
General Disclaimer

One or more of the Following Statements may affect this Document

 This document has been reproduced from the best copy furnished by the

organizational source. It is being released in the interest of making available as

much information as possible.

 This document may contain data, which exceeds the sheet parameters. It was

furnished in this condition by the organizational source and is the best copy

available.

 This document may contain tone-on-tone or color graphs, charts and/or pictures,

which have been reproduced in black and white.

 This document is paginated as submitted by the original source.

 Portions of this document are not fully legible due to the historical nature of some

of the material. However, it is the best reproduction available from the original

submission.

Produced by the NASA Center for Aerospace Information (CASI)

(NASA-CR-069560) DESIGN AND EVALUATION OF A	 N83- 13319

,FAULT-`P0.1,ZRANT MULTIPROCESSOR USING HAUDWANE
RECOVERY U,LUOKS (Michigan Univ.)

54CSCL 09 B 	 Unclas
HC a 04/r^>• A01	 G3/60 02114

va

THE UNIVERSITY OF MICHIGAN

COMPUTING RESEARCH LABORATORY

-111 77 71	
1,

1p5

a r

pF(`	 '` ì
RECE I v LL

NASA STf FACIUTY

ACCESS DEPT, ^,^

TH14,', UNIVII,"281TY OF MICHIGAN

COMPUTING R11'3KARCII LABORKrORY"

DESIGN AND EVALUNMON OF A

FAIAT—TOLTIMN'r MULTIRROCESSOR

USING HARDWARE 1110sCOVERY BLOM,

Yann-liang Lao and Kang G, Shin,

GR1rT1"-02

AX)OUV 1002

Room 1070, &4 ftalnoarin4 Building
Ann 0bor, Xiohigau 40109
USA
Zat (313) 7M)41000

1111tinvork vos oupportod in part by NASA armit No, XAQ NIN, All corrvapondence should be sent to Prolato

*11 K"INIL
Sian, Any a ulom, limlingn, and molualonm cw mommendattwio

11*
rasood In

101ovo 0 1 outbors hud 0 trot 11004ostwily reflect t vlqwtt of the twI011% eaelic 0^

DESIGN AND EVALUATION OF A FAULT-TOLERANT MULTIPROCESSOR

USING HARDWARE RECOVERY BLOCKS

Yann-Hang Lee and Kang G. Shin

ABSTRACT

In	 this paper	 we	 consider the	 design	 and the	 evaluation	 of	 a

fault-tolerant multiprocessor with a rollback recovery mechanism.

The rollback mechanism Is based on the hardware recovery block

which is a hardware equivalent to the software recovery block. The

hardware recovery block is constructed by consecutive state-save operations

and several state-save units in every processor and memory module. When a

fault is detected, the multiprocessor reconfigures itself to replace the faulty

component and then the process originally assigned to the favity component

retreats to one of the previously saved states In order to resume fault-free

execution.
Y

lJ

I

Due to random interactions among cooperating processes and also due

to asynchrony in the state-savings, the rollback of a process may

propagate to ethers and multiple-step rollbacks may thus bocome necessary,

In the worst case, when all the available saved states are exhausted, the

processes have to restart from the beginning as If they were executed in a

system without any rollback recovery mechanism. A mathematical model is

proposed to calcula,a both the coverage of multi-step rollback recovery and

the risk of restart. The performance evaluation in germs of the mean and

variance of execution time of a given task is also presented.
k

Index Terms - Fault-tolerant multiprocessor, rollback recovery,

hardware/software recovery block, rollback propagation,

coverage of recovery.

.rs

ti

1» INTRODUCTION

There are numerous benefits to be gained from a multiprocessor. In

addition to the decreasing of hardware cost and the inherent reliability of

LSI components, the capacity of reconfiguration makes the multiprocessor
t

attractive when system reliability is important. It is particularly essential to

critical real-time applications that the system be tolerant of failure with

minimum time overhead and that the task be completed prior to the imposed

deadline. Hence, one of the major issues of reliable multiprocessor design is

error recovery without having to restart the whole task when an error

occurs.	 R

In general, the tolerance of failure during system operation is

	

ea zed by t hree steps: ,-leatec .l ^n o f	 reconfiguration 	 rr__li___	 ,	 h,	 er,,.	v....,.+^^ ^+^ 	 er ror,,	 i'eivi[['IytirdtiVll oT SySt@fT1

components, and recovery from error. The purpose of error detection is to

recognize the erroneous state and to prevent a consequent failure of the

system. There are two design approaches in error detection: (1) detect an

error immediately, and (2) isolate the erroneous information before it is

propagated. For the first approach, the most-widely used techniques are

error detection/correction coding, addition of built-in checking circuits

(e.g., voting hardware), etc. Error detection schemes such as consistency

test, the execution of validation routines, or acceptance test are typical

{
t methods for the second approach. After the detection of an error, the

faulty components, which are the source of error, are localized and

replaced so as to enable the system to be operational again, To recover
jr

-initialization of afrom an error, the rollback recovery method or the re

1

fault-free subsystem is usually invoked in order to resume the failed

computation. Both methods consist of state restoration and recovery point

establishment. In JPL-STAR system [1], the recovery points are defined by

the application program which also takes the responsibility of compensating

for the information prior to the recovery point. Hence its error recovery

capability is constructed in the application software level. On the other

hand, the strategies used in PLURIBUS [2] are to organize the hardware

and software components into reliable subsystems and to mask the error

above the interface level of a subsy4item. When an error is detected, the 	 i

subsystem performs backward recovery by restarting the subsystem.	 4.

The conventional restart recovery technique could be costly and inept

since (1) the computation between the start of task and the time when an

error is detected is lost, and (2) if the task is distributed over different

processing units in the multiprocessor, it is difficult to provide a consistent

task state and to isolate a subtask to prevent the propagation of erroneous

information to others (these may lead to the restarting of the whole task

and result in high re-initialization overhead) . The rollback recovery method

at the software level is also difficult to implement and may not be effective,

especially for tightly coupled processes, since (1) the software recovery

points in each process are not sufficient to recover the task unless they

belong to the same recovery line [3], and (2) the program designers have

to structure carefully the parallel processes so that the interacting

processes establish recovery points in a well-coordinated manner. (This

could became a heavy burden on the program designers) . Several

alternatives have been proposed: for example, the conversation scheme [4],

2

the Inter-process communicztion primitives in producer-consumer system [5],

the programmer-tt^an spa rent scheme [6,7], the system defined checkpoints

[d], etc. These methods could lead to a loss of efficiency in the absence of

error, the accumulation of a large amount of recorded states for heavy

interprocess communications, or some undesirable restrictions in

communication schemes.

However, the concept of the recovery block, proposed by Randell

[3,4], can still be useful for tolerating hardware faults in the

multiprocessor. In this paper, we employ this concept to construct a

hardware recovery block which enables the task to survive processor or

Memory failures, In general a process state can be regarded as the status

of internal registers of the assigned processor and the process va. --iables

stored in memory. in order to resume a failed process, an error-free

process state should be restored. The hardware recovery block is

constructed in a quasi-synchronized manner which saves all states of a

prc^icess consecutively and automatically. This happens in parallel with the

execution of the process by using a special state-save mechanism

implemented in hardware. "he hardware recovery block is different from the

software recovery block which only saves non-local states when a check-

point is encountered. Moveover, instead of the assertions in the check-

point of the software recovery block, the hardware resources are tested by

embedded checking circuits and self-test routiwtes. After an error is

detected and the faulty component is located, the system will be

reconfigured to replace the failed hardware module. By loading the program

code and by transferring the recorded states into the replacement module,

3

the original process can be resumed.

The multiprocessor with a hardware recovery block scheme takes

advantage of the large number of processor units available to facilitate fast

recovery from hardware failures, Furthermore, the system minimizes the

time required to ec iblish every recovery block that would significantly

affect system performance.

For both	 hardware and software recovery blocks,	 the	 rollback of the

failed	 process	 to	 the	 previous	 state	 is	 not sufficient	 for	 concurrent

processing.	 The	 rollback of one process may propagate to other processes

or to	 a	 further	 recorded	 state,	 (This	 is	 called rollbackrp opagation) .	 The

worst	 case	 is	 when	 an	 avalanche	 of	 rollback p^ jpagations,	 n,cnely	 the

domino	 effect s	occurs.	 The domino effect 	 Is Impossi ble 	 avoid 	lT	 no

limitation	 is	 placed	 on	 process interactions	 [8) . Instead of placing any such

limitations,	 several	 consecutive	 states	 are	 saved so that	 the	 processes	 are

allowed	 to	 roll	 back	 multiple	 steps	 in	 case	 of rollback	 propagation.	 The

coverage of a multistep	 rollback,	 which	 indicates the probability of	 having

a	 successful	 rollback	 recovery when	 the processes roll back multiple steps,

should	 be	 examined	 to	 decide	 the	 effectiveness of	 this	 method.	 Both	 the

recovery	 overhead	 and	 the	 computation	 loss	 resulted	 from	 this	 automatic

rollback	 recovery	 mechanism	 should	 also	 be	 studied	 carefully.	 Furthermore,

since the time interval	 between	 two consecutive state	 savings	 is	 related	 to

the	 final	 performance	 figure	 of	 this	 method, the	 optimal	 value	 of	 this

interval	 has to be determined.

4

This paper is divided Into five sections. Since the construction of

hardware recovery blocks In.. the multiprocessor plays a basic role, we

review it briefly In Section 2, The detailed description can be found in

(9,101. In this section, we also extend the previous design to a general

multiprocessor on which our hardware fault recovery can be Implemented.

Section 3 presents an algorithm to detect rollback propagations among

cooperating processes and also proposes a model to evaluate the coverage of

multi--step rollback recovery. Sec futon 4 uses the results of Section 3 and

deals with th , analysis and estimation of performance in terms of the meant
k

and variance of the task completion time. The conclusion follows in Section

5.

2.AUTOMATIC ROLLBACK MECHANISM FOR A MULTIPROCESSOR

The multiprocessor Under consideration has a general structure and

consists of processor modules, interconnection network and/or common	 r

memory modules. To benefit from the locality of reference, every processor

'r r	 module owns its local memory which is accessible via a local bus. Every
Fit

b
processor module can also access the shared memory through the

interconnection network. First, the basic state-save mechanism associated

with every processor module and common memory is briefly presented. Then

we discuss the rollback recovery operations of a task for which the

5

following two multiprocessors	 can be	 used:	 in	 one,	 there	 Is	 no	 common

memory, but local	 memory	 of one processor module Is accessible by other

processor modules (e.g.,	 Cm*	 system [11]);	 in	 the	 other,	 the	 system	 is

equipped with separated	 common memory	 modules	 [12]	 and	 restricts	 the

access of local memory only to the resident processor.

2.1 Processor Module, Common Memory, and State-save

A basic processor module (PM) in the multiprocessor comprises a	 i

processor, a local memory, a local switch, state-save memory units (SSUs)

and a monitor switch as shown in Pig. 1. it is assumed that a given task

is decomposed into processes each of which is then assigned to a processor

—111odu to The e_ha ►.nrl variables among these cooperating ,Drocesses are located

in the shared memory which is either separated common memory or local

memories depending upon the multiprocessor structure, Thus each process

in a PM can communicate with other processes (allocated to other PMs)

through the shared variables. PMs save their states (i.e. process local

variable and processor status) in an SSU at various stages of execution;

this operation is called a state-save. Ideally, it would be preferable to save

states of all processes at the same instant; during the execution of task.

Because of the indivisibility and asynchrony of instruction execution in

PMs, it is difficult to achieve this ideal case without forced synchronization

and the consequent loss of efficiency. In order to alleviate this problem,

we employ a quasi-synchronized method in which an external clock sends all

PMs a ; ,̀'Ae-save Invocation signal at a regular interval, Tss. This

6

i
t

Invocation signal will stimulate every PM to save Itx states as soon as It

completes the current instruction and then to execute a validation test. If

the processor survives the test, the saved state would be regarded as the

recovery point for the next Interval. If the processor falls the validation

test or an error Is detected during execution of a p)trocess, the system will

be reconfigured to replace the faulty component and the associated process

will roll back to one of the previously saved states, The detail'rl operations

of state saving and rollback recovery are shown in Fig. 2,

Similarly to a processor module, each common memory module (CM)

also contains state-save memory units and a monitor switch, These SSUs are

rased to record the updates Qf CM only, The access requests of CM are

managed b	 an accessg	 y	 queue on the basis of first-come-first-serve	 z

discipline, When a PM refers to a variable resident in a CM, an access

request is sent to the destination CM through the interconr ,,ction network

and enters the access queue associated with the CM. When all the

preceding requests to this CM are completed, the access request will be

honored and a reply will be sent back to the requesting PM. When a

state-save Invocation is issued, a state-save request Is placed at the tall of

every access queue. Thus the state-save in CM is performed when the

requests made prior to the state-save invocation have been completely

served,

During a state-save interval, besides the normal memory reference or

instruction execution, certain operations are automatically executed, for

example, a parity check is done whenever a bus/memory is used. Some

7

redundant error dete^,tle)n units also accompany the processor module [13],

e.g., dual-redundancy comparison, address-in-bound check, etc. These

units are expected to detect a malfunction whenever the corresponding

function units are used, An additional validation process which could be the

execution of self-test routine refreshes the shelters to guarantee that the

saved state be correct and thus guards against the existing fault extending

to the next state - save interval.

Suppose there are	 (N + 1)	 state save	 units for every	 PM	 (and every

CM),	 called	 SSU 1 , SSU 2 1	 , ..	 SSU N+1'	 These units	 are	 used	 for saving

states	 at	 (N + 1)	 consecutive	 state-save	 intervals. Thus each	 PM or CM	 is

able to keep N valid states saved In N SSUs and record the currently

changing state in the remaining SSU. As shown in Pig. 3, the SSU Z , SSUZ

.. SSU N are so arranged to record the states for consecutive state-save

Intervals T(l),T(1+1), ... T(I + N) and the SSUN+1 is used to record the

updates in the current state-save interval, T(i + N + 1). To minimize the time

overhead required for state-saving, the saving is done concurrently with

process execution. Every update of variables in the local memory is also

directed to the current SSU. When a PM or CM moves to the next

state-save interval, each used SSU will age ona step and the of-dest SSU

will	 be changed to	 the current position	 if	 all	 SSUs are	 exhausted. The

monitor switch	 Is used to	 route the	 updates	 to	 SSUs and to manage the

aging of SSUs. Therefore the state-save mechanism of each PM or CM

provides an N-step rollback capability. However, in Section 3, we will show

that only a small number of SSUs are sufficient to establish high coverage

of rollback recovery for a given task.

Since they update of dynamic elements is recorded in only one SSU,

the other SSUs are ignorant of it. This fact may bring about a serious

problem: the newly updated variables may be lost. In order to avoid 00,k,

it is necessary to make the contents of currently updated SSU identical

with that of the memory or to copy the variables that have been changed

in the previous intervals into the current SSU. A solution to this problem

has been discussed in our previous paper (9]. At each state-switching

instant, the current SSU contains not only the currently updated variables

but also the previously updated variables. Consequently, the contents of

the current SSU always represents the newest state of the PM or CM.

2.2 Rollback Recovery Operations of a Task

As described in the above section, each processor module and common

memory has its own rollback mechanism with several saved states. With

these individual rollback recovery capabilities, the rollback recovery of a

task is described as follows.

Suppose a task is partitioned and then allocated to M modules i

0=112,...,M). These modules include PMs and CMs and will be dedicated to

this task until its completion. The state saving of a task implies the

state-savings of these modules. The rollback of a process is equivalent to

the state restoration of the associated modules. Since the process state

includes the internal hardware states, local variables and global variables,

the resumption of a failed process may need cooperation from common

memory and/or other processes. Moveover, due to arbitrary interactions

9

between cooperating processes and the asynchrony In state savings among

then, the rollback of one process may cause others to roil back and It is

therefore possible to require a multi-step rollback (a detail of this will be

discussed In the next section), In order to make: decision as to rollback

propagation and also to perform housekeeping jobs, (e,g., task allocation,

Interconnection network arbitration, reconfiguration, etc,), a system monitor

and a sw/Ach controller are included In the multiprocessor. The switch

controller handles the global variables references and records these

references for analyzing rollback propagation and multi-step rollback. The

system monitor receives the task execution command and then allocates PMs

and CMs to perform the task. Both devices are defined In a logical sense,

They could be a host computer, a special monitor processor; or one of

general processor modules In the system.

To deal with the error° recovory, the system monitor receives reports

from each rno0ule about the state-save operations and its conditions. Once	 G.
^I

an error is detected, the system monitor will sign&,l "retry" to the module
i

°	 in question. If the error recurs, a permanent fault Is declared and the

following steps are taken by the system monitor and the switch controller,

1, Stop all PMs that are executing processes of the task In question.

2. Make a decision as to rollback propagation.

3, Resume the execution of processes that are not affected by rollback
propagation,

r '
	 lace the failed one,4. Find a free module to re€ i	 p

10

.	 Sc

ll

5. Transfer the process or data in the failed module to the
replacement module and reroute he path to map addrF .sses directed
to the fault; module into Its replacement,

6. Restore the previous states of the processes affected by the
rollback of the process in the faulty module.

7. Any interaction directed to a module to be restored must wait for
the resumption of the module. Old and unserviced interactions
issued by the rolled-back PMs, which are still queued in the access
queues, are cancelled.

.J

J

3. ROLLBACK PROPAGATION AND MULTI-STEP ROLLBACK

In order to roll back; a failed process, the consistent values of the

process variables and the internal states of the associated PM should be

provided. The local variables and internal states which are saved in the

SSUs of a PM are easily obtainable. However, the shared variables which

may be located in any arbitrary PM or CM and may be accessed by any

arbitrary processes bring about a difficult problem: the rollback of a failed

process induces the rollback of other processes, i.e., rollback propagation

occurs. The rollback propagation might result in another inconsistent state

for certain processes. Therefore, a multi-step rollback is required.

FuKhermore, the hardware may have latent faults which are

undetectable until they induce some errors. In the following discussion, we

assume that an error will be detected immediately when it occurs. So the

11

^t

rollback propagation Is used only to obtain a consistent state. However, It

^C	 can be easily extended to the case in which error latency exists and is

bounded (by U) [14];

(1). First obtain a consistent state which may require rollback

propagations and calculate the total rollback distance, D,

(2) . If D z the total computation done then restart

else if D ?: U then done

else go to step (1) .

3.1 Rollback Propagation and Multi-step Rollback

in general rollback propagation can not be avoided if the processes

interact with each other arbitrarily. For the organization of multiprocessor

in the previous section, a process will be located to one PM and/or several

Ws and each module has its own rollback recovery mechanism. So each

module can be regarded as an object for rollback propagation. Each

interaction between cooperating processes is Implemented as a memory

reference to a shared variable. It Is also regarded as a memory reference

across the modules. To avoid having to trace every reference to the shared

variables and to simplify the detection of rollback propagation, we assume

that the failure of a particular module leads to the automatic rollback of all

modules that have interacted with it during the current state-save interval.

Let P I - >P
i
 denote the rollback propagation in which the rollback of process

12

a

P I induce the state restoration In more than one modules and than Induce.

the rollback of process P j . An example is presented In Figure 4, where

process P 1 fails at time tf , Since the Interactions between P 1 and P2 exist

during the time Interval (tn,t f), process P2 must roll back to enable the	 y

interaction for the resumption of P 1 . The rollback of P2 will propagate

further to other processes; in this example, P 2-->P4 , P 1 -->P3 , and P3-->P2

In the above example,	 we can find that the	 rollback of P3 and P2 to

their	 most	 recently	 saved	 state	 still	 cannot	 provide	 a	 consistent	 state.

(This	 requires	 a	 multi-step	 rollback).	 The	 reason	 that	 a	 single	 step

rollback	 can	 not	 recover the process states is mainly due to the occurrence

of	 references	 between	 the	 asynchronous	 state	 savings of	 interacting

processes.	 Consider	 the	 cases	 in	 Figure 5.	 Suppose	 P i	rolls back because

of failure or	 rollback	 propagation	 from	 another	 process.	 In case	 (a),	 the

single	 step	 rollback	 of	 P I	Is	 sufficient	 to	 recover	 its	 state if there	 Is	 no

other rollback propagated to P j .	 In cases	 (b),	 (c),	 and	 (d), both	 P i and P

1	 have	 to	 roll	 back.	 Since	 there	 exists	 an	 interaction between	 the

state-savings	 of	 P i	and	 P 1 ,	 rollback	 to	 further	 state	 is necessary.	 A

property	 related to the necessary condition for a successful	 rollback can be

stated as follow:

Property: When process Pi rolls back to the beginning of state-save

M

13

Interval T i (m), (process P i may rolls back n steps to reach this point,
4

j n5N) if there Is no interaction with P j across different state-save intervals

TM) and Tj (m-1) for all j, where j=1,2,...,M and j#i, then the state of

P. can be restored b this rollback.
I	 y

This property implies that the rollback of a task TK where

TK= (P i li =1,2,..M) will be recovered from a failure if P I for any i is not

affected by the rollbacks of P for all jOI and if P i rolls back n i5N steps at

which P I 's state is restored.

3.2 The Detection of Rollback Propagation

Since every external memory reference is managed by the switch

controller, the switch controller should take responsibility for detecting
u!a

rollback propagation and deciding on multi-step rollbacks. Suppose there

are (N + 1) SSUs at each module, then the maximum possible rollback step is

N. Let the current state-save interval of module i be T I M, then an

I..I	 n-step rollback will restore the module i to the beginning of interval

T.(k-n + 1).	 For state-save interval n (n=1,2,3,..., N), we assign two
t

matrices KC n (M*M) and KPn (M*M) to represent the interaction during the 	 € .

state-save interval T I (k-n + 1). Every element in both matrices consists of a

single bit. KC n (i,j) is set to 1 if an interaction occurs between module i

and module j during the state-save intervals T i (k-n + 1) and Tj (k-n + 1). If

an interaction exists between the two during module j's previous state-save

14

interval, Tj (k-n), then KPn 0,j) =1. The steps for setting these elements

and checking the rollback propagation are listed as follows:

1. Reset both matrices to zero at the beginning of the task.

2. When an interaction is issued from module i and directed to module

j, then KC 1 (i, j) and KC 1 (j, i) are set to 1,

3.	 if	 module	 i	 saves	 its	 state	 and	 moves to	 the	 next	 state-save

interval,	 then	 for j=1,2, ...,M

(a) .	 KP 1 (j, i) = KP 1 (j, i) + KC10, j)	 (where	 + is	 logical OR operation)

KC10,i)=0
9

(b) .	 KCn(i,j)=KCn-1(i,j),

KP n (i,j) = KP n-1 0 j)	 for	 n=N,N-1,...,2

(c) .	 KC, (i,j) =0,	 KP, (i,j)=0

4.	 When	 module	 i	 rolls	 back	 n	 steps,	 the	 switch	 controller	 checks	 the

corresponding two rows	 in matrices	 KC n and KP n ,	 namely	 KCn(i,j)

and	 KP n (i,j)	 for	 j=1,2,...,M.	 There	 are three	 possible	 conditions:

1) .	 if	 KP n (i, j) = 1	 then	 module j	 has	 to	 roll back	 (n + 1)	 steps,	 2) .	 if

KP n (i,j)=0	 and	 KC n (i,j) = 1,	 then	 module	 j has	 also	 to	 roll	 back	 n

steps.	 3).	 if	 KP n (i,j) =0	 and	 KC n (i,j) =0, then	 there	 is	 no	 direct

rollback propagation from module i to module j.

Let us define RB i (n), n=1,2,...,N, to indicate the rollback step of
x

module i. If module i rolls back n steps, then RB i (n) = 1, otherwise

RB i (n) =0. So, if RB i (n) =0 for all n, then module i does not have to roll

back. From the above conclusions and definitions, the condition of having a

successful rollback recovery for a task can be expressed as follows:

15

S

i

r

0

W,

The rollWck of a task will	 be successful	 if one of the following	 two

conditions	 is	 satisfied for	 all modules:

1.	 RB I (n)=0,	 for all	 n.

2.	 If	 there	 Is	 an integer n	 such that	 RB I (n) = 1,	 then	 either	 KPn(i,j)=0

for	 all	 j=1,2, ...,M,	 or	 there exist	 integers	 j	 and	 w	 such	 that

KP n (i,j)=1,	 RBj (w) =1, and w > n.

An example	 is shown in Figure 4,	 where	 Figure	 4(a)	 describes

memory references, Figure 4(b) is	 the current	 contents	 of	 KC	 and	 KP

matrices, and Figure 4(c)	 is the result of rollback propagation.

3.3 The Evalution of Multi-step Rollback

If a module i fails at time t during the k-th state-save interval,

T I (k), then a single step rollback of module i is examined to see if it is

sufficient to recover from the failure, The result may lead to rollback

propagations and thus to multi-step rollbacks as previously discussed. Since

the number of state-save units associated with each module is finite, the

whole task may have to restart when all SSUs are exhausted. in this

section a probability model is derived to evalute the coverage of the

multi-step rollback recovery which indicates the effectiveness of present

fault-tolerant mechanism. Suppose every module has (N + 1) SSUs and the

task is allocated to M modules including PMs and CMs. To derive the

coverage, the following assumptions are made and notations used:

16

l

z
t

i

N

a,^

A: The access matrix whose element a ij represents the probability of

making a reference from module i to module J. The sum of all

elements in one row must be equal to 1 for a processor module
M

i, i.e.

	

	 Faij=1.
j=1

b ijn : The probability that KP n (i,j) =0, which means no interaction

occurs between module is and module J's (k-n + 1)-th state saving

instants. For simplicity b ijn is assumed to be a constant for all

n, i.e. b ij1 -b ij2r " "rbijN=bij. The exact value of b ij is difficult

to solve.	 An	 approximate	 representation	 is	 used,	 i.e.,

b ij = Prob((B ij n Bjj) U (B ii n B ji)), where B ij is the event that a

memory r cfer eriCe issucu uj4 module w 111VUUic j ociur S a^ any

arbitrary moment.

f ijn : The average probability of having direct rollback propagation

from module i to module j due to an n-step rollback of module i.

We also assume f ijn to be a constant, f ij , for all n.

rij : The probability that module j has to roll back because of the

direct or indirect propagation if module i rolls back. Note rii=1

for all i.

E: The matrix [e ij], i,j=1,2,...,M, in which element eij is the

average execution time for memory references issued from module

i to module j.

17

I

Tef : The total execution time of a given task under an error free

condition an-6 without the time overhead for generating recovery

blocks.

Ti (k): The duration of tho k-th state-save Interval of module i. Because

of the asynchrony between state-save invocation and actual state

saving, T I M Is a random variable. If Tss is long enough such

that there is always a state saving following every state-save

invocation, the mean of T I M is equal to Tss . To make the

analysis simple, this duration is assumed to be constant and

equal to the duration of state-save invocation interval, Tss'

Tsv .	 Thee time overhead for generating a recovery block.

Nt :	 The total number of state savings before task completion.

Nt LTef/(Tss-Tsv)J•

u ijk : The average memory reference rate from module i to module j

during the k-th state-save interval of module i. Occurrence of

these meat°)ry references is assumed to be a Poisson process with

a time-varying parameter during the progress of task execution.

In general, the memory references of processes can be divided

into different phases which have a constant reference rate

[15,161. If Nt is moderately large, u ijk could be assumed to be

a constant during a state-save interval.

To derive the coverage of a multi-step rollback, the probability of

M.

18

0

n

direct rollback propagation, I.e. fij , should be obtained first. From the

above definitions and assumptions, f ij is the average probability that there

exists at least one memory reference between module i and module j during

one state-save interval. It can be expressed as follows:

f ij = fji _ g ij + gji - g ij*gji	 ------(1)

Nt
where gij = (1/Nt) N I (1 - e x p

u I j k)
*T s s represents the average

probability of having an interaction issued by module i and directed to

module j during a single state-save interval. Since the total number of

memory references between module I and module j is equal to
M	 N^

a ij*(Tef/(+1 , aim*elm))	 and	
k=1

(uijk) *Ts s,	 we have the following

relationship:

u ljk=(Nt*aij)/(Eaim*eim)	 ------(2)
k= 1 	 m-1

Also the maximum memory reference rate u ijk must be less than or

equal to the reciprocal of e ij , that is

	

1/e ij ^! ulik > 0
	 ----(3)

With the above two constraints we can get the extrema of fij as follows:

1. The maximum value of f ij , denoted as f ij ' occurs whop u ii, 1=Uij,2

ii, Nt'

19

t

2. The minimum value of fij , denoted as fl,", occurs when there are h
M

Intervals (where h ' [N t*a ij/(M a	'])im*eim	 In which	 uijk=1/elj1

(N 4,^-h-1) Inter als in which u ijk=q , and one Interval in which

u ijk=(Nt*a ij/(Fair,,,*e Im))-h/eij.
m=:1

To solve for rij from f ij , a fully connected network Is drawn as

Figure 6 In which every node represents a module, and the link 0,j)
connecting node i and node j denotes the relationship for direct rollback

propagatioei between module I and module j, Then f ij can be considered as

the probability of having a directly connected link between node I and nude

j. The theory of nutwork reliability [17] can be used tt, solve for rij;

	

rIj _ Im (Dij,q)	
.... -(4)

where D ij,q is the probability that the q-th path from node i to node j is

connected and V is the probability union operation. With an additional

assumption that the occurrence of failure Is equally distributed over each

module in a statistical sense, the coverage of a single step rollback,

denoted by C(1), becomes

MM
C(1) = (1/M)	 P (1-ri •(1- E b, k))	 ----- (5)

	

i=1 i =1	 k=1
And the accumulated coverage from a single step rollback to an h-step

rollback can be derived by the following recursive equation:

C(h) ' C0)(1-C(h-1))*C(h-1)	 ------(6)

20

The coverage of the multi-stop rollback recovery Is calculated for an

example with the following access matrix:

0,8 0.08 0.02 0.

0.1 0.85 0.03 0.02
A

0.03 0.03 0.9 0.04

0. 0,02 0.08 0.9

This example has the access localities 0.85 and 0.9 for processes which

correspond to the experimental results obtained from Cm* [181, The

numerical results are presented in Table 1 and are also plotted In Figure

7. These results include three cases; the best coverage computed from fij"

for different values of N,,,and the worst coverage computed fr.;,;; f i) "4

These results show that only a small number of SSUs Is enough to achieve

a satisfactory coverage of rollback recovery, It should be particularly noted

that the requirement of a small number of SSUs is mandatory for actual

implementation.

4. THE PERFORMANCE OF ROLLBACK RECOVERY MECHANISM

Several methods for analyzing the rollback recovery system have been

proposed [19 - 221, They in general deal with a transaction-oriented

database system and compute the optimum value of the intercheck.point

interval. Castillo and Siewiorek studied the expected execution time which Is

21

k

required to complete a task with the restart recovery method [23]. All of

these approaches either assume the state restoration Is obtainable by a

single checkpoint or do not include the rollback capability at all. in this

section, we explicitly take Into account the problem of multi-step rollback

and the risk of restart for the rollback recovery mechanism.

4.1 Notations and Assumptions

The following notations will be used in the sequel:

Tt :	 The total execution time, to complete the giv .	 ik with

occurrence of errors . It Includes the requir, ',ion

time under error-free condition, the time lost due to

rollbacks and restarts, and the time overhead for

generating recovery blocks.

T reat :	 The total execution time to complete the task without

restart (i.e., e!i failures are i=ecovered by rollbacks).

Troll,m' The time lost due to the j-th rollback in module m

which consists of the set up time for resumption, tsb,

and the computation undone by rollback.

22

,t

d^

Ti
rst

The time lost due to the i-th 	 restart which Includes the

set up time for restart,	 tsu ,	 and the time between the

previous	 start and	 the	 moment	 at which	 error	 Is

detected.

TE k : The accumulated effective	 computation before	 the	 k-th

rollback	 when the	 task	 can	 be	 completed	 without

restart.

Xr (X I The	 duration	 between	 the	 (j-1)-th and	 the	 j-th

rollbacks	 (the	 (1-1) -th	 and the I-th	 restarts).

C(^i): The	 accumulated, coverage	 of	 rollback recovery from	 a
s

eingle step to	 i steps.	 This value is calculated by the

Equations	 (5) and	 (6)	 presented in	 the	 previous,,

section.

P b 	(Ps): The	 probability of	 rollback	 (restart) when	 a	 failure

occurs.

Pst (h): The probability of having	 an	 h-step	 rollback	 given	 the

failure is	 recovered by the rollback.

Pr(m): The probability of	 having	 m	 rollbacks during	 the	 time

intervval,	 Treai'

Zr (z),	 Zst (z) : The	 probability generating	 functions of	 Pr(m),	 Pst,(h)

respectively.

ri

d^F

i,
tt

z
^t

23

U

t

Ot(s) ► Oreal(s)r	 The characteristic functions of Tt, Treat respectively,

The goal of our analysis is to calculate the mean and variance of the

total execution time of a given task, Suppose the task Is decomposed and

than allocated to M modules, During the normal operation, the small

overhead	 Is	 required	 to	 generate	 consecutive	 recovery	 blocks	 In	 each

module,	 when	 the j-th	 error occurs,	 module m	 spendw	 Troll,m	 to	 recover

from	 this	 error	 if	 the	 error	 Is	 recoverable by	 a	 rollback.	 Otherwise,	 the

whole	 task	 has	 to	 rastart,	 T ,oll,m	 consists of	 the	 set	 up	 time	 which	 is

compos ed of the decision delay roquired for examining	 rollback propagation,

the reconfiguration Lima, 	 and the time used to make up for the computation

undone	 by	 the	 rollback,	 we	 assume	 that the	 task	 completion	 time	 is

postponed by max{ 'T'^ _,, _) where M for the rollback rat-ovary of

tho	 j-th	 arror,	 The	 resultant	 completion	 time	 will	 be	 the	 upper	 bound

because	 of	 the	 following	 reasons;	 (1)	 Troll,rn can	 be	 Interpreted	 as	 the

time	 lost clue	 to	 the	 rollback	 In	 module	 m. So the total time	 lost	 in	 all	 the

concerned modules	 is	 bJoll m,	 Since the completion	 of task	 is	 regarded
m =i

as	 the completions	 of	 all	 its	 processes, 	 the time	 lost from	 the task's	 point

of view could be max(Tt,oll,rn)	 but	 not	 larger than	 this	 maximal	 value,	 (2)

The	 true	 delay	 Impacted	 on	 the	 completion of	 task	 by	 a	 rollback	 will	 be

shortened because of the possible 	 reduction in	 the waiting	 time of process

synchronization,	 To facilitate system reconfiguration,	 we also	 assume the

multiprocessor has P. suffiolent number of modules	 so that the task may be

executed continuously from start to and without waiting	 for the availability

of	 modules.	 The	 time	 needed for error free execution	 is regarded	 as

24

constan. and is Independent of reconfiguration.

In general, the occurrence of error can be modeled as a Poisson

process with parameter a(t) which equals the reciprocal of mean time

between failures (24] . Since M) is slowly time-varying (for example with a

period of one day), It is assumed to be constant over the duration of one

task execution, i.e,, a(t) =a. For simplicity an error is assumed to be

detected immediately whenever It occurs (see Section S for a brief

description on relaxing this assumption). From the definitions of P s , Pb,

and Pst (h), we have P s=1-C(N') where N' is the number of states saved

and N'SN, and each module has (N + 1) SSUs. Therefore the probability of

rollback, P b , becomes C(N). P st (h) is equal to (1/Pb)*(C(h)-C(h-1)) for

h=2,.. N, and Pst (1) =C(1)/Pb . The occurrence of rollback and restart can

be modelled at Poisson processes with means a b= x p b and YXPs,

respectively.

4.2 The Performance Model

The total task execution time, T V can be divided into several phases

as shown in Figure 8. The last phase is always ended with the completion

of task. Other phases are followed by a restarfi. So the amount of effective

computation at the beginning of each ;chase is zero. During each phase,

rollback recovewies are allowed so that the effective computation between

rollbacks are accumulated toward the task completion. To derive the

25

0 ^1

distribution of Tt , we should determine the distribution of the duration of

the Bast phase (which Is defined as Treal), the probability having R

restarts, and the distribution of the durations of other phases which are

dofinad as T I ,st for 1= 1,2, , , R,

In the last phase, the task will be executed from the beginning to

the completion without any restart. Let Tsv denote the time overhead for

generating a recovery Wock. The effective computation in a state-save

Interval under the error-free condition Is Tss-Tsv. It Is assumed that Tef

Is much larder than Tss (Tef>>Tss) so that the rollback distance of an

h-stop rollback can be approximated by h*T ss , The effective computation

between two consecutive rollbacks becomes (X r-h*Tss)- when a module rolls

back h stops where (X)+: max(O,X) is the positive rectification function.

With the probability having an h-step rollback, pst(h), two functions are

presented;

N
2	

h
E exp(-IIX T ss)Prt (h)	 - .---(7)

H (t, k) = ^ (1) 0 _Z) i (Z) kriG k-I M	
-----(8)

i-0

where G k-i (t)is the (k-0-th gamma distribution function with parameter Xb

for (k-0>0, and G 0 (t)-1, In Appendix A, we show that the -distribution

function of the accumulated effective computation after m rollbacks is

Prob(TE k S t)=M(t,k), Therefore the probability having k rollbacks during

the time interval Treal' Pr(k), is given by

26

Pr(k) = P(TB k+ 1 > Tef)-P(T8k > Taf)
=H(Teftk)-H(Tef,k+1)	 (9)

Treat is composed of Tef and the time lost due to rollbacks which Is a sum

of	 Identically	 distributed	 random variables,	 Troll,m'	 for J=1,2, , t k,

Substituting the probability mass function of Pr(k) and Pst (h), we get the

characteristic function of T real which Is given below;

O real ° exp(`sTef)(Z r (exp(-stsb)Zst (ex p (-sTss)))	 »---(10)

From Figure 8, The total time Tt can be represented as the sum of T

real and the random sum of TI St , The characteristic function of Tt derived

in Appendix B is given in the following;

exp(-sitsu ^^	 ^ s 't	 ^ 3(^ ^ a real kk T^,^	 s s,)i	 ----^^„^t ks1	 =	 21 , ,^.
1=0	 s	 J= o i

This	 equation	 shows	 a	 general	 expression	 of the total	 execution time. For

the	 system	 without	 rollback	 recovery	 mechanism,	 we	 can	 substitute	 P s
=1,

Pb-O,	 and then	 Oreal(s)	 becomes exp(-s*T ef).	 The result obtained from the

above equation Is the same as that In	 [231,	 The mean	 and	 variance of the

total execution time can be obtained from	 -and aOt--I	 respectively,
IsmS	 0	 a S	 S=o

In	 Figure	 9,	 the	 mean	 execution	 time	 for	 the	 example	 in	 Section	 3 Is

plotted.	 It	 is	 obvious that the overhead of generating	 recovery block has

an	 Important	 effect	 on	 the	 rollback	 recovery	 method.	 Since	 the	 state

savings	 are	 performed	 in	 parallel	 with	 the	 normal	 process	 execution, the

overhead contains only the 'time	 required for the validation test. 	 Since the

embedded	 checking	 circuits	 are	 not	 cost-effective	 and	 complex	 [25], the

27

t

overhead of generating recovery block can be reduced with a completely

self-checking mechanism. Figure 10 expresses the variance of execution time

for	 the previous	 example, it	 suggests that	 the	 prediction of	 the	 total

execution time could be more accurate if the rollback	 recovery mechanism	 is

used. This result is expected Intuitively since the probability of restart is

reduced	 considerably.	 In a	 system with	 a higher	 probability	 of	 restart	 a

larger and more uncertain recovery overhead is	 involved.

Another Interesting parameter is the duration of state-save invocation,

Tss . The interval has two mutually conflicting effects. Figure 7 points out

the increasing of Tss will Induce more rollback propagations and degrade

the coverage (a larger value of N t means a shorter state-save Interval) ,

Since the occurrence of error is distributed throughout the state-save

interval, the average computation loss due to rollbacks Is proportional to

the state-save duration, Therefore the increase of T ss , which invokes

longer state-save intervals, will introduce more computation loss and higher

probability of restart. On the other hand, the per;:entage of the total time

overhead for generating recovery blocks is reduced by the increase of Tss'

The optimum value which minimizes the expected execution time can be

found in Figure 11. The figure expresses that there exists a linear

relationship between Tt and Tss when Tss is small (where the overhead of

generating recovery block dominates the final result) . When Tss is greater

than the optimum value, the loss due to recovery increases considerably

because of the larger time loss in each rollback..

28

5. CONCLUSION

We considered the design of a hardware recovery mechanism for a

fault-tolerant multiprocessor with emphasis on a fast state-save operation

which requires little time overhead. To permit processes to be general and

to ensure programmer-transparency, recovery points are established

automatically and regularly. This approach does not require high-level

insertion strategies or limitations for setting up recovery points [6,7,8,26]

and also does not require synchronization of state-save operations among

different processors as does the COPRA system (27]. We derived

mathematically the probability of multi-step rollback, the coverage of 	 i

i
rollback recovery, and the risk of restart which are usually ignored in

i
most existing analyses. The results in this work indicate that the

M

performance of the rollback recovery mechanism is significantly dependent

upon the risk of restart which can be minimized by a higher local hit

ratio. So, the improvements are related to the partitioning, cooperation,

and allocation of processes.

Since the rollback mechanism used here only provides a recovery

capability to tolerate the hardware faults in processor modules and common

memory modules, further improvements should be considered to achieve the

overall system reliability. The reliability of the interconnection network can

be obtained by using redundant hardware to form additional paths (e.g.,

additional stages in generalized cube network [28]) or by using reliable

switches (e.g., 2X2 fault-tolerant switching element proposed in [29]) .

However, the faults occurred in the supplementary resources, like SSUs

29 i

and monitor switches, do not cause damages to the computation itself but

will change the recovery capability. Although the performability [30] of the

system at a single state is not affected by SSU's, etc„ the overall lifetime

performability is changed because of the degradation of recovery capability,

A higher recovery capability can be gained by using hardware redundancy.

For instance, an additional standby monitor switch can either test the

active monitor switch or replace the active one whenever it malfunctions.

To deal with the performance of a fault recoverable and

reconfigurable multiprocessor, the delay on the task completion time due to

the errors is an important parameter. In such a system one or more faults

which cause the errors in the computation and the loss of a portion of

function capabality may have no serious consequence to the completion of a

g iven task, Moreover, the quality of the recovery procedure largely

determines the distribution of the task completion time. The traditional

reliability measures, such as reliability, availability, and computation

capacity, taken separately, thus can not reflect the characteristics of this

fault-tolerant system. However, the overhead required to treat an error,

the contamination of error, and the effect on the task execution time,

should be included to represent the effectiveness of fault-tolerance. In this

paper, we achieved the fast treatment of failure by the automatic rollback

recovery mechanism, and estimated the mean and variance of the completion

time for to given task under moderate assumptions. We also point out that

the assumpi lon of no latency between error detection and error occurrence

can be relaxed if we know the confident rollback distance or the

30

^t

distribution of this latency.

One major concern in most rebl-time applications, such as aircraft or

industrial control, etc., is whether the required task can be completed

prior to a given deadline or not. The rollback mechanism associated with

each module not only offers systom modularity and simplicity, but provides

fast recovery and accurate prediction of the task completion time. Hence

the present fault-tolerant multiprocessor has a high potential use for critical

real-time applications.

M

31

REFERENCE

1. J. A. Rohr, "Starex Self-repair Routines; Software Recovery In the
JPL-STAR Computer," Proc. of the 3th int'l Symp. on Fault-Tolerant
Computing. 1973, pp. 11-16.

2. F. E. Heart, S. M. Qrnstin, W, R. Crowther, and W. B. Barher, "A	
3

Now Minicomputer/Multiprocessor for the ARPA network," Proc, 1973
AF I Ps Natl . Computer Conf., 1973, Vol 42, pp 529-537.

3, B. Randall, P. A. Lee, and P. C. Treleaven, "Rell gblity Issues in
Computing System Design," Computing Surveys, June 1978, pp.123-165.

4. B. Randell, "System Structure for Software Fault Tolerance," IEEE
Trans. on Software Eng., Vol SE-1, Jun, 1975, pp. 220-232,

5. D. L, Russell, "Process Backup in Producer-Consumer Systems," Proc.
of 6-th ACM Symp. on Operating System Principles, Nov. 1977, pp.
151-157.

6. K. H. Kim, "An Approach to Programmer-Transparent Coordination of
Recovering Parallel Processes and its Efficient Implementation Rules,"
Proc. 1978 Int'I Conf. on Parallel Processing, Aug. 1978, pp, 58-68.

7, K. H. Kim, "An Implementation of a Programmer-Transparent Scheme
for Coordinat i ng Concurrentoncurrent C?..... sse	 Recovery," Proc. COMP S AC.....^ . . wc^^c5 -in 11^covt,ry,	 rl'OC. ^^mf'^AC
80, Oct, 1980, pp. 615-621.

8. K, Kant and A. Silberschatz, "Error Recovery in Concurrent
Processes," Proc. COMPSAC 80, Oct. 1980, pp. 608-614.

9. A. M. Feridun and K. G. Shin, "A Fault-Tolerant Multiprocessor
System with Rollback Recovery Capabilities," Proc. 2nd int'I Conf. on
Distributed Computing System, April 1981, pp. 283-298.

10, Y. H. Lee, and K. G. Shin, "Rollback Propagation Detection and
Proformance Evaluation of FTMR'M -- A Fault-Tolerant Multiprocessor,"
9th Annual Symp, on Computer Architecture, April 1982, pp. 171-180.

11, R. J. Swan, S, H. Fuller, and D. P. Siewiorek, "Cm*: a Modular
Multi-Microprocessor," Proc. 1977 AFIPS Natl. Computer Conf., Vol.
46, 1977, pp. 637-644.

12. P. H. Enslow, "Multiprocessor Organization - A Survey," Computing
Surveys, Vol, 9, No. 1, March 1977, pp. 101-129.

32

`r

13, K. H. Kim, "Error Detection, Reconfiguration and Recovery In
Distributed Processing Systems," Proc. 1st Intl Conf, on Distributed
Computing Systems, Oct. 1979, pp. 284-295.

14, J. J. Shedletsky, "A Rollback Interval for Networks with an Imperfect
Self-Checking Property," IEEE Trans. on Computer, Vol, c-27, No. 6,
June 1978, pp. 500-508,

15. A. W. Madison and A, P. Batson, "Characteristics of Program
Localities," Comm, of ACM, Vol. 19, May 1976, pp. 285-294,

16. A, P. Batson, "Program Behavior at the Symbolic Level," Computer,
Nov, 1976, pp, 21-26.

17. S. Rai, and K. K. Aggarwai, "An Efficient Method for Reliability
Evaluation of a General Network," IEEE Trans. on Reliability, Vol.
R-27, No. 3, Aug. 1978, pp. 206-211,

18. S. H. Fuller et al., "Multi-Microprocessors ,. An Overview and Working
Example," Proc. IEEE, Vol. 66, No. 2, Feb. 1978, pp, 216-228.

19. K. M. Chandy, J. C. Browne, C. W. Dissly anb W. R. Uhrig,
"Analytic Models for Rollback and Rocovery Strategies in Data Base
Systems," °(EEE Trans, of Software Eng., vol, SE-1, no, 1, March
1975, pp. 1i00-110.

20. K. M. Chandy and C. V. Ra_mamoarthy, "Rollback and Recovery
Strategies for , Computer Programs," IEEE Trans, on Comp., Vol. C-21,
No, 6, June 1972, pp. 546-556.

21. E. Gelenbe and D. Derochette, "Peoformance of Rollback Recovery
Systems under Intermittent Failures," Comm, of the ACM, Vol. 21, No.
6, June 1978, pp. 493-499.

22. J, W. Young, "A First Order Approximation to the Optimum Checkpoint
Interval," Commu, of the ACM, Vol. 17, No. 9, Sep. 1974, pp,
530-531.

23. X. Castillo and D. P. Siewiorek, "A Performance-Reliability Model for
Computing Systems," Proc. of the 10th Int'I Symp, on Fault-Tolerant
Computing, 1980, pp. 187-192.

24. X. Castillo and D. P, Siewiorek, "Workload, Performance, and
Reliability of Digital Computing Systems," Proc. of the 11th Intl Symp,
on Fault-Tolerant Computing, 1981, pp. 84-89.

33

It

25. W.	 C.	 Carter at al.,	 "Cost Effectiveness of a Self Checking Computer
Resign,"	 Proc.	 of	 the	 7th	 int'I	 Symp. on	 Fault-Tolerant	 Computing,
1977,	 pp,	 117-123.

26. F. J.	 O'Brien,	 "Rollback	 Point	 Insertion Strategies,"	 Proc,	 of the 6th
Int'I Symp, on	 Fault-Tolerant Computing, 1976,	 pp,	 136-142.

27, C.	 Maraud	 and	 F.	 Browaeys	 G,Germain,	 "Automatic	 Rollback
Techniques	 of	 the	 COPRA	 Computer

,^^
Proc,	 of	 6th	 Intl	 Conf.	 on

Fault-Tolerant Computing, 	 1976,	 pp	 23-29.

28. G.	 B.	 Adams	 and	 H.	 J.	 Siegel,	 "A Fault-Tolerant	 Interconnection
Network for Supersystems," 	 IEEE Trans on	 Computer,	 Vol.	 C-31,	 No.
5, May 1962,	 pp.	 443-454.

29. W.	 Lin	 and	 C.	 L.	 Wu,	 "Design	 of	 a 2x2	 Fault-Tolerant	 Switching
Element,"	 9th	 Annual	 Symp.	 on	 Computer Architecture,	 April	 1962,
pp.181-169.

30. J.	 F.	 Meyer,	 "On	 Evaluating	 the Proformability	 of	 Degradable
Computing	 Systems,"	 IEEE	 Trans,	 on	 Computer,	 Vol.	 C-29,	 No.	 6,
Augest 1980,	 pp.	 720-731.

34

Appendix A. Calculation of the probability of having k rollback within Treat

From the	 difinition of	 P st (h),	 the task will roll	 back	 h steps with

probability Pst (h)	 after a	 failure	 within the last phase	 Treat4 1.et	 the

rollback distance for the j-th rollback recovery It Tr oll which is

approximately equal to hTss with a probability Pst (h). Thus the

accumuloted effective computation time before the k-th rollback, TE k , is

given by

R+TE k = E, (Xr-Troll)	 ----(A.1)
=1

Since the occurrence of rollback is a Poisson process with parameter

Xb, then the density function of X i is X exp(-Xbt). The probability that

(XJ_-TJ__..) =p is	 P_.(h)(1 -exp(-- a,.,hT--)).	 The	 density	 function	 of
P roil	 _a	 u	 ^3

(Xr-Troll) becomesh
-1

N
faM= t pst (h)(I-exp(-XbhTss))6(t) "exp(- Xbt) L Pst(h)exp(- abhTss)

h= 1	 h=1	 ___- . (A.2)

where 6(t) is impluse function. Let Z represent 	 (h)exp(-XbhTss)

Thus fais simplified by

	 t pst

fe (t) = (1- Z)6(t)*exp (- ab 0z 	-- -(A.3)

The characteristic function of TE k, which is equal to (0a (s)) k where 0. (s)

is the characteristic function of (Xr-Tr oll), becomes

35

Ote,k(s) _
	 (k)0-Z)I(Z)k-Ir—k_)k-I y	 (A.4)

iw0 	b
Taking the inverse Laplace transform, the density function of TEk

(denoted as fte, k(t)) is obtained. Thus the distribution function of TEk

becomes

f
P(TE00	

0
fte,k(T)dT

W(k)0 -Z) Mk-IGk-i(t)+(1..Z)k	 -...,.(A.5)E(
where G k-i (t) Is the (k-i)-th gamma distribution function.

Appendix B. Calculatian of the characteristic function of total execution

time, 0t

From Fig. 8, the total execution time T Is the sum of Treal and

Trst , where Trst='t TI if there are t restarts. With the conditional

probability of Tt, we liave the following equation:

E(Tt IT real) ' E(Tre,al)*E(Trst{Treal) 	 ---- (B.1)

It is assumed that the time Interval between the 0 -1)-th and the i-th

36

t

restarts Xs Is exponential distributed with mean 1 /as , Thus, for a given

Treall the time lost due to the i-th restart Is randomly distributed between

tsu to	 w ewith the density function, fret, i , which Is given in the

following:

frst,i(t+tsu) _ 1	 pX2 T t
	 for QstST real	---- (B.2)

s real

The probability of having Z restarts for a given T real is

Prs jTreal
(t1 = (exp(-XsTreai))(1 -exp(-asTreal))^	 ----(B.3)

Since Tt`Treal+ t Trt if there are t restarts before the task completion,

then the characterlstic Function of T for a given Treal becomes

00

OtIT real (s) _ (exp(-sT real)) F PrslT real W(0rstIT real (s))t - -(BA

where
0t^T(s)

is the characteristic function of the time loss due to ars	 real
restart for a given Treal, Le., the Laplace transformation of fr4t,I(t). By

substituting Prs (Treal (2) and 0 rstl Treat (s) into equation (BA) and

integrating with the density function of T reat , the characteristic function of

Tt is obtained as Equation (11).

4

37

X

iNC(i)

case 1 case 2 case 3

1	 0.75067 0.68610 0.44713

2	 0.93783 0.90147 0.69433

3	 0.98449 0.96907 0.83100

4	 0.99612 0.99029 0.90656

5	 0.99902 0.99695 0.94834

case	 1: with minimum f ib and Nt=100

case 2: with minimum f ib and Nt=10

case 3: with maximun
f i1

Table 1. A Numerical Example for the Coverage

of Multi-step Rollbacks

i

38

3
P

:. ^.	,......,:............ 	^..^........_w....a..u,...^w^ra.ar'a.v..__ 	 _. ra., .. , .w^.s,..._.,._	 _	 _^-s^S'.asa9o.iitYiY

s

Inter -
connection
Network

i PM,
I	 P	 I

MS	 S I
I

SSU SSU •. SSU LMM

•

5

S
1

r

PM m

t 1	 P	 i

'I

I	 MSS

I	 I r
I SSU SSU .. SSU	 LN1	 I

I	 CMIj
AC	 MS	

II	 ^
I	 CM 	 nSU S U I
I	 I'

•

0

i

•	 f

•

I AC	 MS	 I
I

j	 CM SSU . SSU
EnUn- 1 i

P = processor
	

CM = common memory

S = switch
	

AC = access controller

MS monitor switch
	

SSU = state-save unit

LM = local memory

Figure 1. The Organization of a Fault-Tolerant Multiprocessor using

a Rollback Recover)(Mechanism

I

<_ — — -- State-save invocation

<_ — - _ - Complete the current instruction
<-- — — — Save internal state

4 _ _ _ Execute validation process

State switch betwen SSU's

Start normal process, SSU update,
SSU transfer, and error detection

Time

r	 'i

,_ .- _.	 Fail
<. _	 Retry the process
<_ _ . , .e _, Fail again

<-	 Declare permanent fault, stop processes,
check propagation, and migrate
failed process to othL)r PM

- - ° -- Resume process

Fig. 2. Sequence of a Rollback Recovery

rp

^^ 1E

C.

Cf)

7S
Cf)
U)

C=l
0

ro

cU

0

>
m
IA

cn

in

CNJ D
U)
in

ch
V)

>

I

I m

a	 CO	 n'

N c

cn c

N c

cr c

^ e
.s.

c
O

p u

o -^

c
d	 i

a ^ ^

». c
o --
<h

w
E

W

v..

Q^
a

ro

a

H

t

0 1	 1 0

1 0 0 1
KGn=

1 0 0 0

1	 1 0 0

0 0 0 0

0 0 1 0
KPn=

0 1 0 0

0 0 0 0

` 0 1 1 0

1 0 0 0
KC n_1`

I 1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0
KPn-1=

0 0 0 1

0 0 1 0

(b)

1 n=2
RB1(n)=

0 otherwise

1 n=2
RB3(n)=

0 otherwise

1 n=2
RB2(n)= i

0 otherwise

1	 n=1
R84(n)=

f 0 otherwise

(c)

Figure 4. An Example of Rollback Propagation and Multi-step
Rollback

t

(a) (b)	 -

Pi

P.

Pi

Pi

r
6

fi

w

Pi

P.

Ps

P.

(C)

	

(d)

LJ	
State Saving

Z(nteraction

Figure 5. Interaction Patterns Related to Rollback Propagation

4

1	 Module i
t

Figure 6. The Rollback Propagation Network

d

I

1.25

0.000.0

1.00

W 0.75
Q
<L
X
W

0> 0.50
0

0.25

2.0	 4.0	 6,0	 8.0	 10.0

NO. OF STEPS

Figure 7. Rollback Coverage vs, No. of Rollback Steps

k

Cy
a..

GL

O
-»	 V

.s^	 t

a	 ^^

q T

S0
h"~

d	 ^'

0 i T

I	 .b.o

a4X

N	 v

.w-
L.a

^ a

4D

.]G
N
a
a-

N
Cl
M
ro
.G
d.

C

O
41
•r

V
dx

W

.^C
N
ro
N

ai
roLa

LL

28 5.71

0.00
0.0 200.0 400.0 600.0 800.0	 1000.0

TIME — FAILURE FREE (sec,)

228.57

in

c^caa
171.43

1 ,. 114.29

z
Ld 57.14

without rollback

capability

Nit h f

with fI/ij

Figure 9. Mean Time-Overhead vs. Error-Free Execution Time

i1thout rollback
capability

with f 'i1

357,14

28 5.71

i

(...^' 214.28

W
V

142.86
OC

71.43

with f "ij

0.0 0 E _.,.- t.9-- .	 '	 I	 '
0,0	 200.0	 4000	 600.0	 800.0	 1000.0

TIDE- FAILURE FREE (sec.)

Figure 10. Variance of Time-Overhead vs. Error Execution Time

t

61,71

c.>
Q)
in

54,57

I	
4? 43

N

Q
W
Z

W

O
2
Q
la..l

2

40.2

26.Ot^
10.0

33Y

6 O.020.0	 30.0	 40.0	 50.0

NO. OF RECOVERY BLOCK

Figure 11. Mean Time-Overhead vs. Total Number of Recovery

Blacks for a Given Task

	GeneralDisclaimer.pdf
	0001A02.pdf
	0001A03.pdf
	0001A04.pdf
	0001A05.pdf
	0001A06.pdf
	0001A07.pdf
	0001A08.pdf
	0001A09.pdf
	0001A10.pdf
	0001A11.pdf
	0001A12.pdf
	0001A13.pdf
	0001A14.pdf
	0001B01.pdf
	0001B02.pdf
	0001B03.pdf
	0001B04.pdf
	0001B05.pdf
	0001B06.pdf
	0001B07.pdf
	0001B08.pdf
	0001B09.pdf
	0001B10.pdf
	0001B11.pdf
	0001B12.pdf
	0001B13.pdf
	0001B14.pdf
	0001C01.pdf
	0001C02.pdf
	0001C03.pdf
	0001C04.pdf
	0001C05.pdf
	0001C06.pdf
	0001C07.pdf
	0001C08.pdf
	0001C09.pdf
	0001C10.pdf
	0001C11.pdf
	0001C12.pdf
	0001C13.pdf
	0001C14.pdf
	0001D01.pdf
	0001D02.pdf
	0001D03.pdf
	0001D04.pdf
	0001D05.pdf
	0001D06.pdf
	0001D07.pdf
	0001D08.pdf
	0001D09.pdf
	0001D10.pdf
	0001D11.pdf
	0001D12.pdf
	0001D13.pdf
	0001D14.pdf

