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SECTION I
INTRODUCTION

The flow development about a rotating disk immersed in a fluid has

been the subject of numerous investigations over the past 60 years.

In 1921 Theodore von Karman obtained the exact solution of the

steady state Navier-Stokes equations for an infinite disk rotating in a

fluid. Then, in 1934, W. G. Cochran2 was the first to carry out a

numerical integration of the solution obtained by von Karman and to show

the nature of the boundary layer profiles in the radial and circumfer-

ential directions (see Figure 1).

In 1947, Smith carried out an investigation on a flat rotating

disk by the use of a hot-wire probe. Radial traverses of the disk

exhibited an onset of periodic fluctuations (approximately 32 oscil-

lations per disk revolution) of the probe output at approximately the

same local Reynolds number, ̂ R~, regardless of rotational speed of the

disk. As the traverses were continued radially outward the fluctuations

suddenly became random, again at a local Reynolds number that did not

change with variations of the rotational velocity of the disk. The

disturbance wavefronts were calculated by Smith to be oriented at an

angle e of 14° with respect to the outward drawn radius (see Figure 2).

During early flight testing of airplanes with swept-back wings it

was visually observed that the point of transition from laminar to

turbulent flow on the wing was located much further forward than

anticipated. Owen and Randall, in their wind tunnel tests of swept-



back wings, attempted to explain the observed phenomenon. They

attributed the vortex formation they discovered In the region of

transition from laminar to turbulent flow to instabilities in the

laminar boundary layer and hypothesized that these instabilities had

been caused by the inflexional nature of the boundary layer profile in
i

the direction normal to the local free-stream velocity vector.

The rotation of a disk at a constant angular velocity in a fluid

initially at rest leads to the development of a radial velocity profile

which exhibits precisely such a point of inflexion. This similarity to

the velocity profile observed over swept-back wings and the availability

of the exact solution of the velocity profiles for use in stability

analysis along with the experimental simplicity in studying rotating

disk flow prompted further extensive experimental and theoretical

investigations.

Gregory et al. were the first to make visible the vortex pattern
o

responsible for the periodic fluctuations recorded by Smith. The

china-clay technique was employed to visualize the flow field and it

showed that the vortex pattern observed was stationary with respect to

the disk. The investigators were thus able to offer the following

explanation as to how the flow field developed: A laminar flow field is

observed up to a certain radius (this radius being a function of the

rotational velocity of the disk), further out on the disk the vortical

flow pattern appears and radially beyond these vortices the flow becomes

turbulent (the location again dependent on the rotational velocity of

the disk). A hot-wire probe was also utilized by the investigators to

obtain such pertinent flow parameters as e, X,. /R, and /R. The
* ro rt

Reynolds number at which the vortex system appeared was found to be



i/R = 430 while turbulence usually occured at ^R = 530. The angle
o t

e was found to be equal to 14° and 32-33 vortices were detected during

one revolution of the disk, both values being almost identical to those

attained by Smith.3

In 1966, tests were carried out by Faller and Kaylor utilizing

dyes in water as a means of visualizing the flow field* In this

investigation a circular water tank was brought to a constant rotational

velocity and spun long enough for the water and tank to essentially turn

as a rigid body. Then the rotational velocity of the tank was suddenly

increased to a new value causing the flow at the bottom of the tank to

behave essentially like rotational disk flow, once acceleration tran-

sients had died out. Chin and Litt8 in 1972 experimentally investigated

the behavior of fluid motion in the neighborhood of a rotating disk by

implanting electrochemical probes into a flat Lucite disk to determine

turbulence transition radii and the presence of surface vortices. These

cathodic point electrodes, in conjunction with anodes suspended below

the disk, yielded a different current fluctuation depending upon the

position of the probe in the flow field - laminar, transition, or

turbulent - and on the rotational velocity of the disk. The results

obtained by both investigations are summarized in Table 1 and compare

favorably with those calculated by Gregory et al. The two most recent
n

Investigations carried out were done by Kobayashi et al. and Malik et

al. Both groups of experimenters chose hot-wire anemometers to

investigate the flow field. The i^Rreported by both groups was much
^ o

lower ( / R = 295) than reported by any previous investigation, while
o

/R was generally In close agreement with earlier results. Both

investigations found a slow variation of e with SOT" and agreed that the

number of vortices present circumferentially increased with



Gregory et al. carried out a theoretical analysis of the observed

flow instability concurrent with their experimental work, but neglected

viscous effects and thus predicted 113-140 vortices around the circum-

ference of the disk instead of the observed 30-32 vortices. Brown, in

L . . - — SX*

a later study, took viscocity into account and found /R = 178, much

12 ̂less than that observed experimentally. Next, Tobak calculated the

vortex spacing and inclination angle e taking into account viscocity and

in the case of vortex inclination, obtained close agreement with experi-

1 O

mental results of Clarkson et al. while the vortex spacing was

comparable to that calculated by Gregory et al. The theortetical work
Q in

carried out by Kobayashi et al. and Malik et al. predicted a critical

Reynolds number / R o f 287 and 261, respectively, by taking into
o

account in the calculations coriolis forces and streamline curvature.

As can be seen from Table 1 this compared favorably with the

experimental results found by both investigators.

It is thus clear that considerable effort has gone into the

experimental and theoretical investigation of the described flow

phenomena during the past six decades. The major objective of the

present work is to explore any visible differences of the flow field

with wall curvature of the test body, including possible interaction

between Taylor—Gortler instabilities present along concave walls and the

Inflexional instabilities Investigated here.



SECTION II
EXPERIMENTAL INVESTIGATION

An experimental study was conducted with emphasis placed on making

visible and recording photographically the flow instabilities present

under three different rotating bodies: a flat disk, a concave parabo-

loid, and a convex paraboloid.

Rotating Disk and Paraboloid Apparatus

The bodies under investigation were mounted on a vertical shaft

which was driven by a drill motor through a 2:1 gearing belt. A

rheostat was utilized to vary the rotational velocity of the shaft.

The water used to visualize the flow pattern under investigation

was contained i n a 4 x 4 x l . 5 f t . plexiglass box and was kept at a

height of 11.5 in. during test runs. Test bodies were semi-immersed in

the water in such a way that only the bottom of each came in contact

with the water. This made it possible to observe the flow field by

looking downward through the body tested.

The camera used in recording the test runs was mounted on a heavy-

duty tripod and positioned as shown in Figure 3. To avoid having to

suspend the camera from the ceiling directly above the test body, a

front surface mirror was mounted in the position shown. Thus, photo-

graphing the test runs from ground level was possible.

Due to the high film speeds utilized in photographing the flow

field, three 1000 watt - 3200 °K quartz iodine lamps were used to

illuminate the test bodies while filming. The position of each lamp

relative to the bodies tested was chosen to minimize reflective glare.



Test Bodies

A total of three geometrically distinct bodies were constructed and

tested to gain insight into the variation of the flow field with wall

curvature.

The flat disk, shown in Figure 4, had a diameter of 24 in., was 0.5

in. thick, and made out of clear plexiglass. Radial lines at 15° inter-

vals and concentric circles spaced 1 in. apart were drawn onto the top

of the disk to facilitate data reduction from the motion picture film.

Results obtained from this disk were used for comparison with earlier

results obtained investigating this same disk in a different water

tank.13

Experimental work was carried out at the NASA Langley research

center on an 18-in. diameter, 5-in. deep metallic concave paraboloid.

NASA investigators were particularly interested in the development of

the flow field and vortex pattern along a surface with curvature such as

exists at wing-body junctures on airplanes. Since these tests were

conducted in air rather than water, the decision was made to conduct

test runs in the water tank utilizing an equally sized plexiglass test

body to compare results. For maximum cost effectiveness, six 1-in.

thick clear plexiglass plates were glued together and then machined to

the desired concave shape. The largest diameter lathe available for

making the concave paraboloid was too small to machine it to the same

size as the one tested at NASA Langley. It was thus decided that the

equation according to which the paraboloid was to be cut be modified to

keep it geometrically similar to the metallic paraboloid. The concave

paraboloid and the equation according to which it was machined is shown

in Figure 5. To aid in data reduction the flat surface of the test body



was marked by four thin strips of white tape placed 90° apart and marked

radially at 1 in. intervals on the tape. In addition, the side of the

disk was painted black to cut down on undesirable reflections.

The convex paraboloid was also machined after cementing together

six plexiglass plates. In a manner similar to the concave paraboloid,

the flat surface of this test body was also marked with tape. From

Figure 6 it can be seen that the convex paraboloid was machined in such

a way as to be a male-female match for the concave paraboloid.

Test Procedures

The investigation was initiated by first testing the flat disk in

an aluminum particle-water mixture. By using a suitable wetting agent

it was possible to suspend 30 y diameter aluminum particles uniformly in

water at a ratio of 200:1 by weight. The resulting mixture gave excel-

lent indications of the areas of laminar, turbulent, and transitional

flow. The vortex pattern was visible the moment the disk was set in

motion. A Nova model 16-3 motion picture cammera, capable of framing

rates between 400 and 10,000 frames per second, in conjunction with a

Zoomar Zoomatar f2.8/90 lens with tube extension was used to film these

1 ̂initial test runs. A previous Investigation of this same disk had

been made using maximum framing rates of 300 frames per second* The

Nova camera used was thus able to increase four to five-fold the framing

rate while at the same time yielding results that could be compared to

data collected by Clarkson et al. 3 The film used in photographing the

test runs was Kodak 400 ASA 16 mm B/W positive reversal film. While it

delivered results suitable for data reduction, the lack of resolution of

the individual film frames prompted the decision to switch to Kodak 400

ASA 16 mm B/W negative film. This was also done in anticipation of
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having enlargements made from single frames of interest, thereby

possibly increasing the resolution over that achieved with the positive

reversal film.

The next body to be tested was the concave paraboloid. Unfortu-

nately, it was impossible to achieve any acceptable results using either

of the aforementioned films. Every test run carried out yielded a

completely underexposed film, regardless of the positioning of the three

floodlights. Since, up to this point in the investigation, framing

rates of 1400 to 1500 frames per second had been used, it was decided

that the framing rate be lowered to allow for correct exposure of the

concave paraboloid test runs. When this attempt again yielded under-

exposed film, a switch to a different camera and film was made.

Likewise, a different means of visualizing the flow field was resorted

to. The aluminum particle-water mixture was discarded and replaced by

tap water. A dye-injection nozzle was constructed which allowed sodium

fluorescein dye to be injected anywhere underneath the test body (see

Figure 3). A Locam model 51 16-mm intermittent pin-registering camera

with a Polaris f2 18-90 mm zoom lens and short tube extension was used

together with Kodakcolor 400 ASA 16 mm television news film to record

the rest of the investigation. The switch to color film was made due to

the enhanced contrast it offered between the clear water and the green

dye as compared to the black-and-white film.

Test runs utilizing the dye-injection apparatus were carried out as

follows: After the tank was filled with tap water and the turbulence

had settled, the sodium fluorescein dye was injected directly under the

concave paraboloid. By placing the injector nozzle at the correct

location the dye would follow a spiraling path along the underside of



the body and be convected outward by the radial velocity component into

the field of view (FOV) of the camera. If, concurrently, the rotational

velocity of the concave paraboloid was such that the vortex system was

present underneath the body in the FOV of the camera, these vortices

would trap and concentrate the dye to show the expected instability in

the flow field. Following each test run, the water tank was flushed out

and refilled with fresh tap water. This same visualization technique

was employed in testing the convex paraboloid.

Data Reduction

All relevant data necessary to calculate the results given in Table

1 were collected from the 16 mm film used to record the test runs.

Since both cameras employed in the investigation included internal

devices which generated indicator marks on the edge of the film strips,

framing rates were simply and accurately calculated by counting frames

between adjacent marks and multiplying this number by 120 for films

exposed with the Nova camera and 100 for the Locam camera.

The rotational velocity of the test bodies was calculated by count-

ing the number of frames elapsed for one revolution of the body and

dividing this number by the calculated film speed. The inverse of the

result yielded the rotational speed in revolutions per second.

The photographic results obtained during the test runs were used

primarily to acquire reliable data on e and a. A Kodak photo-data-

analyzer projector was utilized to freeze frames in which the vortex

pattern was clearly visible and e was then measured directly off the

screen by setting up tangents to the vortex and the circuraferentially

marked lines on the test bodies and measuring the angle between the two

lines. Likewise, a was found by measuring the circumferential distance
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between adjacent vortex lines. At least three readings of o and e were

taken at various locations on the film for each test run. The accuracy

of the readings for e were approximately +_0.5°•

Angle Correction on Paraboloids

When measured on either the concave or convex paraboloid, e was

actually foreshortened due to the curvature of the bodies. Calculations

for correcting e are given below and a comparison between measured and

corrected e can be found in Table 8.

e - Angle of inclination of vortex as measured off them

photographic data, (see Figure 7)

e - Actual angle of inclination of vortex with respect

to the disk, (see Figure 7)

The equation of the convex disk is given by

y - Ar2 . (1)

Differentiating,

thus

2Ar = tan a , and (2)dr

a = tan

From Figure 7,

-1 dy
I r

dr
r = r

o

(3)

tan ec = If > a

tan e = -r— , and (5)m dz

sin a = -j . (6)
ds
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Combining 3, 4, 5, and 6 yields

. tan e
e = tan" — , where a =• tan 2Ar . (7)c cos a o

Radial Distance Correction for Paraboloids

For the convex and concave paraboloids the local Reynolds number

/ R w a s corrected by calculating it using the arc length s rather than
o

r as shown in Figure 8. The calculation of sn knowing rn was done as

follows:

From Figure 8,

(dr)2 + (dy)2 = (ds)2 , (8)

ds = [(dr)2 + (dy)2]1/2 = [(dy/dr)2 + l]1/2dr , and (9)

s r 1/2
/ ° ds - / ° [(dy/dr)2 + l] ' dr . (10)

Since

y = Ar2 and -f- = 2Ar , then

S = ̂ ° t4A2r2 + l ] d r , and (11)

r f4A2r 2 + l , /

so = -S - § - + ̂  ln (2Aro + (4A2rQ
2 + l) ' ). (12)

Table 9 gives a comparison between a given r and its corresponding s «
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Experimental Results

A crossflow Reynolds number R was first defined by Owen and

Randall In an attempt to correlate their data. They reasoned that R

should be a function of the secondary flow component and the boundary

layer displacement thickness and defined a crossflow Reynolds number to

be
V 6.

Rc - -V1 • <13>

For the rotating bodies tested, the secondary flow component is the

radial velocity. Von Karman, in his solution of fluid flow near a flat

disk, showed that

Vc = 0.181 ro> and (14)

(15)

Substitution of 14 and 15 into 13 yields

1/2 r -,1/2
v n „„„ rzo>

L VJ
R = 0.230 — - - 0.230 — • 0.230v̂ ~ . (16)
C V 0) " ~

An alternate Reynolds number proposed by Owen and Randall was based,

not on the crossflow velocity, but on the tangential velocity component

Vt - roj . (17)

Substitution of 15 and 17 into 13 yields

ru)S f 2 1 V2

R - - - 1.271 I - 1.271/T . (18)

The spacing between vortices measured along the circumference of the

disk at a specified radius r is given by
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where N is the number of vortices. Spacing normal to the vortex is

given by

X = X. sin e = •— sin e . (20)
a <(> N

Nondimensionalizing X by dividing by 6. yields

1/2
« _ "a _ I w | 2irr sin e ^21j

r -i
£
v

L J
o 6. 1/2 v 1.271N

1 1.271(v/o)) 7

sin e y— (22)

1.271N r '

Finally, a non-dimensional wave number may be defined by

_J± /73^
Iw *• ;

for a two-dimensional disturbance propagating along a line normal to the

vortex axis. Data of previous experimental work as well as quantities

obtained in this experimental investigation are presented in Tables 1,

5, 6 and 7.



SECTION III
RESULTS AND DISCUSSION

The vortex pattern visible in Figures 9 and 10 are typical of the

vortices present under the flat disk. Both prints, taken with a 35 mm

Canon F-l camera, were not used for data reduction but presented since

they clearly show the sodium fluorescein dye evenly distributed in the

region under the disk where the flow is laminar. At r = 7.6 in. the

vortex pattern becomes visible and fully turbulent flow is attained at r

= 9.4 in. Figure 10 also illustrates how fluctuating the pattern can

be. On the left side of the print, the flow is fully turbulent at r =

8.5 inches while on the right the vortex pattern remains intact up to a

radius of r = 9.4 inches. Figures 9 and 10 show the vortex pattern made

visible by use of the dye in water technique, whereas, Figures 11 and 12

are enlargements made from 16 mm Kodak 400 ASA negative reversal film of

the flat disk used in conjunction with the aluminum particle-water

mixture. Note the two vortex filaments visible in the middle of Figure

11 and how they appear to move further apart as they move radially

inward.

From the data presented in Table 1 a noticeable variation in

Reynolds numbers for instability and transition is apparent. The reason

for this probably lies with the different test procedures utilized in

each investigation or external disturbances that influenced the test

results. It is interesting to note, though, that the values of / R a n d

. fi R r°
/R found by Gregory et al. and Chin and Litt are almost identical to

rt

14
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those found in this investigation even though three different test

methods were employed. Also, the difference between the results for the

1Tflat disk in this investigation and those gotten by Clarkson et al. in

an earlier test of the same disk should be noted. The reason for the

variation in Reynolds numbers between these two tests is most probably

due to the different-sized water tanks used in the investigations. The

1 *itest runs carried out by Clarkson et al. were done in a 10 ft. deep

vertical water tunnel with the model submerged to a depth of 1 ft. while

the present results were obtained in a 1 ft. deep water tank. The

possibility of re-circulating water influencing the results obtained in

this shallow water tank does exist since a circulating flow was usually

present in the tank when the disk was stopped after long test runs.

Therefore, a further investigation into the variation of test results

with water depth would be indicated. Likewise, the fact that the

current test runs on the flat disk were carried out using the aluminum

particle-water mixture as a means of visualizing the flow field rather

than the sodium fluorescein dye injection method used by Clarkson et

13al. may have influenced the results. In previous investigations of

flow instabilities on rotating disks, the value of e, the angle between

the normal to the vortex axis and the radius of the disk, has always

been a point of uncertainty. While, for instance, Clarkson et al.

reported measuring a value of 11°, Gregory et al. gave a figure of

14°. As can be seen from Table 2 it is apparent that for the flat

disk e varies with r for constant Reynolds number. Similar observations

Q

were made by Kobayashi et al. using a hot-wire probe investigative

method and lead to the conclusion that the behavior observed in e during

the testing of the flat disk was not influenced by the type of flow
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visualization technique employed. A similar behavior in e was not

detected on the paraboloid test bodies since sodium fluorescein dye

rather than the aluminum particle-water mixture had to be used, as

discussed earlier, to make visible the vortex pattern. Since, when

using the aluminum particle-water mixture, the pattern instantaneously

appeared at any radial position on the flat disk depending only on u>, it

was relatively easy to detect a variation of e with r . Making the

instability appear at various radii on the paraboloids proved to be

extremely difficult due to the complicated test procedure necessary to

cause the vortex pattern to appear in the field of view of the camera.

Thus, further investigation of the paraboloid test bodies, using the

aluminum particle-water mixture to visualize the flow field for

variation of e with r should be seriously considered by future

investigators.

Both Faller and Kaylor7 and Malik et al.10 reported finding an

instability mechanism different from the stationary disturbances inves-

tigated here. This flow phenomena, which was called Type II Instabili-

ties by Faller and Kaylor, first appeared at much lower Reynolds

numbers, R_ = 50 and had negative values for e. While this type of
C

instability was not detected during this investigation with any

regularity, it was photographed on a number of occasions. When it was

observed, it could be seen propagating outward and interfering destruc-

tively with the stationary vortex pattern under investigation. An

example of both patterns visible simultaneously under the flat disk can

be seen in Figure 13. The two distinct patterns visible in this picture

were observed during Test Run 3. The pattern at the bottom of the

figure was caused by the Type II instabilities first observed In



17

reference 7, while the one seen at the top of the photograph is the

instability also seen in Figures 9, 10, 11 and 12. While an / R w a s
o

not calculated for this type of instabillity because the r at which the

disturbance first appeared was always outside the field of view of the

camera, e did decrease with Reynolds number as reported by Faller and

Kaylor.

A similar type of instability was observed during the testing of

the convex paraboloid. Figures 14, 15 and 16 are enlargements made from

the 16 mm color film and show a progression of events as they occurred

during Test Run 3. Figure 14 shows the streaks of dye for laminar flow,

while Figure 15 indicates the onset of instability. The final figure

clearly illustrates the transitional phase to turbulent flow. The time

frame in which the pictures were taken was such that between Figures 14

and 16, 0.11 second elapsed, giving an indication of the speed with

which the transition from laminar to turbulent flow progressed. This

particular flow phenomena was only encountered once during the

investigation and while the measured e might indicate a Type II

instability, the /Rcalculated for this one particular test run was no

different than the /R 'a recorded for the expected instabilities on the

same test body. Thus the exact reason why the nature 'of the flow field

changed during this one particular test run remains unknown.

Ironically, this run yielded the best photographic results obtained for

the convex paraboloid in that it clearly showed the laminar flow regime

being influenced by an instability and causing it to become turbulent.



SECTION IV
CONCLUSION

The data collected for the three different test bodies lead to the

conclusion that the wall curvature of the convex and concave paraboloids

did not alter the observed flow field significantly from that observed

on the flat disk. The range of Reynolds numbers recorded for primary

instability and transition to turbulence were found to be comparable in

all three cases when the corrected values for the non-flat test bodies

were used. The angle e was found to be generally smaller on the

paraboloids than the flat disk and no predictable variation of c with

local Reynolds number, as observed on the flat test body, was detected

for either the concave or convex paraboloids for reasons discussed

earlier.

The range of Reynolds numbers for the onset of primary instability

and transition to turbulence calculated for the flat disk was also found

13to be smaller than earlier tests reported* The discrepancy is

probably due to the shallowness of the water tank or the different

visualization technique employed.

Finally, the appearance of Type II instabilities during two test

runs of the flat disk clearly showed these instabilities to exist up to

a Reynolds number at which the primary instabilities appeared and to

interfere destructively with these. The anomaly observed under the

convex paraboloid was probably not a Type II instability and reinforces

the belief that further investigation is necessary to establish fully

the flow field present under rotating disks and paraboloids.

18
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Table 2. Recorded Data for Flat Disk

Test Run

1
1
1

2
2
2

3

4

5

6

Test Run

1
1
1

2
2
2

p

15/59
16/63
15/59

14/55
14/55
15/59

7/19

11/28

3/ 8

3/ 8

Table 3.

Tl

12/35
12/35
12/35

12/35
12/35
12/38

£

182/.25
182/.25
182/.25

176/.25
176/.25
176/.25

70/.25

63/.2S

49/.2S

2S/.25

Recorded

£

78/.2S
78/.2S
78/.2S

47/.25
47/.2S
47/.2S

em

12.0
10.5
11.0

13.0
10.0
11.0

9.0

8.5

8.0

7.5

Data for

em

7
6
5

8
5
7

XA<t

2.41
2.81
3.50

2.70
2.80
2.80

3.10

3.30

4.20

6.25

Concave

x;
<(>

3.5
3.5
3.5

4.7
5.0
4.7

ro

10.0
10.0
10.1

10.0
10.0
9.9

7.1

7.0

6.0

4.3

Paraboloid

ro

6
6
6

4.7
4.7
4.2

r
t

11.0
10.8
11.0

11.0
11.1
11.0

8.3

8.2

6.9

5.2

r.t
_
_

-

5.7
6.0
5.8
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Table 4. Recorded Data for Convex Paraboloid

Test Run

1
1
1

2

3

4
4

5

6

n

13/38
13/38
13/38

12/35

11/35

12/35
13/38

12/36

13/38

5

99/.2S
99/.2S
99/.2S

96/.2S

109/.25

73/.2S
73/.2S

40/.25

53/.2S

em

7
6
7

6

-6

6
7

6

7

X<t.

3.8
4.6
4.6

4.4

-

4.2
4.2

5.3

5.0

ro

6.0
6.1
6.0

6.1

-

6.0
5.9

5.2

6.0

rt

7.0
7.5
7.3

7.4

7.3

6.8
6.8

6.2

6.9
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Table 5. Calculated Data for Flat Disk

Test Run

1
1
1

2
2
2

3

4

5

6

Rc

112
112
113

114
112
112

106

107

106

101

v\
486
486
490

494
493
488

462

465

462

438

V%T
534
524
534

543
550
543

540

544

532

530

m

12.0
10.5
11.0

13.0
10.0
11.0

9.0

8.5

8.0

7.0

a

.40

.47

.59

.45

.46

.46

.39

.40

.44

.49

X
• -.a

15.5
13.4
10.7

14.0
13.6
13.6

16.3

15.7

14.3

12.7
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Table 8. Variation of e with radius for a measured e of 10 Degrees

rQ (In.) em (Deg.) EC (Deg.)

1 10 10.00
2 10 10.27
3 10 10.71
4 10 11.29
5 ' 10 12.00
6 10 12.80
7 10 13.68
8 10 14.26

Table 9. Radius r versus Arc Length s

r (In.) s (In.)o o

0 0.0
1 1.0
2 2.03
3 3.08
4 4.20
5 5.38
6 6.64
7 7.98
8 9.43
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ii
V.

F - Boundary Layer profile in the radial
direction

E - Boundary Layer profile in the tangential
direction

Figure 1. Velocity Distribution near a Rotating Disk
(Source: Ref. 1)
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Figure 2. Schematic of Vortex Pattern
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Plexiglass tank Lamp

Camera

TOP
VIEW

Lamp

Dye Injector Lamp

Test
Body

Drill

Mirror Camera

K
Lamp

Water

Lamp
SIDE
VIEW

Reservoir

Figure 3. Experimental Apparatus
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d
t

24 in.
.5 in.

Figure 4. Flat Disk
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y = 4.444-(6.944:aO~2)r2

t = 5.5 in.

Figure 5. Concave Paraboloid
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y = 6.9444xlO~2r2

t = 5.75 in.

Figure 6. Convex Paraboloid
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Figure 7. Angle e Correction
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Figure 8. Variation of Arc Length s with
Radial Distance r
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Figure 9. Vortex Pattern as observed
under Rotating Flat Disk
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Figure 10. Variation of Transition to Turbulence
Radii on the Flat Disk
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Figure 11. Variation of Circumferential
Vortex Spacing with Radius
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Figure 12. Vortex Visualization by Aluminum
Powder-Water Mixture
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Figure 13. Simultaneous Occurrence of Type II
and Inflexional Instabilities
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Figure 14. Laminar Flow under Convex Paraboloid
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Figure 15. Transition of Flow Field to Turbulence
under the Convex Paraboloid
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Figure 16. Fully Developed Turbulent Flow
under the Convex Paraboloid
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