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INTRODUCTION

Our participation in the MAGSAT mission is directed toward the aqui-

sition of experimental and analytical data on the magnet mineralogy of

crustal and upper mantle igneous and metamorphic rocks.

These data are fundamental to the develop.ient of realistic models of

crustal magnetization and the interpretation of satellite magnetic anomaly

maps. Our approach focuses on the determination of Curie temperatures,

magnetic susceptibilities and magnetic mineral chemistries, with particular

attention to lower crustal and upper mantle rocks. Experimental phase

equilibria studies of oxide, sulphide and alloy stability fields are com-

plementary in providing an integrated magnetic mineral data base for the

interpretation of rock magnetization.

During the report period the Curie Balance has been brought to opera-

tional stage and is producing data of a preliminary nature, some of which

provides the basis of this report. Substantial problems experience in the

assembly and initial operation of the instrument have, for the most part,

been rectified, but certain problems still exist. Relationsnips betweer:

the geology and the gravity and MAGSAT anomalies of West Africa are briefly

reexamined in the context of a partial reconstruction of Gondwanaland.
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PROGRESS REPORT

1n the present configuration the Curie Balance can routinely measure

-eptibility, intensity of induced magnetization, and the thermal

decay of magnetization above room temperature. The experimental methoas

and standards we have adopted are illustrated with natural samples, follow-

ing a brief description of the instrument. The majority of this report is

devoted to the magnetic properties of a small group of kimberlitic ilme-

nites from Liberia, West Africa, as measured by the Curie Balance.

Aspects of an internally consistent geological and geophysical frame-

work for the interpretation of MAGSAT anomalies over West Africa are

briefly described in the second, and complementary, part of the report.

CURIE BALANCE

INSTRUMENTATION

The Cahn Magnetic Susceptibility System is based on the Curie or

Faraday method, in which a balance measures the magnetization of an object

by sensing its apparent changes in weight according to magnetic field in-

tensity and the temperature. We have adapted the Cahn system as a tradi-

tional rock magnetic Curie Balance (e.g., Collinson et al., 1961; Schwarz,

1968).

The magnetic field is manually cuntrolled between 10 6 aria 40 A/m

(about 10 k0e and .5 Oe) and is measured by a Hall Probe Gaussmeter. Iso-

thermal experiments ot- limited temperature programming are possible between
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ambient and 800 0c; a Pt-Rh thermocouple in close proximity to the sample is

referenced (+5°c) to materials of known Curie te.iperature. Analyses can be

made in air, vacuum or Argon (99.999%) at controlled flow rates. A Cahn

2000 electrobalance measures apparent sample mass which is translated to

magnetic intensity values.

For a typical 10 mg sample the resolution of the Curie Balance is ac-

curate to about +5% within the soecifiG susce ptibility range 10-7 to 10 1

cgs units per gm (10-4 to 10 S.I. volume susceptibility). The sensitiv-

ity is 10-9 Am  or 10-6 emu.

EXPERIMENTAL WORK

(A) Magnetization measurements.

The specifiz susceptibility is simply derived from the expression for

force on the samole Fz = mXgmHxdHx /dz (e.g., Morris and Wold, 1965), pro-

vided that the quantity HxdHx/dz is constant over the volume of the sample

and its value is known. Such tedious measurements (e.g., Figure 1) give an

"absolute" value for the magnetization.

An . alternative method (Lindoy et al., 1972; Mulay, 1963) simply com-

pares the magnitudes of the apparent weight changes of the unknown and

reference susceptibility samples. This is the method we have so far em-

ployed, using HgCo(CNS) 4 of known susceptibility (Lindoy et al., 1963;

Mullar and Guntherodt, 1981).

Two magnetization curves, specific magnetization versus field

strength, for the Holyoke Basalt are shown in Figure 2. The higher curve

was measured in vacuuo, at 309°k at Bell Laboratories (J. Waszczak, pers.

comm.) and compares closely to our curve measured on a sample split from

l
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the same aliquot of powdered material, but measured in air at 301 0k by the

relative method.

The Holyoke Basalt material was donated from our Department of Geology

X.R.F. Laboratory in-house geochemical standards collection, and provides

a useful working magnetic standard by virtue of the results obtaineo at

Bell Laboratories.

(B) Curie temperature measurements

A repeatable increasing temperature program of about 10 0c per minute

is possible with the apparatus, and the thermocouple millivoltage for the

heating cycle has been temperature calibrated against metal alloy Curie

point standards. Testing the calibration against high purity synthetic

and natural pyrrhotite (320 0c), magnetite (580 0c) and hematite (680 0c) we

foiind Curie points within +5 0c (+10 0c for hematite) of the quoted value.

Heating and cooling cycles for the Holyoke Basalt in Figure 3 are

traced directly from the chart record; note the non-linear temperature

scale. The Holyoke Basalt typically contains titanomagnetite with abundant

oxyexsolution laths of ilmenite; high temperature oxidation products such

as rutile and titanohematite are not observed, but low temperature altera-

tion to titanomaghemite is common (Gunter, 1978). The analyzed material

has been vigorously crushed and powdered.

A single relatively well defined Curie point of about 575°c (Figure

5) confirms the presence of magnetite. A lower temperature straight line

segment terminating at about 450 0c may be reflecting the effect of titano-

maghemite. The weight loss during the experiment is due to partial devol-

itilization of the rock.



5

Important information given by the degree of reversibility of the

thermomagnetic curve (e.g., Radhakrishnamurthy and Likhite, 1970) is lost

because we cannot program cooling rates, except manually. The cooling

cycle does provide qualitative information on the number of magnetic phases

and an accurate measurement of the change in room temperature magnetization

due to the heat treatment.

Figure 4 compares the thermomagnetic curves for an unknown mixture of

sulfides and the curve obtained by Schwarz (1974) for a known mixture of

Fe 9S 10 any! re 7S6. Both species are clearly present in our experimental

sample. The sudden increase in magnetization on quench cooling the Fe 9S 10

phase also explains why our specimen left the sample bucket on rapid cool-

ing thrc—• h the Fe9S 10 Curie point (= 270°c).

(C) Magnetic properties of selected kimberlitic ilmenites.

To test the analytical performance of the Curie Balance we selected

fresh unweathered ilmenites of probable kilberlitic origin from Liberia,

West Africa.

Room temperature magnetizations were measured as outlined above. Fig-

ure 5 shows specific susceptibility versus applied tield strength for ilme-

nites KK-ILM-11 to 15, according to the method of Honda and Owen (Bates,

1963, p. 134) in which a line 0 positive slope indicates f erro- or ferri-

magnetism. Sample 14 has constant susceptibility. KK-ILM-11 is plotted

on a scale reduced by a factor of ten and is distinguished from the other

samples in the range of magnitude of its susceptibility.

Initial magnetization curves are shown in Figure 6. Saturation m4gne-

tization on this plot is normally a line approaching a constant horizontal
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slope; the asymptote projected to H • 0 defines the saturation magnetiza-

tion, identical to the slope in Figure 5. Sample 11 was almost saturated

when the experiment was terminated because of excessive horizontal dis-

placement of the sample; ilmenites 12, 13 and 15 have similar and constant

slopes above about 1500 Oe (12 x 104 A/m); sample 14 has a constant slope

which passes through the origin indicating paramagnetic or antiferromagne-

tic behavior.

The steep sloped form of the curves 12, 13 and 15 is typical of ma-

terials at temperatures close to the Curie point (e.g., Bates, 1963, p.

310); it is also the characteristic of paramagnetic or antiferromagnetic

materials which contain minor amounts of an additional f erri- or ferromay-

netic phase (Cullity, 1972, p. 114). Saturation magnetization values ranges

from zero for KK-ILM-14 to about 2 emu gm -1 (2 Am  kg-1 ) for KK-ILM-11;

samples 13 and 15 have identical saturation magnetization values (0.18 Am 

kg-1).

In the thermomagnetic curves (Figures 7a and 7b) reduced specific mag-

netization, aTok /0 2960 k , is plotted-against temperature. Field strengths

indicated on the diagram are a compromise between convenienit, graphical dis-

play and a field strength compatible with observing the thermal decay of

saturation magnetization. The reduced form of the magnetization obscures

the field dependent magnetization differences between samples but allows

analysis of the relative form of the curves.

There appear to be four types of behavior. Samples 1, 3 and 11 show

Ndel type Q or R curves (e.g., Standley, 1972, pp. 52-56) with well defined

Curie points. Specimens 2, 4 and 14 display hyperbolic magnetization decay

curves typical of paramagnetic substances following the Curie or Curie-

s

i:. >--A
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Weiss Laws (e.g., Mulay, 1963, p. 1764), or of the tail-end of a ferromag-

netic curve. Ilmenites 12 and 13 behave intermediately to the above types.

Sample 15 is relatively unusual in the linear ^2-m of its decay, which is

typical of samples co..taining a range of solid-solution compositions and

therefore a range of Curie temperatures; the apparent Ndel type N behavior

at about 550 *c is probably an artifact of the record.

The a/ao values for the initially steep curves (e.g., samples 4 and

14) do not approach zero even above Lhe hematite Ndel point, suggesting

' that the Curie temperatures are low and that the induced paramagnetic mo-

ment existing above the transition temperatures are substantial relative

to the total room temperature magnetization.

Figure 8a shows thermomagnetic cl ,rves for known hemoilmenite composi-

tions. The a/ao values were calculated from absolute magnetization values

of Nagata (1961, Fig. 3.31) and referenced to room temperature for the sake

of comparison with our data. The forms of the curves for x = .47 ana x

.67 are similar to the first and second types i dentified from Figure 7.

Relative to more recent and reliable work (Readman and O'Reilly, 1972) the

Curie temperature values of Nagata's ilmenites are not useful for compari-

son, although the relative form of the curves may be.

The shape of the thermomagnetic curve depends on applied field

strength roughly as shown in Figure 8b (Nagata, 1961, Fig. 3.19). The

Curie temperature does not change but is more easily identified in weak

fields. Thermomagnetic curves for KK-ILM-1 to 15 are in various fielas

from 110 to 4000 Oe (8750 to 3.2 x 10 5 Alm), nevertheless the different

forms of the curves are probably reflecting compositional differences in

view of the different susceptibility and magnetisation values (Figures 5
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and 6).

To evaluate the preferred Curie temperatur, for KK-ILM-11 the

Langevin-Weiss relation for ferromagnetic materials (e.g., Bates, 1963,

pp. 275-280) is approximated by a/o o versus T/T0 (Figure 9a). TO is the

paramagnetic Curie temperature appearing also in the Curie-Weiss Law and is

normally a few degrees higher than the ferromagnetic Curie temperature; for

the correct value of TO the curve approaches T/Ta as an inverse hyperbola.

The majority of the magnetization of sample 11 has decayed by 320 0c, but a

higher temperature phase may exist to 340 0c.

A method of estimating the Curie temperatures for the remaining sam-

ples is to plot reciprocal susceptibility versus temperature (see Figure 	
s

9b for KK-ILM-11); because susceptibility markedly decreases at the Curie 	 {

or Ndel temperature the extrapolation of the steep straight line segment

of the plot to the temperature axis serves as an estimate of the Curie

temperature (e.g., Zijlstra, 1951, p. 131). By this means (Figure 10)

sample 14 shows a transition temperature at -50 0c and samples 12 and 13

extrapolate to within +20 0c of 200 0c. The Curie point for KK-ILM-15 is

probably within the range of 225 to 350°C.

If the compositions of these ilmenites are assumed to lie in the ser-

ies xFeTiO3' (1-x)Fe203 then according to the data of Readman and O'Reilly

(1972) the measured Curie (Ndel) temperatures correspond to compositions

KK-ILM-11 x - 0.53; #15 x - 0.6 to 0.5; #'s 12 and 13 x - 0.6 to 0.62; and

#14 x = 0.8.

Inclusion of other elements in place of iron lowers the Curie tempera-

ture, and for kimberlitic ilmenites it is well known (e.g., Haggerty, 1916)

that the major substituent is magnesium, so that compositions more accur-
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ately fall in the plane FeTiO3-Fe203-MgTiO3 (ilmenite-hematite-giekielite).

Compilations of compositional data for kimberlitic ilmenites from

South and West Africa (Haggerty, 1976), and compositions and Curie points

for Siberian kimberlitic ilmenites (Frantsesson, 1970) suggest, assuming

each sample is single phase, the following compositions expressed as the

ratio between FeT103-Fe203-MgTiO3 : for KK-ILM-11 .53-.47-0; #14 6-1-4; pi's

12 and 13 7.5-2.5-2.5; and #15 6-4-1. The dilution of the compositions

with magnesium would help to explain why the observed saturation magneti-

zations decrease with Curie temperature when the opposite behavior is ob-

served in the central portion of the pure hematite-ilmenite system.

Reflected light oil-immersion microscopy of the samples from the ther-

momagnetic runs show that KK-ILM-14 is a single crystal of ilmenite; sample

11 is a highly altered polycrystalline ilmenite with exsolution lamellae

of spinel. Sample #13 is also a highly altered ilmenite; volumetrically

minor exsolution lamellae, probably of spinel, have been removed by alter-

ation. KK-ILM-12 and 15 are ilmenites, optically similar to the host phase

in sample 13; f15 is a highly strained crystal.

The magnetization curves, thermomagnetic runs and microscope observa-

tions can be reconciled as follows: Sample KK-ILM-14 is a single phase

antiferromagnetic ilmenite; the magnetization curve is a straight line

through the origin and the thermomagnetic curve is hypoerbolic with a sub-

ambient Ndel point. The magnetization acquisition behavior aid magnitude,

and the thermomagnetic behavior (Ndel type Q or R) of sample KK-ILM-11 are

dominated by the exsolved spinet phase, most probably titano-magnetite.

The magnetic behavior of samples KK-ILM-12, 13 and 15 suggests that

these specimens are not single phase, even although microscopic examination
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did not resolve phases additional to the llmenite. Inclusion of a sub-

microscopic f errlmagnetic phase would explain the form of the magnetization

curves (e.g., Culltiy, 1972, p. 114), and also reconciles the intermediate

thermomagnetic behavior of these samples. Additional evidence for this

hypothesis is fjund in the lamellar pits of sample #13 (it is unlikely that

all of the exsolved mater i al has been totally removed) and in the Curie

temperature-composition continuum shown by KK-ILM-15.

If, indeed, kimberlitic ilmenites frequently contain submicroscopic

ferrimganetic inclusions, then deep-seated ilmenites may oe a potential

source of lower crustal magnetization.

EXPERIMENTAL PROBLEMS

Initial problems in assembling the Curie Balance have been corrected

by the manufacturers (Cahn-Ventron, Inc.) and our efforts. Cahn-Ventron

has also recently supplied free of charge a replacement transformer to our

own specifications so that the furnace is now capable of the manufacturer's

specifications temperature (800*c).

We need to improve our temperature control, both in the high tempera-

ture system and in bringing the liquid Nitroger. cryostat to operational

stage. Our continuing reiationsh4p with Cahn-Ventrc-n has also suggested

the possibility of our field testing new, more flexible temperature pro-

grammers under consideration by the company.

A combination of magnetic viscous effects at close to zero electro-

magnet voltage and zero applied field means that a dedicated Gaussmeter is

required for weak (< 550 Oe; < .5 x 10 5 A/m) magnetic field experiments.

A proposed purchase justification is attached as an Appendix. Presently



we are using a Gaussmeter on loan from the Physics Department at the t

versity.

Poorly machined threads on one of the 6-wo electromagnet core reti

nuts allow the core to move in its mounting. The magnet manufacturer

(Alpha Scientific) agreed that this is below tolerance ana vo'.unteerec

free-of-charge repair if we incur shipping costs. We are loath to in(

dead time for this relatively minor repair alone.

MAGSAT, GEOLOGICPL AND GRAVITY CORRELATIONS IN
NORTHERN SOUI•H AMERICA ANU WEST AFRICA

We have examined the regional geology and geophysics of Northern South

America and West. Africa; data are assembled on the pre-drift fit of Bullard

et al. (1965). The regional geology of fold belts, shield regions (Figure

11) and sedimentary basins (Figure 12) is compared to Bouguer gravity anom-

alies (Figure 13), radiometric dates (Figure 14), aero,nagnetic data (Fig-

ure 15) and the north-south horizontal vector component (oX) of the Magsat

anomaly field (Figure 16).

Gravity and Magsat data were graphically transferred from the refer-

enced publications to the Bullard projection, but were not otherwise pro-

cessed. Use of Bouguer gravity rather than Free Air values removes some

of the effects of elevation and more accurately portrays continental sub-

sea level information. The reassembled regions are presently at low geo-

magnetic latitudes and the horizontal component anomaly shoula fairly

closely outline bodies ;!ith induced magnetization.

t
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I	 Sedimentary thicknesses in the Tauoudeni Basin of West Africa are

roughly proportional to the geographically assocated Magsat positive

(Hastings, 1982) and the Benue Trough has a positive signature (Frey,

1982). The Volta and Iullemedan Basins are also magnetically positive,

although less distinctly (Figures 12 and 16).

A similar relationship is observed in South America (Hinze et al.,

1982) and this is particularly evident in relation to the sediment isopachs

for the Amazon, Parnaiba and Parana Basins (Figure 16). The Amazon Aulaco-

gen is also a strong Bouguer positive (Longacre et al., 1982); in fact,

most of the large positive Magsat anomalies within the reassemblea area

are spatially associated with positive Bouguer gravity anomalies and with

gravity regions of short wavelength or low relief.

Protect Magnet profiles (Figure 15) and aeromagnetic mpas (Strangway

and Vogt, 1970; Behrendt and Wotorson, 1974) show that long wavelength, low

altitude magnetic anomalies become less intense from Liberian to Eburnean

to Pan-African age rocks and generally follow the older structures. The

trend is evident in Magsat maps for West Africa (e.g., Hastings, 1982; Fig-

ures 11, 14-16) but is less pronounced in South America, perhaps because

the Jecquie-Guriense (Liberian) Age rocks are much less abundant (see Fig-

ure 11).

South American shield regions do not have a consistent relationship

with Magsat and Free Air gravity anomalies (Hinze et al., 1982), but com-

parision with the Bouguer values 0 Figure 13 shows that shiela regions in

both South America and West Africa are characterized by negative Bouguer

gravity anomalies. Thus the shields are loci for a density deficiency as

well as a positive magnetic contrast. Tentative spatial correlations for
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S

both shields and basins are listed in Table I.

It seems that the striking coincidence of Magsat anomaly contours

(Figure 16) achieved on reassembling this portion of Gondwanaland can be

at least partially explained on the basis of the known geology. A coherent

regional ge logic framework corresponds to the large scale geophysical fea-

tures including Magsat anomalies. For the future, it would be useful to

compare Magsat signatures with isostatic gravity anomalies calculated for

different levels of compensation; the degree of internal correspondence

between the two potential fields should help define whether the visual-

spatial correlations noted nere are due tc the same sources, and at wnat

depths within the crust.
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SUMMARY

During the report period considerable progress has been made with the

Curie Balance. The instrument can routinely measure room— and high—tem-

perature magnetizations and has been successfully applied in the examina-

tion of a range of magnetic minerals.

Although there are persistent problems with the temperaLure and mag-

netic field control, analysis of a group of kimberlitic ilmenites from West

Africa demonstrates that the instrument is capable of a high degree of res-

olution amongst relatively similar magnetic mineralogies.

Examination of MAGSAT anomaly maps for Northern South America and West

Africa shows that the magnetic signatures can be coherently related to a

regional geological and geophysical framework.
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FUTURE WORK

We have accumulated a large backlog of samples for which the mineral

and geochemical data have already been acquired and the Curie Balance will

be fully utilized in determining the magnetic properties of these materi-

als. At the same time we hope to improve the flexibility ana utility of

the instrument by bringing the temperature and the magnetic field under

tighter control.

We have noted some interesting geographical correlations between

MAGSAT anomaly maps and parts of Africa and South America which are so

encouraging close that we would like to put these comparisons on a more

quantitative level. While this may be possible, the magnetic analytic and

experimental work will have priority.
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FIGURE CAPTIONS

Figure 1. Magnetic field characteristics of the Curie Balance elec-

tromagnet with respect to the vertical axis, at a one inch pole gap and 25

amps (1 kOe = 7.96 x 10 4 A/m; 1kOe/cm = 6.34 x 10 11 A2/m 3 ). The sample

location in the region of constant HdH/dz is indicated.

Figurere 2. Magnetization curves for the Holyoke Basalt. The upper

curve was measured at Bell Laboratories; the lower curve from our Curie

Balance is encouragingly close in value.

Figure 3. Thermomagnetic curve for the Holyoke Basalt. The y-axis

is magnetic intensity transduced as milligrams and the x-axis is tnermo-

couple millivoltage. Temperature is calibrated for the heating cycle,

which shows for this sample a steady loss of magnetization with temperature

and a single well defined Curie point of about 575 0c. The cooling cycle

is at an uncontrolled rate. The weight change over the whole cycle is

probably due to devolatilization.

Figure 4a. Thermomagnetic curve for a magnetically unknown sulphide

sample.

Figure 4b. Thermomagnetic curve for a sample containing Fe 7S8 and

Fe 9S IO (Schwarz, 1974). Comparison with Figure 4a suggests that our un-

known sample contains both these magnetic phases.
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Figure 5. Specific susceptibility versus reciprocal field strength

for kimberlitic ilmenites KK-ILM-11 to 15. Sample 14 is antiferromagnetic

or paramagnetic; samples 12, 13 and 15 display ferro- or f errimagnetic

form but with very low susceptibilities. Ilmenite 11 is more strongly

magnetic and is plotted on a reduced (x 10 -1 ) scale.

Figure 6. Specific magnetization versus field strength for Kimber-

litic ilmenites. Sample 11 was close to saturation magnetization when the

experiment was terminated. Specimens 12, 13 and 15 have magnetization

curves typical of materials close to the Curie point or of weak magnetic

materials which include a minor ferro- or ferrimagnetic second phase.

Sample KK-ILM-14 has a curve of constant slope (susceptibility) passing

through the origin.

Figures 7a and 7b. Thermomagnetic curves for kimberlitic ilmenites

KK-ILM-1 to 4 and 11 to 15. The thermomagnetic curves are plotted as

o/oo versus temperature, allowing comparison of the relative forms of

the decay magnetization. Samples 1, 3 and 11 display marked Curie points

(333'c, 455'c and 340'c), whereas the other curves mostly follow a hyper-

bolic Curie Law.

Figure 8a. Thermomagnetic curves for selected hemoilmenite composi-

tions (from Nagata, 1961). Comparison of the figure with Figure 7 suggests

that the envelope of curves for the kimberlitic ilmenites corresponds to a

chemical compositional range.
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Figure 8b. Thernwmagnetic curves for a titano-magnetite in various

I strengths (from Nagata, 1961). The form of the thermomagnetic curve

Ies with field strength, thus qualifying the comparisons between Figure

0o alid Figure 1.

Figure 9a. Reduced thermomagnetic curve for KK-ILM-11. T O is the

nominated Curie temperature and T. - 320 * c appears graphically to be the

best fit.

Figure 9b. Reciprocal susceptibility versus temperature for

KK- ILM-11. On this diagram the Curie point is found to be 317*c.

Figure 10. Reciprocal susceptibility versus temperature for KK- ILM-11

to 15. Transition temperatures derived from the figure are

KK-ILM-11 3200c

12 225*c

13 190'c

14 -50*c

15 200-35O*c

Figure 11. Regional geologic structure of Northern South America and

West Africa. The map is compiled from Nairn and Stehli (1373); Earth Sci-

ence Review, volume 17, 1-2 (1981); Black 4nd Giros (197U); Dillon and

Sougy (1974); and Bronner et al. (1980), on the base map from Bullard et

al. (1965); present geographic coordinates are indicated. The map snows

the regional framework of cratons divided into shields and basins, separ-
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ated by fold belts or sutures.

Figure 12. Sedimentary basins and sediment isopachs for Northern

South America and West Africa. Main references are Bronn%r et -i1. (1980); 	
i

de Almeida et al. (1981); see also Wilcox (1977) anu Black and Girod

(1970). Sediment thicknesses are in kilometers.

Figure 13. Bouguer gravity anomalies for Northern South America and

West Africa. Data for South America are from Wilcox (1977) and for West
i

Africa from Slettene et al. (1973). Contours are in milligals; the contour 	 E

level is not constant. The ;cavity anomalies are closely related to the

regional geologic structure as shown by comparison with Figures 11 and 12.

Figure 14. Schematic representation of Precambrian age provinces in

Northern South America and Southern West Africa. The figure is from Hurley

and Rand (1974). Shield areas are divided according to the age of the last

dominant orogeny, either 2000 or 2700 my. Mobile belt ages are more widely

scattered, but congregate at about 600 my.

Figure 15. Project Magnet aeromagnetic profiles over Northern South

America and Southern Weat Africa (Strangway and Vogt, 1970). Long wave-

length aeromagnetic anomalies become less intense over more recently tec-

tonized rocks (see also Behrendt and Wotorson, 1974).

Figure 16. MAGSAT aX anomalies for Northern South American and Wesc

Africa. Taken from a map equivalent to Fig. 1 of Langel et al. (1982).
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aX is the north—south horizontal component of the MAGSAT anomaly, selected

for comparison because the Earth's inducing field is close to horizontal

at the present latitudes. The major features of the neap can be closely
	 i

related to the regional geology and geophysics of the area.
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Gu.pOrd	 -6 nT
Shield

Goias	 T

Minas Gerais	 +2 nT

West Africa
Western	 -4 nT

Reguibat

Central locally +

Reguibst break in

-4 nT
contour

Eastern 4 nT

Reguibat

Tauoudeni	 +4 nT

Leo Uplift	 -4 nT

Volta	 +2 nT

CORRELATIONS OF SOUGUER GRAVITY AND REGIONAL GEOLOGY ..'?TM MAJOR FEATURES

OF THE MAGSAT ax ANOMALIES OF NORTHERN SOUTH AMERICA AND WEST AFRICA

Pi'UE	 NOMINAL NAME SIGNATU
U
RESIGNATURE GRAVtTT SIGNATURE GEOLOG.CAL AS90IAT10N5

wy
QU 11 w	 South America^^	

Imateca -2 nT -10 to -20 mgal Imatace Complex and Sarama
Mazaruni Asemblage of the
northern Guyana Shield

E1 Saul locally + -10 to -30 meal. E1 Saul Swell

break in on gradient

-2 nT between + and -

peaks

Columbia -2 nT 0 to -100 meal. an Ilanos Basin and Eastern

area of low gravity Cordillera of the northern

relief, flanking Andes

low to the west

Eastern +2 nT an are& of short deepest part of the Amazon

Amazon Basin (2•) wavelenrggth Basin. locally 4 km of

anomalies. +30 to sediments

-50 mgal

Upper Amazon K nT 0 to +30 mgai, on Upper Amason dasin, on

Basin flank of largest Arch between 4 km sedi-
Bouguer + in South ments to west and 3 km to
America east

Middle Amazon +4 nT an area of low southern margin of Guyana

relief, a rela-	 Shield, on striae with

Lively positive	 Purus P.rrn and Ei Saul
feature, +10 to	 Swell
-30 mgai

+2 nT (T)	 -80 mgal	 canterea over maximum
thickness of Parnaiba
dasin seolwints (3 ka) and
400 m of intrusive
diabases

0 to -60 agal	 Trans-Amazonian age (T)
Guaporf Shield

-30 m9al, locally	 Paragusy-Araguaia
positive feature	 Broziilian Cycle fold belt

within regionally

negative Bouguar
values

on steep coastal	 possible extension of the

gradient of	 southern positive of the
Bouguer; area of	 Bangui anomaly; Avacuai

short (3 + ) wave-	 Fold Belt; (includ*s *e-
length Free Air	 gion of Vargem kimberlite)
anomalies, +30 meal

0 to -50 mgal	 northern Mauritanides Fold
Belt; Liberian age

equivalent rocks of the
Dorsal* Reguibat

local + (-20 to	 Eburnean age equivalent

-40 mgal) on	 granitic rocks of the

regionally -	 Dorsale Reguibat

Bouguer values

-40 to -60 mgal	 Liberian age equivalent
rocks of the Dorsale
Reguibet; Tindouf Basin

0 to -20 mgal.	 Southern Mauritanides;

local positive	 locally thin (< 1 km)
ambayment in nag- sediments of the Taouueni
ative Bouguer	 Basin
contours

0 to -40 mgal	 < - 4 nT: Rockelide fold
Belt, Liberian province of
the Leo Uplift
< - 4 nT: also nciudcs
The Eburnean age province

-20 to -30 mgal.	 Volts-8uem-Togo formations
locally positive	 of the Volta Basin

Parnaiba
Basin

amt,dyment in
gravity contours

Niger
	

> -2 nT	 -40 to -60 mgal (2) lullemadan dasin

"gar
	

+2 nT	 -80 meal	 Ahoggar Uplift
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APPENDIX

PROPOSED PURCHASE OF GAUSSMETER

JUZIFIFICATION

A Gaussmeter is essential to the operation of the Cahn Curie Balance

Magnetic Susceptibility System because the magnetic parameters measured

depend upon magnetic field strength. The relationship of field strength

to the electromagnet voltage or current is presently calibrated and mon-

itored by a Gaussmeter on temporary loan from the Physics Department at

the University of Massachusetts. Due to magnetic viscosity of the pole

caps, the field strength-voltage relationship at low intensity fields is

not repeatable, and successful operation of the system therefore requires

a dedicated Gaussmeter.

EVALUATION OF GAUSSMETERS

The optimum and cheapest method for measuring magnetic fields in the

Curie Balance is based on the Hall effect sensor. The sensor unit alone

is available from Walker Scientific (W.SI. I-1-10k; $138.00). However,

this option would require in-house construction of a stabilized 100 mA

power supply and a dedicated voltmeter with 0.01 mV resolution.
Y

Market research of domestic U.S. companies which manufacture complete

and suitable Gaussmeters (F.W. Bell, Inc.; RFL industries, Inc.; Walker

Scientific, Inc.; Magnetic instrumentation, Inc.; LUJ Electronics, Inc.)

is broken down and evaluated as follows (see attached literatur;).

In the price range below $900.00 the RFL model 904 is superior in the

i
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method of calibration and in accuracy, and in low field resolution (to ±1

Gauss); it is also available in S.I. units.

In the rao9e $900.00 to $1200.00 the Walker model MG50 is superior.

The advantages over t;,a RFL model 904 are an increased resolution (to +0.1

Gauss) and accuracy, and the digital readout. Gaussmeters in the price

range $1200.00 to $1550.00 are included for comparison; the Magnetics

instrumentation model 7305 is superior and the Walker model MG2A is

equivalent to the meter now on loon to us from the Physics Department.

CONCLUSION

From this market research the cheapest and most suitaole Gaussmeter

believed to be available is manufactured by RFL Industries, Inc. The com-

plete unit for the RFL model 904 is broken down as:

RFL Gaussmeter 904 $420.00

RFL Hall probe 904 039 185.00

RFL zero-Gauss reference chamber HA-16580 40.00

$645.00

Purchase of the RFL 904 Gaussmeter would greatly facilitate our mag-

netic experimental work at a relatively minor cost.



MODEL 904 GAUS"'SMETER i^

Model 904

MODEL 904T TESLAMETER
Wide-Range Measurement -1.0 Gauss to 30 Kilogauss
(0.0001 to 3 Tesla)

Automatic Field-polarity Indicator
Built-In Electronic Calibration System

Pushbutton Range Selection
Bipolar Analog Indicator for Ease of Operation

The Model 904 is a compact instrument designed for
measuring intensity of ac, dc, and permanent-magnet
magnetic fields with flux densities from 1.0 to 30,000
gauss (0.0001 to 3 Tesla). The Model 904 Gaussmeter reads
fain: density in gauss. The Model 904T Teslameter reads
flux density in tesla. The two models are identical in all
other respects. A wide choice of Hall-effect probes is avail-
able to enable the meter to measure many different con-
figurations of both transverse and axial magnetic fields.
Each probe is marked with its own calibration factor,
measured at the factory, to facilitate use of the accurate,
internal calibration circuit.

Flux density is read from a parallax-corrected, analog
meter with a three-inch scale. An automatic bipolar circuit
gives this indicator the resolution and scale length of a zero-
center, six-inch bipolar meter. All fields, irrespective of
polarity, use the zero-left scale, and North or South polarity
is indicated by illumination of an appropriately marked
light-emitting diode.

The span of measurement is covered in seven full-scale
ranges with scaling factors of 1 and 3. Static (dc and
permanent-magnet) fields are read directly from the front-
panel meter. For dynamic (ac) fields, an analog output with
a range of {1.0 volt for any full-scale range enables fields
from 10 to 1000 Hz to be measured. A sensitive ac voltmeter
or an oscilloscope are usually used. The analog output also
facilitates use with an external recorder, or it may be used
as a control signal for automatic or semiautomatic mag-
netic-processing systems.

The Mode; 904 is packaged in an impact-resistant plastic
enclosure, and it is equipped with a carrying handle that
serves also as a tilt-bail support for ease of operation
and viewing.

SPECIFICATIONS

Full-scale Ranges: Model 904 Gaussmeter:0 to 3(., r

100, 300, 1 K, 3K, 1 OK, 30K Gauss.
Model 9134T Teslameter: 0 to 0.003, 0.01, 0.03,
0.1, 0.3, 1.0, and 3.0 Tesle.

Accuracy: For permanent-magnet, dc, and ac fields
from 10 to 400 Hz: ±13% of range p lus error of 1^
probe).
For ac fields from 401 to 1000 Hz: t(5%of range
plus error of probe).

Downseale Linearity: ±1%of range.

Operating Temperature Range: 12 0C to 320C.

Calibration Method: Built-in electronic circuit cali- I I
brated against 0.2% magnetic reference standard.

Analog Output: *-1 volt full-scale for any range.

Range Selection: Pushbuttons.

Operating Power: 115/230 Vac, 48 .63 Hz, approx.
3.5 watts.

Size: 8.25" wide, 9" deep, 2.75" high (209 x 228 x
70 mm).

Weight: 3.8 lbs., (1.7 kg.)

Hall Probes for use with Models 904 and 904T: See
page 46.
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GENERAL:

FEATURES:
	 ACCESSORIES:

i
^t r,oi II N AL PAGE tS

FLOOR QUALITY

La '̂ ^^5E1YT1F5C :NC.

IF-A G n 5 D
-Ditable Laboratory Gaussmeter

V

The MG-5D is a general purpose port-
able Hall effect gaussmeter de-
signed to measure both DC & AC
(RMS) magnetic fields.
Three full-scale bipolar ranges of
±100.0 gauss, *_ 1,000 gauss and
=10.00 KG with 100 0/0 over-;anje
ane esolution of 0.05% provides DC
& AC field readings from t1:o0

I millicauss tot 19.99 KG with ,rue
RMS readings from 5 Hz 20 KHz;
read ngs are displayed on a 3' ,2 digit
±0.05% bipolar LCD meter.
A wide selection of precalibrated
transverse and axial Hall probes are
available to meet most every applica-
tion, including probes which will
extend the measuring range of this
instrument to 150.0 KG.
The MG-5D operates eit l!er trorn AC
or from four standard "D" cell alka-
line batteries. During AC operation,
the batteries receive a trickle charge
which keeps them fresh until the in-
strument is required for portable use.
Freshly charged batteries will con-
tinuously operate this instniment for
approximately 50 hours.
In addition, an analog output is 21so
provided for external monitoring.

APPLICATIONS:

• Measure Residual Fields
•Analyze Magnetic Circuits and

Components
*Classify Magnets
• Measure Absolute & Differential

Fields
• Plot Field Uniformity
*Measure Stray & Leakage Fields

• 3 1h Digit =0.05% Bipoiar Display
• DC & AC Fields, t 100 milligauss

to ± 19.99 KG with 1X probes
• Range Extendable to 150.0 KG

with Select Probes
*True RMS Readings to 20 KHz
• Wide Selection of Precalibrated

Probes: 1X, 10X & 10OX
• Operates with either AC or Bat-

tery; Fully Portable
• Analog Output, For External

Monitoring

• High Impact Plastic Case with
Carrying Handle

• One Year Warranty

• Precalibrated Hall Probes
A wide selection of 1X, 10X and
10OX precalibrated Hall probes are
available to meet most applica-
tions.

• Zero Gauss Chamber (Model ZG-1)
A mu-metal shield used to shunt
the earth's field around the Hall
element in order to more accu-
rately zero the gaussmeter when
precise low field measurements
are required.

• Reference Magnets
Transverse and axial precision
reference magnets are available
when precise instrument calibra-
tion at a particular field is
desirable.
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FEATURES
• Magnetic field measurements from 1 Gauss

(10' Tesla) to 100.000 Gauss (10 Tesla)
• Solid state circuit design
• AC field response to 1 MHz
• Accurate Internal calibration
• Simple setup and operation
• 3 1.2 digit panel meter or large taut-band

mirror scale meter
• Wide range of high linearity Hall probes
• All controls on front panel
• Output voltage accurate to 10X over range

()7 ,,-Ajv j_ POLE IS
OF POOR QUALITY

DESCRIPTION
The Models 7303 and 7305 Gaussmeters are
high accuracy, wide range, stable magnetic
flux density measuring Instruments Hall
element probes are easily Interchanged using
the Internal calibration feature of the
Gaussmeter. Directional sensitivity is
maintained through the Gaussmeter so that
magnetic field polarity Information is available
for field plotting Time varying magnetic fields
up to 1 MHz can be measured using an external
Indicator (Frequency response Is dependent
on range and Hall element )

APPLICATIONS
The Models 7303 and 7305 Gaussmeters are
easily adapted to engineering. quality control
and production flux density measurements of
permanent magnets. electro-magnets.
loudspeakers, TWT magnets. magnetrons.
PM motors. linear actuators, relays and other
devices where an AC or DC magnetic field Is
encountered Measurements made using the
Models 7303 and 7305 can be used to
determine the efficiency of a magnetic circuit,
plot flux leaka g e paths of magnetic assemblies
and evaluate the residual field of magnetic
dt;vtces

SPECIFICATIONS
MODEL 7303
ANALOG HALL EFFECT GAUSSMETER
RANGE

30 Gai n , to 100 000 Gauss FULL SCALE in 8 ranges
METcR REPEATABILITY

0 51

MODE, 7305
DIGITAL HALL EFFECT GAUSSMETER
RANGE

10 Gauss to 100 D00 Gauss FULL SCALE to 5 ranges
METER REPEATABILITY
0 1 1 . R	 05 1 . of full scale
MODELS 7303 and 7305
ACCURACY
Range swat ntng error i s 0 25'o of full scale The range
switching error can be eliminated by calibrating the
Instrument on the range to be used with a reference
magnet
Internal calibration accuracy IS 0 5%
Hall probes with 0 1 . linearity over SWified ranges
are available
Probe linearity should be Considered when making
precision measurements iConsult probe data sheets
for individual p robe linearity specifications I
OUTPUT
The voltage fUIDU1 acts prowde a 0 to - t volt output
for lull scale range proportional to magneto, field at the
Probe

POWER
120 volts - 10°. 50,60 Hz. 30 watts
DIMENSIONS
82 h gn III wide. 11 deep 1200 mm • 180
mm • 180 mml
WEIGHT
Net 10 pounds Snipping 15 pounds I 4 B Kg 7 1 Kg I
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MG-2A

;n	 The MG 2A has eight full-scale ranges from 10 gauss to
Ile	 30.000 gauss displayed on a taut-bated mirror scale
iC	 analog meter with zero center or zero left and becomes 	 I
01	 fully portable when supplied with the optional 	 I
in	 rechargeable battery pack indentical to MG-3A. A t 1 V
:e	 t 0.25% full scale analog output is also provided. 	 c

AtA unique feature of this instrument Is that AC field	 l

at	 measurements to 4000 nz are mace independent of DC
tp	 field levels which allow AC fields to be measured In the
is	 presence of DC fields.
rS

to Specifications
in
le	 RANGE	 8 Full scale, 10. 30. 100. 300. 1 K. 3K. I OK. 30K	 1

a	 VISUAL DISPLAY
S	 TYPE Analog. x 1 % taut-band mirror scale analog meter

Is	 RANGE	 Zero left: 0 . 1 and 0-3
1e	 Zero center 1 -0- t and 3 .0 . 3 for bipolar operation

AC FIELDS	 Meter displays average rectified value of

er	 alternating flux density. 13% of full scale
within frequency response range.

a-	 FREQUENCY RESPONSE - DISPLAY
DC Mode	 DC to 1000 HI on 10 and 30 gauss range

DC to 4000 Hz on 100 througb 30 1T gauss range
AC Mode	 25 Hz to 1000 Hz on 10 and 30 gauss range

25 Hz to 4000 Hz on too through 30K gauss range

K.	 OUTPUT:
el	 ANALOG VOLTAGE 	 s 1 V full stale and t 3 V

full sale on 3X range. over-range to 110 V
without loss of data.

er	 ACCURACY - OC	 t 0 25%
3	 ACCURACY -AC	 The voltage at the output terminals
in	 is proportional to the instantaneous AC field to within
of	 1 % of the output frequency response range
le	 FREQUENCY RESPONSE - OUTPUT

DC Mode	 DC to 1000 Hz on 10 and 30 gauss range
•	 DC to 4000 Hz on 100 througn 30K gauss range	 F
It	 AC Mode	 DC to 1000 Hz on 10 and 30 gauss range

It	 DC to 4000 Hz on 100 through 30K gauss range
OUTPUT IMPEDENCE	 1 D ohms
LOADIMPFDENCE	 Minimum of1,000ohms,

V	 short Circuit protected 	 F

V	 POWER INPUT:	 Approximately 6 Watts. 06 amps g 105 Vz	
to 125 V or 03 amps g 210 V to 250 V - 50 Hz to 4DO HZ

at	 STANDAPO	 115V 50 Hz to 400 Hz
Is	 . OPTIONAL
in	 at 220 V 50 Mz to 400 Hz

bl Internal rechargeable batteries Usable for 8 hours
without recharging

It
It	 PHYSICAL:

SIZE	 4>.^ high :B:' wide xll>,^deep

It	 WEIGHT	 12lbs net.18lbs shipping

W

V
It
It

rs
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EXPENDITURES

Grant NAS5-26414

As P` 8/31/82

BALANCE SHEET

Salaries (P.I.)
Services

Travel

Publications

Maintenance

Supplies

Administrative

Equipment

Rental Computer

GRANT BALANCE

Less negative overhad balance

$ 987.86

501.91

2,310.00

1,095.50

316.59

4,119.99

539.33

1,000.00

$10,811.18

1,125.22

$ 9,751.96

E
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