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A simple dynamic finite element algorithr for analyzing a propagating

ABSTRACT

mixed mode crack tip is presented. A double noding technique, which can be
easily incorporated into existing dynamic finite element codes, 1s used
together with a corrected I integral to extract modes I and II dynamic stress
intensity factors of a propagating crack. Tha utility of the procedure is
demonstrated by analyzing test problems involving a mode I central crack
propagating in a plate subjected to unfaxfal tension, a mixed mode I and II
stationary, slanted central crack in a plate subjected to unfaxfal impact
loading, and a mixed mode I and II extending, slanted single edge crack in a
plate subjected to umiaxfal tension.
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INTRODUCTION
Most of the recent numerical studies in dynamic fracture mechanics are

restricted to mode I crack propagation with the crack extending along the
1ine of symmetry. Crack extension under such condition can be modeled with
finite element method by simply releasing the crack tip node at the 1ine of
symmetry following a prescribed nodal force versus crack extension history.
Mode I dynamic stress intensity factor {n dynamic fracture analysis of
isotropic material is justified since the crack will ordinarily propagate in
the direction perpendicular to the maximum principal stress direction.
There are conditions, however, when the crack will deviate from its

self-similar crack extension path to curve [1] or to bifurcate [2] under

specific static or dynamic loadings. Such crack extension away from the line

of symmetry in a finite element mesh cannot be accomplished by the above-
mentioned simple nodal release mechanism. The double-noding [31 and the
nodal-grafting [4] techniques are two procedures which have been used to
model off-axis crack propagation.  While details of the former are not
available, the latter requires a higher order isoparametric element in the
dynamic Tinite element code. The double noding technique presented in this

paper was developed for use with an implicit dynamic finite element code

which utilizes a conventional isoparametric quadrilateral element.

THEORETICAL BACKGROUND
Double Noding Technique

Consider a slanted crack in a two dimensional space with a Tocal x-y
coordinate system oriented along the local crack tip region as shown in
Figecre 1. The dynamic equations of motion for the crack tip element with

nodal displacements of {q}, rodal velocities of {q)}, nodal accelerations of
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{q}, rodal forces of {F), stiffness of [K]1 and mass matrix of [M] are:

[K1{q} + [M){q} = {F} (1)

If the.ith and jth degrees of freedom fn the above displacements, velocities

and accelerations are constrained to be equal
9 = QJ' d‘l = ‘iJ' q = EJ ' (2)

through double noding, then define the relative displacement {q'} s

{q} = [T] {q7}, etc. (3)
“} = 11’ (4)
{F°} = [T]1 {F}
whereTmn=1whenm=n
=1whenm=1andm=j
= 0 all other m and n
and

q'isqi-qjuo when k = {
q'kaqk vhen k £ § | - (5)

Substituting Equations (3), (4) and (5) into Equation (1) ytelds
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= 1177
= (117(K14q} + (72T IMDE)

= (117 KICTMQ?) + (T1TEMICTIGE)Y  (e)

The equivalent stiffness and ~ass matrices in the above equivalent dynamic

equations of motion are

[k“1 = [T17[KILT] - (1 -

(M4 = [TT[MILT) (8)

Equations (3) through (8) constitutes the equivalent system for the slanted
crack with two and more degrevs »f freedom constrained by the double noded
current and future crack tip nodes. The equivalent nodal displacements are
determined by applying Newmark's beta method to the dynamic equations of mo-
tion. The nodal displacements at the double nodes are then determined by

Equation (3).

Nodal Force Release
Crack extensfon with a traction free crack surface requires elimination
of the nodal forces normal, F22 and F2r’ and tangential, FIL and Flr’ to the

crack surface as shown in Figure 1. The crack tip nodal force components

are released simultaneously in equal increments to model a linear translation

of the crack tip to its new crack tip node, (F,., F,,» Fpus le) = ‘Flr"riz'

FZr.'Fél)(l-‘% ).where bar denotes the forces at the double node prior to

crack extensfon, 4 {s the current crack tip location and d is the crack
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distance to its adjacent node. Detatls of this release piocedure as well as

its comparison with others are described in Reference (5].

: Integral

The corrected 3 fntegral was used to détermine the modes I and 11
dynamfc stress intensity factors, KI and Kyyo respectively; The 3 integral
as defined by Kishimoto et al [6] is

Fo | mmy - T gder e [ g qon (9

T A

where the indices refer to the local X and Xy courdinates shown in Figure 1,
W is the strain energy density, ny {s the surface normal to the integration

path Ti and P is the density.

By taking a symmetric integratfon path with respect to the crack
extensfon dfirection, as shown in Figure 1, the ) integral, which contains
both KI and KII’ can be decomposed into two path-independent integrals 51 and

~

JII as
J=J; + (10

where 31 and 311 are only functions of Ky and KiI‘ respectively. Detafled
formulations of 31 and 311 are descrit..d by Kishimoto et al. [6].
For a statfonary crack, Ishikawa et al [7] has shown that

A el 2
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JII = 8” KII N . ) -' . i (llb)
«here 3y * plane strain ’
K = SiT e
3-v 1 :
3 plane stress

and W and v are the shear modulus and Pofsson's ratio, respectivzly.

For a propagating crack, Atluri et al. [8,9] has shown that

F (a) :
~ I 2

-~ Fg@ o,

JII = zu KII {12b)
.. S0-89) sg) (145,)
where Fl(a) = [2s (]+SZ) -—2—5———(]+52)
2.2
-2(S,-5,). (1455) (12¢)
Y(1457) (1457)
. . 2(1 -s%) (15
2,2
145
-2(S.,-S,) (159)

N )(14s,) (12d)

i e T
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s2=1.- (%T)2 s2=1 - (5;)2 (120)
D = 45,5, - (1455)° | (12)

and a, C1 and C2 are the crack velocity, dilatational and distortional stress

wave velocities, respectively.

NUMERICAL PROCEDURE
The numerfcal procedure consists of inputting the above double noding

technique to an ir..7icit dynamic finite element code and releasing the crack

tip nodal force 1ine.:ly in accordance with a prescribed crack tip motion.
As shown by Equaticns (12), the associated dynamic stress intensity factors,

KI and KII' can he determined by numerically evaluating the 31 and 311

integrals along predetermined symmetric contours surrounding the {nstantane-

ous crack tip. Separation of the 3 integral of Equation (10) into the two

O

31 and 5i1 integrals {s accomplished by using the decomposition procedure
fnit1ally developed by Ishikawa et al. [7] for a static mixed mode crack and
which was later extended to a dynamically loaded mixed mode crack by Kishimo-
to et al. [6]. The procedure consists of first decomposing the dicplace-
ments, strains, stresses and body forces into symmetric and anti-symmetric
components after which Equatfon (9) is used to compute 31 and 311 integrals,
respectively. In the following, three problems which utilfze the above
mentioned double noding technique together with the 31 and 31i integral

technique of determining KI and KII are described. The examples involved
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steel plate under a plane strain state of stress with material properties of

10 \/a2, v = 0.286 and p = 2.45 x 10° Kg/u>.

H=2,94x 10
EXTENDING CENTRAL CRACK IN A PLATE SUBJECTED TO UNIAXIAL TENSION

The Broberg problem [10] of a central crack extending at constant
velocity in a unfaxial tensfon field has been used by many to verify their
dynamic finite element codes. This problem yields only a mode I dynamic
stress intensity factor, but 1t offers the only comparison between results
generated by other dynamic finite element codes. Figure 2 shows the finite
element break down of a half-plane as well as the seven integration paths
used 1n this analysis. The complete specimen geometry is shown 1ir the
legend of Figure 3. Variations in the numerically determined mode I dynamic
stress 1{intensity factors with the integration paths for five crack tip
locations of a/W = 0.2, 0.3, 0.4, 0.5 and C.6 and three crack velocities of
i/C2 =0, 0.2 and 0.6 are shown in Table 1, where a is the half crack length
and W 1s the half plate width. Maximum difference of 1 percent between the
KI computed for the various integration paths shows that the path
independency is satisfied for all practital purpose.

Figure 3 shows the changes in the static and the dynamic stress 'nten-
sity factors for two dynamic crack velocities. Also shown for comparison
purpose are the static results of Isida [11] and the two dynamic results of
Nishioka and Atluri [12,13]. The 13 percent lower KI at the shorter crack
lergth of a/¥W = 0.25 at & higher crack velocity of 3/02 = 0.6 1s due in part
to the coarser and conventional element used in this analysis. Otherwise,

good agreements between the varfous results are notd.

STATIONARY SLANTED CENTRAL CRACK IN A PLATE SUBJECTED TO UNIAXIAL IMPACT
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Mixed mode dynamic stress {ntensity factors in a statfonary slanted
central crack in a plate subjected to uniaxial impact loading of oi(t) was
first analyzed by Thau and Lu [14] using Wiener-Hopf technique and by
Kishimoto et al. [6] using finfte element analysis. This problom was also
analyzed in this paper {n order to compare the applicability of present
finite element algorithm with the above known results. Figure 4 shows the
finite element break down and the five integratfon paths used in this
analysis. Table 2 shows the variations in the normalized KI and KII at four
time intervals of the stationary crack. While the differsnces in KII for the
five 1nfegration paths 1s as high as 8 percent, the relatively small KII
values makes this difference insignificant. Figure 5 shows changes in tran-
sient KI and KII with time for the stationary cr2ck where RO' Rl’ R2 denoting
the first arrival times at the crack tip for incident wave from leading edge,
the reflected waves from upper/lower boundaries and the reflected wave from
the rear edge, respectively. While agreements between the three results for
the statfonary crack fs good at the inftial stage. the finite element results
differ towards the latter part of time interval of 14 v 20 s. Ffqually
puzzling is the large differences botween the static stress intensity factors
for the plate under static loading by these two finite element analyses.
Such discrepancy may result from different finite element mesn and geometry
(triangular versus quadrilateral) by Kishimoto et al. [6] and by the present
computation. Nevertheless, the general results of these two analyses are

very similar.

EXTENDING SLANTED SINGLE EDGE CRACK IN A PLATE SUBJECTED TO UNIAXIAL TENSION

As a further study in mixed mode dynamic crack, an extending slanted

[

et i IR RAI



,‘..p.,.w.,,«,ww wmm:m

10 ORIGINAL PAGE ]
OF POOR QUALITY
single edge crack in a plate subjected to unfaxial tension, wh1ch.1s the
dynamic counterpart of the stutic solutfon of Bowie [15], was aanyzad. This
crack was extended along its original crack direction at two crack velocities

ot a/C, = 0.2 and 0.6. Figure 6 shows the finite element breakdown as well

2
as the four integration paths used in this ahalysis. Table 3 shows the
var1ations in KI and KII at five crack tip locations for the static and two
propagating cracks. Unlike the previous case, 1ittle variation in KII are
noted, possibly due to the relatively larger values of KII in this problem.
Figure 7 shows the changes in KI and KII with crack extensiun. Also shown
for comparison fs the static results of Bowfe [15] which are within 4% of the
present analysis. While one would not expect self-similar crzix propagation

under this loading condition, it fs interesting to note the closeness of KI

and KII values at the higher crack velocity of i/C2 = 0.6.

CONCLUSIONS

A double noding technigue suitable for dynamic finite element analysis
of a crack extending under mixed mode loading condition {is presented. Mixed
mode dynamic stress intensity factors are computed by using the 3 integrals
as modified by Atluri et al. [8,9] for the extending crack.

The procedure was used to determine the dynamic stress intensity factors
of an extending central crack in a uniaxially loaded plate, the dynamic
stress {ntensity tactors of a statfonary slanted central crack in an unfaxi-
ally impacted plate and the static and dynamic stress intensity factors of an
extending slanted.‘sing1s edge crack in a uniaxially loaded plate. The
computed values by this procedure were generally in good agreement with known
re<ults. |

When modified by approprizte criteria of dynamic crack curving [1) and
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branching (2], this simple procedure can be used to determine the dynamic

fracture parameters associated with such problems.
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EXTENDING SLANTED SINGLE EDGE CRACK PROBLEM

K/07™W KII/o/EW
Path Path
a/c, a/v 1 2 3 4 1 2 3 4
C.2 0.4314 0.4437 0.2243 0.2220
0.3 0.6583 0.6638 0.6726 0.€691 0.3226 0.3212 0.3198 0.3270
0 0.4 1.0079 1 97111 1.0167 1.0245 0.4498 0.4485 0.4455 0.4405
0.5 1.5784 1.5829 1.5897 1.5972 0.6134 0.6102 0.6036 0.5865
0.6 2.5244 2.5451 2.5226 2.5223 0.8462 0.8230 0.7749 0.7488
0.3 0.4205 0.4252 0.4316 0.4254 0.2708 0.2708 0.2708 0.2749
0.4 0.5497 0.5:50 0.5563 0.5613 0.3122 0.3111 0.3099 0.3108
0.2 0.5 0.7549 ¢.°%90 0.7583 0.7627 0.4163 0.4168 0.4167 0.4142
0.6 0.8831 (.10 0.8%02 0.9001 0.5579 0.5387 0.5227 0.5263
0.3 0.1762 0.1863 0.1914 0.1774 0.2166 0.2178 0.2161 0.2252
0.6 0.4 0.2095 0.2240 0.2187 0.2190 0.2287 0.2322 0.2360 0.2326
0.5 0.2211 0.2347 0.2321 0.2351 0.2661 0.2648 0.2641 0.2639
0.6 0.2571 0.2793 0.2750 0.2759 0.2282 0.2834 0.2772 0.2783

a is the crack length.
W is the plate width.

o is the applied uniaxial load.
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$ Double Nodes

FIGURE |. DOUBLE NODING, NODAL FORCE RELEASE
AND J INTEGRAL PATH, T.
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FIGURE 3. NORMALIZED STRESS INTENSITY FACTORS OF
EXTENDING CENTRAL CRACK.
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FIGURE 7. NORMALIZED STRESS INTENSITY FACTORS OF
EXTENDING SLANTED SINGLE EDGE CRACK.
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