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ADVANCED FLIGHT CONTROL SYSTEM STUDY 

G.L. Hartmann; J.E. Wall, Jr.; and E.R. Rang* 

H.P. Lee; R.W. Schulte; and W.K. Ngt 

SUt-1HARY 

This study defines a new fly-by-wire flight control system architecture 

designed for high reliability. Spare sensor and computer elements are 

included to permit safe dispatch with failed elements, thereby reducing 

unscheduled maintenance. This program also formulated a methodology capable 

of demonstrating that the architecture does achieve the predicted performance 

characteristics. This methodology consists of a hierarchy of activities 

ranging from analytical calculations of system reliability and formal methods 

of software verification to iron bird testing followed by flight evaluation. 

This study concludes with a section on interfacing this architecture to the 

Lockheed S-3A aircraft for flight test. This testbed vehicle can be expanded 

to support flight experiments in advanced aerodynamics, electromechanical 

actuators, secondary power systems, flight management, new displays, and air 

traffic control concepts. 

SECTION l--INTRODUCTION 

1.1 OBJECTIVES AND REQUIREMENTS 

In broad terms, the objective of this program is twofold. One objective 

is to define a new fly-by-wire (FBW) flight control system architecture that 

possesses the integrity required by future commercial applications. Future 

energy-efficient aircraft will require: 

;Honeywell Systems and Research Center, Minneapolis, Minnesota. 
Lockheed California Company, Burbank, California. 



(1) Reliable digital FEW control 

(2) Electromechanical actuators 

(3) All-electric secondary power technology 

The redundant, self-checking architecture defined in this study achieves 

the first element and is compatible with developments in the second and third 

areas. A second objective of this program is to formulate a methodology 

capable of demonstrating that the architecture does achieve the required level 

of performance. This hierarchical methodology ranges from analytical 

calculations of theoretical system reliability and formal methods for 

verifying software to laboratory and iron bird tests and actual flight 

experiments. A commitment to the proposed level of structure and rigor will 

lead to a validatable flight control system. 

The definition of an advanced digital fly-by-wire (ADFBW) architecture is 

a technology integration task. State-of-the-art assessments and trends in the 

underlying computer, sensing, and actuation areas were used to select from a 

number of design alternatives. 

In later sections of this report, the Lockheed S-3A aircraft is discussed 

as a potential testbed vehicle. However, the ADFEW architecture was not 

developed specifically for the S-3A. A generic FBW system is assumed for an 

aircraft requiring three axes augmentation, gain scheduling based on air data 

measurements, and angle-of-attack limiting consistent with reduced static 

stability airframe designs. Therefore, a sensor suite will include pilot 

transducers, body rates and accelerations, and air data measurements. 

The pacing requirements for all FEW systems are the reliability-related 

qualities of flight safety, mission reliability, and availability. Numerous 

programs have developed redundancy structures for both military and commercial 

applications that satisfy flight safety and mission reliability through 

various combinations of triplex and quad redundancy, all of which produce at 

least dual-fail-operative performance. The failure rates of current 

components indicate the necessity for considerable unscheduled maintenance. 

For example, the mean-time-between-maintenance for flight control sensors plus 

electronics will be approximately 250 to 1000 operating hours, depending on 

system complexity and design maturity. In a commercial application with 2000 

hours every six months, a potential dispatch problem is evident. 
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The reliability of the advanced flight control system should be such that 

its loss would not be expected during the lifetime of a large commercial fleet 
, 

of aircraft using it. This requirement, when reduced to a probability of loss 

per flight hour, produces a figure on the order of 10-
9

• For example, 

assuming 10 flight hours per day produces 3600 hours per year per aircraft. A 

fleet of 200 aircraft operating for 15 years accumulates about 10
7 

flight 
-9 

hours. Allowing a 1% loss probability results in the 10 per hour figure. 

The desired maintenance quality implies fault tolerance in excess of that 

needed for flight safety. Various strategies are conceivable for achieving 

this. Since flight safety is of first priority, no aircraft will be 

dispatched if the flight control status is not adequate. Consequently, the 

maintenance requirements may be posed in terms of an allowed probability of 

unscheduled maintenance over a given period. For this study the period was 

defined as six months, or about 2000 hours for a commercial aircraft. If this 

probability is low, then the system maintenance quality is adequate. It seems 

reasonable that a large percentage of a commercial fleet should not require 

unscheduled maintenance over the stated period, perhaps 90%. If such a level 

were achieved (a six-month unscheduled maintenance probability of 0.1), a 

dramatic improvement in maintenance quality of current FB'~ systems would be 

realized. 

1.2 REPORT ORGANIZATION 

This report is organized in eight sections plus two appendixes. Section 

1 is the introduction. Section 2 presents the recommended architecture and 

implementation. section 3 starts the discussion of the validation methodology 

by addressing system and interface specifications. Section 4 presents a 

method of reliability prediction. Section 5 concentrates on the software 

development process. Section 6 concludes the validation methodology by 

addressing the system test phase. Section 7 presents the S-3A interface to 

the recommended architecture and discusses the interface to the electrical and 

hydraulic systems. Section 8 presents conclusions and recommends development 

and flight test of the ADFBW architecture. 
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SECTION 2--DEVELOPMENT OF AN ADVANCED ARCHITECTURE 

The ADFBW flight control architecture must exhibit ultra-reliability with 

low maintenance and must be validated and verified to a high degree of 

confidence. To achieve the ultra-reliability objective, redundant elements 

are used. The system must be able to tolerate multiple faults while 

maintaining undegraded operation. In designing this fault-tolerant system, 

reliability analysis plays a major role in the system architecture selection 

process. Section 2.1 summarizes design tradeoffs in terms of preliminary 

reliability and maintenance characteristics. A more detailed analysis of the 

recommended architecture is made using fault tree analysis in section 4. The 

generic ADFBW architecture is defined in section 2.2, based on our design 

objectives of ultra-reliability plus ease and confidence of validation. An 

implementation of the recommended architecture for the S-3A testbed is 

contained in section 2.3. 

2.1 RELIABILITY AND ~mINTAINABILITY ISSUES 

Advanced flight control architectures are built on advances in the 

underlying sensor, computer, and actuator technologies. Honeywell 

participated in a study of 1990 flight control technologies as part of a study 

of integrated application of active controls technology to an advanced 
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subsonic transport (ref. 1). In this study, we assessed the trends in the 

following technologies: 

(l) Sensors 

- rlir data 

- Angular rate 

- Accelerometers 

(2) Airborne computer technology 

- Instruction set and higher-order language trends 

- Integrated circuit advances 

- Buses (including fiber optics) 

(3) Design and validation 

- Flight control functions 

- Formal specifications 

- Software design and code 

- Verification and validation 

(4) Actuators 

- Hydraulic power sources 

- Electric power sources 

An in-depth treatment of this technology status and its trends may be found in 

reference 1. 

Several conclusions from this investigation are pertinent to the design 

of an ADFBW architecture. Hardware improvements will not remove the need for 

sensor redundancy. Reliable sensing can be achieved through sensor redundancy 

and an increased use of the computer system. Present aircraft actuation 

systems use redundant hydraulic elements to achieve sufficient reliability for 

FBW requirements. New actuator developments are aimed at improving efficiency 

through the use of electromechanical actuators. The ADFBW architecture must 

be compatible with both types of actuation systems. Significant advances in 

computer hardware are expected through developments in large-scale integrated 

circuit technology. Software costs are expected to continue to dominate 

hardware costs in DOD/NASA applications. This trend emphasizes the need to 

carefully trade off whether a particular system function is to be performed in 

hardware, software, or some combination of both. 
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The reliability of typical components for a flight control system is 

shown in table 1. These values are projected for the mid-1980's. A single 

string of sensors, computer, and hydraulic actuator--as illustrated in figure 

l--has a mean time between failures (MTBF) of approximately 1500 hours, orders 

of magnitude less than our requirement. Hence, replication of sensing, 

computing, and actuation elements is mandatory. 

Next consider a triple set of these elements and assume that the 

redundancy management allows operation with only one of the three channels 

functional. If there is no crossfeeding of sensor and computer to the 
-9 . 

actuation, the unreliability is about 0.28 x 10 at one hour correspondlng 

to failure of the three channels. If the redundant elements are fully 

crossfed, the number of success paths increases. In this case the 

unreliability decreases by more than a factor of 20 to 0.013 x 10-
9 

at one 

hour. These trends are shown in figure 2, which illustrates that redundant 

elements with crossfeeds improve overall system reliability. 

TABLE 1. - RELIABILITY CHARACTERISTICS OF FLIGHT CONTROL ELEMENTS 

Element 

Air Data Computer 

Pilot Transducers 

Rate Gyros 

Accelerometers 

Serial Data Buses 

Computer 

Actuator 

Failure Rate Comments 
(x 10-6) 

91. Three-year extrapolation of 
existing products 

40. Pitch, roll, yaw sensors* plus 
AID electronics 

30. State of the art 

30. Precision floated pendulum 
or quartz fiber 

10. 

200. 

90.-140. 

Estimate based on chip count 

Estimate of self-checking 
microprocessor 

Based on state-of-the-art (includes 
electronic and hydraulic components) 

*These position sensors could be a linear variable differential transformer 
(LVDT) • 
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Sufficient redundancy must be provided to meet both the flight safety 

requirement and the low maintenance goal. As explained in section I, the goal 

of 10lv maintenance is taken to mean that the probability or unscheduled 

maintenance is less than 10% over 2000 flight hours. Thus, two distinct 

reliability issues enter the design process: 

o Probability of catastrophic failure «10-9/hr ) 

o Probability of unscheduled maintenance «0.1/2000 hrs) 

Both probabilities impact the recommended architecture. 

For design purposes, it is useful to apportion these two probabilities 

among the various components of the flight control system. This is somewhat 

analogous to the well-known error budgeting process. The probability of 

catastrophic failure is apportioned roughly evenly between the sensor suite, 

computers, and actuators. For the sensors, this probability is further broken 

down into contributions from air data computers, pilot transducers, and 

inertial sensors. The probability of unscheduled maintenance is about evenly 

divided between sensors and computers. This is because it was impractical to 

reduce the probability of unscheduled maintenance for the actuators to near 

10% per 2000 hours. 

The next sections will summarize the design decisions in the organization 

of the redundant sensing, computing, and actuation elements. In selecting the 

recommended architecture from the various design alternatives, experience with 

other systems and interpretation of the technology trends play a large role in 

weighting the benefits of one approach against another. 

2.2 RECOMMENDED ARCHITECTURE 

2.2.1 Overview 

The recommended flight control system architecture is shown in figure 3. 

This advanced, self-checking architecture is capable of meeting the 

flight-critical safety requirements and the goal of low system maintenance. 

Further, the proposed structure facilitates verification and validation of the 

system's performance. 
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The baseline suite of sensors consists of six sets of pilot input 

transducers, six air data computers, and three skewed triads of inertial 

sensors. Spare sensors are treated as cold spares and reconfigured only 

during preflight. The sensors interface with the computer channels via six 

serial sensor buses. Six parallel computer channels of self-checking 

microprocessor pairs are proposed. Spare processors operate as hot spares. 

The bus controller for each sensor bus is included within a computer channel. 

The computers broadcast over redundant command buses to triplex servo 

terminals. The number of such triplex servo terminals is dependent on the 

specific application. The remote terminals are compatible with either 

conventional hydraulically powered actuators or electromechanical actuators. 

The following subsections provide more detail on the individual elements 

of this architecture: 

Sensors 

computers 

Actuators 

Figure 4 provides a summary of the total unreliability for the ADFBW 

architecture. This curve is obtained by summing the sensor, computer, and 

servo contributions and excludes electric and hydraulic power sources. The 

individual reliability characteristics are developed below. A more detailed 

analysis of reliability using fault tree modeling is presented in section 4. 

2.2.2 Sensors 

The basic control mode in this study requires pilot input transducers, 

body rates and accelerations, and air data. The initial assignment of sensor 

redundancy was made based on flight safety considerations. For pilot input 

and air data sensing, replication to the desired level of redundancy to permit 

dispatch with failed elements is required. For the rates and acceleration 

measurements, a skewed sensor assembly is recommended. 

Air data. - The air data computers provide angle of attack plus the usual 

air data derived quantities. Current production air data systems are expected 

to achieve, within three years, a MTBF of 11 000 hours. Hence, the failure 
-6 

rate is 91 x 10 per hour (table 1). 
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Figure 4. - ADFBW reliability predictions. 

Estimates of the probability of loss of air data are used to decide the 

minimum level of redundancy for safe dispatch. Comparison monitoring is used 

to detect and isolate failures of the air data computers. With quad 

redundancy, a loss of air data occurs when three of the four units have 

failed. This probability is estimated as 

Q = (43) Q3 (1 - Q) 
air data 

-9 = 0.048 x 10 (averaged over 4 hours) 
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This unreliability is plotted as a function of flight duration in figure 

5. A triplex system loses air data when two of three units fail, and this 

probability is too high. Therefore, the following requirement for safe 

dispatch is established: 

At least four air data computers must be operating for dispatch. 

Spare air data computers are supplied in order to satisfy the maintenance 

objective. Maintenance of the air data computers is required when the number 

of failed units exceeds the number of spares. The recommended architecture 

has six air data computers--that is, two spaces are provided. Maintenance is 

required when three of the six units fail preflight checks. The probability 

of this event is shown in figure 6. At 2000 flight hours, the probability of 

unscheduled maintenance on the air data computers is about 5%. 

Pilot input transducers. - The pilot input transducers include pitch and 

roll stick and pedal transducers. The transducers are LVDTs. The pilot input 

terminal includes the electronics for accepting three axes of commands, 

performing AID conversion, and interfacing with the sensor bus. Table 1 
-6 shows the expected failure rate to be 40 x 10 per hour. 
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Figure 5. - Sensor unreliability trends. 
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Figure 6. - Sensor maintenance trends. 

The self-test coverage of these devices is 100%. This means that 

operation with only one unit is possible. With a triplex system, the 

probability of loss of pilot sensors equals the probability of three failures 

out of three units. 

-12 
= 1.02 x 10 per hour (averaged over 4 hours) 

This probability is plotted in figure 5, and is negligible. The probability 

of loss of pilot sensors with only a dual system, however, is too great. This 

leads to the requirement that 

At least three pilot sensor terminals must be operating for dispatch. 

Once again, maintenance is required when the number of failed units 

exceeds the number of spares. With the six units included in the 

architecture, three spares are provided, and maintenance is required only 

after four failures. The probability of unscheduled maintenance on the pilot 

input transducers is plotted in figure 6 and is shown to be less than 1% after 

2000 hours. 
13 



Inertial sensors. - Body rate and acceleration measurements are required 

in three axes. The failure rate for each of these six sensors is 30 x 10-
6 

per hour (table 1). 

Comparison monitoring is used to detect and isolate failures of the 

inertial sensors. This scheme results in the loss of inertial sensing when 

all but one of the sensors of any type fail. For a quad-redundant system, the 

probability that three of four sensors fail is simply 

QIS = (~) Q3(1_Q) 

= 0.01 x 10-9 per hour (averaged over 4 hours) 

Figure 5 shows this reliability as a function of flight duration. A 

triplex system has an unacceptably large probability of loss of inertial 

sensing, so for safe dispatch we require that 

At least four inertial sensors of each of six types must be operating. 

The three components of figure 5 were combined to yield the sensor curve shown 

previously in figure 4. 

By providing two spares, maintenance is required when three sensors of any 

type have failed. The probability of this event is plotted in figure 6. A 2% 

probability of unscheduled maintenance for the inertial sensors occurs at 2000 

hours. This suite of gyros satisfies our reliability and sparing goals. 

However, it does involve a large number of sensors: 

Rate gyros: 

Accelerometers: 

3 axes x 6 = 18 total 

3 axes x 6 = 18 total 

In order to achieve some reduction in hardware, we recommend skewed 

sensors. Two skewed triads (six sensors) can provide dual-fail-operational 

capability. Three skewed triads provide sparing and can permit safe dispatch 

with up to three sensors failed. Basically, sparing is accomplished by 

configuring a hexad arrangement from the nine sensors as part of a preflight 

check. The two triads are oriented such that each axis of the triad makes an 

equal angle with the aircraft x-axis and no three axes of any set are 

co-planar. 

Skewed sensors are presently receiving increased attention (ref. 2, 3, 

and 4). Skewed sensors require higher resolution and dynamic range than 

conventional configurations and must avoid saturation. It is felt that gyro 
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and accelerometer technology has advanced such that the additional demands 

placed on sensors if they are skewed can be satisfied. Honeywell is currently 

working three major areas involving skewed sensor assemblies: 

(1) Multifunction control reference system. - This is an Air Force program 

to flight test on an F-lS hexad (two orthogonal triads) composed of six 

accel~rometers and six ring laser gyros. The "boxes" consisting of sensors 

plus computer are skewed (ref. 2 and 3). 

(2) Integrated sensor assembly. - This Navy program uses a different 

architecture. Five boxes are used--two for integrated sensor assemblies, 

three for flight computers. One computer is dedicated to the strapdown 

navigation computations; the other two perform flight control. In this 

architecture only the sensor assemblies are skewed. Flight test is planned on 

an F-14 or F-18. 

(3) Integrated inertial reference assembly. - This Air Force program is in 

a study phase with the objective of defining future skewed sensor requirements 

for the 1990's. 

with the commitment to skewed sensors in the aircraft community, we feel 

such a sensor approach is viable for our architecture and provides an elegant 

solution to the inertial sensor redundancy problem. 

Sensor redundancy management. - The redundancy management of the sensors 

is replicated in each digital channel. Each processor can independently 

detect and isolate sensor faults. During preflight, a sensor suite will be 

identified. Redundant sensors in excess of the dispatch requirements will be 

ignored. This eliminates the need for mid-value selecting from up to six 

signals. The redundancy levels required are: 

(1) Pilot transducer terminals 

- Three terminals 

(2) Air data computers 

- Four compares 

(3) Skewed gyros/accelerometers 

- Two triads 

The pilot input transducers and air data quantities use conventional 

comparison monitoring. Since the digital channels operate asynchronously, 

data skew between the signals being monitored is to be expected. This data 
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skew will result in a time delay (less than one-half the sampling period) for 

mid-value selected signals. Sampling rates will be selected so this delay 

does not compromise phase and gain margins. 

Management of the skewed sensors would be based on the use of parity 

equations (ref. 2). Parity equations take advantage of the fact that sensor 

skewing provides redundant information. Basically, the outputs of any four 

sensors may be linearly combined (via direction cosines that describe 

geometry) to form a parity equation. In the absence of sensor errors the 

parity equations equal zero. The number of parity equations available for 

sensor redundancy management is computed from N sensors taken four at a time. 

Thus, six sensors yield 15 parity equations. 

The multifunction control reference system skewed assembly is being 

applied to a high-performance fighter and the sensor triads have been 

separated to demonstrate the concept in a nworst-casen installation. Thus 

compensation for various moment-arm effects has been included to allow low 

decision thresholds. In addition, effort has been expended to tailor parity 

equations for real-time use (ref. 2). At each sample time, subsets of the 

parity equations are used based on a table look-up calculated from the failure 

status of the previous pass. This approach yields the following advantages: 

(1) Minimum processor usage (redundancy management decisions are computed 

off-line and stored in look-up tables) 

(2) Ability to deal with dual simultaneous failures 

(3) Noise immunity (via the use of trip levels) 

(4) Flexibility (look-up tables and trip levels are easily adjusted) 

(5) Two-level operation--acceptable sensitivity without false alarms 

(6) Decisions based on the status of all parity equations computed 

Skewed sensor technology has made significant progress. Our architecture 

will be able to integrate this technology to provide cost-effective sparing 

of the inertial information. 

2.2.3 Computers 

The recommended computer system consists of six redundant, parallel 

computer channels. Each channel is a self-checking microprocessor pair that 

implements all of the flight control modes. Each self-checking pair listens 
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to all the sensor data on each of the six sensor buses. Each channel 

independently performs sensor selection and control law computations. Each 

pair also transmits, on the sensor bus it controls, various integrator values 

for cross-channel equalization. This transmission is necessary because the 

six computer channels run asynchronously. The software to perform these 

functions is estimated to require a computer loading of less than 400 kops. 

The major design alternatives considered are: 

(1) Distributed processing with spares versus redundant channels 

performing identical tasks 

(2) Single or multiprocessor channels 

(3) Fault detection and isolation 

(4) The number of channels required to achieve high reliability and 

provide sparing for low maintenance 

Each of these areas is discussed below. 

The first design alternative involves options in defining a philosophy for 

managing the computers. Two options are: 

(1) A distributed system with an operating system that distributes tasks 

among healthy processors. This approach requires the distributed system to 

reconfigure to remove failed processors. Examples of such systems are given 

in references 5 and 6. 

(2) A fixed tasking structure with a planned fallback to redundant copies 

of tasks running in parallel in separate processors. This option uses 

redundant channels of computers. Many current systems are implemented in this 

manner. 

The second option is a simpler alternative. Its software is far less 

complicated and its operation in response to failures is easier to verify. 

This alternative must be favored in an architecture seeking ultra-reliability 

and complete validation, particularly if the redundant channels are single 

processors. 

The second design issue is whether a channel should be implemented as 

single or multiple processors. We believe that valid software can be produced 

for either arrangement by proper definition of software modules and control of 

their interfaces. Historically, problems arise when the processors start to 

become heavily loaded and modules are compromised to "fit everything in." We 

17 



have estimated the software load for a generic FEW system, and have concluded 

that with advanced microprocessor technology, a single processor will be less 

than 50% loaded. In addition, our architecture has been defined to eliminate 

and simplify software, especially in the redundancy management functions. 

Thus, we are led to recommend the simple alternative of performing all the 

computations in a single processor. As will be explained in the next section, 

the selected processor is readily expandable to a multiple processor 

configuration should the throughput requirements grow. 

The next issue involves the fault-tolerant operation of the multichannels. 

The two major design alternatives are majority voting and self-test. Either 

option may be implemented in a hardware-intensive or software-intensive 

fashion. To date, most redundant flight control computers have used voting to 

detect first faults, since software self-test of processors has never claimed 

100% coverage. 

In past designs some computers have used duplication of key circuits as a 

way of providing self-test. with today's microprocesor technology it is 

attractive to duplicate single-chip processors to provide complete coverage. 

We have been developing such an approach for the Air Force since 1978 (ref. 

7). The self-checking microprocessor pair (SCMP) is a processor with 100% 

self-test via hardware duplication at the integrated circuit (IC) level. 

Various tradeoffs have determined that if a SCMP fails, it should be removed 

from the system. No attempt is made to identify the healthy half and pair it 

with a spare processor to form a new SCMP. The latter option is possible, but 

was found to compromise the simplicity of the SCMP design. We recommend 

self-test as implemented in the SCMP. 

The remaining design issue concerns the number of parallel channels needed 

to satisfy reliability and low maintenance demands. Figure 7 shows a plot of 

the failure probability of a triple-channel configuration of SCMPs. This 

curve appeared previously in figure 4. This arrangement is dual 

fail-operational and allows operation with one digital channel. The 

probability that the three digital channels fail is less than 0.13 x 10-
9 

per hour (averaged over a four-hour flight). For safe dispatch, we impose the 

following requirement: 

That at least three SCMPs must be operating. 
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Figure 7. - Unreliability trends in digital channels. 

Figure 7 also shows the unreliability of the F-8 digital system and the F-8 

FBW system (digital plus analog backup). The ADFBW offers a significant 

improvement by virtue of MTBF advances due to very high-speed integrated 

circuit (VHSIC) technology and by permitting single-channel digital operation 

due to self-checking hardware. 

Maintenance trends are shown in figure 8, which compares maintenance 

probabilities if first failures must be fixed. Curves for computers with a 

HTBF of 1450 hours (F-8 DFBW) and 5000 hours (SCMP) are shown. If three spare 

SCMPs are provided, then maintenance is required after the fourth failure 

rather than the first. In this recommended situation, the probability of 

unscheduled maintenance for the computers is less than 8% for 2000 hours of 

operating time. 

2.2.4 Actuators 

This subsection defines the elements of the architecture that interface 

the computers to the surfaces. Present aircraft have a hydraulic power 
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Figure 8. - Maintenance trends in digital channels. 

generation and distribution system that has evolved over many design cycles. 

It is reliable and relatively easy to maintain. We recognize, however, that 

the long-term trend will be to use electromechanical actuators for energy 

efficiency. At this time, electromechanical actuators are not sufficiently 

mature to be considered for the ADFBW architecture. The proposed 

implementation uses conventional hydraulically powered actuators. 

There are advantages in defining a simple, clean interface between the 

digital channels and the servo electronics. Our recommendation is to use a 

remote terminal that provides this interface via a digital serial bus. The 

remote terminal can provide all the redundancy management and reconfiguration 

required of the servos. This simplifies the computer software since it is not 

involved in the servo loop closing or redundancy management. The remote 

terminal can be simply specified, built, and tested. The remote terminal 

commands surface position and provides the loop closure for each servo 

actuator. Details of the remote terminal are given in section 2.3. 
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For this application triple-servo channels and actuators are used. This 

is consistent with our baseline testbed, the S-3A. Servo monitoring is 

provided to allow operation down to one channel. The projected unreliability 

for a triple-servo channel was plotted previously in figure 4 as one of the 

components of the ADFBW reliability. The assumed failure rate includes both 

electronic and hydraulic components (table 1). The failure probability is 
-9 0.22 x 10 per hour (averaged over a four-hour flight). Thus, it is not 

safe to dispatch with a failed servo channel and obtain a failure rate less 
-9 than 10 per hour. 

Maintenance actions are required after a first failure. This yields the 

probability of unscheduled maintenance shown in figure 9. A range of 

probabilities is shown for a triple channel with a servo-channel MTBF between 

7140 hours and 11 000 hours. If a fourth servo channel were provided such 

that maintenance occurs after the second failure, there is still a 60% 

probability of unscheduled maintenance over 2000 operating hours. The servo 

channel MTBF would have to improve by another factor of three to 33 000 hours 

before the probability of unscheduled maintenance approaches 10%. Based on 

the cost and difficulty of replicating hydraulic actuation of the various 

surfaces, a triplex arrangement is recommended. 
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Figure 9. - Maintenance characteristics of servos. 
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2.3 RECOMMENDED IMPLEMENTATION 

The key features of the recommended advanced, self-checking architecture are: 

(1) Skewed gyro/accelerometer sensor assemblies 

(2) Redundant serial buses to provide all sensor data to each computer 

(3) Redundant, self-checking microprocessor pairs 

(4) Serial command buses to remote terminals 

(5) Remote terminals to provide command distribution and redundancy 

management of each hydraulic servo actuator 

This section provides details on a recommended implementation of this 

architecture for the S-3A. Particular attention is given to the servo remote 

terminal as an illustration of self-checking approaches and the overall design 

methodology of section 3. This section emphasizes the key features and does 

not go into detail on preflight testing and other built-in tests that would be 

a part of the final detailed design. 

2.3.1 Sensors 

Six pilot input terminals and air data computers are included in the 

architecture. The proposed implementation uses standard LVDTs and air data 

computers. Each terminal and air data computer interfaces with one of the six 

sensor buses. 

The body rate and· acceleration mesurements are derived from three skewed 

triads. The individual sensor data in these triads will appear on redundant 

buses to reduce the effects of bus failures. For example, each sensor could 

be read out on four of the six buses. 

The rate gyro is a Honeywell-developed ring laser gyro. The laser gyro 

output is a 9600 Hz digital signal consisting of a string of pulses, each 

representing an increment of integrated aircraft angular rate. These pulses 

are summed in an accumulator to provide angular displacement over the 

preceding 0.02-second sample interval. This quantity is converted to a signal 

proportional to angular rate. 
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The accelerometers will also be high-quality instruments, compatible with 

skewing requirements. Candidates include either floated pendulum devices 

(Sundstrand QA 2000, Donner 4852) or quartz fiber devices (like Honeywell's 

GG326) . 

Serial data bus. - Six independent serial buses were shown in figure 3. 

The bus controller logic is packaged with the digital computers. However, it 

will continue to manage the bus after a SCMP fails. A 1553B type of protocol 

has been assumed, whereby the sensors supply data in a command/response mode. 

There are some advantages in using 1553B since it is a standard, and several 

manufacturers are offering chip sets that provide the interface. These 

hardware elements permit a high degree of redundacy without an inordinate 

hardware (size, weight, power) penalty. 

A recommendation to use wire or fiber-optic buses has not been made. 

Ultimately, fiber optics will be used. It may be appropriate to use wire in 

earlier phases. 

2.3.2 Computers 

This architecture has been built around SCMPs. Six channels of SCMPs run 

asynchronously. For protection from hazards, they should be packaged as two 

channels per 1/2 ATR box. We have identified the Fairchild 1750A as the 

leading candidate microprocessor. This selection is based on several 

considerations: 

(1) In view of today's processors, the Fairchild 1750A offers a dramatic 

improvement in throughput. This offers the opportunity to do all the flight 

control software in a higher-order language (HOL) in a single processor and 

still have room to grow. Its availability is consistent with the schedule of 

this program. 

(2) 1750A is an Air Force standard, and may evolve to the Joint Services 

standard for 16-bit machines. By virtue of its being a standard, there is a 

commitment to the development of extensive support tools, maintenance of a 

HOL, etc. In contrast, NASA developed its own HOL for Shuttle, and as the 

only user has had to provide all the maintenance and compiler upgrades. 
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The Fairchild l750A is a 3-micron, isoplanar integrated injection logic 

(I3L) device, based on the Fairchild 9445. Its characteristics are 

summarized in table 2. The logic symbol showing the pins and their functions 

is shown in figure 10, taken from reference 8. 
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TABLE 2. - FAIRCHILD 1750A CPU FEATURES 

o Single 64-pin microprocessor implements MIL-STD-1750A instruction set 
architecture 

o High-performance over military temperature range (200 nsec add: 1.8 wsec 
16 x 16 multiply; 970 kips DAIS mix:* 1.5 mips DAIS mix) 

o Single- and double-precision arithmetic (16 and 32 bits--16 
general-purpose registers) 

o 32- and 48-bit floating point arithmetic implemented on-chip 

o Real-time processing with 16 levels of interrupt vectors, direct memory 
access, 128 input/output channels, and two programmable timers 

o Directly addresses 64K words; extendable to 1M words with memory 
management unit 

o Extensive fault detection and debugging capability with microcoded console 
support and self-test 

o I 3L-II (3-micron) technology with 10 5 radiation tolerance 

o Static operation with clock frequency 0-20 MHz 

o Low-power' Schottky input/output with multiprocessing capabilities 

o Single SV supply (additional injector current source required): power 
dissipation 2.5W 

o Uses existing F9445 support circuits 

*DAIS Mix is an Air Force specified set of instructions. 
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Trends in microprocessor throughput are shown in figure 11. The 1750A 

throughput for an Air Force specified instruction mix (including floating 

point) is 970 kops. This is comfortably in excess of flight control 

requirements (estimated as no more than 400 kops). 

In addition to the Fairchild l750A, other VHSIC programs are directed at 

the l750A standard instruction set and will provide upgrades to our 

architecture. 

Software development. - It is important to use a HOL for developing 

software. At present, the l750A is supported by JOVIAL-J73. Our compiler was 

written in FORTRAN and developed by Software Engineering Associates under Air 

Force Avionics Laboratory Sponsorship. The compiler is presently hosted on 

IBM 360/370 computers. 

JOVTI\L is considered an interim language as the 000 makes the transition 

to Ada. Effective use of Ada requires an Ada Programming Support (APS) 

environment. Such tools are in development, but may require several years of 
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effort. A hard look at using Ada as the HOL is recommended. It is felt that 

a significant contribution could be made by applying Ada to a real-time, 

ultra-reliable system. 

2.3.3 Actuators 

Triplex servo channels are employed for each control surface--rudder, 

aileron, and elevator. The servo interface uses a remote terminal, as shown 

previously in figure 3. The number of such remote servo terminals will depend 

on the particular application. For the S-3A, a mid-fuselage location for the 

ailerons and an aft terminal for the rudder and elevator seem appropriate. 

The basic overall function of the remote terminal is to select a suitable 

signal from six or less computer channels and drive the surface accordingly. 

A detailed functional specification for the remote terminal is given in 

section 3.3 as an illustration of the design methodology. This paragraph 

summarizes those specifications. The terminal must receive and interpret 

serial digital transmissions from the computer channels. It must compute the 

control command for the electro-hydraulic servo valve (EHSV). This command 

must be sent to the servo amplifier and monitored. The remote terminal also 

must monitor each actuator channel. 

This section presents some implementation details on a servo terminal that 

accomplishes these functions. The recommended implementation has three 

self-checking servo channels. Associated with each channel is self-testing 

health monitoring logic, which disengages the channel when a failure occurs. 

The health monitor sends back a discrete to the control panel for status 

monitoring. The three channels operate in an active/on-line mode. These 

features are discussed below. 

One channel of basic servo electronics and actuation is shown in figure 

12. Six serial buses from the self-checking computers are optically isolated 

and enter the multiplex chip. Anyone of the six received digital commands 

can be converted and used. The particular input that is used depends on the 

address generated by the priority encoder. The selected input goes to the 

receiver (UART) , the D/A, and the servo amp. The receiver contains a time-out 

feature such that if no message is received on the priority digital channel, a 
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predetermined alternate is used. The servo amp provides an analog signal that 

positions the EHSV. This valve controls the flow of hydraulic fluid to 

position the cylinder connected to the surface. 

Active/on-line control. - Any single servo channel is sufficient to 

position the surface. As shown in figure 12, all engaged cylinders are 

force-summed to drive the surface. Active/on-line control is a mechanism to 

relieve the force fight among the force-summed cylinders. One cylinder is in 

control of the surface position, or active, while the other engaged cylinders 

are on-line. 

Ideally, the several actuation channels could operate in concert with one 

another in an each-channel-active configuration. However, because of the 

high-pressure gain characteristics of actuator valves, small tolerances in the 

actuator control loops would lead to significant force opposition between 

channels. 

Maximum actuator capability force opposition could occur over a small 

deflection either side of the commanded position. No precise control 

capability exists while maximum force opposition is occurring. A hysteresis 

type of nonlinearity would be observed when the actuator command is cycled 

back and forth. 

The pressure feedback path in the on-line channels must overcome this 

force-fight tendency by driving the on-line actuators towards a zero force 

output condition under normal operating conditions. A limiter is provided in 

the pressure feedback path, as shown in figure 12. This limiter is set at a 

value such that the pressure feedback signal can slightly exceed the maximum 

tolerance between channels. Based on prior studies, the maximum tolerance 

between channels of actuation was estimated to be 2.8 rnA when + 8 rnA 

full-scale valves were considered. A pressure feedback limit equivalent to +4 

rnA was selected for the on-line actuator. The 4 rnA limit would be exceeded 

for 1/2 percent of full travel errant motion, after which the on-line actuator 

channel will oppose the motion. 

Thus the pressure feedback is effective in allowing the output actuators 

to operate in harmony with one another. However, the on-line actuator (or 

actuators) will oppose any active channel malfunction. 
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Upon detection of any failure in the active channel by the monitor, one of 

the on-line channels will be switched to the active status as the 

malfunctioning channel is bypassed. 

Active or on-line status for all healthy servo channels is assigned on the 

basis of the channel health monitor signals. If a channel is bypassed, active 

and on-line have no meaning. Table 3 shows a logic table description of servo 

channel status as a function of failure status. This table reduces to the 

following simple boolean functions, which can be implemented in hardware: 

A Active = A Eng 

B Active = A Eng • B Eng 

C Active = A Eng . B Eng • C Eng 

Because of the limiting of the !::.P signal, assignment of active or on-line 

status is not critical. The "two active" and "none active" states are not 

flight-critical, so this logic is not required to be redundant. There is a 

slight preference to have failure modes set more than one channel active 

(force fight) in the event of a malfunction of the logic. 

TABLE 3. - ACTIVE ON-LINE LOGIC 

Condition Servo Channel Status 

A B C Active On-Line Bypassed 

No Failures OK OK OK A B,C None 

F OK OK B C A 

First Failures OK F OK A e B 

OK OK F A B C 

OK F F A - B,C 

Second Failures F OK F B - A,e 

F F OK C - A,B 
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Self-checking health monitor. - The channel health monitor is responsible 

for detecting single errors in the channel and cutting off the channel (by the 

engage/bypass valve) if an error is detected. Once the engage/bypass valve is 

in the bypass position, it remains so unless there is a master system reset 

(probably a manual action). Therefore, it is sufficient for the channel 

health monitor to be able to detect only single failures in an unbypassed 

servo set. Multiple simultaneous failures are too improbable to consider. 

The bypass action clears each failure as it is detected. 

It is essential that the channel health monitor be self-testing, though 

not necessarily failure-operational. This means that if there is a single 

fault in the channel health monitor logic, it is detected and forces the 

engage/bypass valve to the bypass position. Thus a servo channel is removed 

whenever a fault is detected in the channel or the channel health monitor. 

With three redundant channels, failures in up to two channels can be 

tolerated, thus satisfying the primary requirement of the servo actuator 

system. 

The complete diagram of one servo channel is shown in figure 13. This 

figure adds the self-checking electronics and health monitor to the 

electronics and valves of figure 12. The path from the computer command to 

EHSV position is checked by a parallel path consisting of a redundant 

multiplexer and D/A chip and a model of the servo amp and valve. Note that 

the servo amp input includes a 6P signal that does not appear as an input to 

the model since this signal is not involved in positioning the EHSV. The 

cylinder position, EHSV spool position, and ~p measurements are made by 

LVDTs. These signals are monitored by validity discretes. If the measured 

EHSV position compares with the model prediction, and if the LVDTS are valid, 

the health monitor decides the servo channel is healthy and should be 

engaged. If the channel is not healthy, the monitor bypasses the channel. 

This is affected through a solenoid-held engage/bypass valve that controls the 

status of the cylinder. 

An example design of the channel health monitor is shown in figure 14. 

The hardware is duplicated in one-out-of-two codes in order to detect all 

single faults and all multiple undirectional faults (e.g., due to power 

loss). The engage/bypass valve is engaged only when the two signals Channel 

OK and Channel Fail are respectively 1 and O. In all other cases (11, 01, and 
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00) the valve should be disengaged. This logic function can be realized, as 

shown in figure 14, by putting two electromechanical relay switches in 

series. When the signals Channel OK and Channel Fail are respectively logic 1 

and 0, both the switches are closed and current flows in the solenoid, keeping 

the engage/bypass valve in the engage position. For all other values of these 

signals, at least one switch will be open, causing the valve to go to the 

bypass position. The switch SM is a mechanical switch directly controlled by 

the position of the engage/bypass valve. It is open when the valve is in 

bypass position. 

This example is presented to illustrate that self-testing mechanisms can 

be realized using simple coding techniques such as the one-out-of-two code. 

The necessary logic and coding functions can be achieved using any appropriate 

combination of digital electronics, analog electronics, electromechanical 

hardware, or mechanical hardware. Several design solutions exist. The actual 

solution to be used will depend on the detailed design tradeoffs, reliability 

of components, and requirements/constraints of a particular system. using a 

coding technique allows the design of mechanisms that can test single 

failures, multiple undirectional failures, loss of power, open circuits, etc. 

Thus, the channel monitor/engage circuit can be implemented as a fault-secure 

circuit with the preferred failure state being a bypassed channel. 

This completes the description of the recommended implementation. This 

implementation is compatible with use of the S-3A as a testbed and is based on 

components that could be available for flight test in the mid-1980's. The 

architecture could be implemented with other components and can assimilate 

upgraded processors, new sensors, or electromechanical actuators. A 

methodology for validating this architecture is detailed in the following 

sections. 

SECTION 3--SYSTEM SPECIFICATION AND VALIDATION 

Methodologies for the design and verification of general software systems 

have received much attention (ref. 9). There are heavy economic incentives 
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for reliability and maintainability. For flight controls, safety is the 

issue. The spectre of a single software error shutting down a multichannel 

redundant system haunts the avionics industry. \ve claim that this chimera 

should be banished for current synchronized-channel architectures (ref. 10) 

and certainly for the self-checking channel architecture described in the 

previous section. This confidence is not gained without cost. The system and 

its software must be designed to have simple, auditable, and testable 

structures. The reviews and tests must be done with a discipline that only 

the ultimate flight test can inspire. This section and sections 4 through 6 

present a methodology for achieving and demonstrating this level of 

performance. 

This section discusses the system specification and the definition of the 

hardware/software interface. Our methodology suggests an approach to making 

the system specification precise and complete (ref. 11), then adds more detail 

to describe the hardware/software interface (ref. 12). The ADFBW remote 

terminal is used as an example to conclude this section. 

Section 4 addresses system reliability. Techniques for predicting 

reliability are recommended. The fault tree approach described is applied to 

the ADFBW architecture defined in section 2. Laboratory methods for 

validating reliability predictions conclude section 4. 

Section 5 is concerned with software design and validation. It is noted 

that software is a paper business--a structure must be imposed. Suggestions 

for preparing the software specifications and designing, coding, and testing 

the software are given. 

Section 6 considers the analysis and testing of the integrated system. 

Techniques for identifying test cases are presented. It is shown that much of 

this work can be automated to provide rapid and complete reviews of the 

performance and establish the correctness of the hardware and software. 

3.1 METHODOLOGY OVERVIEW 

An overview of the methodology proposed for developing the ADFBW system is 

shown in figure 15. This methodology is not novel; much of it is current 
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practice. The methodology provides two key attributes of a successful 

development cycle: 

(1) The cycle has a series of definable phases 

(2) Each phase has unique, measurable outputs 

The methodology presented in figure 15 requires the following activities: 

System requirements review 

Software requirements review 

Preliminary design review 

Software functional design review 

Module code review 

Module tests 

Integration tests 

Preliminary qualification tests 

Formal qualification tests 

These activities audit the transmission of the system requirements from the 

customer to the contractor, the translation of the customer requirements into 

system specifications, the extraction of software specifications into 

functional modules, the definition of hardware/software interfaces, and the 

further elaboration of detailed software design and testing. The first three 

phases relate to establishing the system requirements, hardware/software 

interface, and software requirements. They are outlined below. The remaining 

items, concerning the design and test of the software, are the subject of 

section 5. 

Figure 15 shows typical documents produced in each phase. Most of these 

documents are used in the next step of the cycle. In addition, each phase 

requires some support functions (reviews) that need attention. Finally, 

various feedback paths (not shown) exist at each phase to resolve problems. 

The reviews at each step of the process are intended to remove errors at the 

most cost-effective level. 

Since there is much experience in the design and coding of flight control 

software, there is confidence that the test and reviews will detect any errors. 

37 



3.1.1 System Requirements 

This phase is conducted to determine the degree of completion of the 

concept definition, to review changes authorized by the customer, and to 

provide the details and background for preparing the system specifications. 

The requirements review provides an opportunity to impress on the customer 

that changes are expensive and that they should not be requested casually or 

capriciously. 

3.1.2 Description of the Hardware/Software Interface 

We recommend that the system be specified to the detail of identifying 

states, transitions, and inputs/outputs for all flight control functions 

abstractly without regard to hardware or software mechanizations. Of course, 

the allocation of functions between hardware and software is largely 

determined for the particular architecture, and from experience with similar 

systems. The object here is to add details and to make the description of the 

hardware/software interface complete and precise. After the interface has 

been defined, the software specifications are written. Sometimes a formal 

hardware specification is also prepared. The verification step must show that 

a system operating according to the hardware and software descriptions 

fulfills the original system specifications. 

3.1.3 Software Requirements 

The software specifications are written from the system specifications and 

the allocation of functions to hardware or software implementation. This 

defines the hardware/software interface. The software requirements review is 

informal; it will be conducted early in the program to ensure that the 

requirements are complete, necessary, and consistent. An informal 

demonstration will be made to show that the software as specified, plus the 

hardware functions, will fulfill the system specifications. 

To summarize, it is our position that the knowledge and techniques exist 

to produce a validatable flight control system. The process requires a 

commitment of resources and the discipline to succeed. There are many 

historical differences in hardware and software development practices, as 

illustrated in table 4. Our proposed methodology imposes the same level of 
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TABLE 4. - HISTORICAL DIFFERENCES IN HARDWARE AND SOFTWARE 
DEVELOPMENT PRACTICES 

o Hardware proofs requirements with breadboards 

--Software typically attempts one continuous development 

o Hardware requirements "freeze" prior to build 

--Software often tolerates requirements changes throughout design, 

coding, and checkout 

o Hardware makes design review compulsory 

--Software has loosely defined design review points 

o Hardware uses firm test procedures 

--Software often debugs by engineering judgment 

o Hardware uses standard parts 

--Software is largely new sequences of computer instructions 

o Hardware is built from prints 

--Software generally has less detail provided at the design stage 

The programmer has near-infinite variation available in 

implementing the design 

structure and rigor on software as has evolved in the hardware area. This is 

the key to successfully developing flight-critical computer systems. 

3.2 SYSTEM SPECIFICATIONS 

Many studies have shown that precise and complete specifications return, 

many times over, the investment in their preparation. The terms 

"requirements" and "specifications" are not completely defined. We generally 

use requirements to mean the informal statements about the functions and 

performance of a system. These are prepared by the customer and are often not 

precise or complete. The specifications, or requirements specification, are 

the documents that try to outline the requirements in a more formal manner. 

These must be as complete and precise as needed to ensure the success of a 

project. Indeed, many errors are made in obtaining the correct description of 

what a system is supposed to do. The final validation of a system returns to 

these specifications. 
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In converting from requirements to specifications, there are varying 

degrees of formality. These range from formal languages like SRI's SPECIAL 

(ref. 13) to documents prepared according to various military standards (ref. 

14) • 

3.2.1 Current Specifications 

Many engineering projects use one of the military standards as a guide in 

writing specifications. The major shortcomings in following military 

standards are that some items may be omitted. There are no procedures to 

enforce completeness. In addition, the description of functions is left 

open. In this section specifications following NRL guidelines (ref. 15 and 

16) and MIL-STD-483 are reviewed. Recommendations are made for specifying the 

various flight control functions. Finite-state machines are shown to be 

useful for describing mode switching, signal selection, and failure management 

functions. 

To understand the limitations MIL-STD-483 imposes, the specifications for 

the NASA Demonstration Advanced Avionics System (DAAS) flight controls were 

written in the two styles (ref. 16) of MIL-STD-483 and the Naval Research 

Laboratory (ref. 17). The NRL style included the use of finite-state machines 

to specify the control modes. 

The organization of the NRL specification is shown in table 5. The NRL 

suggests that we should: 

(1) Specify only external behavior without implying a particular 

implementation. 

(2) Specify constraints on the implementation, especially the details of 

the hardware interfaces. 

(3) Write the document so that it is easy to change and may be kept 

current throughout the life cycle of the system; also so that it will serve 

as a reference to answer specific questions quickly, rather than to explain in 

general what the program does. 

(4) Record forethought about the life cycle of the system, particularly to 

anticipate and facilitate later changes. 

(5) Characterize acceptable responses to undesired events and not leave 

this to invention by the programmer. 
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TABLE 5. - ORGANIZATION OF AN NRL SPECIFICATION 

Introduction 

Computer Characteristics 

Hardware Interfaces 

Software Functions 

Timing Constraints 

Accuracy Constraints 

Response to Undesired 
Events 

Subsets 

Fundamental Assumptions 

Changes 

Glossary 

Sources 

Organization principles, abstracts for 
other sections, notation guide 

If the computer is predetermined, a general 
description with particular attention to its 
idiosynchrasies: otherwise, a summary of its 
required characteristics 

Concise description of information received 
or transmitted by the computer 

What the software must do to meet its 
requirements, in various situations and in 
response to various events 

How often and how fast each function must 
be performed: this section is separate from 
section 3 because "what" and "when" can 
change independently 

How close output values must be to ideal 
values to be acceptable 

What the software must do if sensors go 
down, the pilot keys in invalid data, etc 

What the program should do if it cannot 
do everything 

The characteristics of the program that will 
stay the same, no matter what changes are made 

The types of changes that have been made or 
are expected 

All documentation is fraught with acronyms 
and technical terms. At first we prepared 
this guide for ourselves; as we learned the 
language, we retained it for newcomers 

Annotated list of documentation and 
personnel, indicating the types of questions 
each can answer 
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(6) Formulate questions before trying to answer them. 

(7) Separate concerns so that the scope of changes is limited. 

(8) Be as formal as possible by using precise and consistent notation. 

MIL-STD-483 calls for two documents. In part I the requirements for 

design, development, functional performance, test, and qualification are 

given. In part II the details of the configuration and the program itself are 

recorded as the final documentation for the item. 

From the application to the DAAS flight controls, the following 

conclusions were drawn. Both approaches place great emphasis on getting the 

hardware interfaces clearly announced. It was found that very minor items in 

the interface have profound implications for the structure of the system and 

the software. Both approaches require careful annunciation of inputs and 

outputs. The military standard requires this for each function; the NRL 

seems to tend toward this at the software systems level. 

Generally, the military standard was found to be inflexible and awkward, 

while the NRL style had the flexibility to fit the application. Many of the 

requirements set down in the military standard were answered by pat formulas 

which had very little real content. The section on testing is usually written 

this way, with promises that have no substance. until a definitive 

methodology for validation is worked out for flight controls, this will be the 

case. 

The NRL specifications do not consider the testing problem. Motivation 

and general descriptions were harder to include in the NRL outline. It was 

found that when changes came through, it was easy to change the finite-state 

machine descriptions, but it was hard to keep the general descriptions 

consistent throughout the documentation. 

The recommendation is to use the outline of MIL-STD-483, but to use the 

suggestions from NRL and others to make a more complete and meaningful 

document. The flight control functions should be described in a manner that 

best fits each particular function. Some alternate modes of description are 

reviewed below. 
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3.2.2 Functional Descriptions 

Any information or signal processing system may be thought to be made up 

of two flows--one is the information or data being processed by the system, 

the other is the sequence of control actions that manipulates the data (ref. 

17) • 

Petri nets (ref. 18) and LOGOS (ref. 19 and 20) are two graphical 

techniques for describing flows. A Petri net is a directed, bipartite graph 

of alternating vertices called places and transitions. It provides an 

abstract model of information and control flows. The major applications of 

Petri nets have been for systems of events in which some of the events occur 

concurrently, but with constraints on the concurrence, predecence, or 

frequency of the events. Petri nets are sketched as circles and bars, called 

places and transitions. The places represent states; the transitions are 

labeled with the events that enable the transition. The graphical technique 

LOGOS portrays these two flows in parallel graphs. The control graph 

initiates, sequences, and synchronizes the data operations on the data graph. 

LOGOS has been used to analyze very complicated systems, including the Air 

Force DAIS architecture (ref. 21). 

In many systems the structure for producing one of the flows is more 

complicated or fundamental to the system than the other. For example, in 

handling huge quantities of data, the organization of the data is central in 

designing efficient algorithms. One might say in this case that the data flow 

dominates the design considerations. For flight controls, the calculations on 

the data are not complicated, but the structure for controlling the 

computations is. Control flow dominates. The design will then be concerned 

chiefly with the control structure; the data flow will follow along naturally. 

Both LOGOS and Petri nets were found to be awkward, very complicated, and 

difficult to change or analyze without a great amount of effort. Finite-state 

machines or other direct descriptions appear to be appropriate for flight 

controls. 

A finite-state machine is the simplest computing structure. At the next 

level are the push-down automata, which have stack memories. The most general 

theoretical computing structure is the Turing machine. Finite-state machines 

use two expressions, called states and events. The states correspond to the 
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sequential circuits of the electronics engineer. Events represent an input to 

the control structure, signalling some important point of activity in its 

environment. 

The advantage of the finite-state machine representation is that it is 

precise and may be easily reviewed by control engineers for completeness. It 

may be used to describe system-level functions; it is not limited only to 

hardware or software. The states must be clearly identified and the events 

causing transitions must be defined. This provides a structure that may be 

completely tested. Fortunately, all flight control functions are either 

straight-line calculations requiring no past data, or calculations requiring 

only a fixed, finite set of past data. Hence, the latter functions may be 

represented as finite-state machines. 

A general finite-state machine is diagrammed in figure 16. When inputs 

are received, outputs are calculated as functions of the current values of the 

state variables and the inputs. Then the machine switches to a new state, 

again as a function of the current state and the input quantities. It is 

often useful to produce outputs associated with these state transitions; for 
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exarrple, a warning to the pilot upon automatic change of mode with loss of an 

input signal. These representations were found to be very natural for mode 

switching, signal selection, synchronization, and failure management. 

Finite-state machines are represented in two different ways--as a directed 

graph or a table. The directed graph approach is more intuitive because it is 

a picture. As the number of states, events, and state transitions grows, this 

advantage is effectively negated by the complexity of the diagrams. states 

are represented in the diagram as circles; legal state transitions are 

displayed as directed arrows connecting one state with another. The event 

that triggers a particular state transition is labeled on the arrow. The 

diagrams are interpreted in this way. At any time, the finite-state machine 

is in a current state. When an event is detected and received, the machine 

will make the state change indicated by the outgoing arrow labeled with that 

event. For a deterministic machine there can be at most one such arrow. When 

no such labeled arrow exists for the current state, this represents an error, 

and the machine will attempt to recover. The most simple recovery action is 

to ignore the event. The action sequence performed by the machine while 

changing state is generally not included in the diagram. 

The alternative representation is to describe the state transitions with a 

table or matrix. The entries in the matrix contain the number of the new 

state and an ordered list of actions to be performed to effect a change in 

state (possibly null). Blank entries are illegal state transitions and could 

contain some code to assist recovery. 

As the number of states and events grows larger, there is a need to 

partition the state machine so that each part is more manageable. To increase 

the clarity of the control structure, this partition should be done based on 

logical properties, and not in an arbitrary manner. The remote terminal 

function in section 3.3 illustrates how complex state machines can be 

partitioned into simpler ones. 

It has been shown on the DAAS flight controls that describing mode logic 

as a finite-state machine is very effective. It makes all design decisions 

visible for review and helps prevent errors of omission. Signal selection 

algorithms may also be precisely described as finite-state machines. An 

example is given in appendix A. These representations were also used to 
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analyze synchronization schemes. This application is also recorded in the 

appendix. Part of a triply-redundant failure management segment for data 

exchange and voting is analyzed in the appendix by tracing the syndromes 

caused by component failures. However, while many of the functions in flight 

controls are finite-state machines, we can be flexible and use whatever is 

most appropriate. 

The functions for flight control fall into categories for which general 

verification requirements will be prescribed: 

(1) The executive structure (initialize, branch in the rate tree, reCOver 

from power interrupts, equalize integrations, maintain the dynamic filter 

states, annunciate system status) 

(2) Data transfers (input, output, exchange data between channels) 

(3) Control mode switching and dynamical switching within control modes 

(4) Control law calculations (outer loops, inner loops, gain schedules) 

(5) Synchronization (synchronize channels, time-synchronize programs for 

transfers, etc) 

(6) Built-in-test functions (preflight checks, on-line checks) 

(7) Selection from redundant input signals 

(8) Failure detection and reconfiguration 

It is also necessary to show a global consistency between these functions, 

particularly the built-in-tests and the failure management functions. For 

functions that have auxiliary hardware, as does the frame synchronization of 

channels, it must be shown that the response of the software to a hardware 

fault cannot result in a single-point failure. 

3.3 FUNCTIONAL SPECIFICATION FOR THE REMOTE TERMINAL 

The remote actuator terminal will be used as an example of writing 

functional specifications abstractly, independent of the implementation. The 

purpose of this approach is to have specifications against which the system 

can be validated, regardless of the details of the hardware/software 

allocations. This will also provide a measure for checking these allocations 

and for reviewing the hardware/software interface. 
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Implementation details of the remote terminal were discussed in section , 
2.3.3. (See the block diagram in figure 13.) This paragraph provides a brief 

summary of the implementation for convenient reference. The servo commands 

are serially transmitted to the remote terminal from six or fewer computing 

channels. These will carry parity bits with which the fidelity of the 

transmission and the status of the sending channel may be determined. 

Three hydraulic cylinders are connected to sum forces to drive the 

aerodynamic surface and to provide triple redundancy. Any cylinder alone can 

position the surface. Each cylinder has a solenoid-held engage/bypass valve 

to control the status of the cylinder. The position of the cylinder, the 

position of the spool of the EHSV, and the pressure differential across the 

cylinder are measured by LVDTs. Each of these provides a signal attesting to 

the validity of the LVDT output. 

3.3.1 Top-Level Function of the Remote Terminal 

The remote terminal must select a suitable signal from six or fewer of the 

computer channels and drive the surface according to this command. The unit 

must be operational following any two component failures. The failure may be 

in mechanical, hydraulic, or electrical components. "Suitable signal" is not 

defined, but left as a choice in the design. 

3.3.2 Hierarchy of Functions 

The top-level function may be further specified in terms of the 

lower-level functions that are necessary. Figure 17 illustrates this 

decomposition. Design decisions are made in constructing this decomposition. 

Drive EHSV according to command. - One of the second-level functions of 

the remote terminal is to drive the EHSV of each redundant channel. This is 

accomplished by obtaining the input servo command and computing the control 

valve for the EHSV. The serial digital transmissions from the six computing 

channels must be received and interpreted. The presence of a signal and the 

validity of the transmission must be determined by the subfunction "validate 

signal transmissions." The "select command" subfunction must choose from the 

valid signals or perform median, averaging, or some selection process. The 

47 



OBTAIN INPUT 
SERVO COMMAND 

DRIVE EHSV 
ACCORDING TO COMMAND 
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COMMAND 
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TRANSMISSION 

SELECT 
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POSITION SURFACE 
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REDUNDANCY MANAGEMENT 
OF SERVO CHANNELS 
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CHANNEL 

MONITOR SERVO 
INPUT COMMAND 

ASSIGN 
ENGAGE/BYPASS 

MONITOR EHSV 
POSITION 

INTERPRET LVDT 
VALIDITY SIGNALS 

Figure 17. - Hierarchy chart of specifications for the remote terminal. 
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surface position, the valve spool position, and the differential of pressure 

in the cylinder are fed back and combined with the selected command as 

specified by the servo system control law. This control law computation may 

be analog or digital. An analog signal to drive the EHSV must be provided. 

Redundancy management of servo channels. - The other second-level function 

of the remote terminal is to perform the redundancy management of the servo 

channels. Redundancy management includes (1) monitoring the health of each 

channel, (2) either engaging or bypassing a channel based on its health, and 

(3) relieving the force fight among the engaged channels. The monitor channel 

subfunction is to provide the failure detection mechanism for the general 

operation of the servo channel. It may require self-checking circuitry. 

Proper monitoring of any D/A or A/D translations is required. A comparison 

between expected valve-spool position as predicted by a model and the measured 

valve-spool position is suggested. A subfunction to interpret LVDT validity 

signals is required to determine that the feedback sensors are all functioning 

properly. Each channel must be engaged or bypassed on the basis of the output 

of the monitor channel subfunction. Also, a mechanism must be included to 

relieve the force fight among the force-summed cylinders. The use of an 

active/on-line assignment with pressure differential feedback is suggested. 

3.3.3 Finite-state Machine Description 

The redundancy management of the three servo channels can be specified as 

a finite-state machine. The health monitoring function of each channel is 

used to assign an engage or bypass status. An engaged channel may be active 

or on-line, as described in the previous paragraph and in section 2.3.3. Thus 

each servo channel can be in one of three possible states: 

(1) Engaged and active 

(2) Engaged and on-line 

(3) Bypassed 
3 There are 3 = 27 states; the various transitions can be described 

based on changes in engage/bypass or active/on-line status. In order to study 

the engage/bypass function it is useful to cluster the 27 states into the 

eight groups shown in figure 18. Here transitions occur only if the engage 
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status of any channel changes. States within each cluster cover all the 

active/on-line assignments, including those resulting from logic failures 

(i.e., all active or all on-line). To verify this function in the remote 

terminal, it must be shown that all transitions between clusters operate as 

specified. For example, the event "channel A bypassed" must take any of the 

eight states in cluster 1 to one of the states in cluster 2. To examine the 

active/on-line logic, the states within each cluster must be delineated. The 

transitions between states within a cluster can be verified, and it must be 

shown that the active/on-line logic does not cause transitions between 

clusters. 

The finite-state description of figure 18 was used as an example. It was 

also used to design the logic in the remote terminal presented in section 

2.2.3. This description is useful because it requires the designer to 

consider all the possibilities. In addition, by clustering the states, the 

operation of the engage/bypass logic can be separated from the active/on-line 

function. 

SECTION 4--SYSTEM RELIABILITY 

A major aspect of the design methodology is the estimation and validation 

of the system reliability. Crude estimates of reliability are obtained during 

the process of defining the flight control architecture. Once a candidate 

architecture has been defined, a detailed analysis to estimate the probability 

of loss of control per hour of flight must be performed. This theoretical 

estimate of probability must be substantiated with laboratory tests. This 

section discusses both the calculation of theoretical reliability and 

laboratory methods to verify and validate the reliability of the system. 

4.1 RELIABILITY ESTIMATION 

Sound theoretical estimates of the performance of the ultra-reliable FBW 

system are necessary. In formulating the theoretical models for the 

reliability analysis, the following assumptions are made: 
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(1) All possible failure modes of the system are identified and their 

effects on the system's operation are known. 

(2) The ability of the system to detect faults and to reconfigure 

automatically is implemented correctly by the software and the hardware of the 

system. 

(3) All component failures are random in nature, and their failure 

rates are known. 

(4) All possible interactions between the system and its environment 

have been foreseen. 

These assumptions separate abstract concept from physical reality. It is 

difficult to identify all possible failure modes of a complex system and to 

foresee all possible interactions of the system with its environment. Only 

through years of experience with flight control systems has confidence been 

gained that the abstraction comes close to physical reality. It is only with 

these assumptions, however, that theoretical methods can be applied and the 
-9 system's design can be based on numerical values such as 10 per hour 

probability of failure. 

Before the detailed reliability analysis is performed, all pertinent 

component failure modes of the system are identified. Failure rates expressed 

as the MTBF of these components are estimated based on analysis, 

specifications, and experience with the actual unit, if it exists. The 

component reliabilities are combined in the statistical equations, from which 

the failure probability of the total system configuration can be computed. 

The equations take into consideration the number of redundant channels, the 

effects and interactions of a component failure on the other parts of the 

system, self-test coverage, and the reliability of each component. 

4.1.1 Fault-Tree Analysis 

Fault-tree analysis is the recommended method of computing statistical 

reliability. It provides a clear demonstration of the effects of system 

element faults, and computer tools aid its application. The fault-tree 

program used in this study can determine the sensitivity of system failure to 

the reliability of individual components. This serves to identify the 

critical components. 

52 



The fault tree graphically represents the logical relationship of a 

particular, undesirable event, called the top event, to the basic failures 

(causes) called pri~ary events. If system failure is the undesirable event, 

then the fault tree would graphically represent all the possible faults or 

failures, or their combinations, that could cause the top event to occur. 

After the failure model of the system has been expressed in the 

fault-tree format, the computer program, method of obtaining cut set (MOCUS), 

is used to provide qualitative analysis. HOCUS identifies and displays all 

critical failure paths (minimal cut sets) of a system's logic structure. 

The output of MOCUS is then used as an input to the kinetic tree theory 

(KITT) computer program for quantitative analysis. KITT provides information 

on the probability of failure as a function of time for each component, for 

each minimal cut set, and for the entire system. 

Before the algorithm is presented, some terms are defined as follows: 

(1) Cut set. - This is a collection of basic events whose presence 

will cause the top event to occur. 

(2) Minimal cut set. - A cut set is said to be minimal if it cannot be 

further minimized and still ensures the occurrence of the top 

event. 

(3) Boolean indexed cut sets (BICS). - BICS are defined such that, if 

all the primary events are different, the BICS are precisely the minimal cut 

sets. This definition of Brcs does not mean that the method is limited to 

fault trees with primary events appearing only once in the fault tree. The 

algorithm used in MOCUS starts with the top event and resolves the fault tree 

to obtain cut sets. An AND gate always increases the size of the cut set 

whereas an OR gate increases the number of cut sets. Cut sets obtained in 

this fashion are BICS. Duplicate events appearing in anyone BICS, if any, 

are eliminated. All BICS that are supersets of any other BICS are discarded. 

This process is illustrated in an example below. 

(4) Superset. - Superset is a BICS that contains every primary event 

that some other BICS contains, plus additional primary events. After this 

winnowing, the minimal cut sets are determined. 

MOCUS. - The algorithm used in MOCUS to find the minimal cut set is 

unique in that it starts at the main event (failure) of interest, called the 
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top event, and proceeds to basic primary events (component failure) to resolve 

the fault tree into cut sets. MOCUS guarantees that all the minimal cut sets 

are found. A main feature of MOCUS is the small execution time it takes to 

determine all minimal cut sets even for a large, complex tree. 

The MOCUS procedure uses boolean logic to determine the minimum group of 

cut sets that must be considered in determining the system reliability. This 

"minimization" greatly reduces the effort in calculating the reliability 

figures because it eliminates all duplication. An example of such 

minimization is illustrated below. 

The construction of the minimal cut sets will be illustrated with a 

simple example. Consider the logic diagram shown in figure 19. 

A. 
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The algorithm starts with the top event. The gate under the top event is 

ELEMENTS IN THE CUT SET 
I 

I A 

The inputs to the AND gate A are gates Band C. 

ELEMENTS IN THE CUT SET 
I 2 

I B C 



TOP 
EVENT 

Figure 19. - Sample fault tree. 

Gate A is replaced with its input, gates Band C. Gate B is an OR gate 

and its inputs are gate D and component 1. The OR gate increases the number 

of cut sets. 

ELEMENTS IN THE CUT SET 
1 2 

1 D C 

~ 2 1 C 0 
~ 

~ w 
w ~ 
~ ~ 
~ ~ z u 

Gate D is an AND gate with input of components 2 and 3. The AND gate 

increases the size (number of elements) of the cut set. 
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0 

E-+ 
:::.:: ~ 
~ UJ 

~ E-+ 
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ZU 

ELE~ENTS IN THE CUT SET 
123 

1 2 3 C 

2 1 C 

Gate C is an OR gate with input of components 2 and 4. Replacing gate C, 

we have: 

ELEMENTS IN THE CUT SET 
123 

1 2 3 2 

2 3 4 

1 2 

4 1 4 

Cut sets number 1, 2, 3, and 4 are BICS. In cut set number 1, the basic 

event of component 2 failure is duplicated, thus eliminated. 
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ELEMENTS IN THE CUT SET 
123 

1 2 3 

2 2 3 4 

3 1 2 

4 1 4 

Cut set number 2 is a superset of cut set number 1, therefore it is 

discarded. 

ELEMENTS IN THE CUT SET 
123 

1 2 3 

1 2 

1 4 

For the sample fault tree the minimal cut sets are (2,3), (1,2), and 

(1,4). This result is used as input to KITT. 

KITT. - KITT is a computer code written as an application of kinetic tree 

theory. KITT requires as input the unique minimal cut sets of the fault 

tree. Exact, time-dependent reliability information is determined for each 

component of the fault tree and for each minimal cut set. 
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The failure intensity (6) of each component is assumed to be constant 

with respect to time (i.e., exponential failure distributions only are 

considered). As in kinetic tree theory, the components are assumed 

independent. All the components are assumed to be in their operating state at 

t = O. KITT can handle components that are nonrepairable or that have a 

constant repair time. 

The system reliability information, or system reliability 

characteristics, obtained from the minimal cut sets is: 

System failed probability--the probability that the system is in 

its failed state at time t. 

System failure rate--the expected number of failures the system 

will suffer per unit time at time t. 

I~ (t')dt' o 0 

System failure intensity--the probability that the system 

will suffer a failure per unit time at time t, given it is in 

its functioning state at time t. 

The expected number of failures the system will 

suffer during the time interval from 0 to t. 

1 - EXP[- It" (t')dt'] o 0 The probability that the system 

will suffer one or more failures 

in the time interval from 0 to t. 

Reliability results are obtained by upper-bound approximations. The 

upper bounds can be obtained when minimal cut sets are used to determine 

system reliability information. The upper bounds are excellent approximations 

to the exact values. 

The system failure rate WO(t), failure intensity "O(t), and failed 

probability QO(t) are bounded and approximated as: 
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Using these upper bounds for AO(t) and WO(t), upper bounds for the 

integral system characteristics can also be approximated as: 

NC 
E 
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v 
W. (t') 

1 
dt' 

NC v 
E W.(t') 
i=l ]. dt' 
NC v 
IT (l-Q.(t'» 
i=l ]. 

The upper bounds become the exact values if the minimum cut sets have no 

components in common--that is, the minimal cut sets are independent. This is 

quite important since the values are thus always conservative, resulting in a 

conservative estimate for system failure phenomena, 

4.1.2 Analysis of the Advanced Fly-by-Wire System 

The flight control system can basically be divided into the control system 

architect and the S-3A interfaces. The proposed microprocessor control system 

architecture was given in section 2. 
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The S-3A interfaces are hydraulic and electrical. The baseline S-3A 

hydraulic system is a dual system. The power source for the hydraulic system 

is the two-engine-driven pump with an electric-driven.pump as backup for 

system 1. The baseline S-3A electrical system consists of two engine-driv~n 

75 kva generators and an APU-driven 5 kva generator. Backup batteries are 

provided for the FBW flight control computers. It is assumed that three 

backup batteries are operative at dispatch. 

Three proposed refinements of the baseline configuration were studied. 

The goal was to improve overall system reliability. 

The first refinement is to incorporate a bigger auxiliary power unit 

(APU). This provides the capability of driving a 75 kva generator in lieu of 

the 5 kva generator. With this additional electrical power, a bigger backup 

electric-driven hydraulic pump can be incorporated. The additional electrical 

power also enhances the electrical power system. 

Another proposed refinement is to have three separate and independent 

hydraulic systems, with the additional third system powered by an 

electric-driven pump, without the benefit of the bigger APU. 

The last proposed refinement is to combine the above refinements, having a 

bigger APU and three independent hydraulic systems. 

The four configurations above were combined with the ADFBW architecture to 

construct fault trees for the following four cases: 

(l) FBW 3 

( 2) FBW 3 with bigger APU 

(3 ) FBW 3 with three hydraulic systems 

( 4) FBW 3 with bigger APU and three hydraulic systems 

Throughout this analysis, the fault trees constructed are of the 

primary-failure and command-failure types. Secondary failure fault trees are 

not included in this phase of the study. 

A component failure is considered a primary failure if it occurs while the 

part is functioning within the operating parameters for which it was 

designed. Command failures are failures of coordinating events between 

various levels of the fault tree, from basic failure events to the top event. 

Secondary failures are due to excessive environmental or operational stress 

placed on the system components. 
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Failure rates used in analyzing the S-3A equipments are point estimates of 

the in-service experience covering the 1980 and 1981 period. Estimates of the 

component failure rate were made for the new equipment. 

A total of 62 components was evaluated in the fault tree analysis. The 

components are included in the basic FBW system architecture and the 

electrical and hydraulic systems of the S-3A. Only the dispatch model of the 

FBW architecture was used. The dispatch model is the FBW system configuration 

with a minimum number of operative elements allowed for dispatch. The 

components used in the analysis and their corresponding failure rates are 

summarized in table 6. 

The loss of flight control probability for an hour of flight was evaluated 

for each of the four configurations as follows: 

(1) FBW 3 

P
F 

= 6.188 x 10-8 

(2) FEW 3 with bigger APU 

P
F 

= 1.111 x 10-10 

(3) FBW 3 with three hydraulic systems 
-8 

P
F 

= 6.227 x 10 

(4) FBW 3 with bigger APU and three hydraulic systems 

P = 1.843 x 10-10 
F 

A computer printout provided documentation for each of the configurations 

and failure rates used. It also displays all minimal cut sets and their 

associated failure probability, in descending order. If further reliability 

improvement is deemed necessary, attention should be focused on the components 

in the top-ranked minimal cut sets. 

Configuration (2) above exhibits the highest reliability among the four. 

This configuration, in effect, has three hydraulic pumps with crossfeed 

capability between pumps 2 and 3. The disadvantage of this arrangement is 

that both systems are lost with the occurrence of a single failure, which 

depletes the hydraulic fluid. 

The anticipated increase of reliability with three independent hydraulic 

systems--configuration (3)--was not observed. This was mainly due to the fact 

that the third hydraulic system was constructed from the backup pump of system 
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62 

. 

No. 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

, 15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

computer 
Symbol 

AAPU 

ACl 

AC2 

AC3 

AC4 

APU 

AXl 

AX2 

AX3 

AX4 

AYl 

AY2 

AY3 

AY4 

AZl 

AZ2 

AZ3 

Az4 

BPMP 

BTl 

BT2 

CC1 

CC2 

CC3 

CTl 

CT2 

CT3 

ENGl 

ENG2 

GTEN 

IDGl 

TABLE 6. - ADFBW FAULT TREE PRIMITIVES 

Failure 
Rate 
(10-6/hour) 

438 

91 

91 

91 

91 

480 

30 

30 

30 

30 

30 

30 

30 

30 

30 

30 

30 

30 

38.7 

348.9 

348.9 

250.0 

250.0 

250.0 

40.0 

40.0 

40.0 

247.0 

247.0 

114.0 

5000.0 

Description 

Accumulator for APU starter 

Air data computer, channell 

Air data computer, channel 2 

Air data computer, channel 3 

Air data computer, channel 4 

Auxiliary power unit 

Longitudinal accelerometer, channel 1 

Longitudinal accelerometer, channel 2 

Longitudinal accelerometer, channel 3 

Longitudinal accelerometer, channel 4 

Lateral accelerometer, channel 1 

Lateral accelerometer, channel 2 

Lateral accelerometer, channel 3 

Lateral accelerometer, channel 4 

Vertical accelerometer, channel 1 

Vertical accelerometer, channel 2 

Vertical accelerometer, channel 3 

Vertical accelerometer, channel 4 

Backup pump for hydraulic system no. 1 

Battery no. 1 

Battery no. 2 

FBW computer, channel 1 

FBW computer, channel 2 

FBW computer, channel 3 

Copilot stick transducer, channel 1 

Copilot stick transducer, channel 2 

Copilot stick transducer, channel 3 

Engine no. 1 

Egine no. 2 

APU electrical generator 

Integrated drive generator no. 1 



~o. 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

Computer 
Symbol 

IDG2 

PGl 

PG2 

PG3 

PG4 

PMPl 

PHP2 

PSl 

PS2 

PS3 

PTl -

PT2 

PT3 

RGl 

RG2 

RG3 

RG4 

RSl 

RS2 

RS3 

SBl 

SB2 

SB3 

SB4 

YGl 

YG2 

YG3 

YG4 

YSl 

YS2 

YS3 

T.~LE 6. - Concluded 

Failure 
Rat~6 
(10 /hour) 

5000.0 

30.0 

30.0 

30.0 

30.0 

209.0 

209.0 

90.0 

90.0 

90.0 

40.0 

40.0 

40.0 

30.0 

30.0 

30.0 

30.0 

90.0 

90.0 

90.0 

10.0 

10.0 

10.0 

10.0 

30.0 

30.0 

30.0 

30.0 

90.0 

90.0 

90.0 

Description 

Integrated drive generator no. 2 

Pitch rate gyro, channell 

Pitch rate gyro, channel 2 

Pitch rate gyro, channel 3 

Pitch rate gyro, channel 4 

Engine-driven hydraulic pump no. 1 

Engine-driven hydraulic pump no. 2 

Elevator secondary actuator, channell 

Elevator secondary actuator, channel 2 

Elevator secondary actuator, channel 3 

Pilot stick transducer, channell 

Pilot stick transducer, channel 2 

Pilot stick transducer, channel 3 

Roll rate gyro, channel 1 

Roll rate gyro, channel 2 

Roll rate gyro, channel 3 

Roll rate gyro, channel 4 

Aileron secondary actuator, channell 

Aileron secondary actuator, channel 2 

Aileron secondary actuator, channel 3 

Sensor bus, channell 

Sensor bus, channel 2 

Sensor bus, channel 3 

Sensor bus, channel 4 

Yaw rate gyro, channel 1 

Yaw rate gyro, channel 2 

Yaw rate gyro, channel 3 

Yaw rate gyro, channel 4 

Rudder secondary actuator, channell 

Rudder secondary actuator, channel 2 

Rudder secondary actuator, channel 3 
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1. This effectively reduces the reliability of system 1 since the backup was 

removed. 

Configuration (2) is recommended. Additional details are given in section 

7. 

4.2 RELIABILITY VALIDATION 

To validate the reliability requirement in the laboratory, it must be 

shown that the system does indeed behave as the mathematical model. This must 

hold for all normal functions and all classes of failures that were 

hypothesized. The abstract assumptions leading to the design and realization 

of the reliability requirement must be shown to be closely related to the 

physical reality, and must be implemented correctly by the system's hardware 

and software. 

The following sections discuss the validation of component reliability, 

validation of fault tolerance, failure modes effects tests, and accelerated 

life tests. Detailed discussion of the automated iron bird tests is deferred 

to section 6. 

4.2.1 Component Reliability Validation 

Major components are identified in the preliminary design and the 

reliability analysis stages. The reliability of the components in terms of 

MTBF are established. In order for the reliability requirement of the total 

system to be achievable, the MTBF for each component must satisfy this 

requirement. The MTBF of existing equipments can best be obtained from field 

service experience. If that information is not available, results of the 

manufacturer's reliability test program for the equipment can be used. 

Reliability in terms of MTBF for newly developed equipments must be 

validated in the laboratory. This can be roughly divided into two 

processes--equipment burn-in and reliability qualification testing. Burn-in 

is used to assure that equipment presented for qualification testing is free 

of workmanship defects and other infant mortality problems. It consists of 

testing, analyzing all failures, incorporating corrective action, and 

retesting. This sequence is repeated until assurance is made that the 
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required reliability can be demonstrated during the reliability qualification 

test. The purpose of the reliability qualification test is to estimate the 

true MTBF of the equipment. Since constant failure is assumed, the equipment 

subjected to reliability qualification testing must be free of design defects 

or infant mortality type failures. The MTBF of an equipment can be 

demonstrated in the laboratory using statistical test plans such as those 

described in MIL-STD-781C. Depending on statistical confidence levels and 

discrimination ratios (criteria for acceptance and rejection), test hours of 5 

to 10 times the predicted MTBF are normally required. 

Measured component MTBFs should be fed back to the reliability analysis to 

reevaluate the total system reliability. If the reevaluated system 

reliability falls substantially below its required value, efforts must be made 

to improve the component reliability or to reconfigure the system. 

4.2.2 Fault Tolerance Validation 

Ultra-reliability of flight-critical systems is achieved through redundant 

design. The system must be able to tolerate multiple faults while maintaining 

undegraded flight operation. Validating the fault-tolerance and 

reconfiguration features of the system is the most critical step toward 

validating the reliability requirement of the total system. 

To validate the fault-tolerance requirement, actual hardware faults must 

be inserted into the system. The capability of the software to detect and 

isolate the faults and to effect system reconfiguration must be demonstrated. 

Transient faults must also be included. The timing of the fault relative to 

the control cycle of the system must be evaluated. These processes can best 

be accomplished in the iron bird, where a high degree of fidelity to the 

flight environment is obtained through including actual system components, 

with software executing in a real-time, closed-loop environment. 

The fundamental problem of fault-tolerance validation for a 

flight-critical digital system is the vast number of possible test areas when 

all combinations of flight conditions and multiple hardware faults must be 

considered. 
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In digital systems, software errors can only be uncovered by executing the 

software for a set of well-designed test cases. The following steps provide a 

solution to the problem. 

(1) Automate testing in the iron bird. 

(2) Generate a large but manageable number of test cases, from both the 

theoretical and practical perspectives, so that validation of digital 

flight-critical systems can be carried out conclusively and efficiently. 

A more detailed discussion on the approach and concepts of these two areas 

is given in sections 6.1 and 6.2. 

4.2.3 Accelerated Life Test 

A typical reliability "bathtub" curve is shown in figure 20, which 

compares life and failure rate. The horizontal line is the failure rate 

predicted for mature systems following debug and early life failures. At the 

end of the service, life wear-out and durability failure modes appear and 

increase the failure rate. 

Compressing the time factor by increasing cycling rates for high stress 

levels is the traditional method of demonstrating fatigue life. Similarly, 

increasing temperature and temperature cycling are the methods used to 

accelerate electronic systems burn-in and reduce the time required to achieve 

mature equipment failure rates. 

Figure 21 shows the impact of accelerated testing combining cyclic testing 

and environmental testing. In the random portion of the curve the failure 

rate will be higher than normal, but this rate can be used for analytically 

combining failure rates in the redundant configurations of the final design. 

By combining the concepts of automated cycling and increasing 

environmental stressing, accelerated life tests can be applied to the 

integrated FBW system in the iron bird. Test cases would be designed that 

consist of combinations of variables such as aircraft flight condition, 

environmental disturbance level, maneuver profile, and system model 

engagement. Environmental stressors such as extreme temperature and 

temperature cycling are applied to various components of the system. 

Automation would be used to step through the test cases with system and 

component performance monitored. Any inconsistency of system performance, 
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software logic error, and unexpected component failure is logged for later 

evaluation, and the system proceeds to the next test case. The same testing 

procedure can be repeated after incorporating any fixes and design changes 

until all design and software errors are resolved. 

Using a high degree of automation and applying severe stressors for 

accelerated life testing would substantially reduce total test time and labor 

cost. It should be emphasized that this procedure identies weak points in the 

design of the system and eliminates infant mortality type failures rather than 

demonstrating overall reliability of the system. The combined efforts of 

analysis, component reliability tests, fault-tolerant validation, software 

verification, and pilot-in-loop failure modes and effects tests are necessary 

to validate the reliability of the ADFBW system. Accelerated life testing, 

however, is an important step to obtaining high confidence that the system is 

qualified for flight. 

SECTION 5--S0FTWARE DESIGN AND VALIDATION 

This section continues the description of the methodology outlined in 

section 3.1. The design and validation of the software is described in this 

section. 

This section begins with a review of flight control functions. The next 

section reviews tools and techniques. Selected tools and techniques 

appropriate for flight control software are recommended. 

5.1 FLIGHT CONTROL FUNCTIONS 

A multichannel system in which the channels are synchronized for 

cross-channel comparisons requires the following functions: 

Initialize computer 

Run preflight built-in-tests 

Recover from power transients 

Initially synchronize with other computers 

Exchange state data, initialize state 
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Monitor sensors, select signals 

Manage failures, reconfigure system 

Branch to rate path 

Calculate control gains 

Run mode and switching logic 

'rest intercom 

Calculate control laws 

Test synchronization 

Test power supplies 

Run output test 

Perform CPU self-tests: 

Processor self-test 

Parity checker test 

Memory sum check 

Memory addressing test 

Watchdog check 

Scratchpad sum 

Sum check of constants 

Test program counter 

Annunciate system status 

Select output signals 

Monitor actuator response 

Frame synchronize the computers 

This software is not very complicated compared to general software 

systems. Indeed, many complete flight control systems have been programmed by 

a few control engineers. Most of these functions require straight-line 

programs. There are only a few do-while loops that depend on external events 

for termination and none that depend on their own calculations for 

termination. These event-driven functions are for timing synchronization 

events and for the watchdog timers. 

The executive structure assumed in the list is a simple rate tree that 

calls the functions in a fixed order. An alternative is to call tasks in an 

interrupt-driving structure. The first is usually chosen by control 
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engineers; the second is chosen when software experts, familiar with 

operating systems, do the designing. Each has advantages and disadvantages. 

A rate structure requires that the functions must be allocated to the 

branches of the rate tree so that the timing is balanced. This makes changes 

difficult because the time for execution must always be checked. Other 

aspects of the rate tree are easily verified. Since it is deterministic, 

testing will lead to confidence in its correctness. with a nondeterministic 

interrupt structure, no amount of testing can cover all of the possibilities. 

The software overhead and complexity is much higher if interrupts or a 

nondeterministic scheduling is used. Because of our concern for validation we 

recommended a rate-tree structure. 

If the channels run asynchronously and are not voted, all of the 

synchronization functions and many of the failure management functions are 

unnecessary. These are the functions that have been the most difficult to 

verify, to show as globally consistent, and to analyze for their response to 

hardware failures. Verifying parallel processes is orders of magnitude more 

difficult than verifying sequential processes. 

Most of the functions are straight calculations requiring no past 

results. The self-tests are of this type. The mode logic and control 

calculations require a fixed, finite set of results from the previous 

invocation of the function. These may be described as finite-state machines; 

however, control laws are better described by block diagrams or equations. 

Provisions for equalizing control law integrations are required when the 

channels run independently. These impose some requirements for data exchange 

between the channels. In general, however, all of the functions may be 

precisely described and verified. Flight control functions are largely 

independent, so that verification and testing of the individual functions 

carries over after the functions are integrated into the system. We will 

choose modes of description and verification specific to each type of function 

in our methodology. Our recommendations for describing the various functions 

are summarized in table 7 for the ADFBW architecture. The entries labeled 

"sequential code" will be described in a program design language. 

The next section surveys tools and techniques. We then return to complete 

the discussion of our methodology by describing the software design, coding, 

and test phases. 
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TABLE 7. - FUNCTIONS FOR SELF-CHECKING ARCHITECTURE 

Function Description 

Initialize computer Sequential code 

Run preflight built-in-tests Sequential code 

Recover from power transients Hardware diagrams 

Exchange state data for equalization 
or synchronization Sequential code 

Monitor sensors, select signals Finite-state machines 

Branch to rate path Sequential code 

Calculate control gains Sequential code 

Run mode and switching logic Finite-state machines 

Calculate control laws Block diagram, equations 

Perform in-flight self-tests Sequential code 

Annunciate system status Sequential code 

Select output signals Hardware description 
for the remote terminals 

Monitor actuator responses Hardware description 
for the remote terminals 

5.2 TOOLS AND TECHNIQUES FOR VERIFICATION AND VALIDATION 

A tool is a computer program which performs some task that would otherwise 

have to be done manually. Tools may be classified as static or dynamic. 

Static tools examine some aspect of the specificatons, designs, or code 

without executing the code of the software being inspected. An example of a 

static tool is the set/use checker, which checks that a variable is given a 
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value before it is used, or if a variable has been defined and given a value, 

checks that it is subsequently used. A dynamic tool performs some function to 

aid in testing the program when the program is actually executed. A timing 

analyzer that monitors and records the execution time of functions and 

subroutines is a dynamic tool. Two columns of static tools and one of dynamic 

tools are listed in table 8. Descriptions of these may be found in reference 

10. The first column of static tools lists those which examine a specific 

property; the second column are those which examine general or more extensive 

properties. The set/use checker is listed as a specific tool. A symbolic 

Specific Static Tools 

Circular reference 
checker 

Code comparator 

Consistency checker 

Cross-reference checker 

Data base analyzer 

Flow charter 

Interface checker 

Program flow analyzer 

Set/use checker 

Standards checker 

Units consistency 
checker 

Unreachable code 
detector 

TABLE 8. - TOOLS 

General 
Static Tools 

Accuracy analyzer 

Assembly code verifier 

Assertion checker 

Documentation and 
construction systems 

Formal languages with 
syntaax analyzers 

o Requirements 
o Specifications 
o Program design 
o Program code 

Sneak-path analyzer 

Symbolic evaluator 

Theorem prover 

Verification condition 
generator 

Dynamic Tools 

Simulations 

o Computer 
o Hybrid 
o Testbed (iron bird) 
o Monte Carlo 

Test data generator 

Test driver 

Test execution monitor 

Test record generator 

Timing analyzer 
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evaluator, a tool which automaticallY reconstructs the boolean or algebraic 

equations relating the outputs to the inputs, is listed as a general tool. 

Many of the static tools examine global properties--those related to the 

program as a whole. For example, the set/use checker may search through much 

of the program before it can make a determination on a particular variable. 

Techniques are the standards and procedures used in developing and 

maintaining the software package. In table 9, we distinguish between those 

for development and those for analysis or review. The entries are also 

discussed in reference 10. The list of development techniques cannot be 

omitted on the grounds that it is not verified and validated. Practice has 

shown that substantial gains in software reliability can be obtained by 

attention to description, documentation, and systematic development. 

Some approaches to software development use an integrated set of tools 

including static and dynamic code analyzers, test and simulation facilities, 

and documentation aids. Other methodologies use a formal design language 

based on the constructive approach outlined by Dijkstra, and have elaborate 

facilities for recording design progress and documentation on a large 

computer. An integrated approach is also taken for verification systems. In 

addition to static analysis and testing, verification conditions and symbolic 

executions are used. These systems show great promise, but it is currently 

difficult to determine the extent of the error coverage and the completeness 

of the entire verification procedure. 

The best engineering practice is to work at the lowest level of technical 

sophistication that will solve the problem. Flight control systems need not 

be obscure; the software functions to be performed are elementary. A 

verification and validation methodology with tools and techniques selected 

from the foregoing lists need not be elaborate. It must, however, be precise 

and complete. The next section outlines a methodology specific to a flight 

control system. 

5.3 SOFTWARE DEVELOPMENT 

Our methodology follows traditional lines, but with an emphasis on the 

simplicity and clarity of structure. Everything must be made "public" so 
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TABLE 9. - TECHNIQUES 

Development 

Abstractions and hierarchies to reduce 
complexity 

Constructive design approaches 

Data flow graph, structure chart 

Descriptions 

o 

o 

o 
o 

Charts 
--HIPO 
--Flow charts 
Languages 
--Requirements 
--Specification 
--Program design 
--Program code 
Petri nets 
LOGOS 

Design guidelines, test guidelines, 
coding guidelines 
Design standards, coding standards 
Functional capabilities list 
Organization as finite automata 

o 
o 

Parnas modules 
SRI International formal modules 

Axiomatic specifications 

Analysis 

System concept review 

Software design review 

Critical design review 

Qualification audit 

Checkout testing 

Singularities and extremes 
testing 

Integration testing 

Validation testing 

Symbolic execution 

Inductive assertions 

Proofs of data structures 

State transition proofs 

Recursion functions 

Fault-tree analysis 
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that the details may be reviewed and checked. The completeness of the 

configuration and its response to all anticipated events are set out for 

everyone to see. We cannot use the "wizard" who specifies, designs, and tests 

segments of code with little explanation and documentation. Flight control 

design is often done by three to four very experienced control engineers who 

collaborate and cross-check as the work proceeds. Proven software modules and 

functions are reused for efficiency and accuracy. 

5.3.1 Software Design 

The design of the software is based on the program performance 

specification and the interface design specification prepared during the 

requirements phase (refer to section 3). The output of this phase is the 

program design specification (PDS) and the data base design. The PDS tells 

how the program works by describing functionality and interfaces. It contains 

memory and time allocations and programming guidelines. The data base design 

describes all shared data. The specifications can follow MIL-STD-483 but 

require precise specification of functions. 

The software specifications, if complete, may be quickly transformed into 

the design for the software code. We have found that a hierarchy

input-plus-output (HIPO) format is satisfactory for flight control functions, 

and we recommend it. The data flow between modules is clearly identified, 

state variables are precisely defined, and the program, expressed in any 

convenient program design language, is easy to review, to subsequently code, 

and to verify that it meets the software specifications. 

We have used an informal Pascal-like pseudocode as a program design 

language. It appears sufficient to represent the flight control functions 

unambiguously. Formal program design languages have been recommended. These 

have syntax and other features that may be automatically checked. Eventually, 

Ada will be used in this capacity. However, the fundamental simplicity of 

flight control functions allows these aspects to be checked with confidence by 

walk-through reviews. 

During this phase a software functional design review is held. This 

formal review of the detailed software design, documented in HIPO charts, will 

be conducted prior to the start of coding. The object is to demonstrate by 
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walk-through presentations that the software design satisfies the software 

specifications. Analysis to show the completeness and consistency of the data 

flow between modules will be presented. The global consistency of the 

built-in-tests and the failure management functions will be verified by a 

lattice showing the dominances of the tests. The operations and failure modes 

analysis of any synchronization schemes will be reviewed at this time. 

5.3.2 Coding 

The coding is done directly from the HIPO design charts. The code is 

verified by inspection and by testing. Prior to integration, each module will 

be informally tested to verify that it performs according to the design and 

fulfills the software specifications. The testing approach will be chosen to 

be suitable for the function of the module. 

The following test procedures are suggested for the classes of functions 

of the flight control system: 

(1) The executive structure for flight control is not complicated. It is 

feasible to test every path and every branching action. 

(2) Control mode switching modules may be designed as finite-state 

machines. These tests should verify that the processing of input data to 

yield transitional events and outputs is correct for each state and that all 

state transitions occur as specified. 

(3) A control law calculation may be verified by showing that a 

reasonable segment of the required frequency response is achieved. Extreme 

values of inputs and even stressed values of inputs must be tested to show 

that limiters and overflow provisions are operating correctly. Gain schedule 

calculations may be thoroughly tested. 

5.3.3 Testing the Code 

Each module can be exhaustively tested. All transitions of the 

finite-state machines can be checked. The built-in-tests and many other 

functions are copied from previous systems and have already undergone complete 

testing. Most of the functions are independent of everything else in the 

system, so their correctness will hold after integration if the input/output 

data flow is correct and the state variables and constants are correctly 

77 



maintained. A peer review of the code should be made to look for unusual or 

complicated constructions. 

(1) Most of the built-in-test functions are elementary and may be 

thoroughly tested for normal operation and simulated failures. Complete 

testing of wrap-a rounds and other exogenous procedures must wait for system 

integration. 

(2) The algorithms for redundant signal selections may be represented as 

finite-state machines and as such may be tested to assure complete confidence 

in their correctness. 

(3) There are also only a finite set of possibilities for the states of 

the failure detection and reconfiguration control structure. These modules 

may be tested to assure complete confidence. 

Tests are run after software modules are integrated to show that the state 

data is correctly preserved and that the data flow between modules is 

correct. Simulated failures to verify the response of the built-in-tests, the 

failure management structure, and the status annunciation are used. 

Tests are conducted after system integration to complete the verification 

of the flight control functions. This is discussed in section 6. 

SECTION 6--SYSTEM PERFORMANCE AND FUNCTIONAL VERIFICATION TESTING 

6.1 OVERVIEW 

This section describes our methodology for validating the functions and 

reliability of a system. Section 4 addressed the analysis and prediction of 

reliability. It recommended using a fault-tree description of the various 

elements. Validation by testing can be divided into two areas, as shown in 

figure 22. In the area of components and subsystems, it is feasible to run 

life tests to statistically validate MTBF predictions. In the system test 

area, it is not possible to run life tests. Instead, integrated system (iron 

bird) tests are used to verify the fault tolerance achieved by redundancy. 

These results, when combined with the component MTBFs, permit extrapolation of 

the complete system's reliability. 
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Figure 22. - The validation of an ultra-reliable system depends on 
indirect testing. 
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Section 6.2 discusses the design of test cases for integrated system 

testing. The finite-state machines used to specify the functions are now used 

in the validation testing phase. By virtue of using a finite-state machine, 

various "automata theoretic" results are available for specifying valid and 

reliable tests. Next the fault tree model is used to identify the various 

combinations of faults that need to be tested to demonstrate the predicted 

fault tolerance. Section 6.3 addresses the issue of automating the testing on 

the iron bird. This section concludes with a discussion of flight test plans. 

6.2 DESIGN OF TEST CASES 

Ultra-reliability of flight-critical systems is achieved through redundant 

design. The system must be able to tolerate multiple faults while maintaining 

undegraded flight operation. Validation of the fault-tolerance and 

reconfiguration features is the most critical step to the validating the 

reliability of the total system. These processes can best be accomplished in 

an iron bird, in which a high degree of fidelity to the flight environment is 

obtained by including actual flight hardware operating in a real-time, 

closed-loop simulation. The fundamental problem of fault tolerance validation 

is the vast number of test cases when all possible combinations of flight 

conditions and multiple hardware faults are considered. Effective testing 

requires: 

(1) A methodology using both theoretical and practical perspectives to 

define a manageable set of test cases. 

(2) Automating the testing as much as practical. 

Consider the set of conceptual states shown in figure 23. It can be used 

to visualize possible test cases. The universe of test possibilities is first 

divided into two areas: everything operable and some element failed. The 

operative region can be described by one or more finite-state machines. The 

effect of various failures on the system can be described with a fault tree. 

The "failed element" region includes failures for which a reconfiguration 

strategy was designed (i.e., switches out failed element), as well as failures 

external to the system which are to be tolerated (i.e., loss of a hydraulic 

power supply). The management of redundant elements can be described using 

finite-state machines. 
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Figure 23. - Conceptual system states. 

Three cross-hatched areas represent regions where analysis can be used to 

reduce the number of test cases: 

(1) System failed. - These cases, identified as cut sets in the fault 

tree, are discussed in more detail below. 

(2) Inaccessible. - These states represent combinations of modes, flight 

conditions, or environments that are mutually exclusive and do not need to be 

tested. 

(3) Partitioned. - this area represents states that can be partitioned 

such that all combinations do not need to be tested. This could involve use 

of hierarchies of finite-state machines or partitioning on the basis of 

control modes, etc. The next section outlines a method for designing test 

cases based on the finite-state models. 
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6.2.1 Use of Finite-State Machines 

AS discussed in section 2, many of the "control structures" specifying 

mode switching, signal selection, and failure management can be described as 

finite-state machines. Using finite-state machines in system and software 

design provides a unique link between the specification, the design, and the 

testing phases. Automata theoretic results can be used to show the 

correctness of a control structure. The method consists of the following 

steps (ref. 22): 

(1) Estimate the maximum number of states in the correct design. 

(2) Generate test sequences based on the design. 

(3) Verify the responses to the test sequence generated in step 2. 

In step 1, the estimate can be based on the design. In step 2, test 

sequences are generated that exercise all the state machines (obviously 

these sequences are not unique). In step 3, the input sequences and their 

responses can be represented as "path programs." The correctness of these 

programs can be established by a walk-through procedure based on the 

specification. Since we have assumed the specification is not "executable," 

it is not possible to totally automate this step. 

The above method is both valid and reliable for checking the control 

structure. The detectable error classes include: 

(1) Missing states 

(2) Extra states 

(3) Transfer errors 

(4) operation errors 

It is particularly useful that theoretical results are available to 

extend the method to designs based on multiple finite-state machines and 

hierarchies of finite-state machines. For flight control a hierarchy of 

structured finite-state machines keeps the number of states of each machine 

at a tractable number. Some aids in deriving a hierarchy of structured 

finite-state machines from a given finite-state machine are given in 

reference 23. using hierarchies of finite-state machines is a tremendous 

asset in reducing the number of combinations. 
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6.2.2 Use of Fault-Tree Analysis 

The fundamental problem in the fault-tolerance test is the vast number 

of conceivable test states as multiple hardware faults are considered. To 

test all possible combinations of component failures for a large, complex 

system is clearly impractical. As a result, a more economical but 

theoretically sound and conclusive approach is needed to design the test 

states for multiple faults. We will describe such an approach based on the 

fault-tree analysis used to calculate the theoretical reliability. 

This paragraph summarizes the fault-tree method. A more elaborate 

discussion is found in section 4.1.1. Basically, the fault tree is a 

top-down method of describing the failure of a system. The top event is the 

occurrence of total system failure, modeled by logical combinations of the 

failure of its associated subsystems. This process is repeated for 

structuring the subsystems until reaching the lowest event--the failure of 

the basic components. Boolean expressions are generated that list all 

possible minimal combinations of component faults leading to total system 

failure. Each of these fault combinations is known as a minimal cut set. 

The probability of total system failure is computed by combining the 

probability of occurrence for each minimal cut set. 

The fault-tree analysis of a system can be used to develop test states 

for validating fault tolerance. The purpose of fault-tolerance testing is 

not to prove that the system fails when the fault tree predicts it will, but 

rather the converse. The purpose of this testing is to establish that the 

system works correctly when the fault tree predicts it will. To establish 

the former, the various fault combinations that make up minimal cut sets are 

used as test states, and the failure of the system is expected. This 

testing would demonstrate that the system fails at least as often as the 

fault tree predicts. The important case to establish is the latter. In 

this case, various combinations of faults that do not contain cut sets are 

used as test states. The system is expected to work correctly for all of 

these combinations. If it does, then this testing demonstrates that it 

works at least as often as the fault tree predicts. 

We define a test set as a set of component failures that contains no cut 

set. This means that the fault-tree analysis predicts the system should not 
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fail in the face of failures contained in any test set. A maximal test set 

is defined as a test set that is not contained in any other test set. This 

means if any componen~ failure is added to a maximal test set, the resulting 

set is a cut set. The relationships among these sets of component failures 

are shown in figure 24. 

One way of generating test sets is to consider the maximum components in 

each cut set that the system can tolerate. This is simply one component 

less than the total components in a cut set. The number of such test states 

is equal to the total number of components in the cut set. This approach, 

however, does not consider the combinations of the elements in one cut set 

with the elements of the other cut sets. The effects of these fault 

combinations are unknown if not tested. The maximal test sets do consider 

cross-combinations among several cut sets and so, in general, contain more 

elements than just "all but one component" from a cut set. 

These definitions allow us to state that a system works at least as 

often as its fault tree predicts if it works correctly for each combination 

of component failures in a test set. However, to test all the combinations 

in the test sets is still impractical for large, complex systms. We would 

like to use the maximal test sets for testing purposes in a way analogous to 

using minimal cut sets for reliability analysis. This requires the 

following assumption: 

If a system fails under a given set of component faults, then it will 

fail under the given set of component faults plus any additional component 

faults. 

This assumption is necessary to avoid having to test all combinations of 

faults in the test sets. With this assumption, it suffices to demonstrate 

the capability of the system to operate under the combination of faults in 

each maximal test set. 

These ideas will be made more concrete by means of an example. The 

example considers the 25 most likely minimal cut sets found in the 

reliability analysis of the ADFBW system, together with the S-3A systems 

(see table 10). Maximal test sets--the largest sets not containing a cut 

set--will be found for this example. Cut set numbers 1, 2, 6, 11, 12, and 

13 are independent minimal cut sets in that each of these sets has no 

elements in common with any other minimal cut set. Cut set number 11 is 
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Figure 24. - Any combination of component failures is either a cut set 
or a test set. 

typical. Three elements are contained in this cut set--the three redundant 

channels of the aileron secondary actuator (RSl, RS2, RS3). If all three 

servos fail, the roll channel fails, resulting in loss of aircraft control. 

The maximum number of aileron secondary actuator channel faults that the 

system can tolerate is therefore two. Since aileron secondary actuator 

channels do not appear in any other minimal cut sets, any maximal test set 

must contain exactly two aileron secondary actuator channel faults. 

Similarly, each maximal test set must contain exactly one element from cut 
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TABLE 10. - MINIMAL CUT SET DATA IN DESCENDING ORDER OF PROBABILITY 

Cut Set Maximum Failure Components Contained Description of 
Number Probability in Set ~Inemonic 

1 0.99989848E-08 ENGI ENG2 Engines 

2 0.156l9062E-10 CCI CC2 CC3 Computer channels 

3 0.99984777E-12 GEN IDGI IDG2 APU generator, integrated 
drive generators 

4 0.99984777E-12 AAPU IDGI IDG2 APU accumulator, integrated 
drive generators 

5 0.99984777E-12 APU IDGI IDG2 Auxiliary power unit, integrated 
drive generators 

6 0.99984777E-12 BPMP PMP2 PMPI Backup pump, pumps 
.., 

7 0.75346635E-12 ACI AC2 AC3 Air data computers 

8 O.75346635E-12 AC4 AC2 AC3 

9 0.75346635E-12 AC4 ACI AC2 

10 0.75346635E-12 AC4 ACI AC3 .. 
Ir 

11 0.72889996E-12 RSI RS2 RS3 Aileron secondary actuators 

12 0.72889996E-12 PSI PS2 PS3 Elevator secondary actuators 

13 0.72889996E-12 YSI YS2 YS3 Rudder secondary actuators 

14 0.8280l82lE-13 ACI AC2 SB3 Air data computers, sensor bus 

15 O.8280l82lE-13 AC4 AC2 SB3 

16 0.8280l82lE-13 AC4 ACI SB3 

17 0.8280l82lE-13 AC4 ACI SB2 

18 0.8280l82lE-13 SB4 ACI AC2 

19 0.8280l82lE-13 ACI SB2 AC3 

> 
20 0.8280l821E-13 AC4 SB2 AC3 

21 0.8280l82lE-13 AC4 SBI AC3 

22 0.8280l82lE-13 AC4 SBI AC2 

23 0.8280l82lE-13 SBI AC2 AC3 

24 0.8280l82lE-13 SB4 AC2 AC3 
1~ 

25 0.8280l82lE-13 SB4 ACI ACY 
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set number 1 (since it has two elements) and two elements from cut set 

numbers 2, 6, 12, and 13. These cases are listed in table 11. 

The remaining minimal cut sets may be divided into two groups. One 

group is cut set numbers 4, 5, 6 and the other group is numbers 7-10, 

14-25. The two groups have no elements in cornman. For both groups, their 

contribution to maximal test sets is determined readily by inspection. The 

first group is illustrated in the Venn diagram of figure 25. Since each of 

these cut sets has the elements IDGI and IDG2 in cornmon, the maximal test 

sets fall into one of three cases: 

(1) All the elements except IDGI are included 

(2) All the elements except IDG2 are included 

(3) Only IDGI and IDG2 are included 

TABLE 11. - MAXIMAL TEST SETS FOR THE EXAMPLE ARE CONSTRUCTED AS THE UNION OF 
ONE SUBSET FROM EACH OF THE EIGHT INDEPENDENT GROUPS 

Cut Set 
Number 

1 

2 

6 

11 

12 

13 

4,5,6 

7-10,14-25 

Intersection of the Cut Sets with Maximal 
Test Sets (failed components) 

{ENG1}, {ENG2} 

{CC1,CC2}, {CC1,CC3}, {CC2,CC3} 

{BPMP,PMP1}, {BPMP,PMP2}, {PMP1,PMP2} 

{RS1,RS2}, {RS1,RS3} {RS2,RS3} 

{PS1,PS2}, {PS1,PS3}, {PS2,PS3} 

{YS1,YS2}, {YS1,YS3}, {YS2,YS3} 

{GEN,AAPU,APU,IDG1}, {GEN,AAPU,APU,IDG2}, {IDG1,IDG2} 

{AC1,AC2,SB1,SB2}, {AC1,AC3,SB1,SB3} 

{AC1,AC4,SB1,SB4}, {AC2,AC3,SB2,SB3} 

{AC2,AC4,SB2,SB4}, {AC3,AC4,SB3,SB4} 
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CUT SET 5 

CUT SET 3 

Figure 25. - There are only three groupings of the elements of 
cut sets 3, 4, 5 into maximal test sets. 

The second group, consisting of cut sets 7-10 and 14-25, has a symmetry 

which can be exploited. Cut sets 7-10 are all combinations of three faults 

out of four air data computers. Cut sets 14-25 are all combinations of one 

sensor bus failure and two faults out of the other three air data 

computers. (As an aside, two sensor bus failures and one air data computer 

fault is also a minimal cut set, but is less likely than the 25 shown in 

table 10.) The maximal test sets must contain failures of two air data 

computers and the two corresponding sensor buses. There are six such 

combinations. All the maximal test sets may be found in table 11. 

The total number of maximal test sets equals the product of the number 

of elements in each independent minimal cut set and the number of 

combinations from each dependent group of minimal cut sets. For the example 

problem, this is 
. 5 
2 x (3) x 3 x 6 = 8748 

In contrast, the total number of combinations of failures for the 30 

components in table 10 is 

2
30 = 10

9 
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Testing only the maximal test sets results in tremendous savings. Moreover, 

it is sufficient to guarantee the performance of the system under the 

assumptions stated above. 

It appears feasible to construct a computer program to generate all the 

maximal test sets from the minimal cut sets. Development of such a program, 

however, was beyond the scope of this program. Additional research and 

development efforts are needed to establish this feasibility. 

Considering only maximal test sets offers large savings in the number of 

required test states. Additional savings are realized if the system can be 

partitioned into groups on the basis of failure modes and effects analysis, 

or some other such analysis. The danger here lies in omitting some failure 

mode from the fault-tree analysis and then partitioning the system on the 

same basis. Still further reductions in the amount of testing may be 

obtained by calculating the probability of occurrence for each maximal test 

set. If this probability is sufficiently low, then the set can be 

eliminated as a test state. This elimination amounts to saying that the 

failure combination is so remote that the system is allowed to fail in 

response to that combination. This results in a slight decrease in the 

validated system reliability, in return for a reduction in the required 

testing. Together, these methods will produce a set of well-defined test 

states for validating the fault-tolerance of the ADFBW system. 

6.3 AUTOMATED IRON BIRD TESTING 

The vehicle system function mockup, commonly known as the iron bird, is 

a key element in the system verification, validation, and flight 

qualification. It exposes the real system to the most realistic environment 

by including actual hardware and interfacing subsystems (e.g., electrical, 

hydraulic, flight control systems) in the testings. This allows subsystem 

interface problems to be resolved and the performance of the integrated 

system and the pilot interface functions to be evaluated. Above all, it 

provides a high degree of confidence in the verification and validation test 

results. 
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6.3.1 S-3A Iron Bird 

The vehicle systems functional mockup, as the S-3A iron bird is formally 

known, was designed and used for the S-3A system development and evaluation 

test. The overview of the facility is shown in figure 26. Briefly, the 

S-3A iron bird is a full-size, spatially correct mockup of the S-3A 

aircraft. It uses a structural steel framework to support the aircraft 

functioning systems. within this steel framework are the various aircraft 

subsystems. Sufficient aircraft structure is incorporated to allow 

deflection of brackets, attach points, etc, thereby providing the same 

functional environment found on the airplane. The subsystems included in 

the iron bird are: the flight controls, hydraulic power generation, 

alighting and launching gear, wing and fin fold, and bomb bay door drive. 

Each of the subsystems is comprised of many individual elements, for the 

most part in their operational configuration. During the S-3A development, 

the iron bird was coupled to a moving base flight simulator so that the 

piloted experiments could be conducted in the most realistic fashion short 

of actual flight. 

Functional testing of system components using this iron bird is proposed 

to be an integral part of the total advanced flight control system 

development program. The S-3A iron bird provides an ideal testbed for 

directly comparing the existing flight control system with the system to be 

developed. Because the simulator is already designed and built, cost to the 

program will be minimized. All interface problems between the existing iron 

bird and the FBW components will be investigated and remedial action 

recommended. 

Our development program will parallel the previously conducted tests on 

the S-3A iron bird; however, there will be increased emphasis on automatic 

checkout in all system states. The tests can be grouped in the following 

categories: 
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Intersystem interaction effects 

. Subsystem performance and evaluations 

Complete integration 

Endurance cycling 

Simulated component failures 

Automated system checkout 
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In the S-3A program all reasonable system failures (subsystem and 

individual components) were examined during the span of the program. Types 

of failures demonstrated were: 

Engine-out conditions during various flight modes 

Valve failures--various subsystems 

Broken linkages 

Mis-rigging mech~nical and electrical components 

Failed hydraulic lines 

Loss of fluid 

Electrical control logic malfunctions 

Jammed control linkages 

The preceding list of S-3A test programs indicates the scope of work 

possible on the iron bird simulator. Many of these tests were so critical 

that if performed on a flight vehicle they could have jeopardized the 

airplane and pilot/crew. However, when performed on a completely integrated 

ground simulator such as the iron bird, this costly risk was eliminated. 

6.3.2 Automated Testing 

Section 6.2 discussed the development of test cases. Fault insertion 

using the iron bird is an important part of validating the redundancy 

management and verifying the reliability prediction. Because large numbers 

of tests need to be run, benefits are derived by automating this process. 

Automation provides two benefits: 

(1) Time compression of test schedules 

(2) Repeatability of complex test procedures 

Automation can aid in performing complicated tests that require 

execution of precise operations in specific sequences, including the 

necessity for repeatedly performing tests under different test/failure 

conditions. Incorporating automation allows the performance of these tasks 

with a minimum of supervisory manpower needed to monitor rather than perform 

the- test. A sample test plan for iron bird testing is contained in appendix 

B. 

A robotic system concept for automatically controlling the iron bird is 

presented in this section. The design is highly modularized and can be 
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integrated into existing iron bird facilities with modest additions or 

modifications. The four fundamental function modules of the robotic system 

are the executive procedure, cockpit robotic computer, system monitor, and 

fault-insertion/environmental-input controller, as depicted in figure 27. 

Executive procedure. - The test state matrix consists of flight 

conditions, multiple hardware faults, environmental profiles, and control 

modes engagement, stored in the executive procedure module. The executive 

procedure module is the central controller of the robotic system for 

stepping through the test state matrix. Information is sent to each 

function module to set up the iron bird configuration for automatic checkout 

of all test states. 

Cockpit robotic computer. - The cockpit robotic computer emulates the 

pilot actions to control the airplane for those test states requiring manual 

interactions. Nominal command profiles such as airspeed, aircraft 

attitudes, trim settings, and procedures for modes control engagement for 

all maneuver profiles are stored in the robotic computer. These commands 

are converted into force commands, which are sent to specially built 

actuators and switches located in the cockpit, to generate command motions 

to the control stock, pedals, trim switches, and control mode switches for 

controlling the airplane in the simulator. Figure 28 shows a typical 

actuator interface for this concept. All information available to the crew 

such as fault annunciations, aircraft states, and command reference errors 

is fed back to the pilot model for corrective actions. pilot dynamic models 

such as those reported in reference 4 ate stored in the computer to simulate 

the pilot's response to various tracking tasks. This allows automated 

testings for the FBW system, in which the pilot's input is an important part 

of the system's design. 

System monitor. - The system monitor records all test results for 

post-testing data processing and for in-line monitoring of system status. 

Outputs from all subsystems, major components, aircraft simulator, fault 

annunciators, and simulated pilot's commands are collected by the system 

monitor. Total test times and component failures are logged for analyzing 

component reliabilities. Internal computer computations, such as the 

outputs and state transitions of the finite-state machines, are also 
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recorded by the system monitor for software verification. Data reduction 

after each test run can be done in a separate host computer for evaluating 

system performance and for comparing with predicted outputs. This process 

detects and isolates design and implementation errors. 

Fault insertion and environmental input controller. - This module 

provides interfaces with the fault injection hardware and the environmental 

control units. Multiple hardware faults can be inserted into the system by 

using relays for shorting of wires, solenoid switches for controlling 

hydraulic systems, switches for controlling electrical power systems, 

voltage regulators for inserting hardovers into sensors, and fault injector 

boards for injecting hardware faults into the FBW computers. Local 

insulated enclosures can be built around various subsystems for extreme 

temperature and temperature cyclings. Automatic setting of this hardware is 

provided by this function module. 

Implementation of the 'robotic system. - Current desktop 

microprocessor-based computers offer the following performance: 

(1) Active memory 2M bytes 

(2) Expandable mass storage 

(3) Clock frequency 

(4) Word length 

(5) I/O buses 

(6) I/O rate 

(7) Programming language 

Up to 125M bytes 

8 MHz 

16 bits output with 32 
bits internal architecture 

5 to 10 I/O cards which use 
popular I/O buses such as 
the IEEE 488, RS-232C 

1M bytes/sec 

HOL 

The high computation rate, large I/O interfacing capability, large 

available memories, and the relatively low cost of these processors are ideal 

for the applications of real-time automated testing of complex flight control 

systems. Also, the use of structured HOLS such as Pascal will reduce test 

software development cost. 

The low co~t of these microprocessors allows acquisition of several of 

these units for a modularized design of a robotic system, as illustrated in 

figure 29. The microprocessors are networked together with the executive 
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procedure module as the central controller. Other modules perform a specific 

programmed task without exchanging information with other units for total 

system operation. 

This modularized approach offers the following advantages: 

(1) The system can be easily modified for integration with other iron 

bird facilities. 

(2) Modification and development OL a module does not affect total system 

operation, therefore reducing down times and other costly delays. 

(3) Other functions can be easily added to the system if determined 

necessary later in the program. 

6.4 FLIGHT TES'TING 

The S-3A is well-suited as a testbed to develop FBW concepts. There are 

four crew stations--two of these are pilot flight stations and the other two 

could be used for special purposes: that is, fault injection panel, 

configuration switching, or onboard data processing. Each station has a full 

escape system including ejection seat, oxygen supply, and suit 

pressurization. The modest fuel consumption allows the plane to fly more 

than six hours. However, each wing-mounted engine has enough reserve power 

to fly aircraft individually. The highly maneuverable airframe was designed 

to withstand 3.5g maneuvers and accomplish takeoffs and landings in short 

distances. When the antisubmarine warfare equipment is removed, the existing 

avionics racks have sufficient room to install FBW avionics and extensive 

instrumentation electronics. The basic S-3A was designed for continuous duty 

with minimum maintenance. 

Flight testing to develop FBW systems can be divided into two 

categories. The first is fault-free testing to verify the control laws, 

demonstrate handling qualities, and accomplish the usual envelope expansion. 

The second involves inserting faults in flight to validate fault tolerance. 

,Prior to flight testing, extensive ground checks will be made to ensure 

that the control system conforms to design specifications and iron bird 

tests. These checks will include end-to-end gains, system operational 

checks, frequency response tests, and ground shake vibration tests. 
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6.4.1 Performance Verification Flight Testing 

The purpose of performance verification flight testing is to verify 

control law design and demonstrate that the handling qualities of the FBW 

system satisfy requirements. The basic FBW modes to be tested include the 

augmentation modes and the alpha limiting mode. All autopilot modes must 

also be engaged to demonstrate that there is no adverse interaction between 

the autopilot and the basic flight control system. The nominal loop gain can 

be verified to show stability margins. Finally, the aircraft will be flown 

in turbulence to assess gust responses. 

6.4.2 Failure Mode Flight Testing 

The purpose of these tests is to validate the fault-tolerant design and 

verify the fail-operational capabilities of the FBW control systems. A few 

selected tests of this nature will be performed to back up the comprehensive 

testing that was conducted on the iron bird. 

There are two types of failure mode tests. The first simulates a system 

failure by turning off one or more channels of a major subsystem: that is, 

hydraulic iI, B electrical bus, no. 1 air data system, or no. 3 aileron 

actuator. The second type of failure test intercepts a signal going to the 

computer and inserts a bogus signal. This type of testing will be performed 

on the sensors, actuators, and the air data computer. 

6.4.3 FlightTest'Support 

Special instrumentation and software modules will be used to support 

flight test. The purpose of the flight test instrumentation is to: 

(1) Provide test data that validates FBW system performance 

(2) Document all actual or simulated failures that occur 

(3) Generate the engineering data necessary to enhance system design 

(4) Provide real-time ground monitoring through telemetry 

The onboard instrumentation system will monitor all record and telemeter 

commands, input signals, and the state of the computer at all times. 

Information generated will be available to onboard personnel and will also be 

transmitted to the telemetry station. 
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Software modules need to be added to the FBW computers for flight 

testing. Typical modules include the stability module, fault insertion 

module, and instrumentation module. The stability module will give onboard 

personnel the capability of changing system gain or time constants with 

external switches placed in the flight station. The fault insertion module 

will be used to verify the fault-tolerance capability of the software. The 

instrumentation module will transmit the state of the system and other 

pertinent data to the instrumentation system. 

SECTION 7--S-3A INTERFACES 

7.1 FLIGHT CONTROL SYSTEM INTEGRATION 

The primary goal during this phase of the integration study effort was to 

determine a method of integrating the system into the S-3A aircraft with 

minimum cost. This would be accomplished by minimizing components developed 

specifically for the S-3A which would not particularly demonstrate features 

of the ADFBW system. The integration also should provide a flexible test 

vehicle with expansion capability and, above all, should assure flight safety. 

The result of this effort suggested a method of integrating the ADFBW 

system with very little risk, development activity, design activity, or 

fabrication effort. The method is to use the existing surface actuators, 

eliminating all existing mechanical linkages and cables. 

The baseline S-3A flight control system was originally designed with the 

objective that the aircraft be controllable even in the event of total loss 

of hydraulic and electrical power. This objective influenced almost every 

aspect of the design, even to the extent, for example, of using low-friction 

seals on the main ram of each surface actuator to reduce the force necessary 

to move the surface in the unpowered mode. This design feature was provided 

at the cost of lower seal life expectancy and lower reliability. Figures 30 

through 32 show a schematic of the baseline S-3A primary flight control 

system in the pitch, yaw, and roll axes, respectively. 
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Modifying the baseline design to accommodate a different objective 

requires that consideration be given to flight safety as well as to the cost 

of making the modification. 

The modification we are proposing satisfies both flight safety and 

minimum cost. It consists of 

(1) Completely decoupling the cockpit controls from the flight control 

system 

(2) using the existing cockpit controls for inputs to the ADFBW system 

(3) Using only the control surface actuators from the existing flight 

control system 

A preliminary layout was made to investigate the feasibility of 

installing secondary actuators in the pitch, roll, and yaw axes. The layout 

shows the installation to be feasible with no major rework of the aircraft 

necessary. 

The addition of the secondary actuator introduces an additional time 

delay in the control system that does not exist in the basic S-3A flight 

control system. If the secondary actuator is designed to have high-frequency 

response, the time delay will be small and is not expected to significantly 

degrade aircraft handling qualities. 

The ability to use existing S-3A surface actuators at the beginning of 

the test program allows a most significant economy. Designing, testing, and 

demonstrating that a new actuator meets hinge moment, stiffness, frequency 

response, hysteresis, and flutter requirements is not required because the 

existing actuators already provide these capabilities. Furthermore, new 

actuators may present a maintenance problem (repairing leaking servos, etc), 

whereas replacement spares for the time-proven original actuator, if 

required, are probably available from Navy inventories. 

It appears that the same type of secondary actuator can be used for all 

three axes. 

A preliminary sizing of the secondary actuator was made for the purpose 

of determining installation space. The force requirement for the secondary 

actuator is predicted on 

(1) Operating the surface actuators in the manual mode--that is, unpowered 

(2) Retaining the feel cams from the surface actuator 
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The secondary actuators should provide a force input to the primary 

surface actuators equivalent to that provided by a typical pilot acting on 

the controls in the cockpit of the basic S-3A. The feel cams could be 

removed from the primary surface actuator, thereby reducing the force 

requirements of the secondary actuators. However, in order to remove the 

feel cams, the actuator would need to be disassembled at the factory and then 

retested after rework. The actuators would become unique and repair or 

replacement more difficult. 

The force and stroke required of the secondary actuators operating in a 

single-channel mode is 500 pounds and 3.0 inches. 

A Hydraulic Research secondary actuator, which is triple-channel tandem 

with only one active channel operating at a time, was selected for this 

·application. This actuator has a size of about 5.5 inches x 4.5 inches x 

16.5 inches. This actuator provides 900 pounds force output with a 1.O-inch 

stroke. A slightly larger piston diameter and a bell crank to change gearing 

to the correct stroke will allow this actuator to meet requirements. 

A preliminary layout was made of the installation of the selected 

secondary actuator driving the elevator power servo. Figure 33 shows the 

result of the layout with the secondary actuator positioned just forward of 

the primary servo. The tension regulator is removed to make the space 

available. The selected installation has reasonable access by way of the 

access hatch located in the left landing gear well, which leads into the 

environmental control system compartment. 

A similar preliminary layout was made of the yaw axis secondary actuator 

installation. As shown in figure 34, adequate space exists above the fin 

fold line to install the actuator near the rudder primary actuator. The 

actuator is shown mounted on the forward spar. Access to the installation 

will be available from the rudder servo access plate on the right side of the 

fin above the stabilizer. 

The aileron secondary actuator installation presents a more difficult 

installation. The result of the preliminary layout is shown in figure 35. 

Access to the aileron secondary actuator installation will be the access 

door to the environmental control system compartment. 

104 



, 

'II , ' 
ELEVATOR POWER SERVO 

_fBL\_ : 
~ L; --~~-+---------4--+ 

\~--=-===l===== =m-

SECONDARY ACTUATOR 

Figure 33. - Elevator secondary actuator installation. 



SPAR ASSY 

I 
I 

+-

RUDDER POWER SERVO 

SECONDARY ACTUATOR 

-FIN FOLD RIB 

----~----
Figure 34. - Rudder secondary actuator installation. 



£AILERON POWER SERVO 

-.~-- ~ 

+1-------- --:~-
~ .. -c;:.~ 

~--

SECONDARY ACTUATOR 

Figure 35. - Aileron secondary actuator installation. 



Separate new actuators are required to drive the ailerons in a symmetric 

manner. This can be achieved by using two additional series actuators, one 

for each aileron. Th~s configuration was selected because of the following 

considerations. The ailerons are controlled by a single aileron power servo, 

installed in the environmental control system compartment, which drives 

pushrods to each aileron. The aileron servo also provides a mechanical input 

to the spoiler actuator. Rather than redesign this total system, it is 

recommended that additional actuators be used. 

The actuators selected for the symmetric aileron mode will be 

electromechanical actuators. Development of the mode could be a follow-on 

expansion program after the flight test of the.ADFBW system has commenced. 

The logical location for the electromechanical actuators is in each wing 

because they must work in conjunction with the aileron pushrods, and space in 

the fuselage between the aileron actuator and the aileron pushrods going out 

of the fuselage is very limited. The space available in the S-3A wing is 

limited because of fuel tanks and hinges for folding. 

A brief effort was made to determine the feasibility of locating the 

actuator in the wing. Figure 36 shows the result of this effort. The 

actuator was sized for the available space at this location instead of for 

the task required. It"is likely the space is too small for an 

electromechanical actuator. The installation is made practical by removing 

the lower spoiler dwell actuator. In so doing, the lower spoilers are made 

inoperative and the panels are sealed closed. The baseline S-3A uses the 

lower spoilers only when the flaps are up. The loss of roll control power 

will not be significant. Some slight pitching movement may result at 

high-speed roll maneuvers due to not using the lower spoilers and only using 

the upper spoilers. This should not present a problem because with the ADFBW 

a simple crossfeed of roll into pitch can significantly reduce any pitching 

moment. 

The feasibility of alternate installation areas should be determined. 

Another possible actuator location is in the wing beyond the wing fold line. 

A third possibility is in the environmental control system compartment near 

the aileron primary and secondary actuators. Future study should be devoted 

to these areas. 

108 



____ ~:: __ [_~-~ __ -_-'*--~~~~-_--_-_-. _' ___ .-._--=---.~-_--~_. JUP~ER SPOILER ~ONN_Ll_N_K ___ LP_.~_R-~~~_-(-BL=_+~O-.-O-)=~~~-__ -.-_-~_=_=__-
-E-==··~.--~·~r ~ ,-·C./~L~~~====~?== --T ,- ~ _~---=-------=----

AILERON CONN LINK 

WING FLAP CONN LINK 

SUMMING BAR 

I ACT/VE-COtHROL ACTUA_TO_R __ _ 

1- _--__ . £rUPPER SPOILER CONN LINK 

~~- I--r-r\r ,,+ .IL....--~~:~_--C~~~ -.---Jr:a::3===~3-______ _ 
~---

-----1'- - ----- -

-r 
I AILERON CONN LINK 

------;- - - ----- ---

Figure 36. - Active-control actuator installation. 



In summary, the locations of all the flight control actuators are shown 

i~ figure 37. 

7.2 COCKPIT CONTROLS INTEGRATION 

The task of providing cockpit controls for the ADFBW requires compromise 

to avoid much redesign effort. If a new control stick or side-stick 

controller is to be provided, many of the additional functions provided by 

the original control stick and pedals must also be provided. Some of these 

functions are nose gear steering and its engage/disengage function, pitch and 

roll trim, trim disconnect, autothrust disengage, autopilot disengage, 

communications switch, and brakes. 

A right-hand controller is required if other than a center stick is used 

because the throttles are located on the left side of both pilot and 

copilot. Mounting the controller would require a different installation for 

pilot side (center console) and copilot side (side console); thus, two 

designs are required. Both installations must avoid interference with the 

ejection seats. 

Consideration of the above design tasks persuades us to recommend using 

the existing installation, with modifications as required. The modifications 

will consist of removing their respective cable systems, the bobweight, and 

the stick damper. The column should be statically rebalanced by means of the 

balance spring, a spring gradient added to provide a stick force gradient and 

pedal force gradient, and six LVDTs installed per axis to measure control 

inputs. No installation difficulties are foreseen with this approach. A 

diagram of the reconfigured controls is presented in figure 37. 

7.3 SENSOR INTEGRATION 

Individual sensors do not present an installation problem. However, 

installing sextuple sensors requires suitable space so that each of the 

sensors is in the same environment as the others to ensure that cross-channel 

monitoring can have practical levels. In some cases, such as the 

pitot-static system, this may be impractical. 
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Installing mUltiple pitot-static probes on a small aircraft presents more 

of a problem than on a wide-body aircraft. Separating the systems as widely 

as possible so that bird strikes will not damage all systems is not 

consistent with providing the same airflow around each probe for 

multiple-channel tracking. 

The following configuration is recommended based on the history of probe 

development and probe installation on the S-3A. (See figure 38.) 

The present two-channel pitot-static system installed on the S-3A should 

be extended to a four-channel system. The baseline S-3A has a probe on each 

side of the fuselage, ahead of the cockpit. Each probe has two static ports 

and a single pitot input. Each static port is crossfed to the opposite port 

on the other probe. In this manner effects of sideslip are minimized. 

Probes identical to those presently installed on the S-3A should be 

specified so that correction for static defect curve (probe angle-of-attack 

effects) need not be reestablished. The correction will be particularly 

important for four-system tracking as required for cross-channel comparison. 

Part numbers and the approximate location for the new probes are shown in 

figure 39. The new probes will be mounted just under the existing probes but 

with enough separation to minimize shadowing for most angles of attack. 

Additional lines must be plumbed from the new probes to the right internal 

electronics bay. Six air data computers will be coupled to-the four 

pitot-static systems. 

Rate gyros and accelerometers can be mounted in the bomb bay area on the 

keelson approximately at the wing quarter-chord. Adequate space exists for 

the installation. 

7.4 AVIONICS INTEGRATION 

Ample space and facilities exist on the S-3A aircraft for installing the 

new avionics of the ADFBW system by removing the unnecessary avionics. It 

should present no installation or access difficulty • 

. The internal avionics racks will provide sufficient space with 

hard-mounting possibility. The racks will have a controlled temperature 

environment and adequate cooling will be supplied by the ducted avionics 

cooling system. 
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The two remote terminals can be installed in either a controlled or an 

uncontrolled environment area. The internal avionics area will provide 

environmental control. The environmental control system compartment, or the 

bomb bay area, will provide ample space for avionics in an uncontrolled 

environment. Both areas are accessible for ground checkout and maintenance. 

7.5 HYDRAULIC SYSTEM 

A review of the S-3A hydraulic system (including approved ECP 347 

changes) was made regarding its adequacy to support the ADFBW system. Flight 

safety of the flight test vehicle was the paramount aspect of the review. It 

was concluded that no significant changes to the S-3A hydraulic system are 

required. 

The baseline S-3A has two engine-driven, independent hydraulic systems to 

provide dual-channel flight control hydraUlics. System 1, the flight 

control/utility (FC/U) system, powers all utility functions (landing gear, 

brakes, nose gear steering, flaps, etc) in addition to the flight controls. 

System 2, the flight control (FC) system, powers only the second channel of 

the flight control system. As shown in figure 40, each system can by itself 

provide complete flight control capability. 

A third hydraulic pump will be added when ECP 347 is incorporated. This 

pump, driven electrically by either generator (but not by the baseline APU) 

will be plumbed into the FC/U system and will function as an emergency backup 

pump. It the left engine is shut down or the FC/U system pump fails, the 

emergency pump can be used to do all the work of the engine-driven pump. 

Throughout the history of the S-3A as known by Lockheed project 

engineering, total hydraulic power has never been lost. (At this time, 

approximately 1% of the aircraft have the third hydraulic pump 

incorporated.) Based on this history, the baseline dual system appears 

adequate and safe to support the ADFBW system. Adding the third hydraulic 

pump should reduce the chance of losing all hydraulic power even further. In 

addition, the third hydraulic system will provide hydraulic ground checkout 

capability without needing a hydraulic rig. Only an electrical ground cart 

is required. 
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The modification of the existing hydraulic system will consist of teeing 

into the pressure and return lines of both the FC/U and FC systems. The tee 

will provide hydraulics for the pitch, roll, and yaw secondary actuators. TwO 

channels of the secondary actuators will be powered by the FC/U system and one 

channel will be powered by the FC system. 

7.6 ELECTRICAL SYSTEM 

The S-3A electrical system has been reviewed with respect to the 

anticipated requirements imposed on it by the ADFBW system. It is concluded 

that the impact is minimal and no extensive or costly modification to the S-3A 

electrical system will be required. 

The baseline S-3A has two separate engine-driven generators, each of which 

can be bused to supply all electrical needs. An additional 5 kva generator is 

powered by the APU. This unit is only large enough to supply essential 

electrical power, such as the pitch trim actuator and flight instruments 

(refer to figure 41). 

An engineering change proposal (ECP) is being prepared to install a larger 

APU in the S-3A. This unit would be capable of supplying the ADFBW system. 

An S-3A with the ECP incorporatd (larger APU) should be used for the ADFBW 

demonstration aircraft. 

A 28V dc storage battery sufficient to supply electrical power to two of 

the six channels of the flight control system will be installed in the bomb 

bay compartment. ~~o typical IZV batteries should be adequate to power two 

channels of flight controls for at least two hours in case of an emergency. 

SECTION 8--CONCLUSIONS AND RECOMMENDATIONS 

. This study has defined an architecture and a methodology for its 

development. The architecture claims advantages by virtue of 

(1) Less software 

(2) Self-checking hardware 
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(3) Emphasis on using standards 

Instruction set: l750A 

HOL: Ada 

Serial bus l553B 

(4) Hardware advances that yield maintenance benefits by including spare 

elements 

This architecture has emphasized simplicity. This yields tractable 

modeling problems to estimate reliability and easier verification of the 

software. In spite of the hardware-intensive nature of this architecture, we 

recognize that software requirements will grow as new functions are integrated 

with flight control. Two options for expanding the computer throughput are 

shown in figure 42. Figure 42a shows the addition of another CPU chip using 

the multiprocessor option provided on the Fairchild l750A. This feature 

allows both processors to access a common memory without contention problems. 

Figure 42b shows the addition of SCMPs to the redundant sensor bus. These 

additional processors can perform non-flight control functions (i.e., 

navigation/flight management). Spare SCMPs may be used as back-ups for both 

flight control and non-flight control functions. Investigation of functions 

other than flight control was beyond the scope of this study. However, this 

architecture is well-suited to expansion. 

The methodology claims advances in 

(1) Presenting aids to formulate complete specifications 

(2) using finite-state descriptions and fault tree models to define test 

cases 

The development methodology proposed is within the state-of-the-art, and 

is a cost-effective way to produce flight-critical software. Research in 

fault-tolerant computing is currently an active area. Work is ongoing in many 

areas, including reliability modeling, fault-tolerant software approaches, 

formal methods for design proving, and design of real-time operating systems. 

As previously noted, software requirements are increasing and may benefit from 

the. results of this research. We view the entire development methodology as 

continually evolving and expect to incorporate new techniques as our knowledge 

expands. 
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Finally, automation of iron bird testing is recommended to achieve time 

compression and enhance productivity. We believe this is a good time to 

initiate the ADFBW development. Figure 43 suggests follow-on activities. 

S.l RECOMMENDED FOLLOW-oN 

Three one-year efforts are shown in parallel to support the major 

development activities in phase 1. 

The system specification activities define the technologies used to 

implement the elements of the architecture and detail the interfaces. The 

system specification will be sufficiently detailed to permit hardware design 

to start in phase 1. A top-level system specification is prepared and the 

fault tree reliability modeling is expanded. 

The test design methodology addresses issues raised in section 6 

concerning the application of finite-state machines and fault trees. These 

techniques will be examined and results extended to evolve a practical 

methodology for designing test cases. 

The robotic demonstration is intended to take an initial look at the 

issues of automating iron bird testing. It develops the computer interface, 

robotic actuators, and system instrumentation. A demonstration on an 

existing facility (like the F-S) is recommended. 

Following these support activities a two-phase program is shown, leading 

to and including flight test. Phase 1 comprises those tasks required to 

complete iron bird testing of the ADFBW system. This phase lasts three years 

and includes: 

(1) Detailed hardware design 

(2) Software design and coding 

(3) Interface checkout, system simulation, and accelerated life testing 

(4) Iron bird testing 

Development of verification and validation tools occurs in parallel. 

This activity designs the test cases and develops the hardware and software 

necessary for automated iron bird testing. 
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Phase 2 is the flight test phase for the basic ADFBW sytem. It includes 

aircraft modification and one year of flight testing to verify the 

performance of the basic design. It could start in mid-1987. 

The S-3A ADFBW test vehicle could support a variety of flight research 

experiments. The five options shown in figure 42 are described below. 

Option 1 involves testing of electromechanical actuators. Tasks are 

proposed in a time frame that resumes flight testing in the shortest time 

following the basic phase 2 flight test interval. The ADFBW system will 

follow the verification and iron bird test methodology developed and used in 

phase 1. Flight test follows, conservatively at first, with the 

electromechanical actuators used only for powering the spoilers. The 

electromechanical actuators' successful service in a non-flight-critical 

application establishes their readiness for flight testing in all the surface 

actuator positions. 

Option 2 flight tests an advanced wing requiring extensive use of active 

control technology. This effort could start in 1989 or earlier, depending on 

other research and development activities in this area. 

Option 3 involves using advanced displays. These flight tests are 

scheduled for 1988-1989, at which time flat-panel devices should be 

available. A low-risk look at this technology can be made with an early 

flat-panel test in a rear crew position of the S-3A. In fact, years of 

"ridealong" testing could be acquired in a very nonobtrusive fashion in the 

rear position. When adequate reliability is achieved, one or both forward 

positions could be equipped with the advanced displays. 

Option 4 is a test of flight management system and air traffic control 

system integration possibilities, rather than an application of 

ultra-reliable electronic technology. Rated as a fairly low-priority option 

it could, however, provide the S-3A test vehicle with the necessary avionics 

to engage in sophisticated air traffic control experiments. An example would 

be multiple airplane tests of curved approaches to microwave landing system 

airports. 

Option 5 adds the capability to operate one engine with digital engine 

controls. The S-3A is an ideal testbed for this purpose since it has two 

engines and excellent performance, even with one engine out. In the proposed 
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study the flight propulsion control coupling possibilities and 

engine/airplane electric power sharing will be investigated. 

The preceding discussion illustrates that the ADFBW S-3A would result in 

a flexible testbed vehicle for NASA that could support a variety of research 

areas. This theme is expanded on below. 

8.2 EXPANSION TECHNOLOGIES 

The preceding sections have described an ADFBW system. We have discussed 

the issues involved in installing such a system on the proposed testbed 

aircraft on S-3A. We conclude this technical discussion with a brief look at 

several nexpansion technologiesn that could be the subject of research and 

development at NASA on the S-3A ADFBW aircraft. These expansion technologies 

are non-flight-control technologies that will figure prominently in the 

efficient all-electric aircraft of the future. Figure 44 is a roadmap of 

five expansion technology areas. The development of these technologies over 

the next 20 years is outlined below. 

8.2.1 Active Control and Advanced Wing Technology 

Active control technology is represented along the bottom portion of 

figure 44. New aft-loaded airfoils require CG placement that yields relaxed 

static stability to the point that FBW stability augmentation is needed. 

Next-generation wing designs will require FBW technology to achieve the 

optimum aerodynamic and structural efficiencies. 

Using the S-3A as a test vehicle could be valuable in this area. A new 

wing could be demonstrated. On the new wing, active controls would provide 

maneuver load control, in which symmetric aileron deflection would unload the 

tips at load factors greater than Ig, thus conserving wing structural 

weight. The pitch control system, acting in cooperation with the ailerons, 

would provide elastic mode suppression and gust alleviation. Relaxed static 

stability would be used to get the most efficiency out of the advanced 

airfoil. Active CG management could be included to maximize fuel savings 

payoffs. Testing of the advanced wing with the S-3A ADFBW could take place 

in the late 1980's. 
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Two technologies that can be integrated with an advanced wing are the 

vortex-driven turbine and upper-surface blowing concepts. The vortex-driven 

turbine can be installed for vortex dissipation and power extraction. upper 

surface blowing is a technology for vectoring the thrust to increase 

circulation lift. 

Active flutter suppression is seen as the last active control entry 

because of its rapid and drastic failure modes. A first test application 

might be with flutter margin reduced to dive speed; then subsequent flutter 

margins could be eliminated to the point where flutter margins could be 

provided completely automatically. 

8.2.2 Flight Management and Air Traffic Control TechnologY 

Flight management and air traffic control technology are combined in 

figure 44. Today the component pieces of the future air traffic control 

system are being developed. In general, airborne avionics are leading the 

ground-based air traffic control system toward an era of fully automated, 

high-density flow management. As flight control becomes more automated the 

crew will function increasingly as system managers. The primary emphasis 

will be on efficient and safe flight in a crowded traffic environment, with 

elimination of delay and with optimal accommodation of changing weather 

situations. 

8.2.3 propulsion Control TechnologY 

Propulsion control as shown in figure 44 is heading inexorably toward 

full-authority digital engine control configurations. Digital engine control 

will provide opportunities for improved fuel efficiency and for the coupling 

of flight control and aircraft power systems. Gains for the relatively 

simple subsonic fanjet engine control will not be as impressive as those 

projected for transonic applications. 

8.2.4 Display TechnologY 

Electronic display technology will develop rapidly in the 1980s, 

culminating as shown in figure 44 with fully integrated, solid state 

flat-panel displays. The data volume available to the crew is almost 
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overwhelming today and will worsen with more widespread CRT usage in the 

cockpit of the near future. Much remains to be done in the area of human 

factors. NASA, recognizing this need, has initiated a substantial research 

and development effort in this area. Equally important, however, is the need 

for FEW-quality reliability in the displayed information. The advanced 

cockpit of the 1990's will be totally electronic. Its reliability must be 

equivalent to the electronic flight control because, as is the case with 

advanced flight controls, total loss of the displays could result in loss of 

the aircraft. Display technology then can directly benefit from ADFEW 

research efforts toward developing ultra-reliable digital equipment. 

8.2.5 Secondary Power Technology 

Secondary power systems will evolve in the 1980's and 1990's toward an 

all-electric implementation. Today's combination of electric, hydraulic, and 

pneumatic power has led to a proliferation of power sources and distribution 

systems, with a comparatively limited capability for load or function 

sharing. A two-phase evolution toward all-electric secondary power is 

anticipated. In the first, bleed power and pneumatic start systems will be 

eliminated. Engine starting and environmental control system power will be 

provided from a scaled-up electric power system. The second phase is more 

difficult; it involves the elimination of hydraulic power. All hydraulic 

motors and actuators will be replaced by electric-power devices. Hydraulic 

technology of today is as reliable as the structure of an aircraft. Many 

commercial transports are totally dependent on hydraulics for powering 

primary flight controls and other important systems. Emergent 

electromechanical actuators will have to be capable of equivalent reliability 

to replace hydraulic actuators in flight-critical applications. 

The ADFEW program plays an important role in the evolution of 

all-electric technology. In relation to the proposed study, two areas of 

research and development would be worthwhile. The first is the test and 

evaluation of electric primary surface actuators. The second is in the area 

of secondary power control. AS in the case of the advanced displays, the 

control of electric power for future all-electric aircraft will be dependent 

on ultra-reliable digital electronics. The all-electric flight control 
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system of the 1990's will use ring buses to efficiently distribute power to 

the electric motors and actuators on the aircraft. Remote-controlled, 

high-power solid state switches will control power to various parts of the 

aircraft. A total power failure cannot be tolerated; hence, FBW-quality 

digital control will again be a necessity. 
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APPENDIX A 

EXAMPLES OF FINITE-STATE ~mCHINES 

FOR SPECIFYING FLIGHT CONTROL FUNCTIONS* 

BACKGROUND 

In many cases designers attempt to write software directly from an English 

language definition of the problem. Therefore, most of the design decisions 

and algorithm steps get buried in the software, the correctness of which is 

dependent solely on the intuition and ingenuity of the programmer. This poses 

two problems. First, most of the current program proving techniques cannot be 

applied because they require a formal mathematical specification of what the 

program is supposed to do. Second, if the algorithm has a design error, it is 

very difficult to detect. 

We have proposed an approach that the algorithm be specified in terms of 

finite-state machine descriptions before writing the software so that the 

design decisions are made explicit and can be verified easily. 

The digital advanced avionic system (DAAS) flight control program showed 

that describing mode logic as a finite-state machine was very effective in 

making design decisions visible and preventing errors of omission. 

This appendix presents the details of three additional examples cited in 

section 3. The first example is an algorithm for selecting from three 

redundant sensor signals. It illustrates the use of a finite-state machine for 

exhibiting the structure of the algorithim. It also illustrates the dominance 

of one failure management mechanism over another. 

The second example describes a three-channel synchronization method. It 

shows the need for failure effects analysis of the auxiliary hardware as it 

interfaces with the software. 

*Portions of this research are supported by Honeywell IR&D programs. 
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The interaction between cross-channel voting and the testing of 

interchannel communications is studied in the third example. The study shows 

that three channels are adequate for detecting the first failure. 

These specific examples were chosen to illustrate finite-state machine 

modeling~ depending on final implementation of the ADFBW architecture, they 

mayor may not be part of the recommended system. 

SIGNAL SELECTION FOR THREE REDUNDANT SENSORS 
WITH VALIDITY FLAGS 

This algorithm provides an example of the finite-state structure. The 

description is intended to be precise, complete, and clear to allow a design 

review and a proof of correctness by a walk-through demonstration. 

A major part of this problem consists of combinational (nonsequential) 

logic. Mathematical (boolean) expressions of input variables have to be 

evaluated in order to determine the transitions of the finite-state machine. 

Similarly, mathematical expressions of input variables and the current state 

yield the output variables. In the three-sensor select problem, these 

mathematical expressions are of vital importance and strongly reflect the 

control engineering decisions. Therefore, it is essential that these 

expressions be explicitly derived and stated. 

Based on the above reasoning, the recommended approach is to have a 

complete mathematical description of the solution, which would serve as a 

specification for the software to be written. This mathematical description 

consists of a finite-state machine description and some boolean algebra in the 

following example. In a control law problem, it may consist of arithmetic 

expressions denoting, for example, the transfer function. 

The main advantage of a mathematical description is that it is a language 

easily understood by the control enginers. A systematically derived 

mathematical expression constitutes a proof in itself. It also highlights the 

control engineering decisions in the best possible manner. 

Another advantage is that once the mathematical description is written, 

hardware/software tradeoffs and implementation allocations can be readily made. 
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Note that this approach is quite compatible with the current program 

verification techniques. The required input and output assertions can be 

readily obtained from the mathematical description. The use of such 

techniques may not be necessary, however, because as experience indicates, 

most errors are made in obtaining the correct description of what the software 

is supposed to do. 

The entire process can be summarized as follows: 

(1) Control engineering statement of problem. - An English 

language statement of the problem, specifying the input and output variables. 

(2) Develop solution approach and informal algorithm(s) based on control 

engineering reasoning. 

(3) Mathematical description. -

(a) Identify what information has to be preserved 

from one cycle to another. This constitutes the 

finite-state machine. 

(b) Explicitly state which combinations of input 

variable cause a particular transition in the finite-state 

machine (this is based on control engineering decision). 

Complete the formal description of the finite-state machine. 

(c) Each output variable is a function of input 

variables and the current state of the finite-state 

machine. Describe this function mathematically, taking 

into account all possible states of the finite-state 

machine and all possible combinations of the input 

variables. 

(4) Hardware/software split. - Based on the results of the previous step, 

decide what portion is to be implemented in hardware and what in software. 

(5) Design and verify the hardware. 

(6) Design and verify the software. -

(a) Design software according to the specification in 

step 4. 

(b) Derive input-output assertion to be used for 

formal program verification. 

(c) Formally verify the program. 

(Steps band c may be omitted if not critical.) 
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Based on the above methodology, the remainder of this section presents a 

solution for the three-sensor select problem. 

A SOLUTION OF THE THREE-SENSOR SELECT PROBLEM 

Problem Statement 

To produce an output signal from three sensor signals with validity flags 

sampled at each cycle. 

Requirements and Approach 

The three sensor signals and the three corresponding validity flags are 

directly wired to each computer. If a flag is invalid, assume that the sensor 

has failed. There may, however, be failure modes not detected by the validity 

mechanism. Hence, signal comparisions are also necessary. The differences of 

the signals are required to be within a fixed tolerance that is specific to 

the sensor. 

The selection of the output depends only on the comparisons of the three 

signals. If the three signals are valid and compare within the tolerance, the 

median signal is chosen. If one pair of signals miscompare, the third signal 

is used but no fault is assigned. If two pairs of signals miscompare, then 

the signal common to the pairs is judged faulty and the average of the other 

two is taken as the selected signal. If there are three miscomparisons while 

all of the flags are valid or the situation is ambiguous, none of the data is 

used; the selected value from the previous cycle is chosen. 

To avoid nuisance error indications a counting mechanism is used to 

determine failure when a fixed plurality of miscompares is exceeded. A sensor 

will be considered to be recovered if it compares favorably for the same 

plurality of cycles. The status of the validity flag and the count of 

miscompares determines the state of the sensor. This part of the algorithm is 

represented as a finite-state machine. 

·Since there are two mechanisms for monitoring failures, these must be 

shown to provide consistent determinations under all circumstances~ It is 

conceivable, with time skew of the computer programs and momentary jitter in 

the flag signal, that the programs might disagree on the mode of failure, but 

this condition must not persist or allow differences in the selected signals. 
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Mathematical Description 

The information to be preserved from one cycle to another is the state of 

the counting mechanism and the sensor status (i.e., failed or OK). A 

finite-state machine representation of this will look like figure A-I. The 

total number of states is 2 Max + 1. Starting from state 1, the machine moves 

right one state every time sensor A is considered "bad." A transition to the 

left occurs every time sensor A is considered "good." In case of indecision, 

there is no transition. These states can also be represented by the values of 

integer variable count-A in the range Max to 1. When the value of count-A 

reaches zero, sensor A is considered in a failed state. The sensor is not 

considered recovered until count A reaches Max. The counting up mechanism is 

exactly the reverse of the counting down. 

In addition to the above, there are other transitions based on the value 

of the validity flag only. All the states of this finite-state machine 

transition to state "limbo" whenever sensor A validity flag (Afl) is false. 

The only exit from limbo is to the start-up state (state 1) when Afl is 

"true." Notice that whenever Afl becomes "false," it essentially resets the 

finite-state machine. It is important to note that conditions Afl, Abad, 

Agood, and Anutral should be mutually exclusive. Based on this finite-state 

machine description, sensor A is called in a failed state if it is in anyone 

of the following states: ALimbo, AstateMax+l, AstateMax+2, ••• , Astate2Max. A 

boolean "Afail" is generated to denote this condition. It is true if the 

finite-state machine for sensor A is in anyone of the above states. It is 

false otherwise. Booleans Bfail and Cfail are generated in a similar manner. 

Note that if Afl-false, it will always force Afail-true. There are similar, 

independent finite-state machines for sensor B and sensor C. 

The objective is to derive boolean expressions for conditions Abad, Agood, 

and Anutral. These expressions should contain as variable only the inputs and 

the current (unadvanced) states of the finite-state machines for the other two 

sensors. First, let us list the inputs and define some intermediate variables: 

a - real 

b - real 

c - real 

- value of sensor A 

- value of sensor B 

- value of sensor C 
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START 

AFl 

ASTATE 1 ASTATE 2 ASTATE MAX 

AFl 

ASTATE 2MAX • • • 

ANUTRAL 

ANUTRAL + ABAD 

AFAIL ~ (AUMBO ) + (ASTATE MAX+l) + (ASTATE MAX+2) +. • • • + (ASTATE 2 MAX) 

Figure A-i. - Finite-state machine for sensor A. 



Afl - boolean - validity flag of sensor A 

Bfl - boolean - validity flag of sensor B 

eEl - boolean - validity flag of sensor C 

A3 boolean - True: ASS (a-b) < Toleranoe 

AC boolean - True: ABS(a-o) < Tolerance 

BC boolean - True: ASS (b-c) < Tolerance 

A truth table is given in table A-I. The expressions for Abad, Agood, and 

Anutral are directly obtained from this table. 

Abad: Boolean; should be true when Afl-true and there is 

sufficient reason to believe that sensor A is bad. 

Abad = Afl {Bfl • Cfl • AC • Cfailp + Bfl • Cfl • AB • 

Bfailp + Bfl • Cfl • AB • AC • (BC + BC • 

Bfailp • Cfailp)} 

Agood: Boolean; true whenever there is sufficient reason 

to believe that sensor A is good and Afl-true. 

Agood = Afl {Bfl· Cfl + Bfl • AC + Cfl • AB + 

Bfl • Cfl • (AS • BC + AC • BC + AB • BC • AC)} 

Anutral: Boolean; true whenever there is insufficient 

reason for either Agood-true or Abad-true. 

Anutral = Afl • Agood • Bgood 

Afailp: Value of Afail at the end of previous cycle. 

Bfailp: Value of Bfail at the end of previous cycle. 

Similar expressions can be obtained for Bgood, Bbad, and Bnutral; and 

Cgood, Cbad, and Cnutral. This completes the finite-state machine 

descriptions. Note that if the three finite-state machines are advanced 

simultaneously, there is no need to define Afailp, Bfailp, and Cfailp. This 

is standard practice in hardware implementations of finite-state machines. 

There are two outputs: 

Sensor-type-fails. - Boolean; true when there is sufficient reason to 

believe that all the three sensors have failed, or it cannot be known which 

sensor is good. 

sensor-type-fail - Afail Bfail Cfai1 
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TABLE A-I. - TRUTH TABLE FOR AGOOD, ABAD, AND ANUTRAL 

Inputs: Afl, Bfl, Cfl, AB, BC, AC, Bfailp, and Cfailp 

I. Afl-true 

Bfl Cfl AB BC AC Agood Abad 

0 0 0 0 0 1 0 

0 0 0 0 1 1 0 

0 0 0 1 0 1 0 

0 0 0 1 1 1 0 

0 0 1 0 0 1 0 

0 0 1 0 1 1 0 

0 0 1 1 0 1 0 

0 0 1 1 1 1 0 

0 1 0 0 0 0 Cfailp 

0 1 0 0 1 1 0 

0 1 0 1 0 0 Cfailp 

0 1 0 1 1 1 0 

0 1 1 0 0 0 Cfailp 

0 1 1 0 1 1 0 

0 1 1 1 0 0 Cfailp 

0 1 1 1 1 1 0 

Cfailp ~ value of Cfail at end of previous cycle 

Bfailp ~ value of Bfail at end of previous cycle 

Anutral 

0 

0 

0 

0 

0 

0 

0 

0 

Cfailp 

0 

Cfail 

0 

Cfail 

0 

Cfail 

0 



TABLE A-l. - Concluded 

Sfl Cfl AS SC AC 

1 0 0 0 0 

1 0 0 0 1 

1 0 0 1 0 

1 0 0 1 1 

1 0 1 0 0 

1 0 1 0 1 

1 0 1 1 0 

1 0 1 1 1 

1 1 0 0 0 

1 1 0 0 1 

1 1 0 1 0 

1 1 0 1 1 

1 1 1 0 0 

1 1 1 0 1 

1 1 1 1 0 

1 1 1 1 1 

N = Bfail • Cfail 

II. Afl-false 

Agood = Abad = Anutral = false 

regardless of other inputs 

Agood 

0 

0 

0 

0 

1 

1 

1 

1 

0 

1 

0 

0 

1 

1 

0 

1 

Abad Anutral 

Sfailp Bfailp 

Bfailp Bfailp 

Bfailp Bfailp 

Sfailp Bfailp 

0 0 

0 0 

0 0 

0 0 

-N N 

0 0 

1 0 

0 1 

0 0 

0 0 

0 1 

0 0 
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Selected-value. - Real: denotes the selected signal value for this cycle. 

The following variables are used as inputs: 

Afail, Bfail, Cfail, AB, BC, AC, a, b, c, past-value 

Table A-2 gives the selected-value for all possible combinations of the 

input variables. It can be easily verified that the eight boolean conditions 

are indeed mutually exclusive and that they account for all possible (64) 

combinations of the six input booleans., 

Hardware-Software Split 

There are various options available here, as listed below: 

(a) The entire algorithm can be implemented in hardware. This will be a 

very straightforward but tedious design. 

(b) Part of the algorithm can be implemented in hardware, such as 

evaluating the booleans AB, BC, AC, or the finite-state machines. 

(c) The entire algorithm can be implemented in software. 

For the purpose of an example, the third approach is used here. The 

algorithm steps are: 

(1) Evaluate any intermediate variables. 

(2) Process data for sensor A (i.e., advance finite-state machine) • 

(3) Process data for sensor B. 

(4) Process data for sensor C. 

(5) Evaluate outputs. 

The next step in developing software for this function would be to prepare 

the HIPO charts from the finite-state machine description. 

Verification 

A walk-through of the algorithm can be used to show that, as a single 

computer program, it is technically correct. The compare and select functions 

are not complicated so their implementations can be tested for all 

combinations of boolean inputs and a reasonable representation of the 

combinations of real inputs. 
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TABLE A-2. - GENERATING OUTPUT VARIABLES. 

Condition selected-Value 

l. Afail· · Bfail · Cfail · AB . BC . AC = true median (a, b, c) 

- -
2. Bfail · Cfail • (Afail • BC + Afail · AB • BC · AC) = true b + c 

2 

- -
Afail Cfail + Bfail 3. · · (Bfail · AC · AB · BC · AC) = true a + C ---

2 

-
4. Mail · Bfail · (Cfail · AB + Cfail · AB · BC • AC) = true a + b ---

2 
--- -- --- -- -

5. Afail • (Bfail • Cfail + Bfail · Cfail • AB · BC · AC) = true a 

--- -
6. Bfail · (Afail • Cfail + Afail • Cfail • AB • BC • AC) = true b 

--- --- -- -7. Cfail · (Afail · Bfail + Afail · Bfail · AB · BC • AC) = true c 

- - -
8. Afail · Bfail · Cfail + Afail . Bfail . Cfail . AB • BC • AC + 

--- -Afail • Bfail • Cfail · BC + Afail . Bfail • Cfail • AC + 
-- --- -
Afail · Bfail • Cfail · AB past-value 



ANALYSIS OF A THREE-CHANNEL SYNCHRONIZATION MECHANISM 

One approach to frame synchronization is to, use dedicated hardware, 

external to the computers, to provide signals to simultaneously release the 

computers from the halt instruction in each copy of the software. These 

schemes require very careful failure modes and effects analysis to show that 

no single failure in this external hardware or in the computers results in 

total system failure. 

The Configuration 

The configuration for synchronization is shown in figure A-2. Each block 

of hardware communicates with the two other blocks and its respective 

computer. In addition, there is a flip-flop which is set by the local 

computer program when its execution leaves the initialization phase. This 

flip-flop may be read by the other computers. The corresponding boolean 

variables are called the right_up_and_ready, local_up_and_ready, and left_up 

and_ready to distinguish them from the ready signals available from the 

hardware logic shown in figure A-3. 

After the hardware is reset, the real-time counter counts for 25 msec and 

sets the ready flip-flop. If the counting continues through the overcount 

period, the overcount flip-flop is set. The hardware produces the halt 

release signal from the following two terms, which are combined at the final 

or-gate. For two or three computers, 

halt_release = «left_overcount AND local-overcount) OR right_ready) 

AND «right_overcount AND local_overcount) OR left_ready) 

AND local_ready 

But to provide for the case in which two computers fail, we need the term 

halt release = «NOT left_overcount OR 

NOT local_overcount) AND NOT right_ready) 

AND «NOT right_overcount OR 

NOT Local_overcount) AND NOT Left_ready) 

AND local overcount 

The hardware is implemented so that the power-down or broken wire case appears 

as ready = true and overcount = true to the other channels. 
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REAL- TIME 

CLOCK 

LOCAL SYNCH 
HARDHARE 

LOCAL 
COMPUTER 

EXTERN/l,L 
LOCAL up-AND
READY FLIP-FLOP 

Figure A-2. - Configuration for synchronization. 
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CLOCK 

OVERCOUNT FROM 
LEFT HARDWARE 

.---____ S-I OVER-
o 

OVER-COUNT 
DETECTOR 

REAL- TIME 
COUNTER 

R COUNT 
FF 

I--f_S-i READY 
FF 

R ~_---' 

o 

RESET LEFT 
OVERCOUNT FF 

LEFT 
R VER-

READY SIGNAL FROM 
RIGHT HARDWARE 

S COUNT 0 
1-_--1 FF 1----/ 

LOCAL OVERCOUNT 

LOCAL READY -SIGNAL 
RIGHT 

)----1 OVER

RESET SYNCHRONIZATION HARDWARE 
COUNT 

FF 

OVERCOUNT FROM RESET RIGHT 
RIGHT HARDWARE OVERCOUNT FF 

READY SIGNAL FROM 
LEFT HARDWARE 

Figure A-3. - Hardware logic for synchronization. 

HALT 
RELEASE 



Initial synchronization 

The process of initially synchronizing with a computer that is already 

running in the frame is illustrated in figure A-4. If the right or left 

computers are already running, they have passed the instruction in the initial 

leg of the program that sets the up_and_ready flip-flop. The local computer 

detects that this flip-flop is set and waits in the starting leg until the 

running computer passes the halt and resets the ready flip-flop in the 

synchronizing hardware. This is detected in the wait loop and the local 

computer is released. The time required for the program to run from the ready 

reset to the beginning of the loop is balanced to maintain the synchronization. 

Analysis of Frame Synchronization 

The auxiliary hardware has three states that are defined by the ready and 

ovecount flip-flops. These are: 

(1) NOT ready AND NOT overcount (the program is in the 25 ~sec main 

program loop) 

(2) Ready AND NOT overcount (the clock has timed past 25 ~seci normally 

the program is at halt, waiting for the other ready's. 

START 

HALT 

LOCAL HARDWARE READ 
SET BY THE CLOCK 

LOCAL HARDWARE 
READY RESET BY TH 
PROGRAM 

BEGIN LOOP 

WAIT FOR LEFT OR 
RIGHT HARDWARE 
READY TO BE RESET 

LOCAL UP AND READY SET 
BOTH IN THE SOFTWARE AND 
IN THE HARDWARE 

MAIN BODY 
OF PROGRAM 

Figure A-4. - Initial synchronization. 
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(3) Ready AND overcount (the clock has counted past the overcount period 

and has set the overcount flip-flop.) 

The parallel operation of the computer and the auxiliary hardware is 

illustrated by the Petri net diagram in figure A-S. It represents the 

operation of the local computer with the right computer; the left computer is 

not turned on. Places PI to P3 with transitions Tl to T3 represent 

the operation of the local clock. Places P4 and Ps with transitions T3 

and T4 are the states of overcount flip-flop. Places P6 and P7 with 

transitions TS and T6 are the states of the ready flip-flop. Transition 

T6 represents the halt-release logic of 

halt-release = local-ready AND (right-ready OR 

local-overcount) 

. The local computer is at halt in place PlO but is running and crosses the 

reset command in the software at transition TIl. 

Three events govern the operation of the computer: 

(1) Halt release is issued, ready and overcount flip-flops are reset, 

clock is reset 

(2) Clock sets ready flip-flop 

(3) Clock sets overcount flip-flop 

Thus, there are trivial relations between the events and the states. These 

are shown in table A-3 and represent the 27 states of the three computers. 

This table merely confirms the consistency of the operation and defines the 

states in which a release command is output. If only computers A and Bare 

operating, C reports that it is in the state ready AND overcount. This limits 

the operation of the system to the states and transitions shown in table A-4. 

With only one computer operating, there are only the three remaining states, 

illustrated in table A-S. 

The release-enable output listed in the last column of the tables may be 

represented by 

release a enable = [ a(l) AND NOT [b(O) OR 

c(O)]] OR [a(2) AND 

NOT [(b(O) AND c(l» OR 

( b ( 1 ) AND c ( 0) ) ] ] 

This can be verified to be equivalent to the boolean logic of the hardware 

list;.d-previously. 

144 

i 



OVERCOUNT 
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PERIOD 
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Figure A-5. - Petri net for local computer. 
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TABLE A-3. - ALL THREE COMPUTER GUIDES 

~ .. .. ... 
'tl C 'tl C 'tl c: 

State C1> :J C1> :J C1> ::l 

'" 0 '" 0 '" 0 
to >. u to >. u to >. u C1>'tl 

NOT Ready l. Ready 2. Ready C1> 'tl ... C1> 'tl ... C1> 'tl ... '" OJ .... to C1> .... to C1> .... .. \I) .. .... 
\I) \I) > CII II! > \I) \I) > \1)..0 

NOT Overcount e>: e>: 0 a:: e>: 0 e>: a: 0 ...... 
\I) c: 

..: ..: ..: III III ttl tJ tJ tJ ",ru 
Overcount 

a ABC - 5 - - 4 - - J -
1 ABC 12 - 17 13 - 16 14 - 15 A B C 

2 ABC 9 - - 10 - - 11 - - AB C 

3 A B C - 13 - - 12 - a - 6 

4 A C B - 14 - a - 7 - lZ -
5 B C A a - 8 - .14 - - lJ -
6 A B C - 23 - - 21 - a - - C 

7 A C B - 25 - 0 - - - ZZ - B 

8 B C A 0 - - - 26 - - 24 - A 

9 A B C - 18 - 6 - - 7 - - B C 

10 B A C 6 - - - 19 - 8 - - A C 

11 C A B 7 - - 8 - - - za - AB 

12 A B C - 1 - 3 - 22 4 - Zl. 

13 B A C 3 - 24 - 1 - 13 - ZJ 

14 C A B 4 - 26 5 - 25 - 1 -
15 A B C 21 - 19 23 - 18 14 - - ABC 

16 A C B 22 - 20 13 - - 25 - HI ABC 

17 B C A 12 - - 24 - 20 26 - U AB C 

18 A B C 9 - 2 23 - - 25 - - AB C 

19 B A C 21 - - 10 - 2 26 - - ABC 

20 C A B 22 - - 24 - - 11 - Z ABC 

21 A B C - 15 - 6 - 9 4 - -
22 A C B - 16 - 3 - - 7 - g 

23 B A C 6 - 10 - 15 - 5 - -
24 B C A 3 - - - 17 - 8 - La 

25 C A B 7 - 11 5 - - - 16 -
26 C B A 4 - - 8 - 11 - 17 -
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TABLE A-4. - COMPUTERS A AND B OPERATING 

.... .... '-' 
'0 C '0 C '0 c 

Stat'? " " CJ " CJ " Ul 0 til 0 Ul 0 

'" :>. u '" :>. u '" :>. u OJ '0 

~OT Ready l. Ready 2. Ready CJ '0 ... <II '0 ... <II 'tl ... til CJ .... 
'" <II .... '" <II .... '" <II '" .... <II CJ > <II <II > <II <II > <11.0 

!lOT Overcount a: a: 0 a: a: 0 a: a: 0 .... '" CJ C 
<t <t <t al al al U U U a: ~ 

Overcount 

0 

1 

2 ABC 9 - - 10 - - 11 - - A 8 C 

3 

4 

5 

6 ,\ 9 C - 23 - - 21 - 0 - - C 

7 

8 

9 A B C - 18 - 6 - - 7 - - B C 

10 8 A C 6 - - - 19 - 8 - - A C 

11 

12 

13 

14 

15 A B C 21 - 19 23 - 18 14 - - ABC 

16 

17 

18 A 8 C 9 - 2 23 - - 25 - - ABC 

19 8 A C 21 - - 10 - 2 26 - - ABC 

20 

21 A B C - 15 - 6 - 9 4 - -
22 

23 8 A C 6 - 10 - 15 - 5 - -
24 

25 

26 
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TABLE A-5. - COMPUTER A OPERATING 

~ '"' '"' '"' 
State '0 <: '0 <: '0 <: ., 

" <:I " " :J 

'" 0 '" c " 0 
NOT Ready l. Ready 2. Ready .. ,., 

~ .. ,., 
~ '" >- ;; :; "'J ., '0 ., 'g ~ -g " " .... .. ., .... <:I " "' .... 

NOT Over<:ount <:I " > ., '" > '" <:I > c: ..c 
a: c: 0 a: c: 0 c: a: 0 ..... '" 

<:I <: 
Overcount .,; .,; <: OJ ::J ::J '-J '-J U ",:.J 

0 

1 

2 ABC 9 - - 10 - - 11 - - ABC 

) 

4 

5 

6 

7 

H 

4 II B C - 18 - 6 - - 7 - - B C 

10 
I 

11 

12 

13 

14 

15 

16 

17 

18 A B C 9 - 2 23 - - 25 - - ABC 

19 

20 

21 

22 

23 

24 

25 

26 
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The Results 

By this analysis, we have verified the consistency of the synchronization 

scheme for all states and all events and have verified the release logic 

equations. The next step is to study the failure effects of the auxiliary 

hardware to show that there are no single failures which will cause a 

persistent unsynchronized condition or will cause the system to fail by some 

other response. These results are not reported here. 

CROSS-CHANNEL VOTING AND TESTING OF INTERCHANNEL COMMUNICATIONS 

This study describes the interchannel communication typical of a 

frame-synchronized triplex system (ref. Al). The configuration is shown in 

figure A-6. Each computer communicates to the others through a single 

transmitter, which sends the same signals to receivers at each of the other 

computers. Thus, the sending computer-transmitter cannot originate two 

different signals. Asymmetry in the communications can be caused only by 

errors in the receivers or the receiving computer. This approach eliminates 

the concerns raised in reference A2, which is carried needlessly into SIFT 

(ref. A3 to A6). According to reference 2, we need four computers to detect 

one error if the originating computer sends differing signals to the others. 

This is not the case for the configuration shown in figure A-6. 

The Analysis 

The approach is by brute force. Assume that anyone of the 12 boxes in 

figure A-6 produces errors and then follow these errors through two levels of 

data exchange. Only one unit is assumed faulty. Errors are detected by a sum 

check on the data transmissions and by comparisons of computer outputs from 

some ,active computation. The error syndromes after the initial data exchange 

are listed in table A-6~ the final syndromes resulting from the exchange of 

the initial observations are shown in table A-7. After the first exchange the 

syndromes allow a computer to detect errors in the foreign computers or the 

communications channels, but cannot distinguish between errors in the 

computers, transmitters, or receivers. After the second round of data 
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Figure A-6. - Communication among synchronized channels. 

interchange, the syndromes distinguish receiver errors and 

computer-transmitter errors; the local computer, if okay, can determine that 

its transmitter is causing errors. 

In the second round of communications, a computer will receive a word that 

indicates an error in the left or right path, or its own transmitter. The . 
transmission over an erroneous path is indicated by an X in table A-7. 

The algorithm is summarized in table A-B. There is a jump in the frame of 

reference from the initial observation to the final analysis in table A-6; if 

the right channel decides that its left channel is in error, then the local 

channel will interpret this decision to mean that it is in error. 

150 



I-' 
Ul 
I-' 

.:: 

.~ 

<Y 
0 

t- a-
zn.: 
UJ '" 0-'" , 

I CA 

2 TA 

3 RAU 
1------

4 RCA 

5 Cfl 

6 TS 

7 R(B 

U RAB 

9 Cr 

10 
Te 

II R~ _ 

12 RUt: 

'" 0 « -t- o « t-
O> 

~ u 

on ~ '" 0 

"" u 
UJ 
I 
u 

:>.c 
=> 
on 

X 

OK 

OK 

FAll 

OK 

OK 

OK 

OK 

X 

fAil 

OK 

OK 

<r 
« « « 

0 
t- t- t- t-

« « « 
'" '" u « 
z u « '" 0 

.z: z z 
"" ~ 0 0 
u on on 
UJ - - ;; :z: oc oc 
u « ~ ~ n. "'- :E :E :E 
=> 0 a a 
'" u u u 

X X X X 

OK OK OK OK 

fAil X OK X 

OK X X OK 

X FAil OK FAIL 

All X OK X 

OK OK OK OK 

OK ·OK OK OK 

OK fill FAll OK 

OK X X OK 

OK OK OK OK 

OK OK OK OK 

TABLE A-6. - INITIAL FAULT OBSERVATIONS 

'" '" u u 
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PROBABl Y SOMETHING ERROR IN A TO B ERRUR IN A IU C 
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OR IN COMPUTER B OK OK OK OK OK NO PROBLEM OK OK OK OK OK NO PHOIII lM 

ERROR IN C TO A 
OR COMPUTER C OK OK OK OK OK NO PROBLEM OK OK OK OK OK NO Pklltil lM 

ERROR IN B TO A PROBABLY SOMETHING ERRUR IN U III C 
OR COMPUTER B X X X X X WRONG X OK FAIL FAll OK OR IN COMl'liTl R U 

ERROR IN B TO A ERRIJR IN B III l. 
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APPENDIX B 

SAHPLE IRON BIRD TEST PLAN 

INTRODUCTION 

A sample test plan to validate the advanced digital fly-by-wire (ADFBW) in 

the S-3A iron bird is given in this appendix. The sample plan is used to 

illustrate the typical test procedures and to identify those tasks for which 

automation is essential for validating flight-critical digital systems and 

beneficial in reducing test time and cost. To illustrate the potential test 

time savings of the automated iron bird, test times are estimated for both the 

manual approach and the automated approach based on the same number of test 

cases to be conducted. 

TEST DESCRIPTION AND TEST TIME ESTIMATION 

The iron bird testing will be conducted in two phases. The two phases are 

defined as follows: 

(1) Phase A. Phase A will test the ADFBW system's hardware and software 

open-loop performance. Aircraft dynamics will not be included. The purposes 

of this test phase are to: 

o Demonstrate compatibility among ADFBW systems and with 

aircraft interfacing systems 

o Verify static gains between stick/pedal and control surfaces 

o Verify system software 

(2). Phase B. The tests conducted during this phase will evaluate the 

ADFBW closed-loop performance. Closed-loop testing will be accomplished with 

simulated aircraft dynamics. Testing with pilot-in-the-loop is possible by 

driving flight instruments with simulated aircraft response variables. The 

purposes of this test phase are to: 

(1) Validate the analytically predicted stability of the augmentation 

mode 
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(2) Validate the fault-tolerance performance of the system 

(3) Eliminate infant-mortality type failures by an accelerated life 

test procedure 

(4) Evaluate handling qualities for normal and degraded modes 

operation by pilots 

Phase A--Open-Loop Tests 

Three tasks are identified in this phase: system interface test, 

static gain test, and software validation. 

System interface test. - This test will be performed to verify that 

all subsystems are interfaced properly. The test procedure will include 

setting electrical and hydraulic power supplies at various loading levels 

and permissible limits to verify that the ADFBW system's performance wiil 

not result in undesirable or unsatisfactory operation. Because of the 

high degree of manual interpretation on the operational status of the 

system and the small number of test cases involved, a manual approach to 

carry out the test procedures will be adequate. The total test time to 

complete this task is estimated to be 80 hours. 

Static gain test. - The static gain tests are performed to verify and 

evaluate the following: 

(1) End-to-end gains--the degree of surface output per pound of 

control stick/pedal input 

(2) Nonlinear effects such as hysteresis, deadband, and saturation 

(3) Gain scheduling 

All control axes will be evaluated. The procedure will include applying 

step inputs at control stick-pedal to evaluate end-to-end gains, applying 

function generator at different amplitudes to evaluate nonlinear effects, and 

setting airspeed at different levels for evaluation of gain scheduling. 

A total of 100 test cases are estimated. The test times are estimated at 

50 hours for manual operation and 16 hours for automated operation. 

Software validation. - Redundancy management and control modes switching 

logic functions which are modeled by the finite-state machine can be 

validated in the iron bird by inserting hardware events into the software 

156 



structure to verify that all state transitions and outputs of all states are 

correct. For software that performs data transformation functions (e.g., 

control law and filter computation) which are not modeled by the finite-state 

machine, the software can be validated by frequency response and open-loop 

static gain tests in the iron bird. Since the volume of test cases for this 

task is quite high, automation is essential. The number of test cases and 

test times are estimated as summarized in table B-1. 

Phase B--Closed-Loop Tests 

Four tasks are identified in this phase: stability test, fault tolerance 

test, accelerated life test, and pilot-in-the-loop test. 

Stability tests. - The stability performance of the augmentation mode as 

predicted by analyses will be validated in this test. Actual hardware such 

as sensors, electronics, and actuators will be included on the iron bird to 

eliminate error included in the analytical predictions owing to 

nonlinearities and other math modeling problems associated with these 

components. The typical test procedures will include the following: 

TABLE B-1. - SOFTWARE VALIDATION TEST TIMES ESTIMATION 

_. 

Estimated Estimated Test Time 
Software No. of 
Function Test Cases Automated Manual Method 

Control mode 500 4 hours 125 hours Finite-state machine 
logic 

Redundancy 2000 16 hours 500 hours Finite-state machine 
management 

Control laws 300 8 hours 15 hours Frequency response 
and static gain 

Total 28 hours 640 hours 
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(1) Time response. - Apply steps and doublets into the control stick/ 

pedal to observe short period and phugoid modes of the closed-loop system 

(2) Frequency response. - Evaluate phase and gain margins by 

applying a sine wave into the open-loop system 

(3) Closed-loop system damping. - Apply a sine wave at a frequency 

equal to the closed-loop phugoid and short period frequencies to observe 

system damping. 

The number of test cases is based on the combination of flight conditions and 

number of frequency points, which are estimated to be on the order of 300 

cases. Total test times estimated for this task are 60 hours for automated 

testing and 120 hours for manual testing. 

Fault tolerance test. - The fault tolerance test is conducted by inserting 

multiple hardware faults into the system. Test cases will be designed based 

on the fault-tree of the system. The purpose of this test is to verify the 

fault-tree topology of the system which is used to predict the system's 

reliability. The ADFBW system's fault detection, reconfiguration, and 

annunciation features will be demonstrated. The ability of the system to 

operate under the fault conditions with no adverse transients will also be 

demonstrated. 

Because of the complexity of the fault-tree structure and the importance 

of this test to validate the ultra-reliability requirement, a large number of 

fault combinations will be evaluated. A total of 20 000 fault combinations is 

estimated. Assuming 30 seconds per test case using automation, the total test 

time will be on the order of 170 hours. If automation is not available, the 

total test time will be on the order of 5000 hours. 

Accelerated life test. - The purposes of the accelerated life test are to: 

(1) Validate system performance 

(2) Perform system fatigue tests 

·(3) Monitor component reliability 

(4) Identify and eliminate design and implementation errors which 

are major contributors of system unreliability 
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All maneuver profiles, together with combinations of aircraft 

conditions and environments, will be evaluated. To compress the total 

t~st time, extreme environmental stressors \~ill be applied to various 

sUbsystems to induce actual failures. All test cases will be repeated 

~nd cycled to induce fatigue type failures. A high degree of automation, 

such as the use of a robotic system to operate the aircraft in the iron 

bird, is required for this task. 

A total of 200 test cases is estimated. These test cases will be 

repeated and cycled until a high degree of confidence is obtained that 

the system is free of design and implementation errors. The total test 

time for this task is estimated to be on the order of 1000 hours. 

Pilot-in-the-loop test. - Normal and failure modes operation of the 

system will be used to demonstrate the handling qualities of airplanes 

with the ADFBW system and the augmentation mode engaged. The output data 

from each test will include pilot ratings and comments on the workload 

required to obtain satisfactory aircraft performance for the normal and 

degraded modes. The clarity and adequacy of fault annunciation will also 

be evaluated. 

The total test time estimated for this task is 160 hours. No 

automation is required for this task. 

SUMMARY 

The total iron bird test times to validate the ADFBW system are 

summarized in table B-2. It can be shown that automation will offer 

substantial savings in test times. Using the recommended automated test 

plan, the total test time to validate the ADFBW system is estimated to be 

1548 hours. The equivalent test time to perform the total test program 

manually is estimated to be 7100 hours. 
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TABLE B-2. - TEST TIMES SUMMARY 

Estimated Test Time 
Test Task Manual Automated (hours) 

Manual Automated 

Phase A - Open loop 

0 System interface X 80 80 

0 Static gain X 100 50 

0 Software validation X 640 28 

Phase B - Closed loop 

0 Stability test X 120 60 

0 Fault tolerance test X 5000 170 

0 Accelerated life test X 1000 1000 

0 Pilot-in-the-loop test X 160 160 

7100 1548 
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