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FURTHER SEASAT SAR COASTAL OCEAN WAVE ANALYSIS

1
INTRODUCTION

This report presents the results of a continuation of a previous

Seasat gravity wave study conducted for NOAA and NASA under the

Seasat Announcement of Opportunity (see Shuchman et al., 1979). This
f

	

study investigates in detail Seasat synthetic aperture radar (SAR) 	 3

data collected over oceanic areas where refracting and diffracting

gravity waves were imaged.

The report is divided into two parts. The first part (Chapter

3)considers various image enhancement and spectral analysis tech—.	 .^

	

niques to extract wave information from SAR data. Part two (Chapter 	 a

4) is a case study of Seasat gravity wave data collected during

Revolution 974 off the coast of Cape Hatteras, North Carolina.

Found within Chapter 3 of this report are sections covering the

following topics:
i

1. Comparison of digital fast Fourier transforms (FFTs) and

their resultant one—dimensional wave—directional and wave—

number spectra obtained from Seasat SAR data that were

	

processed using different SAR processor settings- to account 	 a

for the motion, of gravity waves.

2. Comparison of estimates of dominant wavelength and direction

obtained from optical Fourier transforms (OFTs) with

estimates obtained from FFTs and from semicausal techniques.

3. Examination of the effects of reducing the aperture size and

changing the sampling rate on the spectral estimates produced

by fast Fourier transforms and spectral estimates obtained
by semicausal techniques, and

1
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4. Examination of the use of FFTs to discriminate between two

distinct wave trains present within a given SAR data set.

The case study of the Cape Hatteras SAR data (Chapter 4) first

discusses an analysis of the deep—water waves whose source is traced

back to the location of the hurricane Ella. Next the refraction of

these deep water waves due to the Gulf Stream is quantified. Then

using wave data obtained from the deep.—water analysis, a sh;allow

water wave refraction study is performed by comparing SAR—derived

estimates of dominant wavelength and direction of propagation to

those obtained from a NASA developed shallow water wave refraction

model which uses digital depth information as an input.

1

A discussion section outlining the utility of SAR to study

synoptic wave climates is then presented, followed by a recommen-

dations section.
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2
SUMMARY

The purpose of this study was to further investigate the utility

of Seasat synthetic aperture radar (SAR) data to provide useful in-

fo;rmation about ocean gravity waves. To accomplish this, two sepa-

rate, but related investigations were performed. The first investi-

gation considered various image enhancement and spectral analysis

techniques to extract gravity wave information from SAR data. The

second investigation was a case study of Seasat gravity wave data

collected off the Coast of Cape Hatteras, North Carolina on 3 Sep-

tember 1978 during Revolution 974.

During the first investigation, it was determined that wave

spectra generated from digitized Seasat SAR wave imagery were not
i

significantly altered when either range telerotation adjustments or

azimuth focus shifts were used during processing of the SAR signal

histories. This result indicates that Seasat SAR imagery of gravity

waves is not significantly improved or degraded by adjustments made

in the SAR processor for scatterer motioneffects, unlike previously

studied aircraft SAR data which are sometimes quite sensitive to

these adjustments.

Also during this first investigation, an advanced high resolution

spectral analysis technique, the semicausal (SC) model, was studied.

Applied to a synthetically generated wave field with varying levels

of 'background Gaussian noise, the SC model appears to produce more

accurate spectral estimates than conventional fast Fourier transform

(FFT) techniques. Using Seasat SAR data from Rev. 974 the SC model

spectral estimates were not significantly better than the FFT re-

sults, even when the aperture size was reduced to two wave cycles.

The spectral analysis investigation also determined that FFTs could

be used to discriminate between two distinct wave fields present on

the Seasat SAR data if the waves are greater than 20 0 apart.	
1
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Estimates of dominant ocean wavelength and direction of propa-

aation derived from SAR images collected during Rev. 974 were used

to studygravity wave transformations in both ',deep and shallow water

areas near Cape Hatteras, North Carolina. Using SAR data from one-

hundred positions within the 400 x 100 km test area, it was deter-

mined that the deep water wave field was non-uniform in both wave-

length and wave direction. By using wave hindcasting, the major

source of this variation was identified as hurricane Ella. Another
source of variation in the deep water region were wave/current inter-

actions caused by the Gulf Stream. The SAR was _able to document

subtle changes in wavelength and direction due to this wave/current
interaction. Finally, it was shown that a Gulf Stream current pro-

file could be constructed using SAR inputs.	 -

The results of the deep water analysis were used as inputs into

two shallow water wave refraction models which included a basic Airy

wave theory model and a more sophisticated computer-based wave re-

fraction model. The present investigation, which utilized mor a

accurate water depth information than used in the first study, and

the updated deep water inputs did not improve results obtained from

the initial study. It appears that the Seasat SAR detects shorter

wavelengths than the wave refraction models predict. Possible

reasons for this discrepancy include a bias in the manner the Seasat

SAR imaged refracting coastal waves and the presence of additional

tidal or along shore currents- in the Cape Hatteras region.
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3

IMAGE ENHANCEMENT AND DIGITAL SPECTRAL ANALYSIS
TECHNIQUES FOR SAR OCEAN WAVE DATA

This chapter of the report considers several image enhancement

and spectral analysis techniques to extract gravity wave information

from Seasat SAR data. The first section of this chapter addresses

the question whether special wave motion compensation adjustments

performed during image processing change the character of spectral

estimates obtained from fast Fourier transform (FFT) analysis.

Next, a section is presented on the use of advanced data process-

ing techniques to extract spectral information from SAR wave data.

This section evaluates a technique referred to as a semicausal (SC)

model used to extract estimates of dominant wavelength and direction 	
a

from SAR data. First, a general discussion on the semicausal model

is presented. Next, the results of an analysis of Seasat SAR data

from Rev. 974 using the SC model are compared to those obtained from

optical and fast Fourier transforms. Then, the performance of the

semicausal model using different sampling rates and reduced aperture

sizes (i.e., fewer wave trains included in the data set), and the

effects of system noise on the SC model are discussed.

The next section of this chapter investigates how well the Seasat

SAR can discriminate two distinct wave fields in an image. For this

study, a test site was chosen where diffraction around an island

occurred, causing two wave fields to be present within the scene.

3.1 MOTION COMPENSATION ADJUSTMENTS AND THEIR EFFECTS ON SPECTRAL
ESTIMATES

Studies using aircraft SAR data have shown that the visibility

or detectability of gravity waves is often sensitive to motion com-

pensation adjustments made during the processing of the SAR signal

histories (Kasischke, et al., 1979; Kasischke and Shuchman, 1981).

5
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Because these motion compensation adjustments are inversely propor-

tional to the velocity of the SAR platform, it was theoretically

determined by early Seasat investigators that the motion adjustments

may be necessary for optimum contrast wave imagery if the SAR is

processed to full resolution. Furthermore, it was determined by
Shuchman and Zelenka (1978) that the adjustment, if necessary, would

be quite small and the effect on the SAR wave imagery quite subtle.

The purpose of the 'present investigation was to determine the

sensitivity of Seasat SAR data to motion compensation adjustments.

This was accomplished in two separate experiments. First, wave de-

tectability or contrast was measured as a function of both the range

telerotation adjustment and azimuth focus shift adjustment. Next,

SAR imagery processed with various telerotation and focusadjustments

were digitized and fast Fourier transformed to determine if the

spectral estimates varied.

3.1.1 BACKGROUND AND THEORY

'The initial work quantifying the effects of target motions on

the synthetic aperture radar imaging mechanism was performed by Raney

(1971). SARs are sensitive to both the azimuth and range velocity

components of moving targets-. A moving target being imaged by the

SAR will sometimes result in a degraded image of that target.

A velocity in the range (line-of-sight) direction affects the

SAR imaging process in several ways. One such effect is an azimuthal

displacement of the moving targ'et's image relative to a stationary

target's image. When a target is accelerating in the range direc-

tion, this azimuthal displacement changes during the imaging time,

resulting in a smearing in the azimuthal direction. Neither one of

these effects is correctable during processing.

A range velocity component will also cause a smearing or defocus-

ing in the range direction due to a rotation of the phase history of

x
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the target. This effect can be corrected for during correlation of

the data by rotating the lenses in the optical processor as described

below.

Finally, motion of a SAR imaged target in the along track direc-

tion results in a defocusing of the image in the azimuthal direction.

This defocusing can be compensated for during processing by adjusting

the focal length of the azimuthal lens. For a more detailed dis-

cussion of the problems associated with imaging moving targets with

a SAR, the reader is referred to articles by Shuchman (1981) or

Shuchman, et al. (1981).

Shuchman (1981) presented equations to calculate adjustments to

use during processing of the signal histories for the range and azi-

muth velocity components present in gravity waves. These velocity

adjustments are directly proportional to the velocity of the target

and inversely proportional to the velocity of the SAR platform. The

motion compensation adjustments are of two types: telerotation ad-

justments which compensate for motion in the range (line-of-sight)

direction and focus shifts which compensate for motion in the azimuth

direction.

The calculation for the telerotation adjustment (Shuchman, 1981)

is:

VrP
^ = V

ACQ

where	 is the rotation angle for correction,

V  is the line-of-sight velocity of the target,

VAS is the SAR platform velocity,

P is the azimuth scale factor, and	 j

Q is the range scale factor.

According to this calculation, SAR imagery of gravity waves

should be most visible when the correction in Eq. (1) is used during
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processing of the SAR signal histories. Previous studies by

Kasischke, et al. (1979) showed that greater detectability of range

traveling waves (as indicated by modulation depths) was obtained from

aircraft SAR data collected at the Marineland Experiment when a tele-

rotation correction was used which adjusted for the phase speed of

the waves. Recent studies by Kasischke and Shuchman (1981) have

shown similar results using aircraft SAR imagery of wind driven waves

on Lake Michigan.

In a similar fashion, an adjustment can also be made to compen-

sate for azimuth velocity distortions in the SAR data. As derived

by Shuchman and Zelenka (1978), the focal length (F o) for SAR

processing is defined as:

F	
Ra	

of ^ 2	

(2)o 
2M2ao 

VAC

where R is the slant range to the target,

a is the radar wavelength,

zo is the optical processor wavelength,

M is azimuth demagnification of the optical processor, and

of is the film velocity.

	Using the focal length (Fo ) calculated in Eq. (2), the shift 	 3

in focal length (0) produced by a moving target is defined as

i
v

sF = 
2F VA	

(3)

AC

	where vA is the target velocity parallel to the SAR platform 	 1'

direction.	
s

i

3.1.2 EXPERIMENT

The above mentioned motion compensation calculations were tested

on Seasat SAR data collected" during the Joint Air/Sea Interaction r_

8



(JASIN) experiment (Allan and Guymer, 1980). Two examples were

selected: one where range traveling waves were present and a second

with azimuth traveling waves

Seasat SAR imagery from Revolution 762 was optically processed

at ERIM using a variety of different telerotation settings. Revo-

lution 762 data used in this experiment were collected northwest of

the coast of Scotland in the North Atlantic at 06:50 (GMT) on 19

August 1978 and had a range traveling wave field present. An example

of the 25 meter resolution SAR imagery from this orbit and the re-

sultant two-dimensional Fourier transforms (both optical and digital)

are presented in Figure 1.

Surface measurements, made coincident with and near to the SAR

ground coverage area, indicate a wave field with a dominant wave-

length of 210 meters (phase speed, C = 18.1 m/sec) with a significant 	
i

wave height (H 1/3 ) of 5.5 meters from 240° (T) was present at this

time. The sea truth also reported a wind speed of 12 m/sec from 1860

(T). Spectral measurements derived from SAR data (OFTs) result in a

dominant wavelength of 241 meters (C = 19.4 misec). The telerotation

adjustment (0 8.9 x 10
-4
 radians) calculated for Revolution 762

data assumed the gravity waves had a phase speed of 19.4 m/sec. Re-

volution 762 data were processed using the following telerotations:

-90, -70, -50, -30, -20, -0, 0, +0, +20, +30, +50, +70, and +90. A

negative (-) telerotation assumes the waves are moving towards the

radar (along the line-of-sight) while a positive (+) telerotation

assumes the waves are moving away. (The waves present during Rev.

762 were moving away from the SAR look direction.)

Wave visibility was then measured on this imagery using a re-

cently developed wave crest-to-trough contrast measurement called a,

peak-to-background ratio or PBR (see Kasischke, 1980; or Kasischke

and Snuchman, 1981). Each PBR presented in this report represents

r{
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the average of five separate measurements. Fron , these five measure-

ments', the standard deviation of the mean was calculated. Also, a

95 percent confidence interval was calculated as 2a x , where ax

was calculated (after Shaeffer, et al., 1979) ass

°x = sx
	

(4)
n

where 
s 	

the standard_ deviation of the mean, and

n = the number of samples.

The dependence of wave visibility on telerotation can be determined

from a graph of PBR versus.

The next part of this experiment involved studying the effects

of telerotation adjustments on the spectral estimates derived from

these data, Results of SAR aircraft studies indicate that gravity

waves are usually not detectable on SAR imagery when the telerotation

adjustment made is greater than 20 away from the optimum setting

(Kasischke and Shuchman, 1981). since results (discussed below) of

€	 the Seasat experiments showed that the optimum setting for these data

(	 are at 0 (or stationary focus) it was decideu to di itize SAR data9

from"the -20, -0, 0, 0 and 20 imagery.

All digital data (except for the JPL-digital data presented in
r

Appendix B) discussed in this report were generated by ERIM's hybrid

optical-digital processor (Ausherman, et al., 1975). The SAR image

film (either ERIM or JPL produced) of ocean gravity waves were digi-

tized using a 12.5 meter by 12.5 meter pixel. A 1024 by 1024 pixel

area was digitized and the data recorded on a computer compatible

tape (CCT).

The digitized SAR ocean wave imagery was then analyzed using a

standard' computer package developed by ERIM under sponsorship of the

Office of Naval Research (see Shuchman, et al., 1979x): A 512 by

512 pixel subset of the digitized data is extracted from the CCT.

t
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Usually the SAR data are geometrically rectified, but since both the

JPL and ERIM data had been previously geometrically corrected when

the data were optically correlated, this step was not necessary.

The data are then corrected for long-period variations (such as power

doss or antenna gain) to remove D.C. bias, smoothed using a (sin x)/x
filter on the data to reduce radar speckle and resampled to 256 by

256 pixels. This resumpling results in a pixel size of 25 by 25

meters. These data are then inputted to either a fast Fourier trans-

form or semicausal program to generate spectral estimates from the

SAR data.

When the digital SAR data are fast Fourier transformed, the re-

sults are typically displayed as two-dimensional contour plots.
Presented in Figure 2a is a typical two-dimensional contour plot
produced from an FFT of SAR ocean wave data. Each of the three con-

tour levels in Figure 2a represents 3 dB of energy from the SAR

image. These three contour levels range from -3 dB to -9 dB (i.e.,

r	 one-half to one-eighth of the peak value). Although this FFT pro-
p.

duces no wave height information, the two-dimensional contour plot
5

i
does accurately portray wave number and wave direction information.

}

	

	 The x-axis of the plot represents azimuth direction and the y-axis

the .range direction, with the units on the axes being wave number

i (k).' By finding the center of the highest contour level in the

spectrum, and measuring 
krange 

and 
kazimuth' 

an estimate of the

dominant wave number (and hence wavelength) can be calculated, as

can an estimate of the wave's orientation. By knowing the SAR plat-

form's direction, an estimate of the dominant wave direction can be

calculated. Note, there is still a 180 ambiguity in the wave

direction data.

'	 The information in the two-dimensional FFT spectrum can be more
a

rigorously analyzed. To do so, one-half of the plot in Figure 2a is
=i

summed digitally over specified wave number'ranges to produce a one-

4	 dimensional wave number spectrum, as is shown in Figure 2b. Finally,
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a one-dimensional wave direction spectrum (usually at the peak wave

number) can be plotted, as is presented in Figure 2c. The digital

output from these plots can be consulted to extract exact estimates

of dominant wavelength and direction.

Seasat SAR imagery from Revolution 1087 was optically processed

i using a variety of different azimuth focus sifts. An example of

this data is presented in Figure 3. No sea-truth was collected for

this pass, but it is clear from Figure 3 that the waves are nearly

azimuth traveling. The optical Fourier transform of this data indi-

cates a 299 meter dominant wave is present (C = 21.2 m/sec). A focus

shift (aF = P = 1.82 x 10-3 m) was calculated assuming the waves

had a phase speed of 21.2 in/sec. Revolution 1087 data were processed

using the following focus shifts: -4P, -3P, -2P, -P, 0, P, 2P, 3P,

4P. A negative (-) focus shift assumes the waves are moving in the

same direction as the SAR platform while a positive (+) correction

assumes the waves are moving in the opposite direction. (Since no

sea truth was available, the assumption was made that the waves were

moving towards the Scottish Coast, therefore opposite to the SAR

platform direction.)

}	 Peak-to-background	 ratio	 measurements	 were	 obtained	 for	 the

various settings.	 Again,	 data from the -2P,	 P, 0, +P,	 +2P settings

were digitized and fast Fourier transforms of the data generated.
i

3.1.3	 RESULTS	 1.
z

Table	 1	 and Figure 4 summarize the telerotation	 versus wave	 -	 I
contrast measurements.	 Table 1 presents the average (n = 5) PBR and

4	 the	 standard	 deviation,	 and the 95 percent confidence 	 interval	 for

.^	 each	 telerotation	 setting.	 A	 statistical	 analysis	 of	 variance
(Sheffe,	 1959)	 of	 these	 data	 reveals	 there	 is	 essentially no	 dif-

ference between the +20, -20 and 0 readings. 	 Significant differences

in	 wave	 detectability did	 not	 occur	 until	 a	 *50	 telerotation	 wast 

14
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FIGURE 3. SFASAT SAR IMAGERY OF AZIMUTH TRAVELING WAVES
COLLECTED DURING REV. 1087, 11 SEPTEMBER 1978.
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TABLE 1
PEAK-TO-BACKGROUND RATIO VERSUS TELEROTATION SETTING,

SEASAT REVOLUTION 762

Telerotation
Setting

+9b

+76

+56

+36

+26

+6

0 (Stationary Focus

-16

-20
_36

-50
-76

-96

Average	 Standard
PBR	 Deviation

95 Percent
Confidence Interval

0.5

1.0
0.9
2.7

3.5

2.0

2.7

2.8

5.9

3.2

0.7

1.4
0.2

6.7 0.6

11.1 1.1

17.1 1.0

23.3 3.0

30.4 3.9
31.2 2.3

33.3 3.0

33,.3 3.2

28.9 6.7

25!.3 3.5

12'.1 0.7

8.2 1.6

2.9 0.2

f F

r
A
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used. Even so, range traveling waves were still visible on SAR

imagery that was processed using telerotation adjustments of —70 and

+70, indicating that a certain degree of latitude can be used when

processing SAR imagery of range traveling waves from mid-ocean areas

with no land present to focus on.

Table 2 lists the dominant wavelengths and directions obtained

from the Rev. 762 SAR imagery processed using the different tele-

rotation settings. Figures 5 through 7 present the two—dimensional

Fourier transforms and the one—dimensional wave direction and wave

number spectra generated from the -20, 0 and +20 imagery. We can

see from these figures and table that the SPR derived estimates of

dominant wavelength and direction do not change as a- function' of

telerotation and also that the shapes of the one—dimensional curves

do not significantly change.

Table 3 and Figure 8 summarize the PBR versus the azimuth focus

shift results. Table 3 presents the average (n = 5) PBR, the Stan-

dard deviation, and the 95 percent confidence interval for each focus

setting. An analysis of variance of these data indicates the highest

PBR occurred at the 0 (stationary focus), with all the other settings

being significantly lower. Waves were still visible out to the +4P

L,'and —4P focus s ^ tf s.

Table 4 lists the dominant wavelength and direction obtained from

the digitized SAR imagery using different focus shift settings. Fig

ures 9 through 11 present the two—dimensional Fourier transforms and

3 the one—dimensional wave direction and wave number spectra generated

from the —2P, 0 and +2P focus shifts. Once again, we can see from

these figures that the SAR derived estimates of dominant wavelength

and direction do not change significantly as a function of focus

shift.

'

	

	 In summary, this experiment has shown that SAR data collected by

the Seasat satellite is relatively insensitive to motion compensation

Jn
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TABLE 2
FAST FOURIER TRANSFORM ESTIMATES OF DOMINANT -

WAVELENGTH AND DIRECTION AS .A FUNCTION
RANGE TELEROTATION ADJUSTMENTS FOR

SEASAT REV. 762
3

Telerotation	 Dominant	 Dominant
Setting	 Wavelength	 Direction

-20	 259 m	 2270
f	

—^	 259 m	 2270

	

0 (Stationary Focus) 	 259 m	 227°

+0	 259 m	 2270
i

+20	 259 m	 2270

r

4

1
e

1
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FIGURE 6. ONE-DIMENSIONAL WAVE NUMBER SPECTRA USING VARIABLE
TELEROTATION SETTINGS.
(Seasat Rev. 762, 19 August 1978.)
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TABLE 3
PEAK-TO-BACKGROUNO RATIO (PBR) VERSUS AZIMUTH

-FOCUS SHIFT, SEASAT REVOLUTION 1087

Average Standard 95 Percent
Focus Shift PBR Deviation Confidence Interv al

+4P 6.0 1.3 1.2

+3P 10.2 1.4 1.2

+2P 12.7 2.3 2.0

+P 11.8 0.8 0.7

0 (Stationary Focus) 18.4 2.6 2.3

E	 —PF 14.7 2.8 2.5
{

—2P 13.5 1.8 1.6

—3P
a

8.3 0.9 0.8

—4P 6.0 0.9 0.8

F
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TABLE 4
FAST FOURIER TRANSFORM ESTIMATES OF DOMINANT
WAVELENGTH AND DIRECTION AS A FUNCTION OF

AZIMUTH FOCUS SHIFT FOR
SEASAT REV. 762

Azimuth
Focus

Setting	 Wavelength	 Direction'

-2R	 289 m	 2540

-P	 289 m	 2530

0 (Stationary Focus)	 289 m	 253°
3

+P	 306 m	 2520

+2P	 306 ,m	 2500

i
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FIGURE 11. ONE-DIMENSIONAL WAVE DIRECTION SPECTRA USING VARIABLE
AZIMUTH FOCUS SHIFTS.
(Seasat Rev. 1087, 11 September 1978.)
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adjustments, as was predicted in theoretical studies. This indicates

that given a stationary target to focus on (i.e., land), optimum

imagery of gravity waves can be generated without making special

f
motion compensations. Even when non-stationary settings were used

to process Seasat SAR data, comparable spectral estimate, of dominant

wavelength and direction were obtained.

3.2 GENERATION OF SPECTRAL ESTIMATES FROM SEASAT SAR DATA

In this section, the utility of the semicausal model is further

investigated using Seasat data collected during Rev. 974 and through

the use of reference functions. First, the semicausal model is

briefly discussed and results from previous studies summarized.

Next, spectral estimates of dominant wavelength and direction ob-

tained from optical Fourier transforms and fast Fourier transforms

are presented to compare to the SC estimates. In addition, the ef-

fects of varying the sampling rate and the aperture size on the

spectral estimates given by both the SC model and fast Fourier trans-

form techniques are observed and a comparison made between the two

f
techniques. Finally, the SC model is evaluated using a reference

function with variable noise levels.

F	
3.2.1 BACKGROUND

As was discussed previously, the spectral analysis technique

which is most commonly utilized in determining the wavelength and

direction of ocean waves from SAR data is the two-dimensional Fourier

transform. The Fourier transform is adequate when a relatively large

aperture (image size) is used. Usually, ten cycles of wave data are

needed to resolve the waves. When the aperture is reduced in size,

the Fourier transform is often degraded in resolution and this may

cause difficulty in diagnosing waves. Also, 'when two wave components

are sufficiently close infrequency or direction, the Fourier trans-

form cannot resolve them.

f	
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In many oceanographic	 analyses,	 it	 is	 important	 to	 be	 axle	 to

either discriminate between two wave fields or use reduced aperture

sizes to study wave transformations over short distances. 	 An example

of	 discriminating	 between	 two	 wavefields	 is	 the	 case	 where	 two

sources of waves enter the same region.	 An example where a reduced

aperture size is needed is when refraction of waves occurs in coastal

regions	 and	 the waves	 change directions 	 and wavelengths	 over very

short periods.	 To accurately monitor these changes, smaller aperture

sizes are necessary.

Fine	 resolution	 while	 using	 small	 apertures	 (or	 a	 few	 wave

i
cycles) is one of the attributes of the new high resolution spectral

analysis	 techniques.	 Such techniques show promise for more accurate

analysis of refracting or diffracting ocean waves. 	 These techniquesY	 9	 9 q

are	 based	 on	 autoregression,	 or,	 its	 equivalent,	 maximum	 entropy

Fanalysis, and	 are	 continually being	 improved	 upon	 by many	 contri-

butors	 (Burg,	 1975;	 Jain	 and	 Ranganath,	 1978;	 Swingler,	 1980).	 In

{ this section, we have applied one of these spectral analysis methods
t

to	 radar	 images	 of	 ocean	 waves,	 and	 have	 additionally	 tested	 the

technique on synthetic data. The method used is termed "semicausal"

t	 (Jain and Ranganath, 1978) and is one of the first available two--

dimensional high resolution methods. A fuller discussion of the i
i	 semicausal model is given in Appendix A to this report, where the

t
derivation and algorithms of this method are presented.

During previous studies of the semicausal (SC) model (Shuchman,

et al., 1979), it was determined that it could be used to estimate F

dominant wavelength and direction from both aircraft and satellite

SAR data. The results of these earlier studies did not indicate con-

clusively whether the SC model was more beneficial than conventional

fast Fourier transform techniques and indicated `that more research

was necessary to determine the effects of noise,on the SC model.

f
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3.2.2 COMPARISON DATA BASE

The objective of the studies summarized in the following sections

a was to further examine the utility of the semicausal model using

Seasat SAR data. First it is necessary to develop a set of compari-

son data with which to evaluate the semicausal estimates.

Digital data from Rev. 974 were used in this analysis. An at-

tempt was also made to extract gravity wave information from JPL-

digitally processed Seasat SAR data of Rev. 974. But it became

apparent that these data had not been correctly processed. A more

complete discussion of these problems associated with the JPL digital

data are presented in Appendix B of this report.

Four areas from Seasat Rev. 974 were chosen to be used in the SC

model analysis. The positions of these areas, marked A, B, C, and

D, are shown in figure 12. To produce comparison data, OFTs and FFTs

of these areas were generated and analyzed to produce estimates of

dominant wavelength and direction. JPL optically processed data,

with a 40 meter resolution, were used in this study. The optically

processed imagery was digitized on ERIM's digital hybrid processor.

The two-dimensional FFT spectra and the resultant one-dimensional

wave number and wave direction plots are presented in Figures 13

through 16. Table 5 summarizes the OFT and FFT estimates of dominant

wavelength and direction from the four positions. An equivalent

ground area of 6.4 x 6.4 kilometers was used to produce each FFT

while an area of 7.5 x 7.5 kilometers was used to produce each OFT.

From Table 5, it can be seen that the estimates of dominant wave-

length and direction are all within t4 percent on wavelength and t2

on wave direction.	 Previous studies, (Gonzalez, et al., 1981;

Kasischke, 1980; Kasischke, et al., 1981) have established that the

estimates of dominant wavelength and direction produced from Seasat

SAR data from OFTs and FFTs compare favorably to those produced by

surface instrumentation. A recent summary by Vesecky and Stewart

(1981) of comparisons of Seasat SAR versus- surface instrumentation -
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FIGURE 13. TWO-DIMENSIONAL FAST FOURIER TRANSFORM AND ONE-DIMENSIONAL

SPECTRA FOR SEASAT REV. 974, POSITION A.

33

4



A
L,

L

O

d 1A
> Od
_ O

O

4

AIM

	

-0.10 -0.05	 0	 0.05 0.10

Wave Number (K)

Two-Dimensional Fast Fourier Transform

e
ai
e	 ,

_	

dr
>	 i

218	 254	 290	 326	 002	 038
t	 a

Angle a

One-Dimensional Direction Spectrum
s

C

C

d

N

0.0052	 0.0251	 0.0450	 0.0649	 0.0848	 0.104

Wave Number (K)

One-Dimensional Wave Number Spectrum
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SPECTRA FOR SEASAT REV. 974, POSITION B.
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7
t

TABLE 5
COMPARISON OF DOMINANT WAVELENGTHS AND DIRECTIONS

FROM OPTICAL FOURIER TRANSFORMS (OFTs) AND FAST
FOURIER TRANSFORMS (FFTs)

* OFT FFT
Posi tion Wavelength ;Direion	 Wavelength Direction

A 176 m 305*	 172 m 3070

$ 191 m 3060	 183 m 3080

C 196 m 315'	 196 m 313'

D 159 m 319*	 153 m 318*
1

See Figure 12.
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indicates that the two are within *15 percent on wavelength and fll°
on wave direction. Therefore, it was determined that the baseline

data accurately portrays the conditions present on the ocean surface

at the time of the Seasat overflight.

3.2.3 EFFECTS OF SAMPLING RATE AND APERTURE SIZE ON SEMICAUSAL
ESTIMATES

As previously discussed in Section 3.2.1, the expected advantage

of using the semicausal model instead of the fast Fourier transform
is that a smaller SAR data sample size is needed to 'produce estimates

of dominant wavelength and direction. This reduction of SAR. data

k
	 can be accomplished in two ways:

1. reducing the number of wave cycles sampled, and

j_	 2i taking fewer samples per wave cycle.

The first data reduction can be accomplished by using a smaller

aperture size, which essentially reduces the area and hence, the

number of wave cycles used to generate the SC or FFT estimate. Re-

ducing the number of wave cycles sampled has the advantage of reduc-

i, ng processing time (and therefore cost) and it enables the esti-

mation of wave parameters in areas where they are changing over a

few wave cycles, such as in shallow water areas where waves are

refracted.

Taking fewer samples per wave cycle can be accomplished by chang-

ing the sampling rate in the SC program. It has the advantage of

lowering processing times.

t	
Two experiments were conducted to evaluate these concepts. In

{ the first, the aperture size was held constant, while the sampling

rate was varied. In the second, the sampling rate was held constant

and the aperture size changed,

38



LERIM-_RADAR AND OPTICS DIVISION

i
For the first experiment, position B data were used with an

aperture size of 128 x 128 pixels. For an assumed wavelength of 183

meters, this would imply that approximately 17 wave cycles were in-

{	 eluded in the aperture. Three different sampling rates were tried:

	

(1) every pixel; (2) every other pixel; and (3) every third pixel. 	 1

These sampling rates are equivalent to 7 samples per wave cycle

(every pixel); 3.5 samples per cycle (every other pixel), and 2.3

r	 samples per cycle (every third pixel). The results of this experi-

	

ment are presented in Figures 17-19 and Table 6. From Table 6 it 	 }
can be seen that the SC and FFT estimates for each sampling size are

in good agreement.	 Figure 17 presents the two-dimensional wave 	 x '

Gspectra for the different sampling rates while .r1pres 18 and 19

present the one-dimensional wave number and wave direction spectra, a

respectively. The only discrepancy is for the SC estimate of wave

direction for the result which samples every pixel. The direction

estimates otherwise match the estimate produced from the comparison

	

data base quite closely. The wavelength data is all within approxi- 	 }

! matey *10 percent of the baseline estimate. The conclusion to be

drawn is that, when using a SAR image where waves are quite apparent

(such as position B of Rev. 974), reduced sampling rates down to -2.-3

samples per cycle will still produce reliable wave data for both the

FFT and SC models.

	

For the next portion of this study, the aperture size was reduced 	 i

while the sampling rate was kept constant at every other pixel.
t

_	 Aperture sizes used were 128 by 128 pixels ( -16 wave cycles); 64 by

64 pixels (-8 wave cycles); 32 by 32 pixels (-4 wave cycles); 16 x
16 pixels ( -2 wave cycles); and 8 by 8 pixels ( -1 wave cycle). The

above combinations were run for each test area. For position A, the
a

	data were first smoothed, and the full spectral analysis package run, 	 r

	

resulting in the two-dimensional spectra in Figure 20, and the one- 	 r

dimensional wave direction and wave number spectra in Figures 21 and

22, respectively. The SC and FFT estimates of dominant wavelength

and direction for position A are summarized in Table 7

}
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FIGURE 17. FAST FOURIER TRANSFORM VERSUS SEMLCAUSAL TWO-DIMENSIONAL
SPECTRA USING VARIABLE SAMPLING RATES. (A 128 x 128

t	 pixel area from Rev. 974, Position B was used. See
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TABLE 6
COMPARISON OF SEMICAUSAL SPECTRAL ESTIMATES VERSUS

FAST FOURIER TRANSFORM SPECTRAL ESTIMATES
USING VARIABLE SAMPLING RATES*

ppIinq. Rate

Every pixel

Every other pixel

Every third pixel

Samples/ FFT
Wave Cycle a e' a

7.0 207 m 306° 1'97 m

3.5 171 m 304 0 171 m

2.,3 187 m 309 0 187 m

SC
e—	

I

328°

306°

309

*Seasat Rev. 974, Position B data. A 256 x 256 pixel FFT of
this data resulted in a dominant wavelen gth of 183 m and a dominant
direction of 308° (T). A 128 x 128 pixel aperture (17.5 wave
cycles) was used to generate the data summarized in this table.
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Rev. 974, Position A was sampled at every other pixel
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FIGURE 20.	 FAST FOURIER TRANSFORM VERSUS SEMICAUSAL TWO-DIMENSIONAL
SPECTRA USING VARIABLE WAVE CYCLES PER APERTURE. 	 (Seasat
Rev. 974, Position A was sampled at every other pixel.
See Figure 13 for a 256 x 256-pixel 	 FFT of same area.)
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APERTURE. (Seasat Rev. 974, Position A was sampled at
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TABLE 7
COMPARISON OF SEMICAUSAL SPECTRAL ESTIMATES VERSUS

FAST FOURIER TRANSFORM SPECTRAL ESTIMATES
USING VARIABLE APERTURE SIZES*

FFT SC
Aperture Size	 Wave Cycles/Aperture A e a e

128 x 128 pixels 18.6 178 m	 3080 177 m 307°

64 x 64 pixels 9.3 178 m	 307 0 178 m 3120

32 'x 32 pixels 4.7 183 m	 302° 168 m 310°

16 x 16 pixels 2.3 366 m	 298 0 413 m 3020

8 x 8 pixels 1.2 not discernible 450 m 3080
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From Table 7, we can see that both the SC model and the FFTs pro-

duce comparable results to the comparison data down to a sampling

size of approximately 5 wave cycles per aperture (32 x 32 pixels).

The SC model does not appear to offer any significant improvement

over the FFT approach in the estimation of dominant wavelength and

direction, although the SC spectra appear to be smoother. The same

comparisons were run on data from positions B, C, and D and similar-

results obtained. These results are summarized in Appendix C to this

report.'

In summary, it appears that FFTs produce comparable spectral

estimates to those generated by the SC model. Results also show that

usin a 32 x 32 pixel aperture sizeg	 p	 p	 (- 5 wave cycles) with either

the SC model or an FFT produces nearly the same estimate of dominant

	

wavelength and direction as does a 256 x 256 pixel FFT. This some- 	 Y.
i

what unanticipated result appears to reinforce the utility of the

FFT technique down to smaller aperture sizes than had been previously

expected.

E	 Another factor r:o consider in the SC/FFT comparison is the qual-

	

ity of the SAR-wave imagery. 1h2 gravity wave field present in the	 I

Cape Hatteras region was clearly imaged by the Seasat SAR in the

areas where digital imagery was generated. It was not surprising

when the FFT analysis using a reduced number of wave cycles or using

a reduced number of samples per cycle produced comparable estimates

(to the full 256 x 256 pixel FFT) of dominant wavelength and

probably not be	

direc-

tion. It would p	 y	 possible to produce FFT estimates	 !

	

from SAR imagery where waves were not as clearly evident on SAR 	 rl

imagery as they were on Rev. 974 imagery. Whether or not the SC

model could produce estimates of wavelength and direction from such

data represents an area of future research.
i,

i!.
s
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3.2.4 EFFECTS OF NOISE ON SEMICAUSAL SPECTRAL ESTIMATES

Because the two-dimensional fast Fourier transform has been in

existence and has been intensively studied for many years, the re-

sponse of this spectral estimation technique to various perturbations

is quite well known. An increase in Gaussian noise, for example,	
3

causes a widening in the main lobe of the two-dimensional spectrum. 	 a

The width of the lobe, taken as the one-half power width (i.e., -3

dB power width) defines the Rayleigh resolution limits of the spec-

trum'; a widening of the main lobe therefore decreases the precision

of the FFT technique. If enough noise is present, the position of

the lobe can shift as well. The effectsof noise on the semicausal 	 j

model are not well known and it was the intent of the present study

to investigate them.

For the purposes of this study, a synthetically generated wave

field (reference function) was used. Different levels of Gaussian

noise were then added to this synthetic wave field. The signal-to-

noise ratios (SNRs) tested were: 12 dB, 6 dB, 3 d6, 0 dB, -3 dB, --6
	 1

dB and -9 dB. Two-dimensional FFTs and SC contour plots were gener-

ated for each SNR level and are presented in Figure 23. To generate

these estimates, only six samples and five-eighths of a wave-cycle

were used. In Figure 23, we have plotted only the one-half power

contours; therefore, the diameter of the contour represents the 	 x
R	 relative resolving power of the technique (i.e., either FFT or SC). 	

4y

We can see from Figure 23 that even in the worst case where the

spectrum is still distinguishable (i.e., -3 dB), the widening of the

main lobe in the SC spectral estimate, caused by increased noise, is
less than the widening of the FFT main lobe with identical added

noise values. That is, in these examples, the main lobe of the semi-

causal spectrum is always significantly narrower than that of the
	

I

FFT.

i
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When a small number of "noisy" samples is used in the -,.ectral

estimate, the spectrum estimated by the SC method varies somewhat

depending on the set of samples selected, even though the underlying

process is uniform. Figure 24 illustrates this point. The two—

dimensional main lobe contours in Figure 24 were all generated using

a data set with a SNR of 0 dB. In Figure 24a, the area within the

main lobe of the SC estimate is approximately 1/400 of the area in

the FFT lobe. In Figure 24b, this area ratio is about 1/7. Note

that the FFT main lobes are essentially identical, apparently because

the FFT does not resolve the differences between the noise—

contaminated sample sets. In no case were the variations in the SC

spectra such that the main lobe became larger than the main lobe of

the FFT.

The results presented in this section indicate that Gaussian

noise appears to have a less destructive effect on the resolution of

the SC model than the FFT technique when a very short, truncated

sinusoid is spectrally estimated. The variation of the SC main lobe

can be large for different random noise inputs at identical SNR

levels, but these variable main lobe widths are still smaller than

those obtained with a fast Fourier transform.

i

3.3 MULTIPLE WAVE TRAIN DISCRIMINATION

This section of the report addresses two basic questions regard-

ing the Seasat SAR's ability to resolve multiple gravity wave fields

on ;a single image. The first is the SAR sensor's ability to suc-

cessfully image and resolve two or more wave trains within a scene.

The second is whether fast Fourier transform (FFT) spectral analysis

techniques have sufficient resolution to identify multiple gravity

wave trains imaged by SAR.
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FIGURE 24. EXAMPLES OF THE EFFECTS OF RANDOM VARIATIONS IN THE BACK-
GROUND GAUSSIAN NOISE ON TWO-DIMENSIONAL SPECTRAL
ESTIMATES OF A SYNTHETIC WAVE FIELD. 	 j
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presence of two discrete wave systems present within the test site.

Coincident (temporal and spatial) Seasat SAR coverage imaged either

a single wave group or no waves for these cases.

The presence of multiple wave systems can result from several

oceanographic processes, including: (1) the crossing of wave trains

(swell) generated at different locations, (2) ocean swell passing

through a region of wind—generated waves, and (3) complex diffraction

occurring around islands. The relative inability of the Seasat SAR

to detect multiple wave systems during JASIN raises doubts as to its

utility in this application.

Beal (1980) detected two wave systems present in a section of

Seasat Rev. 1339 using digital techniques. These waves had lengths

of 177 and 93 meters, and were sep-crated 20 0 in direction. Clearly,	 1

the Beal SAR observed waves were separated adequately in length to
	

)

be detected. This however does not define the differences necessary

in wave direction between two wave systems for them each to be de-

tected. It is the directional resolving ability of the FFT technique

using SAR data as an input that will be investigated here.

. For this study, a portion of Seasat Rev. 1049 was used and is

shown in Figure 25. The two islands in the image are St. Kilda and

Boreray which are located approximately 25 km off the coast of Scot-

	

land. Figure 26 is a hydrographic chart of this test site. During 	 j

this revolution, surface wave measurements made approximately 250

kms away indicated the presence of a swell with a dominant wave-

length of 244 meters, significant wave height (H
1/

3) of 5.0

	meters, and a direction of propagation of 84 (T). These waves are 	
3

visible in the SAR imagery and are observed to diffract as they pass

the islands. The diffracted components appear to cross downwave of

the islands. Classical. wave refraction has been ruled out as a

major cause of thin wave bending because of the large depth values

present very close to shore.
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Recall that wave diffraction is the leakage of wave energy in a

direction perpendicular to wave propagation. This phenomenon allows

detectable wave amplitudes to be found 'inside the shadow region de-

fined by geometrical optics. Diffraction does not have any appreci-

able effect on gravity wavelength.

To study the ability of Seasat SAR to directionally resolve more

than one wave component, a section of the imagery shown in Figure 25

was digitized and fast Fourier transforms produced at five locations.

Figure 27 shows the location of the digitized area as well as the

locations of the five FFTs (areas 1-5). Contour plots produced from

these ',FTs are shown in Figure 28, and are summarized in Table 8 with

respect to dominant wavelength and direction, as well as secondary

wavelengths and directions when present. These results are also

shown schematically by construction of wave orthogonals in Figure 29.

From these results, it appears that only one wave component is

	

r	 present in areas 1, 2, and 5. This is expected since these areas

are not in the diffraction region.. Areas 3 and 4 however do appear

	

k
	

to contain two wave components based on analysis of the digital

transforms. Enlarged contour plots from these two areas are shown

t
	 in'. Figures 30 and 31. Examination of these enlargements indicates

E

	

	

the spectral estimate from area 4 (Figure 31) clearly detected two

discrete components. These two wave trains have equal spectral in-

i tensity as shown by the contour plot. Area 3 (Figure 30), on the

other hand, has a clearly defined dominant wavelength and direction,

and a less-defined secondary component. This is probably a result

of this area being located only partially in the island "shadow";
region.

To absolutely discriminate two wave components in a spectral

estimate, they must be separated by a minimum of their -3 dB contour
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TABLE 8
FAST FOURIER TRANSFORM SPECTRAL ESTIMATES FOR THE

FIVE AREAS SHOWN IN FIGURE 27 -

Dominant Secondary.
Are a x a e

1 300 m	 80° --- ---

2 300 m	 780 --- ---

3 280 m	 880 330 m 1010

4 300 m	 620 300 m 850

5 300 m	 770 ---- ---
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average directional width at the —3 dB contour of about 20 degrees.
For this data set, it therefore appears that two wave trains present

in a transformed region would have to be separated by a minimum of

20 degrees to be detected using the spectral estimation process em-

ployed here. This is supported by area 4 where two wave trains were

discriminated varying 23 degrees in direction. The reader should be

reminded that this —3 dB criterion holds for all cases. When waves

are not imaged as clearly as those presented here, typically the

directional spread of the —3 dB contour increases, thereby reducing

the resolving ability of the spectral estimate.

In summary, it appears that Seasat SAR can directionally resolve

more than one wave component. Due to the synoptic capability of the

Seasat SAR, we were able to track the waves over 25 km, thus allowing

us to observe: (1) the waves prior to diffraction, (2) the islands

causing diffraction, and (3) the shadow region downwave of the is-

lands where diffraction effects are present.

3.4 SUMMARY

The results presented in part one of this report may be summa-

rized as follows:

1. Wave spectral estimates obtained from Seasat SAR data are

not adversely affected by motion effects,_ and are not sig-

nificantly improved by making compensations for these motion

effects.

2. On the basis of synthetically generated wave data with

Gaussian noise added, the semicausal spectral estimation

technique appears to yield more accurate results than the 3

FFT when small apertures are used, but

3. Using actual Seasat SAR data, the spectral estimates obtained

from the semicausal technique are not significantly better

than those obtained from FFT methods, even when the aperture

size is reduced to approximately five wavelengths.
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4. Two wave trains within a Seasat SAR image can be resolved

using FFT methods if their propagation directions are separ-

ated by at least 20 degrees.

It should be noted that results (3) and (4) were obtained using
Seasat data where the wave trains were very clearly imaged. It is

possible that in cases where the wave im..ge is less clearly defined,

the semicausal spectral estimation technique may yield results

superior to the FFT. In such cases also, the directional resolution

may be reduced so that a separation of more than 20 degrees is needed

to detect more than one wave component.

It is not known at the present time whether the SC model yields

r,ore accurate (higher resolution) directional and wave number infor-

m^:ion than the FFT. This is because there is no presently available

seG, ` truth accurate enough to answer this question. Additionally..

very; high resolution directional and wave number information is

needee if we are ever to calculate currents using SAR data and wave/

current interaction models. The SC spectral analysis method may, in

some cases, yield slightly finer directional information than the

FFT.

In view of the demonstrated utility of the optical Fourier trans-

form technique for the measurement of the dominant wavelength and

direction and the relatively high cost of generating fast Fourier

transforms, the OFT technique was selected for use in the case study

presented in part two of this report. This study is described in

the following section of this report.

i

tt
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4
WAVE REFRACTION STUDIES

The purpose of this study is to investigate the capability of a

spaceborne, imaging radar system to detect subtle changes in the

propagation characteristics of ocean wave systems. Specifically, an

evolving surface gravity wave system, emanating from hurricane "Ella"

and propagating towards Cape Hatteras, North Carolina formed the

basis of this case study. This wave system was successfully imaged

by the Seasat Synthetic Aperture Radar (SAR) during Rev. 974 on 3

September 1978.	 The ground coverage of the Seasat SAR for Rev. 974

in the Cape Hatteras region is presented in Figure 32.

The	 acquisition	 of	 this	 comprehensive	 data	 set	 and	 subsequent

analyses	 have	 resulted	 in	 the	 study of three	 phenomena	 associated

with the	 propagation of ocean 	 surface wave	 systems:	 the	 generation

of	 the	 gravity	 waves	 from	 a	 hurricane,	 the	 interaction	 between

gravity waves and a major	 ocean current,	 and the refraction of the

gravity waves as they entered shallow water. 	 To study these pheno-

mena, the following tasks were undertaken:	 (1) accurate location of

the generation region of these wave trains by hindcast projections;

(2)	 detection	 of	 subtle	 changes	 in	 ocean	 surface	 wave	 propagation

direction and wave number for a spatially evolving wave system; 	 (3)

measurement of the effect of a major ocean current system (the Gulf

Stream)	 on	 the	 propagation	 characteristics	 of	 surface	 waves;	 (4)

mapping of the magnitude and direction of major ocean current systems `'

from these observed wave/current interactions; and finally (5) obser-

vation of bathymetric 	 refraction	 in	 shallow water,	 and	 ultimately,

-extraction of depth information from these observations.	 This docu-

mentation	 and evaluation	 of	 Seasat	 SAR	 ocean	 surface	 wave	 imaging

capability in each of these five tasks represents a definitive state-

ment as	 to the potentials of a spaceborne microwave imaging system

to provide routine, accurate, and reliable estimates of the dynamics

of the upper ocean on a global scale,_
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4.1 BACKGROUND

The successful completion of the five tasks outlined above can

be largely attributed to the recent development of two ocean remote

sensing tools. These are an analytical wave/current interaction

model initially developed by Phillips (1981) and refinement of two—

dimensional, Fourier transform techniques applied to ocean wave re-

mote sensing (Shuchman, et al., 1979a). The Environmental Research

Institute of Michigan (ERIM) has utilized these state —of -th.e=art

techniques to investigate the spatial evolution of ocean surface

gravity wave propagation.

During the initial ERIM study of Seasat SAR gravity wave data

collected off Cape Hatteras during Rev. 974, Shuchman, et al. (1979)

demonstrated it was possible to monitor the changes of wavelength

and propagation direction of a gravity—wave field in coastal regions

with Seasat SAR. This was accomplished by comparing depths obtained

from navigational charts to depths calculated from gravity wave

shoaling models which used SAR estimates of wavelength *and direction

as inputs. It should be noted that these results were obtained using

optical Fourier transforms (OFTs) of Jet Propulsion Laboratory opti-

cally correlated SAR data.

In the previous section of this report, work was presented which

evaluated various analysis techniques to precision process Seasat

SAR data from Rev. 974. The investigation, utilizing scatterer

motion compensation techniques to enhance Seasat SAR images of ocean

waves, experimentally determined that special motion adjustments

during processing of the SAR signal histories are not necessary to
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Also discussed in the previous section was a high resolution,

two—dimensional, spectral analysis technique, the semicausal (SC)

model. The SC model investigation indicated that, given Seasat SAR

data with its resolution of 25 meters and aperture sizes which

generally include two wave trains or more, semicausal estimation

techniques have no apparent advantage at the present time over the

use of fast Fourier transform techniques. Furthermore, assuming that

the same aperture size is used, SC methods presently possess a dis-

advantage with respect to higher computation cost.

The results of spectral analysis presented in the previous sec-

tion further indicated the following generalizations: (1) OFT esti-

mates of dominant wavelength and direction do not significantly vary

from those produced from FFTs; and (2) fast Fourier transform analy-
sis can be used on Seasat SAR data to differentiate between two dis-

tinct wave trains present within the same area. Thus, based on image

enhancement and spectral analysis work, ERIM has confidence in its

ability to properly analyze both film as well as digital products

from Rev. 974.

4.2- METHODOLOGY

The purpose of this case study of gravity waves imaged by the

Seasat SAR during Rev. 974 is to document and explain, through ocean-

ographic theory, the observed changes of gravity waves as they propa-

gate from deep water, across the Gulf Stream, and eventually into

shallow water. The initial (first year) study revealed significant

variations in the SAR derived wave field which could not be totally

accounted for using only bathymetric wave refraction theory. In

particular, the direction of propagation of the deep water waves

varies considerably throughout the imaged scene. It was decided to

divide this wave study into two parts: (1) analysis of deep water

(>200 m depth) wave transformations; and =(2) further analysis of

shallow water (<200 m depth) wave transformations.
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The deep water analysis explores reasons for the observed dra-

matic change in the gravity wave field characteristics in the deep

water areas east of Cape Hatteras on the day the Seasat GAR data was

# collected. Reasons explored include gravity wave interactions with

the Gulf Stream and the spatial variation in the evolving gravity

wave field generated by hurricane Ella.

The shallow water (<200 m depth) wave analysis which follows in-

c,ludes comparing the Seasat observed wavelengths and directions to

those obtained from a sophisticated computer—based wave refraction

program.	 In addition, more accurate (than last year's analysis)

water depth information was obtained from NOAH.	 Therefore, the wave

refraction model used last year was also run to determine if improved

results could be obtained.

As	 previously	 stated,	 the overall	 objective of this 	 section of

the report	 is to utilize the wave information obtainable from Seasat

f SAR	 imagery to	 document	 the	 complex	 oceanographic	 conditions which

were responsible	 for	 wave	 transformations	 observed	 on	 SAR	 imagery

collected during Rev.	 974.	 The source	 of the waves	 was	 identified

` both	 from meteorological	 records	 as	 well	 as	 by wave hindcast	 pro-

jections.	 Wave rays from this source were then constructed ..	 Using

the wave/current	 interaction	 theory	 of	 Phillips	 (1981),	 these	 pro-

jected wave rays were refracted through 	 the Gulf	 Stream,	 and were
E statistically compared to the observed set of wave rays 	 constructed

from SAR	 observed	 wave directions.	 Finally,	 using	 inputs	 from the

t deep	 water	 analysis,	 several	 shallow	 water "wave	 refraction	 models

were-run, and the results from these models were compared to SAR ob-

served data.

The major steps utilized for this wave refraction analysis are
7

presented in Figure 33 and are summarized below:

1. After visual inspection of the available Seasat SAR imagery

and considering known environmental -conditions, 116 posi-

tions were selected to ohtain twn_dimansinnal nntiral	 r
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2 The 116 optical Fourier transforms, which were concentrated

in the deep water region of Rev. 974, were produced and es-

timates of wavelength and direction were generated. From

these data, wave ray diagrams were constructed.

3. The source of the gravity wave field present off the coast

of Cape Hatteras at the time Seasat made its overpass was

identified as hurricane Ella. Wave rays from hurricane Ella

to Cape Hatteras were constructed on the basis of wave

travel time which was calculated using the group velocity

of the gravity waves.

4. The generating region for these waves was further confirmed

as hurricane Ella by hindcast projections which utilized

the SAR-derived directional spectra information.

5. Using the best available sea truth information, a velocity
	 i

and directional profile of the Gulf Stream off Cape Hatteras

was constructed.

6. The oceanographic theory of interactions between gravity

waves and ocean currents was investigated and a wave/current

interaction model selected.

7. The projected wave rays from the hurricane were refracted

using the wave/current interaction model and new wave rays

constructed.

r
	 8. Both the hurricane projected wave rays and the Gulf Stream

refracted wave rays were then compared to the SAR observed

wave rays.	
`a

9. The wave/current interaction model was inverted to estimate

current velocities using wave information inputs from the 	 j

two-dimensional OFTs of Seasat SAR data. 	
1

10. Using estimates of dominant wavelength and direction from

the deep water analysis, two shallow water wave refraction

75
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models were run and their results compared to SAR-derived

values generated during the previous study.

11. A detailed comparison between theoretical and Seasat SAR-

derived wavelengths and directions was completed.

4.2.1 DATA DESCRIPTION

Data	 utilized	 in this	 investigation consisted primarily of three

types.	 These included (1)	 SAR-observed spectral estimates of direc-

tion and wave number of surface gravity waves emanating from hurri-

cane	 Ella;	 (2)	 bathymetric	 data	 for	 the	 western	 North	 Atlantic	 in

j the•-region	 of Cape Hatteras, 	 North	 Carolina;	 and	 (3)	 flow profiles

across the Gulf Stream of surface current magnitude and direction.

In order to	 investigate the observed changes 	 in surface gravity

wave	 propagation	 characteristics	 in	 deep	 water	 regions	 off	 Cape

Hatteras, a set of 116 optical Fourier transforms were generated from	 l

` the Seasat SAR data. 	 The areas	 transformed were from sub—swaths	 1

and 2 from Rev. 974.	 The 116 locations are summarized in Figure 34.

r' The positions are separated 12.5 kms	 in the azimuth direction and by
6

10	 kms	 in	 the	 range	 direction.	 The	 circular	 aperture	 utilized	 to

generate	 the	 OFTs	 had	 an	 effective	 ground	 size	 of	 44	 kms ,	 or	 E
covered approximately 40 cycles of wave data. 	 Digital analysis tech-

niques were not employed for this study because of the,large number

of positions selected for investigation.	 j

5 From the optical Fourier transforms, estimates of dominant wave-

' length and direction were obtained by choosing the area of highest	 I

Bight	 intensity on	 the	 two—dimensional	 spectra.	 By measuring	 the

distance between the two points of highest intensity, an estimate of
dominant wavelength is obtained. 	 By measuring the relative angle of

the	 spectral	 peaks,	 and	 knowing	 the	 direction	 of	 the	 satellite	 at

j
the time the data was collected,	 an	 estimate of the dominant wave

direction	 is ,obtained ( for a more detailed discussion, 	 see Shuchman,

et al., 1979a).	 Two-dimensional - wave spectra were not detectable on
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(Seasat Rev. 974, 3 September 19;8.)
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all the OFTs. Estimates of dominant wavelength were obtained from

99 positions and wave directions from 101 positions.

An error analysis was performed to determine the "level of un-

certainty" associated with the OFT method. This analysis, presented

in Appendix D, considered not only the precision of the OFT tech-

nique, but also the sources of variation in the method. It was

determined that two positions had to have a difference of 5 meters

in wavelength or 1.0 0 in wave direction before they could be con-

sidered statistically different from one another.

The bathymetric data utilized in this investigation were obtained

from several sources. The first source was digital U.S. coastal

hydr", graphic data obtained from NOAA's National Geophysical and

Solar—Terrestrial Data Center in Boulder, Colorado. The data, avail-

able on a computer compatible tape (CCT) were digitized from National

Ocean Survey (NOS) Smooth Sheets dating from 1930 to 1973. The area

for which this digital data was obtained is outlined in Figure 35.

The other source of data, for the areas studied which were outside

the coverage in Figure 35, was from NOAA and Defense Mapping Agency

navigational charts.

r7

	

	 The position as well as the velocity of the Gulf Stream is tem-

porally varying. One observation of the Gulf Stream meander reported

+	 by Fuglister and Worthington (1951) indicates the Gulf Stream shifts

r

	

	 its position in an easterly or westerly direction at a rate of

a' roximatel 20 kilometersapproximately	 per day. Earlier estimates of the Gulf

a	 Stream surface velocity range from 1 to 1.2 m/sec by the dynamic

computation method (Iselin, 1936) and from 2 to 2.5 m/sec by the

x`	 Loran system and bathythermography (Iselin and Fuglister, 1948).

Many other investigators (Worthington, 1954; Von Arx, 1962) also
4

found that the maximum surface speed is around 2 m/sec. The speed

is a maximum near the center of the Gulf Stream and decreases grad-

ually toward both boundaries. In general, the rate of decrease is

slower in the outer (eastern) side than in the inner (western) side
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of the Stream. The United States Coast Guard Oceanographic Unit has

been publishing weekly sea current charts for specific areas, which
include the Gulf Stream region. These charts are produced by a sub-

jective analysis of all available data: bathythermographs (BT), air-

borne radiation thermometry (ART), satellite slope files, shelf files

and other miscellaneous sources such as weather charts and current

charts produced by other agencies. In order to study wave/current

interactions across the Gulf Stream, available sea truth information

was obtained from the weekly sea current chart prepared by the U.S.

Coast Guard on August 30, 1978 (Anonymous, 1978). Figure 36 was

reproduced from the southwestern part of this chart. The current

speed is observed to be highest (2 m/sec) in the center portion of

the Stream and to decrease gradually toward either side. The figure

also snows that the rate of decrease in current speed is slower
toward the outer boundary than toward the inner boundary.

The	 surface	 gravity	 wave	 fields	 studied	 in	 this	 investigation

were	 generated	 by	 hurricane	 Ella.	 By	 consulting	 meteorological

weather	 maps,	 it	 was	 determined	 that	 hurricane	 Ella	 was	 situated

southeast of the Gulf Stream at about Latitude 32 0 30 1 N and Longitude

72 30 1 W and moving toward the northeast when the Seasat SAR made its

overpass	 of	 Cape Hatteras	 (including the Gulf Stream) 	 on	 September

3,	 1978	 (see	 Figure	 37).	 However,	 since	 the	 hurricane	 generated	 -

waves require time to	 propagate	 to the Gulf	 Stream,	 the hurricane

position from which these waves were generated would have been some

place	 southwest of	 the	 above-mentioned	 position.	 These waves were

1 also assumed to be generated 	 and	 to be propagating	 in	 a direction

tangential	 to	 the hurricane radius of 30 kilometers	 (a	 little	 less

than 1.5 times of the radius of maximum wind velocity (Ross,	 1981)),

with an average group velocity of 30 km/hr.	 This group velocity was

_calculated from the average wave number measured by the SAR near the

outer boundary of the Gulf Stream._	 The required traveling time from

A
the above-mentioned hurricane center	 to the outer boundary of the

t

1
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FIGURE 37. POSITION OF HURRICANE ELLA FROM 1 THROUGH 3 SEPTEMBER 1978.
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Gulf Stream in the southern portion of the study area is approxi-

mately 10 hours. This time period allows us to locate, from the

trace of the hurricane center, the actual area responsible for the

wave propagation to the Gulf Stream. This actual center is located

at Latitude 31 0 30'N and Longitude 73 0 14 1 W. The input sea conditions

(wave rays) were obtained from the extension of the tangential lines

from a circle of radius 30 kilometers from the hurricane center.

The position of hurricane Ella at the estimated time of wave propa-

gation into the northern sector of Cape Hatteras, along with the pro-

jected wave rays, is presented in Figure 38. Figure 39 illustrates

an enlargement of the Cape Hatteras region with the projected wave

rays. Note these projected wave rays do not include the effect of

wave/current interaction after entering the Gulf Stream.

Once the waves from hurricane Ella have been refracted by the

Gulf Stream and emerged from the western edge of the stream, a shal-

low water (<200 m depth), bathymetrically-controlled refraction

analysis was performed. Using dominant wavelengths and directions

determined by the deep water analysis asinputs, two shallow water

wave refraction models were run. The first model was based on Airy

wave theory, while the second model was a computer-based program

developed under NASA sponsorship (Poole, et al., 1977). The shallow

water wavelengths and directions obtained from these models were

statistically compared to SAR estimates generated during the initial
study of Rev. 974 (Shuchman, et al., 1979).

4.3 ANALYSIS OF DEEP WATER WAVE TRANSFORMATIONS

Upon detailed examination, it was concluded that considerable

variation existed in the dominant wavelengths and directions in the

deep water regions off Cape Hatteras which were covered by Seasat

Rev. 974, at 0300 (GMT) on 3 September 1979 (see Figure 32). In

order to more accurately assess the shallow water wave refraction
models, it was first necessary to explain `this deep water variation.

A

83
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FIGURE 38. INPUT SEA CONDITIONS FROM HURRICANE ELLA.
(Angles measured from the east and
counterclockwise.)
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The positions of the 116 optical Fourier transforms from the deep

water regions off Cape Hatteras obtained from Seasat Rev. 974, plus

several examples of OFTs, were presented in Figure 34. From Figure

34 it can be observed that in the southern portion of the pass (rows

1-11) the direction of the waves is nearly perpendicular to the SAR

flight direction while in the northern portion (rows 19-29), the

waves are traveling 30'45' off perpendicular. A summary of the

position, the OFT estimated dominant wavelength and direction and

the water depth at each point is presented in Table 9.

F roa-i Table g, it is clear that there are significant changes

occurring in the deep—water dominant wavelength and direction at the

time when Seasat made its overflight. Two factors were considered

as the source of this variation; (1) a'wave—current interaction be-

tween the Gulf Stream and the gravity wave field; and (2) the source

of the gravity waves, in this case hurricane Ella.

In the following sections we will first review wave/current

interaction theory as it applies to this study. Next, we will dis-

cuss the gravity wave field in the Cape Hatteras area and trace its

origin to hurricane Ella. The Seasat observed wavelengths and di-

rections will then be compared to those predicted from the wave/

current interaction model using the deep water inputs projected from

hurricane Ella. Finally, a discussion on the use of SAR wave obser-

vations as a large scale ocean surface current mapping tool will be

presented.

4.3.1 WAVE/CURRENT INTERACTION THEORY

Ocean waves can generally interact with other ocean waves or with

environmental conditions such as currents, eddies, bottom topographic

features, etc. When an ocean wave interaction occurs, the wave is

refracted or even reflected and the wave ray turns away from its

original propagation direction accordingly. Wave/current refraction

is expected to be particularly significant in the strong western
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TABLE 9. SUMMARY OF SAR-PREDICTED (OFT) DOMINANT WAVELENGTH AND
DIRECTION FROM DEEP-WATER AREAS OF SEASAT REV. 974.

Column A
Water Wave*

Depth •• Wavelength' Direction
Row Latitude Longitude (m) (m) (°T

1 33' 35' 75. 43' 999,0 171,8 306.0

` 2 34. 43' 75*	 39' 999,0 176.2 306.0

3 330 48' 75.	 36' 999.0 176,2 304.0

4- 30 55' 75.	 32' 999.0 185.7 308.5
i

5 34° 01' 750	 28' 999.0 171.8 307.5

6 35° 08' 75°	 25' 999..0 18018 305.0

7 34* 14' 75'	 21' 99910 18018 305.0

j 8 35. 20' 75'	 19' 999.0 19018 306.5

9 34. 27' 75.	 14' 999.0 202.1 313.0

10 34' 33' 75.	 11' 999.0 195.7 315.0

11 34* 39' 75'	 07' 999.0 202.1 317.5

12 34. 46' 75. 04' 999.0 188.5 316.5

13 34. 52' 75. 00' 999.0 185.7 318.5

14 34. 59' 74* 57' 999.0 188.5 321.5

15 35° 05' 74' 53' 999.0 196.3 326.0

16 35. 12' 74° 50' 999.0 195.7 325.0

17 35* 18' 74. 46' 999.0 221.6 327.5

18 35' 24' 74. 42' 999.0 212.0 332.0

19 35* 31' 74. 39' 99910 208.2 334,0

20 35" 37' 74' 35' 999.0

21 350 43' 74'-32' 999.0 202.1 339.0

22 35' 50' 74. 28', 999.0

23 35' 57' 74' 25' 999.0

24 36' 03' 74* 21 , 999:0 -- .-

25 36. 09' 74.	 18' 999.0 --

26 36* 15' 74'	 14' 999.0 -- 349.0
i

27 36* 21' 740	 11' 999.0 _. --

28 36. 28' 74,	 07' 999.0

29 36' 34' 74.	 04' 990,0 i

indicates no data extractable from OFT.
3

• (--)
**999 indicates depths greater than 999 m:
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TABLE 9. SUMMARY OF SAR-PREDICTED (OFT) DOMINANT WAVELENGTH AND
DIRECTION FROM DEEP-WATER AREAS OF SEASAT REV. 974.

(Continued)

Column 4

Water Wave*

Depth** Wave length • Direction
Row Latitude Longitude (m) (m) (OT)

1 33. 37' 75° 48' 999.0 171.8 304.0

2 34. 44' 75° 41' 999.0 180,8 310.5

3 330 50' 750 41' 999.0 180.8 304.0

4 34. 56' 75. 38' 99910 19018 309.0

5 34. 03' 75° 34' 999.0 180.8 304,0
)

6 35. 09' 750 34' 999,0 190.8 307,0

7 340 16' 75. 27' 99910 190.8 309.0

8 35. 22' 75. 23' 999.0 196.3 308.0

9 34. 29' 750 20' 999.0 196.3 309.5

10 34* 35' 750 16' 999.0 195,7 316.0

11 344 41 1 75°' 13' 999.0 190.8 316.0

12 340 48' 75* 10' 999.0 195.7 320.5

13 34. 54' 750 06'' 999.0 202.1 321.0

14 350 01' 75* 02' 999.0 195.7 319.5

15 350 07' 74. 59' 999.0 196,3 321.5

16 350 14' 74. 55' 999.0 195.7 322.5

17 35* 20' 74* 52' 99910 202.1 321,5

18 3E* 26' 74. 49' 999.0 188.5 329,5

19 350 33' 74. 45' 999.0 190,8 331.0

20 35° 39' 74. 41' 999.0 190.8 334.0

21 35° 46' 74. 38' 999.0 190.8 335.0

22 35. 52' 74. 34' 999.0 214,0 344,0

23 350 58' 740 31' 999,0 190.8 350.0

24 36. 05' 74. 27' 999.0 -- - 347,0

25 360 11' 74° 24' 999.0 171.8
{

348,0

26 360 18' 740 20' 999.0 --

27 360 24' 74. 17' 999.0 -- --

28 36' 30' 74. 13' 999.0 --

29 360 .36' 74° 10' 999.0 - --

i
^'	 • j--)	 indicates no data extractable from OFT`.

**999 indicates depths greater than 999 m.
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TABLE 9, SUMMARY OF SAR-PREDICTED (OFT) DOMINANT WAVELENGTH AND
DIRECTION FROM DEEP-WATER AREAS OF SEASAT REV. 974.

(Continued)

Column C

Water Wave'
Depth"

,
Wavelength * Direction

Row Latitude Longitude (m) (m) °T

1 33' 40' 750	 57' 999.0 180,8 306.0

2 34. 47' 750	 50' 999.0 176.2 306.0

3 330	 53' 75'	 50' 999.0 180.8 303.0

4 350	 00' 756	 46' 99910 185.7 308,0

5 34.	 06' 750	 43' 939.0 180.8 308.5

6 350	 12' 75'	 39' 999.0 176.2 305.5

7 34°	 18' 750	 36' 999.0 176.2 306.5

8 35°	 25' 750	 32' 999.0 190.8 306.0

9 340	 32' 750 29' 999.0 190.8 312.0

10 34°	 38' 75°	 25' 999.0 195.7 316.0

1 34'	 44' 750 22' 99910 196.3 317.5 1

12 340	 51' 750	 18' 999.0 18815 321,0

13 34'	 57' 750	 15' 999.0 190.8 323.5

14 35.	 04' 75.	 11' 999.0 195.7 316.5

15 35°	 10' 750	 08' 75.0 190.8 322,0

16 35.	 17' 750	 05' 36.6 16916 321.5

17 35.	 23' 750	 01' 33.9 171.8 320.5

18 350	 30' 740 57' 42.1 169.6 320.0

19 35°	 36' 74.	 54' 58.6 167.6 325.5

20 350	 42' 74'	 52' 140.9 176.2 330.0

21 35°	 49' 74.	 47' 99910 202.1 335,0

22 35'	 55' 74"	 44' 99910 -- --

23 360	 02' 74.	 40' 99910 180.8 345.5

24 36' 08' 74.	 37' 999.0 --

25 36°	 14' 74'	 33' 999.0 180.8 352;0

26 36°	 21' 74.	 29` 999.0 __ 352.

27 36° 27' 74° 26' 999.0 18018 352.0

28 36°	 33' 740	 23' 99910 221.7 353,0

29 360	 40' 74.	 20' 999.0 208.2 353.0

• (--) indicates no data extractable from OFT.

**999 indicates depths greater than 999 m,
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TABLE 9. SUMMARY OF SAR-PREDICTED (OFT) DOMINANT WAVELENGTH AND

DIRECTION FROM DEEP-WATER AREAS OF SEASAT REV. 974.
(Concluded)

Column 0

Water Wave"
Depth** Wavelength" Direction

Row Latitude Lonnitude (m) (m) °T)

1 33° 42' 760	 03' 999.0 185.7 305.0

2 340 49' 75°	 56' 99910 180.8 305.5

3 330 54' 75°	 56' 99910 176.2 305.0

4 3:"9 02' 75' 53' 999.0 19018 310,5

5 340 08' 750	 50' 999.0 190.8 305,5

6 350 14' 75°	 46' 999.0 180.0 305.0

7 340 20' 750 42' 999.0 196.3 305.5

8 350 27' 750 38' 999.0 190.8 307.0'

9 340 34' 750	 35' 99910 196.3 309.0

10 34* 40' 750 32' 999.0 195.7 315.0

11 34° 48' 75° 28' 999.0 196.3 315,5

12 340 53' 750	 25' 119.0 195.5 322.0

13 350 00' 750 21' 73.2 19018 322.5

14 350 06' 750	 18' 47.6 175.5 317.5

15 350 13' 750	 14' 18.3 15918 319.5

16 350 19' 750	 11' 25,6 159.0 318.5

17 350 26' 750	 07' 28.4 167.6 319,5

18 35° 32' 75°	 05' 42.1 169.6 319.0

19 350 39' 750	 00' 51.2 171.8 321.5

20 350 45' 740	 57' 62.2 167.6 327.0

21 35. 51' 740	 53' 82.4 196.3 331.0

22 35* 57' 74"	 50' 89,7 245.0 380.0

23 360 04' 740	 47' 119.0 190.8 352N0

24 36° 10' 74°	 43' 999,_0 208,5 345.0

25 36* 17' 74*	 40' 999.0 190.8 350.5

26s 360 24' 740	 36' 999.0 190.8 352.0

27 360 30' 74°	 33' 999,0 190.8 353.0

28 360 35' 74° 29' 999,0 214.8 352.5

29 360 42' 74°	 26' 999.0 163.6 353,0

• (--)-indicates no data extractable from OFT,
**999 indicates depths greater than 999 m.
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boundary current area of the North Atlantic where the Gulf Stream

borders the edge of the continental margin. In many cases, surface

waves are affected by more than one of these factors at the same

time. This will result in additional or less refraction depending
on the combined effect of these factors. A strong western boundary

current flowing near or over the continental margins is an obvious

example. This portion of the 'study is a presentation of wave re-

fraction resulting from wave/curent interaction in deep water without

the inclusion of bathymetric effects on the wave rays.

Consider a wave field riding upon the Gulf Stream in deep water

of uniform depth (i.e., beyond the 200 m contour). The Gulf Stream

is assumed to be in steady state (compared to the travel time of a

wave group across the stream) with a velocity which varies slightly

across it. The minimum velocity occurs at both outer boundaries of

the stream, while the maximum velocity is in the center portion.

These assumptions are generally satisfied by the Gulf Stream in the

region near Cape Hatteras. When the wave propagates -close to the

continental slope, the sudden change of the water depth will cause

the initiation of topographic refraction and will affect the wave

direction and the wave number. This situation will be addressed in
more detail later in -this section.

For a detailed derivation of the governing analytical expressions

for wave/current interaction, see Appendix E. The methodology uti-

lized in this investigation parallels the wave/current interaction

theory developed by Phillips (1981). Only a brief summary of this

development will be presented here.

For waves riding on or across a current with a slowly changing

velocity as shown in Figure 40, the angles a i are the angles of

incidence or refraction the wave rays make with the current stream-

Tines. When the waves are incident upon the current with an average

velocity range of u o to u l , the shear per unit width is u  -

u l , and conservation of wave frequency becomes:
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aO = a
I
	
+ k1(ul	

= uo ) Cos a l	 (5)

where	 aO	 and	 a 1	 are	 the	 radian	 wave	 frequencies	 of	 the	 wave in

the	 undisturbed	 and	 disturbed	 fluid	 respectively.	 Similarly,	 kl

is the radian wave number in the disturbed fluid and conservation of

wave numbers becomes:

k 
	 COS ao = k l cos a, = const	 (6)

Eq.	 (5)	 gives:

Cos a l	 u° - ul^ = K l /k l	(7)
1	 1	 o

Substituting k l	 from Eq.	 (6) into	 (7) gives: ?'

f, COS a	 =	
aO	 al	

= K /k	 (8) iU 1	 10	
o	 - UO	 0

where	 K 1	 "	 (ao	 -	 a l )/(u l	-	 uo ),	 and	 for	 deep	 water	 gravity ,a

waves	 the	 intrinsic	 frequency	 is	 Q 2	=	 gk.	 Theoretically,	 the

angles	 of	 incidence	 and	 refraction	 can	 be	 calculated	 from Eqs.	 (7) }..

and (8) when both the shear of the current between two current strips_

and the wave numbers 	 in	 these	 two	 current	 strips	 are	 known.	 Con-
is
i.

versely,	 the	 current	 shear	 can	 be	 solved	 for	 by	 utilizing	 SAR- ^`	 A

observed gravity wave propagation directions and wave numbers. 	 Wave;

propagation	 angles	 observed	 by the	 SAR will	 be compared with	 wave

refraction angles calculated from these theoretical results.

4.3.2	 DATA ANALYSIS

Figure	 41	 shows	 the	 direction	 of	 the	 wave	 crests	 at	 the	 101`

positions where wave spectra were visible on the OFTs 	 (well	 defined `.

wave spectra were not resolved on 15 of the Offs). 	 Figure 42 is a

diagram of orthogonals	 to	 these	 crests.	 From these	 orthogonals,	 a

wave ray diagram can be constructed, as is shown in Figure 43. 	 Three

analyses of these wave rays were conducted. 	 First, the wave rays x	 ,
s-

r.
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SAR-OBSERVED WAVE CRESTS. (The orthogonals [short lines]
depict the observed dominant wave direction.)
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determined from the OFT analysis were hindcast to locate the wave

generation region of hurricane Ella. Second, they were compared to

the projected wave rays from hurricane Ella without consideration of

the Gulf Stream. Finally, the wave rays were compared to wave rays

constructed using Phillip's (1981) wave/current interaction model.

Figure 44 shows the result of the wave ray hindcast projections

to locate the wave generation region of hurricane Ella. These wave

rays fall into two general groupings of approximately 50 x 50 km

dimensions. The southern most group was derived from waves incident

in the northern region of Cape Hatteras. The northern group of hind—

cast rays originated from the southern most OFTs. It is interesting

to note that the spatial separation of these two grouping corresponds

to the wave travel time difference from the hurricane position to

the OFT sensed positions at the time of satellite overpass. These

projections agree well with the National Weather Service reported
hurricane positions for the day in question.

4.3.2.1 Comparison of Hurricane Projected Wave Rays w ith Seasat_
5AR Wave Observations

The comparison of Seasat SAR observed wave rays with hurricane

prcjected wave rays without consideration of the Gulf Stream's exis--

tence is shown in Figure 45.

In order to conduct a qualitative analysis of the Figure 45, we

have divided the observed wave ray refraction into three groups.

The forcing mechanism of the observed wave rays in each group is

apparently different. The first four observed wave rays is named

Group 1; the 5th to 19th, Group 2 and; the 20th to 28th, Group 3.

In order to better explain the wave/current interaction in Section

4,3.2.3, we subdivided Group 2 into two subgroups: 2A (5th to 10th)

and 2B (11th to 19th).

In Group 1, the observed and projected wave rays seem to match

quite well, while in Group 2, the angle deviations between the Seasat

97



RADAR AND OPTICS DIVISION

Alu

N

36•

Z	 s^
CcOr

0.4
as

^
	 05

to 	 ks
1.
r.o
1.0 CriiMl YI/KN1N hdll

4.	 41

i
\t

•	 s

34•	 4	 N^

*	 l551—^
\s

4	 ^^	 ^^ TiooA

0	 100 km



Dim 	 RADAR AND OPTICS DIVISION

73•
1

760 	756	 740

N
^	

^	 t

^	 t	 ^

\	 `

t

364 —	 \	 ^^	 '^	 i	 i

	

^^	 `^	 \	 \\	 ^^ 1050

Cape Hatteras	 `^`	 ``	 \\	 \

	

\	 `^ 115 •

^	
%
	 ^	 `.	 ^^	 `^ 125•

%`	 `^	 ` `% 	 Projected Wave Ran — — — — — — —

`^ 	 SmatObumed Wave Rays ---

^	 a
135°

%	 0	 50 km

145°

^	 I	 I	 I	 I	 I	 ^

FIGURE 45. COMPARISON OF SAR-OBSERVED WAVE RAYS WITH PROJECTED
WAVE RAYS WITHOUT CONSIDERATION OF THE CORRECTION OF
THE REFRACTION DUE TO THE GULFSTREAM.

99



a
i

i

`RIM	 RADAR AND OPTICS DIVISION

observed and the predicted rays becomes larger. One common charac-

teristic of the wave rays in these two groups is that the observed

wave rays appear always cross the projected wave rays from the right

to the left when viewed in the direction of propagation. In Group

3, the angle deviations seem to be smaller than those in Group 2 but

larger than in Group 1. The characteristic of wave ray crossing i'n

Group 3 is opposite to the first two groups: the observed rays al-

ways cross the projected wave rays from the left to the right.

Up to this point, we have assumed that all the waves imaged by

Seasat during Rev. 974 originated from hurricane Ella at a single

point of time. In actuality, the situation is not quite so simple.

The waves in the northern portion of the Cape Hatteras region had to

have been traveling longer from their point of origin than those in

the southern region at the end of the Seasat overpass. Just prior

to the time of the overpass, hurricane Ella was moving from southwest

to northeast; and when the waves in the northern portion were gener—

ated, hurricane Ella was southwest of its position in Figure 38.

The source of the projected wave rays has to be adjusted accordingly.

This adjustment turns out to be approximately 1 0 clockwise for every

55 km north (relative to ray 1). For the second subgroup of Group

2, we therefore should adjust the hurricane projected wave rays by

1 0 to 2 0 clockwise.

- In Group 3, the waves are outside the body of the Gulf Stream

current as well as located offshore of the 200 m contour. In this

case, the wave/current interaction and -bottom refraction should be

minimal, but the adjustment for the repositioning of hurricane Ella

should be 2 0 to 4°.

in summary, a quai)tative assessment of the transformation of

the waves observed by Seasat during Rev. 974 seems to indicate that

although there are deviations between the Seasat observed and pre-

dieted wave rays, the two groups match fairly well and are in agree-

ment with the Complicated oceanographic/meteorological conditions

present at the time.
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Quantitative studies of the observed wave rays refraction without

consideration of the Gulf Stream can be referred to in Table 10.

From this table, the angle differences (deviations) from the observed

wave rays to projected wave rays are on the order of 4 0 for the first

4 wave rays (Group 1) with the smallest deviation on ray 1, where

the deviation is less than 2% The angle differences are on the

order of ll * for rays 5 to 10 (subgroup A of Group 2) with the maxi-

mum deviation between rays 6 and 8; on the order of 9 * for rays 11

to 19 with the maximum deviation between rays 15 and 17; on the order

of -5 * for ray 20 and up with the maximum negative deviation between

rays 22 to 2.4. The negative sign means the observed wave rays are

on the right-hand side of the projected wave rays.

Previous studies (see Vesecky and Stewart, 1981) indicate that

SAR observed absolute wave directions are within *11 0 of surface.

measured wave direction in experiments where both were simultaneously

obtained. By identifying the source of the gravity wave field

present in the deep water regions east of Cape Hatteras as hurricane

Ella, and simultaneously tracking these waves over a large distance

(on the order of 500 km), we have successfully identified the major

source of this wave field's directional variation. The question now

arises as to whether or not the deviation between the observed and

predicted directions can be further reduced by implementing a wave/

current refraction model.

4.3.2.2 Comparison of Wave/Current Interaction_ Mode l Results

with Seasat SAR Wav e bservations

As deep water waves propagate from the relatively undisturbed

ocean and enter the Gulf Stream, their direction of propagation and

wavelength will change. The refraction angle and resultant direction

will depend mainly on the current shear, the wave numbers and inci-

dence angle of the wage rays. Recall that the projected wave rays

from hurricane Ella, presented in the previous section, did not in-

corporate the current refraction induced by the presence of the Gulf
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Stream. In order to produce a more physically complete comparison

with the observed wave rays, the refraction of the projected rays

due to the Gulf Stream should also be taken into consideration. This

situation is presented in Figure 46.

For the case being studied, as the waves enter the Gulf Stream,

they are first refracted in a clockwise direction as they encounter

an increasing velocity region of the current profile on the outer

(eastern) edge of the Gulf Stream boundary. Similarly, they are re-

fracted counterclockwise as they encounter the decreasing velocity

region of the current profile on the inner (western) edge of the Gulf

Stream. This concept is presented in Figure 47. Unless total in-

ternal trapping or reflection occurs, the direction of a wave de-

parting the influence of the Gulf Stream should be the same as when

the wave entered the Gulf Stream. However, the point of departure

of that wave ray will be upstream of the position the wave ray would

have been if it had not encountered the Gulf Stream. This distance
was calculated to be on the order of 0.2 kilometers for the con-

ditions encountered during this study.

The refracted wave angles can be calculated using Phillips' model

as presented in Eq. (E-10); (see Appendix E). After a wave is gener -
ated by the hurricane, it is assumed to propagate in the same direc-

tion as the projected wave ray toward the Gulf Stream. After this

wave enters the outer boundary of the Stream, it is refracted as

stated in Phillips' model. The -projected wave ray directions from

hurricane Ella were used as input conditions into the wave/current

refraction model. The average wave number, as measured by the Seasat

SAR, was also used as an input. New projected wave rays, at 1 in-

crements, were calculated, and the SAR observed directions were com-

pared to the new projected rays.

The new projected wave rays are summarized in Table 11. The

wave/current refraction angle is zero for the more southern wave rays

and becomes larger as the incidence angle (measured from east and
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counterclockwise) increases. This modified projected wave ray, which

actually considers the effect of the Gulf Stream, can now be compared

to the nearest observed `wave ray. The results of this comparison

are also shown in Table 11. From this table, for Group I (near nor-

mal incidence), we see that the angle differences remain the same as

for those projected wave rays that did not account for current re-

fraction (see Table 10). However, they become smaller for Group 2,

and they also become smaller for Group 3. Since most of the angle

differences are negative in Group 3, the absolute angle differences

actually are larger. The angle differences therefore are still on

the order of 4 0 for Group 1; on the order of 10 0 for Group 2; and on

the order of -9 0 for Group 3.

Continuing the wave rays beyond the western boundary of the Gulf

Stream places Rays 12 to 17 into intermediate and eventually shallow

water with respect to wavelength. To account for topographically

induced wave refraction these rays were numerically projected shore-

ward. The results of these computations are presented in Figure 48.

Figure 48 was generated using a computer based wave refraction model

(Poole, et al., 1977). This model will be discussed in more detail

below. The projected wave ray directions presented in Tables 10 and

11 did take into account this bottom induced refraction.

Therefore, we have still not defined all the directional varia-

tion in the deep water wave field. Several possible explanations

exist for these observations. First, the purely kinematic wave/

current interaction model utilized in this investigation may under-

estimate the amount of surface gravity wave modification by the Gulf

Stream. Second, the actual position of the northern portion of the

Gulf Stream may have been displaced more northerly than predicted by

the U.S. Coast Guard for 30 August 1978. Third, perturbations of

the actual flow pattern of the Gulf Stream, such as rings and

meanders, may have existed which were not resolved on the U.S. Coast

Guard sea truth. And fourth, the projected wave ray directions put
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FIGURE 48. CO MPUTER-GENERATED WAVE RAYS USING SAR-MEASURED
DEEP WATER WAVE INPUTS SHOW THE EFFECTS OF TOPO-
GRAPHICALLY-INDUCED WAVE REFRACTION.
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into the wave/current interaction model might actually vary more than

was first thought. Any or all of these factors could have produced

the observed deviations between the SAR sensed wave characteristics

and those obtained from the wave/current interaction model.

4.3.3 CALCULATION OF THE SEASAT SAR INFERRED CURRENT FIELD

Perhaps the most useful application of this study of wave/current

interaction is the quantifiratiun of the utility of SAR as a large

scale ocean surface current mapping tool. SAR—sensed subtle changes

in the propagation characteristics, wave direction, and dominant wave

number have the potential to be used to analytically solve for the

gross velocity field of the upper region of the ocean. The assump-

tions employed in this formulation appear to be quite harsh and re-

quire further detailed investigation. However, in spite of this un-

certainty, the results obtained suggest that Seasat SAR is capable

of producing reliable estimates of large scale ocean surface flow

fields. The synoptic and repetitive coverage of large regions of

the ocean surface which is provided by a satellite—borne radar system

renders this technique extremely valuable as an eventual operational

tool.

As suggested by Phillips (1981), conservation of wave number re-

quires the following expression for the apparent wave frequency:

aa _a+k	 u	 (9)

or alternately;

co = a + ku cos a = const	 (10)

where k is the local wave number (k = 2,r/L), u is the flow velocity

of the upper region of the ocean, ao is the apparent wave frequen-

cy measured at a fixed point in a fluid assumed to be at rest, a is

	

the wave frequency (Q = 2n /T) observed in the moving fluid,, and a is 	
1

the angle between the local current and wave number vectors.-	 f
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The two most directly observable characteristics of wave propa-

gation from spaceborne SAR are the propagation direction and wave

number of the dominant gravity wave components. As previously

demonstrated, both of these quantities should be altered as a result

of wave/current interactions and, hence, offer possible indicators
of the underlying flow structure of the upper ocean. Published

values for the absolute resolution of the dominant wave component

direction from spaceborne SAR (Vesecky and Stewart, 1981) indicate

reliable estimates can be obtained to }11° absolute. The calculated

changes in incident wave direction as a result of waves from hurri-

cane Ella crossing the Gulf Stream, range from a few tenths of a de-

gree to a few degrees, apparently far below the published limits of

absolute SAR wave direction resolution. However, results from the

error analysis performed as part of this investigation, indicate

relative angular resolution of approximately 1 0 for successive OFT's'

obtained from the same Seasat pass. For a detailed discussion of

the error analysis, see Appendix D. In addition, the SAR has been

shown to be very sensitive to subtle changes in the dominant wave

number of the ocean surface wave spectrum (Beal, 1980). Since the

anticipated wave direction changes will be small, an analytical for-

mulation that eliminates the angular change in wave propagation was

chosen. This was accomplished by employing the following two strin-

gent assumptions: First, the change in wave direction resulting from

interaction with the Gulf Stream is assumed small (less than a few

degrees); and second, all straining in the wave k vector field re-

sulting from the Gulf Stream interaction is assumed to originate from

only the current component in the direction of wave propagation, and

that the orthogonal components of this strain can be treated inde-

pendently. Employing these assumptions, changes in the direction of

propagation of the dominant wave components can be analytically

eliminated from this formulation.

a
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From conservation	 of wave number component in the cross stream

direction	 (y-direction):

k sin a = ko sin a0 (11)

where again the subscript, o, denotes the parameter value in the un-

disturbed fluid.

Combining Eqs.	 (10) and	 (11) gives:

(9k) 1/2 + u[k2_- ko sin 2 ao ] l/2 = a0 (12)

and from Eq.	 (10), solving for cos 'a, gives:

a	 - a
.ns a = (13)

Solving and substituting into Eq. 	 (10)	 and assuming the total amount

E of straining induced in the surface wave field is the result of only
the current component 	 in	 the direction of wave propagation (ao = a

= constant) gives:
p

(9k)1/2 + u[k 2 - ko(1 - cos 2 ao )] 1/2 = a o (14)

Eq.	 (14)	 can	 be	 algebraically manipulated	 to	 give the following ex-

pression for u, the velocity of the underlying fluid required to pro-

duce the observed change in wave propagation characteristics:

(a	 - a}2 	 1 - 
ko

2	 o	 \ !U	
k2 - k2( 0)

(15)

or

2	 [(9ko ) 1/2 - (9k ) 1/2 ] 2 I
u	 =	 --- (16)

k

a Utilizing this formulation and the wave number vectors of the domi-
nant wave components resolved by the OFT analysis (Figure 49), ortho-

gonal	 components	 of	 the current velocity field of the Gulf Stream

11^ yy;
1
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were calculated. These two orthogonal components are in the satel-
lite cross track (Figure 50) and along track (Figure 51) direction.

A total of 99 OFTs were used in this calculation. Figure 52 is the

resulting vector magnitudes of the calculated upper ocean flow field.

At each of the OFT locations, the total current magnitudes were then

contoured on '0.5 m/s intervals to produce a visualization of the

upper ocean flow structure. These current estimates were then

smoothed with a 3 point moving average (corresponding to a spatial

resolution of 34 km) in the along—track direction. These values were

contoured and are presented in Figure 53. The agreement between

these SAR derived velocities and those published by the U.S. Coast

Guard for the time of this Seasat overpass (Figure 54) are in re-

markably good agreement.

4.4 SHALLOW WATER ANALYSIS

It was shown in the previous section that considerable spatial

variation occurred for the dominant deep water wave direction and

wavelength due to the source of the gravity waves (hurricane Ella)

and the interaction between the gravity waves and the Gulf Stream.

I'n the initial study conducted by ERIM for NOAA/NESS on this data

set (Shuchman, et al., 1979), the assumption was made that the deep

water gravity waves in this area were uniform and relatively homo-

geneous (for dominant wavelength and direction).

It is now recognized that the assumption of a homogeneous deep

water gravity wave field was not valid and that new, varying, deep

water wavelengths and directions were necessary as inputs for the

shallow water wave refraction models. Thus, t*he new approach de-

scribed below was devised.

Eleven strata were defined to minimize the variation in the deep

water wavelength and direction. These strata are illustrated in

{	 Figure 55. The deep water positions chosen for each strata were de-
fined so as to include those points (see rigure 34) closest to the

t`	 113
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200 meter contour still in deep water (>200 m). The wavelength and

direction data for these points were then averaged for each strata

and are summarized in Table 12. 	 -

Using these new deep water inputs, two wave refraction 'models

were used to evaluate Seasat's ability to monitor changes in the

	

gravity wave 'field as it propagates into shallow water. The first 	 f

model is the wavelength comparison model developed during last year's

study. Based on Airy wave theory (see Neumann and Pierson, 1966),

this model computes a shallow water wavelength (L l ) as

	

L l _ Lo tank (T l	 ( 17)	 r

where Lo is the deep water wavelength, and }

h is the water depth at the position of Ll.

- This model can be algebraically reconfigured to compute a pre-

dicted water depth (h') using SAR, measured wavelengths as inputs, as

follows (after Shuchman, et al., 1979);

	

L	 1 + L / L

	

1	 1
h' _	 in	 - L1 Lo	 (18)	

r

	

The water depths (h) used in the present study to compare to the 	 {

predicted depths (h') were obtained from digital tapes of the bathy-

metric data obtained through NOAA's Environmental Data Information

Service (EDIS) in Boulder, Colorado. For SAR data points outside

the location of the area of coverage of the digital data, depths were

extracted for input from navigation charts.

Since new water depths and new deep water wavelengths were avail-

able, last year's data were re—analyzed. Figure 56a shows a scatter

plot of h' (predicted depth) versus h (actual depth) and Figure 57a

shows a scatterlot of SAR-observed Lp	 1 versus model predicted'

L l , both using lust year's depth values and the new deep water

{
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TABLE 12

DOMINANT WAVELENGTHS AND DIRECTIONS FOR
DEEP WATER STRATA

Strata	 Points	 a	 e

	I 	 9D, 10D, 11D	 196.4 m	 313.2*

	

2	 11D, 12C	 192.2 m	 318.30

	

3	 12C, 13C	 189.8 m	 322.30

	

4	 13C, 14B	 193.3 m	 321.5"

	

5	 14B, 15B	 195.7 m	 320.50

	

6	 15B, 16B	 195.7 m	 321.80

	

7	 16B, 17B	 198.8 m	 321.80

	

8	 17B, 18B	 195.1 m	 325.50

	

9	 -18B, 19B	 188.7 m	 330.30

	

10	 19B, 20C	 183.2 m	 330.50

	

11	 20C, 21D	 185.3 m	 330.50

P,
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wavelengths as inputs. Figures 56b and 57b illustrate the same data

using the new depth values. Relatively little difference exists be-

tween the two data sets. It can be seen that the Seasat SAR observed

the wavelength changes quite well.

A second model was used to generate values to compare to the SAR-

observed wavelengths and directions. This computer based model was

obtained from NASA and is described in detail by Poole, et al.

(1977). The depth values used for inputs to this model were from

the NOAA/EDIS digital bathymetry tapes. Figure 35 previously out-

lined the area of coverage of digitized -depth data and hence where.

the computer model was run. Figure 48 depicts a typical output plot

from this program.

Not all shallow water points for which OFTs were generated Were

within the area previously outlined in figure 35. Table 13 summa-

rizes the points where data were available. The locations of the

points summarized in Table 13 are presented in Figures 34, 58, and

59. Given in this table are the locations, the SAR observed wave-

lengths and directions and the model derived values for the point

nearest the OFT point (all model values were derived from those depth

data points closest to the OFT position, but no further than one

nautical mile from the OFT position). The deep water inputs_ into

the wave refraction model were varied according to the stratification

scheme summarized in Figure 55 and Table 12.

Figure 60a summarizes the model predicted wavelengths versus the

SAR observed wavelengths. As with the previous model (see Figure

57), we can see that the wave refraction model predicted longer wave-

lengths than were observed with the Seasat SAR.

Figure 60b summarizes the directional data. As with the previous

study of this data (Shuchman, et al., 1979), the directions produced

by the SAR did not fit the wave refraction model results as well as

the wavelength comparisons. A trend in the data is present, but it

is not a strong trend,

1
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TABLE 13
DATA POINTS FOR COMPUTER WAVE REFRACTION

MODEL COMPARISONS

Position* Depth SAR a Model a S'AR a Model e

E19 22.200 129.90 147.19 129.00 138.11

E20 17..700 129.90 137.26 136.00 136.93

E21 27.000 162.40 157.06 140.50 133.34

E22 24.100 141.20 153.91 134.00 132.22

E23 16.300 129.90 ---- 134.50
r

----

E25 32.900 162.40 168.27 139.00 141.48

E26 30.500 158.40 168.58 137.50 141.00

E28 26.500 1511.50 155.72 135.00 132.78

E29 15.600 120..30 119.66 123.50 123.00

E30 451.800 170.90 183.39 138.00 150.50	 d

E31 23.800 151.00 147.28 139.00 145.69

Cl 20.7,) 120.40 148.51 130.00 138.09

C2 17.100 109.40 138.92 126.50 129.22

C3 22.800 142.30 147.82 138.00 130.22

C4 22.800 130.50 151.71 136.00 135.38

C5 18.300 133.60 133.01 131.00 130.49	 E

C6 17.700 130.50 137.26 133.50 136.93

C7 11.500 106.70 121.68 119.00 111.01

C9 26.100 142.30 156.41 139.00 132.59

C10 24.900 138.10 152.19 133.00
f	 c

137.23

Cli 22,700 138.10 150.46 -133.00 130.25

C12 19:000 134.20 137.26 137.00 136.93

C15 28.800 151.70 161.20 137.00 128.98

C16' 25.500 146.70 151.86 140.00 139.26

C17 24.700 142.30 147.35 134.00 1135.29

C19 20.900 134.20 138.08 131.00 140.47

C20 8.9000 111.80 85.481 122.00 130.82

C24 29.900 151.50 163.70 140.00 129.45
t
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TABLE 13
DATA POINTS FOR COMPUTER WAVE REFRACTION

MODEL COMPARISONS (Continued)

Position * De.ppt--h
SAR a Model a SAR a Model e

C25 T8.400 142.30 T5.36- 136.50

C26 25.800 138.10 151.77 139.50 138.70

C29 26.400 123.60 137.98 !121.50 140.92

C31 32.700 146.80 157.99 143.00 135.99

C32 27.600 142.30 152.27 141.50 143.09

C33 30.100 146.80 195.77 142.50 140.50

15D 18.300 159.80 140.45 139.50 136.36

160 25.600 159.00 157.51 138.50 137.59

17C 33.900 171.80 195.08 140.50 145.50

17D 28.400 167.60 159.52 139.50 141.75

18C 42.100 169.60 189.88 140.00 150.30

18D 42.100 169.60 1721.52 139.00 142.85

E34 30.200 159.00 155'.73 140.50 136.12

E35 23.700 159.00 151.71 139.00 135.38

E36 10.800 133.90 120.64 134.00 123.71

*For locat o of the positions beginning with an "E°, see
Figure 58; beginning with a "C", see Figure 59; for the rest of the
positions, see Figure 34.
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FIGURE 58. POSITION OF ERIM-GENERATED SHALLOW WATER OFTS.

(E prefix in Table 13.)
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FIGURE 59. POSITION OF CERC-GENERATED SHALLOW WATER OFTS.
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One trend in the above wave refraction analyses was that the

waves detected by the SAR had shorter wavelengths than were predicted

by the wave refraction model. One of four reasons could account for

this: (1) a bias exists in the manner the SAR observes gravity

waves; (2) the water depths were less than the chart values, (3) a

physical disturbance was present which decreased the wavelength a

greater amount than would occur naturally; or (4) a bias exists in

the manner in which the SAR images shoaling gravity waves. Previous

studies of the ability of the Seasat SAR to estimate dominant wave-

length have not detected a bias in the SAR data (Shuchman, et al.,

1981a). The depth data to which comparisons were made were from 	 {

actual hydrographic surveys and are not suspect, but are known to be

conservative. Some oceanic factor could be the cause. In the region

of the Eastern U.S. coastline, a countercurrent (to the Gulf Stream)

is well documented.	 This current generally flows in a southerly

direction and could be responsible for shortening the wavelengths in

the near shore coastal region of Cape Hatteras. Finally, a bias in 	
jj!

the way the SAR is imaging the waves in coastal waters could exist

because of the non-stationary nature of gravity waves in shallow

water.
K

The results obtained from all the wavelength comparisons between
k

SAR observed values and the model estimates were essentially the

same. The best linear fit to the data (see Figures 57 and 60) all

have a slope of -0.65 and a y-intercept of about 45 meters. If the
t

SAR were truly imaging gravity wavelength, we would expect better.

agreement than this. Previous analyses of the ability of the Seasat

SAR suggest that when the dominant ocean wavelength is on the order 	 x

of 120 meters or less, the SAR has difficulty in imaging that wave-

field (Kasischke, et al., 1981). We therefore have some justifi-

cation for removing data points where the wave refraction models pre

dict a wavelength of120 meters or less. This was done for the Cape
F
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Hatteras data set and new wavelength comparisons made. These re-

sults, summarized in Figure 61, indicate that the slope of the re-

gression equation is now between 0.82 and 0.91 with a y—intercept

between 5 and 19 meters. This is in much better agreement with the

models.

4.5 DISCUSSION

This investigation represents an initial attempt to document and

predict subtle changes in the propagation characteristics of a hurri-

cane generated evolving gravity wave system. As a result of these

efforts, several significant surface gravity wave and oceanographic

phenomena have been investigated over a large spatial region of the

ocean. The primary significance of this study is the documentation

of the variation in gravity wave fields over a large area through

the use of a large number of two—dimensional optical Fourier trans-

forms, and the high resolution of this approach in both wave number

and direction. By employing these techniques, we were able to accom-

plish the following tasks for Seasat Rev. 974:

1. Determination of the wave generation region of hurricane Ella

by wave ray hindcasting to a 50 km square region.

2. Determination of non—uniform deep water wave conditions away

from the wave generation region.

3. Observation and prediction of subtle changes in gravity wave-

length and direction as a result of wave/current interactions

with the Gulf Stream.

4. Use of these Seasat SAR—observed changes in wave propagation

characteristics to analytically 'solve for the gross flow

field of the upper ocean.

5. Extension of our predictive capability in shallow water

regions based upon topography—induced gravity wave,refract-ion

observed by Seasat SAR.

:w
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Although these tasks were accomplished, the methods employed in this

investigation have strict limitations.

In an effort to quantify these limitations, a statistical analy-

sis of the accuracy and reliability of the OFT estimates of two-

dimensional wave spectra was performed. The results of this analysis

indicate that the Seasat SAR is capable of producing an estimate of

the wave propagation direction to within 1-2°. A similar estimate

for SAR sensed gravity wave numbers was obtained to an accuracy of

approximately 2 percent. This may be due in ,part to the fortuitous

set of circumstances associated with Seasat Rev. 974. We strongly

recommend that these tests be repeated for a case of non-hurricane

generated waves.

We also recommend that the findings of the other portions of this

investigation be rigorously evaluated with other Seasat SAR data.

In particular, the demonstrated ability of SAR to (1) isolate the

wave generation region of severe storms, (2) detect propagation

characteristics of spatially evolving gravity wave systems, (3)

document large scale wave/current interaction phenomena, and (4) ul-

timately predict and map major ocean current systems from these

Seasat SAR observations is in need of further investigation. The

limits of applicability and environmental ranges over which these

techniques prnduced reliable results must be determined from

additional Seasat _revolutions. The results of this investigation,

although encouraging, require a continued effort to verify and eval-

uate the methods and-results obtained for Rev. 974.

In summary, as a result of this investigation, we have attempted

to extend the current uses of Seasat SAR ocean wave data. We have

demonstrated that through the use of a large number of OFTs, very

reliable estimates of wave propagation characteristics and their

spatial gradients can be obtained. These same procedures should also

be attempted for digital Fourier transforms of Seasat SAR data. We

have also demonstrated a capability to detect the dynamics of the

133
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upper ocean with its major ocean current systems, utilizing SAR-

sensed changes in the gravity wave field structure. Should this

technique prove reliable with other Seasat SAR data sets, a potential

for rapid, global surface current mapping may exist. furthermore,

we have utilized changes in SAR sensed wave characteristics in shal-

low water to provide an estimate of the topography in these regions.

Refinement of the techniques and analytical formulations employed in

this investigation may eventually lead to an operational, global

ocean sensing capability for storm wave generation regions, and/or

ocean surface currents and nearshore bathymetric changes.

I
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5
RECOMMENDATIONS FOR ADDITIONAL INVESTIGATIONS

This report has presented results which show the usefulness of

using Seasat SAR data to monitor and map large scale spatial varia-

tions in deep and shallow water gravity wave fields. This investi-

gation has also studied an advanced spectral analysis technique, the

semicausal model, and compared results obtained frr^ it to those from

the more conventional fast Fourier transform technique. This model

needs further evaluation of its utility in generating spectral esti-

mates from SAR wave data:

Continuation of efforts is needed in three general areas: (1)

further evaluation of the semicausal model; (2) further analysis of

the deep and shallow water spatial variation documented by the Seasat

SAR during Rev. 974; and (3) analysis of other Seasat SAR data to

further document the Seasat SAR's utility as a tool in monitoring

the propagation characteristics of gravity wave fields.

To further test the semicausal model, the following areas should

be addressed:

1. Compare semicausal spectral estimates to FFT spectral esti-

mates using a wider variety of Seasat SAR imagery,

2. Investigate the effects of noise on the SC model by artifi-
cially adding noise to actual SAR data.

To further analyze the Seasat SAR data collected during Rev. 974,

the following areas should be pursued:

1. Obtain optimally processed digital data for Rev. 974, 	 {

2. Further evaluate Seasat SARs ability to monitor shallow water

wave refraction using digital analysis techniques,

3. Further evaluate wave/current interaction models using digi-

tal analysis techniques,

cF	 y
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4. Evaluate Seasat SAR's ability to map large scale ocean cur-
rents by monitoring changes in direction and wavelength of

the gravity waves.

Finally, to further evaluate the utility of spaceborne SARs to

monitor gravity wave fields, the following areas should be addressed

using Seasat SAR data other than Rev. 974:

1. Document large scale variations in gravity wave fields,

2. Isolate the wave generation regions of large storms,

3. Document the changes in wave characteristics near islands

and in near shore regions,

4. Document large sca.ls wave/current interactions,

5. Detect the propagation characteristics of spatially evolving

gravity wave fields.
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ABSTRACT

A new two-dimensional spectral estimation procedure, termed semi-

causal, is applicable to analysis of ocean wave gravity waves. Spec-

tral estimates of both reference functions and actual synthetic aper-

ture radar (SAR) data of ocean waves have been generated using semi-

causal techniques and compared to Fast Fourier Transform estimates

of identical data sets. The semicausal method can successfully gen-

erate spectral estimates of truncated data sets and data sets with

two closely spaced frequency components. The semicausal estimate is

sensitive to the autoregressive order and exhibits spectral splitting
in some cases. Its noise sensitivity is similar to that of the
Fourier transform.

INTRODUCTION
A

The wave number and propagation direction of ocean gravity waves

are readily computed from digitized imagery by two-dimensional spec-

tral estimation. A commonly used type of wave spectra display, where

the distance of peak values from the origin is proportional to the

wave number, is shownin -Figure 1. Peak values are shown by the

contour levels. Propagation direction is along a line between the

Also an ERIM consultant.
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origin and the peak contour values, which are a direct but as yet

undetermined function of wave height. Note, there is a 180 0 ambig-

uity with respect to direction of wave propagation. In present prac-

tice, ocean wave spectral estimates are produced by both digital

(FFT) and optical (OFT) two-dimensional Fourier transforms (Shuchman,

et al., 1979).

The limited resolution of the Fourier transform, however, impairs

its usefulness in discriminating between two waves whose wave numbers

are closely spaced, and in spectral estimation using truncated data

sets. Since wave refraction produces curved wave fronts, the spec-

trum of severely truncated sets must be estimated. Truncation

approximates a linear wave front, which enables accurate assessment

of propagation direction at a specific location. Overcoming the :re

strictions of Fourier transform resolution would aid in more accurate

determination of wave spectra.

Many investigators are involved in overcoming Fourier transform

limitations. Since the introduction of autoregressive (AR) tech-

niques by Parzen (1967) and the similar maximum entropy (MEM) by Burg

(1967, 1975), contributions have been and are being made to the

development of new high resolution spectral estimation. One-

dimensional spectral estimation methods have been made more accurate

and reliable. Frequency shifts have been reduced, and line-splitting

eliminated (Marple, 1980). More two-dimensional high resolution

spectral estimation methods are also being introduced (Roucos and

Childers, 1980). A recent workshop by the Acoustics, Speech and

Signal Processing Society of IEEE (Proceedings_ of the First ASSP

Workshop on Spectral Estimation, 1981) demonstrated the wide extent

and rapid development of this field.

To compare the semicausal method (SCM) and the FFT, both were

	

used to obtain spectral estimations of SAR ocean wave imagery, and 	 x

also of synthesized data for which the frequency components were

A-3
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accurately known. The high resolution technique was developed by

Jain and Ranganath (1979) and termed "semicausal," which we abbrevi-

ate to SCM. Jain (1981) also has described the SCM configuration in

an image enhancement context. The SCM employs two-dimensional AR

and is representative of the new high resolution techniques at this

stage of development. The method does exhibit frequency shifts and

line splitting. Its sensitivity to noise is illustrated in this

paper. As the above publications by Jain and Ranganath are not

	

,1	 !

readily accessible and do not fully describe the derivation, this AR

algorithm and its derivation will be described here.

Of approximately 200 experiments on reference functions and

approximately 30 on ocean wave data, a selection from those which

most clearly compare the FFT with the SCM are presented here. The

results of the comparison, which indicate the SCM can improve resolu-

tion over the FFT, are shown in the form of contour plots.

ALGORITHM

A two-dimensional AR scheme is employed in which the selection

of data samples to form the AR order is "semicausal." This term

refers to the two-dimensional treatment as an initial value problem

(causal) in one direction and a boundary value problem (non-causal)

in the perpendicular direction.

The algorithm can be developed as follows: We wish to find an

AR sequence in 'a zero-mean two-dimensional random field U to predict

a sample value ui1j.	 The mean square error between the actual
value 

uiJ 
and u 	 should be a minimum. The AR sequence will

then enable spectral estimation by an all-pole rather than an all-

zero model as in the FFT (Ulrych, 1972). 	 k

For the AR sequence, data samples are chosen which are interior

i	 to a window W as shown in Figure 2. Then,

r

A-4
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Figure 2.	 Window of two-dimensional field U used

to predict a sample value U. 	 based
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ul
,J = ^^ ,J 	e^,j	

1

where u 	 the datum, uij the predicted value, and 
ei,J

the prediction error.

Substituting for u i'j , Eq. (1) becomes

p	 p q

u i	
a	 u	 +	 a	 u	 + e•	 (2)

	

j	 m,o i —m, j 	m,n i—m,j—n	 1,j
m=-p	 m=-p n=1

where the predicted uij is written as a linear combination of
samples within the window. The amen can be found from a mean-

square-error criterion, which implies the observations are orthogonal

to the error.

For any k,2, within the window, Eq. (1) can be multiplied by

ui -k,j-R and expected values taken:

p

E(ui , jui—k,j—^) — Lam,oE(u'i—m.jUi—k,j—k)
m� p

40

p	 q	 T

}}^^'
1

L,	 am,nE(ui—m,j—nui-k,j—k)

	

n=—p n=1	 s

	

+ E(e i,j u i—k,j—k ) 	(3)

If the data are stationary, Eq. (2) becomes

p	 pp q

	

Y( k , k) _	 am^oY(k-m,k ) 
+ 21 m,n	

ay(k-m,k-n) + 0,	 (4)

M=-P	 m=-p n=1	
^.

m#0

since	
,J

E(e. •u 7• -k,j-k ) = 0- by orthogonality.	 Y(k,k) is the two^
dimensional autocovariance function.
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At k	 k = 0, Eq. (4) becomes

P	 p q

Y(0 , 0 ) _	 am oY(-m,o) +am nY(—m ,—n) + E(c i •u i •), (5)	 r

m=-p	 m=-p n=
mi 0

i

where	 i

( C^'j	
l

E(e i,J ui , j,)	 E(e i.J Cu i,J + ei,J]) - E	 iJ / '	 (6)

as	 E(ui
, Jei

,j)	 0	 by	 the	 orthogonality	 principle.	 By	 x

definition,

E
 (

1

	

e
21J /	 s2	 (7)

i

is the variance of the prediction error.

Combining Eq. ( 4 ), ( 5 ), (6), and (7),	 !
i

P
a	

q
m	 }gyp'

Y( k ,fl	 m^oy(k-,k)	 a	
(kmk—n)

' L^	 m nY—,
	 _ ^ 2 ak o a o

	

^	
,	

^'

m=-p	 m=-p n=l
n#0 _	 (g)

b

where a
k,o	

1 when k = 0 and sk o	 1 when k = 0, otherwise

ak,o	
s , o = 0, so that B	 0 except at k	 k = 0.

If ao,o is brought within the window and set equal to -1,

effectively subtracting the actual value 
ui 	

from the predicted
value 

ui,J' 
then

p	 q

LL a
m na(k-m,k-n) -s2a k o 6p o	 (9)

m=-p n=0

where it is clear that a is the error in prediction of ui1j.
i

In matrix notation, Eq. (9) can be written as

ka = -o1	 (10)
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where a and	 1	 are column matrices of ( 2p + 1)(q + 1) elements each,

which	 is the number of elements within 	 the window W plus	 one.	 a	 is.	 j

the AR sequence of coefficients. 	 1	 is	 a string of zeros except for

the	 (pq	 +	 p	 +	 1)	 entry,	 which	 is	 unity,	 and	 represents a	 ak,o- R,o

of	 Eq.	 (9).	 R	 is	 a	 block	 Toeplitz	 matrix	 of,	 [(2p + 1)(q	 +	 1)]2

elements.

Equation (10) can be restated as
E

a = _^ 2R_ 11	 (11)

Since ao'o _ —1

-1 = —sZCR—l ] + +	 +( pq p	 l , pq p l)

or

^2 = 1/C pq+p+l: pq+p+l) element of R-
1
]	 (12)

and

a = —s2 C( pq+p+l ) column of R-1]
	

(13)

s
Since	 the column vector a represents the least-4,ean-squares es-

timate of the AR coefficients, we have the samples to make an AR all—

pole spectral estimation.

The	 algorithm	 to	 find	 the	 two—dimensional	 AR	 coefficients	 is

; s,traightforward except for	 some	 detailed	 bookkeeping to	 select	 the

f correct elements of the matrix R;

4 1.	 -Obtain the covariance (autocorrelation) through the FFT.

} 2.	 Form	 the	 block	 Toeplitz matrix	 R from the	 (2p+1)(q+l)	 ele—

ments of the window W on the autocovariance function. 	 a(o,o)

!j is	 located in an analogous position to u i,j	 in Figure 2.

R

j
3.	 Invert the matrix R to obtain R-1.

A-8
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4. Select elements from R
-1 

which represent 
-s2 

and a.

5. With -s2 and a, compute the power spectra estimation by
the 2-D analog of the one-dimensional AR method (Ulrych,

1972).

p

s2 L am,o exp ( - irmk)

S(k,k) _	
p
--qm=-p
	

(14)

amen exp (-ir[mk+nk])2

m=-p n=0

where S(k,k) is the 2-D power spectrum, i - 3-1, and r = 2,r/s where

s is the number of samples in one period.

WAVE ANALYSIS BY SPECTRAL ESTIMATION

Background

	A two-dimensional spectral estimation of SAR images of ocean	 g

I'	 waves shows the direction and wavelength of the waves. However, when

waves are refracted, a range of directions is estimated if the image

E includes many way * elengths. A directional smearing in the spectral

estimation prevens the assignment of a wave direction to a specific

location. Since the amount of wave refraction reveals water depth,

it is desirable to specify wave directions at specific locations.

These specifications require spectral estimations of data sets trun-

cated to a wavelength or less. As the main lobe of the FFT is in-

versely proportional to the size of the data sample, the lobe becomes

large when data is severely truncated, and resolution is thereby de-

graded. Discrimination between two similar waves is also degraded

because of the merging of FFT main lobes produced by each wave train.

Recent spectral estimation developments have concentrated on re-



,t

i

spectral splitting, and frequency shifts. As noted abovt, limita-

tions have been addressed and improvements made in the one-,

dimensional case (Marple, 1980). Spectral estimation by the SCM

produces much narrower main lobes than the FFT, but shares in the

above limitations.

Spectral Estimation of Wave Data

Spectral estimates of SAR ocean wave data from the 1975 Marine—

land Experiment (Shemdin, et al., 1978) and from the SEASAT JASIN

Experiment (Allan and .Guymer, 1980) were produced by both the FFT

and the SCM. An example of Marineland imagery is shown in Figure 3.

The spectral estimates are shown in Figures 4 and 5, where the wave

number k is 2fr/a and a is the ocean wavelength.

The vertical axis on the spectra in Figures 4 and 5 corresponds

to the range dimension on the radar image while the horizontal axis

is in the direction of the SAR platform motion. The angles of the

frequency components with respect to the origin (at the center) in-

dicate, with 180 0 ambiguity, the direction of ocean wave propagation.

In the 1975 Marineland Experiment, ocean waves were imaged with

a SAR X—band (3 .cm radar wavelength) aircraft system. A pitch and

roll buoy operating at the time of data collection indicated a wave

train identified as a swell (8 second period or 80 m wavelength,

k	 0.08) was traveling in the approximate direction of 270 0 with

respect to true north. The significant wave height (H 1/3 ) was

1.5 — 1.8 m. A complete comparison between the pitch and roll

spectra and SAR derived spectra (utilizing FFT techniques) is given

by McLeish, et al., (1980).

L—band (23.5 cm wavelength) SAR satellite data from SEASAT was

collected during the JASIN Experiment (Allan and Guymer, 1980). A

pitch and roll buoy was also operating during the JASIN SAR data

col-lection (SEASAT Revolution 1049) and a wave train identified as

swell (12.5 sec period or -244 m wavelength) was traveling in the

approximate direction of 264 with respect to true north. The

E

1
E

s
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Figure 3.	 Radar image from Marineland experiment (X-bane, 3 cry).
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significant wave height (H 1/3 ) for the JASIN case was approxi-

mately 5.0 meters. SEASAT SAR data have a resolution of approxi

mately 25 meters while the aircraft data have a finer resolution of

3 meters.

Figures 4 and 5 indicate the SCM spectrum corresponds closely to

the FFT spectrum and to data gathered at the ocean surface. Note
that the ocean surface measurements of the gravity wave field as ob-

tained from pitch and roll buoys are indicated on Figures 4 and 5 as

crosses. Figure 4 illustrates the FFT and SCM spectrum for a short

truncation (1.5 cycles)'of ocean wave data. The SCM spectrum has

definite peaks closely approximating the ocean surface measurements,

and has no peak at the origin. The corresponding FFT has a peak at

the origin, two lower peaks (one of which corresponds to ocean sur-

face measurements), and has a more diffuse pattern.

In Figure 5, the spectral estimation of a comparatively large

region of SAR ocean data shows different results with the two meth-

ods; the FFT appearing mottled. These data from SEASAT SAR represent

10 wave cycles. In the FFT, much energy goes into zero frequency,

even when the bias has been removed from the data. A similar mottled

appearance throughout the FFT frequency plane has been found in the

approximately 50 FFT spectra of SAR ocean wave imagery which we have

processed. It is necessary to look for clustering of small peaks to

establish the dominant wave in the FFT. The pitch and rolldata in-

dicated only the major frequency component shown in the SCM spectrum.

Spectral Esti mation of _Synthetic Data

To evaluate the comparative attributes of SCM and FFT, synthetic

data were also generated and spectrally estimated. Comparative spec-

tral estimation of data characterized by short truncation, narrowly

separated components, and various signal-to-noise ratios are shown

in the power spectra of Figures 6 and 7. The synthetic data are sine

waves generated with initial shifts of n/4.
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Figure 6. Spectral estimations of reference function with single
frequency truncated to 2/3 of one cycle.
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Figure 7. Spectral estimations of reference function with two
closely spaced frequency components.
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(i - j ); i , j = 1 - 11.

Initial phases 51° and 72°. Contour intervals same
as Figure 4. SNR = 10 dB. Frequency scale
normalized.)
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Figure 6 illustrates the comparative resolution of a single sine

wave of less than 1 cycle with 10 dB SNR. Note the widths of the

main lobes of the SCM are significantly smaller than those of the

FFT.

In Figure 7, two closely spaced frequency components are sepa-

rated in the SCM spectrum but merged in the FFT. One component is

1.43 cycles, the other 2 cycles long. The ratio of the frequencies

is 1.4, which is closely approximated by the SCM spectrum.

One of the limitations of the new high resolution spectral esti-

ination is occasional spectral splitting, where two peaks are formed

for one frequency component. An example is shown in Figure 8. As

spectral splitting has recently been eliminated in one-dimensional

spectral estimation, probably a similar advance in two-dimensional

spectral estimation can be expected.

Noise Effects

Experiments on severely truncated synthetic data show the main

lobes of the SCM estimation significantly smaller than those of the

FFT under additive noise conditions. Both fail to discriminate the

synthesized frequency at and below a signal-to-noise ratio (SNR) of

about -5 dB. The synthetic data were generated with sample intervals

of 1/8 of a period. A total of 6 samples were used, giving a data

length of 5/8 of a period. Initial phase was ff/4. For these syn-

thetic data, Figure 9 compares the -3 dB levels of main lobes of

spectrum estimations for both the SCM and FFT at four SNR levels.

The FFT is sensitive to phase (Jackson, 1967; Marple, 1976), and

the SCM was also found to be sensitive to phase, similar to the one-

dimensional maximum entropy method (Chen and Stegen, 1974). In addi-

tion, noise individuality can cause moderate differences in the spec-

tral estimation between two or more estimations at identical SNR

levels, as is well known. The effects of phase, noise variations

and AR orders, which are beyond the scope of this paper, remain
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within a reasonable range and do not substantially alter the results

illustrated in Figure 9. The AR orders used for the illustrated

spectral estimations were p = 4 q - z (see, Figure 2).

SUMMARY

Examples of spectral estimation of SAR ocean imagery show that a

new high resolution autoregression method can be used to obtain the
wavelength and propagation direction of ocean gravity waves. The

	

algorithm is termed the "semicausal method" (SCM). More pronounced
	

i

spectral peaks, less mottling, and less energy at zero frequency were

found with this method than with the commonly used FFT.

Synthetic data were generated to compare the SCM with the FFT.

	

With a truncation of less than a single wavelength, the new method
	 i

produces a main lobe significantly smaller- than the width of the FFT

main lobes. Also, two closely spaced sine wave components were dis-

criminated where the FFT failed to discriminate.

Noise sensitivity was demonstrated by the comparative sizes of

main lobes under different SNR conditions. For severe data trunca-
tions, the SCM main lobe contin.Ie to be smaller than that of the FFT

for SNR conditions down to approximately -5 dB. Below -5 dB, both

the FFT and the SCM fail to produce valid'spectrums under conditons
of severe data truncations.

High resolution frequency analysis using autoregression, moving-

averages, maximum entropy and other concepts is a swiftly developing

field in which many investigators are offer ing insights and improve-
ments. The algorithm described and demonstrated here is representa-

tive of new techniques in this field. These techniques were devel-

oped to achieve high resolution and accuracy, and improvements in

accuracy are being made. The SCM algorithm shows two limitations at

this stage of development: spectral splitting and frequency shifts.

These are well-known limitations in one-dimensional AR estimations

and are being reduced or eliminated with new algorithms.`

A-18	 r-^
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For short data truncations and for discriminating two similar

wave tr'.,ins, this algorithm can be an aid in specifying the wave-

length and direction of ocean waves from airborne or satellite

imagery.
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APPENDIX B
AN ASSESSMENT OF JPL DIGITALLY PROCESSED SEASAT

SAR DATA FROM REV. 974

To more rigorously analyze the wave information available in

Seasat SAR data, it is felt that the data must be digitally processed

using fast Fourier transforms (FFTs). To this end, ERIM obtained

two digitally processed scenes of Seasat SAR data from the Jet Pro-

pulsion Laboratory (JPL). The geographic coverage of these two tapes

are presented in Figure Bl. Selected areas from these tapes were

fas'+ Fourier transformed to extract gravity wave information from

the SAR data.

A comparison of the estimates of dominant wavelength and direc-

tion from the FFTs to those obtained from an OFT analysis of JPL op-

tically processed data produced dramatically different results. A

previous ERIM study of Seasat-SAR data collected during the JASIN

experiment showed that OFTs and FFTs produced essentially the same

a estimate of dominant wavelena+" and direction (Kasischke, 1980). The

early results produced from an analysis of the JPL digital data of

Rev. 974 were therefore somewhat disconcerting.'

Upon a visual comparison of the JPL-digitally processed data and

the JPL-optically processed data, it was noticed that the quality of

the digitally processed data was poorer than that of the optically

	

processed data in that waves were more visible on the optically	
l

processed image. An example of the same area from Rev. 974 from both

digitally and optically processed JPL imagery is presented in Figure

B2. Note the ship in each picture provides a common frame of refer-

ence. The wave images are much more distinct in the optically pro-

cessed image than in the digitally processed image.

	

Figure B3 shows a digital fast Fourier transform of an area using 	
x

both ERIM Hybrid digital imagery and JPL digital imagery. 	 (The

nnci#inn of thacn FFTc arc frnm inn in Finurc 1d 1 MAto that whora
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the spectra are clearly evident on 	 the ERIM image there is no clear'

dominant spectra on the JPL image.
k,

The following observations were made when comparing the optical

and digital	 data:

1.	 The	 southernmost	 digital	 tape	 (Tape	 1)	 had waves	 evident on

imagery generated from the tape, but these waves were not as

visible as those on the optical data and the imagery produced
i

marginal	 data when fast Fourier transformed.	 The same areas

of	 JPL optically generated 	 imagery, when digitized and fast

Fourier transformed, produced good estimates.

2.	 Imagery from the northernmost digital 	 tape	 (Tape 2) had few
1

visible waves and	 produced	 no	 spectral	 estimates	 when	 fast

Fourier transformed.	 The optical imagery from the same area,

when processed, produced fair to good spectral estimates.

3.	 The apparent degradation of the digitally processed 	 imagery

was	 worse	 in	 the	 northern	 region	 of	 Tape	 1	 than	 in	 the

southern portion of Tape 1.

4 The	 small	 overlap	 area between the two	 tapes	 had	 the	 same	 4

quality of data.

The conclusion	 drawn from these observations was that when digitally 	 j

processed the Rev. 974 data were not optimally focused, resulting in 	 I

poor wave	 images.	 Examination of other JPL digital 	 tapes	 of ocean	
I

1

areas shows that waves were just as clear- on these data as on optical 	 i

data,	 indicating	 the	 problems	 encountered with	 Rev.	 974	 data were

E

t

^

probably specific to that pass.

1
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APPENDIX C
FURTHER SEMICAUSAL VERSUS FAST FOURIER

TRANSFORM COMPARISONS

In addition to the results presented in Section 3.2.3, other

tests were performed on the semicausal model using a variety of

aperture sizes. For this study, unsmoothed Seasat SAR data from Rev.

974 positions A, B, C, and D were used. Again, five separate aper-

ture sizes (sampling every other pixel) were used to vary the number

of wave cycles sampled (128 x 128 pixels, 64 x 64 pixels, 32 x 32

pixels, 16 x 16 pixels, and 8 x 8 pixels). Two—dimensional contour

plots were generated from each method for each aperture size. These

plots were manually interpreted for dominant wavelength and direction

by locating the peak in the two—dimensional spectrum, as described

in Section 3.1.2. The results of these comparisons are summarized

in Tables C-1 through C-4 and the contour plots are presented in

Figures Cl through C4. Also presented in Table C-1 are the results

obtained from position A using smoothP. data and the digital analysis

techniques described in Section 3.1.E (i.e., integrating the spectrum

over angles).

From Table C-1, we can see that the manually interpreted results

are close to those produced digitally. From Tables C-2 through C-4,

we can see that the same trend is evident in all the data; the SC

and FFT estimates of dominant wavelength and direction are close to

one another and to the 256 x 256 FFT estimate through the first three

aperture sizes. When an aperture size of 16 x-16 pixels or 8 x 8

pixels is used, neither technique produces spectra which match the
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Wave Cycles/ FFT
Aperture Size Aperture

_
a e

128 x 128 pixels 16.9 175 m	 3080

64 x 64 pixels 8.5 189 m 	 309°

32'x 32 pixels 4.2 202 m	 3110

16 x 16 pixels 2.1 123 m	 309'

8 x 8 pixels 1.1 535 m	 3540

_ SC

171 m 307°

176 m 307°

162 m 305°

134 m 311°

535 m 355°
1
9
t

3

a

t
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TABLE C-2
COMPARISON OF SEMICAUSAL SPECTRAL ESTIMATES VERSUS

FAST FOURIER TRANSFORM SPECTRAL ESTIMATES
USING VARIABLE APERTURE SIZES*

*Seasat Rev. 974, Position B; A 256 x 256 FFT of this area
results in a dominant wavelength of 189 meters and a dominant wave
direction of 308 0 (T). To generate the data in this Study, every
other pixel was sampled, resulting in -4 samples per wave cycle.

f
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TABLE C-3
COMPARISON OF SEMICAUSAL SPECTRAL ESTIMATES VERSUS

FAST FOURIER TRANSFORM SPECTRAL ESTIMATES

f USING VARIABLE APERTURE SIZES*

Wave Cycles/ FFT SC
A erture Size	 Aperture X 

.__X_
e

{ 64 x 64 pixels	 16.3 194 m	 313° 180 m 3130

32 x 32 pixels	 8.2 168 m	 3090 166 m 312°

16 x 16 pixels	 4.1 188 m	 310° 162 m 310°
8 x 8 pixels	 2.0 N/D**	 N /D** 256 m 3100

n x 4 pixels	 1.0 N/D**	 N/D** 229 m 2940
s

C

*Seasat Rev. 974, Position C; A 256 x 256 FFT of this area
results in a dominant wavelength of 196 meters and a dominant wave
direction of 313°	 (T).	 To generate the data in this study, every
other pixel was sampled, resulting in -4 samples per wave cycle.

**min.	 ti„+ d;c..nvn;kln



`AIM	 RADAR AND OPTICS DIVISION

TABLE C-4
COMPARISON OF SEMICAUSAL SPECTRAL ESTIMATES VERSUS

FAST FOURIER TRANSFORM SPECTRAL ESTIMATES
USING VARIABLE APERTURE SIZES*

Wave Cycles/ FFT SC
Aperture Size Aperture

_	 _
a e a e'

128 x 128 pixels 20.9 164 m 3160 154 m 3190

64 x 64 pixels 10.5 164 m 3170 156 m 3190

32 x 32 pixels 5..2 163 m 3170 165 m 3190

1-6 x 16 pixels 2.6 692 m 3390 N/D** N%0**

8 x 8 pixels 1.3 233 m 3550 2840 3460

*Seasat Rev. 974, Position D; A 256 x 256 FFT of this area
results in a dominant wavelength of 153 meters and a dominant wave	 i
direction of 318 0 (T). To generate the data in this study, every	 y
other pixel was sampled, resulting in -3 samples per wave cycle.

**N/D; Not discernible.
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APPENDIX D
PRECISION AND ACCURACY OF OPTICAL FOURIER TRANSFORMS

Throughout this report, we have extensively used optical Fourier

transforms (OFTs) to extract estimates of dominant wavelength and

direction from SAR ocean wave data. We have used the. estimates to

monitor changes in wavelength and direction of a spatially evolving
wave field. In order to assess whether these changes are signifi-
cant, we must know the "level of uncertainty" associated with the

measurement technique (i.e.,, the OFT).

To define this level of uncertainty of the OFT measurements, we

must look at the accuracy of the measurements, the precision of the

measurements, and the variability of the measurements. In determin-

ing the accuracy of a measurement, we usually compare the results
obtained from the measuring device against a standard. In determin-

ing the accuracy of the OFTs, we could use standard oceanographic

techniques (such as pitch and roll buoys, wave rider buoys, etc.) as

our standard, but the accuracy of these techniques is really not that

high. It may be, in fact, that OFTs are more accurate (in the abso-

lute sense) than the present day standard oceanographic techniques.

Fortunately, for the present study, we are interested in relative

measurements, 'not absolute; therefore, we can ignore any systematic

error in the OFT method in terms- of absolute accuracy (if one does

indeed exist). In the remainder of this discussion, we will address

the questions of precision and variability in the OFT technique, and

in the end, come up with 'a level of uncertainty for the OFT estimates

of wavelength and direction.-

Precision of the OFT Measurements

The orientation of the peak of the optical Fourier transform
spectra was measured by the human interpreter with a precision of

*0.25 using a protractor measurement on a 70 mm polaroid print.

i

D-1
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The distance between the peaks of the symmetrical spectra were
measured with a precision of f0.25 mm. This distance (r) was then

x
put into the formula (after Shuchman, et al., 1979):

A = K	 (D-1)

where a = the dominant ocean wavelength,

K = ocean wave image scale factor, and
k = spectrum scale factor.

While there might be some measurement uncertainties in K or k

that would affect the precision- of a, these uncertainties will be

constant throughout the experiment and should be considered a bias

in the entire data set rather than a source of error in an individual

calculation.	
4

In using_Eq. (D-1) to calculate wavelength, the precision of the

wavelength calculation depends on the value of r. The smallest r

measured in the Rev. 974 data set was 14.O mm. The wavelength asso-

ciated with this r is 245 meters, and introducing the *0.25 mm un-

certainty, this wavelength ranges from 240,7 m to 249.5 or *4.5 m,

which equals f1.8 percent.

The precision of the OFTs are therefore *0.25 0 in direction and
*1.8 percent in wavelength for this set of measurements,

variability in the OFT Measurements

For the purposes of this study, we will def = ne variability in

terms ofthe 95 percent confidence interval of the population mean

(after Shaeffer, et al., 1979) calculated as 2ax, where ax (the
standard errorof the estimate) is:

s	 .

ax = n
	

( D-2)

where sX is the standard deviation of the mean, and
n is the number of samples in the experiment.

D-2

z	 r.	 -
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The sources of variation considered for this experiment were:

1. Natural variation within the wave field being imaged by the

SAR,

2. Variation in the generation of the OFT, and

3. Variation in the measurement of the dominant wavelength and

direction from the OFT.

The wave field being imaged by the SAR has its own variation, so

that if the same wave field is measured at different geographic

locations, a naturally occurring variation will exist. There is of-

ten variation in OFTs obtained from the same nominal position.

Finally, if the same OFT is measured more than once, there will a

variability associated with the interpreter making the separate

measurements. Each one of these sources of variation was estimated.

A deep water area from Rev. 1049 was used to determine the vari-

ability in the wave field. Nine independent OFTs were generated from

nine different areas. The average direction for these nine areas

was 40.8 0 with a 95 percent confidence interval of 1.1 0 . The average

r value calculated for these nine positions was 16.3 mm with a 95

percent confidence interval of 0.18 mm. Using Eq. (D-1) results in

a wavelength of 2.10.4 m with a 95 percent confidence interval of 2.4

m or 1.1 percent.

Next, a fixed location in the SAR ocean image was resampled five

times to determine the variability in this stage -of the OFT tech-

nique. An area of Rev. 974 was selected for this study. The average

direction calculated was 61.0 0 with a 95 percent confidence interval

of 0.3 0 . This average r value was 20.5 mm with a 95 percent con-

fidence interval of 0.32 mm, which results in a wavelength of 167.3

m with a 95 percent confidence interval of 2.7-m or 1.6 percent.
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Finally, four separate OFTs were selected from the Rev. 974 data

set and each was remeasured five times. The results from this study
E

are Summarized in Table D-1. From Table D-1, we can see the average

95 percent confidence interval was 0.9 0 for direction and 2.2 meters

or 1.2 percent in wavelength.

In summary, the variability in the measurement of the wavelength

was approximately the same for independent OFTs from a uniform wave

field, for overlapping OFTs from the same position within the image,

and for repeated measurements on the same OFT. Further, the vari-

ability is approximately equal to the precision of the measurement

(these values are summarized in Table D-2). Therefore, a change in

the measured wavelength within a given SAR image may be considered	 j

to be significant if it is greater than this value (i.e., approxi-

mately 1.8 percent of the wavelength).

For wave direction, the greatest variation in the measurements

is approximately 1 0 . The greatest variation in the data appears to

come from the variation within a given wave field. Thus, for the

measurement techniques used in this study, a change in the wave

direction on the order of 1 0 within a given image may be considered

significant.

D-4
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TABLE D-1
SUMMARY OF MEASUREMENTS FOR OFT VARIABILITY STUDY

r Direction
95 Percent Confidence 95 Percent

Interval Confidence
Area Average r Wav	 Percenf Average Interval'

A 18.3 mm 0.40 mm	 4.2.m	 2.2 106.00 1.2°

B 18.3 mm 0.24 _mm	 2.5 ,m	 1.3 103.8° 1.0°

C 21.3_mm 0.24 mm	 1.9 m	 1.2 116.10 0.60

D 20.5 mm 0 mm	 0 m	 0 122.90 0.80
i

Average	 2.2 m	 1.2 0.90
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TABLE D-2
SUMMARY OF PRECISION AND VARIABILITY DATA FOR OPTICAL

FOURIER TRANSFORM MEASUREMENT OF WAVELENGTH
AND DIRECTION

95 Percent Confidence
Intervals

Source	 gave een9	 Direction

Precision of Measurement 	 1.8 percent	 0.25°

Natural variation in wave

i	 data	 1.1 percent	 1.1

Variation in taking-
multiple OFTs of same
position	 1.6 percent	 0.3

Variation in measurement of
wavelength and direction
from the same OFT	 1.2 percent	 0.9

4
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APPENDIX E

WAVE/CURRENT INTERACTION ANALYTICAL DEVELOPMENT

For the first-order approximation of the propagation of waves in

water of uniform depth (d) with a constant atmospheric pressure, the

dispersion relation is:

a 2 (k) = k ( g + yk 2 )	 tank kd	 ('E-1) i

where	 k	 k*'	 is	 the	 vector	 wave	 number	 (k 1 ,	 k q ),	 g	 is	 the

gravitational	 acceleration,	 y	 is	 the	 ratio	 of	 surface	 tension	 to

water density,	 and a is the intrinsic frequency.	 In deep water, the

water	 de l.th	 is	 much	 larger	 than	 the	 wavelength,	 and	 kd	 is	 much

smaller than unity.__ 	 The phase velocity c	 (a/k)	 then has a minimum

when	 k	 =	 (g/y) 1/2 	or	 when	 the 	 wavelength	 a	 =	 27r(y/g) 1/2 .	 For a

waves shorter than this wavelength, 	 the restoring force is dominated

by	 surface	 tension,	 and	 for	 waves	 larger	 than	 this,	 the	 capillary 1

force	 is	 no	 longer predominant.	 Gravity waves are those whose re-

storing force	 is mainly due to gravity and have wavelengths greater

F	 l	 than	 2,r(y/g)1/2.	 For	 deep	 water	 gravity	 waves	 the	 dispersion	 re-

`4'	 lation	 in Eq.	 (LE-1)	 is therefore reduced to:

f	 a2 
= gk	 (E-2) }

For longer period waves such as tides and Rossby waves,	 the assump-

tion of kd >> 1	 may be no longer valid and the simple dispersion re-

lation	 in Eq.	 (E-2) will	 result in significant error. 	 However, under

field	 conditions,	 there	 are	 no	 good	 indications	 that	 Eq.	 (E-2)	 is

not	 an	 adequate	 approximation	 when	 the	 wavelength	 is	 less	 than

approximately half the water depth	 (Phillips,	 1981).

When	 a wavetrain	 enters	 shoaling water, refraction	 occurs	 as	 a

result of water depth and possibly current variations. 	 In the case

where these variations are slow, the dispersion relation in Eq. 	 (E-1)

for gravity waves becomes

E-1 ^.



a2 = gk tanh kd	 (E-3)

where d = d(x) is the local water depth.

If a wave is moving in a medium with a velocity'u(x, t) relative

to an observation point, the observed or apparent frequency of waves,

n, measured at a fixed point, should include a Doppler shift to the

intrinsic frequency:

n = a(k) + k . u	 (E-4)

The velocity u is actually the variation or shear of the current;

therefore, when a wave is moving along or across a current with

slowly changing current velocities, u should be the vector sum of

the two neighboring velocities. It is convenient to assume that a

current can be divided into many small portions or strips with slow-

ly varying velocities, which are steady and uniform in each portion

or strip.

a current with slowly changing

the angles a i are the incidence

the waves are incident upon the

locity range of u o to u l , the

- u l , and the conservation of

	

Qo = a l + k l ( u l - uo ) cos a l	(E-5)

The conservation of wave numbers is:

ko cos a° = k 1 cos a l	 const	 (E-6)

Eq. (E-5) gives:

a	 Cr
cos al 	k u°	 ul = K I /k l	(E-7)

1 l - °

Substituting k l from Eq. (E-6) into (E-1) gives:

t_ E-2

al

For waves riding on or across

velocities as shown in Figure 40,

angles or refraction angles. When

current which has an average ve

shear per unit distance is uo

frequency in Eq. (E-4) becomes:
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Cos ao -au -al	 = K 1 /ko 	(E-8)
0 1	 0

where K 1 = ( oo - a l )/( u l - u o ), and for deep water gravity
waves the intrinsic frequency Q2 = gk. Theoretically, the inci-

dence and the refraction angles can be calculated from Eqs. (E-7)

and (E-8) when both the shear of the current between two current
strips and the wave numbers in these two current strips are known.

Equations (E-5) and (E-6) have been reduced to another useful
presentation (Phillips, 1981):

gko cos 010

cos 0 1 = —	 2	 (E-9)
[a0 -- ko (u l - u0 ) cos M 0

or

cos 
a Cos	 2	 (E-10)

1 - ul	
Uo

0
	

COS 1300

where co (g/ko) 1 /2 is the initial phase velocity of the
wavetrain and the term (ul - u o )/co cos a o is usually much

less than unity. This term can be positive or negative depending on

the signs of (u l - u o ) and cos a 0. If the incidence angle

M 
is less than 90 0 , the wave ray will turn away from its normal

when it is traveling across a slowly increasing current; otherwise,

if the wave is traveling across a slowly decreasing current, the
wave ray will shift towards its normal. 	 Similarly, if a o is
greater than 90 0 , the wave ray will turn toward or away from its

normal depending on an increasing or a decreasing current. These

concepts are illustrated in Figure 40. In order to have very small

or no refraction of the wave ray, the incidence angle ao should be
both/either close to 90 0 and/or the ratio of shear to the initial

E-3
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phase velocity of the wavetrain should be very small. With a parti-

cular incidence angle, when the refraction angle becomes zero, the

wave no longer penetrates further into the current, but is reflected

by the current. The condition of total reflection of the wave ray

is obtained by setting a l = 0 in Eq. (E-10) or (ul-uo)/co

[1	 (cos ao ) 1/2 ]/cos ao .	 For small incidence angles, even a

small shear will result in reflection.
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