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ABSTRACT

An elastic-plastic (incremental and small strain) finite-element analysis was

used with a crack-growth criterion to study crack initiation, stable crack growthl

and instability under monotonic loading to failure of metallic materials. The

crack-growth criterion was a critical crack-tip-opening displacement (CTOD) at a

specified distance from the crack tip, or equivalently, a critical crack-tip-opening

angle (CTOA). Whenever the CTOD (or CTOA) equaled or exceeded a critical value, the

crack was assumed to grow. Singlevalues of critical CTOD were used in the analysis

to model crack initiation, stable crack growth, and instability for 7075-T651 and

2024-T351 aluminum alloy compact specimens. Calculated and experimentally measured

(from the literature) CTOD values at initiation agreed well for both aluminum alloys.

These critical CTOD values from compact specimens were also used to predict failure

loads on center-crack tension specimens and a specially-designed three-hole-crack

tension specimen made of the two aluminum alloys and of 304 stainless steel. All

specimens were 12.7 mm thick. Predicted failure loads for 7075-T651 aluminum alloy

and 304 stainless steel specimens were generally within ±15 percent of experimental

failure loads, whereas the predicted failure loads for 2024-T351 aluminum alloy

specimens were generally within ±5 percent of the experimental loads. The technique

presented here can be used as an engineering tool to predict crack initiation, stable

crack growth, and instability for cracked structural components from laboratory

specimens, such as the compact specimen.



INTRODUCTION

Experiments on metals have shown that, under monotonic loading to failure, a

crack goes through three stages of behavior: (i) a period of no crack growth, (2) a

period of stable crack growth, and (3) crack-growth instability under load-control

(or stable crack growth with decreasing load under displacement-control). In the

past decade, the phenomenon of stable crack growth has been studied extensively using

elastic-plastic finite-element methods [I-8]. These studies were conducted, first,

to develop efficient techniques to simulate crack extension and, second, to study

various local and global fracture criteria. Some of these criteria were crack-tip

stress or strain, crack-tip-opening displacement or angle, crack-tip force, energy

release rates, J-integral, and the tearing modulus. Of these, the crack-tip-opening

angle (CTOA), or displacement (CTOD) at a specified distance from the crack tip, was

shown to be most suited for modeling stable crack growth and instability during the

fracture process [3,7,8]. But some discrepancies among the various analyses have

been observed at initiation of stable crack growth, de Koning [3] showed that CTOA

was nearly constant from initiation, whereas Shih et al. [7] and Kanninen et al. [8]

showed that CTOA at initiation was larger, and in some cases much larger, than the

value needed for stable crack growth. On the other hand, Luxmoore et al. [9] have

experimentally shown that CTOA (or CTOD) was constant from the onset of stable crack

growth in two aluminum alloys, but have found different values for different crack

configurations (center-crack and double-edge crack tension specimens). These results

show the necessity for studying different crack configurations when assessing the

validity of any fracture criteria.

One of the objectives of the present paper was to critically evaluate the ¢TOD

growth criterion using an elastic-plastic finite-element analysis under monotonic

loading to failure. In particular, the analysis was conducted to see whether or not

the critical CTOD was constant during crack initiation, stable crack growth, and
\

instability.
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The second objective was to determine whether or not fracture data from laSoratory

specimens, such as the compact specimen, could be used to predict failure loads on

other crack configurations. To assess the CTOD criterion, both experiments and

analyses were conducted on several crack configurations made of various materials.

Fracture tests were conducted onthree crack configurations: compact, center-

crack tension, and a specially-designed three-hole-crack tension specimen (see Fig. I)

made of 7075-T651 aluminum alloy, 2024-T351 aluminum alloy, and 304 stainless steel.

The compact specimens were tested by NASA Langley Research Center and Westinghouse

Research and Development Laboratory [I0] to provide basic fracture data (applied load

against "physical" crack extension and failure loads.) Center-crack and three-hole-

crack specimens were tested only by NASA Langley. The three-hole-crack specimen has a

complicated stress-intenslty factor solution, like that for a cracked stiffened panel.

In the finite-element analysis, a critical value of CTOD at a specified distance

from the crack tip was chosen as the fracture criterion. During incremental loading

to failure, whenever the CTOD equaled or exceeded a preset critical value (6c), the

crack-tip node was released and the crack advanced to the next node. This process

was repeated until crack growth became unstable at the failure load. Comparisons

between experimental and calculated load against physical crack extension data were

made on the compact specimens to determine the critical CTOD values. These critical

CTOD values were then used to predict failure loads on other compact specimens,

center-crack tension specimens and three-hole-crack tension specimens. Comparisons

were made between predicted and experimental failure loads for all specimen types

considered. Comparisons were also made between calculated and experimentally mea-

sured [Ii] CTOD values at initiation for the two aluminum alloys.
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NOMENCLATURE

a Crack length defined in Fig. I, m

a Initial crack length, m
o

[B] Matrix relating total strains to nodal displacements, m-I

[De] Elasticity matrix relating stress to total strain, N/m 2

d Minimum element size along crack llne, m

{dP} Incremental applied load vector, N

{dQ} Incremental plastic load vector, N

dVm Differential volume of triangular element m, m3

{dE} Incremental total strain vector

{d_} Incremental stress vector, N/m 2

{d_e} Incremental elastic stress vector, N/m 2

{doO} Incremental "initial" stress vector, N/m 2

E Young's modulus, N/m 2

G Strain-energy-release rate, N/m

K Stress-intenslty factor, N/m 3/2

[Ke] Elasticstiffnessmatrix,N/m

[Ks] Diagonalmatrix containingspring stiffnesses,N/m

ksx,ksy Springstiffnessin x- and y-directlon,respectively,N/m

M Number of finiteelements

N Number of nodes

n Ramberg-Osgood straln-hardenlng power

P Applied load, N

Pf Failure load, N

{P} Applied load vector, N

{Q} "Effective" plastic load vector, N

t Specimen thickness, m



{U} Generalized nodal displacement vector, m

W "Specimen width, m

Aa Physical crackextension, m
P

_c Critical crack-tip-opening displacement, m

6i Crack-tip-opening displacement at initiation, m

Uniaxial strain

K Ramberg-Osgood strain-hardening coefficient, N/m 2

o Unlaxlalstress,N/m2

Unlaxlalyield stress (0.2percentoffset),N/m2ys

Uniaxialtensilestrength,N/m2
u
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EXPERIMENTAL PROCEDURE

The experimental test program was conducted by NASA Langley Research Center and

Westinghouse Research and Development Laboratory [i0] as part of an ASTM E24 Round

Robin on Fracture. Tests were conducted on compact specimens (with initial crack-

length-to-width ratios, ao/W, of 0.5) to obtain load against physical crack extension

data and failure loads. The NASA Langley Research Center also conducted fracture

tests on other compact specimens (with ao/W equal to 0.3 and 0.7), center-crack

tension specimens, and a "structurally-configured" specimen (with three circular

holes and a crack emanating from one of the holes) subjected to tensile loading.

The specimen configurations tested are shown in Figure i. In addition, tensile

specimens were tested to obtain uniaxial stress-strain curves.

Materials

The three materials tested were 7075-T651 aluminum alloy, 2024-T351 aluminum

alloy, and 304 stainless steel. These materials were selected because they exhibit

a wide range in fracture toughness behavior. They were obtained in plate form

(1.2 m by 3.6 m) with a nominal thickness of 12.7 mm.

Specimen Configurations and Loadings

Four types of specimens were machined from one plate of each material. The

specimens were: (i) Tensile, (2) Compact, (3) Center-crack tension, and (4) Three-

hole-crack tension specimens. A summary of specimen types, nominal widths, and

nominal crack-length-to-width ratios tested is shown in Table I.

Tensile specimens.- Eight tensile specimens (ASTM E8) with square cross-section

(12.7 by 12.7 mm) were machined from various locations in each plate of material.

The specimens were machined to obtain tensile properties perpendicular to the

rolling direction. Full engineering stress-strain curves were obtained from each

specimen. The initial load rate was 45 kN/minute, but after yielding, the load rate



was set at 4.5 kN/mlnute. Average tensile properties (E, _ys and au) are given in

Table 2.

Compact specimens.- The compact specimen configuration is shown in Figure l(a).

The planar configuration is identical to the "standard" compact (ASTM E399) specimen,

but the nominal thickness was 12.Tmm. Twenty-seven specimens were machined from

each plate of material, and the cracks were oriented in the same direction (parallel

to the rolling direction). The nominal widths, W, were 51, 102, and 203 mm, and the

nominal crack-length-to-width ratios were 0.3, 0.5, and 0.7. All specimens were

fatigue precracked according to the ASTM E399 requirements.

The specimens tested by Westinghouse (ao/W = 0.5) were loaded under displacement-

control conditions and periodically unloaded (about 15 percent at various load levels )

to determine crack lengths from compliance [i0,12]. But the specimens tested by NASA

Langley were loaded under load-control conditions to failure. The initial load rates

on the NASA Langley tests were about the same as those tested by Westinghouse. Load

against crack extension data were obtained from visual observations and from unloading

compliance data (at both the crack mouth and the load llne). Initial crack lengths,

ao, and failure loads, Pf, were also recorded. The initial crack lengths were

measured from broken specimens and were three-polnt weighted averages through the

thickness (3ao = al + 2a2 + a3) where aI and a3 were surface values and a2 was

the value in the middle of the specimen. Specimen dimensions, initial crack lengths

and experimental failure loads are given in Tables 3-5 for the three materlals.

These experimental results will be presented and discussed later.

Center-crack and three-hole-crack tension specimens.- The center-crack and

three-hole-crack specimen configurations are shown in Figures l(b) and l(c),

respectively. Again, all specimens were machined so that the cracks were oriented

parallel to the rolling direction. Four center-crack specimens (W = 127 and 254 mm)

were machined from each plate of material. The nominal crack-length-to-wldth ratio



was 0.4. Eight three-hole-crack specimens (W = 254 mm) were also machined from each

plate of material. The nominal crack lengths in the three-hole-crack specimen ranged

from 13 to 102 mm. All center-crack and three-hole-crack specimens had 510 mm

between griplines. The initial load rates were selected such that the initial stress-

intensity factor rates were roughly the same (30 MN/mS/2/minute) for all crack

specimens. Again, initial crack lengths (three-point weighted average through the

thickness) and failure loads were recorded. Specimen dimensions, initial crack lengths,

and experimental failure loads are given in Tables 3-5 for the three materials. These

results will be presented and discussed later.



FINITE-ELEMENT ANALYSIS OF FRACTURE

The elastic-plastic analysis of the three specimen types (Fig. i) employed the

flnlte-element method and the inltial-stress concept [13,14]. The elastic-plastlc

analysis was based on incremental flow theory with a small strain assumption. The

finite-element models for these specimens were composed of two-dlmensional, constant

strain, triangular elements under assumed plane-stress conditions. Several mesh

patterns were used to model different size specimens so that the minimum element

size, d, along the llne of crack extension would be the same in all specimens.

Fictitious springs were used to change boundary conditions associated with crack

extension. The use of springs was found to be computationally efficient. For

free nodes along the crack llne, the spring stiffnesses were set equal to zero,

and, for fixed nodes, the stlffnesses were assigned extremely large values. See

Appendix A for details on the elastic-plastic finite-element analysis with crack

extension.

Although the flnlte-element analysis (constant-straln elements) used here does

not contain a singularity at the crack tip, such as the Hutchlnson-Rice-Rosengren

(HRR) singularity [15,16], the use of singularities may not be necessary.

Singularities, which do not exist in real materials, are only mathematical

consequences of continuum mechanics. The finite-element analysis with very small

elements gives a high, but finite, strain concentration at the crack tip, like

a crack in a real material.

The average material stress-straln curves used in the finite-element analysis

were approximated by the Ramberg-Osgood equation [17] as

€ =_. (1)



where K and n are the strain-hardenlng coefficient and power, respectively.

Values of the constants are given in Table 2 for the three materials.

Crack-Growth Criterion

The crack-growth criterion used here was based on a critical crack-tlp-openlng

displacement (_c) at a specified distance (d) from the crack tip. The distance d

was the element size along the crack llne, or in otherwords, d is the distance

between the first free node and the crack tip. (The critical CTOD criterion is

also equivalent to a critical CTOA criterion, since CTOA = 2 tan-l(6c/2d).) During

incremental loading to failure, whenever the CTOD equaled or exceeded a preset

critical value (6c), the crack-tip node was released (see Appendix A for details) and

the crack advanced to the next node. This process was repeated until crack growth

continued without any increase in load. The use of the CTOD (or CTOA) criterion

does require that the absolute size (d) and arrangement of elements in the crack-tip

region and along the line of crack extension be the same in all crack configurations

considered.

The procedure used to establish the critical _c value and mesh size (d) is

as follows. The mesh size in the crack-tip region of the large compact specimen

(W = 203 mm) was systematically reduced until the calculated loads at initiation

and at failure were reasonably close to the experimental values using a given

value of _c" In other words, the mesh size was used as a variable to fit the

experimental load against crack length data. After the mesh size d was

determined, the final 6 value was selected so that the mean of the calculated-c

to-experimental failure load ratio on the various size compact specimens

(W = 51, 102, and 203 mm) with ao/W = 0.5 was about unity. The critical de

value was then used to predict failure loads on other compact, center-crack

tension, and three-hole-crack tension specimens.
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The typical crack-growth behavior that was obtained from the finite-element

analysis using the critical CTOD criterion is shown in Figure 2. Applied load is

plotted against =rack length. During initial loading, a plastic zone developed at

and to the right of the crack tip as illustrated in Insert (a). At a certain load,

the CTOD became critical (_c) and the crack moved forward one element size (d) while

the applied load was held constant. The CTOD for the new crack tip was found to be

less than the critical value. The dashed curve in Insert (b) shows what the crack-

surface displacementswould have been if residual plastic deformations had not been

retained in the material to the left of the crack tip. The plastic deformations

remaining in the wake of the advancing crack (lightly shaded region to the left of

the crack tip) caused the new displacements to be substantially less than that for

the crack without the "plastic wake". The corresponding crack-tip strains were also

less for the crack with the plastic wake than for the crack without the plastic

wake [5]. Thus, an increase in applied load was required to make the CTOD critical

and to advance the crack further. This process was repeated until crack growth

became unstable (continuous crack growth with no further increase in load). At the

instability load, the CTOD value at the new crack tips were always equal to or

greater than the 6c value and the crack continued to grow from node to node. If

the analysis had been conducted under displacement-control, instead of load-control,

then a reduction in applied load would have been required to maintain a constant _c.

Compact Specimens

A typical finite-element model (Mesh A) for one-half of the compact specimen is

shown in Figure 3. The crack line was a llne of symmetry. The minimum element size

along the crack line was 0.00625 Wo for this mesh pattern. Wo is overall width of
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compact specimen. (The large number of elements around the pin-loaded hole was not

necessary for this study. This particular mesh was used in a previous analysis to

study the deformations around the hole and was used here only for convenience.)

Critical CTOD.- A comparison between experimental and calculated load against

physical crack extension data on a 7075-T651 alumlnumalloy compact specimen is

shown in Figure 4. The symbols show the average experimental crack extension

measurements made using visual and unloading compliance (load-line and crack mouth)

methods [I0]. The solid lines show calculations made using three different mesh

sizes (Mesh A, B and C) in the crack-tlp region. The critical CTOD values (_c) for

each mesh size was selected (by trial and error) to give about the same failure load

as measured on the compact specimen. The 6c values, shown on the figure, were

lower for smaller mesh sizes. Smaller mesh sizes also gave lower loads at initiation

of crack growth. The calculated crack-growth behavior from Mesh C (d = 0.4 mm)

agreed well with the experimental data, up to maximum load.

The final _ value for the 7075-T651 aluminum alloy was selected so that thec

mean of the calculated-to-experimental failure load ratio on the various size

compact specimens with ao/W = 0.5 was about unity. Mesh C was used for the 203 mm-

wide specimen; Mesh B and A with all coordinates scaled by a factor of 0.5 and

0.25, respectively, were used for the 102 and 51 mm-wide specimens, so that the

element size along the crack line was 0.4 mm in all meshes. A comparison between

experimental and calculated load against crack extension data on two compact

specimen sizes (W = 51 and 203 mm) is shown in Figure 5. The large solid symbols

show the experimental data from a single test and the respective bars indicate

the range and mean of failure (or maximum) load on four or five tests. The bars

are placed at the average value of crack extension at maximum load. The solid

lines show the calculated crack-growth behavior from the finite-element analysis

with _c = 0.0216 mm and d = 0.4 mm for both specimens. The tests were

conducted under dlsplacement-control conditions, whereas the analysis was

conducted under load-control conditions. Thus, calculations were not made

beyond maximum load. The calculated failure load on the large specimen was

about 5 percent lower than the average experimental failure load. But for the

small specimen, the calculated failure load was about i0 percent higher than the
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average experimental failure load. The calculated failure loads for all compact

specimens with ao/W equal to 0.5 are given in Table 3. The mean of the ratios of

calculated-to-experimental failure load was about 1.01.

For convenience, the same mesh size (d = 0.4 mm) used for the 7075-T651 aluminum

alloy specimens was also used for the 2024-T351 aluminum alloy and 304 stainless

steel specimens.

A comparison between experimental and calculated load against physical crack

extension data 2024-T351 aluminum alloy compact specimens is shown in Figure 6.

Again, the symbols show average experimental crack extension measurements made on two

compact specimens using visual and unloading compliance data [i0]. The respective

bars indicate the range and mean of failure loads on four or five tests. A critical

CTOD value was selected so that the mean of the calculated-to-experimental failure

load ratio on the various size compact specimens with ao/W = 0.5 was about unity.

Again, the solid lines show the calculated crack-growth behavior from the finite-

element analysis with 6c = 0.0457 mm and d = 0.4 mm. The calculated behavior at

initiation and at instability (maximum load) agreed well with the experimental data.

Some discrepancies between calculated and experimental behavior was observed for

the stable crack growth region. However, the calculated failure loads on the

large and small compact specimens were within 5 percent of the average experimental

failure loads.

As with the other materials, the critical CTOD value for 304 stainless steel

specimens was selected so that the mean of the calculated-to-experlmental failure

load ratio on the various size compact specimens (W = 51, 102, and 203 mm) with

ao/W = 0,5 was, again, about unity. The critical CTOD value (_c) was 0.356 mm

with d = 0.4mm. The 304 stainless steel compact specimens exhibited large

deformations and rotations. Because the finlte-element analysis was based on a

small strain assumption, no comparisons were made between calculated and

experimental crack growth.
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Comparison of Calculated and Experimental CTOD Values.- Paleebut [II] used a

laser-interferometric displacement technique to measure crack-openlng displacements

near the tip of a crack in 7075-T651 and 2024-T351 aluminum alloy compact specimens

(W = 51 mm). The specimen thicknesses ranged from 3 to 25 mm. Only the results for

13 mm-thick specimens were of interest here. The specimens were fatigue precracked

according to ASTM E399 requirements to a specified crack length (ao/W = 0.5) and

then two indentations 0. I mm apart were placed across the fatigue crack about 0.I mm

from the crack tip. The specimens were then statically pulled to failure and load

against CTOD traces were obtained from the test. The first indication of a major

"pop-in" was taken to be the CTOD at initiation (6i). These experimental values are

given in the following table:

Experimental Calculated

Material t, mm __i, mm ___c,mm

7075-T651 13 0.021 0.0216

2024-T351 13 0.048 0.0457

The critical CTOD values (6c) determined from fitting the finite-element

analysis to load against crack extension data for the two materials are also

shown for comparison. Despite the fact that the 6c values in the analyses

were measured at 0.4 mm from the crack tip, instead of 0.i mm, as in the

experiments, the agreement is extremely good. This good agreement may be due

to crack tunneling. Cracks in 13-mm thick compact specimens tend to tunnel in

the interior. Consequently, the "effective" distance from the crack tip to

the measurement point would have been larger than 0.i mm. For the 7075-T651

material, the average tunneling was about 0.6 mm, whereas for the 2024-T351

material the average tunneling was about i mm. The 0.4mm used in the analysis

was less than the average tunneling for both materials.
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Failure Load Predictions.- Having determined the critical CTOD values for the

three materials, the finlte-element analysis was used to predict failure loads on

compact specimens with ao/W = 0.3 and 0.7. Figures 7, 8, and 9 show experimental

(symbols) and predicted failure loads plotted against ao/W for 7075-T651

aluminum alloy, 2024-T351 aluminum alloy, and 304 stainless steel, respectively.

The predicted failure loads were calculated for ao/W = 0.3, 0.5, and 0.7;

and a curve was drawn through the results. A failure load prediction was not made

on the large 304 stainless steel specimen with ao/W = 0.3 because of the excessive

computer cost. All predictions were within ±I0 percent of the experimental failure

loads, except for some results on the 304 stainless steel specimens. The predicted

results on the steel specimens showed some systematic errors in failure load pre-

dictions with ao/W and W, but all predicted failure loads were within ±15 percent

of experimental loads. The larger and systematic errors on the steel specimens were

probably due to using a small strain analysis for a large deformation problem.

Experimental and predicted failure loads for compact specimens are given in

Tables 3-5 for the three materials.

Center-Crack Tension Specimens

Because the critical CTOD values were determined from compact specimens, the

good failure load predictions on other compact specimens may have been fortuitous.

To test the CTOD criterion and to determine whether or not fracture data from compact

specimens could be used to predict failure of other crack configurations, center-

crack tension specimens were also tested and analyzed.

Figure i0 shows the flnlte-element meshes used to model the two center-crack

tension specimens (W = 127 and 254 mm). Because of symmetry, only one-quarter of the

specimen was modelled. Insert A, along the crack llne, shows the typical element

sizes and patterns in the crack-tlp region for the two specimen sizes. The minimum

element size along the crack line for both specimens was 0.4 mm.
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The finite-element analysis with the CTOD criterion was used to predict failure

loads on the center-crack tension specimens made of the three materials (see Tables

3-5). Figure ii shows experimental (symbols) and predicted failure loads plotted

against specimen width for a nominal ao/W = 0.4. The predicted failure loads were

made at W = 127 and 254 mm, and a line was drawn through the results. All pre-

dictions were within about ±i0 percent of experimental failure loads for all

materials.

Three-Hole-Crack Tension Specimens

To verify the general applicability of the CTOD criterion to complex cracked

components, a structurally-configured specimen, the three-hole-crack tension speci-

men (Fig. l(c)) was also tested and analyzed. The three-hole-crack specimen was

designed to give a complicated stress-intensity factor solution, llke that for a

cracked stiffened panel. Although the stress-intensity factor solution was not used

in the fracture analysis, the stress-intensity factor solution will be used in the

discussion of results. In the following, the stress-intensity factor solution and

failure load predictions on the three materials are presented.

Stress-Intensity Factor Solution.- The stress-lntensity factor solution for the

three-hole-crack tension specimen was obtained by using a two-dimensional elastic

finite-element analysis [14]. The finite-element mesh for one-half of the specimen

is shown in Figure 12. The minimum element size was 0.00625W. Stress-intensity

factors as a function_of crack length were obtained by using a local-energy approach

proposed by Irwin [18]. To verify the local-energy approach and mesh pattern in

the crack-tip region, compact and center-crack tension specimens were also analyzed.

The details of the approach are given in Appendix B.

The stress-intensity factor solution for the three-hole-crack tension specimen

(Fig. l(c)) is shown in Figure 13. The symbols show the flnite-element results.

Stress-intensity factors were normalized by gross applied stress (P/Wt) and are
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plotted against crack-length-to-width ratio (a/W) with W = 254 mm. Crack length is

measured from the edge of the small hole. The dash-dot line shows the centerline of

the two large holes. This solution simulates the solution for a cracked stiffened

panel [19], when the centerline of the stiffener is located at a/W = 0.25 (dash-

dot line). The stress-intensity factors have a minimum value near the centerllne

of the two large holes, or a stiffener, in the case of a stiffened panel.

Failure Load Predictions.- During the failure of the three-hole-crack specimens

with ao/W less than 0.3, large amounts of stable crack growth were expected (as much

as 65 mm for ao/W = 0.05) because of the stress-intensity factor solution shown in

Figure 13. During monotonic loading, as the crack stably tears toward the centerline -

of the large holes, the stress-intensity factor decreases. An increase in load is

required to cause further stable crack growth. Crack-growth instability should only

occur when the crack has passed the minimum stress-lntenslty factor at an a/W value

of about 0.3. The same general behavior might intuitively be expected for elastic-

plastic materials. The fracture tests on the three materials and the finite-element

analysis will test this hypothesis.

To save computer time and cost, the small elements (d = 0.4 mm) were used only

between a/W values of 0.275 and 0.375, for ao/W _ 0.25 because the crack should

stably tear to an a/W value of about 0.3. At this point, the crack will be

located in the small element region. For ao/W = 0.3, 0.35, and 0.4, the small

element pattern was placed at the appropriate location along the crackline so that

all stable crack growth would occur in the small element region. But for ao/W

less than 0.275 (ao < 70 mm) stable crack growth would occur in a region with larger

element sizes than 0.4 mm. To use the larger element sizes, the CTOD criterion was

modified as follows. The large compact specimen (W = 203 mm) with ao/W = 0.5 was

reanalyzed with three different element sizes along the llne of crack extension.

Critical CTOD values needed to predict only the experimental failure loads on the

three materials were determined. These results are shown in Figure 14. The critical
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CTOD (_) for a given element size (d_) normalized by the critical CTOD (6c) for an

element size (d) of 0.4 mm is plotted against the element size ratio (d_/d). Symbols

show the finite-element results for the three materials. The solid llne is an

equation fit to the results. The equation

_c = 6c + 3\d - (2)

was used to determine the _ value for any value of element size d_. 6 and dc

are shown on Figure 14 for the three materials. (The dashed llne indicates the

relationship between _ and d_ needed for a constant CTOA.)C

Motion pictures (200 frames per second) were taken of some of the three-hole

crack specimen tests. A volt meter was used to indicate applied load in the movie.

Load against crack length measurements taken from these motion pictures are shown

in Figure 15. The initial crack lengths, ao, were about 25.4 mm. The symbols

show experimental data on 7075-T651 and 2024-T351 aluminum alloy specimens and the

solid lines show the prediction from the finlte-element analysis. The solid symbols

show the final crack lengths near maximum load conditions. As expected, the final

crack lengths were pass the centerline of the large holes and were very near the

minimum stress-intenslty factor location in Figure 13. Predictions on the 7075-T651

aluminum alloy specimen were in fair agreement with the experimental results. The

predicted failure load was about 16 percent lower than the experimental failure

load. Whereas, predictions on the 2024-T351 aluminum alloy specimen agreed well

with the experimental results. Here the predicted failure load was only 6 percent

higher than the experimental failure load. However, the predicted crack lengths

at instability (crack length at first attainment of maximum load) were less than

the experimental values, especially on the 2024-T351 specimen. This may have been

caused by the size of the load step used in the analysis since the predicted
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curve is nearly horizontal near maximum load. Photographs from motion picture

frames near maximum (failure) load condtlons are shown in Figure 16 for the three

materials. Figure 16(c) illustrates why finlte-deformatlon analyses may be

necessary to improve the predictions for the 304 stainless steel specimens.

A comparison between predicted and experimental failure load for various

initial crack lengths for the three materials is shown in Figure 17. Again, symbols

show the experimental failure loads and the solid curves show the predicted results

from the finlte-element analysis. Predictions were not made on most of the 304 stain-

less steel specimens because of the high computer cost. The predicted failure loads

on 7075-T651 aluminum alloy specimens were 2 to 18 percent lower than the experimental

failure loads. The largest errors occurred at the smallest crack lengths. This was

probably caused by using the larger element sizes for a less than 70 mm. However,
O

predicted failure loads on the 2024-T351 aluminum alloy specimens agreed well (I to

6 percent) with the experimental loads. The predicted failure loads for the 304

stainless steel specimens were about i0 percent higher than the experimental results.
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CONCLUSIONS

An elastlc-plastlc (incremental and small strain) finite-element analysis, in

conjunction with a crack-growth criterion based on crack-tlp-opening displacement,

was used to study crack-growth behavior under monotonic loading to failure for three

crack configurations and for three materials. Fracture tests were conducted on

compact, center-crack tension, and a speclally-deslgned three-hole-crack tension

specimen made of 7075-T651 aluminum alloy, 2024-T351 aluminum alloy, and 304 stain-

less steel. In the analysis, the crack-growth criterion was a critical crack-tip-

opening displacement (CTOD) at a specified distance from the crack tip. Whenever

the CTOD equaled or exceeded a critical value (_c), the crack was assumed to grow.

Comparisons were made with experimental data. This investigation supports the

following conclusions:

(i) The present elastlc-plastlc analysis predicted three stages of crack-growth

behavior, characteristic of metals, under monotonic loading to failure: (a)

a period of no crack growth, (b) a period of stable crack growth, and (c)
crack-growth instability under load-control conditions.

(2) Single values of critical CTOD (8) used in the present analysis were found

to reasonably model crack initlat_on, stable crack growth, and instability
for 7075-T651 and 2024-T351 aluminum alloy compact specimens.

(3) Calculated CTOD values agreed well with experimentally measured (from the

literature) values for crack-growth initiation for the two aluminum alloys.

(4) Critical CTOD (_c) values from compact specimens were used in the present
analysis to predict failure loads on center-crack tension and three-hole-

crack tension specimens generally within ±15 percent of experimental failure

loads on 7075-T651 aluminum alloy and 304 stainless steel specimens, and

within ±6 percent of experimental failure loads on 2024-T351 aluminum al!oy
specimens.
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APPENDIX A.- ELASTIC-PLASTIC FINITE-ELEMENT ANALYSIS WITH CRACK EXTENSION

The elastic-plastic analysis of the compact, center-crack tension, and three-

hole-crack specimens employed the flnite-element method and the initial-stress

concept as described in References 13 and 14. The finite-element models were com-

posed of two-dimensional constant-strain triangular elements. In the inltial-stress

approach,the load-displacementrelationsfor a discretizedstructureare written to

includethe effectsof "initial"stresses,which are requiredin order to satisfythe

yield criterion(vonMises) for an elastlc-plastlcmaterial. These initialstresses

produce effectiveplastlc-loadvectorswhich are appliedto all elementswhich have

become plasticand which maintainthe permanentplastic deformationon those elements

while the externalloads are applied. The governingmatrix equationsfor a dis-

cretizedstructureare reviewedonly brieflyhere to demonstratehow the material

nonlinearityis accountedfor and what is required to treat crack extension.

SolutionProcedurefor Elastic-PlasticStructures

The applicationof the finite-elementmethod to problemsinvolvinglinearly

elasticmaterialsis straightforwardbecausethe material propertiesare constant

and only one solutionis required to obtain displacementsfor the elastic structure.

However, for elastic-plastlcstructuresthe coefficientsin the stiffnessmatrix are

functionsof loading. Thus, the displacementsare usuallyobtainedby applying

small load incrementsto the structureand either updating the coefficientsof the

stiffnessmatrix or applyingan "effective"plastic-loadvector after each load

increment.

In general, the matrix equationwhich governsthe responseof a discretized

structureunder loads which cause plasticdeformationis

i = i-I
[Ke] {UJI {PFi + {Q}I-I (3)
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where [Ke] is the elastic stiffness matrix, {U} is the generalized nodal displacement

vector, {P} is the applied load vector, and {Q} is the "effective" plastic-load

vector which accounts for elements in a plastic state. In the initial-stress method,

the solution to an elastlc-plastlc problem is obtained by applying a series of small

load increments to the structure until the desired load is reached ({p}i = {p}i-I +

{dP}). The load increment was chosen as I0 percent of the applied load required to

yield the highest stressed element at the crack tip. The superscript i in Equation

(3) denotes the current load increment and i - 1 denotes the preceding increment.

After each load increment an iterative process is required to stabilize the plastic-

load vector. The superscript I in Equation (3) denotes the current iteration and

I - 1 denotes the preceding iteration. During the ith increment a purely elastic

problem is solved and the increments in total strain {dg} and corresponding elastic

stress {doe} are computed from the displacements for every element. Because of the

material nonlinearity the stress increments are not, in general, correct. If the

correct stress increment for the corresponding strain increment is (do}, then a set

of body forces or plastic-load vectors {dQ} caused by the "initial" stress

{doO} (= {doe} - {do}) is required to maintain the stress componentson the yield

surface. The correctstress increment{do} is computedfrom the equationsgiven in

Reference13. The plasticload incrementsare computedfrom

M

{dQ} : _![B] T {do°} dVm (4)
m--1

where M is the total number of elements, [B] is the straln-displacement relation-

ship, and the superscript T denotes the matrix transpose. The integration is taken

over the volume of each element and the summation is over all elements in the struc-

ture. For elements which are in an elastic state, {do °} = 0. The total plastic-load
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vector is then computed as

{Q}_ = {Q}i-iI-I+ {dQ) (5)

At the second stage of computation the new force system {Q}_
is added to the

applied load vector and a new set of displacements is obtained. Again, some of the

stresses are likely to exceed the yield criterion and a new set of plastlc-load

increments is computed. The iteration process is repeated until the effective stress

(octahedral shear stress) [20] was within 2 percent of the current flow stress of

the material. Usually, 5 to 15 iterations are required to stabilize the plastic-

load vector. However, for configurations which have large strain gradients, more

iterations are required. For the cracked specimens considered here and the par-

ticular element meshes used, 5 to I00 iterations were required. For the 304 stain-

less steel specimens, as many as 400 iterations were required in some cases.

Solution Procedure for Changing Boundary Conditions

The finite-element analysis of an extending crack under monotonic loading must

be able to account for changing boundary conditions. Usually, boundary conditions

(free or fixed) in the finlte-element method are satisfied by adding equations to,

or deleting equations from, the overall system of equations. But the approach

selected here was to connect two springs to each boundary node. One spring was used

to satisfy boundary conditions in the x-direction, and the other to satisfy condi-

tions in the y-direction. Therefore, all nodes in the system had two degrees of

freedom. For free nodes, the spring stiffness, k or k
sx sy' was set equal to zero.

For fixed nodes, the spring stiffness was assigned an extremely large value

(107 times the modulus of elasticity of the plate material). The spring stiffness
T

was added to the diagonal coefficient in the conventional elastic stiffness matrix.
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The use of springsto satisfyboundaryconditionswas selectedbecausean efficient

techniqueto modifycoefficientsof the elasticstiffnessmatrixwas incorporated

intothenonlinearanalysisprogram. This techniqueinvolvedmodifyingthe coef-

ficientsof the Choleskydecomposition[21]of theelasticstiffnessmatrix. A

detaileddiscussionof the coefficient-modiflcatlontechniquemay be foundin

References14or 21.

The coefficientsof theelasticstiffnessmatrixare obtainedfrom

M

[Ke] = _ I_BSTKDeSKB] dVm + [Ks] (6)
m=l

where [De] is the elasticity matrix and the diagonal matrix [Ks] contains the elastic

stiffness of the springs connected to the boundary nodes.

The procedure for treating the nonlinear material behavior in the presence of

changing boundary conditions remains unchanged from that previously presented for an

elastlc-plastlc structure, except that the nodal displacement for the node closest

to the crack tip was monitored to determine whether the crack-tip node was to be

released (crack extends).

To extend the crack, the stiffness of the spring at the crack-tlp node was set

equal to zero ([Ke] modified) and the nodal force that was carried by the spring was

then applied to the crack-tlp node. The crack-tip force was arbitrarily chosen to

be released in three equal load steps. Previous studies had indicated that the

number of load steps (I, I0, and 50) had little effect on the final displacements

for the small element sizes used here. When the nodal force went to zero, the

crack tip had advanced to the next node. To insure that the stresses and total

strain increments in the adjacent elements satisfied the yield condition and the

Prandtl-Reuss flow rule [20], the iterative procedure, previously discussed, was
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used to redistributethe force previouslycarriedby the brokennode, and to

stabilizethe plastlc-loadvector.

25



APPENDIX B.- STRESS-INTENSITY FACTORS FROM FINITE-ELEMENTANALYSIS

The stress-intensity factor solution for the three-hole-crack tension specimen

(Fig. l(c)) was obtained by using a two-dimensional elastic flnlte-element analysis

[14] under plane-stress conditions. The stress-lntenslty factors were obtained by

using a local-energy approach [18]. To verify the flnlte-element approximation of

the local-energy approach and the mesh pattern in the crack-tip region, compact and

center-crack tension specimens were also analyzed.

The finlte-element meshes used for the compact, center-crack, and three-hole-

crack specimens are shown in Figures 3, lO(a), and 12, respectively. The element-

mesh pattern along the crack llne and in the crack-tlp region were the same in all

meshes. The smallest element size along the crack line was 0.00625 times the overall

specimen width. The number of elements (constant strain) and number of nodes are

shown on the figures.

The straln-energy-release rate, G, is obtained from Reference 18 as

G = llm 1 [j0AaAa_O A--_ O V dx (7)YY

where Aa is a small amount of crack extension, G is the normal stress along the
YY

crack llne, and V is the crack-surface displacement.

The straln-energy release rate was obtained from the elastic flnlte-element

analysis by using nodal forces and displacements. The value of G was computed at

two different values of crack extension (Aa and 2Aa) and the value at Aa = 0 was

obtained by linear extrapolation. At a given crack length a, the node at the crack

tip is defined as node I; the node at a + Aa is defined as node 2; and the node at

a + 2Aa is defined as node 3. With unit load applied to the crack configuration of

interest, the nodal forces at node 1 and 2 are computed. The crack is then allowed
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to extend (elastically) from node 1 to node 2. The displacement at node 1 is now

computed. The previous force at node I, FI, is the force required to close the crack

surface over the length ha. The first estimation for G is computed as

FIV 1

GI= tA--q- (8)

Next, the crack is allowed to extend from node 2 to node 3. The total amount of

crack extension from crack length a is 2Aa. The displacements at nodes 1 and 2

are now computed and used to obtain the second estimate for G as

FIV1 + F2V2
G2 = t2Aa (9)

The value of G at Aa = 0 was obtained by linear extrapolation and is given by

G = 2G 1 - G2 (I0)

The stress-intenslty factor K was obtained from the plane-stress relation between

K and G as

K =%/EE" (ii)

Compact Specimen

The stress-intensity factors for the compact specimen (Figure l(a)) were

calculated for crack-length-to-width ratios, a/W, ranging from 0.2 to 0.8.
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The finite-element results were compared with the results from the equation

K = P (2 + %)
t,/W (l - %)3/2 (0.886 + 4.642 - 13.32% 2 + 14.72% 3 - 5.6% 4) (12)

where % = a/W [22]. The finite-element results were I to 3.4 percent lower than

the results from the equation. The largest errors occurred at the largest values of

a/W.

Center-Crack Tension Specimen

The stress-intensity factors for the center-crack tension specimen (Figure l(b))

were calculated for crack-length-to-width ratios, 2a/W, ranging from 0.2 to 0.9.

Again, the finite-element results were compared with the well-known equation from

Reference 23

(9)K = _-_ na sec (13)

The finite-element results were 1.4 to 3.1 percent lower than the results from the

equation. Again, the largest errors occurred at the largest values of 2a/W.

Three-Hole-Crack Tension Specimen

The stress-intensity factors for the three-hole-crack specimen (Fig. l(c)) is

shown in Figure 13. On the basis of the results obtained on the compact and center-

crack specimens, the finite-element results are expected to be I to 3 percent lower

than the "true" stress-intensity factor solution.

28



REFERENCES

[I] Anderson, H., "A Finite-Element Representation of Stable Crack Growth,"

J. Mech. Phys. Solids, Vol. 21, 1973, pp. 337-356.

[2] Kobayashi, A. S.; Chlu, S. T.; and Beeuwkes, R., "A Numerical and Experimental

Investigation on the Use of the J-Integral," Engineering Fracture Mechanics,

Vol. 5, No. 2, 1973, pp. 293-305.

[3] de Koning, A. U., "A Contribution to the Analysis of Slow Stable Crack Growth,"
The Netherlands, National Aerospace Laboratory Report NLRMP 75035U, 1975.

[4] Light, M. F.; Luxmoore, A.; and Evans, W. T., "Prediction of Slow Crack Growth

by a Finite Element Method," Int. J. of Fracture, Vol. II, 1975, pp. 1045-1046.

[5] Newman, J. C., Jr., "Finite-Element Analysis of Crack Growth Under Monotonic
and Cyclic Loading", ASTM STP 637, American Society for Testing and Materials,

1977, pp. 56-80.

[6] Rousselier, G., "A Numerical Approach for Stable-Crack-Growth and Fracture
Criteria," Proceedings of the Fourth International Conference on Fracture,

Vol. 3, 1977.

[7] Shih, C. F.; de Lorenzi, H. G.; and Andrews, W. R., "Studies on Crack Initia-
tion and Stable Crack Growth," ASTM STP 668, American Society for Testing and

Materials, 1979, pp. 65-120.

[8] Kanninen, M. F.; Ryblcki, E. F.; Stonesifer, R. B.; Broek, D.; Rosenfield,

A. R.; and Halin, G. T., "Elastic-Plastic Fracture Mechanics for Two-
Dimensional Stable Crack Growth and Instability Problems," ASTM STP 668,

Amer. Soc. for Testing and Materials, 1979, pp. 121-150.

[9] Luxmoore, A.; Light, M. F.; and Evans, W. T., "A Comparison of Energy Release
Rates, the J-Integral and Crack Tip Displacements," Int. J. of Fracture,

Vol. 13, 1977, pp. 257-259.

[10] McCabe, D. E., "Data Development for ASTM E24.06.02 Round Robin Program on
Instability Prediction", NASA CR-159103, August 1979.

[Ii] Paleebut, S., "CTOD and COD Measurements on Compact Tension Specimens of
Different Thicknesses," M.S. Thesis, Michigan State University, 1978.

[12] Clarke, G. A.; Andrews, W. R.; Paris, P. C.; and Schmidt, D. W., "Single

Specimen Tests for JIC Determination", Mechanics of Crack Growth, ASTM STP 590,
American Society for Testing and Mnterials, 1976, pp. 27-42.

[13] Zienkiewicz, O. C.; Valliappan, S.; and King, I. P., "Elasto-Plastlc Solutions

of Engineering Problems, Initial Stress, Finite Element Approach," Interna-
tional J. for Numerical Methods in Engineering, Vol. I, 1969, pp. 75-100.

[14] Newman, J. C., Jr., "Finlte-Element Analysis of Fatigue Crack Propagation -
Including the Effects of Crack Closure," Ph.D. Thesis, Virginia Polytechnic
Institute and State University, May 1974.

29



[15] Hutchinson, J. W., "Singular Behavior at End of Tensile Crack in Hardening
Material," J. Mech. Phys. Solids, Vol. 16, 1968, pp. 13-31.

[16] Rice, J. R. and Rosengren, G. F., "Plane Strain Deformation Near Crack Tip in

Power-Law Hardening Material," J. Mech. Phys. Solids, Vol. 16, 1968, pp. 1-12.

[17] Ramberg, W. and Osgood, W. R., "Description of Stress-Straln Curves by Three
Parameters," NACA TN-902, 1943.

[18] Irwin, G. R., "Analysis of Stresses and Strains Near the End of a Crack

Traversing a Plate," Transactions, ASME, J. of Applied Mechanics, 1957.

[19] Poe, C. C., Jr., "Stress Intensity Factor for a Cracked Sheet with Rivited and

Uniformly Spaced Stringers," NASA TR-358, May 1971.

[20] Mendelson, A., Plasticity: Theory and Application, The MacMillan Co., New York,
1968.

[21] Gill, P. E.; Golub, G. H.; Murray, W.; and Saunders, M. A., "Methods for
Modifying Matrix Factorizations," Computer Science Department, Stanford

University, STAN-CS-72-322, pp. 18-24, 1972.

[22] Srawley, J. E., "Wide Range Stress-Intensity Factor Expressions for ASTM E399
Standard Fracture Toughness Specimens," Int. J. of Fracture, Vol. 12, June

1976, p. 475.

[23] Brown, W. F., Jr. and Srawley, J. E., Plane Strain Crack Toughness Testing of

Hish Strength Metallic Materials, ASTM STP-410, American Society for Testing
and Materials, 1969, p. 77-79.

30



Table 1--Test specimen matrix and number of specimens for
7075-T651, 2024-T351, and 304 stainless steel.

Nominal Crack-Length-to-Width Ratio
Specimen Nominal
Type Width, mm 0.3 0.4 0.5 0.7

Compact 51 2 ... 5a 2

Compact 102 2 ... 5a 2

Compact 203 2 ... 5a 2

Center-Crack 127 ... 2 ......

Center-Crack 254 ... 2 ......

Three-Hole Crack 254 8 (0.05 _ ao/W _ 0.4)

Tensilea 12.7 ...

aData used to determine
C

a
Table 2--Average tensile properties of the three materials.

Material E, MN/m2 0 MN/m2 o MN/m2 K MN/m2 n
ys' U' '

7075-T651 71,700 530 585 640 30

2024-T351 71,400 315 460 550 i0

304 Stainless Steel 203,000 265 630 745 5

aAverage values from eight tests.
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Table3--Aluminumalloy7075-T651.

(a) Compact specimens.

Experimental Ppred

t, mm W, mm ao, mm Pf, kN Pexp

12.4 51 16.1 16.i i.00

12.5 51 15.4 16.0 1.01

12.7a 51 25.6 8.73 1.i0

12.8a 51 25.6 8.85 1.08

12.6 51 25.4 8.54 i.12

12.6 51 25.9 8.85 1.08

12.6 51 35.4 3.75 1.03

12.5 51 36.3 3.34 1.15

12.7 102 31.8 27.4 0.95

12.7 102 30.6 27.2 0.95

12.8a 102 50.8 15.5 0.95

12.7a 102 50.7 15.5 0.95

12.8a 102 51.4 14.5 1.02

12.7 102 50.9 15.1 0.98

12.8 102 51.4 15.1 0.98

12.6 102 71.2 5.78 1.08

12.7 102 71.0 5.65 i.ii

12.7 203 60.6 47.4 0.90

12.8 203 60.4 46.3 O.92

12.8a 203 102.0 24.1 i.O0

12.7a 203 102.2 24.1 I.O0

12.8a 203 lO0.8 25.4 O.95

12.8 203 i01.2 25.7 O.94

12.8 203 i01.2 26.2 O.92

12.8 203 142.0 i0.2 0.97

12.7 203 142.2 i0.5 O.95

aTested at Westinghouse Research Laboratory [i0].
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Table 3-1(Contlnued).

(b) Center-crack tension specimens.

Experimental Ppred

t, mm W, mm ao, mm Pf, kN P•exp

12.8 127 26.4 209 0.97

12.8 127 24.9 200 1.02

12.8 254 49.8 365 O. 89

12.7 254 49.i 356 0.91

(c) Three-holecrack specimens.

Experimental Ppred

t, mm W, mm ao, mm Pf, kN Pexp

12.8 254 ii.9 696 O.83

12.8 254 25.5 685 0.84

12.7 254 39.7 698 0.82

12.7 254 50.5 651 0.88

12.8 254 64.8 620 0.92

12.7 254 75.6 578 0.98

12.8 254 90.i 462 O.96

12.8 254 100.8 362 O.95
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Table4--AluminumAlloy2024-T351.

(a) Compact specimens.

Experimental Ppred
t. mm W. mm ao. ,=n Pf. kN Pexp

12.4 51 16.1 29.8 0.98

12.3 51 16.0 29.5 0.99

12.6a 51 26.5 14.2 1.01

12.5a 51 26.3 14.7 0.97

12.5a 51 26.1 14.8 0.97

12.3 51 26.1 14.5 0.98

12.4 51 26.4 14.7 0.97

12.3 51 36.2 5.22 0.95

12.3 51 36.3 5.29 0.93

12.5 102 31.4 54.7 1.06

12.5 102 31.2 54.7 1.06

12.5a 102 51.9 28.8 0.98

12.6a 102 51.6 28.9 0.98

12.6a 102 51.4 29.8 0.95

12.5 102 51.6 28.2 1.00

12.5 102 51.9 28.7 0.99

12.6 102 71.2 10.1 0.99

12.5 102 71.4 10.1 0.98

12.5 203 61.8 98.5 0.93

12.6 203 61.7 100.3 0.92

12.6a 203 102.4 52.1 1.04

12.6a 203 102.5 51.9 1.04

12.5 203 102.2 52.3 I.04

12.6 203 102.2 52.0 1.04

12.5 203 142.9 18.6 1.03

12.5 203 143.0 lB.9 1.02

aTestedat WestinghouseResearchLaboratory[i0].
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Table 4--(Continued).

(b) Center-crack tension specimens.

Experimental Ppred
t, mm W, mm ao, mm Pf, kN pexp

12.6 127 26.2 302 1.06

12.6 127 25.2 311 1.03

12.6 254 51.2 581 1.05

12.6 254 52.1 574 1.06

(c) Three-hole crack specimens.

Experimental Ppred
t, mm W, mm ao, mm Pf, kN Pexp

12.6 254 13.9 754 i.05

12.5 254 25.7 738 1.06

12.5 254 38.6 735 i.04

12.5 254 51.8 718 i.04

12.6 254 64.3 696 1.02

12.6 254 75.8 660 I.01

12.5 254 90.0 580 1.04

12.5 254 i01.5 505 I.04
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Table 5--Stainless steel 304.

(a) Compact specimens.

Experimental Ppred

t, mm W, mm ao, mm Pf, kN Pexp

13.1 51 16.5 52.7 0.95

13.3 51 16.3 53.6 0.94

12.8a 51 25.6 27.3 0.87

12.8a 51 26.1 25.9 0.91

12.8a 51 25.8 26.8 0.88

13.1 51 25.8 27.5 0.88

13.1 51 26.2 26.9 0.90

13.2 51 36.2 9.56 0.85

13.1 51 36.2 9.61 0.85

13.4 102 34.1 93.4 1.09

13.3 102 31.1 104. 0.98

13.0a 102 49.4 55.1 0.93

13.0a 102 50.7 50.8 1.01

13.0a 102 51.4 47.8 1.07

13.0 102 50.5 51.8 0.99

13.3 102 51.8 50.6 1.03

13.4 102 72.1 17.7 0.90

13.3 102 72.3 17.3 0.92

13.5 203 62.0 195. b

13.5 203 62.0 192. b

12.8a 203 102.0 86.8 1.13

12.8a 203 102.3 85.4 1.15

12.8a 203 102.0 85.3 1.15

13.4 203 101.4 96.3 1.02

13.4 203 102.2 96.1 1.03

13.3 203 142.6 34.1 0.97

13.4 203 142.8 32.9 1.01

aTestedat WestinghouseResearchLaboratory[i0].

bpredlctlonwas not made on this specimen.
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Table5--(Contlnued).

" (b)Center-cracktensionspecimens.

Experimental Ppred
t, mm W, mm ao,mm Pf, kN Pexp

13.6 127 26.1 458 I.12

13.6 127 26.2 469 1.09

13.5 254 50.1 882 i.Ii

15.6 254 50.8 878 1.11

(c) Three-hole crack specimens.

Experimental

t, mm W, mm ao, mm Pf, kN Pexp

13.6 254 13.5 1260 a

13.6 254 26.3 1220 a

13.5 254 39.1 1180 a

13.4 254 51.6 1150 a

13.5 254 64.4 1120 a

13.5 254 77.7 999 i.Ii

13.6 254 89.8 895 1.09

13.6 254 102.7 790 1.08

apredictionwas not made on thisspecimen.
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Figure4.- Effect of mesh size and criticalCTOD on crack growth.
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Figure5.- Comparisonof calculatedand experimentalcrack-growthbehavior
for 7075-T651aluminumalloy compactspecimens.
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Figure6.-Comparisonof calculatedand experimentalcrack-growthbehavior
for"2024-T351 aluminum alloy compact specimens.
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Figure7.-Comparisonof predictedandexperimentalfailureloadsfor compact
specimensmade of 7075-T651aluminumalloy.
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Figure8.-Comparisonof predictedand experimentalfailureloadsfor compact
specimens made of 2024-T351 aluminum alloy.
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Figure 9.- Comparisonof predictedand experimentalfailureloads for compact
specimensmade of 304 stainlesssteel.
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Figure I0.- Finite-elementidealizationfor center-cracktensionspecimens.

47



oo

i000- Material 6c,mm /

o76_-?_zT.62Yg //,_
[]2024-T351 0,0457 / -

F

8oo-_3o4ss_k___o,3___25!/

pf600" Predicted/
kN Test

40O-

200-

I I I

0 125 250 375
w,mm

Figure II.- Comparison of predicted and experimental failure loads for center-
crack tension specimens.



MeshA: M = 3842 N = 2077

Figure 12.- Finite-elementidealizationof one-halfof the three-hole-crackspecimen.
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Figure 13.- Stress-intensityfactorsfor the three-hole-cracktensionspecimen.
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Figure 14.- Effect of mesh size on criticalCTOD needed to predictfailure
loads on the large compactspecimens.
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Figure 15.- Comparisonof predictedand experimentalcrack-growthbehavioron the
three-hole-cracktensionspecimens.
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Figure 16.- Photographs of three-hale-crack tension specimens near maximum load
(failure) condition (ao = 25.4 mm).
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