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CHAPTER I

INTRODUCTION

In 1916, Albert Einstein published his famed thoery of general rela-

tivity. Although many contemporary physicists and astronomers based their

work on the principles of this theory, proof of Einstein's description of

the universe remains inconclusive. In fact, alternatives to Einstein's

theory, most notably the Brans-Dicke scalar-tensor theory, have been deve-

loped. 	 r.
t,

The Gravity Probe experiment, conceived by the late Professor Leonard	 h

Schiff of Stanford University, seeks to test Einstein's theory, and has

been recognized by the U. S. Government as having far-reaching scientific

importance. Since 1962, the government has supported the development of

this experiment in which academic, industrial, and governmental institu-

tions have participated. Currently, NASA's Marshall Space Flight Center is 	 r

charged with the overall responsibility of the experiment.

In proposing this experiment, Professor Schiff had shown that a gyro-

scope in orbit undergoes a relativistic precession in the framework of the

fined stars. 2 In the "Gravity Probe B" (GP-B) satellite, four almost

perfectly spherical fused-quartz gyros, each the size of a ping-pong ball,

will be coated with niobium, and element made superconductive at tem-

peratures near absolute zero. In this condition, the gyros can be suspended

electrostatically in the weightlessness of space. It is expected that the

drift rate of these gyros will be held to less than .001 arc-second a year.

For gyroscopes in polar orbit, there are two predicted precessional effects

which are perpendicular to one another, as shown in Figure I-1. The larger

effect is due to the motion of the gyroscope through the Earth's gravitational

1
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field and is referred to as geodetic precession. The other predicted

effect is the spin-spin coupling between the gyroscope and the Earth's ro-

tation and is referred to as the motional effect. As shown in the figure,

the geodetic effect is in a plane of orbit approximately parallel to the

Earth's axis. The motional effect lies in a plane perpendicular to both

the orbit plane and the Earth's spin axis. The predicted magnitudes of

procession vary from theory to theory. The purpose of this experiment is

to determine the most valid theory by comparing the experimentally	 k

measured magnitudes with the various magnitudes obtained from different

predictions.	 r

The most important part of the GP-B satellite is a dewar containing

the four spherical gyroscopes, a telescope which tracks the star Rigel,

and an amount of supercooled helium. Spacecraft attitude and trans-

lational control is accomplished by proportional thrusters with the pro-

pellant supplied by the boiloff helium from the dewar. The control

signals are derived from the telescope when the guide star is visible, and

fm:m the gyroscopes when the star is occulted

The experiment design goal is to make drift measurements accurate to

.001 aresecond per year, an unprecedented requirement for drift measure-

ment. To ensure the success of the experiment, every conceivable error

source in the GP-B system needs to be identified and its effect on drift

measurement investigated.

In April 1980, NASA/MSFC awarded a study contract, NAS8-33849, to the

University of Tennessee to initiate a system approach to GP-B error analysis.

The study results included a block diagram error model, identification and .

discussion of source errors, some preliminary error analysis, documentation

3
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of error budget, and several recommendations.' These results provided an

organized pic,,,;ure of various errors involved.

The present contract, NASS-34426, is aimed-at an in-depth investiga-

tion of individual source errors and their effect on the accuracy of the

GP-B experiment. This report documents the results of the study performed

over a fourteen month period, from 24 June 1981 to 31 August 1982. The

main emphases during this report period were placed in the following three

areas;

1. Refinement on source error identification and classifications

of source errors according to their physical nature. The

result is given in Chapter II of this report.

2. Error analysis for the GP-B data processing. The result

obtained is given in Chapter III.

3. Measurement geometry for the GP-B experiment, to be in

Chapter VI.

It should be mentioned that this is a progress report, therefore the

results reported can be further improved.

References

1. C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation, W. H.
Freeman and Co., 1973.

2. L. I. Schiff, "Mft'on of a Gyroscope According to Einstein's
Theory of Gravitation," Proc. N.A.S., Vol. 46, 1960, 871-882.

3. J. C. Hung, "Gravity Probe B Error Analysis," Final Report
for NASA Contract NAS8-33849, The University of Tennessee,
Knoxville 18 February 1981.

u^

1

s

4
!i



CHAPTER II

PROPERTY AND CLASSIFICATION OF
GP-ERROR SOURCES

Figure II-1 is a block diagram error model for the GP-B experiment.)

The model was developed in the previous contract based on the data con-

tained in Reference 2. This diagram gives a "macro" description of errors

where error sources are lumped into nine groups entering the system at

nixie entry point',.,,. During this contract report period, further effort

was exerted on error source identification using the data available in

Reference 3. In addition, these error sources were classified in two

different ways based on their physical properties. The purpose of

classification is to expose the possibility of suppressing the effects of

individual errors and to suggest techniques for such suppression.

The errors can be classified according to there statistical nature

as follows:

1. Deterministic type -- This type of errors can be compensated.

2. Random variable type -- This type of errors are uncertain

constants. The effect of some, but not all, of these errors

can be eliminated by rolling the spacecraft and by orbit

averaging.

3. Random process type This type of errors are uncertain

time-varying quantities. Some of their effect can be re-

duced by averaging or by filtering.

The errors can also be classified according to their physical forms in

the following way:

1. Sias -- The effect of some of this type of errors may be

reduced by roll averaging and orbit averaging.

5
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2. Drift.

3. Scale factor uncertainty — May be identified by Kalman

filtering,

4. Noise -- May be helped by Kalman filtering.

Table II-1 is a list of error sources, their classification, and

methods for the reduction of error effect. In the table, r. y . means

random variable, r.p. means random process, 1/f means 1/f noise, and det

means deterministics. Notice the estimated errors after data processing,

their root-sum-square (RSS) total is 1.253 milliareseconds assuming z*ro

proper motion for Rigel. It is expected that future progress in hardware

and software development will reduce the RSS error. Notice also that

the table is open-ended, vith blanks, "TBD", , and question marks to be

taken care of by further study.

Figure II-2 shows the budget curve for the average individu ,t error

as a function of the number of equal size error sources. The curve is

based on a RSS error of 1 millaresecond. For example, if the total number

of equal size error source is 44, the individual error source should not

cause more than .15 milliaresecond error for the GP-B experiment.

References

1. J. C. Hung, "Gravity Probe B Error Analysis," Final Report for
NASA Contract NAS8-33849, University of Tennessee, Knoxville,
18 February 1981.

2. J. R. Parker, "Gravity Probe B Phase A Report," National
Aeronautics and Space Administration, Marshall Space Flight
Center, March 1980.

3. C. W. F. Everitt, "Report on a Program to Develop a Gyro Test
of General Relativity in a Satellite and Associated Control
Technology," Stanford University, Hansen Laboratory, June 1980.
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ĤH

I	 I
..

S..

C71

LL

O
r^

v
O	 Q1	 00	 ri	 1p	 Ify	 ct	 M	 N	 r	 O
r

11



I ^r

^f

u^

4♦ P. B. Eby, "Electrical Torques on the ELectrostatic Gyro in the
Gyro Relativity Experiment," NASA TM»78311, Marshall Space Flight
Center, October 1984,

5. NASA TR-R443, "'Magnetic Torque on a Rotating Superconducting
Sphere," NASA, Washington, D.C., May 1975,

6. D. H. Sheingold, Analog-digital Conversion Handbook, Analog
Devices, Inc., Norwood, Mass, 1972.

7. L. Motz and A. Duveen, Essentials of Astronomy] Columbia Uni_.
versity Press, New York, 1971.

8. A. Sommerfeld, Mechanis, Academic Press, New York, 1964.

9. J. T. Anderson and C. I CJ. F. Everitt, "Limit on the Measurement
of Proper Potion and the Implications for the Relativity Gyro-
scope Experiment," Stanford University, Hansen Laboratory,
November 6, 1979.

A

^l	 jl

u,.

r,

1

y

#

12

a



, 4	 1
	 i i	 f

CHAPTER III

FINITE-WORDLENGTH INDUCED ERRORS IN
KALMAN FILTERING COMPUTATION

a

1. Introduction

The problem of finite-wordlength effect on digital computations has

been investigated extensively during the past twenty years. Finite-

wordlength property of a computer requires either rounding or chopping to

be used to limit the wordlength of a number. Since most computers use

rounding technique, only rounding errors will be considered in the sequel.

There are two approaches to analyze the rounding error, the first

approach considers the statistical nature of rounding errors, and treats

them as noise generated in the s ystem. This approach has been widely

used by those in the field of digital signal processing. In the statis-

tical error analysis one is usually after the ensemble average and stan-

dard deviation of the final error based on the estimated characteristics

of source errors and their propagation through computation steps. This

approach does not seem to be sufficiently reliable for the analysis of

GP-B data reduction errors for two reasons. First, GP-B's four experi-

ment gyros represent only a small sample, their combined statistical

characteristics may deviate a good deal from those of the population

statistics, Thus the use of statistical analysis here may not give a

reliable result, Secondly, the GP-B data reduction involves Kalman

filtering and other rather complex computations. The exact statistical

nature of rounding error generation by and propagation through these

computations is not easy to establish. Therefore a more conservative

approach is needed,

13
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The second approach is to establish bounds for the rounding errors

involved in computation. This approach provides a very conservative,

though rather pessimistic result for rounding error analysis. This

approach has often been used by those doing numerical analysis. Be-

cause of the unusual precision required of the GPMB and the expensiveness 	 `	 n

of the experiment the use of error bound approach provide a much more

reliable results for the error analysis. Therefore this approach will

be used for ensuing rounding error analysis. Since Kalman filtering is

the main activity in GP-B data reduction, the present chapter is devoted

to the analysis of rounding error in Kalman filtering computation.

f

2. Rounding Procedure in Floating Point Representation

Let x be a number

x = (±•d d---- ) 	 be (1)
1	 2 r	

a

where b is the base of the number system used and e, an integer,	 is the

^^

exponent.	 In general	 the mantissa part of the number may have infinite'
'fx

number of digits for an exact representation, such as for 3l.	 The number

(1) may also be represented in the form

,ti 	 8

a

X = u•be + 
v.be-t (2)

where 
6	

Jul	 < 1,	 0 <	 Jul	 < 1,	 and u contains only t digits.

Examples:	 Base 10 numbers.

(a)	 12.3456 = .1234 x 102 + .56 x 10-2

Here b = 10,.t = 4, and 3 = 2

(b)	 -.0123456 = -.1234 x 10-2 + (-.56) x 10-5

Here b = 10, t = 4, and 3 = -1 #

The rounding procedure drops off the second term on the right side ° QQQQQQ

of (2) by appropriately adjusting the value of the first term.	 'Thus,

c^ Yi
	 i

14
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after rounding, x becomes x  which has a t-digit mantissa ` d1 d2 --- d 

and an exponent be . The conventional round-off procedure for any number

is as follows:

u•be	if Ivy < 2
	

'a

A =	 u b
e + be-t	

if v >— z	 (3)

u be - be-t	 if v< _ 2
flote that u and v always have the same sign.

Examples: b = 10 and t = 4

(a) x = 765.4567 = .7654 x 103 + .567 x 10-1

Here v z 2 and e = 3, so
x = u be + be-t = .7654 x 103 + 103-4 = .7655 x 103

(b) x = 123.426 = .1234 x 10 3 + .26 x 10-1

Here v <	 so

x = u be = .1234 x 10'3

(c) x = - 765.4567 = -.765 x 10 3 -.567 x 10-1

Here v < - '", so

x = u be - be-t = -.7654 x 103 - 103-4 = -.7655 x 103

These results are intuitively obvious. The reason for going through the

formulations of Equations (1), (2) and (3) fs to pave a way for the sub-

sequent analysis of rounding errors.

15
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3. Rounding Errors in Floatinc Pointing Representation

The "absolute rounding error" in xR is defined as

1x 1
= Ix R-xl ? 0	 (4)

From (2) and (3), it is clear that

1x1 < 2. b
e_t
	 (5)

Examining (1) shows that ju be l ? be-1 because u > b -1 and [ xj > ju be,

because the second term, having similar sign, is dropped. Hence

Ix) >.(u b 3 l > be- 1	 (6)

DEfine the "absolute relative rounding error" a as

E - xR-x = Ixi	 (7)
X

By (5), (6) gives

E < 
1 

bl-t = s	 (s)
=2'

The quantity R -is called the "unit rounding error" which represents the

absolute bound of rounding error in the floating point representation of a

number of base b and having a t-digit mantissa. It is an important

parameter in the analysis of rounding errors.

Example; Consider b = 10 and t = 4

Then o = 1 b l .-t = 
1 10-3

Let x = 767.4567 = .7654 x 10 3 * .567 x 10-1

then X = .7655 x 103

ixi = I X I = .0433

16

LL Y

f

n^

P^

{

6

a

4



ORMINAL Am is
OF POOR QUALITY

e = 76504567	 •56568 x 10 -4 < R

For the sake of comparison, the chopping error in floating point

repre6entation of a number will be analyzed next.

4. Chopping Error in Floating Point,Representation

For a floating point number in the form of (2), a t-digit chopped

number is given by

xc = u be	 (9)

Define the "absolute chopping error" x c as

(xcl = I xc -x I = v I e-t	 (10)

Since I x I < I

Jxcl 
< be-t	 (11)

Define the "absolute relative chopping error" as

ec = xc)	 (12)

cl early,

be-t _ 1-t

where 
ac 

is called the "unit chopping error." Comparing (13) and (8)

shows

sc = 20	 (14)

Example: b = 10 and 6 = 4

Then se = 10
1-4 

= 10-3

Let	 x = 765.4567 = .7654 x 103 + .567 x 10-1

17
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then xc = .7654 x 10`3
	

il q

lxcl = ( Xc -x I _ .567 x 10-1

ec = 7.054567.=	
•7 073 x 10

-4 
< Sc
	 a

l	 ,'

^n

ud

5. Rounding Error in Basic Computer Arithmatic Operations

For the convenience of the subsequent analysis, notation for rounded

floating foist number is defined here in two equivalent forms. Let x be a

floating point number. The rounded value of x is denoted by is or fz(x).

Let "*" denote any of the four basic arithmatic operations +, -, x and

• The computer value of x*y is fz(x*y), which is related to the exact

value x*y by

fQ ( X.oy ) _ (X*Y) ( l +c )	 (15)

where c is the actual relative rounding error. The absolute relative error

in (x*y) is boundedby

+fz x*	 - x* I < s	 (16)
x*y

where E is the unit roun,aing error.

6. Rounding Error in Composite Computer Arithmatic Operations

Repeated Additions and subtractions consider the sum

s=xl +X2+ x3
+x4

_ ((x l +x2 ) + x 3 ) + x4

The rounded value is

s ^ {C(x l +x2 )(1 + e 1 ) + x31 (1+c2 ) + x4 } (1+e3)

= (x l +x2 )(l +e l )( 1 +e2 )(1+e3 ) + X3 (1+e2 )(1+e3 ) + x4(1+E3)

ar.(xl+X2)(1+c1+c2+e3) + X3(1 +c2+e3 ) + x4(1 +c3)

a

IN	
s'

rza
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The rounding error is

s = (x1x2)(el+e2+e3) + x 3 (e2+c3 ) + x4 (e3)

(xl+x2+x3+x4)(el+e2+e2) - x3el - x4 (el+e2)

The absolute relative rounding error is founded by

3R2^e<3ti-Rx 3 -x^ c

In general, for a sum of n terms

s= X x	 (17)

3=1

the absolute relative error is bounded by

e < (n-1)o	 (18)

RP eated Multi'pl j cation and Division. Consider the following

combination of product and quotient

Q	
Y 1 

2	
(x l x2)/Yl

the rounded value is

x i x 2 (l+e l )	 xix2
Q	 yl-----(l+ni) N	 l (1+e1+ni

where e l and ni are relative rounding errors due to multiplication and

division, respectively. The rounding error and the absolute relative

rounding error are, respectively,

Q
	 xy

x2 
(el +nl)

1

and

e ' e1 + nl < 20

19
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For the general case

xl X2 --- Xn
Y l Y2 --- YM

The absolute relative sounding error is bounded by

(n+m-1 )o (20)

7 ► 	 Norms of Vectors and Matrices

Norms of vectors and matrices are useful in the analysis of rounding

errors in matrix operations. • The following definitions of norm will 	 be

adopte,4 in this study,

For an n-vector x with elements xj , define the vector norm as

II x I1	 = maxlxil

Clearly, the norm has the following properties:

( i )	 11X11	 >	 0

(ii)	 1	 0 only if x = 0

( iii )	 I IL+y l I	 <.	 I I)d I	 +	 I l y-I I
(iv)	 Ila	 x1l	 =	 lal-11X11	 for	 any aeR

For a maxn matrix A with elements a ii , define the matrix norm as

n

I JAI I	 = Max	 I	 la ij i (22)

This norm has the following properties:

(i)	 I JAI I	 >	 0

(ii)	 I JAI I	 0 only if A = 0

(iii)	 jIA+BJ I<	 I JAI I	 A- I IBI 1

(iv)	 Ila All	 jai•IIAllfor any aeR

(v)	 IIABIJ	 <	 IJAII -IJBIJ

20
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8. Rounding Error in Matrix Addition

Let A and B be two nxm matrices, the rounded sum of them is

fz[A+Bl - A+B+R	 (23)

where R is the rounding error matrix. By the definition of matrix norm

(22); And in view of (15), the norm of the rounding error matrix is bounded

^y

11 R 11	 s IIA+BII
	

(24)

where R - I bl-t as given by (8). The relative norm of 11R11 is bounded

by

IIRII	 B	 (25)

11 A+B 11

which is the same as the relative rounding error of the sum of two numbers

as shown in (16).

9. Rounding Error in Matrix Multiplication

Since elements of a matrix product are inner products of vector

pairs, the rounding error associated with an inner product Will be analyzed

first. The result will then be used to analyze the rounding error in a

matrix produc*.

9.1. Rounding Error in Inner Product

Consider the inner product of two 3-vectors a and b

T - aTb = a i b l
 + a2b2 + a3 b3

The rounded value of a Tb is

X=fZ[ o

{[a I b l (l+c l ) + a2b2 (1+E2 )1(1+E3 ) + a3b3(1+e4)}(1+E5)

21.
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a,l b l (1+cl+93+c5) * 
R2 b2 (1+c,1+c3+c5) * a

3b3 (1+e4+cS)

where c i "s are relative rounding errors associated with basic arithmatic

operations, The rounding error in I is

I=a l bl (c 1 +E 3+ 5 ) +a2 b2 
(l+e2+ c3+ea )+ab3 (64+65 )3  

The absolute value of this rounding error is bounded by 	 jTh a	 ^l

I I I `30 Ialbll 
+ 30 Ia

2b2 I + 20 Ia3b3I

In general, the aboslute rounding error of the inner product of two n-	
j[JJJ(((

^)	 fi

vectors is bounded by

1 z i	 an{Ia lbll +	 (n+2-j) Iajbjl
	

(26)	 A

J=2

The expression for the absolute relative rounding error for an i1

product appears cumbersome and is not given here.

9.2, (founding Error in Matrix Products

Consider the matrix product C AC where A is mxn and a is nxp.

The number n will be called "interface dimension" for matrices A and B.

Using the result of (25) the absolute error of the elements of C is

bounded by
ay

I c i j I < o (nl a il I'Ib 1 j i + nl a i2 I -Ib2 jI + ( n -1)1a i3 1 •Ib3ji

+ - -	 - + 21a in l • Ibnj 1)	 (27)	 k''

Let [e] be a matrix whose elements are Ic ij l, [A] be a matrix whose

elements arelaij l, and'[R] be a matrix whose elements are Ibijl-

}

22j
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Then, based on (27), one has

[C] ' a[AIb[8

where the symbol "<" means that the comparison is done on element by

element basis for the left and r;ght hand matrices, and

n

n
D	 n-1	 is nxn

09.
L	 2J

clearly IIDI I = nx The norm of the rounding error matrix". ^ i^ thercrore

bounded by

I I C I { < ns{ {AI I • ({ 8 1( = 	 b ' -'{ 1A1 I' { { 8 { {	 (28)

Generalize the above result to a product of N matrices

P - M
l M2

- - - MN 	(29)

with interface dimensions d l , d2 , - - - d N-l . Let

P i = M 1 M2 - - - Mi

Then the result of (38) implies the following rounded matrices, with e being the

worst error,

P2 
= fg [Mi M21 = MlM2(l+dle)

and

FIN = ft[Ml M2 1 = MlM2(1+dle)

A	 h	 h

P 3 - f E PI M3 1 = PIM3(1+d2c)

M I
M,,M

3 ( 1 +d l e)(1+d2
e) ti MlM2M3C1+(dl+d2)e]

23
r.
't
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and

PN	 M 1 M2	
- _ MN 1l+(1 1 + - ,^ .. +GN»l )c3	 (30)

A

Rounding errors in pN is

{

^r
Y S

'V

pN = M 1 M2 - — — 
MN(d1+d2 + M - -+d N„ 1 )c (31)

The	 norm of this error matrix is therefore

N x 1	 N
1 IRN I 1	 C<3 B( 1 0 1 	d i ) j ar 1 11Mj I1 (32)

The results of (24) and (31) can be used Jointly to handle the matrix

equation containing both products and sums.	 This will	 be demonstrated by

the following two examples.

Exam1 ee I	 Compute

R	 AC'CyD

where all matrices are nxn. 	 The rounded R is

A
R a ABC(1+2nc) (1+e:) + D(l+e)

The, rounding error of R is

R	 [(201)ABC + D]c

and Its norm is bounded by

1I R II	 :^ o[(2n+1 )1IABCII	 +	 IIDIII

I~xampl a 2 ,	 Compute

R = ABC +D

where A is nxm, B is mxr, c is rxs, and D is nxsw 	 Then

R	 ABC[1+(m+r)e3(1+c) + D(1 +c)

R	 ABC(l+n1+r)e + Dc

1I R II 	 < 	 0-(1+m+r )II ABC II 	 +	 1IDII1

24
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These two examles shows that the rounding error norm of matrix

addition does not involve the dimension of the matrices, but that of

matrix product involves all the interace dimensions.

10, Rounding Error in Matrix Inversion, First Approach

Let A be nonsingular nxn matrix, its inverse A `1 satisf;:s the

relationship

A A-1 = I, the identify matrix

Let uj be the 3th col ume vector of I and N be the ith column of A`1.

Then h- is the solution of

Ax - uj 	j = l to n	 (33)

Thus A `1 can be obtained by solving (29) n times using different u3

each time. The solution is usually done by a method based on the Gaussian

elimination with partial pivoting. The present concern is the rounding

error associated with the conputation of A` 1 . The analysis will be done in

two steps: First, find error in A` 1 computed from the exact A. Second,

find error in A-1 computed from A' = A + kA where AA ic, the error in A.

Rounding Error in A `1 when A is exact. Let h^ be computer solution

of (33). Define the "residue" associated with h^ ash,

r^ = A h^ - uj	 (34)

The error in h^ is
V

A

hi - h	 h^ - A `1 rj	 (35)

The rounding error matrix for the computer inverse of A is

w
E - [ h l h^ - - - h n ]	 (36)

25
a
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Define the "residue matrix" for the computer inverse

R	 cr, (37)

Then

C	 A 
I R (38)

The norm of E is bounded by

IlEll	 IIA"11-11RIJ (39)

And the relAtive norm of E is bounded by

I	 JR1	 1 (40)

Roundinq Error in A"1 when A+AA i s inverted,	 Let A be erred to

A+AAo then the computer, solution 	 for

CA+AAjx
j 	

j m 1 to n (41)

must satisfy

[A+AA1hj	 ii + ni	 J- 1 to n

where tj is the residue,	 Then

ON	
+ A`1 6 "	 A-"Mj + A -'Lj - Lij 	A- ' ,LjON

The error in LIJ i s

L,j a h  - h  m A	 Ctj - AA h  1 (42)

Using the notation defined in (36) and (37),	 (42) gives the error matrix

E -m A'l
R • A

-1 
AA fg[A-']	 ^	 A-'R - A-1AAA-1

The norm of the error matrix is bounded by

JJEJJ	 IIA"'11-11RII	 +	 jjA-'jj'-jj4Ajj (43)

the relative error norm is

I Ell	
I JR1 i+	 jjA-'jj * jjAAjj (44)

26
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Comparing (44 ) to (40) shows that the latter is a special case of the

former where M = 0. Eq.(44) appears elegant, but its practical useful-

ness is in doubt. The problem is that the residue matrix R cannot easily

be obtained. In addition, both (43) and (44) do not explicitly depend on

any wordlength related parameter, such as, the unit sounding error R.

11. Rounding Error in Matrix Inversion, Second Approach

The usual method of matrix inversion by a computer is based on a

repeated use of Gaussian elimination procedure. The procedure consists of

two parts, namely, triangu1arization of a matrix and back substitution.

The rounding error for each part will be analyzed first, followed by the

analyze of the resultant error. In the following analysis a will denote

the 4dr . rrst value of any r ounding error c i .	 T hu s lei < s.

11.1. Rounding Error in Matrix Triangularization

Consider a 30 Matrix Equation

alla12	
a 1 3	xl	 1

a 21	 a22	 4 23	 x2	
b2	 (45)

La
	 a32 a 33	 x 3 j	 b3

A matrix

Let a ij (0)	 aij and bi (0) ; b i for i, 3 = 1 to n. The first step is to

condition the first column. Let

	

m a2l -- - a ll (0)	 (46)21	
_ 

all	 x11 0

then let

x22 (1)	 a22(0) + M21 al2 (0) 
= a22(0)	

a2_((^0 ) x12(0)11 

27
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A
	 - fzCa 22 (a) - 21( a ) a 12 (0)1	 c

622(0)(1+e)	
a l l (0) a

12 (o) (1+3e)

P

_ [a (0) - a21(°) a 2(0)6 + a 22 (0) - 621(0) a ,2 (0)(3e)22	 al l 0 1	 al` j^^'

= 622(1) + a22 (1)(3e) - a22(0)(2e)

Simil arty

623(l)	
a 2 3 (1) + 623 (1) (3E) - 6 23 (0) (2e)

t.

a 32 0)	 a 32 (1) + a32(l) (3e) - a
32 (0) (2e)

633 (1) - 
a330) + a 33 (1) (3e) - a 33 (0) (2e)

After the first step, the error in the new A, designated A(1), is given

by A(1) whose elements are

0	 i=1; j=1,2,3

a ij (1) _	 (47)

a ij (l) (3e) - a ij (l) (2e)	 i,j=2,3

Define

0	 0	 0

A1(1) = 0	 a22 (0)	 a23(0)

0	 a 32 (0)	 a33(0)

and

ra

0	 0

A l (1) _ 	 a22(1 )	 a23(1)

0	 a32 (1)	 a33(l)

28
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Then

A(l) = [a i4 (1)a = 3eA 1 (1) - 2eA1(0)

o[3A1 (l) - 2A1( 0 )]	 (48)

Expressing A in terms of A rather than A is important since A is available

from the computer but not A.

For the b i coefficients we have

a. (0)

bi(l)	 bi(0) = mi1 b i (0) = bi(0)	 all 0 bi(0)

Then

b i (l) = fk[b i (1)] = b i (0)(1 +e ) - 
a11
il( 0 ) bl(0)(1 +3e)

a. (0)
= b i (l) + e b i ( 0) - 3e 

all(0)
  b1(0)

= b i (l) + 38 b i ( l) - 2e bi(0)

Define

0	 0

bl(0) =	 b 2 (0)	 and bl ( 0 ) =	 b2(1)

b3 (0)	 b3(1)

then

b(1} = 3e bl (1} - 2e b 1 (0) ti $[3b l (1) - 2 b1 (0)]	 (49)

'	 A	 A

Again, expressing b in terms of b rather than b is important since b is

available from the computer but b is not.

29
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U
After the first reduction step, one has

a 11( 0 )	 a 12 (0)	 a l3 (0)	 x 1	 bl(0)

0	 622 (0)	 623 (1)	 X2	 b2 (l )

0	 a32(0)	 a33 (1)	 x3	b3(l)
1

where a
ij 

and B3 are rounded quantities. Their errors will be compounded

to the new rounded quantities in the next step of the reduction process.

The second step of the reduction concerns the second column of the

matrix. Let

632(1)

m32 = - a220) (50)

and let

x 33 (2) = a33(1)	
m32 a23(l) = a

33 (l) _ 6
32 (1) a23(1)

a22(1)

The rounded value is

a33 (2) - 
fk(a33(2)] _ a33(1)(1+e) ^. 632(1) a23(1)(1+3e)

a22 (1)

= a33 (2) + 3e a33
(2) - 2c x33(1)

Let

	

0
	

0	 0

	

A2 (1) = 0
	

0	 0

	

0
	

0	 633(1)

30
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.r
Yr
n

and

0	 0	 0

A2 (2) =	 0	 0	 0

0	 0	 433(2)

Then

N	 A	 A	 A

A(2) = 3eA2 (2) - W20) n 0C 3A2() - 2A?(1)]

For the bi coefficients in the second reduction step,

A

bg(2) = b3(1) + m32 b2(1) = b3(1) - 
432(1) 

b2(1)

a220)

The rounded value is

A	
A

b3 (2) = fz[b3 (2)] = b3(1)(1+6) -x32(1) b2(l )(1+3e)
a22 (1)

A

= b3 (2) + 3c b3 (2) - 2e b3(1)

Let

0	 0

b2 (1) =	 0	 and	 ^2(2) =	 0
A

b3 (1)	 b3(2)

Then

k( 2 ) = L3 b 2 (2) - 2 b2(1)]
 E:

	 b 22 (2) - z 2(1)]

The resultant errors,

A = A(1) + A(2) = 0[3 A 1 (1) - 2 ,A
l (0)] 

+ o(3 A2 (2) - 2 A2(1)]

2

=1

31
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b - b(1) + b(2) =, 0[3.1 (1) - 2bl ( 0 )] + 0C3b2 (2) - 2b2(1)]

r

2

=
q

[3b i (i) - 26  (i-1)]}	 (54)
i =1

Generalization to an nxn matrix A

	

all	 - - aln

I	 I

A = A(0)	 A(0) -w5)
I

	

and	 - - ann

a ij (0) - 
aij(0) = 

a ij	 (56)

The matrix obtained after the kth reduction step is

a ll (k) - - - ain(k)

^	 I
A(k) _	 (57)

I

a nl (k) - - - ann(k)

01
I

A ,i (k) =	 (58)
i

The (n-i)x(n-i) lower right
diagonal block matrix from A(k)

The resultant reduction or triangularization errors in A and b are,

respectively,

n

A = a ^ C3Ai (i) - 2Ai ( i -1)I	 (59)
fj=l

32
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i
n-1

[311 (1) - 2bi(i^-1)a	 (60)
d

Finally, the norms of errors due to triangularization are given by

n-1

I IAI 
I^k- 1

C3 I IAk (k)I I + 211 A 	 I^}	 (61)

I IbI I	 R 
nI1 

[ 3 I I b k( k ) I I + 2 I I b k( k-.1 ) III	 (62)
k ,1	 }

Note that after the (n-l)th reduction step, the original matrix A has

been reduced to an upper triangular form. Denote it by A T = A(n-1). Thus,

a 11 M 	 x12 (0) = - a 1 k(0)	 „ - aln(0)

X22 (1) - - a2k (0)	 - - a^n(0)AT - 	 (63)
0

akk(k- 1,) - - aakn(0)

e
ann(n-1)

Denote the associated b vector bT , then

T
bT	 b(n-1) = [b l (0) b2 (1)	 - - bn (n-1)]

	
(64)
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such that

A A	 h

A x -- b (66)

has error-free solution .x. 	 Thus the rounding error problem has been

transformed to a error problem caused by perturbations 'in A and b. Define

A

QA :, A-A	 Ax	 -,X	 A_b - b^-t (67)

Then (65) gives

(A-AA)(x-Ax) = b - Ab

Ax - A-1	 b- A (68)

In (68), Ax is the rounding error in x, A-	and x are computed by the

computer while solving (65), and Ab and AA are computed from formulas to ,n

be developed..	 Assume that A is an upper triangular matrix, the solution
ji

of (65) involves only the back substitution operations. 	 Rounding error

due to back substitution will now be analyzed.

3x3 Triangular Matrix Equation. 	 Consider the equation

Ali
	 a 12	 a13	

x
i 	b1

0	 a22	 a23 x2
=

b2 (69)

0	 0	
a33_

x3 b3

~qq

ptp

„^	

CThe equivalent perturbed equation for evaluating rounding errors is

a ll	 a12	 a 13
: 	

xl	 rbi

h	 n
0	 a 22	 a 23

r
x2 =

A
b 2 (70)

..

0	 0	
a33 x3 b3

,

34
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Write (69) as

allxl " a 12 x2 
+ al3x3 ' b

1	(a)

a22x2 * a23x3 ' b2	 (b)

a33x3 ' b
3	 (c)

From (71c)

b3

x3	 a33

The rounded value is

b

x3 ., 
a33 (l*E) - x3(1 +e)

•	 x3
V	

ryn3 = 1,^e

Substituting into (71c) and rearranging terms, give

M1

133 x3 = b3 0+0
M1	 M1

a33	 b3

M1	 A

where a33 and b3 are also defined. Next, from (71b)

x2	
zz

= a1 [b2-a23x3]

Its rounded value is

X2 = a22 (b2-a23x3( 1+r-)] ( 1 +2e)

1
a22 L

b2-a23x 3) 1+2e )] (1*2e)

262 - 4e a23x3

X2 *
	 a22

35
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A
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2cb2 - 4c 
a23x3

X2 tt x2 _	

a22

	

X	
2c b2 	4e a23x3/ (l+e)

	(76)2	
a22

Substituting (76) and (73) into (71b) and rearranging terms, give

a22X2	 a23 (1+3e)x;3
 = b2 (1+2e)	 (77)

a22	 a23	 b2

A	 A

where a22 , a23 , and b2 are also defined. Next, from (71a)

Xi : -I—
 

[b1-a12x2-^a13x3^
11

Its rounded value is

X1 - all [bl(1+3e) " al2x2(1+4e) - a13x3(1+3e)J

With the help of (72) and (75),

	

a
	

!12423

	

x1 = xl + a 	 f3cb, - 4ea 12x2 - 2e 
a 12 b2 + 4e  	 x3 - 4e a13x3

11	 22	 22

Using the approximations x 2 ti x2 and x3 ti x31 xl is expressed in terms
A	 A	 A

of x 1 
x2 , and x3 as

X1
x	

a

	

- 
1	 3eb - 2eb 12 - 4e9 x + 4e 

( a12a23 - a )
1	 1	 a	 1	 2 a 2	 12 2	 l+e	

a22	
13 3)

11	 2

(78)

Substituting (78), (76), and (73) into (71a) and rearranging terms, give

a ll x1 + a 12 (1+4e)^2 + a 13 (1+3e) x3 = bl (1+3e)	 (79)

A	 A	 A	 A

all	 a12	 a13	 b 
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where X 11' a12' a13, and bl are also defined. Finally, put (74), (77)
	and (79) into a single matrix	 .a uatioq	 n

f	 all "a ll	 a12=a12(1+4e)	 al3=al3(1+3c) 	xl	 sl"bl (1+3e)

0	 a22ra22	 a23-a23(1+3e)	 x2	 b2=b2(1+2e)

0	 0	 a33=a33	 x3	 b3=b3(1+e)

•_,,..^

i	 A=A+QA x	 b -b+Ab

(80)

from which one easily gets

0 4ea12 	3ea 13 0	 a12 a 13	 0	 0	 0

AA =	 '0 0	 3Ea23	 = Q	 0 a23	 0	 4	 0

LO 00 0	 0 0_

	

0	 0	 3

(81)

3b 1 3	 0	 0 bl

db =	 2b2 e=	 0	 2	 0 b2	 a
(82)

b3
L

0	 0	 1U—	 j b3
—

Generalization to nxn Trian gular Matrix Equation. Consider

all	 a12 - _ '" ain	 xl	
bl

222 y	 a 2	 x2	 b2

1	
l	

=	
l	

(83)

L 
0 ^, 1 1	 1

ann	 x 	 b 
A	 x	 b
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Its equivalent perturbation equation for evaluating rounding errors can

be obtained by generalizing the result of (80), which is

all	 alt	
'"	 _	 an

A

l	 bl C 

A	 A

122
	 '12n

A
A

X2
	 b2

(84)

^	 1 1	 1

l l	
1 ^;

0 
^ t

ann X3 	 6n

A

A
A	 A

x	 bu

where

aka k=J

^A

aka	
ak [1+(n-J*3)ca 1 <k{a<n (85)

r

0 otherwise

b 
	 bk[1*(n-k+1)cj kml to n (86)

Thus,
n^

!	 It

a k j (n-J+3)c l^<.k<a<n

Aa ka a
(87)

0 otherwise
j

Ab k	bk ( n- k*l)c k	 1	 to r (88)

38
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AA -

IS	 I

0 `(2n-2)a l ,	 (2n-3)a l3 	 - 4a, (n-1)	 3aln

0	 (`n-3)a23	
4a2(n-1)	 3a 2n

0

	

a12	 a 1 3 -- a l n	 0	
f

	0 	 a23 -- a 2	
n+1

4

a(n-1)n 00	 3

A 	 MA

	nbl	n	 bl

Ab 
(n-1)b2	 n4l 0b2

	1	 \	 i

	

b n	1 	 bn

---	 -	 -w
M b	b

where matrices A0 , MA , and Mb are also defined.

39
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11.4. A Numerical Example

Consider inverting the following matrix

	

3.235	 -1.234	 3.256

A =	 1,023	 -5.235	 0.921

	

1.336	 2.120	 -8.235..

using computer of different finite decimal wordlength. Then evaluate

the corresponding error norms using the procedure of Figure 1. The

effectiveness of the procedure is examined by comparing these error

norms to the corresponding actual error norms. The actual norms are

approximately obtained by using a computer having a much longer decimal

wordlength. The result is given in Table 1, which shows that error norms

obtained by using the proposed procedure are indeed very conservative.

Notice that error norm decreases with increasing wordlength. It is in-

teresting to note that when the proposed method is used all error norms

have the same mantissa.

Tabl e I

Matrix Inversion Error Norms

Wordlength:	 No. of places
after decimal point

Error norm

By proposed method Actual value

3 3.706 x 10 -2 7.782 x 10-5

5 3.706 x 10-4 4.530 x, 10-7

8 3.706 x 10-7 4.672 x 10-10

a

t

^e

M

F
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11.3.	 Resultant Rounding Error in the Inverse Matrix

Two set of equivalent perturbations for A and b have been obtained

to account for rounding errors. 	 One set, A and b as given by (59) and	 (60),

account for errors from triangularization, 	 The second set, AA and Ab as

given by (89) and (90), account for errors from back substitution. The

resultant equivalent perturbations for A and 	 are given by the sums

SA = A+ 4A (91)

db = b + Ab (92)

The resultant rounding error in x in the solution of

a
A x = U .	 j = 1	 to n , (93)

where u j	 is the ,jth column vector of the 'fidenti fy matrix I, ins given by

I
dx^ _ A E6 ,Lj -sA xj (94)

,N
This equation is obtained in a way similar to that of (68). 	 Rounding error

in A-1	 is then given by
9

s(A"1) = [62 1 	- - - axn]
a

^--.

_ A-1 [(Sb 1 -SAx I )	 - - -	 (sbn -SAxn )] (95)

D

The error norm of the computer's inverse matrix of A is therefore

JI S ( A`1 )(I G IIA-111'11DIi	 (96)

where the matrix D has been defined in (95). The relative error norm is

1
S A	

1 - D	 (97)
_ I1A-111

It is obvious that the evaluation of (96) or (97) involves a good

deal of computation and should be done by a computer. Figure III-1 is a

computation block diagram for this purpose.
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^i

x,

i,

7
a

u s

f, w

P #	a

e.

G
^	 f

^i
x

r^

Given matrix A

'Triangularization of A into AT,

'Use the same triangularization
Transfo n,iatio n to change u 	 to

%, J=1	 to n.	 Thus the ha
*
b
change A x=	 touj A

ATxw bj . bj, J=l-n

'Generate A, error in AT.

Generate ^j, error in ba.

AT

I f bj, j = l -n

'Back substitution to solve
AA

ATx_=b^, j=l to n Ab ^A - A + ^A

The solutions are 2j  j=l to n. 6 b^ = bj + Abj=1jto n
'Generation of AA, do it once. j	 1	 to n
Generation of Abj , j=l to n.

ii , j=l -n 6A,	 6 j , j=1-n

A i = ELI _-- xn^ II	 ;II	 lll•II abj-sA' xj II
xj ,	 J=1-n

and A l
IIaXjII

Compute	 I I S (A-1 ) I I

I I^^ A-1 )I i
The error bound

for A'l

Figure III-1.	 Flow chart for evaluating rounding error

bound of matrix inverse.
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12. Rounding Error Bound for Kalman Filtering

Consider a process modeled by the following set of sequations.

Ak ^ ^k-1 4-1 + 4-1	
dim 4 = u

jk *":, Hk 
lk + Y-k
	

dim L, = m

E 2L(0) = ?io 	 E[X(0) &(0) T] = Po

Wk ti	
N N(O,RN (0, Qk)
	

V k
	 k)

E[4 v	 0	 all j,k

1
A

The Kalman Filter algorithm consists of the following equations.

Txk	 ^k 1 4-1 *
 K 

k l -lk	 Hk 'hk-1 ^-1
x	

(0)	 VLio
no)

K	 H
T 
[H P	 H

T + R	 or K
k	 kp	 k	 k kp kP	 0	 k P k

H
T 
R-"

k k
(99)

P k 	
T _	 +

kp	 ^ k-1	 k-l ^ k 1	 Q k (100)

P	 P
k	 kp - 

K 
p 

H
k 

P
kp

(101)

where x	 is the estimate of x.	 The present interact is to find the bound

of the rounding error norm for x	 For the sake of convenience, the

astrick "*" will	 be dropped, and x will denote the rounded Value of the

estimate.
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Error in Rounded Pkp. Recall (100), that is,

T
P kp = '^k-1 P k-1 ^k-1 * Qk-1

Its rounded result is

Pkp - '^k-l P k-1 k-1('+2n+1e) + Qk-l (l+e)

= Pkp(1 +2n+1e)-2neQk-1

The rounding error is

Pkp	 (2n+1)ePkp	
2neQk-1 

`(201)ePkp

Error in Rounded Pk. Recall (101), that is,

Pk = [I - KkHk]Pkp

Its rounded value is

Pk = [I(1 +e) - KkHk(l+m+le)7Pkp(1 +ne)

[I(1+n+1e) - KkHk(1+n+m+1e)]Pkp

[I(1 +n+le) - KkH k (1*n+m+lc)][Pkp + Pkp1

ti Pk + [(n+1)EI - KkHk (n+m+1)6]Pkp + [I- KkHk]Pkp

Pk[1+(n+m+1)c]	 me P kp + [I-KkHk]Pkp

Pk = (n+m+l)cPk - mcPkp + [I-KIA]Pkp

< (n+m+1)ePk - mePkp + [I-Kkpk1(2n+1) Pkp

(2n+1)ePk

(3n+m+2)£Pk

i J

P

r

	

a	 :;
«r

4 7

G r̂s

	

KY ?

	 _

f

{^ t

G 8

c^

i

t^
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Error in Rounded 
Kk. Recall (99), that isp

..

Kk = PkRkRk

Its rounded form is

Kk PkHk k (1+n+me)

By (104) and (103)

Pk < (l+n+m+ E ) Pk - mepkp + [I- KkHk7(2n+1)ePkp

(2n+1)ePk

(1+ n+m+ e)Pk - mePkp

Assume R k diagonal

k1 - Rk1(1+e)

Than (105) becomes

IN
Kk < [(1+3n+m+le)Pk - mePkp]HkRk1(1 +e)(1 +nn+m e)

(1+4n+2m+3e)P kHkRk l - mePkpHkR-1

The rounding error is

Kk < (4n+2m+3)eKk - mepkpHkRk1

< (4n+2m+3)eKk

Error in ;founded xk, Recall (98), which is

xk - ^k-l x k-1 + Kk [ k - HOk-14-13

[I-Kk Hk70 k-14-1 + Kjk

(106)

(107)

F

ii

(103)

j,

q^

(98)
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(109)

(110)

(111)

(112)

(113)

(114)

Fk r [I"KkHk]^k-1

uk = Kk =k

Then (98) becomes

xk = Fk 4-1 + ulc

Develop the following rounded quantities,

Fk = [I(1+e) - KkHk(1+m+le)]^k-1(7+ne)

[I(1+n +1 e) - Kk(1+4n+2m+3e)Hk(1+n+m+le)]^k-1

= CI(1 +n •^1e) - KkHk(1 +5n+3m+4e)N-1

= F k ( 1 +5n+3m+4e) - (4n+3n+3)eI

r
u k = Kk zk(1+me)

Kk(1+4n+2m+3e)zk(l+me)

= Kk4 (1+4n+3m+3e)

= uk(l+4n+3m+3e)

xk = Fk
 4

-1 (l+n+lE) + uk(l+e)

< (1+5n+3m+4e)F k 4,-1(1+n+le) + 4(1+4n+3m+3e)(l+e)

(6n+3m+5e+l )'r"^k Xk-1 + (4n+3m+4e+1)uk
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Define

Fk = (1+6n*3m+5e)Fk

u k = (1+4n* m+ e)uk

Then (114) can be written as

X k = F  4-1 + uk

Case of k = 3	 Eq.	 (111) gives the exact 2 3 as

x3 -
F3F2F1	

+ F
3F2 ul + F3u2 +

The rounded .63 is

4
3 =

A
F3 F

2
F l 4(1+3n+3 e) + F3F2ul(1+2n+3e)

^A
A	 H	 I1

+ F3u2 (1+n+2e) + 43(1+e)

Using (115) and (116), and combining terms,

X3 = F3F2 Fl 4[1+3(7n+3m+6)e] + F3F2u1[1+18n+9m+17E]

+ FA211+15+6011e] + u3[1+4+3m+5e]

= x3 [1+3(7n+3m+6)e] - (3m+1)eF3F2ul

- (10n+3m+7)eF3 2 - (17n+6m+13)e23

The rounding error is

x3 = 3(7n+3m+6)q 3 - (3n+1)eF3F2 ul

- (10n+3m+7)eF3 u2 - (17n+6m+13)eu3

(117)

(118)

(119)

(120)
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^J

Its norm is bounded by

N	 yf ^	 ..

11 X3 11< 3 ( 7n+3m+6 ) e l1 x3 11 - ( 3n+1)e11F3F2u1 11
u rt

- (10n+3m+7)e 11 F3 u2 11 - (17n+6m+13) E 11 u3 11 	(121) a

Assume JJ Fk1 1 ' F, J IHk i 1 < U, and F i u < B for i = 0 to 2, then
N

11 &3 11 < 3 (7n+3m+6) c I I x 3 I I + ( son+gm+21) e B
t

< ̂3(7n+3m+6)II 2^3 II +C 3(3n+1) +	 321 (7n+3m+6)]B^	 (122)	 :.

Case-of k=4 Again, by (111),

= F4F3 F2 F l 4 + F4F3 F2 u l + F 
4 

F 
3 9

2 + F4 Y4	(123)
A=

Following similar derivation, gives the norm of rounding error as

I Ix4 1(	 s 4 ( 7n+3m+b)11x4 11 + [4(3n+i) +	 ( 1 ► n0b)]or (124)	 F

The general case _k From the equation pattern of (122) acid (124) for

k=3 and 4, the general case is found to be
u

"	 k k-1I J x k 1 I	 Rfk(7n+3m+b)1.14 11 + [k( 3n+1) + - -2---.^ (7n+3m+6)JR
I

(125)	 ` i
U	 ^

4

Eq. (125) is the main result of this chapter, which gives the bound

of error norm for the rounded state estimate. The bound depends on R, the

unit rounding error; k, the number of iteractif+,is; n and m, the dimension

parameters of the process; J(xk JJ, the norm of the estimated state; and B, 	
q

a quantity depends on K k , Hk, ^k and u k . The usefulness of this equation 	 a

is at providing a general idea on the desired number of digits for the

mantissa of the computer's floating number system. The following example

{
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will illustrate this point

Exam le. Consider a one year GP-s operation where relativistic data

are taken every 10 seconds. Assume that the Kalman filtering involved in

data reduction is also operated at 10 second iteraction period. Then, at

the end of one year period, the value of k would be k=365 x 24 x 3600/10

3.1536 x 10 6 . Assume xk be a 10-vector and ik be a 2-vector, so n=10 and

m=2. Then,

k(7n+3m+b) = 2.6490 x 108

k(3n+1) + 0.5k(k-1)(7n+3m+6) = 1.2949 x 1016

Just for the sake of discussion, assume only one term at the right-hand

side of (125) dominates the result. If the first term dominates, one may

estimate the desired 0 from

k(7n+3m+6) 0=1

so

R = 0.3775 x 10'8

comparing to (8), the formula g = 0.5 x 10 1-t , gives t ti 9, therefore 9

digits are desired for the mantissa of the floating point number system.

On the other hand, if the second term of (125) dominates, one may estimate

the desired 0 from

Ck(3n+1) + 0.5k(k- 1)(7n+3m+6)) 0=1

so

S = .7723 x 10-16

comparing to (8), gives t '11 117. Hence 17 digits are desired for the

rantissa.
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13. Remarks

1. The main result of this chapter, given by (125), is a "first-

cut" result which can probably be further refined to tighten the predicted

bound while maintaining its reliability. This result was obtained after

several different approaches to the problem had been attempted.

2. It is desirable to find out the 'effectiveness of (125) ^y a com-

puter emulation of the GP-B data reduction. This has not been done for three

reasons. First, there is no time and resource allocated in the contract

period covered by this report. Secondly, this emulation work is a major

activity not foreseen at the start of the contract, therefore it was not

planned. Finally, the computation details of the GP-B data reduction,

being developed by the GP	 group at the Stanford !University, is not

completely available to the present contract.

3. Besides Kalman filtering the GP-B data reduction also contains

other types of computations which should also be included in the rounding

error analysis. Attention to a more complete error analysis is intended

for for the next contract period.

4. During the present contract period only the finite wordlength

induced computation errors were investigated. The truncation error in-

volved in the chosen method of numerical integration for the GP-B data

reduction has not been studied, thus its improtance in the overall error

analysis is not known at this time. The effect of Truncation error will

be investigated in the future.
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5. Other indirect errors exists, which also enter the result through

GP_p data reduction. These errors are caused by imperfection in compensa-

tion data. Effect of this type of errors has not been investigated, but is

intended for future study.
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sCHAPTER IV

MEASUREMENT GEOMETRY FOR GP-B EXPERIMENT

This chapter describes in detail the development of a measurement

model for the GP-B experiment. Tile model represents the relationships

among the orientations of various components of the experiment, including

the directions of the reference star, gyro spin axis, readout normal, and

the spacecraft's roll axis. With this model, the effect of spacecraft

rolling and of component misalignments can be investigated through analysis

and computer simulation.

For the convenience of analysis, six coordinate frames are defined

with the help of Figure IV-1. All frames are co-origined at the spacecraft's

center of rotation:

1. Absolute frame [a-frame: x a , ya: zal -- This frame is

stationary in orientation with respect to the universe,

i.e. With respect to the ideal distant stars. Its xa-axis

is along the line-of-sight (LOS) to the reference star

Rigel.

2. Intermediate frame [i-frame: x i , y i , z i l -	 This frame is

stationary in orientation with respect to the universe,

Its x l axis is along the roll axis of the spacecraft. This

frame is related to the absolute frame by Euler angles al,

a 2 , and aS.

3. Roll frame [^-frame: y Y,, z 	̂ This frame is fixed to

the spacecraft with its x^ axis alone the roll axis of the

spacecraft. Therefore x and x i axes coincide.
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s
4. Telescope frame Et-frame: xt , yt , zta	 This frame is

also fixed to the spacecraft, with its xt axis along the

boresight of the telescope. The misalignment between this

frame and the roll frame is represented by Euler angles

01, 02 , and 03-

5. Readout frame Er-frame: xr , yr , zr] -- This frame is again

fixed to the spacecraft, which represents the orientation

of the gyro readout ring. Its zr axis is normal to the

plane of readout ring. The misalignment between this frame

and the telescope frame is represented by Euler angles

y l $ y2 , and y3.

6. Gyro frame Cg-frame: x,g , yg, zg ^ --- THis frame is

inertially fixed, but not absolutely fixed. The relative

angular motion of this frame with respect to the absolute

frame is she relativistic drift of the inertial space

around the GP-5 gyro. The orientation of this frame with

respect to the readout frame is represented by Euler angles

6 1 , 621 and 6 31 while that with respect to the intermediate

frame is represented by Euler angles e l , e 21 and e3.

Relationships among all frdmes are also depicted in Figure IV-2. Ideally,

P's, Y's, and 6's are zero, meaning that the roll, telescope, and readout

frames are all lined up. The nonzero values for a's represent the

deviation of telescope's boresight from the LOS to'star. The e's will

not be zero, they are the relativistic drift angles. It is assumed that

angles, a's, S's, y's, 6's, and a's are all sufficiently small that

small angle approximations of trigonometry apply.
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In the experiment, an optical system meaures the angle between the

LOS to star and the telescope's boresight. This amounts to measuring

the projection of xa axis of the absolute frame on the telescope frame.

With all misalignments included, this relationship is modeled by the

fo llowing matrix equation.

xt 1
03	 -02

1	 0	 0 1	 a 3	 -a2 1

yt - -R3 1	 01 0	 cwt	 Scat -a 3	 1	 al 0 (1

z 02 - a l	 la 0	 -swt	 cwt
132 	 -

al	 1 0

stair LOS Transformation to star LOS
unit vector ^-frame.	 Accounts unit vector
in t-frame • for rolling about in a-frame

x i axis

Transformation to Transformation to
t-frame.	 Accounts 1-frame.	 Accounts
for misalignments for telescope offset

RV 02 )	 0
3 . als a2 , a3.

The gyro and its readout ring measure the relative angular displacement

between the gyro spin axis x  and the readout normal z r . This amounts to

measureing the projection of x  on the readout frame. Note that the readout

frame rolls with the spacecraft since it is body fixed. With all mis-

alignment included, the projection of x  on (x r , yr , zr ) is modeled by
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xr	 1	 Y3	 -Y2	 1	 03	 -02	 l	 0	 0	 1	 03	 -0 2	 1

yr 	 -	 -Y3 	1	 Yl	 -03	
1	 01	 p	 Cwt	 -03	 1	 0l	 0

z r	 Y2	 -Y1	 1	 02	 -01	
I J 0 -Swt	 Cwt	 0 2	 -0 1	 1	 0	 a

- -	 --- 1	 -„-^

Gyro spin	 Transformation to	 Transformation to
axis unit	 t-fram?. Accounts	 i-frame. Accounts
vector in	 for misalignments	 for gyro drift
r-frame	 al, 02 ,

 0
3 .	 angles e l , 029 03

Transformation to	 Transformation to	 Gyro spin axis
r-frame. Accounts	 ^-frame. Accounts	 unit vector
for misalignments	 for rolling about 	 in g-frame
Yl , Y2 0 Y 3 .	 xi axis	

(2)

Under the ideal condition, O's and Y's are all zero. Then (1) and (2)

reduct to

X 1	 0	 0 1	 a3	 -a2 1

yt - 0	 Cwt	 Swt -a3	 1	 al 0

z 0	 -Swt	 Cwt a2	 -a l	 1 0

Xr	 1	 0	 0	 1	 03	 - 0 2	 1

yr	 0	 Cwt	 Swt	 -0,4	1	 01	 0

z r	 0	 -Swt	 Cwt	 0 2	 -0 1	 1	 0

Solving (3) and (4) for a's and 0's, gives

Cwt -Swt y	 -at	 3	 - offset of star's LOS
Swt	 Cwt z

t	
a
2
•	

from xt axis
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Cwt -SWt yr 	-a3

-	 offset of gyro spin	 (6)

Swt	 Cwt Zr
	 2	

axis from xr-axis

Notice that when small angle approximations are used a l and of cannot be

determined. Since x t and xr axes are colinear, subtracting (5) from (6)

yields the gyro's relativistic drift angles t,'s with respect to the inter-

mediate frame. Because of the absence of al , the transformation from the

intermediate frame to the absolute frame is simply via an identity matrix.

Therefore the relativistic drift anglesof the gyro with respect to the

obsolete frame are given by the same *'s.

3	 a3- e 3	 : Cwt - SW 	 , yr-yt
_	 -	 (7)

2 '	 e2 -a2	 Swt	 Cwt	 zr-Zt

^-1

The Q -1 matrix in (7) represents the deroll operation to bb done by the

data reduction computer.

To study the effect of misalignments on the accuracy of the experi-

ments, (1) and (2) are used. In there, R's and "y's are unknown quantitiFs,

since the effect of known misalignment can be compensated computationally.

Angles a's and e's are desired, and they are estimated from the measurement

by the deroll computation, giving

Y^	 f

is

^^ k

s

4

J
Y

3 Cwt Swt yt
__ (8)

-a2 -Swt Cwt zt

L

0 3 Cwt Swt
y 

_ (g)

-8 2 -Swt Cwt zr
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The errors due to misalignments are

Aa2 	 a2,-a2

^	
A

Aa3 	a3-a3
(10)	

1
4

A92 	62-82

_	 (11)
A8 3 	83 `83

The effect on the relativistic drift angle determination is

Adz 	482-Aa2

(12)
A^3	Aa3-A83

This completes the present development of the measurement model for

the GP-B experiment. The model will be used for investigating the quanti-

tative effect of various misalignments on the experiment data.
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