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CHAPTER I
INTRODUCTION

In 1916, Albert Einstein published his famed thoery of general rela-
tivity. Although many contemporary physicists and astronomers based their
work on the principles of this theory, proof of Einstein's description of
the universe remains inconclusive. 1In fact, alternatives to Einstein’'s
theory, most notably the Brans-Dicke scalar-tensor theory, have been deve-
1oped.1

The Gravity Probe experiment, conceived by the late Professor Leonard
Schiff of Stanford University, seeks to test Einstein's theory, and has
been reccgnized by the U. S. Government as having far-reaching scientific
importance. Since 1962, the government has supported the development of
this experiment in which academic, industrial, and governmental institu-
tjons have participated. Currently, NASA's Marshall Space Flight Center is
charged with the overall responsibility of the experiment.

In proposing this experiment, Professor Schiff had shown that a gyro-
scope in orbit undergoes a relativistic precession in the framework of the

2 In the "Gravity Probe B" (GP-B) satellite, four almost

fixed stars.
perfectly spherical fused-quartz gyros, each the size of a ping-pong ball,
will be coated with niobium, and element made superconductive at tem-
peratures near absolute zero. In this condition, the gyros can be suspended
electrostatically in the weightlessness of space. It is expected that the
drift rate of these gyros will be held to Tess than .001 arc-second a year.
For gyroscopes in polar orbit, there are two predicted precessional effects

which are perpendicu]gr to one another, as shown in Figure I-1. The larger

effect is due to the motion of the gyroscope through the Earth's gravitational

1
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field and is referred to as geodetic precession. The other predicted
effect is the spin-spin coupling between the gyroscope and the Earth's ro-
tation and is referred to as the motional effect; As shown in the figure,
the geodetic effect is in a4 plane of ortit approximately parallel to the
Farth's axis. The motional effect 1ies in a plane perpendicular to both
the orbit plane and the Earth's spin axis. The predicted magnitudes of
procession vary from theory to theory. The purpose of this experiment is
to determine the most valid theory by comparing the experimentally
measured magnitudes with the various magnitudes obtained from different
predictions.

The most important part of the GP-B satellite is a dewar containing
the four spherical gyroscopes, a telescope which tracks the star Rigel,
and an amount of superconled helium. Spacecraft attitude and trans-
Tatjonal control is accomplished by proportional thrusters with the pro-
pellant supplied by the boiloff helium from the dewar. The control
signals are derjved from the telescope wher. the guide star is visible, and
frem the gyroscopes when the star is occulted

The experiment design goal is to make drift measurements accurate to
001 arcsecond per year, an unprecedented requirement for drift measure-
ment. To ensure the success 0f the experiment, every conceivable error
source in the GP-B system needs to be identified and its effect on drift
measurement investigated.

In April 1980, NASA/MSFC awarded a study contract, NAS8-33849, to the
University of Tennessee t¢ initiate a system approach to GP-B error analysis.
The study results included a block diagram error model, identification and

discussion of source errors, some preliminary error analysis, documentation



of error budget, and several recommendations.3 These results provided an
organized picture of various errors involved.

The present contract, NAS8-34426, is aimed-at an in-depth investiga-
tion of individual source errors and their effect on the accuracy of the
GP-B experiment, This report documents the results of the study performed
over a fourteen month period, from 24 June 1987 to 31 August 1982. The
main emphases during this report period were placed in the following three
areas:

1. Refinement oh source error identification and classifications

of source errors according to their physical nature. The
result is given in Chapter II of this report.

2. Error analysis for the GP-B data processing. The result

obtained is given in Chapter III.
3. Measurement geometry for the GP-B experiment, to be in
Chapter VI.
It should be mentioned that this is a progress report, therefore the

results reported can be further improved.

References
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CHAPTER I1I
PROPERTY AND CLASSIFICATION OF
GP-ERROR SOURCES
Figure II-1 is a block diagram error model for the GP-B experiment.1
The model was developed in the previous contract based on the data con-
tained in Reference 2. This diagram gives a "macro" description of errors
where error sources are lumped into nine groups eritering the system at
nine entry point«. During this contract report period, further effort
was exerted on error source identification using the data available in
Reference 3. In addition, these error sources were classified in two
different ways based on their physical propekties. The purpose of
classification is to expose the possibility of suppressing the effects of
individual errors and to suggest techniques for such suppression.
The errors can be classified according to there statistical nature
as follows:
1. Deterministic type — This type of errors can be compensated.
2. Random variablie type — This type of errors are uncertain
constants. The effect of some, but not ail, of these errors
can be eliminated by rolling the spacecraft and by orbit
averaging.
3. Random process type — This type of errors are uncertain
time-varying quantities. Some of their effect can be re-
duced by averéging or by filtering.
The errors can also be classified according to their physical forms in
the following way:
1. Bias — The effect of some of this type of errors may.be

reduced by roll averaging and orbit averaging.

5
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2. Drift.

3. Scale factor uncertainty — May be identified by Kalman

filtering.

4, Noise — May be helped by Kalman filtering.

Table II-7 is a 1ist of error sources, thejr classification, and
methods for the reduction of error effect. In the table, r,v. means
random variable, r.p. means random process, 1/f means 1/f noise, and/det
means deterministics. MNotice the estimated errors after data processing,
their root-sum-square (RSS) total is 1.253 miiliarcseconds assuming zero
proper motion for Rigel. It is expected that future progress in hardware
and software development will reduce the RSS error. Notice also that
the table is open-ended, with blanks, "TBD", and question marks to be
taken care of by further study.

Figure II-2 shows the budget curve for the average individu.i error
as a function of the number of equal size error sources. The curve is
based on a RSS error of 1 millarcsecond. For example, if the total number
of equal size error source is 44, the individual error source should not

cause more than .15 milliarcsecond error for the GP-B experiment.

References

1. J. C. Hung, "Grayity Probe B Error Analysis," Final Report for
NASA Contract NAS8-33849, University of Tennessee, Knoxville,
18 February 1981.
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CHAPTER 1II

FINITE~WORDLENGTH INDUCED ERRORS IN
KALMAN FILTERING COMPUTATION

1. Introduction

The problem of finite-wordlength effect on digital computations has
heen investigated extensively during the past twenty years. Finite~
wordlength property of a computer requires either rounding or chopp{ng to
be used to 1imit the wordlength of a number. Since most computers use
rounding technique, only rounding errors will be considered in the sequel.

There are two approaches to analyze the rounding error, the first
approach considers the statistical nature of rounding errors, and treats
them as noise generated in the system. This approach has been widely
used by those in the field of digital signal processing. In the statis-
tical error analysis one is usually after the ensemble average and stan-
dard deviation of the final error based on the estimated characteristics
af source errors and their propagation through computation steps. This
approach does not seem to be sufficiently reliable for the analysis of
GP-B data reduction errors for two reasons. First, GP-B's four experi-
ment gyros represent only a small sample, their combined statistical
characteristics may deviate a good deal from those of the population
statistics, Thus the use of statistical analysis here may not give a
reliable result, Secondly, the GP-B data reduction involves Kalman
filtering and other rather complex computations. The exact statistical
nature of rounding error generation by and propagation through these
computations is not easy to establish. Therefore a more conservative

approach is needed,

13
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The second approach is to establish bounds for the rounding errors
involved in computation. This approach provides a very conservative,
though rather pessimistic, result for rounding error analysis. This
approach has often been used by those doing numerical analysis. Be-
cause of the unusual precision required of the GP~B and the expensiveness
of the experiment the use of error bound approach provide a much more
reliable results for the error analysis. Therefore this approach will
be used for ensuing rounding error analysis. Since Kalman filtering is
the main activity in GP-B data reduction, the present chapter is devoted

to the analysis of rounding error in Kalman filtering computation.

2. Rounding Procedure in Floating Point Representation

Let x be a number
% = (£edydy ---) x b° (1)

where b is the base of the number system used and e, an integer, is the
exponent. In general the mantissa part of the number may have infinite
number of digits for an exact representation, such as for v2. The number

(1) may also be represented in the form
x = y-b® + yep®t (2)

where %‘5 |u} <1, 0< |ul <1, and u contains‘on1y t digits.
Examples: Base 10 numbers.
(a) 12.3456 = .1234 x 10° + .56 x 107
Here b = 10, t = 4, and 3 = 2

(b) ~-.0123456 = -.1234 x 1072 + (-.56) x 107°

-1

u

Here b =10, t =4, and 3
The rounding procedure drops off the second term on the right side

of (2) by appropriately adjusting the value of the first term. "Thus,

14
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after rounding, x becomes Xp which has a t-digit mantissa -d]dz - dt
and an exponent b€  The conventional round-off procedure for any number

is as follows:

(ueh® 1f|v|<%-
= dub®+ bt 4f oy 3_%- (3)
[y b8 - &t 1fvi--12-

Note that u and v always have the same sign.

Examples: b =10and t = 4
(a) x = 765.4567 = .7654 x 10° + .567 x 107

Here vz]z—and e =3, so

u b® + &t = 7654 x 10% + 103°% = 7655 x 10°

u

X

(b) x = 123.426 = .1234 x 10° + .26 x 107"

1]

Here v < %, (o)

n

%=ub®=.1238 x 1073

(¢) x = - 765.4567 = =.765 x 10° -.567 x 107

u

Here v < - %—, S0

x =ub®-bSt = 7658 x 10° - 10%% = -.7685 x 10°
These results are intuitively obvious. The reason for going through the
formulatjons of Equations (1), (2) and (3) is to pave a way for the sub-

sequent analysis of rounding errors.

15
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3. Rounding Errors in Floating Pointing Representation

The "absolute rounding error" in Xp is defined as

X1= |xp=x| > 0 (4)
From (2) and (3), it s clear that

|>"<|_<_=%-be"t . (5)
Examining (1) shows that |u b® g__be"l because u __>__b'1; and [x| > |u b®|
because the second term, having similar sign, is dropped. Hence

x| 2 Jub3] 2 6% (6)

DEfine the "absolute relative rounding error" e as
KX %
- L R . Xl
- bl v

a;__%-b.'-t=8 (8)

The quantity B is called the "unit rounding error" which represents the
absolute bound of rounding error in the floating point representation of a
number of base b and having a t-digit mantissa. It is an important
parameter in the analysis of rounding errors.

Example: Consider b = 10 and t =4

Then g = %- bt = 1710“3

Let x = 767.4567 = .7654 x 10° + .567 x 107!
then % = .7655 x 10°

IR = |xp-x| = .0433

16
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. 0433 _ -4
£ = 765-4567 - v56568 X 10 < B

For the sake of comparison, the chopping error in floating point

representation of a number will be analyzed next.

4, Chopping Error in Floating Point .Representation

For a floating point numher in the form of (2), a t-digit chopped
number is given by

- e

X, = U b (9)
Define the "absolute chopping error" X as

Ry = [xgx| = v|®7" (10)
Since |x| < |

ol < bS7° (1)

Define the "absolute relative chopping error" as

(%
e = ﬁl— (12)
clearly,
e-t -
fe = 'g'ca_-‘l‘=b]t=‘30 (13)

where Be js called the "unit chopping error." Comparing (13) and (8)
shows
B, = 28 (14)

+

Example: b =10 and 6 = 4

Then 8, = 101~% = 107
Let x = 765.4567 = .7650 x 10° + .567 x 107"

17
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.7654 % 1073

i

then Xo

1

H

I = |x.=x| = .567 x 10

o = ok = (74073 x 1074 < g

5. Rounding Error in Basic Computer Arithmatic Operations

For the'convenienceof’the subsequent analysis, notation for rounded
floating foint number is défined here in two equivalent forms. Let X be a
floating point number. The rounded value of x is denoted by X or fa(x).

Let "#" denote any of the four basic arithmatic operations +, -, x, and
/ . The computer value of xxy is fa(x«y), which is related to the exact
value x*y by

falxey) = (xxy)(1+e) (15)
where e is the actual relative rounding error. The absolute relative error

in (xxy) is bounded by

i fz(x?ily} (x*y)l:___i3 (16)

where E is the unit rounding error.

6, Raunding Error in Composite Computer Arithmatic Operations

Repeated Additions and subtractions consider the sum

S =Xt X Xyt Xy
= ({xy4x3) + x3) + %4
The rounded value is |
S = (L{xgtxp)(T+ey) + x3] (T4ep) + xg} (Teg)
= (%t ) (e ) (THey) (Theg) + x3(14e,) ) (T4eg) + xp(T4eg)
n (X1¥%) (T+ertegtes) + x3(T+eytes) + x4 (14ey)

| 18
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The rounding error is

~

$ = (xyrp)(eyregteg) * X3 (epteg) * % (eg)
= (xytxghxghag)(eyteghep) = Xgey = Xy (ey*ey)
The absolute relative rounding error is founded by

e <38 - BXz - 28Xy £ 38

In general, for a sum of n terms

n
s= ) X (17)
=1
the absolute relative error is bounded by
e 5 (n-1)8 (18)

Repeated Multiplication and Divisjon. Consider the following

combination of product and quotient
X X
= ————-—-1 2 =
Q y1 (x]xz)/)’1
the rounded value is
x1x2(1+a1)

R R LS

N

X1%2

(]+E]+ﬂ] )

where gy and ny are relative rounding errors due to multiplication and
division, respectively. The rounding error and the absolute relative

rounding error are, respectively,

19
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For the general case

_ X% mmm Xy

SR N S— LR 19
Q y‘yz nfaded ym ( )

The absolute relative squnding error is bounded by
e < (ntn-1)3 (20)

7. Norms of Vectors and Matrices

Norms of vectors and matrices are useful in the analysis of rounding
errors in matrix operations. - The following definitions of norm will be
adopted in this study,

For an n-vector x with elements Xy define the vettsr norm as

Hx]] = Hax|xy] (21)

Clearly, the norm has the following hroperties:
(1) lixll 20
(1) ||x]] =0only ifx =0
(111) [zl < Hxl + Tyl
(1v) [la x|| = la]-}|x|] for any aeR

For a maxn matrix A with elements aij’ define the matrix norm as
AL = Max 3 lay.| (22)
= Max a.
PR Y

This norm has the following properties:
(1) [IAl] 20
(11) ||Al| = O only if A= 0
(111) {|A+B]| < [|A[]+]]B]]
(iv) |la A|} = lal+||A]|for any aeR
(v) [1lA8]| = [|A]l-]]8]]

20
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8. Rounding Error in Matrix Addition

Let A and B be two nxm matrices, the rounded sum of them fis

fo[A+B] = A+B+R (23)
where R is the rounding error matrix. By the definition of matrix norm
(22) and in view of (15), the norm of the rounding error matrix is bounded
by

[IRIT 2 8 [{A+8]] (24)

where g = %—b1't as given by (8). The relative norm of ||R|| s bounded

by
B (25)

. R
| |A+B] |

which is the same as the relative rounding error of the sum of two numbers

RIEA

€

-

as shown in (16).

9, Rounding Errar in Matrix Multiplication

Since elements of a matrix product are inner products of vector
pairs, the rounding error associated with an inner product will be analyzed
first, The vesult will then be used to analyze the rounding error in a

matrix product.
9.1. Rounding Error in Inner Product
Consider the inner product of two 3-vectors a and b
% alh =
The rounded value of ng is

1= fufalb]

b1

{[anlb-l (]+€1) * azb2(1+€2)](]+33) + a3b3(1+54)}(]+85)

21
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v aby (Meyregheg) + Ryby (THeytagheg) + agby (14eyber)
where a1's are rélative rounding errors associated with basic arithmatic
operations, The rounding error 1in 11s
T = aby (eyregreg) + aghy (T#sptegheg) + agby (e4reg)
The absolute value of this rounding error is bounded by
1T < 38 Jagby] + 38 laghy| + 28 Jaghy
In general, the aboslute rounding error of the inner product of two n-

vectors is bounded by
[ v n . I
|1 5,Bn{[a1b]| + jzz (n+2-3) Iadbj[} (26)

The expression for the absolute relative rounding error for an i

product appears cumbersome and is not given here.

9,2, Rounding Error in Matrix Products
Consider the matrix product C = AB where A is mxn and B is nxp.
The number n will be called "interface dimension”" for matrices A and B.
Using the result of (26) the absolute error of the elements of C is
bounded by
leg;1 2 8 nfagyl-Ibysl *+ nlagpl-lbysl + (n=1)]ay3] +|bgyl
Fomm ok 2|a1nl.‘bnjl} (27)

Let [gJ be a matrix whose elements are lgijl’ [A] be a matrix whose

elements are!aijl, and'[B] be a matrix whose elements are |b1j|.

22



Then, based on (27), one has

[C] & BLATD(B]
where the symbol ﬂg'nneans that the comparison 1s done on element by

element basis for the left and right hand matrices, and

D= n=1 is nxn

Clearly ||0]] = n. The narm of the rounding error matrix £ is therefore

bounded by
€11 & melAl]-11BI] = £ 67 1Al |-]{8]] (28)
Generalize the above result to a product of N matrices
P = MTMZ - - MN (29)
with interface dimensions dy, dy, - - - dy ;. Let
Py = MMy - = = M,

Then the result of (38) implies the following rounded matrices, with e being the
worst error,

= fz[M]Mz] = M1M2(1+d]e)

9
1

Py = FaLM M1 = MMy (14d,e)

e
w
3

23



15
ORIGINAL, PAGE
" o? ROOR QUALITY

and
Py MMy = = = MTTH(d = = = by )e]

Rounding errors 1in 5N 1s

PN B M]Mz bl ) MN(d1+d2 tom - "'"dN_-l)ﬁ
The norm of this error matrix is therefore

)

ogll &80T

N
d1) Jg1||Mjll

(30)

(31)

(32)

The results of (24) and (31) can be used jointly to handle the matrix

equation containing both products and sums. This will be demonstrated by

the following two examples.
Example) Compute
R = ABC+D

where 211 matrices are nxn. The rounded R is
R = ABC(1+2ne) (T+s) + D(1+c)

Tha rounding error of ﬁ is

R = [(2n+1)ABC + DJe

and 1ts norm 1s bounded by

[IR]| & sC(2n+1)]|ABC|] + |]0]]]

Example 2 Compute
R=ABC+D

where A is nxm, B is mxr, ¢ 1s rxs, and D is nxs.

R = ABC[T+(m+r)e](1+c) + D(1+e)

R = ABC{V1tmtr)e + De
[IRI| & CC4mte) | [ABC] | + ||0})]

24
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These two examles shows that the rounding error norm of matrix
addition does not involve the dimension of the matrices, but that of
matrix product involves all the interace dimensions.

10. Rounding Error in Matrix Inversion, First Approach
Let A be nonsingular nxn matrix, 1ts inverse A'} satisfiss the

relationship

A AT =1, the identify matrix
Let u; be the jth colume vector of I and h; be the jth column of Al
Then hy 1s the solution of

Aﬂ><_=_u_j J=1¢ton (33)

Thus A™! can be obtained by solving (29) n times using different uj

gach time. The sojution is usually done by a method based on the Gaussian
elimination with partial pivoting. The present concern is the rounding
error associated with the conputation of A". The analysis will be done in
two steps: First, find error in A"] computed from the exact A. Second, |

1

find error in A~ computed from A' = A 4+ M where AA ic the error in A.

Rounding Error in Al

when A is exact. Let f\_j be computer solution

of (33). Define the "residue" associated with b_j as

ry = A ﬂj - Uy (34)
The error in -&i is

.=y = he = AV

hy =hy = hs = A"r (35)
The rounding error matrix for the computer inverse of A is

E=[ﬂ1 }_\2---!_],0] (36)

25
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Define the "residue matrix" for the computer invarse

Ro= [y b = = = ) (37)
Then

E= AR (38)
The norm of E 1s bounded by

EI & AT LRI (39)
and the relative nomn of E {s bounded by

e < R[] (40)

1

Rounding Evror in A™' when A+aA 1s inverted, Let A be erred to

AtaA, then the computer solution ﬁd for
[A+aA]x, = Uy J=1lton (M)

nust satisfy
[A+AA]Q§ sugtry de1ton
where g 1s the residue, Then
B -" A .‘]\ -1 1 - " “‘l N
The error in ﬁﬁ 1s
- A 3 ] 1‘_" . ! A '
hy = by = by = ALy - 88 byl (43)
Using the notation defined in (36) and (37), (42) gives the error matrix

Ex AR = A7TaA FfA™T] & A°TR - A=Tann™

The normn of the error matrix is bounded by

HE < LAY LIRIL + 1A 2 s ) (43)

=Y

the relative error norm is

: = T‘i!?\E':'l < JIRIL + 1A (<ol (44)
26
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Comparing (44) to (40) shows that the latter is a special case of the
former where A = 0. Eq.(44) appears elegant, but its practical useful-
ness 1s in doubt. The problem is that the residue matrix R cannot easily
be obtained. In addition, both (43) and (44) do not explicitly depend on

any wordlength related parameter, such as, the unit sounding error B8.

11, Rounding Error in Matrix Inversion, Second Approach

The usual method of matrix inversion by a computer is based on a
repeated use of Gaussian elimination procedure. The procedure consists of
two parts, nhamely, triangularization of a matrix and back substitution.
The rounding error for each part will be analyzed first, followed by the
analyze of the resultant error. In the following analysis e will denote

the werst value of any rounding error ;. Thus |e| < 8.

11.1. Rounding Error in Matrix Triangularization

Consider a 3x3 Matrix Equation

A 42 3] [N [
21 2 3| |%2| | (45)
231 %2 %3] [*3] |Ps

S et

A matrix

Let aij(O) = a4 and bi(O) = by for i, j =1 ton. The first step is to

condition the first column. Let

a a,,(0)
= .2 2]
M1 an 377 (0) (46)

then let

. ] 2{0)
22(1) = 3g(0) + mp1a15(0) = a9(0) = 3oy 22(0)

27
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. 01(0)
622(1) = fx[azz( - §~Tr67 a]z( )]

0)
app(0)(1#e) = Zhrer a1, (0) (143¢)

1

(0) 321(0)
[322( 0) - '—_l'((')')" ]2( 0)] + 322(0) - ma]z(o)“e)

a22(1) + a22(1)(39) - azz(O)(Ze)

n

Similarly

]

ay5(1) = apgll) + a55(1) (3e) - ay3(0) (2¢)

83p(1) = agy(1) + agy(1) (3e) = agp(0) (2¢)

833(1) = aga(1) + ag3(1) (3e) - aga(0) (2¢)

After the first step, the error in the new A, designated 5(1), is given

by A(1) whose elements are

0 i=13 j=1,2,3
a1 = | (47)
aij(]) (3¢) - aij(]) (2¢) 1,J=2,3
Define
0 0 0
A1(]) - 1o 85,(0) a23(0)
and
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Then

A1) = [3;5(1)] = 3¢A (1) - 2¢Ay(0)

= 8[3A; (1) - 2A,(0)] (48)

Expressing A in terms of R rather than A is important since ﬁ is available
from the computer but not A.

For the bi coefficients we have

_ a;7(0)
Then
a41(0)
b-,(]) = fﬁ[b-i(])] = b.i(O)(H'e) - W b](o)(1+35)
a;7(0)
= b-‘(]) + e b.i(O) - 3¢ Wbl( )
= b;(1) + 3 by(1) - 2¢ b, (0)
Define
0] o]
51(0) = |bp(0)} and by(0) = b,(1)
b3(?3j bs(1)
then R
b(1) = 3e by(1) - 2¢ by(0) » 8[3B;(1) - 2 by(0)] (49)

Again, expressing é.in terms of é.rather than b is important since E_is

available from the computer but b is not.

29




ORIGINAL PAGE 13 .
OF POOR QUALITY

After the first reduction step, one has

a(0) a0 ay(0)] [y b, (0]
0 892(0)  Bpa (1) [ % | o |by(1)
0 3g0(0)  Aga(1) || x by(1)
- 32 33 —*'L_S._! __? ]

v

where 51j and Bj are rounded quantities. Their errors will be compounded

to the new rounded quantities in the next step of the reduction process.

The second step of the reduction concerns the second column of the

matrix. Let
3n5(1)
Man & = 632 (50)
422
and let
A A ~ 832(1) N
ag3(2) = ag3(1) +mgy 8,55(1) = a5(1) - = ap3(1)
22
The rounded value is
N 332(.‘) "
a33(2) = fz[a33(2)] = a33(1)(1+e) - = a23(1)(1+35)
d9n 1
Let
— —
0 0 0
A1) =fo o o0
0 0 d45(1)

30
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and
0 0 0
A2(2) = {0 0 0
0 0 a33(2)
S —
Then
A2) = 3ehy(2) - 2eAy(1) . gL3AS( ) - 2B,(1)] (51)

For the b1 coefficients jn the second reduction step,

, . , (1)
bg(2) = ba(1) + My by(1) = ba(1) - = by (1)
a2 (1)
The rounded value is
. . 30 (1) »
by(2) = falbg(2)] = by(1)(1+e) = = by (1)(143¢)
2
= be(2) + 3¢ bg(2) - 2e by(1)
Let
0] 0]
Bp(1) =] 0] and  by(2) = o0
b (1) ba(2)
A B
Then
B(2) = [3 by(2) -2 Bp(1)] e & 83 by(2) - 2 Bp(1)] (52)

The resultant errors,

~

A= A(1) +A(2) = 813 A (1) - 2 Ay (0)] + 8[3 Ay(2) - 2 Ap(1)]

2 . . h
= B{ 1‘Z][BA.‘U) - 2A1(1-1)}} (53)
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b - b(1) * b(2) =.e[3b; (1) - 2b; (0)] + 6[3B,(2) - 2by(1)]

——

2 ~ ~ 0
= 8{121[394(1) - 294(1~1)J} (54)
Generalization to an nxn matrix A
(317~ 7 7 ¥p]
" | ! .
A = A(0) = A(0) = {25)
| |
L8 " 77 3y
aj3(0> = ah(o) = a” (56)

The matrix obtajned after the kth reduction step is
Fagq (k) - - - ag (k)

M= | | (57)

Lapy(k) = - -a (k)]

o

—— a—
!

-,

> >

N ot ol

The (n-1)x{n-i) lower right
djagonal block matrix from A(k)

Aj(k)v=

O
)

The resultant reduction or triangularization errors in A and b are,

Ny it
s

respectively,

n-1 . ~
ne o T rshy() - gy (101} (59)
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~ n=1 . N
b= o 1, 1y - 2by1-01) (60)
Finally, the norms of errors due to triangularization are given by
~ n=1
IR =TS GIREINCI) (61)
1511 = o Eallmy 011 + 20 sy eniT (62)
k=1

Note that after the (n-1)th reduction step, the original matrix A has

been reduced to an upper triangular form. Denote it by AT = ﬁ(n-1). Thus,

oy

3]](03 512(0) - - a1k(0) - g"ln(O)
. 322(1)\' - aZK(O) - - azﬁ(o)
AT = \"M (63)
k1) - = 8y (0)
RN
- ann(n'tl.
Denote the associated ﬁ_vector ET’ then
b = B(n-1) = [by(0) by(1) - = = b (=17 (64)

11.2. Rounding Error in Back Substitution
This problem is approached as follows. Consider the equation
Ax=1D (65)
where A is an nxn upper triangular matrix. Let X be the solution of

this equation which contains rounding errors, then find A and E
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such that

»

A

has error-free solution g, Thus the rounding error problem has been

o>

(66)

e

transformed to a error problem caused by perturbations in A and b. Define

8= A-A ax = Rx b= Beb (67)
Then (65) gives

(A-aR)(x-2x) = b - ab

= AL b- A K] (68)
In (68), Ax is the rounding error in ;, A1 and g,are computed by the
computer while solving (65), and ab and AA are computed from formulas to
be developed. Assume that A is an upper triangular matrix, the solution

of (65) involves only the back substitution operations. Rounding error

due to back substitution will now be analyzed.

3x3 Triangular Matrix Equation. Consider the equation

— - - —r -
a1 A1z A3 X by
0 322 a23 Xz = bz (69)
0 0 33 1 I Xg b3
o S e ]

The equivalent perturbed equation for evajuating rounding errors is

[ A A I AT [~ -1

A1 82 343 1"1 by

0 8y, Ay llx| = |b (70)
0 0 a X b

= 333073 | 3]

34




Write (69) as
N
817X) + 7%y F Apg¥g b1 (a)
dg9%3 = by (C)J
From (71¢)
b
3
x 2 em——
3 a33
The rounded value is
» b3
X3 = 35— (1+g) = x3(1+e) (72)
33
oxg T ﬁﬁéé 73)

Substituting into (71c) and rearranging terms, give

8qq Xa = by (1+¢) (74)
338 T3
a33 by

where 533 and 53 are also defined. Next, from (71b)
Xp = g [By-ayqiy]
22
Its rounded value is

- "
Xp = EEE [bz-az3x3(1+e)] (1+2¢)

- E%E-[bz-a23x3)1+25)] (1+2¢)

. N zebz - 48 a23X3
2 57
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” Zﬂbz - de 323X3

A 2¢ b2 - de ﬁ23£3/(1+8)

3 X, - (76)
2 322
Substituting (76) and (73) into (71b) and rearranging terms, give
appkp *+ Bpa(143e)¥g = by(142¢) (77)
LSRR R ~ y) N - ;
%2 323 by

where 322, 523, and 62 are also defined. Next, from (71a)

Xy = [by-a1,%p-213%s]

a11

Its rounded value is

;I - E%;’[b](]+35) fad 312;2<]+43) - 313X3(1+3E)]

With the help of (72) and (75),

a dnnd
12 12923
3eb -4aax-28-—-b + 4e

% 1

Xy = X

X3 - 48 a]3x3}

Using the approximations Xy ;‘2 and X3 N x3, X1 is expressed in terms
Qf ;1) 22’ and ;3 aS

1 4e N2%23 0 \a
) {3Eb1 - 2eby 312 - edy f + T2 e, a13)"3}

Xy = T
(78)

x>
—

Substituting (78), (76), and (73) into (71a) and rearranging terms, give

aqy Ry + app(1+ae)k, + aq4(143e) §5 = by (143¢) (79)
) VRS — | SR —— S
1 12 13 by
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where Sn, 312, 513, and 5, are also defined. Finally, put (74), (77)
and (79) into a single matrix equation.

?ﬂ]=a]] 312=a]2(1+4e) ﬁ]3ua13(]+3é3~ r;{” r'"ﬁla.,b](].wg')m
0 822722 49372p3(143¢) | | x, | = | By=by(1+2¢)
0 0 8,570 X B,=b (1+e)
= 33 _J%] [ Pe™s i
N > Ny praeed S —
A=n+m X b=b+ap
(80)
from which one easily gets
o — — s _
Pofemz St 10 ap apffo 0 0
M = 0 0 38323 = 0 0 a23 0 4 0 |
0 0 0 0 0 0 0 0 3
. S I > |
(81)
3, | {3 o o] [5]
1 1
Ab = 2by te=10 2 0 by | € (82)
b3__1 0 0 1] |bg

Genera1ization to nxn Triangular Matrix Equation. Consider

- - . -y e ey
g 4n | § % E
22 "7 Bl | % by
= (83)
N 1 1 1
AN
\ ! 1 1
n n | 10 b,
= ——
X b

A
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Its equivalent perturbation equation for evaluating rounding errors can
be obtained by generalizing the result of (80), which is

ro CLTIRT T
U I PR T N R by
Bp === g | % by
= (84)
\ 1 ] 1
AN
1
\ 1 1
a X b
nn 3 n
L-o. . " A/”[ \—-\—,-: S
: L
where
/
akj 2 ﬂ 8 sL1H(n-343)e]  Tzkedn (85)
\ 0 otherwise
by, = bk[1+(n~k+1)e] k=1 to n (86)
Thus,
8y 3 (n-3+3)e T<keden
’ (87)
Mkd =
0 otherwise
Abk = bk(n—k+1)e k=1¢ton (88)
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0 \(21‘1-2)&12 (2n-3)a13 - 4a1(n_]) Sa1n
\
~ , -
0A = ~ ~ €
S~ ~
‘*\ ~,
~ 32 (n-1)n
~ ~
- o _|
= -1 —
0 2, a3 -- Ay 0 .
n+1
0 a23 - a2n
< NN | \ | 8 (89)
NS \
AN 4
& \ \
( \ #(n=1)n :
] No
Ap M
e r- —t — -
nb] n b1
(n-1)b, n41 b
Ab = | e < \ B (90)
= |
] \\ l
by 1 ] by
. - Pt
M, b

where matrices AD, MA’ and Mb are also defined.
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11.4, A Numerical Example
Consider inverting the following matrix
3,235 ~1.234  3.256]

A= 11,023 ~5.235 0.921

1.336 2.120 -8.235}
- —

using computer of different finite decimal wordlength. Then evaluate

the corresponding error norms using the procedure of Figure 1. The
effectiveness of the procedure is examined by comparing these error
norms to the corresponding actual error norms. The actual norms are
approximately obtained by using a computer having a much longer decimal
wordlength. The result is given in Table 1, which shows that error norms
obtained by using the proposed procedure are indeed very conservative.
Notice that error norm decreases with increasing wordlength. It is in-
teresting to note that when the proposed method is used all error norms

have the same mantissa.

Table I

Matrix Inversion Error Norms

IWord1ength:_ No. of places Error norm
after decimal point By proposed method Actual value
-2 -5
3 : 3.706 x 10 7.782 x 10
5 3.706 % 107 4.530 % 1077
8 3.706 x 1077 4.672 x 10719
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11.3, Resultant Rounding Error in the Inverse Matrix

Two set of equivalent perturbations for A and b have heen obtained
to account for rounding errors. One set, A and,ﬁ as given by (59) and (60),
account for errors from triangularization, The second set, AA and ab as
given by (89) and (90), account for errors from back substitution. The

resultant equivalent perturbations for A and are given by the sums

SA = K+ 2A (91)

sb=b+ab (92)
The resultant rounding errvor in x in the solution of

AX-= Yy j=1ton, (93)

where Yy is the jth column vector of thé tdentify matrix I, s given by
s = A 'Loby-eh ] (94)

This equation is obtained in a way similar to that of (68). Rounding error

in A1 is then given by

s(A71) = [oxy - - - ox,]
- A“‘[(ap_]-aAg_]) - (agn-sAgn@ (95)

D

The error norm of the computer's inverse matrix of A is therefore

[Hs™D1] & A |+11p]] (96)

where thematrix D has been defined in (95). The relative error norm is
-1

e < L1 . yppy) (97)
=

It is obvious that the evaluation of (96) or (97) involves & good

deal of computation and should be done by a computer. Figure III-1 is a

computation block diagram for this purpose.
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(L Given matrix A :)

Y

‘Triangularization of A into Aps

"Use the same triangularization
Transformation to change us to
bﬂ’ J=1 to n. Thus we hav
chan

ge A x7u; to A

ATgfgd. pﬁ, J=1=n
‘Generate ﬁ, error in AT'
Generate by, error in gj.

At
y PJ) j=1 “n v
*Back substitution to solve AL -
A = A+ AA

ATﬁfbﬁ, J=1 to n
The solutions are %, j=1 to n, [———»t b, = by + ab,

j=lton J J
‘Generation of AA, do it once. i=1ton
Generation of sQﬁ, j=1 to n. :
lg_j, j='|"n lﬁA, ‘Sp‘j’ J‘“]"n
A— ~ ~ A" ‘ J
R A e RLLC LM IRIE AU
.’.‘.j! J=1-n
nd A7
a
| 1oy 1

Compute ||s(A™")]]

;

Hs(A™)1]

The error pound
for A”!

Figure III-1. Flow chart for evaluating rounding error |

bound of matrix inverse.
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12. Rounding Error Bound for Kalman Filtering

Consider a process modeled by the following set of sequations.

X = kg Ege1 ¥ ke dim x, = u
2y = W 2y dimz = m
Ex(0) = xy  ELx(0) X(0)'] = P,

wy N(O,Qk) Vk ~ N(O,Rk)
E[gk vij =0 all j,k

The Kalman Filter algorithm consists of the following equations.

* L3 *

X = 0y X Kz -t tep %eq] K (0) = X (98)
Ke = Pip HI[HkPkaE + R or K = PHIRE (99)
Pkp = ¢k—1pk-1¢l-1 * & (100)
Py = Prp = Ko Mk Pip (101)

*
where x s the estimate of x. The present interact is to find the bound
*
of the rounding error norm for x . For the sake of convenience, the
astrick "*" will be dropped, and g_wi11 denote the rounded value of the

estimate.
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Error in Rounded Py, - pacat) (100), that is,

. T
Pep = a1 Pret gt * Qg

Its rounded result is

ﬁkp = ¢k-]Pk“1¢l"}(i+2n+]e) + Qk-1(1+e)

1]

Pp(142mFTe)-2neQy 1 _ (102)

The rounding error is

~

P, = (2n+1)eP,. - 2neQ, - <(2n+1)eP (103)
kp k-1 = kp

kp

Error in Rounded P, po.o11 (101), that is,
P = [T - KeH TPy

Its rounded value is

P = [1(1%e) = KH (147FT) 1P, (T4ne)

= [1(1+0%Te) - Kka(1+d¥m¥TE)]§kp

= [L(147FTe) - K Hy (1mmeTe) 1Py +.§k ]

p

n P LnF)ED = Ky (nime))eIpy o+ [I-Kkalﬁkp

n

~

;__(n+m+1)ePk - mePkp + [I-KkPk](2n+1) Pkp

-’

e

(2n+1)st

< (3n+m+2)€Pk . {105)

g
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Error in Rounded K, povaty (99), that is,

PO
K = PiHiRE

Its rounded form is

’Rk = /ﬁkHTR/'n (1+nme) (106)

By (104) and (103)
f)k s (TnimFle)P, - mePyp, + [LI-Kka](an))gpkp

(2n:1)ePk
= (1+3n+m+ e:)Pk - me:Pkp

Assume Ry diagonal

A -
Rk = Rk (.H'E)

Than (106) becomes
kk < [(1+3n+mFTe )P, - mepkp]HIR‘:]('l'i'e)('H'ﬁTn"]g)

= (14RPZE )P HIRY | - mepkale‘ (107)

The rounding error is

K, < (amt2m3)ek, - mepkaIR;‘

< (4n+2m+3)eK (108)

Error in Rounded X, pocaty (98), which is

Xy = ¥y T KLz - Bty g Xy

= LK oy X + KeZy (98)

45




ORIGINNAL PAGE 1S
OF POOR QUALITY

Let
Fi = CI-KeH Doy g (109)
by = Ky B (110)
Then (98) hecomes
X = P Xeq + Y (1)
Develop the following rounded quantities.
Fy = [I(1+e) = RH (147FTe) Iy (T4ne)
= [I(1FTe) - K (1+Fn¥2m+3e)H, (1+nmmtTe)Joy
= [I(1H¥Te) - K H, (1+5n¥3mide) Jo,
= Fk(1+§h'¥?3'rﬁ¥&"e) - (4n+3n+3)el (112)
= Ky z(vime)
= Ky (1+3n¥2m+3e )z (1+me)
= Kkgk(HWe)
= _qk(HWa) | (113)
B = B Kq (1HFT) + 1y (1+e)
< (1+5n¥3mHie)F) gk_1(1+m‘e) + Uy (148n*3m+3e) (1+e)
= (Wm)?k Xeq + (nFdmde+l)uy (114)
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Define
f-"k = (1+BnFamtoe)F, (115)
ﬁk = (14WFImHe )y, (116)

Then (114) can be written as

"

K™ P X + 0y m7)

Case of k =3 Eq. (111) gives the exact x5 as

- e we e e e we

X3 = F3Fafy Xo ¥ FaFaty * Falp * ug (118)
The rounded §3 is
A A R A A A A
+ §3§2(1+ﬁ—'*-'_2—e) + ju_3("|+e)
Using (115) and (116), and combining terms,
X3 = FaFaFxp[143(7n+3m+6)e] + FaFouy [1+18n+9m+17¢]
+ Fu [ 14TTn+6mT Te] + ugl1+4n+3m+Be]
= %3[1+3(7n+3m+6)e] - (3m+1)ssF3F2g_1
- (10n+3m+7)sF3g2-- (17n+6m+13)euy (179)
The rounding error is
%3 = 3(7n+3mt6)exs - (3n+1)eF4F, y,
- (1On+3m+7)eF3 U - (17n+6m+13)eg3 (120)
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Its norm is bounded by

| 1%3] 12 3(7nt3me6)e] | xg]| = (3n41)e] |F4Fpu |
- (10n+3m+7)e| |Fauy || = (17n+6m+13)e] |ugl | (121)
Assume HFkH < F Hy_kH < U, and FjgéB for i = 0 to 2, then
g1l 23 (7n+3me6)e|[x4]| + (30n+9m+21)eB

< 3{3(7n+3m+6)[|§3H+[3(3n+1) + 35—3—21-1 (7n+3m+6)]B} (122)

Xq = FpFaFoFy Xo + FpFaFy uy + FpFa uy + Fpouy (123)

Following similar derivation, gives the norm of rounding error as

[z11 & B{4(7n+3m+bi|[§4|] + [4(3ne1) + 24-1) (7n+3m+b)]8} (124)

The genera] case_k From the equation pattern of (122) and (124) for

k=3 and 4, the general case is found to be

l|>~<kll 2 B{k(7n+3m+b)].|5_k!l + [k(3n+1) + K '25‘1 (7n+3m+6)]B} (125)

Eq. (125) is the main result of this chapter, which gives the bound
of error norm for the rounded state estimate. The bound depends on B8, the
unit rounding error; k, thenumber of iteracticns; n and m, the dimension
parameters of the process; ljgkll, the norm of the estimated state; and B,
a quantity depends on Kk’ Hk’ ¢k'and Uy The usefulness of this equation
is at providing a general idea on the desired number of digits for the

mantissa of the computer's floating number system. The following example
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will 11lustrate this point

Example, Consider a one year GP-B operation where relativistic data
are taken every 10 seconds. Assume that the Kalman filtering involved in
data reduction is also operated at 10 second {teraction period. Then, at
the end of one year period, the value of k would be k=365 x 24 x 3600/10 =
3.1536 x 10%,  Assume %, be a 10-vector and z, be 4 2-vector, so n=10 and

m=2. Then,
K(7n+3mtb) = 2,6490 x 10°

k(3n+1) + 0.5k(k-1)(7n+3n+6) = 1.2949 x 10
Just for the sake of discussion, assume only one term at the right-hand
side of (125) dominates the result., If the first term dominates, one may
estimate the desired g from

k(7n+3m+6) B=1

50

8 = 0.3775 x 1078
comparing to (8), the formula g = 0.5 x 10]"t, gives t ~ 9, therefore 9
digits are desired for the mantissa of the floating point number system.
On the other hand, if the second term of (125) dominates, one may estimate
the desired B from

[k(3n+1) + 0.5k(k-1)(7n+3m+6)] p=1

SO

8= .7723 x 10716
comparing to (8), gives t 2.117. Hence 17 digi%s are desired for the

mantissa.
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13. Remarks

e

1. The main result of this chapter, given by (125), is a "first~
cut” result which can probably be further refined to tighten the predicted
bound while maintaining its reliability. This result was obtained after
several different approaches to the problem had been attempted.

2. It is desirable to find out the effectiveness of (125) hy a com-
puter emulation of the GP-B data reduction. This has not been done for three
reasons. First, there is no time and resource allocated in the contract
period covered by this report. Secondly, this emulation work is a major ég

actiyity not foreseen at the start of the contract, therefore it was not

=Y

[==on s
s

planned. Finally, the computation details of the GP-B data reduction,

peing developed by the GP-B group at the Stanford University, is not

Ry
153

e

completely available to the present contract.

3. Besides Kalman filtering the GP-B data reduction also contains %<
other types of computations which should also be included in the rounding
error analysis. Attention to a more complete error analysis is intended
for for the next contract period. i

4, During the present contract period only the finite wordlength

w3

induced computation errors were investigated. The truncation error in- s
volved in the chosen method of numerical integration for the GP-B data
reduction has not been studied, thus its improtance in the overall error

analysis is not known at this time. The effect of Truncation error will ¥

he investigated in the future.




5'

Other indirect errors exists, which also enter the result through

GP-B data reduction. These errors are caused by imperfection in compensa-

tion data. Effect of this type of errors has not been investigated, but fis

intended for future study.
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CHAPTER 1Y
MEASUREMENT GEOMETRY FOR GP-B EXPERIMENT

This chapter describes in detail the development of a measurement
model for the GP-B experiment. The model represents the relationships
among the orientations of various components of the experiment, including
the directions of the reference star, gyro spin axis, readout normal, and
the spacecraft's roll axis. With this model, the effect of spacecraft
rolling and of component misalignments can be investigated through analysis
and computer simulation.

For the convenience of analysis, six coordinate frames are defined
with the help of Figure IV-1. A1l frames are co-origined at the spacecraft's
senter of rotation.

1. Absolute frame [a-frame: X,» ¥y» 2,1 — This frame is

statfonary in orientation with respect to the universe,
1.e. With respect to the ideal distant stars. Its x,-axis
is along the 1ine-of-sight (LOS) to the reference star
Rigel.

™~

Intermediate frame [i-frame: Xy, ¥y 21]-—- This frame 1s
stationary in orjentation with respect to the universe,

Its X1 axis is along the roll axis of the spacecraft. This
frame is related to the absolute frame by Euler angles ay,
%os and a,.

+ 3, Roll frame [¢~frame: Xgr Yyr z¢] — This frame is fixed to

the spacecraft with its x, axis along the roll axis of the

¢
spacecraft, Therefore Xy and Xy axes coincide.
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4, Telescope frame [ t-frame: Xgs Vi zt]~—- This frame is
also fixed to the spacecraft, with its Xi axis along the
horesight of the telescope. The misalignment between this
frame and the rol1 frame is represented by Euler angles
Brs By and B4.
5. Readout frame [r-frame: Xpr Yo zr] — This frame is again
fixed to the spacecraft, which represents the orientation
of the gyro readout ring. Its Zy, axis is normal to the
plane of readout ring. The misalignment between this frame
and the telescope frame is represented by Euler angles
Y12 Yoo and Yg-
6. Gyro frame [g-frame: Xg2 Yg» zg] — THis frame is
inertially fixed, but not absolutely fixed. The relative
angular motion of this frame with respect to the absolute
frame is the relativistic drift of the inertial space
around the GP-B gyro. The orientation of this frame with
respect to the readout frame is represented by Euler angles
815 85» and 835 while that with respect to the intermediate
frame is represented by Euler angles e], 855 and o5.
Relationships among all frames are also depicted in Figure IV-2. Ideally,
B's, y's, and &'s are zero, meaning that the roll, telescope, and readout
frames are all Tined up. The nonzero values for o's represent the
deviation of telescope's boresight from the LOS to star. The 6's will
not be zero, they are the relativistic drift angles. It is assumed that
angles, a's, B's, y's, &'s, and @'s are all sufficiently small that

small angle approximations of trigonometry apply.
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In the experiment, an optical system meaures the angle between the
LOS to star and the telescope's boresight. This amounts to measuring
the projection of Xq aXis of the absolute frame on the telescope frame,
With all misalignments included, this relationship is modeled by the

following matrix equation.

-, “] "r‘_i —— o

Xt v 83 "Bz 0 0 1 d.s -OL; "1
“Zt._ L‘ 82 "B] 'T" 0 -Swt th 0«2 "'u-l ] LO
—_—— ~ — ~ 2T - P =7
star LOS Transformation to star LOS
unit vector ¢=-frame. Accounts unit vector
in t-frame- for rolling about in a-frame
X. axis
i
Transformation to Transformation to
t-frame. Accounts i-frame. Accounts
for misalignments for telescope offset
B'I’ 82’ 63' O.-ls 002, Cl.s.

The gyro and its readout ring measure the relative angular displacement

between the gyro spin axis x. and the readout normal z.. This amounts to

g r
measureing the projection of Xg On the readout frame. Note that the readout
frame rol1s with the spacecraft since it is body fixed. With all mis-

alignment included, the projection of Xg on (Xps> Ypos Zr) is modeled by
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o] [ B A o o7 nink
Xp Y3 Y By "By B3 O
y4 Y -y 1 8 -8 1 0 -Swt Cot 9 -0 1 0
T L: 2 ;[_ AL 2 .? JL 5 JL 2 v1 JLd
Gyro spin Transformation to Transformation to
axis unit t-frama. Accounts i-frame. Accounts
vector in for misalignments ' for gyro drift
r-frame Brs> Bpo 83. angles 81» 6ys 85
Transformation to Transformation to Gyro spin axis
r-frame. Accounts ¢=-frame. Accounts unit vector
for misalignments for rol1ing about in g-frame

Under the ideal condition, 8's and v's are all zero. Then (1) and (2)

reduct to

Xy 1 0 0 1 a0y -0, K

Yo | = 0 Cot  Swt ~0ig 1 oy 0 (3)
._.Zt_l —O 'Swt Cw.tf-! B le "u-l l L..OJ

X | 10 o[ ey -0,|[1]

Yol = |0 Cut  Sutj |-64 1 8y 0 (4)
z 0 -Swt Cwt ] -0 1 0

Fru - - 2 1 S B S

Solving (3) and (4) for a's and o's, gives

Cwt  -Sut Ye f - -0q

-

offset of star's LOS (5)

§wt Cot 2, “é from Xy axis
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Cwt -Swt Yp -63
- 0ffset of gyro spin (6)

axis from xr-axis

Swt  Cut Z, 9,
Notice that when small angle approximations are used 0y and 81 cannot be
determined. Since x, and x. axes are colinear, subtracting (5) from (6)
yields the gyro's relativistic drift angles ¢'s with respect to the inter-
mediate frame. Because of the absence of os the transformation from the
intermediate frame to the absolute frame is simply via an identity matrix.
Therefore the relativistic drift anglesof the gyro with respect to the

obsoJute frame are given by the same ¢'s.

-1 J

Hi
n

lpz ' , ez'uz Swt th

-
4

The a7l matrix in (7) represents the deroll operation to be done by the
data reduction computer.

To study the effect of misalignments on the accuracy of the experi-
ments, (1) and (2) are used. In there, g8's and y's are unknown quantities,
since the effect of known misalignment can be compensated computationally.
Angles a's and 6's are desired, and they are estimated from the measurement

by the deroll computation, giving

——— — -
g Cut S'mt Yi
.| (8)
=0 -Swt Cut | Zy
r33 Cut  Swt Yy
= (9)
-62 -Sut Cut Z,
e o) e e owed
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The errors due to misalignments are

e - L
Aaz QZ“'QZ

n
—
—
(o]
S

I SR

ho, |
= (1)
s
The effect on the relativistic drift angle determination is

.Agpz A02~Aa2

| (12)
My Aag=A0q
This completes the present development of the measurement model for

the GP-B experiment. The model will be used for investigating the quanti-

tative effect of varjous misalignments on the experiment data.
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