

(3) Control mode switching and dynamical switching within control modes

(4) Control law calculations (outer loops, inner loops, gain schedules)

(5) Synchronization (synchronize channels, time-synchronize programs for

transfers, etc)

(6) Built-in-test functions (preflight checks, on-line checks)

(7) Selection from redundant input signals

(8) Failure detection and reconfiguration

It is also necessary to show a global consistency between these functions,

particularly the built-in-tests and the failure management functions. For

functions that have auxiliary hardware, as does the frame synchronization of

channels, it must be shown that the response of the software to a hardware

fault cannot result in a single-point failure.

3.3 FUNCTIONAL SPECIFICATION FOR THE REMOTE TERMINAL

The remote actuator terminal will be used as an example of writing

functional specifications abstractly, independent of the implementation. The

purpose of this approach is to have specifications against which the system

can be validated, regardless of the details of the hardware/software

allocations. This will also provide a measure for checking these allocations

and for reviewing the hardware/software interface.

46

Implementation details of the remote terminal were discussed in section ,
2.3.3. (See the block diagram in figure 13.) This paragraph provides a brief

summary of the implementation for convenient reference. The servo commands

are serially transmitted to the remote terminal from six or fewer computing

channels. These will carry parity bits with which the fidelity of the

transmission and the status of the sending channel may be determined.

Three hydraulic cylinders are connected to sum forces to drive the

aerodynamic surface and to provide triple redundancy. Any cylinder alone can

position the surface. Each cylinder has a solenoid-held engage/bypass valve

to control the status of the cylinder. The position of the cylinder, the

position of the spool of the EHSV, and the pressure differential across the

cylinder are measured by LVDTs. Each of these provides a signal attesting to

the validity of the LVDT output.

3.3.1 Top-Level Function of the Remote Terminal

The remote terminal must select a suitable signal from six or fewer of the

computer channels and drive the surface according to this command. The unit

must be operational following any two component failures. The failure may be

in mechanical, hydraulic, or electrical components. "Suitable signal" is not

defined, but left as a choice in the design.

3.3.2 Hierarchy of Functions

The top-level function may be further specified in terms of the

lower-level functions that are necessary. Figure 17 illustrates this

decomposition. Design decisions are made in constructing this decomposition.

Drive EHSV according to command. - One of the second-level functions of

the remote terminal is to drive the EHSV of each redundant channel. This is

accomplished by obtaining the input servo command and computing the control

valve for the EHSV. The serial digital transmissions from the six computing

channels must be received and interpreted. The presence of a signal and the

validity of the transmission must be determined by the subfunction "validate

signal transmissions." The "select command" subfunction must choose from the

valid signals or perform median, averaging, or some selection process. The

47

OBTAIN INPUT
SERVO COMMAND

DRIVE EHSV
ACCORDING TO COMMAND

COMPUTE EHSV
COMMAND

VALIDATE SIGNAL
TRANSMISSION

SELECT
COMMAND

POSITION SURFACE
ACCORDING TO COMMAND

REDUNDANCY MANAGEMENT
OF SERVO CHANNELS

MONITOR
CHANNEL

MONITOR SERVO
INPUT COMMAND

ASSIGN
ENGAGE/BYPASS

MONITOR EHSV
POSITION

INTERPRET LVDT
VALIDITY SIGNALS

Figure 17. - Hierarchy chart of specifications for the remote terminal.

RELIEVE
FORCE FIGHT

surface position, the valve spool position, and the differential of pressure

in the cylinder are fed back and combined with the selected command as

specified by the servo system control law. This control law computation may

be analog or digital. An analog signal to drive the EHSV must be provided.

Redundancy management of servo channels. - The other second-level function

of the remote terminal is to perform the redundancy management of the servo

channels. Redundancy management includes (1) monitoring the health of each

channel, (2) either engaging or bypassing a channel based on its health, and

(3) relieving the force fight among the engaged channels. The monitor channel

subfunction is to provide the failure detection mechanism for the general

operation of the servo channel. It may require self-checking circuitry.

Proper monitoring of any D/A or A/D translations is required. A comparison

between expected valve-spool position as predicted by a model and the measured

valve-spool position is suggested. A subfunction to interpret LVDT validity

signals is required to determine that the feedback sensors are all functioning

properly. Each channel must be engaged or bypassed on the basis of the output

of the monitor channel subfunction. Also, a mechanism must be included to

relieve the force fight among the force-summed cylinders. The use of an

active/on-line assignment with pressure differential feedback is suggested.

3.3.3 Finite-state Machine Description

The redundancy management of the three servo channels can be specified as

a finite-state machine. The health monitoring function of each channel is

used to assign an engage or bypass status. An engaged channel may be active

or on-line, as described in the previous paragraph and in section 2.3.3. Thus

each servo channel can be in one of three possible states:

(1) Engaged and active

(2) Engaged and on-line

(3) Bypassed
3 There are 3 = 27 states; the various transitions can be described

based on changes in engage/bypass or active/on-line status. In order to study

the engage/bypass function it is useful to cluster the 27 states into the

eight groups shown in figure 18. Here transitions occur only if the engage

49

\J1
o

ClUSTER 2 ----., -, '" , " ,
/ A' D ,
lB' E . At(Ot) \

I C = E . D£(Ac) \

: I
I I
\ I
\ 4 STATES I , / , " , " '...... .","

"":,,:[~-
"",,,,,- ,

" " / A' D ,

lB' E • Ac(OIl) \
I C • D \
I I
I I
\ I
\ /
" 2 STATES ~,/

" ' _--.,.".,-

B DISENGAGE

CLUSTER I
/.,,----

,," " I A = E • AtIO~) \
I B = E . O~(Ac) \

I C = E . O~(AcI \
I I
\ ,
\ 8 STATES WHERE All J

\ ENGAGED I
, I

"- /"
..... - ..-" -r B DISENGAGE

"",,-- --",
I A = E . AdOt) ,

I \
lB' D \
I C = E . ollAc) \
I \
\ J
\ 4 STATES I , I , /

" ,," "","
A ----

DISENGAGE

.",,,,- --...... , ,," ,
" " I A = D ,

I B = D \
I C = E • Ac(OIl) \
I I
I I
\ I
\ 2 STATES I , I

C
DISENGAGE

"'-=--_~/~" C DISENGAGE

/...- ,
,/ ,

I ,
I A = D \
I B = D \
I C = D I
I I
\ I
\ I STATE I
, I , /

"... ..-/ ---.",...

/"....---- ,
/ ,

I ,
I A = E . Ac(O~) \

/ B = E . O~(Ac) \

I C = D I , ,
\ I
\ I
" 4 STATES "I
, "
' _----'

1 ",:,,'"
----

/' ,
,/ ,

I ,
I A • E • Ac(O~) ,

I B = D \

I \
I C = D I
\ I
\ I
\ /

" 2 STATES /
'...... ..","/ ----

A DISENGAGE

Figure 18. - Finite-state model for the remote terminal.

status of any channel changes. States within each cluster cover all the

active/on-line assignments, including those resulting from logic failures

(i.e., all active or all on-line). To verify this function in the remote

terminal, it must be shown that all transitions between clusters operate as

specified. For example, the event "channel A bypassed" must take any of the

eight states in cluster 1 to one of the states in cluster 2. To examine the

active/on-line logic, the states within each cluster must be delineated. The

transitions between states within a cluster can be verified, and it must be

shown that the active/on-line logic does not cause transitions between

clusters.

The finite-state description of figure 18 was used as an example. It was

also used to design the logic in the remote terminal presented in section

2.2.3. This description is useful because it requires the designer to

consider all the possibilities. In addition, by clustering the states, the

operation of the engage/bypass logic can be separated from the active/on-line

function.

SECTION 4--SYSTEM RELIABILITY

A major aspect of the design methodology is the estimation and validation

of the system reliability. Crude estimates of reliability are obtained during

the process of defining the flight control architecture. Once a candidate

architecture has been defined, a detailed analysis to estimate the probability

of loss of control per hour of flight must be performed. This theoretical

estimate of probability must be substantiated with laboratory tests. This

section discusses both the calculation of theoretical reliability and

laboratory methods to verify and validate the reliability of the system.

4.1 RELIABILITY ESTIMATION

Sound theoretical estimates of the performance of the ultra-reliable FBW

system are necessary. In formulating the theoretical models for the

reliability analysis, the following assumptions are made:

51

(1) All possible failure modes of the system are identified and their

effects on the system's operation are known.

(2) The ability of the system to detect faults and to reconfigure

automatically is implemented correctly by the software and the hardware of the

system.

(3) All component failures are random in nature, and their failure

rates are known.

(4) All possible interactions between the system and its environment

have been foreseen.

These assumptions separate abstract concept from physical reality. It is

difficult to identify all possible failure modes of a complex system and to

foresee all possible interactions of the system with its environment. Only

through years of experience with flight control systems has confidence been

gained that the abstraction comes close to physical reality. It is only with

these assumptions, however, that theoretical methods can be applied and the
-9 system's design can be based on numerical values such as 10 per hour

probability of failure.

Before the detailed reliability analysis is performed, all pertinent

component failure modes of the system are identified. Failure rates expressed

as the MTBF of these components are estimated based on analysis,

specifications, and experience with the actual unit, if it exists. The

component reliabilities are combined in the statistical equations, from which

the failure probability of the total system configuration can be computed.

The equations take into consideration the number of redundant channels, the

effects and interactions of a component failure on the other parts of the

system, self-test coverage, and the reliability of each component.

4.1.1 Fault-Tree Analysis

Fault-tree analysis is the recommended method of computing statistical

reliability. It provides a clear demonstration of the effects of system

element faults, and computer tools aid its application. The fault-tree

program used in this study can determine the sensitivity of system failure to

the reliability of individual components. This serves to identify the

critical components.

52

The fault tree graphically represents the logical relationship of a

particular, undesirable event, called the top event, to the basic failures

(causes) called pri~ary events. If system failure is the undesirable event,

then the fault tree would graphically represent all the possible faults or

failures, or their combinations, that could cause the top event to occur.

After the failure model of the system has been expressed in the

fault-tree format, the computer program, method of obtaining cut set (MOCUS),

is used to provide qualitative analysis. HOCUS identifies and displays all

critical failure paths (minimal cut sets) of a system's logic structure.

The output of MOCUS is then used as an input to the kinetic tree theory

(KITT) computer program for quantitative analysis. KITT provides information

on the probability of failure as a function of time for each component, for

each minimal cut set, and for the entire system.

Before the algorithm is presented, some terms are defined as follows:

(1) Cut set. - This is a collection of basic events whose presence

will cause the top event to occur.

(2) Minimal cut set. - A cut set is said to be minimal if it cannot be

further minimized and still ensures the occurrence of the top

event.

(3) Boolean indexed cut sets (BICS). - BICS are defined such that, if

all the primary events are different, the BICS are precisely the minimal cut

sets. This definition of Brcs does not mean that the method is limited to

fault trees with primary events appearing only once in the fault tree. The

algorithm used in MOCUS starts with the top event and resolves the fault tree

to obtain cut sets. An AND gate always increases the size of the cut set

whereas an OR gate increases the number of cut sets. Cut sets obtained in

this fashion are BICS. Duplicate events appearing in anyone BICS, if any,

are eliminated. All BICS that are supersets of any other BICS are discarded.

This process is illustrated in an example below.

(4) Superset. - Superset is a BICS that contains every primary event

that some other BICS contains, plus additional primary events. After this

winnowing, the minimal cut sets are determined.

MOCUS. - The algorithm used in MOCUS to find the minimal cut set is

unique in that it starts at the main event (failure) of interest, called the

53

top event, and proceeds to basic primary events (component failure) to resolve

the fault tree into cut sets. MOCUS guarantees that all the minimal cut sets

are found. A main feature of MOCUS is the small execution time it takes to

determine all minimal cut sets even for a large, complex tree.

The MOCUS procedure uses boolean logic to determine the minimum group of

cut sets that must be considered in determining the system reliability. This

"minimization" greatly reduces the effort in calculating the reliability

figures because it eliminates all duplication. An example of such

minimization is illustrated below.

The construction of the minimal cut sets will be illustrated with a

simple example. Consider the logic diagram shown in figure 19.

A.

54

The algorithm starts with the top event. The gate under the top event is

ELEMENTS IN THE CUT SET
I

I A

The inputs to the AND gate A are gates Band C.

ELEMENTS IN THE CUT SET
I 2

I B C

TOP
EVENT

Figure 19. - Sample fault tree.

Gate A is replaced with its input, gates Band C. Gate B is an OR gate

and its inputs are gate D and component 1. The OR gate increases the number

of cut sets.

ELEMENTS IN THE CUT SET
1 2

1 D C

~ 2 1 C 0
~

~ w
w ~
~ ~
~ ~ z u

Gate D is an AND gate with input of components 2 and 3. The AND gate

increases the size (number of elements) of the cut set.

55

e:..
0

E-+
:::.:: ~
~ UJ

~ E-+
::;,::;,
ZU

ELE~ENTS IN THE CUT SET
123

1 2 3 C

2 1 C

Gate C is an OR gate with input of components 2 and 4. Replacing gate C,

we have:

ELEMENTS IN THE CUT SET
123

1 2 3 2

2 3 4

1 2

4 1 4

Cut sets number 1, 2, 3, and 4 are BICS. In cut set number 1, the basic

event of component 2 failure is duplicated, thus eliminated.

56

r:..
0

E-< :x: ~
~U)

~ E-<
::J::J
ZU

ELEMENTS IN THE CUT SET
123

1 2 3

2 2 3 4

3 1 2

4 1 4

Cut set number 2 is a superset of cut set number 1, therefore it is

discarded.

ELEMENTS IN THE CUT SET
123

1 2 3

1 2

1 4

For the sample fault tree the minimal cut sets are (2,3), (1,2), and

(1,4). This result is used as input to KITT.

KITT. - KITT is a computer code written as an application of kinetic tree

theory. KITT requires as input the unique minimal cut sets of the fault

tree. Exact, time-dependent reliability information is determined for each

component of the fault tree and for each minimal cut set.

57

The failure intensity (6) of each component is assumed to be constant

with respect to time (i.e., exponential failure distributions only are

considered). As in kinetic tree theory, the components are assumed

independent. All the components are assumed to be in their operating state at

t = O. KITT can handle components that are nonrepairable or that have a

constant repair time.

The system reliability information, or system reliability

characteristics, obtained from the minimal cut sets is:

System failed probability--the probability that the system is in

its failed state at time t.

System failure rate--the expected number of failures the system

will suffer per unit time at time t.

I~ (t')dt' o 0

System failure intensity--the probability that the system

will suffer a failure per unit time at time t, given it is in

its functioning state at time t.

The expected number of failures the system will

suffer during the time interval from 0 to t.

1 - EXP[- It" (t')dt'] o 0 The probability that the system

will suffer one or more failures

in the time interval from 0 to t.

Reliability results are obtained by upper-bound approximations. The

upper bounds can be obtained when minimal cut sets are used to determine

system reliability information. The upper bounds are excellent approximations

to the exact values.

The system failure rate WO(t), failure intensity "O(t), and failed

probability QO(t) are bounded and approximated as:

58

v

QO(t) < 1 - ~c [li- Q (t)]
i=l

where

NC
< L: w. (t)

i=l 1

L:
i=2

Iv (t) '.
1

NC v
IT [1 - Q (t)i 1
i=l

NC = total number of minimal cut sets

v
w. (t)

1

v
Q. (t)

l.

= ith minimal cut set failure rate

= ith minimal cut set failed probability

Using these upper bounds for AO(t) and WO(t), upper bounds for the

integral system characteristics can also be approximated as:

NC
E
i=l

v
W. (t')

1
dt'

NC v
E W.(t')
i=l]. dt'
NC v
IT (l-Q.(t'»
i=l].

The upper bounds become the exact values if the minimum cut sets have no

components in common--that is, the minimal cut sets are independent. This is

quite important since the values are thus always conservative, resulting in a

conservative estimate for system failure phenomena,

4.1.2 Analysis of the Advanced Fly-by-Wire System

The flight control system can basically be divided into the control system

architect and the S-3A interfaces. The proposed microprocessor control system

architecture was given in section 2.

59

The S-3A interfaces are hydraulic and electrical. The baseline S-3A

hydraulic system is a dual system. The power source for the hydraulic system

is the two-engine-driven pump with an electric-driven.pump as backup for

system 1. The baseline S-3A electrical system consists of two engine-driv~n

75 kva generators and an APU-driven 5 kva generator. Backup batteries are

provided for the FBW flight control computers. It is assumed that three

backup batteries are operative at dispatch.

Three proposed refinements of the baseline configuration were studied.

The goal was to improve overall system reliability.

The first refinement is to incorporate a bigger auxiliary power unit

(APU). This provides the capability of driving a 75 kva generator in lieu of

the 5 kva generator. With this additional electrical power, a bigger backup

electric-driven hydraulic pump can be incorporated. The additional electrical

power also enhances the electrical power system.

Another proposed refinement is to have three separate and independent

hydraulic systems, with the additional third system powered by an

electric-driven pump, without the benefit of the bigger APU.

The last proposed refinement is to combine the above refinements, having a

bigger APU and three independent hydraulic systems.

The four configurations above were combined with the ADFBW architecture to

construct fault trees for the following four cases:

(l) FBW 3

(2) FBW 3 with bigger APU

(3) FBW 3 with three hydraulic systems

(4) FBW 3 with bigger APU and three hydraulic systems

Throughout this analysis, the fault trees constructed are of the

primary-failure and command-failure types. Secondary failure fault trees are

not included in this phase of the study.

A component failure is considered a primary failure if it occurs while the

part is functioning within the operating parameters for which it was

designed. Command failures are failures of coordinating events between

various levels of the fault tree, from basic failure events to the top event.

Secondary failures are due to excessive environmental or operational stress

placed on the system components.

60

Failure rates used in analyzing the S-3A equipments are point estimates of

the in-service experience covering the 1980 and 1981 period. Estimates of the

component failure rate were made for the new equipment.

A total of 62 components was evaluated in the fault tree analysis. The

components are included in the basic FBW system architecture and the

electrical and hydraulic systems of the S-3A. Only the dispatch model of the

FBW architecture was used. The dispatch model is the FBW system configuration

with a minimum number of operative elements allowed for dispatch. The

components used in the analysis and their corresponding failure rates are

summarized in table 6.

The loss of flight control probability for an hour of flight was evaluated

for each of the four configurations as follows:

(1) FBW 3

P
F

= 6.188 x 10-8

(2) FEW 3 with bigger APU

P
F

= 1.111 x 10-10

(3) FBW 3 with three hydraulic systems
-8

P
F

= 6.227 x 10

(4) FBW 3 with bigger APU and three hydraulic systems

P = 1.843 x 10-10
F

A computer printout provided documentation for each of the configurations

and failure rates used. It also displays all minimal cut sets and their

associated failure probability, in descending order. If further reliability

improvement is deemed necessary, attention should be focused on the components

in the top-ranked minimal cut sets.

Configuration (2) above exhibits the highest reliability among the four.

This configuration, in effect, has three hydraulic pumps with crossfeed

capability between pumps 2 and 3. The disadvantage of this arrangement is

that both systems are lost with the occurrence of a single failure, which

depletes the hydraulic fluid.

The anticipated increase of reliability with three independent hydraulic

systems--configuration (3)--was not observed. This was mainly due to the fact

that the third hydraulic system was constructed from the backup pump of system

61

62

.

No.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

, 15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

computer
Symbol

AAPU

ACl

AC2

AC3

AC4

APU

AXl

AX2

AX3

AX4

AYl

AY2

AY3

AY4

AZl

AZ2

AZ3

Az4

BPMP

BTl

BT2

CC1

CC2

CC3

CTl

CT2

CT3

ENGl

ENG2

GTEN

IDGl

TABLE 6. - ADFBW FAULT TREE PRIMITIVES

Failure
Rate
(10-6/hour)

438

91

91

91

91

480

30

30

30

30

30

30

30

30

30

30

30

30

38.7

348.9

348.9

250.0

250.0

250.0

40.0

40.0

40.0

247.0

247.0

114.0

5000.0

Description

Accumulator for APU starter

Air data computer, channell

Air data computer, channel 2

Air data computer, channel 3

Air data computer, channel 4

Auxiliary power unit

Longitudinal accelerometer, channel 1

Longitudinal accelerometer, channel 2

Longitudinal accelerometer, channel 3

Longitudinal accelerometer, channel 4

Lateral accelerometer, channel 1

Lateral accelerometer, channel 2

Lateral accelerometer, channel 3

Lateral accelerometer, channel 4

Vertical accelerometer, channel 1

Vertical accelerometer, channel 2

Vertical accelerometer, channel 3

Vertical accelerometer, channel 4

Backup pump for hydraulic system no. 1

Battery no. 1

Battery no. 2

FBW computer, channel 1

FBW computer, channel 2

FBW computer, channel 3

Copilot stick transducer, channel 1

Copilot stick transducer, channel 2

Copilot stick transducer, channel 3

Engine no. 1

Egine no. 2

APU electrical generator

Integrated drive generator no. 1

~o.

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

Computer
Symbol

IDG2

PGl

PG2

PG3

PG4

PMPl

PHP2

PSl

PS2

PS3

PTl -

PT2

PT3

RGl

RG2

RG3

RG4

RSl

RS2

RS3

SBl

SB2

SB3

SB4

YGl

YG2

YG3

YG4

YSl

YS2

YS3

T.~LE 6. - Concluded

Failure
Rat~6
(10 /hour)

5000.0

30.0

30.0

30.0

30.0

209.0

209.0

90.0

90.0

90.0

40.0

40.0

40.0

30.0

30.0

30.0

30.0

90.0

90.0

90.0

10.0

10.0

10.0

10.0

30.0

30.0

30.0

30.0

90.0

90.0

90.0

Description

Integrated drive generator no. 2

Pitch rate gyro, channell

Pitch rate gyro, channel 2

Pitch rate gyro, channel 3

Pitch rate gyro, channel 4

Engine-driven hydraulic pump no. 1

Engine-driven hydraulic pump no. 2

Elevator secondary actuator, channell

Elevator secondary actuator, channel 2

Elevator secondary actuator, channel 3

Pilot stick transducer, channell

Pilot stick transducer, channel 2

Pilot stick transducer, channel 3

Roll rate gyro, channel 1

Roll rate gyro, channel 2

Roll rate gyro, channel 3

Roll rate gyro, channel 4

Aileron secondary actuator, channell

Aileron secondary actuator, channel 2

Aileron secondary actuator, channel 3

Sensor bus, channell

Sensor bus, channel 2

Sensor bus, channel 3

Sensor bus, channel 4

Yaw rate gyro, channel 1

Yaw rate gyro, channel 2

Yaw rate gyro, channel 3

Yaw rate gyro, channel 4

Rudder secondary actuator, channell

Rudder secondary actuator, channel 2

Rudder secondary actuator, channel 3

63

1. This effectively reduces the reliability of system 1 since the backup was

removed.

Configuration (2) is recommended. Additional details are given in section

7.

4.2 RELIABILITY VALIDATION

To validate the reliability requirement in the laboratory, it must be

shown that the system does indeed behave as the mathematical model. This must

hold for all normal functions and all classes of failures that were

hypothesized. The abstract assumptions leading to the design and realization

of the reliability requirement must be shown to be closely related to the

physical reality, and must be implemented correctly by the system's hardware

and software.

The following sections discuss the validation of component reliability,

validation of fault tolerance, failure modes effects tests, and accelerated

life tests. Detailed discussion of the automated iron bird tests is deferred

to section 6.

4.2.1 Component Reliability Validation

Major components are identified in the preliminary design and the

reliability analysis stages. The reliability of the components in terms of

MTBF are established. In order for the reliability requirement of the total

system to be achievable, the MTBF for each component must satisfy this

requirement. The MTBF of existing equipments can best be obtained from field

service experience. If that information is not available, results of the

manufacturer's reliability test program for the equipment can be used.

Reliability in terms of MTBF for newly developed equipments must be

validated in the laboratory. This can be roughly divided into two

processes--equipment burn-in and reliability qualification testing. Burn-in

is used to assure that equipment presented for qualification testing is free

of workmanship defects and other infant mortality problems. It consists of

testing, analyzing all failures, incorporating corrective action, and

retesting. This sequence is repeated until assurance is made that the

64

required reliability can be demonstrated during the reliability qualification

test. The purpose of the reliability qualification test is to estimate the

true MTBF of the equipment. Since constant failure is assumed, the equipment

subjected to reliability qualification testing must be free of design defects

or infant mortality type failures. The MTBF of an equipment can be

demonstrated in the laboratory using statistical test plans such as those

described in MIL-STD-781C. Depending on statistical confidence levels and

discrimination ratios (criteria for acceptance and rejection), test hours of 5

to 10 times the predicted MTBF are normally required.

Measured component MTBFs should be fed back to the reliability analysis to

reevaluate the total system reliability. If the reevaluated system

reliability falls substantially below its required value, efforts must be made

to improve the component reliability or to reconfigure the system.

4.2.2 Fault Tolerance Validation

Ultra-reliability of flight-critical systems is achieved through redundant

design. The system must be able to tolerate multiple faults while maintaining

undegraded flight operation. Validating the fault-tolerance and

reconfiguration features of the system is the most critical step toward

validating the reliability requirement of the total system.

To validate the fault-tolerance requirement, actual hardware faults must

be inserted into the system. The capability of the software to detect and

isolate the faults and to effect system reconfiguration must be demonstrated.

Transient faults must also be included. The timing of the fault relative to

the control cycle of the system must be evaluated. These processes can best

be accomplished in the iron bird, where a high degree of fidelity to the

flight environment is obtained through including actual system components,

with software executing in a real-time, closed-loop environment.

The fundamental problem of fault-tolerance validation for a

flight-critical digital system is the vast number of possible test areas when

all combinations of flight conditions and multiple hardware faults must be

considered.

65

In digital systems, software errors can only be uncovered by executing the

software for a set of well-designed test cases. The following steps provide a

solution to the problem.

(1) Automate testing in the iron bird.

(2) Generate a large but manageable number of test cases, from both the

theoretical and practical perspectives, so that validation of digital

flight-critical systems can be carried out conclusively and efficiently.

A more detailed discussion on the approach and concepts of these two areas

is given in sections 6.1 and 6.2.

4.2.3 Accelerated Life Test

A typical reliability "bathtub" curve is shown in figure 20, which

compares life and failure rate. The horizontal line is the failure rate

predicted for mature systems following debug and early life failures. At the

end of the service, life wear-out and durability failure modes appear and

increase the failure rate.

Compressing the time factor by increasing cycling rates for high stress

levels is the traditional method of demonstrating fatigue life. Similarly,

increasing temperature and temperature cycling are the methods used to

accelerate electronic systems burn-in and reduce the time required to achieve

mature equipment failure rates.

Figure 21 shows the impact of accelerated testing combining cyclic testing

and environmental testing. In the random portion of the curve the failure

rate will be higher than normal, but this rate can be used for analytically

combining failure rates in the redundant configurations of the final design.

By combining the concepts of automated cycling and increasing

environmental stressing, accelerated life tests can be applied to the

integrated FBW system in the iron bird. Test cases would be designed that

consist of combinations of variables such as aircraft flight condition,

environmental disturbance level, maneuver profile, and system model

engagement. Environmental stressors such as extreme temperature and

temperature cycling are applied to various components of the system.

Automation would be used to step through the test cases with system and

component performance monitored. Any inconsistency of system performance,

66

FAILURES

l DESIGN PROBLEMS

\1 INFANT MORTALITY

VERIFICATION OF FAULT

WEAROUT

){

TOLERANCE (INDUCED FAILURES)

REQUIRED TEST HOURS FAILURES
BEFORE FLIGHT \

----r------r~
RANDOM FAILURES

2000 END OF
SYSTEM LIFE

t-I---------- LIFE (HRS) ---------1-1

Figure 20. - Reliability life curve.

0\
co

w
l
e:(
ex:
w
ex:
:;,
..J -e:(
u. ACCELERATED LIFE CURVE

NORMAL LIFE CURVE

LIFE (HRS)

Figure 21. - Accelerated and normal life curves.

software logic error, and unexpected component failure is logged for later

evaluation, and the system proceeds to the next test case. The same testing

procedure can be repeated after incorporating any fixes and design changes

until all design and software errors are resolved.

Using a high degree of automation and applying severe stressors for

accelerated life testing would substantially reduce total test time and labor

cost. It should be emphasized that this procedure identies weak points in the

design of the system and eliminates infant mortality type failures rather than

demonstrating overall reliability of the system. The combined efforts of

analysis, component reliability tests, fault-tolerant validation, software

verification, and pilot-in-loop failure modes and effects tests are necessary

to validate the reliability of the ADFBW system. Accelerated life testing,

however, is an important step to obtaining high confidence that the system is

qualified for flight.

SECTION 5--S0FTWARE DESIGN AND VALIDATION

This section continues the description of the methodology outlined in

section 3.1. The design and validation of the software is described in this

section.

This section begins with a review of flight control functions. The next

section reviews tools and techniques. Selected tools and techniques

appropriate for flight control software are recommended.

5.1 FLIGHT CONTROL FUNCTIONS

A multichannel system in which the channels are synchronized for

cross-channel comparisons requires the following functions:

Initialize computer

Run preflight built-in-tests

Recover from power transients

Initially synchronize with other computers

Exchange state data, initialize state

69

Monitor sensors, select signals

Manage failures, reconfigure system

Branch to rate path

Calculate control gains

Run mode and switching logic

'rest intercom

Calculate control laws

Test synchronization

Test power supplies

Run output test

Perform CPU self-tests:

Processor self-test

Parity checker test

Memory sum check

Memory addressing test

Watchdog check

Scratchpad sum

Sum check of constants

Test program counter

Annunciate system status

Select output signals

Monitor actuator response

Frame synchronize the computers

This software is not very complicated compared to general software

systems. Indeed, many complete flight control systems have been programmed by

a few control engineers. Most of these functions require straight-line

programs. There are only a few do-while loops that depend on external events

for termination and none that depend on their own calculations for

termination. These event-driven functions are for timing synchronization

events and for the watchdog timers.

The executive structure assumed in the list is a simple rate tree that

calls the functions in a fixed order. An alternative is to call tasks in an

interrupt-driving structure. The first is usually chosen by control

70

engineers; the second is chosen when software experts, familiar with

operating systems, do the designing. Each has advantages and disadvantages.

A rate structure requires that the functions must be allocated to the

branches of the rate tree so that the timing is balanced. This makes changes

difficult because the time for execution must always be checked. Other

aspects of the rate tree are easily verified. Since it is deterministic,

testing will lead to confidence in its correctness. with a nondeterministic

interrupt structure, no amount of testing can cover all of the possibilities.

The software overhead and complexity is much higher if interrupts or a

nondeterministic scheduling is used. Because of our concern for validation we

recommended a rate-tree structure.

If the channels run asynchronously and are not voted, all of the

synchronization functions and many of the failure management functions are

unnecessary. These are the functions that have been the most difficult to

verify, to show as globally consistent, and to analyze for their response to

hardware failures. Verifying parallel processes is orders of magnitude more

difficult than verifying sequential processes.

Most of the functions are straight calculations requiring no past

results. The self-tests are of this type. The mode logic and control

calculations require a fixed, finite set of results from the previous

invocation of the function. These may be described as finite-state machines;

however, control laws are better described by block diagrams or equations.

Provisions for equalizing control law integrations are required when the

channels run independently. These impose some requirements for data exchange

between the channels. In general, however, all of the functions may be

precisely described and verified. Flight control functions are largely

independent, so that verification and testing of the individual functions

carries over after the functions are integrated into the system. We will

choose modes of description and verification specific to each type of function

in our methodology. Our recommendations for describing the various functions

are summarized in table 7 for the ADFBW architecture. The entries labeled

"sequential code" will be described in a program design language.

The next section surveys tools and techniques. We then return to complete

the discussion of our methodology by describing the software design, coding,

and test phases.

71

TABLE 7. - FUNCTIONS FOR SELF-CHECKING ARCHITECTURE

Function Description

Initialize computer Sequential code

Run preflight built-in-tests Sequential code

Recover from power transients Hardware diagrams

Exchange state data for equalization
or synchronization Sequential code

Monitor sensors, select signals Finite-state machines

Branch to rate path Sequential code

Calculate control gains Sequential code

Run mode and switching logic Finite-state machines

Calculate control laws Block diagram, equations

Perform in-flight self-tests Sequential code

Annunciate system status Sequential code

Select output signals Hardware description
for the remote terminals

Monitor actuator responses Hardware description
for the remote terminals

5.2 TOOLS AND TECHNIQUES FOR VERIFICATION AND VALIDATION

A tool is a computer program which performs some task that would otherwise

have to be done manually. Tools may be classified as static or dynamic.

Static tools examine some aspect of the specificatons, designs, or code

without executing the code of the software being inspected. An example of a

static tool is the set/use checker, which checks that a variable is given a

72

value before it is used, or if a variable has been defined and given a value,

checks that it is subsequently used. A dynamic tool performs some function to

aid in testing the program when the program is actually executed. A timing

analyzer that monitors and records the execution time of functions and

subroutines is a dynamic tool. Two columns of static tools and one of dynamic

tools are listed in table 8. Descriptions of these may be found in reference

10. The first column of static tools lists those which examine a specific

property; the second column are those which examine general or more extensive

properties. The set/use checker is listed as a specific tool. A symbolic

Specific Static Tools

Circular reference
checker

Code comparator

Consistency checker

Cross-reference checker

Data base analyzer

Flow charter

Interface checker

Program flow analyzer

Set/use checker

Standards checker

Units consistency
checker

Unreachable code
detector

TABLE 8. - TOOLS

General
Static Tools

Accuracy analyzer

Assembly code verifier

Assertion checker

Documentation and
construction systems

Formal languages with
syntaax analyzers

o Requirements
o Specifications
o Program design
o Program code

Sneak-path analyzer

Symbolic evaluator

Theorem prover

Verification condition
generator

Dynamic Tools

Simulations

o Computer
o Hybrid
o Testbed (iron bird)
o Monte Carlo

Test data generator

Test driver

Test execution monitor

Test record generator

Timing analyzer

73

evaluator, a tool which automaticallY reconstructs the boolean or algebraic

equations relating the outputs to the inputs, is listed as a general tool.

Many of the static tools examine global properties--those related to the

program as a whole. For example, the set/use checker may search through much

of the program before it can make a determination on a particular variable.

Techniques are the standards and procedures used in developing and

maintaining the software package. In table 9, we distinguish between those

for development and those for analysis or review. The entries are also

discussed in reference 10. The list of development techniques cannot be

omitted on the grounds that it is not verified and validated. Practice has

shown that substantial gains in software reliability can be obtained by

attention to description, documentation, and systematic development.

Some approaches to software development use an integrated set of tools

including static and dynamic code analyzers, test and simulation facilities,

and documentation aids. Other methodologies use a formal design language

based on the constructive approach outlined by Dijkstra, and have elaborate

facilities for recording design progress and documentation on a large

computer. An integrated approach is also taken for verification systems. In

addition to static analysis and testing, verification conditions and symbolic

executions are used. These systems show great promise, but it is currently

difficult to determine the extent of the error coverage and the completeness

of the entire verification procedure.

The best engineering practice is to work at the lowest level of technical

sophistication that will solve the problem. Flight control systems need not

be obscure; the software functions to be performed are elementary. A

verification and validation methodology with tools and techniques selected

from the foregoing lists need not be elaborate. It must, however, be precise

and complete. The next section outlines a methodology specific to a flight

control system.

5.3 SOFTWARE DEVELOPMENT

Our methodology follows traditional lines, but with an emphasis on the

simplicity and clarity of structure. Everything must be made "public" so

74

TABLE 9. - TECHNIQUES

Development

Abstractions and hierarchies to reduce
complexity

Constructive design approaches

Data flow graph, structure chart

Descriptions

o

o

o
o

Charts
--HIPO
--Flow charts
Languages
--Requirements
--Specification
--Program design
--Program code
Petri nets
LOGOS

Design guidelines, test guidelines,
coding guidelines
Design standards, coding standards
Functional capabilities list
Organization as finite automata

o
o

Parnas modules
SRI International formal modules

Axiomatic specifications

Analysis

System concept review

Software design review

Critical design review

Qualification audit

Checkout testing

Singularities and extremes
testing

Integration testing

Validation testing

Symbolic execution

Inductive assertions

Proofs of data structures

State transition proofs

Recursion functions

Fault-tree analysis

75

that the details may be reviewed and checked. The completeness of the

configuration and its response to all anticipated events are set out for

everyone to see. We cannot use the "wizard" who specifies, designs, and tests

segments of code with little explanation and documentation. Flight control

design is often done by three to four very experienced control engineers who

collaborate and cross-check as the work proceeds. Proven software modules and

functions are reused for efficiency and accuracy.

5.3.1 Software Design

The design of the software is based on the program performance

specification and the interface design specification prepared during the

requirements phase (refer to section 3). The output of this phase is the

program design specification (PDS) and the data base design. The PDS tells

how the program works by describing functionality and interfaces. It contains

memory and time allocations and programming guidelines. The data base design

describes all shared data. The specifications can follow MIL-STD-483 but

require precise specification of functions.

The software specifications, if complete, may be quickly transformed into

the design for the software code. We have found that a hierarchy

input-plus-output (HIPO) format is satisfactory for flight control functions,

and we recommend it. The data flow between modules is clearly identified,

state variables are precisely defined, and the program, expressed in any

convenient program design language, is easy to review, to subsequently code,

and to verify that it meets the software specifications.

We have used an informal Pascal-like pseudocode as a program design

language. It appears sufficient to represent the flight control functions

unambiguously. Formal program design languages have been recommended. These

have syntax and other features that may be automatically checked. Eventually,

Ada will be used in this capacity. However, the fundamental simplicity of

flight control functions allows these aspects to be checked with confidence by

walk-through reviews.

During this phase a software functional design review is held. This

formal review of the detailed software design, documented in HIPO charts, will

be conducted prior to the start of coding. The object is to demonstrate by

76

walk-through presentations that the software design satisfies the software

specifications. Analysis to show the completeness and consistency of the data

flow between modules will be presented. The global consistency of the

built-in-tests and the failure management functions will be verified by a

lattice showing the dominances of the tests. The operations and failure modes

analysis of any synchronization schemes will be reviewed at this time.

5.3.2 Coding

The coding is done directly from the HIPO design charts. The code is

verified by inspection and by testing. Prior to integration, each module will

be informally tested to verify that it performs according to the design and

fulfills the software specifications. The testing approach will be chosen to

be suitable for the function of the module.

The following test procedures are suggested for the classes of functions

of the flight control system:

(1) The executive structure for flight control is not complicated. It is

feasible to test every path and every branching action.

(2) Control mode switching modules may be designed as finite-state

machines. These tests should verify that the processing of input data to

yield transitional events and outputs is correct for each state and that all

state transitions occur as specified.

(3) A control law calculation may be verified by showing that a

reasonable segment of the required frequency response is achieved. Extreme

values of inputs and even stressed values of inputs must be tested to show

that limiters and overflow provisions are operating correctly. Gain schedule

calculations may be thoroughly tested.

5.3.3 Testing the Code

Each module can be exhaustively tested. All transitions of the

finite-state machines can be checked. The built-in-tests and many other

functions are copied from previous systems and have already undergone complete

testing. Most of the functions are independent of everything else in the

system, so their correctness will hold after integration if the input/output

data flow is correct and the state variables and constants are correctly

77

maintained. A peer review of the code should be made to look for unusual or

complicated constructions.

(1) Most of the built-in-test functions are elementary and may be

thoroughly tested for normal operation and simulated failures. Complete

testing of wrap-a rounds and other exogenous procedures must wait for system

integration.

(2) The algorithms for redundant signal selections may be represented as

finite-state machines and as such may be tested to assure complete confidence

in their correctness.

(3) There are also only a finite set of possibilities for the states of

the failure detection and reconfiguration control structure. These modules

may be tested to assure complete confidence.

Tests are run after software modules are integrated to show that the state

data is correctly preserved and that the data flow between modules is

correct. Simulated failures to verify the response of the built-in-tests, the

failure management structure, and the status annunciation are used.

Tests are conducted after system integration to complete the verification

of the flight control functions. This is discussed in section 6.

SECTION 6--SYSTEM PERFORMANCE AND FUNCTIONAL VERIFICATION TESTING

6.1 OVERVIEW

This section describes our methodology for validating the functions and

reliability of a system. Section 4 addressed the analysis and prediction of

reliability. It recommended using a fault-tree description of the various

elements. Validation by testing can be divided into two areas, as shown in

figure 22. In the area of components and subsystems, it is feasible to run

life tests to statistically validate MTBF predictions. In the system test

area, it is not possible to run life tests. Instead, integrated system (iron

bird) tests are used to verify the fault tolerance achieved by redundancy.

These results, when combined with the component MTBFs, permit extrapolation of

the complete system's reliability.

78

RELIABILITY
REQUIREMENT

COMPONENT OATA

SYSTEM
MODELING

REliABILITY ANALYSIS
ANO PREDICTIONS

COMPONENT AND
SUBSYSTEM

• STATISTICAL TESTS
OF MTBF

• ESTABLISH DESIGN
MATURITY

SYSTEM

• MODEL INTERACTIONS

• IRON BIRD TESTING

• EXTRAPOLATE TO
SYSTEM MTBF

Figure 22. - The validation of an ultra-reliable system depends on
indirect testing.

79

Section 6.2 discusses the design of test cases for integrated system

testing. The finite-state machines used to specify the functions are now used

in the validation testing phase. By virtue of using a finite-state machine,

various "automata theoretic" results are available for specifying valid and

reliable tests. Next the fault tree model is used to identify the various

combinations of faults that need to be tested to demonstrate the predicted

fault tolerance. Section 6.3 addresses the issue of automating the testing on

the iron bird. This section concludes with a discussion of flight test plans.

6.2 DESIGN OF TEST CASES

Ultra-reliability of flight-critical systems is achieved through redundant

design. The system must be able to tolerate multiple faults while maintaining

undegraded flight operation. Validation of the fault-tolerance and

reconfiguration features is the most critical step to the validating the

reliability of the total system. These processes can best be accomplished in

an iron bird, in which a high degree of fidelity to the flight environment is

obtained by including actual flight hardware operating in a real-time,

closed-loop simulation. The fundamental problem of fault tolerance validation

is the vast number of test cases when all possible combinations of flight

conditions and multiple hardware faults are considered. Effective testing

requires:

(1) A methodology using both theoretical and practical perspectives to

define a manageable set of test cases.

(2) Automating the testing as much as practical.

Consider the set of conceptual states shown in figure 23. It can be used

to visualize possible test cases. The universe of test possibilities is first

divided into two areas: everything operable and some element failed. The

operative region can be described by one or more finite-state machines. The

effect of various failures on the system can be described with a fault tree.

The "failed element" region includes failures for which a reconfiguration

strategy was designed (i.e., switches out failed element), as well as failures

external to the system which are to be tolerated (i.e., loss of a hydraulic

power supply). The management of redundant elements can be described using

finite-state machines.

80

CUT
SETS

:"K'\\\'\'\~"""~s-~~- PARTITIONING

~~IIIIIII'~~~~~~~_ FINITE " STATES

Figure 23. - Conceptual system states.

Three cross-hatched areas represent regions where analysis can be used to

reduce the number of test cases:

(1) System failed. - These cases, identified as cut sets in the fault

tree, are discussed in more detail below.

(2) Inaccessible. - These states represent combinations of modes, flight

conditions, or environments that are mutually exclusive and do not need to be

tested.

(3) Partitioned. - this area represents states that can be partitioned

such that all combinations do not need to be tested. This could involve use

of hierarchies of finite-state machines or partitioning on the basis of

control modes, etc. The next section outlines a method for designing test

cases based on the finite-state models.

81

6.2.1 Use of Finite-State Machines

AS discussed in section 2, many of the "control structures" specifying

mode switching, signal selection, and failure management can be described as

finite-state machines. Using finite-state machines in system and software

design provides a unique link between the specification, the design, and the

testing phases. Automata theoretic results can be used to show the

correctness of a control structure. The method consists of the following

steps (ref. 22):

(1) Estimate the maximum number of states in the correct design.

(2) Generate test sequences based on the design.

(3) Verify the responses to the test sequence generated in step 2.

In step 1, the estimate can be based on the design. In step 2, test

sequences are generated that exercise all the state machines (obviously

these sequences are not unique). In step 3, the input sequences and their

responses can be represented as "path programs." The correctness of these

programs can be established by a walk-through procedure based on the

specification. Since we have assumed the specification is not "executable,"

it is not possible to totally automate this step.

The above method is both valid and reliable for checking the control

structure. The detectable error classes include:

(1) Missing states

(2) Extra states

(3) Transfer errors

(4) operation errors

It is particularly useful that theoretical results are available to

extend the method to designs based on multiple finite-state machines and

hierarchies of finite-state machines. For flight control a hierarchy of

structured finite-state machines keeps the number of states of each machine

at a tractable number. Some aids in deriving a hierarchy of structured

finite-state machines from a given finite-state machine are given in

reference 23. using hierarchies of finite-state machines is a tremendous

asset in reducing the number of combinations.

82

6.2.2 Use of Fault-Tree Analysis

The fundamental problem in the fault-tolerance test is the vast number

of conceivable test states as multiple hardware faults are considered. To

test all possible combinations of component failures for a large, complex

system is clearly impractical. As a result, a more economical but

theoretically sound and conclusive approach is needed to design the test

states for multiple faults. We will describe such an approach based on the

fault-tree analysis used to calculate the theoretical reliability.

This paragraph summarizes the fault-tree method. A more elaborate

discussion is found in section 4.1.1. Basically, the fault tree is a

top-down method of describing the failure of a system. The top event is the

occurrence of total system failure, modeled by logical combinations of the

failure of its associated subsystems. This process is repeated for

structuring the subsystems until reaching the lowest event--the failure of

the basic components. Boolean expressions are generated that list all

possible minimal combinations of component faults leading to total system

failure. Each of these fault combinations is known as a minimal cut set.

The probability of total system failure is computed by combining the

probability of occurrence for each minimal cut set.

The fault-tree analysis of a system can be used to develop test states

for validating fault tolerance. The purpose of fault-tolerance testing is

not to prove that the system fails when the fault tree predicts it will, but

rather the converse. The purpose of this testing is to establish that the

system works correctly when the fault tree predicts it will. To establish

the former, the various fault combinations that make up minimal cut sets are

used as test states, and the failure of the system is expected. This

testing would demonstrate that the system fails at least as often as the

fault tree predicts. The important case to establish is the latter. In

this case, various combinations of faults that do not contain cut sets are

used as test states. The system is expected to work correctly for all of

these combinations. If it does, then this testing demonstrates that it

works at least as often as the fault tree predicts.

We define a test set as a set of component failures that contains no cut

set. This means that the fault-tree analysis predicts the system should not

83

fail in the face of failures contained in any test set. A maximal test set

is defined as a test set that is not contained in any other test set. This

means if any componen~ failure is added to a maximal test set, the resulting

set is a cut set. The relationships among these sets of component failures

are shown in figure 24.

One way of generating test sets is to consider the maximum components in

each cut set that the system can tolerate. This is simply one component

less than the total components in a cut set. The number of such test states

is equal to the total number of components in the cut set. This approach,

however, does not consider the combinations of the elements in one cut set

with the elements of the other cut sets. The effects of these fault

combinations are unknown if not tested. The maximal test sets do consider

cross-combinations among several cut sets and so, in general, contain more

elements than just "all but one component" from a cut set.

These definitions allow us to state that a system works at least as

often as its fault tree predicts if it works correctly for each combination

of component failures in a test set. However, to test all the combinations

in the test sets is still impractical for large, complex systms. We would

like to use the maximal test sets for testing purposes in a way analogous to

using minimal cut sets for reliability analysis. This requires the

following assumption:

If a system fails under a given set of component faults, then it will

fail under the given set of component faults plus any additional component

faults.

This assumption is necessary to avoid having to test all combinations of

faults in the test sets. With this assumption, it suffices to demonstrate

the capability of the system to operate under the combination of faults in

each maximal test set.

These ideas will be made more concrete by means of an example. The

example considers the 25 most likely minimal cut sets found in the

reliability analysis of the ADFBW system, together with the S-3A systems

(see table 10). Maximal test sets--the largest sets not containing a cut

set--will be found for this example. Cut set numbers 1, 2, 6, 11, 12, and

13 are independent minimal cut sets in that each of these sets has no

elements in common with any other minimal cut set. Cut set number 11 is

84

MCS
PLUS

ONE
COMPONENT

MAXIMAL
TEST
SETS (MTS)

CUT SETS

MTS
PLUS

ONE
COMPONENT

MCS MINUS

TEST SETS

MINIMAL
CUT SETS
(MCS)

MTS MINUS
ONE COMPONENT

ALL SETS OF
COMPONENT
FAILURES

Figure 24. - Any combination of component failures is either a cut set
or a test set.

typical. Three elements are contained in this cut set--the three redundant

channels of the aileron secondary actuator (RSl, RS2, RS3). If all three

servos fail, the roll channel fails, resulting in loss of aircraft control.

The maximum number of aileron secondary actuator channel faults that the

system can tolerate is therefore two. Since aileron secondary actuator

channels do not appear in any other minimal cut sets, any maximal test set

must contain exactly two aileron secondary actuator channel faults.

Similarly, each maximal test set must contain exactly one element from cut

85

TABLE 10. - MINIMAL CUT SET DATA IN DESCENDING ORDER OF PROBABILITY

Cut Set Maximum Failure Components Contained Description of
Number Probability in Set ~Inemonic

1 0.99989848E-08 ENGI ENG2 Engines

2 0.156l9062E-10 CCI CC2 CC3 Computer channels

3 0.99984777E-12 GEN IDGI IDG2 APU generator, integrated
drive generators

4 0.99984777E-12 AAPU IDGI IDG2 APU accumulator, integrated
drive generators

5 0.99984777E-12 APU IDGI IDG2 Auxiliary power unit, integrated
drive generators

6 0.99984777E-12 BPMP PMP2 PMPI Backup pump, pumps
..,

7 0.75346635E-12 ACI AC2 AC3 Air data computers

8 O.75346635E-12 AC4 AC2 AC3

9 0.75346635E-12 AC4 ACI AC2

10 0.75346635E-12 AC4 ACI AC3 ..
Ir

11 0.72889996E-12 RSI RS2 RS3 Aileron secondary actuators

12 0.72889996E-12 PSI PS2 PS3 Elevator secondary actuators

13 0.72889996E-12 YSI YS2 YS3 Rudder secondary actuators

14 0.8280l82lE-13 ACI AC2 SB3 Air data computers, sensor bus

15 O.8280l82lE-13 AC4 AC2 SB3

16 0.8280l82lE-13 AC4 ACI SB3

17 0.8280l82lE-13 AC4 ACI SB2

18 0.8280l82lE-13 SB4 ACI AC2

19 0.8280l82lE-13 ACI SB2 AC3

>
20 0.8280l821E-13 AC4 SB2 AC3

21 0.8280l82lE-13 AC4 SBI AC3

22 0.8280l82lE-13 AC4 SBI AC2

23 0.8280l82lE-13 SBI AC2 AC3

24 0.8280l82lE-13 SB4 AC2 AC3
1~

25 0.8280l82lE-13 SB4 ACI ACY

86

set number 1 (since it has two elements) and two elements from cut set

numbers 2, 6, 12, and 13. These cases are listed in table 11.

The remaining minimal cut sets may be divided into two groups. One

group is cut set numbers 4, 5, 6 and the other group is numbers 7-10,

14-25. The two groups have no elements in cornman. For both groups, their

contribution to maximal test sets is determined readily by inspection. The

first group is illustrated in the Venn diagram of figure 25. Since each of

these cut sets has the elements IDGI and IDG2 in cornmon, the maximal test

sets fall into one of three cases:

(1) All the elements except IDGI are included

(2) All the elements except IDG2 are included

(3) Only IDGI and IDG2 are included

TABLE 11. - MAXIMAL TEST SETS FOR THE EXAMPLE ARE CONSTRUCTED AS THE UNION OF
ONE SUBSET FROM EACH OF THE EIGHT INDEPENDENT GROUPS

Cut Set
Number

1

2

6

11

12

13

4,5,6

7-10,14-25

Intersection of the Cut Sets with Maximal
Test Sets (failed components)

{ENG1}, {ENG2}

{CC1,CC2}, {CC1,CC3}, {CC2,CC3}

{BPMP,PMP1}, {BPMP,PMP2}, {PMP1,PMP2}

{RS1,RS2}, {RS1,RS3} {RS2,RS3}

{PS1,PS2}, {PS1,PS3}, {PS2,PS3}

{YS1,YS2}, {YS1,YS3}, {YS2,YS3}

{GEN,AAPU,APU,IDG1}, {GEN,AAPU,APU,IDG2}, {IDG1,IDG2}

{AC1,AC2,SB1,SB2}, {AC1,AC3,SB1,SB3}

{AC1,AC4,SB1,SB4}, {AC2,AC3,SB2,SB3}

{AC2,AC4,SB2,SB4}, {AC3,AC4,SB3,SB4}

87

CUT SET 5

CUT SET 3

Figure 25. - There are only three groupings of the elements of
cut sets 3, 4, 5 into maximal test sets.

The second group, consisting of cut sets 7-10 and 14-25, has a symmetry

which can be exploited. Cut sets 7-10 are all combinations of three faults

out of four air data computers. Cut sets 14-25 are all combinations of one

sensor bus failure and two faults out of the other three air data

computers. (As an aside, two sensor bus failures and one air data computer

fault is also a minimal cut set, but is less likely than the 25 shown in

table 10.) The maximal test sets must contain failures of two air data

computers and the two corresponding sensor buses. There are six such

combinations. All the maximal test sets may be found in table 11.

The total number of maximal test sets equals the product of the number

of elements in each independent minimal cut set and the number of

combinations from each dependent group of minimal cut sets. For the example

problem, this is
. 5
2 x (3) x 3 x 6 = 8748

In contrast, the total number of combinations of failures for the 30

components in table 10 is

2
30 = 10

9

88

Testing only the maximal test sets results in tremendous savings. Moreover,

it is sufficient to guarantee the performance of the system under the

assumptions stated above.

It appears feasible to construct a computer program to generate all the

maximal test sets from the minimal cut sets. Development of such a program,

however, was beyond the scope of this program. Additional research and

development efforts are needed to establish this feasibility.

Considering only maximal test sets offers large savings in the number of

required test states. Additional savings are realized if the system can be

partitioned into groups on the basis of failure modes and effects analysis,

or some other such analysis. The danger here lies in omitting some failure

mode from the fault-tree analysis and then partitioning the system on the

same basis. Still further reductions in the amount of testing may be

obtained by calculating the probability of occurrence for each maximal test

set. If this probability is sufficiently low, then the set can be

eliminated as a test state. This elimination amounts to saying that the

failure combination is so remote that the system is allowed to fail in

response to that combination. This results in a slight decrease in the

validated system reliability, in return for a reduction in the required

testing. Together, these methods will produce a set of well-defined test

states for validating the fault-tolerance of the ADFBW system.

6.3 AUTOMATED IRON BIRD TESTING

The vehicle system function mockup, commonly known as the iron bird, is

a key element in the system verification, validation, and flight

qualification. It exposes the real system to the most realistic environment

by including actual hardware and interfacing subsystems (e.g., electrical,

hydraulic, flight control systems) in the testings. This allows subsystem

interface problems to be resolved and the performance of the integrated

system and the pilot interface functions to be evaluated. Above all, it

provides a high degree of confidence in the verification and validation test

results.

89

6.3.1 S-3A Iron Bird

The vehicle systems functional mockup, as the S-3A iron bird is formally

known, was designed and used for the S-3A system development and evaluation

test. The overview of the facility is shown in figure 26. Briefly, the

S-3A iron bird is a full-size, spatially correct mockup of the S-3A

aircraft. It uses a structural steel framework to support the aircraft

functioning systems. within this steel framework are the various aircraft

subsystems. Sufficient aircraft structure is incorporated to allow

deflection of brackets, attach points, etc, thereby providing the same

functional environment found on the airplane. The subsystems included in

the iron bird are: the flight controls, hydraulic power generation,

alighting and launching gear, wing and fin fold, and bomb bay door drive.

Each of the subsystems is comprised of many individual elements, for the

most part in their operational configuration. During the S-3A development,

the iron bird was coupled to a moving base flight simulator so that the

piloted experiments could be conducted in the most realistic fashion short

of actual flight.

Functional testing of system components using this iron bird is proposed

to be an integral part of the total advanced flight control system

development program. The S-3A iron bird provides an ideal testbed for

directly comparing the existing flight control system with the system to be

developed. Because the simulator is already designed and built, cost to the

program will be minimized. All interface problems between the existing iron

bird and the FBW components will be investigated and remedial action

recommended.

Our development program will parallel the previously conducted tests on

the S-3A iron bird; however, there will be increased emphasis on automatic

checkout in all system states. The tests can be grouped in the following

categories:

90

Intersystem interaction effects

. Subsystem performance and evaluations

Complete integration

Endurance cycling

Simulated component failures

Automated system checkout

CARCO
3-AXIS TABLE

ANALOG
COMPUTER
(2)

000
000

\\ ~ AVIONIC » DEVELOPMENT
TEST PANELS

Figure 26. - S-3A iron bird overview.

•••••• ••••••

DIGIT AL COMPUTER

S-3A IRON BIRO

SERVO AND SURFACE
LOADER CONTROL
UNIT

In the S-3A program all reasonable system failures (subsystem and

individual components) were examined during the span of the program. Types

of failures demonstrated were:

Engine-out conditions during various flight modes

Valve failures--various subsystems

Broken linkages

Mis-rigging mech~nical and electrical components

Failed hydraulic lines

Loss of fluid

Electrical control logic malfunctions

Jammed control linkages

The preceding list of S-3A test programs indicates the scope of work

possible on the iron bird simulator. Many of these tests were so critical

that if performed on a flight vehicle they could have jeopardized the

airplane and pilot/crew. However, when performed on a completely integrated

ground simulator such as the iron bird, this costly risk was eliminated.

6.3.2 Automated Testing

Section 6.2 discussed the development of test cases. Fault insertion

using the iron bird is an important part of validating the redundancy

management and verifying the reliability prediction. Because large numbers

of tests need to be run, benefits are derived by automating this process.

Automation provides two benefits:

(1) Time compression of test schedules

(2) Repeatability of complex test procedures

Automation can aid in performing complicated tests that require

execution of precise operations in specific sequences, including the

necessity for repeatedly performing tests under different test/failure

conditions. Incorporating automation allows the performance of these tasks

with a minimum of supervisory manpower needed to monitor rather than perform

the- test. A sample test plan for iron bird testing is contained in appendix

B.

A robotic system concept for automatically controlling the iron bird is

presented in this section. The design is highly modularized and can be

92

integrated into existing iron bird facilities with modest additions or

modifications. The four fundamental function modules of the robotic system

are the executive procedure, cockpit robotic computer, system monitor, and

fault-insertion/environmental-input controller, as depicted in figure 27.

Executive procedure. - The test state matrix consists of flight

conditions, multiple hardware faults, environmental profiles, and control

modes engagement, stored in the executive procedure module. The executive

procedure module is the central controller of the robotic system for

stepping through the test state matrix. Information is sent to each

function module to set up the iron bird configuration for automatic checkout

of all test states.

Cockpit robotic computer. - The cockpit robotic computer emulates the

pilot actions to control the airplane for those test states requiring manual

interactions. Nominal command profiles such as airspeed, aircraft

attitudes, trim settings, and procedures for modes control engagement for

all maneuver profiles are stored in the robotic computer. These commands

are converted into force commands, which are sent to specially built

actuators and switches located in the cockpit, to generate command motions

to the control stock, pedals, trim switches, and control mode switches for

controlling the airplane in the simulator. Figure 28 shows a typical

actuator interface for this concept. All information available to the crew

such as fault annunciations, aircraft states, and command reference errors

is fed back to the pilot model for corrective actions. pilot dynamic models

such as those reported in reference 4 ate stored in the computer to simulate

the pilot's response to various tracking tasks. This allows automated

testings for the FBW system, in which the pilot's input is an important part

of the system's design.

System monitor. - The system monitor records all test results for

post-testing data processing and for in-line monitoring of system status.

Outputs from all subsystems, major components, aircraft simulator, fault

annunciators, and simulated pilot's commands are collected by the system

monitor. Total test times and component failures are logged for analyzing

component reliabilities. Internal computer computations, such as the

outputs and state transitions of the finite-state machines, are also

93

EXECUTIVE ~-
FINITE STATE

PROCEDURE 14- -., FAULT TREE I
I I

OUTPUTS • I ~. . ~ •
PRINTER

SYSTEM r-+ COCKPIT
FAULT ENVIRONMENTAL. RECORDER ~ MONITOR

ROBOTIC
INJECTION INPUTS TAPE ~ COMPUTER·

L. ACTUATORS .~
j. j.

DIGITAL FLIGHT
ACTUATORS -+ PEDALS r+ CRITICAL SYSTEM

INST ALlEP ON
IRON BIRD

ACTUATORS ~
SWITCH r-.
PANEL

SURFACE
LOADERS

~

CONTROL SURFACES
MOVEMENT

FLIGHT 9' 1/1' 1/), II ••• etc.

SIMULATOR

FAULT ANNUNCIATIONS

Figure 27. - Robotic system concept.

!.
fCOMPUTER--------- - ---------- - ---------- - - - - -,

I LOAD I
I PROFILES F vs. POSITION + LOAD I
I CHANGE. PROFILE GAIN I
I WITH X I
I FLT CONDo I
I VALVE I
I COMMAND I
I I L ___ J

ACTUATOR

Figure 28. - Actuator interface.

LOAD
CELL

recorded by the system monitor for software verification. Data reduction

after each test run can be done in a separate host computer for evaluating

system performance and for comparing with predicted outputs. This process

detects and isolates design and implementation errors.

Fault insertion and environmental input controller. - This module

provides interfaces with the fault injection hardware and the environmental

control units. Multiple hardware faults can be inserted into the system by

using relays for shorting of wires, solenoid switches for controlling

hydraulic systems, switches for controlling electrical power systems,

voltage regulators for inserting hardovers into sensors, and fault injector

boards for injecting hardware faults into the FBW computers. Local

insulated enclosures can be built around various subsystems for extreme

temperature and temperature cyclings. Automatic setting of this hardware is

provided by this function module.

Implementation of the 'robotic system. - Current desktop

microprocessor-based computers offer the following performance:

(1) Active memory 2M bytes

(2) Expandable mass storage

(3) Clock frequency

(4) Word length

(5) I/O buses

(6) I/O rate

(7) Programming language

Up to 125M bytes

8 MHz

16 bits output with 32
bits internal architecture

5 to 10 I/O cards which use
popular I/O buses such as
the IEEE 488, RS-232C

1M bytes/sec

HOL

The high computation rate, large I/O interfacing capability, large

available memories, and the relatively low cost of these processors are ideal

for the applications of real-time automated testing of complex flight control

systems. Also, the use of structured HOLS such as Pascal will reduce test

software development cost.

The low co~t of these microprocessors allows acquisition of several of

these units for a modularized design of a robotic system, as illustrated in

figure 29. The microprocessors are networked together with the executive

96

PERIPHERAL

INTERFACE BUS

-----,
I
I
I

• •.. i

ACTUATORS
AND

SWITCHES

EXEC'UTIVE
PROCEDURE

r------
I
I
I

FAULT INSERTION &
ENVIRONMENTAL
CONTROLLER

ROBOTIC
SYSTEM

IRON
BIRD

SYSTEM
MONITORING

INSTRUMENTATIONS

L- ___ _ ____ --.J
• FAULT INSERTION

HARDWARES

• CONTROL STICKS

• PADALS
• CONTROL MODE

SWITCHES

• ENVIRONMENTAL
CONTROL UNITS

Figure 29. - Robotic system interface.

procedure module as the central controller. Other modules perform a specific

programmed task without exchanging information with other units for total

system operation.

This modularized approach offers the following advantages:

(1) The system can be easily modified for integration with other iron

bird facilities.

(2) Modification and development OL a module does not affect total system

operation, therefore reducing down times and other costly delays.

(3) Other functions can be easily added to the system if determined

necessary later in the program.

6.4 FLIGHT TES'TING

The S-3A is well-suited as a testbed to develop FBW concepts. There are

four crew stations--two of these are pilot flight stations and the other two

could be used for special purposes: that is, fault injection panel,

configuration switching, or onboard data processing. Each station has a full

escape system including ejection seat, oxygen supply, and suit

pressurization. The modest fuel consumption allows the plane to fly more

than six hours. However, each wing-mounted engine has enough reserve power

to fly aircraft individually. The highly maneuverable airframe was designed

to withstand 3.5g maneuvers and accomplish takeoffs and landings in short

distances. When the antisubmarine warfare equipment is removed, the existing

avionics racks have sufficient room to install FBW avionics and extensive

instrumentation electronics. The basic S-3A was designed for continuous duty

with minimum maintenance.

Flight testing to develop FBW systems can be divided into two

categories. The first is fault-free testing to verify the control laws,

demonstrate handling qualities, and accomplish the usual envelope expansion.

The second involves inserting faults in flight to validate fault tolerance.

,Prior to flight testing, extensive ground checks will be made to ensure

that the control system conforms to design specifications and iron bird

tests. These checks will include end-to-end gains, system operational

checks, frequency response tests, and ground shake vibration tests.

98

6.4.1 Performance Verification Flight Testing

The purpose of performance verification flight testing is to verify

control law design and demonstrate that the handling qualities of the FBW

system satisfy requirements. The basic FBW modes to be tested include the

augmentation modes and the alpha limiting mode. All autopilot modes must

also be engaged to demonstrate that there is no adverse interaction between

the autopilot and the basic flight control system. The nominal loop gain can

be verified to show stability margins. Finally, the aircraft will be flown

in turbulence to assess gust responses.

6.4.2 Failure Mode Flight Testing

The purpose of these tests is to validate the fault-tolerant design and

verify the fail-operational capabilities of the FBW control systems. A few

selected tests of this nature will be performed to back up the comprehensive

testing that was conducted on the iron bird.

There are two types of failure mode tests. The first simulates a system

failure by turning off one or more channels of a major subsystem: that is,

hydraulic iI, B electrical bus, no. 1 air data system, or no. 3 aileron

actuator. The second type of failure test intercepts a signal going to the

computer and inserts a bogus signal. This type of testing will be performed

on the sensors, actuators, and the air data computer.

6.4.3 FlightTest'Support

Special instrumentation and software modules will be used to support

flight test. The purpose of the flight test instrumentation is to:

(1) Provide test data that validates FBW system performance

(2) Document all actual or simulated failures that occur

(3) Generate the engineering data necessary to enhance system design

(4) Provide real-time ground monitoring through telemetry

The onboard instrumentation system will monitor all record and telemeter

commands, input signals, and the state of the computer at all times.

Information generated will be available to onboard personnel and will also be

transmitted to the telemetry station.

99

Software modules need to be added to the FBW computers for flight

testing. Typical modules include the stability module, fault insertion

module, and instrumentation module. The stability module will give onboard

personnel the capability of changing system gain or time constants with

external switches placed in the flight station. The fault insertion module

will be used to verify the fault-tolerance capability of the software. The

instrumentation module will transmit the state of the system and other

pertinent data to the instrumentation system.

SECTION 7--S-3A INTERFACES

7.1 FLIGHT CONTROL SYSTEM INTEGRATION

The primary goal during this phase of the integration study effort was to

determine a method of integrating the system into the S-3A aircraft with

minimum cost. This would be accomplished by minimizing components developed

specifically for the S-3A which would not particularly demonstrate features

of the ADFBW system. The integration also should provide a flexible test

vehicle with expansion capability and, above all, should assure flight safety.

The result of this effort suggested a method of integrating the ADFBW

system with very little risk, development activity, design activity, or

fabrication effort. The method is to use the existing surface actuators,

eliminating all existing mechanical linkages and cables.

The baseline S-3A flight control system was originally designed with the

objective that the aircraft be controllable even in the event of total loss

of hydraulic and electrical power. This objective influenced almost every

aspect of the design, even to the extent, for example, of using low-friction

seals on the main ram of each surface actuator to reduce the force necessary

to move the surface in the unpowered mode. This design feature was provided

at the cost of lower seal life expectancy and lower reliability. Figures 30

through 32 show a schematic of the baseline S-3A primary flight control

system in the pitch, yaw, and roll axes, respectively.

100

_WIIOHT
BALANCE
ww.INO

IOIIWIIOHT

"LOT/corIlOT
ITICK
IIIIfUT ..-.

VISCOUS
OAMPIR

• : BOOY FIXED PIVOT

i> : FlEE PIVOT

DUAL

f.:;:"ul----------+
COHTMK.

r - -- - - ---,

INPUT ARM

r
r

L ____ _ - ____ 1
ELEVATOR SURFACE AcruATOR

Figure 30. - Longitudinal primary control system.

"LOT P'IOAL INPUT

•

"'LOT
TAIM
HAHOWHEEL
1Nf'UT

• : BOD V FIXED PIVOT

® : FREE PIVOT

TRIM
CONTROL

RAM MOTION
INPUT ARM

~
AUTO "'LOT
LATCH
DtIlNQAGID

- --,
I

L..;..~1r---J 1
HYDRAULIC I
flUID FLOW ___ ---11-.1
DUAL
CONTROL
VALVE

I
I
I

-1
RUDDER SURFACE ACTUATOR

Figure 31. - Directional primary control system.

TlIM
TAli

101

I-'
o
N

"LOT/COPilOT
STICK
IMPVT

..-...
"LOT
TRIM
SWITCH
1Nf'UT

r--

DUAL
CHANNEL
TRIM

I CONTROL

•
L. ___ ,

• : BODY FIXED PIVOT

o : FREE PIVOT

I
I

PILOT
SPEED lUKE
CONTROL
SWITCH

DUAL
CHANNEL
SPUD lUKE
CONTItOL

lAM MOTION DUAL
fI}---.....fPOWEI

-,
I

ACTUATOI

INPUT ARM

~
AUTO "LOT
LATCH
DlSENOAO£D

'---_ ... ,
I
I
I

_J
AILERON SURFACE ACTUATOR

Figure 32. - Lateral primary control system.

"IOHT WPI"
ANa un
LOW(" .-ocURI

LEn WPI"
ANa "'OHT
LOW£R SPOILERI

AIU"ONI

•

Modifying the baseline design to accommodate a different objective

requires that consideration be given to flight safety as well as to the cost

of making the modification.

The modification we are proposing satisfies both flight safety and

minimum cost. It consists of

(1) Completely decoupling the cockpit controls from the flight control

system

(2) using the existing cockpit controls for inputs to the ADFBW system

(3) Using only the control surface actuators from the existing flight

control system

A preliminary layout was made to investigate the feasibility of

installing secondary actuators in the pitch, roll, and yaw axes. The layout

shows the installation to be feasible with no major rework of the aircraft

necessary.

The addition of the secondary actuator introduces an additional time

delay in the control system that does not exist in the basic S-3A flight

control system. If the secondary actuator is designed to have high-frequency

response, the time delay will be small and is not expected to significantly

degrade aircraft handling qualities.

The ability to use existing S-3A surface actuators at the beginning of

the test program allows a most significant economy. Designing, testing, and

demonstrating that a new actuator meets hinge moment, stiffness, frequency

response, hysteresis, and flutter requirements is not required because the

existing actuators already provide these capabilities. Furthermore, new

actuators may present a maintenance problem (repairing leaking servos, etc),

whereas replacement spares for the time-proven original actuator, if

required, are probably available from Navy inventories.

It appears that the same type of secondary actuator can be used for all

three axes.

A preliminary sizing of the secondary actuator was made for the purpose

of determining installation space. The force requirement for the secondary

actuator is predicted on

(1) Operating the surface actuators in the manual mode--that is, unpowered

(2) Retaining the feel cams from the surface actuator

103

The secondary actuators should provide a force input to the primary

surface actuators equivalent to that provided by a typical pilot acting on

the controls in the cockpit of the basic S-3A. The feel cams could be

removed from the primary surface actuator, thereby reducing the force

requirements of the secondary actuators. However, in order to remove the

feel cams, the actuator would need to be disassembled at the factory and then

retested after rework. The actuators would become unique and repair or

replacement more difficult.

The force and stroke required of the secondary actuators operating in a

single-channel mode is 500 pounds and 3.0 inches.

A Hydraulic Research secondary actuator, which is triple-channel tandem

with only one active channel operating at a time, was selected for this

·application. This actuator has a size of about 5.5 inches x 4.5 inches x

16.5 inches. This actuator provides 900 pounds force output with a 1.O-inch

stroke. A slightly larger piston diameter and a bell crank to change gearing

to the correct stroke will allow this actuator to meet requirements.

A preliminary layout was made of the installation of the selected

secondary actuator driving the elevator power servo. Figure 33 shows the

result of the layout with the secondary actuator positioned just forward of

the primary servo. The tension regulator is removed to make the space

available. The selected installation has reasonable access by way of the

access hatch located in the left landing gear well, which leads into the

environmental control system compartment.

A similar preliminary layout was made of the yaw axis secondary actuator

installation. As shown in figure 34, adequate space exists above the fin

fold line to install the actuator near the rudder primary actuator. The

actuator is shown mounted on the forward spar. Access to the installation

will be available from the rudder servo access plate on the right side of the

fin above the stabilizer.

The aileron secondary actuator installation presents a more difficult

installation. The result of the preliminary layout is shown in figure 35.

Access to the aileron secondary actuator installation will be the access

door to the environmental control system compartment.

104

,

'II , '
ELEVATOR POWER SERVO

fBL :
~ L; --~~-+---------4--+

\~--=-===l===== =m-

SECONDARY ACTUATOR

Figure 33. - Elevator secondary actuator installation.

SPAR ASSY

I
I

+-

RUDDER POWER SERVO

SECONDARY ACTUATOR

-FIN FOLD RIB

----~----
Figure 34. - Rudder secondary actuator installation.

£AILERON POWER SERVO

-.~-- ~

+1-------- --:~-
~ .. -c;:.~

~--

SECONDARY ACTUATOR

Figure 35. - Aileron secondary actuator installation.

Separate new actuators are required to drive the ailerons in a symmetric

manner. This can be achieved by using two additional series actuators, one

for each aileron. Th~s configuration was selected because of the following

considerations. The ailerons are controlled by a single aileron power servo,

installed in the environmental control system compartment, which drives

pushrods to each aileron. The aileron servo also provides a mechanical input

to the spoiler actuator. Rather than redesign this total system, it is

recommended that additional actuators be used.

The actuators selected for the symmetric aileron mode will be

electromechanical actuators. Development of the mode could be a follow-on

expansion program after the flight test of the.ADFBW system has commenced.

The logical location for the electromechanical actuators is in each wing

because they must work in conjunction with the aileron pushrods, and space in

the fuselage between the aileron actuator and the aileron pushrods going out

of the fuselage is very limited. The space available in the S-3A wing is

limited because of fuel tanks and hinges for folding.

A brief effort was made to determine the feasibility of locating the

actuator in the wing. Figure 36 shows the result of this effort. The

actuator was sized for the available space at this location instead of for

the task required. It"is likely the space is too small for an

electromechanical actuator. The installation is made practical by removing

the lower spoiler dwell actuator. In so doing, the lower spoilers are made

inoperative and the panels are sealed closed. The baseline S-3A uses the

lower spoilers only when the flaps are up. The loss of roll control power

will not be significant. Some slight pitching movement may result at

high-speed roll maneuvers due to not using the lower spoilers and only using

the upper spoilers. This should not present a problem because with the ADFBW

a simple crossfeed of roll into pitch can significantly reduce any pitching

moment.

The feasibility of alternate installation areas should be determined.

Another possible actuator location is in the wing beyond the wing fold line.

A third possibility is in the environmental control system compartment near

the aileron primary and secondary actuators. Future study should be devoted

to these areas.

108

____ ~:: __ [_~-~ __ -_-'*--~~~~-_--_-_-. _' ___ .-._--=---.~-_--~_. JUP~ER SPOILER ~ONN_Ll_N_K ___ LP_.~_R-~~~_-(-BL=_+~O-.-O-)=~~~-__ -.-_-~_=_=__-
-E-==··~.--~·~r ~ ,-·C./~L~~~====~?== --T ,- ~ _~---=-------=----

AILERON CONN LINK

WING FLAP CONN LINK

SUMMING BAR

I ACT/VE-COtHROL ACTUA_TO_R __ _

1- _--__ . £rUPPER SPOILER CONN LINK

~~- I--r-r\r ,,+ .IL....--~~:~_--C~~~ -.---Jr:a::3===~3-______ _
~---

-----1'- - ----- -

-r
I AILERON CONN LINK

------;- - - ----- ---

Figure 36. - Active-control actuator installation.

In summary, the locations of all the flight control actuators are shown

i~ figure 37.

7.2 COCKPIT CONTROLS INTEGRATION

The task of providing cockpit controls for the ADFBW requires compromise

to avoid much redesign effort. If a new control stick or side-stick

controller is to be provided, many of the additional functions provided by

the original control stick and pedals must also be provided. Some of these

functions are nose gear steering and its engage/disengage function, pitch and

roll trim, trim disconnect, autothrust disengage, autopilot disengage,

communications switch, and brakes.

A right-hand controller is required if other than a center stick is used

because the throttles are located on the left side of both pilot and

copilot. Mounting the controller would require a different installation for

pilot side (center console) and copilot side (side console); thus, two

designs are required. Both installations must avoid interference with the

ejection seats.

Consideration of the above design tasks persuades us to recommend using

the existing installation, with modifications as required. The modifications

will consist of removing their respective cable systems, the bobweight, and

the stick damper. The column should be statically rebalanced by means of the

balance spring, a spring gradient added to provide a stick force gradient and

pedal force gradient, and six LVDTs installed per axis to measure control

inputs. No installation difficulties are foreseen with this approach. A

diagram of the reconfigured controls is presented in figure 37.

7.3 SENSOR INTEGRATION

Individual sensors do not present an installation problem. However,

installing sextuple sensors requires suitable space so that each of the

sensors is in the same environment as the others to ensure that cross-channel

monitoring can have practical levels. In some cases, such as the

pitot-static system, this may be impractical.

110

Figure 37 -• - Su rnrnary fl' , 19ht control h c anges.

Installing mUltiple pitot-static probes on a small aircraft presents more

of a problem than on a wide-body aircraft. Separating the systems as widely

as possible so that bird strikes will not damage all systems is not

consistent with providing the same airflow around each probe for

multiple-channel tracking.

The following configuration is recommended based on the history of probe

development and probe installation on the S-3A. (See figure 38.)

The present two-channel pitot-static system installed on the S-3A should

be extended to a four-channel system. The baseline S-3A has a probe on each

side of the fuselage, ahead of the cockpit. Each probe has two static ports

and a single pitot input. Each static port is crossfed to the opposite port

on the other probe. In this manner effects of sideslip are minimized.

Probes identical to those presently installed on the S-3A should be

specified so that correction for static defect curve (probe angle-of-attack

effects) need not be reestablished. The correction will be particularly

important for four-system tracking as required for cross-channel comparison.

Part numbers and the approximate location for the new probes are shown in

figure 39. The new probes will be mounted just under the existing probes but

with enough separation to minimize shadowing for most angles of attack.

Additional lines must be plumbed from the new probes to the right internal

electronics bay. Six air data computers will be coupled to-the four

pitot-static systems.

Rate gyros and accelerometers can be mounted in the bomb bay area on the

keelson approximately at the wing quarter-chord. Adequate space exists for

the installation.

7.4 AVIONICS INTEGRATION

Ample space and facilities exist on the S-3A aircraft for installing the

new avionics of the ADFBW system by removing the unnecessary avionics. It

should present no installation or access difficulty •

. The internal avionics racks will provide sufficient space with

hard-mounting possibility. The racks will have a controlled temperature

environment and adequate cooling will be supplied by the ducted avionics

cooling system.

112

I-'
I-'
W

LEFT . I RIGHT

PITOT-STATIC PROBES PITOT-STATIC PROBES TEMPERATURE PROBES

-----------~,----------(1 -----------~,---------- ~,-----(1 (,

,
P,S,S2

T, T,

P,S1 T1 P,S,T,

NO.1 2

~ + +

3 2
P3S3S4 P2S2S ,

T2 T2

P3S3T2 P2S2T2

3

+
TO FBW COMPUTERS
6 DIGITAL BUSES
FULLY CROSS-FEED

4

+

4
P4S4S3

T3 T3

Ir

P2S2T3 P4S4T3

5 6

+ +

. .
Figure 38. - Air data system interface.

J

AIRDATA
COMPUTERS

/
;

'-...~---

Figure 39. - pitot-static system.

114

The two remote terminals can be installed in either a controlled or an

uncontrolled environment area. The internal avionics area will provide

environmental control. The environmental control system compartment, or the

bomb bay area, will provide ample space for avionics in an uncontrolled

environment. Both areas are accessible for ground checkout and maintenance.

7.5 HYDRAULIC SYSTEM

A review of the S-3A hydraulic system (including approved ECP 347

changes) was made regarding its adequacy to support the ADFBW system. Flight

safety of the flight test vehicle was the paramount aspect of the review. It

was concluded that no significant changes to the S-3A hydraulic system are

required.

The baseline S-3A has two engine-driven, independent hydraulic systems to

provide dual-channel flight control hydraUlics. System 1, the flight

control/utility (FC/U) system, powers all utility functions (landing gear,

brakes, nose gear steering, flaps, etc) in addition to the flight controls.

System 2, the flight control (FC) system, powers only the second channel of

the flight control system. As shown in figure 40, each system can by itself

provide complete flight control capability.

A third hydraulic pump will be added when ECP 347 is incorporated. This

pump, driven electrically by either generator (but not by the baseline APU)

will be plumbed into the FC/U system and will function as an emergency backup

pump. It the left engine is shut down or the FC/U system pump fails, the

emergency pump can be used to do all the work of the engine-driven pump.

Throughout the history of the S-3A as known by Lockheed project

engineering, total hydraulic power has never been lost. (At this time,

approximately 1% of the aircraft have the third hydraulic pump

incorporated.) Based on this history, the baseline dual system appears

adequate and safe to support the ADFBW system. Adding the third hydraulic

pump should reduce the chance of losing all hydraulic power even further. In

addition, the third hydraulic system will provide hydraulic ground checkout

capability without needing a hydraulic rig. Only an electrical ground cart

is required.

115

I-'
I-'
0'\

NO 1 NO 3 NO.2

~E~C~ SYSTEM PUMP SYSTEM PUMP RES PUMP DRIVEN RES
NO.1 (BACKUPI NO.2

SHUTTLE
VALVE SPOILER

:=::::t=l::: '---r-- J- SYSTEM r- r-
'SPOILER SERVOS

VALVE i
PITCH ROL~

ROLL J YAW VALVE 1""-.1 "!..NG FOLO MIXER \1)
SEQUENCE

1 VALVE
PRIMARY
~ ---:1- AILERON

SERVO

;
;: SECONDARY ~

II AILERON
ACTUATOR

PRIMARY
RUDDER
SERVO

:
UTILITY ~ "- SECONDARY

r-SYSTEMS I-- r- I L RUDDER
ACTUATOR

WING FOLD
L ANDING GEARS

FLAPS PRIMARY
APU STARTER ELEVATOR

ETC. SERVO

1
SECONDARY

U ELEVATOR
ACTUATOR

Figure 40. - Hydraulic distribution system (dual-channel).

The modification of the existing hydraulic system will consist of teeing

into the pressure and return lines of both the FC/U and FC systems. The tee

will provide hydraulics for the pitch, roll, and yaw secondary actuators. TwO

channels of the secondary actuators will be powered by the FC/U system and one

channel will be powered by the FC system.

7.6 ELECTRICAL SYSTEM

The S-3A electrical system has been reviewed with respect to the

anticipated requirements imposed on it by the ADFBW system. It is concluded

that the impact is minimal and no extensive or costly modification to the S-3A

electrical system will be required.

The baseline S-3A has two separate engine-driven generators, each of which

can be bused to supply all electrical needs. An additional 5 kva generator is

powered by the APU. This unit is only large enough to supply essential

electrical power, such as the pitch trim actuator and flight instruments

(refer to figure 41).

An engineering change proposal (ECP) is being prepared to install a larger

APU in the S-3A. This unit would be capable of supplying the ADFBW system.

An S-3A with the ECP incorporatd (larger APU) should be used for the ADFBW

demonstration aircraft.

A 28V dc storage battery sufficient to supply electrical power to two of

the six channels of the flight control system will be installed in the bomb

bay compartment. ~~o typical IZV batteries should be adequate to power two

channels of flight controls for at least two hours in case of an emergency.

SECTION 8--CONCLUSIONS AND RECOMMENDATIONS

. This study has defined an architecture and a methodology for its

development. The architecture claims advantages by virtue of

(1) Less software

(2) Self-checking hardware

117

75 KVA 75 KVA

~
". -

,~ GEN GEN

\6
I

b b(
~5KVA

LH PRIMARY GE RH PRIMARY
AC BUS AC BUS

~
PRIMARY ESSENTIAL

INSTRUMENT AC BUS

BUS

ESSENTIAL
INSTRUMENT

BUS

LH TRANSFORMER TRANSFORMER RH TRANSFORMER
RECTIFIER RECTIFIER RECTIFIER

I I

LH PRIMARY ~r ESSENTIAL t"b- RH PRIMARY
DC BUS DC BUS

,-.
DC BUS

~ >,
F- 28V DC

~

T
1 2 3 4 5 6

FBW SYSTEMS

Figure 41. - Electrical power system.

(3) Emphasis on using standards

Instruction set: l750A

HOL: Ada

Serial bus l553B

(4) Hardware advances that yield maintenance benefits by including spare

elements

This architecture has emphasized simplicity. This yields tractable

modeling problems to estimate reliability and easier verification of the

software. In spite of the hardware-intensive nature of this architecture, we

recognize that software requirements will grow as new functions are integrated

with flight control. Two options for expanding the computer throughput are

shown in figure 42. Figure 42a shows the addition of another CPU chip using

the multiprocessor option provided on the Fairchild l750A. This feature

allows both processors to access a common memory without contention problems.

Figure 42b shows the addition of SCMPs to the redundant sensor bus. These

additional processors can perform non-flight control functions (i.e.,

navigation/flight management). Spare SCMPs may be used as back-ups for both

flight control and non-flight control functions. Investigation of functions

other than flight control was beyond the scope of this study. However, this

architecture is well-suited to expansion.

The methodology claims advances in

(1) Presenting aids to formulate complete specifications

(2) using finite-state descriptions and fault tree models to define test

cases

The development methodology proposed is within the state-of-the-art, and

is a cost-effective way to produce flight-critical software. Research in

fault-tolerant computing is currently an active area. Work is ongoing in many

areas, including reliability modeling, fault-tolerant software approaches,

formal methods for design proving, and design of real-time operating systems.

As previously noted, software requirements are increasing and may benefit from

the. results of this research. We view the entire development methodology as

continually evolving and expect to incorporate new techniques as our knowledge

expands.

119

t-'
N
o

C
L
o
C

r-----..,
175DA
CPU L __ _ _....J

K MULTIPROCESS

17SDA
CPU

OMA

MEMORY

ADDRESS/DATA

BIU

a. Tightly coupled multiprocessing

-------, -------'1
SPARE II

L_~~ ____ r
I-

PILOT TRANSDUCERS I-

INTEGRATED SENSORS 1=

FLIGHT CONTROL SCMP

b. Adding SCMPs to the bus

Figure 42. Options for computer expansion.

TO
REMOTE
TERMltJALS

Finally, automation of iron bird testing is recommended to achieve time

compression and enhance productivity. We believe this is a good time to

initiate the ADFBW development. Figure 43 suggests follow-on activities.

S.l RECOMMENDED FOLLOW-oN

Three one-year efforts are shown in parallel to support the major

development activities in phase 1.

The system specification activities define the technologies used to

implement the elements of the architecture and detail the interfaces. The

system specification will be sufficiently detailed to permit hardware design

to start in phase 1. A top-level system specification is prepared and the

fault tree reliability modeling is expanded.

The test design methodology addresses issues raised in section 6

concerning the application of finite-state machines and fault trees. These

techniques will be examined and results extended to evolve a practical

methodology for designing test cases.

The robotic demonstration is intended to take an initial look at the

issues of automating iron bird testing. It develops the computer interface,

robotic actuators, and system instrumentation. A demonstration on an

existing facility (like the F-S) is recommended.

Following these support activities a two-phase program is shown, leading

to and including flight test. Phase 1 comprises those tasks required to

complete iron bird testing of the ADFBW system. This phase lasts three years

and includes:

(1) Detailed hardware design

(2) Software design and coding

(3) Interface checkout, system simulation, and accelerated life testing

(4) Iron bird testing

Development of verification and validation tools occurs in parallel.

This activity designs the test cases and develops the hardware and software

necessary for automated iron bird testing.

121

...... II 12 IJ 14 15 Ii II II 19 10 II U Il
I\J
I\J

ADVANCED ~
fLIGHT ••
CONTROL
SYSTEM STUDY

SYSTEM
SPEC

SUPPORT TEST DESIGN ~
METHOOOLOG

ROBOTIC
DEMO

I DETAILED DESIGN
AND BUILD

V&V TOOLS 1 PHASE I

I IRON BIRD

r AIRCRAFT OPTION J
MODS

PHASE 2
HIGHT

l TESTING

OPTION I IRON BIRO

EMA fABRICATION
PROCUREMENT

ADVANCED

OPTION 2
WING FAB

IRON BIRO

Figure 43. - Recommended follo~-on activities with options.

Phase 2 is the flight test phase for the basic ADFBW sytem. It includes

aircraft modification and one year of flight testing to verify the

performance of the basic design. It could start in mid-1987.

The S-3A ADFBW test vehicle could support a variety of flight research

experiments. The five options shown in figure 42 are described below.

Option 1 involves testing of electromechanical actuators. Tasks are

proposed in a time frame that resumes flight testing in the shortest time

following the basic phase 2 flight test interval. The ADFBW system will

follow the verification and iron bird test methodology developed and used in

phase 1. Flight test follows, conservatively at first, with the

electromechanical actuators used only for powering the spoilers. The

electromechanical actuators' successful service in a non-flight-critical

application establishes their readiness for flight testing in all the surface

actuator positions.

Option 2 flight tests an advanced wing requiring extensive use of active

control technology. This effort could start in 1989 or earlier, depending on

other research and development activities in this area.

Option 3 involves using advanced displays. These flight tests are

scheduled for 1988-1989, at which time flat-panel devices should be

available. A low-risk look at this technology can be made with an early

flat-panel test in a rear crew position of the S-3A. In fact, years of

"ridealong" testing could be acquired in a very nonobtrusive fashion in the

rear position. When adequate reliability is achieved, one or both forward

positions could be equipped with the advanced displays.

Option 4 is a test of flight management system and air traffic control

system integration possibilities, rather than an application of

ultra-reliable electronic technology. Rated as a fairly low-priority option

it could, however, provide the S-3A test vehicle with the necessary avionics

to engage in sophisticated air traffic control experiments. An example would

be multiple airplane tests of curved approaches to microwave landing system

airports.

Option 5 adds the capability to operate one engine with digital engine

controls. The S-3A is an ideal testbed for this purpose since it has two

engines and excellent performance, even with one engine out. In the proposed

123

study the flight propulsion control coupling possibilities and

engine/airplane electric power sharing will be investigated.

The preceding discussion illustrates that the ADFBW S-3A would result in

a flexible testbed vehicle for NASA that could support a variety of research

areas. This theme is expanded on below.

8.2 EXPANSION TECHNOLOGIES

The preceding sections have described an ADFBW system. We have discussed

the issues involved in installing such a system on the proposed testbed

aircraft on S-3A. We conclude this technical discussion with a brief look at

several nexpansion technologiesn that could be the subject of research and

development at NASA on the S-3A ADFBW aircraft. These expansion technologies

are non-flight-control technologies that will figure prominently in the

efficient all-electric aircraft of the future. Figure 44 is a roadmap of

five expansion technology areas. The development of these technologies over

the next 20 years is outlined below.

8.2.1 Active Control and Advanced Wing Technology

Active control technology is represented along the bottom portion of

figure 44. New aft-loaded airfoils require CG placement that yields relaxed

static stability to the point that FBW stability augmentation is needed.

Next-generation wing designs will require FBW technology to achieve the

optimum aerodynamic and structural efficiencies.

Using the S-3A as a test vehicle could be valuable in this area. A new

wing could be demonstrated. On the new wing, active controls would provide

maneuver load control, in which symmetric aileron deflection would unload the

tips at load factors greater than Ig, thus conserving wing structural

weight. The pitch control system, acting in cooperation with the ailerons,

would provide elastic mode suppression and gust alleviation. Relaxed static

stability would be used to get the most efficiency out of the advanced

airfoil. Active CG management could be included to maximize fuel savings

payoffs. Testing of the advanced wing with the S-3A ADFBW could take place

in the late 1980's.

124

SECONDARY
POWER
SYSTEMS

DISPLAYS

PROPULSION
CONTROL

fLIGHT
MANAGEMENT
AND ATC

ACTIVE
CONTROL
TECHNOLOGY

fIllL·AUTHONTY
DIGITAl ENGINE

CONTROl

,I

"

-J··I.I··II

.- ---dlo1 __ ._

I'IlAUO IIA'IC IIA"," I"."

(LASIICWOOI_PII.(U"""I/Ilil

~~L("'IA~

11 11

CO"ANAQ[IiIt:",.CQIII
LIOIlHIGtITnnlMQ

.. IS II 87

Figure 44.

II •• ••

""1otilloallCtO
_UCWlA'fO
Ha' L
L:OC , _

IiKlCO.fV(IInoOOIM IAC. __ TIM,IIIlOlll

"

Q VOATEI
CMiIIVEH
T\,A8'NEI

• 2 •• ..

Expansion technology flow chart.

•• .. •• 2000

ALL· ELECTRIC
AIRPLANE

Two technologies that can be integrated with an advanced wing are the

vortex-driven turbine and upper-surface blowing concepts. The vortex-driven

turbine can be installed for vortex dissipation and power extraction. upper

surface blowing is a technology for vectoring the thrust to increase

circulation lift.

Active flutter suppression is seen as the last active control entry

because of its rapid and drastic failure modes. A first test application

might be with flutter margin reduced to dive speed; then subsequent flutter

margins could be eliminated to the point where flutter margins could be

provided completely automatically.

8.2.2 Flight Management and Air Traffic Control TechnologY

Flight management and air traffic control technology are combined in

figure 44. Today the component pieces of the future air traffic control

system are being developed. In general, airborne avionics are leading the

ground-based air traffic control system toward an era of fully automated,

high-density flow management. As flight control becomes more automated the

crew will function increasingly as system managers. The primary emphasis

will be on efficient and safe flight in a crowded traffic environment, with

elimination of delay and with optimal accommodation of changing weather

situations.

8.2.3 propulsion Control TechnologY

Propulsion control as shown in figure 44 is heading inexorably toward

full-authority digital engine control configurations. Digital engine control

will provide opportunities for improved fuel efficiency and for the coupling

of flight control and aircraft power systems. Gains for the relatively

simple subsonic fanjet engine control will not be as impressive as those

projected for transonic applications.

8.2.4 Display TechnologY

Electronic display technology will develop rapidly in the 1980s,

culminating as shown in figure 44 with fully integrated, solid state

flat-panel displays. The data volume available to the crew is almost

126

overwhelming today and will worsen with more widespread CRT usage in the

cockpit of the near future. Much remains to be done in the area of human

factors. NASA, recognizing this need, has initiated a substantial research

and development effort in this area. Equally important, however, is the need

for FEW-quality reliability in the displayed information. The advanced

cockpit of the 1990's will be totally electronic. Its reliability must be

equivalent to the electronic flight control because, as is the case with

advanced flight controls, total loss of the displays could result in loss of

the aircraft. Display technology then can directly benefit from ADFEW

research efforts toward developing ultra-reliable digital equipment.

8.2.5 Secondary Power Technology

Secondary power systems will evolve in the 1980's and 1990's toward an

all-electric implementation. Today's combination of electric, hydraulic, and

pneumatic power has led to a proliferation of power sources and distribution

systems, with a comparatively limited capability for load or function

sharing. A two-phase evolution toward all-electric secondary power is

anticipated. In the first, bleed power and pneumatic start systems will be

eliminated. Engine starting and environmental control system power will be

provided from a scaled-up electric power system. The second phase is more

difficult; it involves the elimination of hydraulic power. All hydraulic

motors and actuators will be replaced by electric-power devices. Hydraulic

technology of today is as reliable as the structure of an aircraft. Many

commercial transports are totally dependent on hydraulics for powering

primary flight controls and other important systems. Emergent

electromechanical actuators will have to be capable of equivalent reliability

to replace hydraulic actuators in flight-critical applications.

The ADFEW program plays an important role in the evolution of

all-electric technology. In relation to the proposed study, two areas of

research and development would be worthwhile. The first is the test and

evaluation of electric primary surface actuators. The second is in the area

of secondary power control. AS in the case of the advanced displays, the

control of electric power for future all-electric aircraft will be dependent

on ultra-reliable digital electronics. The all-electric flight control

127

system of the 1990's will use ring buses to efficiently distribute power to

the electric motors and actuators on the aircraft. Remote-controlled,

high-power solid state switches will control power to various parts of the

aircraft. A total power failure cannot be tolerated; hence, FBW-quality

digital control will again be a necessity.

128

APPENDIX A

EXAMPLES OF FINITE-STATE ~mCHINES

FOR SPECIFYING FLIGHT CONTROL FUNCTIONS*

BACKGROUND

In many cases designers attempt to write software directly from an English

language definition of the problem. Therefore, most of the design decisions

and algorithm steps get buried in the software, the correctness of which is

dependent solely on the intuition and ingenuity of the programmer. This poses

two problems. First, most of the current program proving techniques cannot be

applied because they require a formal mathematical specification of what the

program is supposed to do. Second, if the algorithm has a design error, it is

very difficult to detect.

We have proposed an approach that the algorithm be specified in terms of

finite-state machine descriptions before writing the software so that the

design decisions are made explicit and can be verified easily.

The digital advanced avionic system (DAAS) flight control program showed

that describing mode logic as a finite-state machine was very effective in

making design decisions visible and preventing errors of omission.

This appendix presents the details of three additional examples cited in

section 3. The first example is an algorithm for selecting from three

redundant sensor signals. It illustrates the use of a finite-state machine for

exhibiting the structure of the algorithim. It also illustrates the dominance

of one failure management mechanism over another.

The second example describes a three-channel synchronization method. It

shows the need for failure effects analysis of the auxiliary hardware as it

interfaces with the software.

*Portions of this research are supported by Honeywell IR&D programs.

129

The interaction between cross-channel voting and the testing of

interchannel communications is studied in the third example. The study shows

that three channels are adequate for detecting the first failure.

These specific examples were chosen to illustrate finite-state machine

modeling~ depending on final implementation of the ADFBW architecture, they

mayor may not be part of the recommended system.

SIGNAL SELECTION FOR THREE REDUNDANT SENSORS
WITH VALIDITY FLAGS

This algorithm provides an example of the finite-state structure. The

description is intended to be precise, complete, and clear to allow a design

review and a proof of correctness by a walk-through demonstration.

A major part of this problem consists of combinational (nonsequential)

logic. Mathematical (boolean) expressions of input variables have to be

evaluated in order to determine the transitions of the finite-state machine.

Similarly, mathematical expressions of input variables and the current state

yield the output variables. In the three-sensor select problem, these

mathematical expressions are of vital importance and strongly reflect the

control engineering decisions. Therefore, it is essential that these

expressions be explicitly derived and stated.

Based on the above reasoning, the recommended approach is to have a

complete mathematical description of the solution, which would serve as a

specification for the software to be written. This mathematical description

consists of a finite-state machine description and some boolean algebra in the

following example. In a control law problem, it may consist of arithmetic

expressions denoting, for example, the transfer function.

The main advantage of a mathematical description is that it is a language

easily understood by the control enginers. A systematically derived

mathematical expression constitutes a proof in itself. It also highlights the

control engineering decisions in the best possible manner.

Another advantage is that once the mathematical description is written,

hardware/software tradeoffs and implementation allocations can be readily made.

130

Note that this approach is quite compatible with the current program

verification techniques. The required input and output assertions can be

readily obtained from the mathematical description. The use of such

techniques may not be necessary, however, because as experience indicates,

most errors are made in obtaining the correct description of what the software

is supposed to do.

The entire process can be summarized as follows:

(1) Control engineering statement of problem. - An English

language statement of the problem, specifying the input and output variables.

(2) Develop solution approach and informal algorithm(s) based on control

engineering reasoning.

(3) Mathematical description. -

(a) Identify what information has to be preserved

from one cycle to another. This constitutes the

finite-state machine.

(b) Explicitly state which combinations of input

variable cause a particular transition in the finite-state

machine (this is based on control engineering decision).

Complete the formal description of the finite-state machine.

(c) Each output variable is a function of input

variables and the current state of the finite-state

machine. Describe this function mathematically, taking

into account all possible states of the finite-state

machine and all possible combinations of the input

variables.

(4) Hardware/software split. - Based on the results of the previous step,

decide what portion is to be implemented in hardware and what in software.

(5) Design and verify the hardware.

(6) Design and verify the software. -

(a) Design software according to the specification in

step 4.

(b) Derive input-output assertion to be used for

formal program verification.

(c) Formally verify the program.

(Steps band c may be omitted if not critical.)

131

Based on the above methodology, the remainder of this section presents a

solution for the three-sensor select problem.

A SOLUTION OF THE THREE-SENSOR SELECT PROBLEM

Problem Statement

To produce an output signal from three sensor signals with validity flags

sampled at each cycle.

Requirements and Approach

The three sensor signals and the three corresponding validity flags are

directly wired to each computer. If a flag is invalid, assume that the sensor

has failed. There may, however, be failure modes not detected by the validity

mechanism. Hence, signal comparisions are also necessary. The differences of

the signals are required to be within a fixed tolerance that is specific to

the sensor.

The selection of the output depends only on the comparisons of the three

signals. If the three signals are valid and compare within the tolerance, the

median signal is chosen. If one pair of signals miscompare, the third signal

is used but no fault is assigned. If two pairs of signals miscompare, then

the signal common to the pairs is judged faulty and the average of the other

two is taken as the selected signal. If there are three miscomparisons while

all of the flags are valid or the situation is ambiguous, none of the data is

used; the selected value from the previous cycle is chosen.

To avoid nuisance error indications a counting mechanism is used to

determine failure when a fixed plurality of miscompares is exceeded. A sensor

will be considered to be recovered if it compares favorably for the same

plurality of cycles. The status of the validity flag and the count of

miscompares determines the state of the sensor. This part of the algorithm is

represented as a finite-state machine.

·Since there are two mechanisms for monitoring failures, these must be

shown to provide consistent determinations under all circumstances~ It is

conceivable, with time skew of the computer programs and momentary jitter in

the flag signal, that the programs might disagree on the mode of failure, but

this condition must not persist or allow differences in the selected signals.

132

Mathematical Description

The information to be preserved from one cycle to another is the state of

the counting mechanism and the sensor status (i.e., failed or OK). A

finite-state machine representation of this will look like figure A-I. The

total number of states is 2 Max + 1. Starting from state 1, the machine moves

right one state every time sensor A is considered "bad." A transition to the

left occurs every time sensor A is considered "good." In case of indecision,

there is no transition. These states can also be represented by the values of

integer variable count-A in the range Max to 1. When the value of count-A

reaches zero, sensor A is considered in a failed state. The sensor is not

considered recovered until count A reaches Max. The counting up mechanism is

exactly the reverse of the counting down.

In addition to the above, there are other transitions based on the value

of the validity flag only. All the states of this finite-state machine

transition to state "limbo" whenever sensor A validity flag (Afl) is false.

The only exit from limbo is to the start-up state (state 1) when Afl is

"true." Notice that whenever Afl becomes "false," it essentially resets the

finite-state machine. It is important to note that conditions Afl, Abad,

Agood, and Anutral should be mutually exclusive. Based on this finite-state

machine description, sensor A is called in a failed state if it is in anyone

of the following states: ALimbo, AstateMax+l, AstateMax+2, ••• , Astate2Max. A

boolean "Afail" is generated to denote this condition. It is true if the

finite-state machine for sensor A is in anyone of the above states. It is

false otherwise. Booleans Bfail and Cfail are generated in a similar manner.

Note that if Afl-false, it will always force Afail-true. There are similar,

independent finite-state machines for sensor B and sensor C.

The objective is to derive boolean expressions for conditions Abad, Agood,

and Anutral. These expressions should contain as variable only the inputs and

the current (unadvanced) states of the finite-state machines for the other two

sensors. First, let us list the inputs and define some intermediate variables:

a - real

b - real

c - real

- value of sensor A

- value of sensor B

- value of sensor C

133

START

AFl

ASTATE 1 ASTATE 2 ASTATE MAX

AFl

ASTATE 2MAX • • •

ANUTRAL

ANUTRAL + ABAD

AFAIL ~ (AUMBO) + (ASTATE MAX+l) + (ASTATE MAX+2) +. • • • + (ASTATE 2 MAX)

Figure A-i. - Finite-state machine for sensor A.

Afl - boolean - validity flag of sensor A

Bfl - boolean - validity flag of sensor B

eEl - boolean - validity flag of sensor C

A3 boolean - True: ASS (a-b) < Toleranoe

AC boolean - True: ABS(a-o) < Tolerance

BC boolean - True: ASS (b-c) < Tolerance

A truth table is given in table A-I. The expressions for Abad, Agood, and

Anutral are directly obtained from this table.

Abad: Boolean; should be true when Afl-true and there is

sufficient reason to believe that sensor A is bad.

Abad = Afl {Bfl • Cfl • AC • Cfailp + Bfl • Cfl • AB •

Bfailp + Bfl • Cfl • AB • AC • (BC + BC •

Bfailp • Cfailp)}

Agood: Boolean; true whenever there is sufficient reason

to believe that sensor A is good and Afl-true.

Agood = Afl {Bfl· Cfl + Bfl • AC + Cfl • AB +

Bfl • Cfl • (AS • BC + AC • BC + AB • BC • AC)}

Anutral: Boolean; true whenever there is insufficient

reason for either Agood-true or Abad-true.

Anutral = Afl • Agood • Bgood

Afailp: Value of Afail at the end of previous cycle.

Bfailp: Value of Bfail at the end of previous cycle.

Similar expressions can be obtained for Bgood, Bbad, and Bnutral; and

Cgood, Cbad, and Cnutral. This completes the finite-state machine

descriptions. Note that if the three finite-state machines are advanced

simultaneously, there is no need to define Afailp, Bfailp, and Cfailp. This

is standard practice in hardware implementations of finite-state machines.

There are two outputs:

Sensor-type-fails. - Boolean; true when there is sufficient reason to

believe that all the three sensors have failed, or it cannot be known which

sensor is good.

sensor-type-fail - Afail Bfail Cfai1

135

136

TABLE A-I. - TRUTH TABLE FOR AGOOD, ABAD, AND ANUTRAL

Inputs: Afl, Bfl, Cfl, AB, BC, AC, Bfailp, and Cfailp

I. Afl-true

Bfl Cfl AB BC AC Agood Abad

0 0 0 0 0 1 0

0 0 0 0 1 1 0

0 0 0 1 0 1 0

0 0 0 1 1 1 0

0 0 1 0 0 1 0

0 0 1 0 1 1 0

0 0 1 1 0 1 0

0 0 1 1 1 1 0

0 1 0 0 0 0 Cfailp

0 1 0 0 1 1 0

0 1 0 1 0 0 Cfailp

0 1 0 1 1 1 0

0 1 1 0 0 0 Cfailp

0 1 1 0 1 1 0

0 1 1 1 0 0 Cfailp

0 1 1 1 1 1 0

Cfailp ~ value of Cfail at end of previous cycle

Bfailp ~ value of Bfail at end of previous cycle

Anutral

0

0

0

0

0

0

0

0

Cfailp

0

Cfail

0

Cfail

0

Cfail

0

TABLE A-l. - Concluded

Sfl Cfl AS SC AC

1 0 0 0 0

1 0 0 0 1

1 0 0 1 0

1 0 0 1 1

1 0 1 0 0

1 0 1 0 1

1 0 1 1 0

1 0 1 1 1

1 1 0 0 0

1 1 0 0 1

1 1 0 1 0

1 1 0 1 1

1 1 1 0 0

1 1 1 0 1

1 1 1 1 0

1 1 1 1 1

N = Bfail • Cfail

II. Afl-false

Agood = Abad = Anutral = false

regardless of other inputs

Agood

0

0

0

0

1

1

1

1

0

1

0

0

1

1

0

1

Abad Anutral

Sfailp Bfailp

Bfailp Bfailp

Bfailp Bfailp

Sfailp Bfailp

0 0

0 0

0 0

0 0

-N N

0 0

1 0

0 1

0 0

0 0

0 1

0 0

137

Selected-value. - Real: denotes the selected signal value for this cycle.

The following variables are used as inputs:

Afail, Bfail, Cfail, AB, BC, AC, a, b, c, past-value

Table A-2 gives the selected-value for all possible combinations of the

input variables. It can be easily verified that the eight boolean conditions

are indeed mutually exclusive and that they account for all possible (64)

combinations of the six input booleans.,

Hardware-Software Split

There are various options available here, as listed below:

(a) The entire algorithm can be implemented in hardware. This will be a

very straightforward but tedious design.

(b) Part of the algorithm can be implemented in hardware, such as

evaluating the booleans AB, BC, AC, or the finite-state machines.

(c) The entire algorithm can be implemented in software.

For the purpose of an example, the third approach is used here. The

algorithm steps are:

(1) Evaluate any intermediate variables.

(2) Process data for sensor A (i.e., advance finite-state machine) •

(3) Process data for sensor B.

(4) Process data for sensor C.

(5) Evaluate outputs.

The next step in developing software for this function would be to prepare

the HIPO charts from the finite-state machine description.

Verification

A walk-through of the algorithm can be used to show that, as a single

computer program, it is technically correct. The compare and select functions

are not complicated so their implementations can be tested for all

combinations of boolean inputs and a reasonable representation of the

combinations of real inputs.

138

TABLE A-2. - GENERATING OUTPUT VARIABLES.

Condition selected-Value

l. Afail· · Bfail · Cfail · AB . BC . AC = true median (a, b, c)

- -
2. Bfail · Cfail • (Afail • BC + Afail · AB • BC · AC) = true b + c

2

- -
Afail Cfail + Bfail 3. · · (Bfail · AC · AB · BC · AC) = true a + C ---

2

-
4. Mail · Bfail · (Cfail · AB + Cfail · AB · BC • AC) = true a + b ---

2
--- -- --- -- -

5. Afail • (Bfail • Cfail + Bfail · Cfail • AB · BC · AC) = true a

--- -
6. Bfail · (Afail • Cfail + Afail • Cfail • AB • BC • AC) = true b

--- --- -- -7. Cfail · (Afail · Bfail + Afail · Bfail · AB · BC • AC) = true c

- - -
8. Afail · Bfail · Cfail + Afail . Bfail . Cfail . AB • BC • AC +

--- -Afail • Bfail • Cfail · BC + Afail . Bfail • Cfail • AC +
-- --- -
Afail · Bfail • Cfail · AB past-value

ANALYSIS OF A THREE-CHANNEL SYNCHRONIZATION MECHANISM

One approach to frame synchronization is to, use dedicated hardware,

external to the computers, to provide signals to simultaneously release the

computers from the halt instruction in each copy of the software. These

schemes require very careful failure modes and effects analysis to show that

no single failure in this external hardware or in the computers results in

total system failure.

The Configuration

The configuration for synchronization is shown in figure A-2. Each block

of hardware communicates with the two other blocks and its respective

computer. In addition, there is a flip-flop which is set by the local

computer program when its execution leaves the initialization phase. This

flip-flop may be read by the other computers. The corresponding boolean

variables are called the right_up_and_ready, local_up_and_ready, and left_up

and_ready to distinguish them from the ready signals available from the

hardware logic shown in figure A-3.

After the hardware is reset, the real-time counter counts for 25 msec and

sets the ready flip-flop. If the counting continues through the overcount

period, the overcount flip-flop is set. The hardware produces the halt

release signal from the following two terms, which are combined at the final

or-gate. For two or three computers,

halt_release = «left_overcount AND local-overcount) OR right_ready)

AND «right_overcount AND local_overcount) OR left_ready)

AND local_ready

But to provide for the case in which two computers fail, we need the term

halt release = «NOT left_overcount OR

NOT local_overcount) AND NOT right_ready)

AND «NOT right_overcount OR

NOT Local_overcount) AND NOT Left_ready)

AND local overcount

The hardware is implemented so that the power-down or broken wire case appears

as ready = true and overcount = true to the other channels.

140

REAL- TIME

CLOCK

LOCAL SYNCH
HARDHARE

LOCAL
COMPUTER

EXTERN/l,L
LOCAL up-AND
READY FLIP-FLOP

Figure A-2. - Configuration for synchronization.

141

CLOCK

OVERCOUNT FROM
LEFT HARDWARE

.---____ S-I OVER-
o

OVER-COUNT
DETECTOR

REAL- TIME
COUNTER

R COUNT
FF

I--f_S-i READY
FF

R ~_---'

o

RESET LEFT
OVERCOUNT FF

LEFT
R VER-

READY SIGNAL FROM
RIGHT HARDWARE

S COUNT 0
1-_--1 FF 1----/

LOCAL OVERCOUNT

LOCAL READY -SIGNAL
RIGHT

)----1 OVER

RESET SYNCHRONIZATION HARDWARE
COUNT

FF

OVERCOUNT FROM RESET RIGHT
RIGHT HARDWARE OVERCOUNT FF

READY SIGNAL FROM
LEFT HARDWARE

Figure A-3. - Hardware logic for synchronization.

HALT
RELEASE

Initial synchronization

The process of initially synchronizing with a computer that is already

running in the frame is illustrated in figure A-4. If the right or left

computers are already running, they have passed the instruction in the initial

leg of the program that sets the up_and_ready flip-flop. The local computer

detects that this flip-flop is set and waits in the starting leg until the

running computer passes the halt and resets the ready flip-flop in the

synchronizing hardware. This is detected in the wait loop and the local

computer is released. The time required for the program to run from the ready

reset to the beginning of the loop is balanced to maintain the synchronization.

Analysis of Frame Synchronization

The auxiliary hardware has three states that are defined by the ready and

ovecount flip-flops. These are:

(1) NOT ready AND NOT overcount (the program is in the 25 ~sec main

program loop)

(2) Ready AND NOT overcount (the clock has timed past 25 ~seci normally

the program is at halt, waiting for the other ready's.

START

HALT

LOCAL HARDWARE READ
SET BY THE CLOCK

LOCAL HARDWARE
READY RESET BY TH
PROGRAM

BEGIN LOOP

WAIT FOR LEFT OR
RIGHT HARDWARE
READY TO BE RESET

LOCAL UP AND READY SET
BOTH IN THE SOFTWARE AND
IN THE HARDWARE

MAIN BODY
OF PROGRAM

Figure A-4. - Initial synchronization.

143

(3) Ready AND overcount (the clock has counted past the overcount period

and has set the overcount flip-flop.)

The parallel operation of the computer and the auxiliary hardware is

illustrated by the Petri net diagram in figure A-S. It represents the

operation of the local computer with the right computer; the left computer is

not turned on. Places PI to P3 with transitions Tl to T3 represent

the operation of the local clock. Places P4 and Ps with transitions T3

and T4 are the states of overcount flip-flop. Places P6 and P7 with

transitions TS and T6 are the states of the ready flip-flop. Transition

T6 represents the halt-release logic of

halt-release = local-ready AND (right-ready OR

local-overcount)

. The local computer is at halt in place PlO but is running and crosses the

reset command in the software at transition TIl.

Three events govern the operation of the computer:

(1) Halt release is issued, ready and overcount flip-flops are reset,

clock is reset

(2) Clock sets ready flip-flop

(3) Clock sets overcount flip-flop

Thus, there are trivial relations between the events and the states. These

are shown in table A-3 and represent the 27 states of the three computers.

This table merely confirms the consistency of the operation and defines the

states in which a release command is output. If only computers A and Bare

operating, C reports that it is in the state ready AND overcount. This limits

the operation of the system to the states and transitions shown in table A-4.

With only one computer operating, there are only the three remaining states,

illustrated in table A-S.

The release-enable output listed in the last column of the tables may be

represented by

release a enable = [a(l) AND NOT [b(O) OR

c(O)]] OR [a(2) AND

NOT [(b(O) AND c(l» OR

(b (1) AND c (0))]]

This can be verified to be equivalent to the boolean logic of the hardware

list;.d-previously.

144

i

OVERCOUNT
PERIOD
ELAPSED

25 USEe
PERIOD
ELAPSED

CLOCK PAST
OVERCOUNT
PERIOD

CLOCK IN
25 USEC
PERIOD

.. -. '. - ~
RIGHT-READY

SET RELEASE

LOCAL OVERCOUNTL-__ -. ...
FLIP-FLOP SET +

-~,.-oL- SOFH1ARE RESET

Figure A-5. - Petri net for local computer.

. .:.....JL--~~ __ RESET COMl·IAND

SOFTHARE
RESET
SIGNAL

TABLE A-3. - ALL THREE COMPUTER GUIDES

~
'tl C 'tl C 'tl c:

State C1> :J C1> :J C1> ::l

'" 0 '" 0 '" 0
to >. u to >. u to >. u C1>'tl

NOT Ready l. Ready 2. Ready C1> 'tl ... C1> 'tl ... C1> 'tl ... '" OJ to C1> to C1> \I)
\I) \I) > CII II! > \I) \I) > \1)..0

NOT Overcount e>: e>: 0 a:: e>: 0 e>: a: 0
\I) c:

..: ..: ..: III III ttl tJ tJ tJ ",ru
Overcount

a ABC - 5 - - 4 - - J -
1 ABC 12 - 17 13 - 16 14 - 15 A B C

2 ABC 9 - - 10 - - 11 - - AB C

3 A B C - 13 - - 12 - a - 6

4 A C B - 14 - a - 7 - lZ -
5 B C A a - 8 - .14 - - lJ -
6 A B C - 23 - - 21 - a - - C

7 A C B - 25 - 0 - - - ZZ - B

8 B C A 0 - - - 26 - - 24 - A

9 A B C - 18 - 6 - - 7 - - B C

10 B A C 6 - - - 19 - 8 - - A C

11 C A B 7 - - 8 - - - za - AB

12 A B C - 1 - 3 - 22 4 - Zl.

13 B A C 3 - 24 - 1 - 13 - ZJ

14 C A B 4 - 26 5 - 25 - 1 -
15 A B C 21 - 19 23 - 18 14 - - ABC

16 A C B 22 - 20 13 - - 25 - HI ABC

17 B C A 12 - - 24 - 20 26 - U AB C

18 A B C 9 - 2 23 - - 25 - - AB C

19 B A C 21 - - 10 - 2 26 - - ABC

20 C A B 22 - - 24 - - 11 - Z ABC

21 A B C - 15 - 6 - 9 4 - -
22 A C B - 16 - 3 - - 7 - g

23 B A C 6 - 10 - 15 - 5 - -
24 B C A 3 - - - 17 - 8 - La

25 C A B 7 - 11 5 - - - 16 -
26 C B A 4 - - 8 - 11 - 17 -

146

TABLE A-4. - COMPUTERS A AND B OPERATING

.... '-'
'0 C '0 C '0 c

Stat'? " " CJ " CJ " Ul 0 til 0 Ul 0

'" :>. u '" :>. u '" :>. u OJ '0

~OT Ready l. Ready 2. Ready CJ '0 ... <II '0 ... <II 'tl ... til CJ
'" <II '" <II '" <II '" <II CJ > <II <II > <II <II > <11.0

!lOT Overcount a: a: 0 a: a: 0 a: a: 0 '" CJ C
<t <t <t al al al U U U a: ~

Overcount

0

1

2 ABC 9 - - 10 - - 11 - - A 8 C

3

4

5

6 ,\ 9 C - 23 - - 21 - 0 - - C

7

8

9 A B C - 18 - 6 - - 7 - - B C

10 8 A C 6 - - - 19 - 8 - - A C

11

12

13

14

15 A B C 21 - 19 23 - 18 14 - - ABC

16

17

18 A 8 C 9 - 2 23 - - 25 - - ABC

19 8 A C 21 - - 10 - 2 26 - - ABC

20

21 A B C - 15 - 6 - 9 4 - -
22

23 8 A C 6 - 10 - 15 - 5 - -
24

25

26

147

TABLE A-5. - COMPUTER A OPERATING

~ '"' '"' '"'
State '0 <: '0 <: '0 <: .,

" <:I " " :J

'" 0 '" c " 0
NOT Ready l. Ready 2. Ready .. ,.,

~ .. ,.,
~ '" >- ;; :; "'J ., '0 ., 'g ~ -g " ", <:I " "'

NOT Over<:ount <:I " > ., '" > '" <:I > c: ..c
a: c: 0 a: c: 0 c: a: 0 '"

<:I <:
Overcount .,; .,; <: OJ ::J ::J '-J '-J U ",:.J

0

1

2 ABC 9 - - 10 - - 11 - - ABC

)

4

5

6

7

H

4 II B C - 18 - 6 - - 7 - - B C

10
I

11

12

13

14

15

16

17

18 A B C 9 - 2 23 - - 25 - - ABC

19

20

21

22

23

24

25

26

148

The Results

By this analysis, we have verified the consistency of the synchronization

scheme for all states and all events and have verified the release logic

equations. The next step is to study the failure effects of the auxiliary

hardware to show that there are no single failures which will cause a

persistent unsynchronized condition or will cause the system to fail by some

other response. These results are not reported here.

CROSS-CHANNEL VOTING AND TESTING OF INTERCHANNEL COMMUNICATIONS

This study describes the interchannel communication typical of a

frame-synchronized triplex system (ref. Al). The configuration is shown in

figure A-6. Each computer communicates to the others through a single

transmitter, which sends the same signals to receivers at each of the other

computers. Thus, the sending computer-transmitter cannot originate two

different signals. Asymmetry in the communications can be caused only by

errors in the receivers or the receiving computer. This approach eliminates

the concerns raised in reference A2, which is carried needlessly into SIFT

(ref. A3 to A6). According to reference 2, we need four computers to detect

one error if the originating computer sends differing signals to the others.

This is not the case for the configuration shown in figure A-6.

The Analysis

The approach is by brute force. Assume that anyone of the 12 boxes in

figure A-6 produces errors and then follow these errors through two levels of

data exchange. Only one unit is assumed faulty. Errors are detected by a sum

check on the data transmissions and by comparisons of computer outputs from

some ,active computation. The error syndromes after the initial data exchange

are listed in table A-6~ the final syndromes resulting from the exchange of

the initial observations are shown in table A-7. After the first exchange the

syndromes allow a computer to detect errors in the foreign computers or the

communications channels, but cannot distinguish between errors in the

computers, transmitters, or receivers. After the second round of data

149

Figure A-6. - Communication among synchronized channels.

interchange, the syndromes distinguish receiver errors and

computer-transmitter errors; the local computer, if okay, can determine that

its transmitter is causing errors.

In the second round of communications, a computer will receive a word that

indicates an error in the left or right path, or its own transmitter. The .
transmission over an erroneous path is indicated by an X in table A-7.

The algorithm is summarized in table A-B. There is a jump in the frame of

reference from the initial observation to the final analysis in table A-6; if

the right channel decides that its left channel is in error, then the local

channel will interpret this decision to mean that it is in error.

150

I-'
Ul
I-'

.::

.~

<Y
0

t- a-
zn.:
UJ '" 0-'" ,

I CA

2 TA

3 RAU
1------

4 RCA

5 Cfl

6 TS

7 R(B

U RAB

9 Cr

10
Te

II R~ _

12 RUt:

'" 0 « -t- o « t-
O>

~ u

on ~ '" 0

"" u
UJ
I
u

:>.c
=>
on

X

OK

OK

FAll

OK

OK

OK

OK

X

fAil

OK

OK

<r
« « «

0
t- t- t- t-

« « «
'" '" u «
z u « '" 0

.z: z z
"" ~ 0 0
u on on
UJ - - ;; :z: oc oc
u « ~ ~ n. "'- :E :E :E
=> 0 a a
'" u u u

X X X X

OK OK OK OK

fAil X OK X

OK X X OK

X FAil OK FAIL

All X OK X

OK OK OK OK

OK ·OK OK OK

OK fill FAll OK

OK X X OK

OK OK OK OK

OK OK OK OK

TABLE A-6. - INITIAL FAULT OBSERVATIONS

'" '" u u
'" Ul '" U U U 0 0 a ~ t- t- t- t- t- t- t-- t- t-« « « « « « « u <Xl « u « a:> « '" u

"" "" « a:> u <5 z ca u « u 0 0 ;z: z ;z: z ;z: z
"" "" 0 0 0 "" "" a a a u u '" '" Vl

~ U '" '" '" UJ UJ - ;; UJ ;; - -:z: :z: '" oc :z: ::r: oc '" u u ~ ~ « u u ~ « « n.
CONCLUSION Co n. CONCl US I ON :>: :E :E :E :E :>: :>: ~ :E :E

OF COMPUTER A => => a 0 a
OF COMPUTER B => => 0 0 0

'" on u u u '" on u u u

PROBABl Y SOMETHING ERROR IN A TO B ERRUR IN A IU C
WRONG X OK FAil FAil OK IN COMPUTER A OK X FAil OK fAil OR IN COMI'IJ I [A

ERROR IN A TO B ERROR IN A ro C
NO PROBLEM FAIL OK X X OK OR IN COMPUTER A OK FAll X OK X OR IN CllMl'lJllR A

ERROR IN B TO A
OR IN COMPUTER B OK OK OK OK OK NO PROBLEM OK OK OK OK OK NO PHOIII lM

ERROR IN C TO A
OR COMPUTER C OK OK OK OK OK NO PROBLEM OK OK OK OK OK NO Pklltil lM

ERROR IN B TO A PROBABLY SOMETHING ERRUR IN U III C
OR COMPUTER B X X X X X WRONG X OK FAIL FAll OK OR IN COMl'liTl R U

ERROR IN B TO A ERRIJR IN B III l.
OR COMPUTER B OK OK OK OK OK NO PROBLEM FAll OK X X OK OR HI WMl'llllR U

ERROR IN C TO B
NO PROBLEM OK FAIL X OK X OR IN COMPUTER C OK OK OK OK OK NIJ I'Rlllill fl

ERROR IN A TO B
NO PROBLEM FAIL OK X X OK OR IN COMPUTER A OK OK OK OK OK NO f'~lllJl U1

ERROR IN C TO A ERROR IN C TO B I'kIJl,r'lli y :,111-11 -
OR IN COMPUTER C OK X FAil OK FAIL OR IN COMPUTER C X X X X X Iii Hit, WI{IIIII,

ERROR IN C TO A ERROR IN C TO B
OR IN COMPUTER C OK FAIL X OK X OR IN COMPUTER C OK OK OK OK OK Nil I'IWI:IIM

ll<IWi{ IfIAiI~~
NO PROBLEM OK OK OK OK OK NO PROBLEM OK FAIl. X OK X

ilk II' lIIMI'1J Il I< A

lillilll' Ifl Ii III 1
NO PROBLEM OK OK OK OK OK NO PROBLEM rAil OK X X UK 111< HI lllt-li'lllll! II

TABLE A-7. - SECOND DATA INTERCHANGE

'" '" co u u u
>- <1: <[<[
C< .:> ~ 2 0 a ~

~ ~ 0 2 >- ,. 0
0 >-- 0

~
<[z: u <[co "" a: z '" u a

2 0
~ ~ ~ -~ ~ ~ - 0 a I-

-" >-- a 0 a >-- a
~ ..

~ I- ~ >-- > . ,-
>-- >-- c.; a: a: CONCIU510~

a: "" a: CONCI USION , '" a: a: "" CON(LUS \()N a 0 w

;.:;~ <u :i' 0 ~ ~ :i' 0. 0. Vl OF CmlPLJTf.I! C Vl 0. OF CQrIPUltR A Of> or CotlPUTER B ~ ~ '" ·,r '" ~ w ~ co w a: '" a
<u~ 0 "" "" a: 0 '"

A TO 8 f\ TO C ERROR IN A TO 8 A 10 r ERROR IN
I CA X X X X X OR OR CHANNEL A X ~R ~R CIlANNEL A

(r.

A TO B A TO C A TO B f\ TO C ERROR IN A TO 8 A TO C ERROR IN
OR OR ERROR IN TA X OR OR CHANNEL A X

OR OR CHANNEL A
2 TA OK

(A CA CA CA CA CA

B TO A B TO A 8 TO A
3 RIlA OR X OK ERr-OR IN RBA

OR OK K ERROR IN R8A
OR OK OK ERROR IN RaA

CB (8 Ca

(TO A (TO A (TO A
4 RCA

OR OK X ERROR IN R
AC OR OK K ERROR IN R

AC OR OK OK ERROR IN RAC (((r

8 TO A B TO (B TO A B TO (
5 CB OR X OR ERROR IN O~NNEL B X X X OR X OR ERROR IN

CB CR (n (n CIIANNfL 8
B TO A B TO (B TO A B TO (B TO A ~ TO C

6 T U
OR X OR ERROR IN (HANNEL B OR OK OR ERROR IN T8 OR X OR ERROR IN CIIANNEI I!
CB (a CB Co (B (B

(TO B T08 C T08
7 RCU OK OR OK ERROR IN RCB OK OR X ERROR IN RCB OK OR OK ERROR IN RCB

Cr Cr Cr

A TO B ~ TO U A 10 U
B RAil OK OR OK ERROR IN RAa X

OR OK ERROR IN RAB OK OR
OK ERIWR IN RAI!

CA CA CA

C 10 A C TO a C 10 A TO a
y c UU OR X ERROR IN CHANNE L C OR OR X ERROR IN CHANNEL C X ; : C

Cc Cc Cc C(

C IU A (TO B (TO A TO a (iliA (TO U
10 IC OR OR X ERROR IN (HANNEI (OR OR X ERROR IN (IIAtINU (UR OR 1'1 lRIWR IN I C

l((c Cc (C lC Cc

A TO (A TO C A IU (

I IiI\(OR lRROR IN RAC UK OK OR [RROR IN RAC X UK Ol! [RROR IN RAC OK OK
(A (A CA

8 10 (B TU (U IU C
It lilil OK OK UR lRIWR IN RUL OK lK OR [J!JWR I tI RBC

UK X OR [RIWR IN HIlC
(1\ (, e"

TABLE A-S. - SUMMARY OF FAILURE ANALYSIS ALGORITHM

f- Vl
--' f- :r: --' ~

<l: --' LL. LL. LL. L') LL. <l: f- Vl
LJ <l: 0 w 0 ~ 0 LJ -' 0
0 LJ --' a: 0 ~ z ::E z ::E z
--' 0 z z z -' <l: 0 0 0 0 L')

:L :L -' 0 0 0 0 0 LL. ~ a: f- ~ a: <l:
LJ 0 LJ Vl Z Vl Z Vl 0 f- LL. :r:: f- -' LL. f- ~

W f- w 0 ~ « ~ « - z -' c:(L') « c:(LL. 0
:r: I f- a: a: a: c:(c:(:> f- ~ :> LJ f- w
LJ f- LJ <l: f- <:(--' « ~ a: a: a: a: a a: -' f-

-L f- 0.. :r:: 0.. « 0.. f- f- w a w -' a -' z L') Z LL. ::E L') ::E LJ ::E LL. ~ Vl Cl... W Vl Cl... W ~
~ - ~ w 0 - a a a w z en w :r:: en LL. w :r:: c:(
Vl a: If) -' LJ a: LJ --' LJ -' - a a: f- a a a: f- LL.

X OK FAIL FAIL OK RIGHT OK OK OK OK
CHANNEL

FAIL OK X X OK RIGHT X RIGHT RIGHT RIGHT
CHANNEL CHANNEL

OK FAIL X OK X LEFT LEFT LEFT X LEFT
CHANNEL CHANNEL

OK X FAIL OK FAIL LEFT LOCAL OK LOCAL LOCAL
CHANNEL TRANSMITTER

OK OK OK OK OK OK LOCAL OK OK LOCAL TO
RIGHT RECEIVER

ALL DTHERS LOCAL LEFT OK OK RIGHT TO
CHANNEL LEFT RECEIVER

(X = OK OR FAIL) OK OK RIGHT LEFT TO

INITIAL FAULT OBSERVATION RIGHT RECEIVER

OK LEFT X
LEFT TO

LOCAL RECEIVER

X RIGHT OK RIGHT TO
LOCAL RECEIVER

ALL OTH RS LOCAL
CHANNEL

(X OK OR LEFT OR RIGHT ~~ LOCAL OR ERROR)
~ SECOND DATA INTERCHANGE
UI
w

APPENDIX A REFERENCES

AI. Bender, M.A.; to W.A. Becker: DAFICS Software DS-II-Redundant Signal

Monitoring and Management Portion. Internal Honeywell Avionics

Division memo, February 10, 1981.

A2. Pease, M.; Shostak, R.; and Lamport, L.: Reaching Agreement in the

Presence of Faults. J. ACM, vol. 27, no. 2, April 1980, pp. 228-234.

A3. Weinstock, C.B.: SIFT: System Design and Implementation. 10th Int.

Symp. on Fault-Tolerant Computing, October 1980.

A4. Goldberg, J.: SIFT: A Provable Fault-Tolerant Computer for Aircraft

Flight Control. Information Processing 80, (IFIP 1980), S. H.

Lavington, ed., pp. 151-156.

A5. Melliar-Smith, P.M.; and Schwartz, R.L.: Current Progress on the Proof

of SIFT. 11th Annual Int. Symp. on Fault-Tolerant Computing,

Portland, Maine, June 1981.

A6. Melliar-Smith, P.M.; and Schwartz, R.L.: Hierarchical Specification on

the SIFT Fault Tolerant Flight Control System. SRI-International

manuscript.

A7. Levitt, K.N.: Software Validation and Verification Techniques. AGARD

Lecture Series no. 109, pp. 5-1 to 5-9.

154

APPENDIX B

SAHPLE IRON BIRD TEST PLAN

INTRODUCTION

A sample test plan to validate the advanced digital fly-by-wire (ADFBW) in

the S-3A iron bird is given in this appendix. The sample plan is used to

illustrate the typical test procedures and to identify those tasks for which

automation is essential for validating flight-critical digital systems and

beneficial in reducing test time and cost. To illustrate the potential test

time savings of the automated iron bird, test times are estimated for both the

manual approach and the automated approach based on the same number of test

cases to be conducted.

TEST DESCRIPTION AND TEST TIME ESTIMATION

The iron bird testing will be conducted in two phases. The two phases are

defined as follows:

(1) Phase A. Phase A will test the ADFBW system's hardware and software

open-loop performance. Aircraft dynamics will not be included. The purposes

of this test phase are to:

o Demonstrate compatibility among ADFBW systems and with

aircraft interfacing systems

o Verify static gains between stick/pedal and control surfaces

o Verify system software

(2). Phase B. The tests conducted during this phase will evaluate the

ADFBW closed-loop performance. Closed-loop testing will be accomplished with

simulated aircraft dynamics. Testing with pilot-in-the-loop is possible by

driving flight instruments with simulated aircraft response variables. The

purposes of this test phase are to:

(1) Validate the analytically predicted stability of the augmentation

mode

155

(2) Validate the fault-tolerance performance of the system

(3) Eliminate infant-mortality type failures by an accelerated life

test procedure

(4) Evaluate handling qualities for normal and degraded modes

operation by pilots

Phase A--Open-Loop Tests

Three tasks are identified in this phase: system interface test,

static gain test, and software validation.

System interface test. - This test will be performed to verify that

all subsystems are interfaced properly. The test procedure will include

setting electrical and hydraulic power supplies at various loading levels

and permissible limits to verify that the ADFBW system's performance wiil

not result in undesirable or unsatisfactory operation. Because of the

high degree of manual interpretation on the operational status of the

system and the small number of test cases involved, a manual approach to

carry out the test procedures will be adequate. The total test time to

complete this task is estimated to be 80 hours.

Static gain test. - The static gain tests are performed to verify and

evaluate the following:

(1) End-to-end gains--the degree of surface output per pound of

control stick/pedal input

(2) Nonlinear effects such as hysteresis, deadband, and saturation

(3) Gain scheduling

All control axes will be evaluated. The procedure will include applying

step inputs at control stick-pedal to evaluate end-to-end gains, applying

function generator at different amplitudes to evaluate nonlinear effects, and

setting airspeed at different levels for evaluation of gain scheduling.

A total of 100 test cases are estimated. The test times are estimated at

50 hours for manual operation and 16 hours for automated operation.

Software validation. - Redundancy management and control modes switching

logic functions which are modeled by the finite-state machine can be

validated in the iron bird by inserting hardware events into the software

156

structure to verify that all state transitions and outputs of all states are

correct. For software that performs data transformation functions (e.g.,

control law and filter computation) which are not modeled by the finite-state

machine, the software can be validated by frequency response and open-loop

static gain tests in the iron bird. Since the volume of test cases for this

task is quite high, automation is essential. The number of test cases and

test times are estimated as summarized in table B-1.

Phase B--Closed-Loop Tests

Four tasks are identified in this phase: stability test, fault tolerance

test, accelerated life test, and pilot-in-the-loop test.

Stability tests. - The stability performance of the augmentation mode as

predicted by analyses will be validated in this test. Actual hardware such

as sensors, electronics, and actuators will be included on the iron bird to

eliminate error included in the analytical predictions owing to

nonlinearities and other math modeling problems associated with these

components. The typical test procedures will include the following:

TABLE B-1. - SOFTWARE VALIDATION TEST TIMES ESTIMATION

_.

Estimated Estimated Test Time
Software No. of
Function Test Cases Automated Manual Method

Control mode 500 4 hours 125 hours Finite-state machine
logic

Redundancy 2000 16 hours 500 hours Finite-state machine
management

Control laws 300 8 hours 15 hours Frequency response
and static gain

Total 28 hours 640 hours

157

(1) Time response. - Apply steps and doublets into the control stick/

pedal to observe short period and phugoid modes of the closed-loop system

(2) Frequency response. - Evaluate phase and gain margins by

applying a sine wave into the open-loop system

(3) Closed-loop system damping. - Apply a sine wave at a frequency

equal to the closed-loop phugoid and short period frequencies to observe

system damping.

The number of test cases is based on the combination of flight conditions and

number of frequency points, which are estimated to be on the order of 300

cases. Total test times estimated for this task are 60 hours for automated

testing and 120 hours for manual testing.

Fault tolerance test. - The fault tolerance test is conducted by inserting

multiple hardware faults into the system. Test cases will be designed based

on the fault-tree of the system. The purpose of this test is to verify the

fault-tree topology of the system which is used to predict the system's

reliability. The ADFBW system's fault detection, reconfiguration, and

annunciation features will be demonstrated. The ability of the system to

operate under the fault conditions with no adverse transients will also be

demonstrated.

Because of the complexity of the fault-tree structure and the importance

of this test to validate the ultra-reliability requirement, a large number of

fault combinations will be evaluated. A total of 20 000 fault combinations is

estimated. Assuming 30 seconds per test case using automation, the total test

time will be on the order of 170 hours. If automation is not available, the

total test time will be on the order of 5000 hours.

Accelerated life test. - The purposes of the accelerated life test are to:

(1) Validate system performance

(2) Perform system fatigue tests

·(3) Monitor component reliability

(4) Identify and eliminate design and implementation errors which

are major contributors of system unreliability

158

All maneuver profiles, together with combinations of aircraft

conditions and environments, will be evaluated. To compress the total

t~st time, extreme environmental stressors \~ill be applied to various

sUbsystems to induce actual failures. All test cases will be repeated

~nd cycled to induce fatigue type failures. A high degree of automation,

such as the use of a robotic system to operate the aircraft in the iron

bird, is required for this task.

A total of 200 test cases is estimated. These test cases will be

repeated and cycled until a high degree of confidence is obtained that

the system is free of design and implementation errors. The total test

time for this task is estimated to be on the order of 1000 hours.

Pilot-in-the-loop test. - Normal and failure modes operation of the

system will be used to demonstrate the handling qualities of airplanes

with the ADFBW system and the augmentation mode engaged. The output data

from each test will include pilot ratings and comments on the workload

required to obtain satisfactory aircraft performance for the normal and

degraded modes. The clarity and adequacy of fault annunciation will also

be evaluated.

The total test time estimated for this task is 160 hours. No

automation is required for this task.

SUMMARY

The total iron bird test times to validate the ADFBW system are

summarized in table B-2. It can be shown that automation will offer

substantial savings in test times. Using the recommended automated test

plan, the total test time to validate the ADFBW system is estimated to be

1548 hours. The equivalent test time to perform the total test program

manually is estimated to be 7100 hours.

159

TABLE B-2. - TEST TIMES SUMMARY

Estimated Test Time
Test Task Manual Automated (hours)

Manual Automated

Phase A - Open loop

0 System interface X 80 80

0 Static gain X 100 50

0 Software validation X 640 28

Phase B - Closed loop

0 Stability test X 120 60

0 Fault tolerance test X 5000 170

0 Accelerated life test X 1000 1000

0 Pilot-in-the-loop test X 160 160

7100 1548

160

REFERENCES

1. Integrated Application of Active Controls (IAAC) Technology to an
Advanced Subsonic Transport project--Current and Advanced ACT Control
System Definition Study. Prepared under Contract NASl-15325, NASA
Contractor Report 165631, December 1980.

2. Luedde, W.J.: The Use of Separated Multi Function Inertial Sensors for
Flight Control. AlAA/IEEE 4th Digital Avionics Conf., St. Louis,
Missouri, Paper 81-2295, November 1981.

3. Sebring, D.L.: and Young, J.T.: Redundancy Management of Skewed and
Dispersed Inertial Sensors. AlAA/IEEE 4th Digital Avionics Conf., St.
Louis, Missouri, Paper 81-2296, November 1981.

4. Toolan, W.K.: and Zislin, A.M.: Development and Laboratory Test of an
Integrated Sensory System (ISS) for Advanced Aircraft. AlAA/IEEE 4th
Digital Avionics Conf., St. Louis, Missouri, Paper 81-2297, November
1981.

5. Hopkins, A.L.; Smith, T.B.; and Lala, J.H.:
Fault-Tolerant Multiprocessor for Aircraft.
10, October 1978, pp. 1221-1239.

FTMP--A Highly Reliable
Proc. IEEE, vol. 66, no.

6. Larimer, S.J.; and Maher, S.L.: A Continuously Reconfiguring
Multi-Microprocessor Flight Control System. AFWAL-TR-8l-3070, May
1981.

7. White, J.A. et al.: A Multi-Microprocessor Flight Control System.
AFWAL-TR-8l-3044 , May 1981.

8. nMIL-STD-1750A 16-bit Bipolar Microprocessor Chip Set," Fairchild
Advance Information, November 1981.

9. Deutsch, M.S.: Verification and Validation. Chapter 5, pp. 323-408,
Software Engineering, R.W. Jensen and C.C. Tonies, eds.
Prentice-Hall, Inc., 1979.

10. Rang, E.R.; Gutmann, M.J.; Mulcare,D.B.; and Ness, W.G.: Digital
Flight Control Validation Study. Air Force Flight Dynamics Report
AFFDL-TR-3076, June 1979.

11. Rang, E.R.: The Use of Finite-State Machines for Describing and
Validating Flight Control Systems. Proc., NAECON 1980, Dayton, Ohio,
vol. 1, May 1980, pp. 347-353.

12. Lahn, T.G.; and Rang, E.R.: Controlling the Software/Hardware
Interface for the Validation of Avionics Systems. AlAA Computers in
Aerospace III Conf., San Diego, California. Paper no. 81-2159,
October 26-28, 1981, pp. 283-287.

161

REFERENCES (concluded)

13. Roubine,O.; and Robinson, L.: Special Reference Manual. Third
Edition. Stanford Research Institute, Menlo Park, California, Report
No. CSG-45, 1977.

14. Military Standard: Configuration Management Practices for Systems,
Equipment, Munitions, and Computer Programs. MIL-STD-483 (USAF).
Notice 2, March 21, 1979.

15. Heninger, K.L.; Kallander, J.W.; Shore, J.E.; and Parnas, D.L.:
Software Requirements for the A-7E Aircraft. Naval Research
Laboratory, Washington, DC. NRL Report 3876, November 27, 1978.

16. Rang, E.R.; and Gutmann, M.J.: Design and Validating Techniques for
Flight Control Systems. Honeywell Systems and Research Center.
Report 79SRC92, December 1979.

17. Heninger, K.L.: Specifying Software Requirements for Complex Systems:
New Techniques and Their Applications. Pree., Specification of
Reliable Software. Cambridge, Massachusetts, April 3-5, 1979, pp.
1-14.

18. Peterson, J.L.: Petri Nets. ACM Computing Surveys, vol. 9, no. 3,
September 1977, pp. 223-252.

19. Jack, L.A.; Heimerdinger W. L.; and Johnson, M.D.: Theory of Fault
Tolerance. Honeywell Systems and Research Center, Minneapolis,
Minnesota, 1974-5 Annual Report, September 1975.

20. Han, Y.W.; and Heimerdinger, W. L.: Theory of Fault Tolerance.
Honeywell Systems and Research Center, 1977 Final Report, 77SRC82,
Minneapolis, Minnesota, December 1977.

21. Heimerdinger, W. L.; and Fant, K.M.: A Fault Tolerant Assessment of
DAIS. Air Force Avionics Laboratory, Wright-Patterson Air Force Base,
Ohio, AFAL-TR-79-l007, March 1979.

22. Chow, T.S.: Software Design Modeled by Finite-State Machines. IEEE
Trans. Software Eng., vol. SE-4, no. 3, May 1978.

23. Salter, K.G.: A Methodology for Decomposing System Requirements into
Data Processing Requirements. Pree. 2nd Conf. on Software Eng., San
Francisco, California, OCtober 1976.

162

1. Report No. 2. Government Accession No. 3. Recipient's Catalog No.
NASA r.H-lli1117

4. Title and Subtitle 5. Report Date

Novemher 1CJR2
ADVANCED FI.ICIIT CONTROL SYSTEM STUDY 6. Performing Organization Code

7. Author(s) 8. Performing Organization Report No.
r.. I.. Hartmann, 1. F.. h1all, Jr. , E. R. Rang, R2SRC,)

H. P. Lee, R. \~ . Schulte, C1nd II. K. Ng
10. Work Unit No. ...

9. Performing Organization Name and Address

IIoneywpll Systems an<1 ReseCirch Center Lockhee<1-Californiil Co.
7 ()OO RI<1gWilY P"rkway, P.O. Box 112 Burhank, Californiil Q1,)20

11. Contract or Grant No.

Mlnnp:lpolls, Minnesota 'i,)440 NAS4-2R7('

13. Type of Report and Period Covered
12. Sponsoring Agency Name and Address Contractor Report-Finil!

National Aeronautics "n<1 Space Administrati.on
Hashlne ton , n.r:. 20546 14. Sponsoring Agency Code

RTOP 512-54-14, 505-34-34

15. Supplementary Notes

'1ASA Technic"l Monitor: Larry W. Abbott, Ames Research Center,
Dryden Flight Research Fad l1ty

16. Abstract

,
This stu<1y .-lefines a fl ight control system architecture to achieve high

intpgrity fly-b,'-wire in il cost-effective manne r.

Defining all il<1vanced fly-by-wi re architecture is a technology integration
task. State-of-the-art assessments ancl trends in the unclerlying computer,
sensing, ilnd actuation areas were used to select from a numher of design alter-
natives.

The recommended architecture emphasizes self-checking microelectronics as a
way to rerluce the software typicillly required in redundancy management. T~is

architecture also includes spare sensor and processor elements to permit safe
clispatch with fR i lerl elements. The second part of this study formulates a metho-
rlology cilpilble of demonstrating that the architecture does achieve the required
level of perforl1ance. This hierarchical metho<1ology ranges from ilnalytical
cillculations of theoreticill system reliablil1ty an<1 formal methocls for verifying
software to lahoratory and iron hird tests ann actual flig~ t experiments. The
Lockhee<1 S-3A aircraft is discussecl as 'l. potential testbecl vehicle. The elertri-
cal and hydrilulic interfaces, together wIth recommendecl modifications, are
clescrit>ed.

17. Key Words (Suggested by Author Is)) 18. Distribution Statement

Fly-hy-wire Unclilssifiecl-Unlimitecl
Reliilhility
Digit"l computer ilrchitecture
S-3A aircraft STAR category OR

19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price

Unclilssified Unclassified 170 AOR

*For sale by the National Technical Information Service, Springfield, Virginia 22161.

End of Document

