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SUMMARY

Values for the heat of formation and the thermodynamic functions of CyH have
previously been based on data acquired in 1959 and have been considered uncertain.
More recently published data are reviewed and analyzed and are shown to provide a
reasonably certain basis for values of both the heat of formation (129 kcal/mol) and
the thermodynamic functions of C,He 1In addition, the heats of formation of C,H and
C4H are derived and are calculated to be 139 and 166 kcal/mol.

The procedure for computing thermodynamic data from partition functions is
reviewed. Working expressions for approximate partition functions, free-energy func-
tion, and heat capacity for a linear polyatomic species are also presented.

INTRODUCTION

Entry into the atmospheres of the outer planets is accompanied by intense radia-~
tive heating of the entry probe. To some degree, this thermal radiation is absorbed
by the cooler gases being evolved from the ablative heat shield. Calculation of this
radiant heat transfer requires knowledge of both the composition and the absorption
properties of the ablated gases. 'In particular, the calculation of the equilibrium
composition of such gases requires that the heat of formation and the thermodynamic
functions of enthalpy (H® - Hg)/T and free energy (G° - Hg)/T of the constituent
gases be known.

This report is specifically concerned with the carbon-rich species C,H, C3H, and
CyH and their thermochemical properties. It should be pointed out that these proper-
ties, especially the heats of formation, strongly affect the composition of the gas
mixtures; in fact, to assume the absence of any one species is to assign it an
extremely high positive heat of formation, Furthermore, the overall radiant heat
transfer is dependent upon this composition, which eventually enters into the weight
requirements of the shield itself.

HEATS OF FORMATION
General Theory
Bond dissociation energy D, and subsequently the heat of formation AH%O of a
particular species (free radical or ion) are often obtained by the determination of
appearance potentials (AP) (or threshold energies) of the ion or radical formed by
either a photon or electron impact procedure in a known process or processes, Typi-

cal examples of these determinations are as follows:

1. Heat of formation of R; via electron impact:

- + -
- + +
e + R1 R2 > R1 R 2e AE

+
2 AP(R1)

e + R, > R: + 2e AE

IP(R1)



The net reaction is
R,-R, > + R = -
1R, R1 AE = DO(R1 R2)

with

It

+
DO(R1—R2) AP(R1) - IP(R1)

o o o
AHfo(R1) + AHfo(Rz) - AHfo(R1—R2)

Note that we also require AHO (R.) and AHO (R,-R_.) to be known.
fo 2 fo 1 2

2. Heat of formation of R, via photon impact:

hv + R1-R2 > R, + R AE

1 5 DO(R1—R2) = hv

+ -
' - > = '
hv' + R1 R2 R1 + R2 + e AE hv

The net reaction is

+ -
R1 > R1 + e AE = IP(R1) = hv' - hyv
with
hv' - hv = A2 (RT) - AHS (R.)
fo 1 fo 1
In this reaction, AH?O(R:) should be known.

Ethynyl Radical C,H

Although the existence of c2H has been reported by several laboratories, its
heat of formation has remained uncertain (refs. 1 to 5). After reviewing the litera-
ture, Tsang et al. (ref. 6) adopted a value of 116 kcal/mol; a value of 114 kcal/mol
is listed in the JANAF tables (ref. 7). From 1971 to the present, a series of exper-
iments all lead to values of the heat of formation AH? of CyH in the range 124
to 129 kcal/mol. (An average of the reported values is 127 + 3 kcal/mol.) ,(These
experiments include the following: the determination of the equilibrium constants
for the reaction of graphite at high temperatures with hydrogen, methane, and acety-
lene in an integral furnace mass spectrometer (Wyatt and Stafford, ref. 8); electron-



impact studies on CH3C=CH in a sector field mass spectrometer (Sharma and Franklin,
ref. 9); photon-impact studies on cyanoacetylene, CZHCN (Okabe and Dibeler, ref., 10);
and photodissociation ionization of C2H2 using the supersonic molecular-beam method
(Ono and Ng, ref. 11). It would appear the uncertainty in the heat of formation of
C H is no longer warranted. Discussions and summaries of these experiments follow.

Experiment of Wyatt and Stafford.- Intensities were measured with a furnace
mass spectrometer for H', CT¥, C2+, C2H+, and C2H2+ at various temperatures using
hydrogen, acetylene, or methane as inlet gases. The sensitivity factor used to
convert ion intensity to pressure was chosen to minimize the difference between cal-
culated and experimental pressures of both C and C3. To help confirm equilib-
rium, the heat of formation of acetylene was calculated from the intensity of Bt and
C2H2+. For various runs the values found for C,H, were within #3 kcal/mol of
the accepted value of 54 kcal/mol., In addition, there was no observed dependence of
the heat of formation of C,H on the inlet gas nor on the reaction chosen from
2C(s) + H(g) ~» C2H(g), C, + CyH, > 2C2H, or 2C(s) + CyH, > 2C,H. Analysis of the
pressure data using the third law method for the various equilibria produces a value
of AH (C H) = 129 + 3 kcal/mol. (An example of a representative calculation is
given 1n appendix A.,) This value, essentially a directly determined one as opposed
to the remaining indirect determinations described below, is recommended for use in
all applications.

Experiment of Sharma and Franklin.- In a sector field mass spectrometer the
appearance potential for the onset of CH3 from methylacetylene HC,CH; was measured,
that is, CH3C—CH + e” > CH3 + C2H + 2e~, from which the heat of formation of CoH was
calculated., It should be noted that this method tends to give low rather than high
values of heat of formation. For the reaction studied the appearance potential
observed was 346 kcal. With the heats of formation of CHg and CH4C=CH at 260 and
44,3 kcal/mol (ref. 12), the heat of formation of CoH at 300 K is calculated to be
130 kcal/mol.

Photon-impact experiments of Okabe and Dibeler.- The basis for these experiments
is that by the absorption of light in the vacuum ultraviolet, some polyatomic mole-
cules undergo dissociation to produce fluorescing excited states, and the measurement
of threshold energies of incident photons required to produce the excited species
provides information on bond dissociation energies and, subsequently, on heats of
formation. 1In this experiment, the bond dlssoc1atlon energy of cyanoacetylene
D (C2H -CN) and the appearance potentlal of c,H' from C,HCN make it possible to derive
the heat of formation of C,H as o(CoH) =127 £ 1 kcal/mol. (See appendix B,) It
should be pointed out that the derlvatlon in essence requires the ionization energy
of C2H »> C H+ + e~ and the threshold energy for the process

C2H2 + hv > C2H + H+e .

Photon-impact/supersonic molecular-beam experiment of Ono and Ng.~ A source of
uncertainty in the photon-impact determination of the heat of formation of CoH lies
in the determination of the threshold enerqgy (or appearance potential) for the photo-
dissociation process HC=CH + hvy » C "+ H + e, which is used to determine the heat
of formation of C2H+. This result coupled with an independent determination of the
ionization energy of C,H produces a value of the heat of formation of C,H. The
authors state that the best estimate of ionization energy of C2H is 11,51 eV (from
ref, 13). The latest photon-impact value for the appearance potential of C2H+ from
C,H, is 17.36 eV (from ref. 14), which leads to a value of the heat of formation of
CoH equal to 137 kcal/mol when coupled with the ionization energy of C,H of 11,51 ev,




This experiment seeks to repeat the photon-impact determination of the appearance
potential of C2H+ from C,Hy because the previously measured value of 17.36 eV is
probably too high by 0.50 eV due to hot-band effects in the photoionization energy
curves for C2H+. The use of the supersonic molecular-beam method reduces the rota-
tional and vibrational temperatures of C,H, and thereby eliminates these effects.

The remeasured photoionization enerqgy curve for C2H yields a threshold energy (or
appearance potential) of 16.79 eV, which produces a value of 124 kcal/mol for the
heat of formation of C,H. 1In appendix C we summarize and compare the results of both
sets of experiments.

The C3H Molecule

Our objective in this and the following section is the estimation of the heats
of formation of the low-molecular-weight, carbon-rich fragments C,H and C,H. The
estimates are made by the method of Cowperthwaite and Bauer (ref. 15). (See appen-
dix D.) This empirical procedure produces an estimate by (1) assigning to each
species a formal electronic configuration; (2) selecting a path for dissociation
which, when followed, generates the species under consideration in going from one
molecule of known structure to another; and (3) estimating the bond dissociation
energies from known simple dissociations corrected for nonlocalized electron interac-
tions. Thus, experimental values which link two states are divided into unit steps
on the basis of empirically assigned parameters. For example, C3H3 + C3Hy + H
and C,H, - C_H + H. Thus, the first estimated bond dissociation enerqgy DO(C3H2-H)
together with the known heats of formation of C3Hy and H give AH° (C H ), and the
second estimated bond dissociation energy DO(C3H—H) together w1th the heat of for-
mation of C3H, determined in step 1 determines the heat of formation of C3H. The
following illustrates this procedure:

Step 1: C3H3 > 03H2 + H

that is,

o
D-2)-9)

H+H

Thus, we have ruptured an ethylenic C-H bond (Do = 104 kcal/mol) and produced a sta-
bilization energy vy as a result of the interaction of three pn electrons on three
centers, that is,

DO(C3H2-H) » 104 - y = 104 - 23.1 = B0.9 kcal/mol



Thus,

(o] (o] (o]
DO(C3H2-H) = AHfo(C3H2) + AHfO(H) - AHfo(C3H3)
O O (o]
80.9 = AH__(C,H,) + AH_ (H) - AH_ (C H,)
= AHC (C.H.) + 51.6 - 77.3
T fo'T3 72 * ‘
O
AHfo(C3H2) = 106.6 kcal/mol

Step 2: C3H2 > C3H + H

that is,

Ua Oﬁ Op
7 C}_@ D

Thus, we have a ruptured acetylenic C-H bond followed by formation of a pu-pn ethyl-
enic bond B coupled with loss of the stabilization energy <y resulting from the
interaction of three pn electrons on three centers. This results in

DO(C3H-H) a DO(C2H—H) -B+y= DO(C2H—H) - 65 + 23.1

We note at this point the dependence of AH%O(C3H) on AH%O(CZH). It has entered
into our calculation of the bond dissociation energy of acetylene, that is,

C2H2 > C2H + H

and

o (o] (o}
Do(CZH—H) AHfO(CZH) + AHfO(H) - AHfo(cznz)

129 + 51,6 - 54.3 = 126.3 kcal/mol



Thus,

D_(C4H-H) = 126.3 + 23.1 - 65 = 84.4 kcal/mol
O (o} [0}
84.4 = AHfO(C3H) + AHfo(H) - AHfo(C3H2)
AH?O(C3H) = 84.4 + 106.6 - 51.6 = 139.4 kcal/mol

The CyH Molecule
The estimated heat of formation for C,H is obtained by considering the bond
dissociation energy for diacetylene

H-C=C-C=C-H » H-C=C-C=C: + H

Thus, we have ruptured an acetylenic C-H bond (D, = 126.3 kcal/mol), corrected for
extra delocalization energy g¢/2, and produced stabilization enerqgy <y by the inter-
action of three pn electrons on three centers, that is,

D,(HC,~H) = 126.3 + g/2 - y = 126.3 + 3.3 - 23.1 = 106.5 kcal/mol
Thus,
Do (HC,-H) = MHY (C,H) + AH?O(H) - Mg (CH,)
106.5 = Ango(c4n) + 51.6 = 111.3
AH?O(C4H) = 166.2 kcal/mol

THERMODYNAMIC FUNCTIONS
The basic equations to be used in computing the thermodynamic functions for a
linear polyatomic molecule are given below in working form. Their derivation may be
found in any standard text on statistical thermodynamics and spectroscopy (e.g.,
ref., 16).

The translation and rotation contribution is the following:

-(¢° - H))/T = 2.98747 1n M + 4.967912 1n T - 1.987165 1ln (Bo/T)

+ 0.953038(B/T) + 0.0457074(B/T)? - 8.005805



(B° - H2)/T = 6.955077 - 0.953038(B/T) - 0.0914148(B/T)

cp® = 6.955077 + 0.0914148(B/T)>
Note that the rotational constant B = B_ - (a /2) when spectroscopic constants are
available, or B = 2.,799076 x 10'3 /I when calculated from a molecular model (where

I is in gram-centimeters squared).

The vibration contribution (per normal mode) is the following:

-1.987165 In(1 - e )

0

(o] O
-(6" - H)/T

-u

(x° - Hg)/T = 1.,987165ue /(1 - e V)

cp® = 1.987165u%e™/(1 - e~1)2

where u = 1.438790(u)e - 2wéxe)/T when spectroscopic constants are available, or

u = 1,438790w/T where w 1is the fundamental wave number of a harmonic oscillator.

Finally, the electronic contribution is as follows:

-(6° - K)/T = 1.987165 1In ? a,; exp(-w, )

O
(8° - ®))/T = 1.987165 ? w9y expl-w,) § g.; exp(-w;)

2
. f W 94 exp(-wi) f wg s exp(-mi)
Cp° = 1.987165 -

f Ioi exp( wi) f Iei exp wi)

where ; = 1.438790T_./T with T,; in cm =1 and where = (28 + 1) for

Yei
I-states, 2(2S + 1) fo% II-states, and so forth.

SPECTROSCOPIC DATA AND THERMODYNAMIC FUNCTIONS

Calculation of thermodynamic functions requires as input electronic excitation
energies, rotational constants, and normal-mode vibrational frequencies, and where
possible, parameters describing the coupling of rotational and vibrational motion are
included (refs. 16 and 17). Such data are available for stable species but less so
for unstable or transient molecules. In such cases data are generally derived from
analogous compounds. The present JANAF table entry for C2H is derived from the data
for HCN (ref. 18) (compare H-C=Ce with H-C=Ne«), More recent spectroscopic data on
the normal-mode frequencies of C,H have been obtained by Jacox (ref. 19) and are
incorporated in the following table:



Normal-mode frequencies, cm'1,
for degeneracies of - Rotational
Species constant, B, cm_
1 2 1
H—C—N* 2089 712 3312
H-C-C 1920 640 3220 1.475
H-c-ct 1848 3612 1.460

*
From reference 18.
From reference 19.

This table presents the normal-mode frequencies of both HCN and C,H as derived by
Plooster and Reed (ref. 18) and as determined by Jacox (ref. 19). 1Included also are
the rotational constants. The table below presents the ground and lowest lying first
excited electronic states and their degeneracies,

State Teir cm™ ! Jei
25t 0 2
a2n 23500 4

3prom reference 20.

Tables I(a) and I(b) present the calculated thermodynamic functions for C,H.
The values in table I(b) are recommended since they are computed using directly
observed data on the higher normal-mode frequencies of C2H, whereas the JANAF table
values make use of what must be termed hypothetical normal-mode frequencies which
have been derived from the corresponding HCN frequencies,

Since no data are available for either C3H or C,H, tables of their thermodynamic
functions must perforce be empirical. Tables II, III, and IV present the thermody-
namic functions recommended by Duff and Bauer (ref. 21) for C2H, C3H, and C4H. These
authors expressed the thermodynamic functions in the following polynomial form:

(o]

H - H
Lo =a + bT + cT2 + dT3 + eT4

RT
and

o (o]
G - H

T c 2 d 3 e 4

BT —-a(1-lnT)-bT-2T-3T-4T-k

The parameters a to e were evaluated for the enthalpy function with the' method of
least squares. The magnitude of k 1is computed for each temperature from the known
values of the free energy. The value of k was the average k over a set of
equally spaced temperature points. On the average, the polynomial fits reproduce
tabulated values of the enthalpy function to 0.1 percent and free-energy function to

8



0.01 percent, This was done for a total of 57 C/H species. A further refinement and
expansion of the data set has been made by G. S. Bahn for about 180 C/H and C/H/O

species; the set is tabulated in reference 22. This work is viewed as an improvement
over that of Duff and Bauer and is recommended as the data of choice for C3H and C4H.

APPLICATION OF THE PRESENT WORK

The present study has been applied to the analysis of heat shield mass loss for
a Jupiter probe (ref. 23). The gases which are emitted from the heat shield by abla-
tion absorb and thereby block a portion of the shock layer radiation. Calculations
of the net radiant flux reaching the probe surface, therefore, require the determina-
tion of the density distribution of the various component species of the ablation
layer.

The higher values of the heats of formation of C,H, C3H, and C,H as compared
with the values formerly used cause a decrease in the predicted number density of
these species within the ablation layer. Conservation of elemental mass thus forces
a corresponding increase in the density of other carbon-containing species, the most
important of which are diatomic (C,) and triatomic (C;) carbon. These species pos-
sess absorption bands which are instrumental in blocking shock layer radiation. 1In
addition, there is a marked change in the chemical makeup of the ablation species, a
result of which is that the sublimation enthalpy for the phenolic-carbon ablator is
increased. Thus, less mass is lost for a given heat input. This is particularly
important for the Jupiter probe, for which the mass loss during entry represents
about one-fourth the total probe mass. The calculation reported in reference 23 with
the revised values of the relevant thermodynamic variables produced a reduction of
9 percent in the calculated mass loss rate over that of the "standard model as of
August 1981.,"

CONCLUDING REMARKS

In this study we have examined the recent literature for the purpose of review-
ing and updating the thermodynamic data for C,H, with primary focus on the standard
heat of formation. The recent literature indeed provides a basis for an accurate and
reasonably certain value of this quantity. We also updated the heats of formation of
both C3H and C4,H., The set of values for the standard heats of formation of CoH, C3H,
and C4H are 129, 139, and 166 kcal/mol. It may be noted that previous values for
these species were 112, 124, and 150 kcal/mol.

We have also presented a review and summary of the procedure for computing ther-
modynamic data from partition functions. Working expressions applicable to a linear
polyatomic species are displayed.

Finally, the results of this study were applied to an analysis of heat shield
mass loss for a Jupiter probe. The revised values of the relevant thermodynamic
variables produced a 9-percent reduction in the calculation of mass loss rate com-
pared with the previous values used.

Langley Research Center

National Aeronautics and Space Administration
Hampton, VA 23665

August 24, 1982



APPENDIX A

REPRESENTATIVE CALCULATION OF HEAT OF FORMATION OF C2H FROM
EQUILIBRIUM PRESSURE DATA

A representative calculation of heat of formation for C,H from equilibrium pres-
sure data is given below. The reaction involved is 2C(s) + H(g) -+ C2H(g) at
T = 2233 K. The equilibrium pressures used are 0.12 x 10" ° atm (1 atm = 101.3 kPa)
for C2H and 570 x 10 ° atm for H. Other values necessary for the calculations are
given in the following table:

o
. (¢ 298)/T from °
Species AHf 298" kcal/mol
JANAF? Duff and Bauer® '
C2H -62.106 -63.157
H -33.090 ~33.091 52.10
c(s) -5.964 -6.001 0
a
Reference 7.
Reference 21.
For the reaction 2C(s) + H = C2H,
[} o o
BHygq Ly = “RT 1n K - t[a(c” - HZ%)/T]rx
o)
= AH f 298(C2H) - AHf,298(H) - AHf 298(c(s))

With values from reference 7, AHf 298(C2H) 128 kcal/mol, and with values from ref-
erence 21, AHf 298(C H) = 130 kcal/mol.

10



APPENDIX B

PHOTON-IMPACT DETERMINATION OF HEAT OF FORMATION OF C2H

Determination of the heat of formation of C,H with the photon-impact method
involves the use of several energy values, The threshold energy for formation of
exgited state for C,HCN + hv > CyoH + CN* is 9.41 eV, The excitation enerqgy for
CN -+ CN is =-3.20 eV (ref. 24). Therefore, the derived bond dissociation energy
for C,HHCN > C,H + CN  is 6.21 eV, If the threshold energy for
C,HCN + hv » C2H+ + CN + e~ 1is 18.19 eV, then the derived threshold ionization of
CoH > C ' + e is 18.19 - 6.21 = 11.98 eV. Threshold energy for
CoHy + hv > c2H+ + H + e~ from reference 14 is 17.36 eV; thus, derived threshold
enerqgy for C2H2 + CoH + H is 5.38 eV. Therefore, the heat of formation of C,oH
derived with the photon-impact method is

o
MH o(CZH)

o o
f 5.38 + AHfo(czHZ) - AHfo(H)

5.50 eV = 127 kcal/mol

il

11



APPENDIX C

HEATS OF FORMATION FROM PHOTON~IMPACT EXPERIMENTS

Consider the processes for the appearance potential of C2H from
CyHy + hv > CzH + H + e~ (designated AP(C2H )). and for the ionization of CoH from
CoH > CZH + e~ (designated IE(C,H)). These two processes together give

[e] + o]
AHfo(CZH) AP(CZH ) - IE(CZH) + AH

) _ o)
fo(csz) AHfo(H)

AP(C2H+) - IE(C2H) + 0.12 eV
From the experiment of Okabe and Dibeler (ref. 10),
AP(C,HT) = 17.36 eV
and
IE(C,H) = 11,98 eV
Therefore,
o

AHfo(CZH)

i

17.36 - 11,98 + 0.12 = 5,50 eV

i

127 kcal/mol
From the experiment of Ono and Ng (ref. 11),
AP(C,HY) = 16.79 eV
and
IE(C2H) = 11,51 ev
resulting in
o

AH (C2H)

16.79 - 11,51 + 0.12 = 5,40 eV
fo

124 kcal/mol

12



APPENDIX D

METHOD OF COWPERTHWAITE AND BAUER

This empirical procedure from reference 15 produces an estimate of experimen-
tally inaccessible bond dissociation energies by the method of generating a set of
enerqgy parameters which are used to describe the energy changes accompanying bond
dissociation. Consider, for example, the following processes (with measured bond
dissociation energies):

C,H >CH_ + H Do(CZH -H) 98 kcal/mol

5

and

-H)

]

C.H +CH +H D_(C,H 36.2 kcal/mol

25 24 4

Proceeding according to Cowperthwaite and Bauer, we assign an electronic structure to
each species, that is,

: C C : —— : C (c)"H H
- e — - e - e a— +
) " W O\H

and

H\ O oH H\~(; (; oH

He = C_C' — C-—C' + H

W O\H H/Q Q\H

which we describe energetically as rupture of a saturated C-H bond (98 kcal/mol)

stabilized by formation of a pm ethylenic pi bond «. Thus, the observed DO(C2H4-H)
is given by

D,(C,oHy-H) = 36.2 kcal = 98 - qa
and o = 61.8 kcal/mol is the stabilization energy resulting from formation of an
ethylenic pi bond.

Consider the following:

C.H > CH + H DO(C2H3-H) = 104 kcal/mol

13



APPENDIX D

and
C2H3 > C2H2 + H DO(C2H2-H) = 39 kcal/mol

the electronic structures of which are

H‘sé éo'H He : ;LD
— e ( omem H + H
Ha”z}—_—_(3~\~H Ha”b <:7C

and

Rupture of CoHy~H is accompanied by formation of an acetylenic pi bond 8, that is,

39 = 104 - B

So B = 65 kcal/mol

is the stabilization energy accompanying formation of an acety-
lenic pi bond.

Consider the following:

H2c=CHCH3 > H2C=CH~CH2 + H DO(H2C=CHCH2—H) = 78 kcal/mol

The electronic structure is

H‘s 'H H\~O——U:H

/C—C' "H —_— /C—C‘\O + H
H C mm H Ce=H
0___0 I Q-_Q\\O\H
H

14



APPENDIX D

Rupture of a saturated C-H bond on the methyl radical (98 kcal/mol) corrected for
extra delocalization energy a followed by stabilization energy vy resulting from
interaction of three pn electrons on three centers gives

78 =98 + a - y

Since a = 3.1 kcal/mol (see below), vy = 23.1 kcal/mol.

The parameters for extra delocalization energy a and g are obtained as dif-
ferences in hydrogenation energies as follows:

For a,
H2 + H2C=CH2 > H3C-CH3 AE = -31.04 kcal/mol
and
H. + H.C= ~CH, - = =27, 1/mol
2 2C“-CHCH3 > H3C CH2 CH3 AE 27.95 kcal/mo
a = =27.,95 - (-31.04) = 3.1 kcal/mol
For g,
H-C=C-C=C-H + 4H2 > H3C—CH2—CH2—CH3 AE = =135 kcal/mol
and
2HC=CH + 4H_ -» 2CH_-CH AE = -141.6 kcal/mol

2 3 3

g = =135 - (-141.6) = 6.6 kcal/mol

15
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TABLE II.- EMPIRICAL THERMODYNAMIC FUNCTIONS FOR C2H

FLit

ML
17

-
1=

,_
Al
e e e S T O e e e L MY I 1 3

i +4a Gy AEICE+A 5
i +0 5. 14HE+Hl 5
e +i . SE A+ 5
12 +6 S.T4D1E+E] A,
12 +0 S.F143E+A1 5
i1 +§ [ Pt el N el ] &
i +@ i &
+1 =
+6 )
+
+

AR B eyl

RN

a1 63

mIntnin oo iR inEntnint
A B B B AU on B 000 T i o o B Y o B N

AR WA

oo

0y r

™

S Rt BN s s s o s

G M o
A =
(B &

S e}

Tt Pt Pt 2 v e b b b+ e 03 00 =] 0Ty L0 B [
= = . x 2 2 = = .

Dl
Ty T

idy

1.4472E+B1
. 45ZEE+A]

o D Pt T [ T

RIS RN ESEN BRSNS B

SVEE+AL &
H E+n1 &

+ +
i
——

Fa B on B e B cx  ion x|
— s

et

-3 ] -

iy Oy O 0y
: -

1 D
[ SN O%
-

ot T o U IR B B o B B B o B o I B 3o IS

WA
r.
I
B

mmmmmmmm
I

o0

r

W
o W
—

T

E+ia1
L+H1

mim
+ +

T

= md = g i m g g md g g md g md = ]

BB iy R oA

OO0 = G S PO U0 O B T 00 DT o D

+
P I
nin -+

l—-Hn—-n—-n—nr—-o—h)—-(—-p—HHHHHHHHHHHHHHHHHHHHHHH
-E--J-‘AJ-'-Fzl'_ﬂl'_l'l"_"ll'.ﬂ"_l'!"_i'li'_ﬂ"_ﬂ".ﬂl'.ﬂl'.ﬂLﬂllﬂl'.ﬂtﬂ".ﬂ-&-&-lk&-&ik-&#ﬁ .:...::. s

10eE+E]
4E0E+H1]
ATE+E1
414cE+81
Z.4472E+B1
2. 48R4E+a1
2.5 E+@1
E+il
E+il
E+a1
E+dil
E+i1
E+@1
E+i1
SEE+E]

%

o

A%

15}
1

ERSUE s I I s )
"

A%

IS

S SE T T PR > Ty T D T T AR A AR A I I R i
mmmmmMmMmmmmMmMmmmmmmmmmmmarmmmmnmmmmmmmmmmmmmmmmm
%]

R

Sy o O o T T T T Ty T O S 0 o

o I R o T o TR B o B

1

o o oL B o B o o I o B By I s )

-3y T O T O
- .

-4

T T T T

1 O T 8 0 0 i 0 T Ty g ) e 0 O

(RN CEI s S B xS ) s 1)

it iatututufntntolutnlnlatnints
B e e U e

[ o B B 3w I e |
o b b b b b i s b ek bb bbb ek b & i 2

LR RPN A

N R oy o e e e e e e e VIR N B A RN ]

0o
=1
!

B R T A A i S I A I i s T s i 2 S i A s s i i s o e s T s o s o o S i S S

NS R R S R R 0 B R 8, [N S N N O A R N N LN

[ sy
I B it B Bt

I
+ +
=
=

facx]
—



TABLE III.- EMPIRICAL THERMODYNAMIC FUNCTIONS FOR C3H
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TABLE IV.- EMPIRICAL THERMODYNAMIC FUNCTIONS FOR C4H
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