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FOREWORD 

This review of the psychoacoustic listerature on the human response to 

helicopter impulsive noise is a companion to, and carried out on the same 

NASA contract as, a report prepared for Wyle Laboratories by John Ollerhead, 

University of Technology, Loughborough, England (see Reference 24). The 

latter report presents the results of the most comprehensive study to date on 

noise metrics suitable for helicopters. The conclusions reached on this 

independent review of the literature are in general agreement with the 

experimental findings of the companion study. 

V 



1.0 INTRODUCTORY SUMMARY 

The regulation of aircraft noise has been a concern of many nations for over 

20 years. Methods for measuring the noise from conventional takeoff and landing (CTOL) 

aircraft have been elaborated so as to take into account the human response to this noise. 

The noise from helicopters, also known as vertical takeoff and landing (VTOL) aircraft, is 

distinctly different from the noise produced by CTOL vehicles. The question arises as to 

whether or not the methods commonly used to measure the noise from CTOL aircraft are 

adequate for use with VTOL aircraft. More specifically, can these CTOL methods handle 

the unique phenomenon of helicopter blade slap? 

Helicopter or VTOL noise differs in many ways from that generated by CTOL 

aircraft. The main components of helicopter noise are the steady and impulsive parts of 

the rotor noise, engine noise, and gearbox noise. Since helicopters have vastly different 

structural and functional properties from CTOL aircraft, the acoustic characteristics of 

the two differ considerably in both the time and frequency domains. Furthermore, among 

helicopters considerable differences exist due to the particular type of craft and its 

operating mode. 

The question of whether present measurement procedures for the noisiness or 

annoyance caused by aircraft can adequately account for the perception of helicopter 

blade slap is basically a psychoacoustic problem. The present report reviews 34 controlled 

psychoacoustic experiments related to this issue. These experiments employ different 

methods to present acoustic stimuli to listeners. Some present helicopter sounds live in 

the field, while others present reproduced examples of helicopter sounds, either in a free 

or a semi-reverberant acoustic field or over earphones. All of the reproduction methods 

share certain electroacoustic limitations, and some researchers have employed electronic 

simulation to overcome these and other restrictions encountered with using natural 

helicopter sounds. 

Similarly various psychophysical methods have been used to measure the response of 

the listener in psychoacoustic tests. These have included comparison methods, adjustment 

methods, and rating scales. All these methods invoke verbal descriptors to restrict the 

response and statistical considerations to overcome variations among stimuli and 

individuals. 

The outcome of the 34 psychoacoustic experiments reviewed in the present paper 

has been the development of a series of prediction methods and correction factors to 

account for the human response to helicopter blade slap. Several methods have been 

proposed, including those by South Africa, Westland Helicopters Limited, the National 
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Physical Laboratory, Aerospatiale, and the International Standardization Organization. 

There are additional methods based upon crest level, repetition rate, duty cycle, and a 

constant single-number adjustment. All of these yield different results. 

A detailed review of the 34 studies indicated that several factors or variables might 

be important in providing a psychoacoustic foundation for measurements of helicopter 

noise. These are phase relations, tail rotor noise, repetition rate, generic differences 

between CTOL and VTOL aircraft, and crest level, in ascending order of possible 

importance. A careful analysis of the evidence for and against each factor reveals that, 

for the present state of scientific knowledge, none of these factors should be regarded as 

the basis for a significant impulse correction. The present method of measuring effective 

perceived noise level, LEPN , for CTOL aircraft appears to be adequate for measuring 

helicopter noise as well. The inherent corrections for tonal components and exposure 

duration already incorporated in the LEpN algorithm can account for people’s reaction to 

helicopter blade slap. Thus the foIlow.ing conclusion is drawn from the often conflicting 

results of the 34 studies considered in the present review: there is apparently no need to 

measure helicopter noise any differently from other aircraft noise. 



2.0 BACKGROUND 

The regulation of aircraft noise has long been a concern in many nations. In the 

United States, the Federal Aviation Administration (FAA) was established in 1958 to 

regulate aircraft operations at a national level. By statutory authority given in the 

Federal Aviation Act of 1958,’ which created the FAA, this agency is charged, among 

many other responsibilities, with the “protection of persons and property on the ground.” 

This protection has been broadly interpreted to include protection against the adverse 

effects of aircraft noise. Other countries have evolved similar national policies. 

2.1 CTOL Methods 

One means of regulating aircraft noise is the specification of maximum permissible 

noise levels that.an airplane can generate during qualification tests. In the United States, 

this is accomplished by Federal Aviation Regulations (FAR) Part 36, “Noise Standards: 

Aircraft Type and Airworthiness Certification”? This regulation prescribes noise stan- 

dards for type certification of commercial transport aircraft and small planes of the 

conventional takeoff and landing type (CTOL). The noise levels for large jet aircraft are 

prescribed for three measurement locations and are specified for takeoff, approach, and 

sideline conditions (Appendix C). These levels vary for different gross weight categories 

of the aircraft, but the maximum effective perceived noise level (LEpN) permitted at any 

location is 108 dB. Likewise, all propeller-driven small aircraft must meet a different 

noise standard (Appendix F). These airplanes are measured in level flyover at 300m 

(1000 feet), with permissible levels again prescribed as a function of gross weight. The 

maximum level for all categories of small propeller planes is an A-weighted sound level 

(LA) of 80 dB, as measured on the ground. Other nations have similar certification 

procedures for CTOL aircraft noise, and the International Civil Aeronautical Organization 

(ICAO) has issued recommendations on how this noise may be measured. ICAO has no 

regulatory authority, however. Thus each nation must adopt noise control regulations on 

its own, although many do follow ICAO recommendations. In the case of United States 

regulations, two separate measurement procedures and measurement units are prescribed: 

one for large, heavy jet and turboprop planes, and one for small, light propeller-driven 

planes. 
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2.2 VTOL Methods 

The noise produced by helicopters, also known as vertical takeoff and landing 

(VTOL) aircraft, is quite different from that produced by CTOL vehicles. Helicopter 

noise differs from CTOL noise in frequency spectrum, level, and temporal flyby envelope. 

Furthermore, VTOL operations are vastly different from those of CTOL aircraft, yielding 

quite a different noise exposure pattern around a heliport than around a conventional 

airport. One salient distinguishing feature of helicopter noise is a periodic “slapping” or 

“banging” sound sometimes encountered during certain operations. Such helicopter “blade 

slap” is not always present, but certain kinds of helicopters tend to produce this distinct 

impulsive sound quite often, particularly on approach. It is generally considered that this 

periodic impulsive blade-slap sound is annoying to people. 

The increased use of helicopters for convenient, fast, flexible transportation has 

raised the question in several countries of whether this type of aircraft needs to be 

regulated for its noise output. If certification as to noise is deemed necessary, this poses 

a further question of whether the present certification procedures for CTOL aircraft are 

satisfactory for use with VTOL vehicles. In particular, are the noise measurements 

currently specified adequate to account for the unique helicopter blade-slap phenomenon, 

or should certain impulsive noise corrections be added ? This question is fundamentally a 

psychoacoust ic one, involving how people respond to the impulsive noise produced by 

certain helicopter maneuvers. 

4 



3.0 PHYSICAL STlMlhUS 

Before any psychoacoustic information can be properly evaluated, the physical 

helicopter sound that forms the stimulus should be examined. The physical noise must be 

measured and analyzed as a first step in assessing the human response to this noise source. 

3. I ,-Eise Source Mechanisms 

Helicopter noise principally emanates from three major sources: (I) main rotor or 

main and tail rotors; (2) drive engine(s); and (3) gearbox(esL All of these sources 

produce a broadband random noise spectrum as well as discrete tonal frequency 

components. Under some conditions, the rotors may generate blade-slap impulsive noises. 

An excellent review of the physical source mechanisms of helicopter noise can be found in 
3. Magliozzi et al. The following brief summary is based largely on their review. 

3. I. I Rotor Noise 

Rotor noise contains discrete frequency components known as rotational noise 

harmonics, which occur at multiples of the blade passage frequency. These are produced 

by the loading of the rotor blade causing a rotating pressure field. By interaction with 

ingested turbulence or tip vortices, a considerable enhancement of this harmonic content 

can occur. Moreover, when the forward speed of the advancing blade exceeds some 

critical Mach number, an impulsive noise can be generated with sharp peaks in the 

acoustic waveform. Rotor noise also contains random broadband noise components, 

probably due to turbulence in the flow encountered by the passing blade. The frequency 

distribution of this broadband noise is principally determined by the velocity of the blade 

and the amount of the turbulence. 

3. I .2 Impulse Noise 

Impulsive rotor noise can be considered as a special case of rotational noise. In a 

narrowband analysis, many harmonics are revealed that decay slowly with harmonic order. 

A time-history analysis is characterized by sharp impulse waveforms occurring at the 

blade passage frequency. Interaction between tip vortices and the oncoming rotor blade is 

believed to be the primary physical mechanism of sound generation. Although analytical 

models of blade/vortex intersections have been developed, at present they can only 

produce qualitative predictions of measured waveforms. Many critical variables make 

estimation of the precise encounter of the blade with the vortex very difficult. For 

example, tip vortices follow very complicated and variable trajectories, so it is difficult 
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to estimate where the vortex will be relative to the next blade pass. Further, the 

distribution of velocities within a vortex and the decay cycle of the vortex with time are 

difficult to assess. In addition, the aerodynamic operating point of the bending rotor 

blade is a function of many rapidly changing variables. Finally, tandem rotor helicopters 

can produce significant interaction between the passage of one blade and the downwash of 

another blade from a different rotor. 

Impulsive noise observed during high-speed level flights of single-rotor helicopters is 

believed to be the result of compressible drag rise on the advancing rotor blade. Profile 

drag on the blades offers a source which is independent of the unsteady loading caused by 

vortex interactions. However, such drag is difficult to calculate accurately, especially 

near the blade tip. Torsional blade bending modes and lead-lag motions influence the 

angle of attack of the blade, and consequently its drag and noise. Thus, in summary, rotor 

impulsive noise is not a quantity that can be accurately predicted for any given new 

helicopter design. Nor, once it has been produced, can rotor impulsive noise be easily 

controlled by common noise containment and suppression mechanisms. 

3.1.3 Enqine Noise 

Generally, helicopters are powered by internal combustion engines which provide 

power to the rotors and accessories. The vast majority of current helicopters use 

turboshaft engines. The noise from such engines has typically been partitioned into those 

noise sources that originate outside the engine and those that originate inside. The 

primary noise source coming from outside the engine is jet noise. This noise is produced 

by the momentum exchange between the higher velocity exhaust gases and the ambient 

air. Turbulent shear stresses caused by this momentum exchange result in pressure 

fluctuations and the generation of a radiated sound field, primarily downstream from the 

engine. Lighthill’s equation describes this source rather well; but typical helicopter 

engine exhaust velocities are so low (less than lOOm/sec, or 300 ft/sec) that jet noise is 

rarely a major component of the overall engine noise. Rather, internal noise sources - 

like combustion noise, strut noise, and turbine noise - are usually more prominent. 

However, these internal noises are often amenable to various forms of noise suppression. 

3. I .4 Gearbox Noise 

Gearbox noise is the result of imperfectly meshing gear teeth in the transmission of 

the helicopter. In addition to the intended constant force transmitted from the driving to 

the driven gear, these imperfections produce oscillating forces. The oscillating forces are 

transmitted as vibrations through the gears, bearings, and shafts, and finally radiate into 
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the air from the gearbox housing or attached structures in the airframe. The noise is 

generally comprised of discrete frequency tones at the gear meshing frequency. If the 

tones are high enough in the frequency, classical vibration isolation and noise suppression 

should work well to attenuate them. 

3. I .5 Generic Spectrum 

The combination of these noise sources produce the characteristic sound readily 

recognized as helicopter noise. The generic noise spectrum of a typical helicopter is 

shown in Figure I, compared with generic noise spectra for a CTOL jet and for turboprop 

or piston aircraft. The helicopter noise spectrum has considerably more energy at the low 

frequencies, and displays a more steady decrease in acoustic energy with increasing 

frequency. Thus the noise characteristics of helicopters are quite different from those of 

other aircraft. 

3.2 Acaustic Characteristics 

When one considers the wide variety of noise source mechanisms responsible for the 

generation of helicopter noise and the unique design, function, and operation of a 

helicopter, it is not surprising that helicopter noise should have acoustic characteristics 

that clearly distinguish it from CTOL noise. 

3.2.1 Time Domain Analysis 

At a microscopic level, with a time window of about 100 msec, the pressure 

waveform of helicopter noise can be examined as a function of time. When compared 

with CTOL jet takeoff noise, such a time-history analysis reveals the presence of 

somewhat more periodic or tonal energy in VTOL noise, even without any blade slap. 

Otherwise, the temporal waveforms look very similar, a mixture of periodic and random 

fluctuations. The presence of impulsive blade-slap noise changes the entire picture. 

Oscilloscope tracings of impulsive helicopter noise show distinct spikes at the blade 

passage frequency. These spikes can have rise times from less than I msec to about 

5 msec, comparable decay times, and durations (for each pulse) of up to 20 msec. Actual 

examples vary greatly with helicopter type and operations, but the above values cover 

most of the range. The fundamental (blade passage) repetition rate or periodicity of the 

impulses also varies with different helicopters and operations, ranging from about IO to 

about 60 Hz. Tail rotor noise has a higher fundamental frequency, ranging from about 

60 to about 100 Hz, but usually exhibits a considerably lower pulse amplitude. The 

amplitude of the main rotor pulse may be extremely high relative to the other periodic 
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and random noise components, or it may be indistinguishable and buried among those other 

components. Thus crest levels may vary from a maximum of about 25 dB to a minimum of 

about IO dB, which is the approximate crest level for a random white noise without any 

unusual impulses. Some typical short-term time histories of helicopter noise are shown in 

Figure 2, both with and without blade slap. 

At a macroscopic level, with a time window of 20 to 30 seconds, one can examine 

the changes in sound pressure that occur during different stages of a helicopter flyby or 

other operation. The long-term time history of a helicopter flyby and that of a CTOL jet 

aircraft are somewhat different. The helicopter flyby is generally of longer duration, due 

to its lower airspeed. The envelope of a CTOL flyby is characterized by a rather steady 

rate of increase and decrease in noise level as the plane approaches and recedes from the 

measurement poi,nt. The helicopter envelope, on the other hand, grows gradually at first 

and then more rapidly as the overhead position is neared. The peak noise level occurs 

somewhat ahead of the actual overhead position,’ and is often accompanied by loud 

slapping and banging impulses. The decay of the helicopter envelope is like its rise, more 

severe near the overhead position, and more gradual as the craft moves farther away. 

The transition that occurs just prior to and at the overhead position also contributes 

to the unusual sound of a helicopter flyby. The blade slap reaches a peak and disappears 

just as a Doppler shift is observed in the periodic frequency components. Thus the 

acoustic spectrum of a helicopter flyby is often drastically different on the approaching 

side than it is on the receding one. Such a severe transition is not encountered with most 

CTOL operations. 

3.2.2 Frequency Domain Analysis 

The detailed frequency spectrum of helicopter noise is far more complex than is 

indicated in the generic spectrum depicted in Figure I. The spectrum of impulsive 

helicopter noise is characterized by considerable low-frequency energy at the blade 

passage frequency (IO to 60 Hz), representing the fundamental of the harmonic series 

comprising the periodic impulse waveforms. These harmonic multiples have decreasing 

amplitudes as the frequency increases, but significant amplitudes remain in a narrowband 

analysis at I kHz and above, as a result of the sharp rise times exhibited by the individual 

pulses. Thus the extreme low-frequency components are responsible for the deep 

thumping sounds of helicopter blade slap, while the relatively high-frequency components 

are responsible for the sharp cracking sounds. In addition, as mentioned earlier, the entire 

frequency spectrum changes radically during the course of a typical flyover. Figure 3 

shows the short-term time history, one-third octave band spectrum, and the narrowband 

spectrum of simulated 40 Hz helicopter impulse noise alone, without the other random and 
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periodic components always found in real samples. The figure shows the presence of a 

strong fundamental frequency component and many harmonics up to 2500 Hz. To obtain a 

more realistic picture of the entire sound, one should combine the generic spectrum shown 

in Figure I with the appropriate spectrum depicted in Figure 3. 

3.3 Variations With Helicopter Type u-d Operaticms 

Different types of helicopters produce different sounds, and the same helicopter can 

sound quite different during different operations or maneuvers. 

3.3.1 Variations With Helicopter Type 

Considerable variation in the noise characteristics of helicopters can be attributed 

to the specific type and design of the helicopter. The size of the helicopter will often 

determine the amount of noise that it produces, in particular the quality and degree of 

impulsive noise. If a helicopter is prone to be impulsive, a heavy helicopter will tend to 

produce more sustained or wider pulses. The blade passage frequency determines the 

repetition rate, so helicopters with more blades will have a higher frequency of repetition 

for the same rotor speed than those with fewer blades. Moreover, if there are two main 

rotors, the rotor noise can be rather complex, with two separate repetition rates having 

varying phase relations between them. When one considers the various noise source 

mechanisms enumerated under Section 3.1, and the multiplicity of combinations that 

different helicopter designs could conceivably produce, one can appreciate the vast 

degree to which the particular type and design of the helicopter can influence the 

characteristics of the noise emitted. 

This same multiplicity of combinations also affords the engineer and the designer 

considerable opportunity to conceive of a relatively quiet helicopter from the outset. 

Given the technical specifications and tradeoffs required for a certain design, there are 

several things that can be done to reduce the probability of producing a noisy helicopter. 

Lower rotor speeds, and in particular tip velocities, are less likely to produce blade slap. 

If more lift is required, multiple blades could be added, as long as the rotor speed is 

sufficiently low. In addition, the blade cross-section and angle of attack con be modified 

to minimize blade/vortex interactions. These are just a few of many options available at 

the design stage for reducing possible noise problems, well before any noise suppression 

devices are considered. 

3.3.2 Variations With Operations 

Galloway’ reported some of the variations that can exist in helicopter noise as a 

result of different modes of operation. This brief review of some of his work reveals 

several important variables. 
I2 



For fixed-wing aircraft, the basic noise characteristics are controlled by the 

acoustical properties of the engines. Differences in both level and spectrum are 

associated with different power settings, OS witnessed by the decidedly different takeoff 

and approach noises made by many commercial CTOL jet aircraft. Typically, a few 

important flight modes are characterized, and subsequent noise predictions are based upon 

this small subset. For each mode, at a fixed distance between the flight path and the 

observer, the duration of the acoustic event will be inversely proportional to the airspeed. 

Thus, for each of the primary operating modes, airspeed considerations may be directly 

incorporated into the duration correction in the L,--+, calculation scheme. Furthermore, 

for CTOL aircraft, there is often a close relationship between the power setting and the 

duration correction needed, thus simplifying the overall acoustic characterization. 

The relationships between operating mode, engine power, and airspeed are not as 

restrictive in the case of helicopter noise. For fixed-wing aircraft in level flight, an 

increase in airspeed is generally proportional to an increase in power, or thrust. For 

helicopters, which can hover, rise, descend, fly forward, and sometimes even backward, 

the relationship is not as straightforward. Helicopters use a tradeoff in direct vertical 

lift and forward speed to operate over a wide speed range. At low airspeeds or during 

hover, the helicopter needs a higher power setting than at intermediate speeds. Likewise, 

at high airspeeds increased power is needed. Thus helicopters generally produce a 

minimum sound level at some intermediate airspeed, with higher sound levels at lower and 

higher airspeeds. This relationship may be seen in Figure 4, as well as some typical levels 

produced from l50m (500 feet). 

For the same airspeed, helicopters often exhibit different sound spectra for 

approach versus level flight. During a landing approach, the helicopter is descending 

through its own main rotor downwash, resulting in a certain amount of blade slap, even in 

those helicopters which usually do not exhibit any blade slap in level flight. In the case of 

takeoff, this interaction does not occur, and most helicopter takeoff noise is, at least 

spectrally, rather similar to the level flight noise from that type of craft. 

Hover operations with helicopters can be compared with stationary ground runup 

tests of the noise from fixed-wing aircraft. However, in the hover case the helicopter is 

actually supported above the ground by its rotor lift. Hover tests a short distance above 

the ground (l.Sm) are generally characterized by rather large short-term temporal 

fluctuations of 5 to IO dB. These are caused by basic operational instabilities involved in 

maintaining a hover over a single spot. 
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4.0 HUMAN f3ESPONSE 

There are two primary methods for determining the human response to noise stimuli. 

The first involves conducting rather carefully controlled psychoacoustic experiments, 

while the second involves making widespread community surveys of people’s reactions in 

the field. The present paper will concentrate on 34 controlled psychoacoustic experi- 

ments (see Tables I to 41, because the experimental method typically can yield superior 

results for defining subtle corrections in the fine-structure of noise measurements. 

4. I Stimulus Presentation 

Psychoacoustic experiments generally employ one of four methods to present 

acoustic stimuli to the participants in the experiment. These involve presenting the 

helicopter sounds: (I) live in the field, (2) reproduced in a free acoustic field, 

(3) reproduced in a semi-reverberant acoustic field, or (4) reproduced by means of 

earphones. Depending upon the means chosen, the subsequent results are often subject to 

interpretations and limitations based upon the unique advantages and disadvantages of the 

particular stimulus presentation method employed. 

4. I. I In The Field 

Field experiments usually involve live stimulus presentation with one of two primary 

approaches. In the first approach, listeners are located outdoors, seated in areas near the 

operations of controlled helicopter flybys. Ideally, listeners should be located away from 

major reflecting surfaces - that is, either buildings or hard pavement surfaces - and away 

from unusual terrain conditions which could distort the path of the sound from the 

helicopter source. In the second approach, listeners are located inside a house or 

structure which is typical of the one they might occupy during actual exposure. In both 

cases, calibration is typically achieved by placing a microphone or an array of micro- 

phones at the approximate ear height and in the approximate location of the listener or 

listeners. The field conditions should be calibrated by checking for reflections with an 

impulsive test noise source, or by making measurements of spreading by the inverse 

square law. 

The field method has several distinct advantages. It possess a high degree of face 

validity, because the people are receiving the stimulus in a live mode much as they would 

in the actual exposure condition. Thus the field method eliminates all of the problems 

inherent in electronic reproduction of the stimulus, and automatically incorporates, in a 

realistic way, all of the complex defraction patterns around the head and other 

phenomena in the immediate acoustic environment of the listener. 
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The primary disadvantages lie in stimulus specification and repeatability. Since the 

actual live helicopter flyovers must be conducted outdoors, there are many opportunities 

for perturbations in the presentation of the sound stimulus. For example, changes in wind, 

the temperature or humidity, refraction by temperature gradients, and many local 

climatic changes all affect the sound heard by the listener. In addition, the helicopter 

itself is difficult to control when attempting to create repeated exposures, as the pilot 

cannot fly the craft twice in exactly the same manner, especially as regards blade slap. 

Consequently, the experimenter faces certain limitations in insuring that his measure- 

ments accurately reflect the stimulus, and that repeated stimuli are as similar to one 

another as possible. 

Of the 34 studies reviewed in the present paper, only two of them employed the 

field method using live stimuli from actual helicopters. 

4. I .2 Free Acoustic Field 

Many psychoacoustic experiments with helicopter noise have been conducted under 

free-field conditions. In this case, the listener or listeners are seated in a room which has 

been specially treated to eliminate acoustical reflections. To the extent that reflections 

have been reduced, and the inverse square law describes the spreading of sound in the 

room, such a facility presents a relatively unobstructed acoustic field for the presentation 

of impulsive noise stimuli by means of loudspeakers. The free field is typically calibrated 

by measuring the spreading and attenuation of sound with distance, or by investigating 

individual reflections by impulse or time-delay techniques. As in field experiments, a 

microphone is placed in the approximate location of the listener’s head in order to make 

both calibrations and stimulus measurements. 

The free-field method has one great advantage over many of the other reproduction 

methods. The elimination of reflections and reverberation make it much easier to control 

and specify an impulsive stimulus. If reflections were present, the impulse would become 

confused with its reflections. 

There are some disadvantages to the free-field method, however. First, the exact 

position of the listener’s head relative to the loudspeaker source is important in 

determining what is the actual stimulus delivered to the listener’s ear. Defraction around 

the human head produces a sound shadow that can affect the acoustic waveform delivered 

to each ear. Second, this method assumes that the loudspeaker is a point source of sound, 

and that the listener is in the far acoustic field at all frequencies, something which is 

difficult to achieve in practice. Of course, the method does require electronic 

reproduction of the helicopter impulse sound, a non-trivial accomplishment at best. A 
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further disadvantage is the unusual visual and acoustic atmosphere that such a free-field 

room often presents to the listener. Such a situation is hardly realistic from the point of 

view of psychologically simulating exposure conditions in the field. 

Of the 34 studies reviewed, eight of them employed the free acoustic field method 

using loudspeaker reproduction. 

4. I .3 Semi-Reverberant Acoustic Field 

The semi-reverberant sound field is often employed as a more realistic alternative 

to the free-field as regards psychophysical simulation. With this method, rooms with 

typical furnishings or theaters or auditoriums with commonly encountered visual and 

acoustic properties eliminate some of the artificiality that can be present in the free- 

field method. Some sound absorption and deadening may be selectively applied in the 

room, but it is not the intent to eliminate as many reflections as possible, as in the case 

of the free field. Instead, the room has a reverberation time not unlike that of most 

office or home environments. Calibration is once again achieved by a microphone or 

microphones located in the vicinity of the listener. Typical calibration measurements 

involve determination of reverberation time and frequency response of the facility. 

This method has the advantage of somewhat enhanced realism and is also easier to 

implement, since semi-reverberant rooms are readily available without serious modifica- 

tion. The face validity is fairly good, as considerable freedom is allowed for making the 

environment comfortable and realistic. 

The main disadvantages concentrate around the nature of the sound field and the 

difficulty of reproducing impulses in a semi-reverberant field. Care must be taken as to 

loudspeaker placement and loudspeaker/room interactions. Certain vibrational modes in 

the room must be avoided, and no matter how carefully the room is calibrated, there will 

be considerable confusion and intermingling of the direct impulsive sound with its many 

echoes. This process of intermingling direct and reflective sound is basically a statistical 

one, adding considerable uncertainty to the stimulus. 

Of the 34 studies reviewed, I3 of them employed a semi-reverberant acoustic field 

to present the helicopter stimuli. 

4. I .4 Earphones 

Many psychoacoustic experiments with helicopter noise have been conducted using 

earphones. This method is relatively inexpensive and, with proper controls, can reproduce 

impulsive stimuli with some degree of fidelity. There are several types of earphones in 

I7 



common use, but unfortunately many of the psychoacoustic studies on helicopter noise do 

not specify which type was employed. Supra-aural earphones are those having an 

electroacoustic driver pressing against the outer surface of the listener’s pinna, with a 

shallow rubber pad or cushion between the driver and the ear. Circum-aural earphones 

have a cup that surrounds the entire pinna, producing a better seal than can be achieved 

with supra-aural earphones. Ear speakers represent a third type, where the driver is held 

some distance from the ear by a sponge-like acoustically permeable material, and the 

electroacoustic driver radiates into the ear canal from a short distance. 

Depending upon the type of earphone employed, different calibration procedures 

may be required. These range from the use of hard-walled or soft-walled acoustic 

couplers, to employment of artificial ear models or the insertion of miniature micro- 

phones in the ear canal underneath the earphone. The latter method has the advantage 

that the miniature microphone can be used during actual stimulus presentation to monitor 

and measure the stimulus as well. 

Earphone presentation has many advantages as regards cost and convenience. No 

elaborate rooms or structures are needed, with only minimal concern attending the 

acoustic environment in which the listener is located. As long as the ambient noise levels 

are sufficiently low, earphone presentation can be used practically anywhere. Further- 

more, with special attention to details of calibration, earphones can reproduce an 

impulsive stimulus somewhat better than a loudspeaker. 

The disadvantages of the earphone method concern the lack of psychological realism 

and the high degree of artificiality experienced by the listener wearing this atypical 

device on his head. Further problems are associated with maintaining a proper seal 

between the earphone and the ear to ensure adequate low-frequency reproduction, and 

maintaining sufficiently precise positioning of the earphone device to ensure adequate 

high-frequency reproduction. 

Of the 34 studies reviewed, I I of them employed earphones to present the acoustic 

stimuli to the participants. 

4. I .5 Reproduction Problems 

Irrespective of the method of stimulus presentation with the exception of the field 

method, certain common difficulties exist in electronically reproducing highly impulsive 

acoustic signals. The extreme crest factors often encountered with helicopter blade-slap 

noise are difficult to capture within the limited dynamic range of most tape recording 

devices. Even if a faithful magnetic tape of impulsive helicopter noise could be obtained, 
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the electroacoustic transducer, be it a loudspeaker or an earphone, also has certain 

inherent limitations. The movement of the radiating diaphragm in the transducer device 

exhibits both inertia and momentum characteristics which make it difficult to follow the 

exact waveform of the helicopter impulse. Thus it is highly unlikely that any electronic 

reproduction system could be configured that would reproduce an impulsive helicopter 

sound with sufficient fidelity to be indistinguishable from the real sound presented in 

close temopral proximity to a jury of listeners. Nevertheless, only two of the 34 studies 

reviewed in the present paper employed the field method with live helicopter operations. 

4. I .6 Simulated Helicopter Sounds 

In order to overcome some of the tape recording and other electro-acoustic 

reproduction problems associated with presenting recordings of actual helicopter sounds 

over either loudspeakers or earphones, some investigators have chosen to employ 

electronically synthesized sounds that simulate various portions of real helicopter noise. 

Since the impulsive component is generally the most difficult part of the helicopter noise 

spectrum to reproduce, most of these experiments synthesize the individual helicopter 

pulses from a few cycles of a sine wave or from a square, triangular, or modulated 

waveform. Simulation by a synthetic waveform offers more control over the pulse 

parameters and more ability to overcome reproduction problems by choosing and 

modifying appropriate pulse signatures. Sometimes the continuous non-impulsive portion 

of the helicopter noise spectrum is also simulated, most often by means of a band of 

random noise shaped to have a frequency spectrum like that of a helicopter. In both 

instances, simulation offers improved uniformity and consistency in comparing the results 

of different experiments, since signal parameters can be accurately specified and 

repeated in different laboratories. The major drawback of the simulation approach, 

however, lies in a certain degree of artificiality in the subtle details of the acoustical 

stimulus. There are also some important methodological limitations involving possible 

stimulus sampling errors and psychological biases. These are explained in detail in 

Section 7.6. In the 34 studies reviewed in the present paper, there were 37 choices made 

between recording actual helicopter sounds and synthesizing them (some experiments used 

both). Nineteen studies employed recorded sounds; I8 employed synthetic ones. 

4.2 Psychophysical Methods 

Just as there is a variety of means to present the physical stimulus in psycho- 

acoustic experiments, so there is a variety of psychophysical methods that can be 

employed to measure the response of a listener. As with stimulus presentation methods, 

the various psychophysical methods also exert an important influence on the interpreta- 

tion of the psychoacoustic data obtained. 
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4.2. I Comparison Method 

One popular procedure for determining human response to helicopter noise employs 

the method of paired comparisons. In this method, two sounds are presented, one after 

another, with a brief response period to follow. The listener is asked to compare these 

two sounds on a certain psychological dimension. For example, sound A is followed by 

sound B, and the participant in the experiment indicates whether sound A is louder than 

sound B, or vice versa. The dimension upon which the sounds are judged can vary 

depending upon the verbal instructions given to the listeners. 

The method of paired comparisons typically employs a standard stimulus which does 

not change in spectral characteristics, and a set of comparison stimuli which may vary 

both in spectrum and in level. In some experiments with helicopter noise, the standard 

stimulus is presented at a variety of levels and compared with each comparison stimulus. 

In other experiments, the standard stimulus remains fixed at a certain level, and the 

comparison stimulus is presented at a variety of levels to bracket the point of judged 

equality. In certain threshold experiments, a two-alternative forced choice (2AFC) 

variation is employed. 

The method of paired comparisons has several advantages. First, it is a rather 

precise psychophysical method, typically producing standard deviations with acoustic 

stimuli of the order of I to 3 dB. The method also avoids complex conceptual scales and 

memorized standards, as the stimuli are presented in close temporal proximity and the 

judgments can be based on immediate sensory experience. 

The method is not without its disadvantages, however. A paired comparison 

experiment usually takes a relatively long time to complete, since many different 

comparisons are necessary to obtain even a single psychophysical data point. Often such 

experiments employ relatively brief stimulus durations (several seconds), which are not 

very realistic when compared with typical exposure durations to helicopter noise. When the 

method is employed to compare complete helicopter flyovers (15 to 20 seconds), auditory 

memory must be invoked and the judgments become more difficult. There is also an 

inherent order bias which must be overcome. In addition, the method of paired 

comparisons is best suited for yielding information about relative sound levels, and can 

only be used indirectly to estimate absolute perceived levels. 

Of the 34 studies reviewed, I I employed some variation of the comparison method. 
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4.2.2 Method of Adjustment 

Some psychoacoustic experiments on helicopter noise employ the method of 

adjustment. In this method, the listener has control over certain parameters of one 

stimulus and adjusts those parameters until a perceptual match is achieved with a 

standard stimulus. The two stimuli are typically alternated every few seconds so that the 

listener receives several samples of each sound during the adjustments. The listener 

usually indicates to the experimenter when the match has been achieved, and the 

experimenter records the final value of the parameter that had been under the listener’s 

control, typically the sound level of one stimulus. 

A variation of this method, or more precisely a hybrid between the paired 

comparison and adjustment methods, is called Parameter Estimation by Sequential Testing 

(PEST). In this .case, depending upon the listener’s previous judgments, predetermined 

statistical considerations modify the stimulus adjustments to be made on the next trial, 

instead of having the listener in direct control. In the PEST technique, the listener has 

limited indirect, rather than direct, control over the unfolding of the experimental 

protocol. 

The method of adjustment is really a variant of the method of paired comparisons, 

but has one major advantage over the version employing constant, non-adjustable stimuli. 

The method of adjustment is usually quicker to execute. Large numbers of repetitions of 

each level of one of the sounds do not have to be presented in order to calculate a single 

perceptual match. The participant devises his own efficient strategy to make the match, 

eliminating the necessity of presenting extreme stimulus combinations, where judgments 

are practically obvious. Thus the observer can concentrate upon listening to sounds that 

are perceptually similar, and therefore of more importance in making a precise deter- 

mination. In addition, since the sounds are generally continually alternated, some of the 

order bias associated with paired comparisons can be eliminated. The price for this 

increased efficiency is a somewhat more difficult statistical treatment of the data and a- 

concomitant increase in variability. Otherwise the method of adjustment generally shares 

the same advantages and disadvantages as the method of paired comparisons from which 

it is derived. 

Of the 34 studies reviewed, eight of them employed the method of adjustment. 
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4.2.3 Rating Scale 

Another popular psychophysical method uses rating scales to generate responses that 

give an indication of absolute perceived levels for acoustic stimuli. There are two major 

types of rating scale methods, category scales and magnitude estimation scales. In the 

category scale method, the listeners are given a continuum that is partitioned into 

different categories defined by verbal descriptors. For example, an I I -point category 

scale may be represented by a line divided into ten spaces, with one end of the continuum 

being labeled “extremely noisy”’ and the other end “not noisy at all”. After having heard 

the acoustic stimulus, the participant makes a mark on the scale as to where the 

particular stimulus lies. In some cases, the labels for the intervening intervals between 

the end points of the scale are left undefined. In other instances, a category scale may be 

divided into seven categories, each of which will have a verbal label indicating varying 

degrees along some psychological dimension. 

In the method of magnitude estimation, the end points of the scale are not defined. 

Instead of using different verbal descriptors to lay out the measurement scale, the natural 

number system is employed. Typically, a standard or modulus stimulus is provided and 

arbitrarily assigned a certain value, say 100. The participants are instructed to judge 

other stimuli quantitatively in reference to that modulus stimuli. Thus, if the particular 

comparison stimulus is perceived to be twice as annoying as the modulus, then a mark is 

made on the scale at the point labeled “2”. If, conversely, it is judged to be only half as 

annoying as the modulus, a mark is made at the point labeled “l/2”. Of course, the 

numbers can be used without a linear scale representation, and the listeners can simply 

supply whatever numbers correspond to their judgments. 

Category scales have the primary advantage that they are quick and easy to 

implement. Scaling methods do not necessitate the presentation of a large variety of 

stimulus levels in order to obtain a single data point. They are also more suitable for 

work in the field, where it may be difficult to produce a standard stimulus (the standard 

helicopter flyby) for each comparison being made. Even when a modulus stimulus is used, 

the modulus can be delivered infrequently during the experiment just to remind the 

participant of its characteristics, and auditory memory can be invoked for the majority of 

the judgments. 

Of the 34 studies reviewed, I6 of them, or practically half, employed some sort of 

rating scale. 
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4.2.4 Verbal Descriptors 

In a fundamental sense, all of the psychophysical methods enumerated above 

measure the ability of people to discriminate, i.e., to note differences between, dis- 

tinguish, or differentiate features of their environments. Whether it be a comparison or a 

rating experiment, the various stimuli being judged usually vary in several dimensions at 

once. Verbal instructions to the observers must be employed to separate out or abstract 

those aspects of the stimulus that the observers should pay attention to, and those that 

should be ignored. For example, a helicopter noise with blade slap might be compared to 

one without. The listener is asked to adjust the two until they are “equally annoying”, or 

to judge which is “more annoying”, or which gets a higher score on an “annoyance” rating 

scale. Often the purpose of the latter two judgments is ultimately, through statistical 

means, to estimate at what levels the two sounds are “equally annoying”. But, even at this 

point, the sounds are not equal in all respects, otherwise the judgment would be trivial. 

Rather, the observers have been instructed to judge the sounds according to their 

“annoyance”, and ignore other aspects. At the point of perceptual equality with regards to 

“annoyance”, the sounds could conceivably be quite different with regards to “loudness”, 

“noisiness”, “objectionability”, “discomfort”, etc. Certainly they would be different with 

regards to qualities such as “slapping”, “thumping”, “banging”, etc. 

Thus the selection of an appropriate verbal descriptor upon which to base the 

psychophysical judgment is an important consideration. Experimental evidence varies on 

the degree to which the commonly used descriptors like “loudness”, “noisiness”, and 

“annoyance” yield the same or different results. The subtle effects of using different 

verbal descriptors are not well understood for non-impulsive sounds, with different 

experiments pointing toward different conclusions. For impulsive-type sounds, even more 

uncertainty exists. Nevertheless, for non-impulsive stimuli, it may be surmised that 

“noisiness” and “annoyance” will yield similar results, but “loudness” may not, especially as 

regards the effects of duration. Since few psychoacoustic experiments with helicopter- 

type noises employ the “loudness” descriptor, the problem can largely be circumvented in 

the present review. 

The 34 studies reviewed in the present paper offered 40 opportunities for a different 

verbal descriptor to be used in a psychoacoustic experiment (some studies employed 

multiple descriptors). Twenty-three studies employed “annoyance” (over half); six 

studies employed “noisiness”; three employed loudness”; and two each employed 

“disturbance”, “intrusiveness I’, “acceptability”, and “detectability”. 
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4.2.5 Statistical Considerations 

Psychoacoustic experiments on helicopter blade slap involve several important 

statistical concerns. First, the stimuli must be tested with sufficient controls and a 

sufficient number of times to accurately and reliably estimate the point of perceptual 

equality for each individual observer, and for the entire sample of observers participating 

in the experiment. In repeating the same physical stimulus on different occasions to the 

same listener, different judgments are often obtained. Many repetitions of the identical 

stimulus may be needed before a stable point of perceptual equality can be determined. 

Nevertheless, a statistical estimate of this perceptual match must be made, either 

directly or indirectly, in order to specify the amount by which a certain psychoacoustic 

measurement scale underestimates or overestimates helicopter noise samples that contain 

blade slap relative to those that do not. This is the primary means that has been used for 

determining whether an impulse correction is needed and, if so, how much. 

In the case of reproduced helicopter noise stimuli, repeating the same stimulus at 

different times is not difficult. Magnetic tapes may be repeated with considerable 

consistency. Furthermore, if echoes and reflections are eliminated, helicopter noise 

stimuli may be reproduced by loudspeakers or earphones in much the same manner from 

trial to trial, although resemblance to the original helicopter noise signature may still be 

questioned. In the case of helicopter noises presented live in the field, as mentioned 

earlier, reproducibility may present more problems. In this instance, the variability 

encountered in repeated presentations of the same nominal stimulus would have to be 

added to that inherent in making a single psychophysical match. 

Those statistical considerations mentioned above are primarily methodological and 

descriptive in nature. Most psychoacoustic experiments involve inferential statistical 

concerns as well. One wishes to generalize from the sample of helicopter sounds tested to 

the population of helicopters producing actual noise exposures. Likewise one wishes to 

generalize from the sample of listeners participating in the experiment to the population 

of listeners actually impacted by helicopter noise. In both cases, careful sampling 

procedures must be elaborated to ensure that representative and adequate samples of 

helicopter sounds and research participants have been selected so as to make quantitative 

distinctions in the data with a certain level of statistical confidence. 

Thus, with some assumptions being made about the distributions and errors involved 

in both the physical and psychophysical measurements, one can specify the number of 

helicopters, listeners, and/or repetitions that might be needed for a given experimental 

design. The criterion for deciding these sample sizes and repetition numbers is the 
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resolution on the dependent variable that one wishes to achieve. For hypotheses 

concerning impulse corrections in measuring helicopter noise, such a criterion might be 

the determination of a possible correction with a 95 percent confidence interval of -+2 dB. 

Unfortunately, many of the psychoacoustic studies on helicopter noise do not reflect 

adequate sensitivity to important statistical considerations. The 34 studies reviewed in 

the present paper exhibit a wide variation in the number of different helicopter sounds 

sampled (range: 2 to 89) and the number of research participants sampled (range: 

4 to 1,009). As a result, the conclusions presented in a particular study are often difficult 

to evaluate and reconcile with the findings of another study. 
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5.0 PREDICTION METHODS 

Several prediction methods have been proposed to estimate the human response to 

helicopter imulsive noise from physical measurements without the need to conduct a 

separate psychoacoustic experiment in each instance. Several of these have been 

proposed at different times for incorporation into national and international standards.8 

5.1 South Afriyn, ASA 

This method was proposed by the South African National Research Institute 

delegation to the Committee on Aircraft Noise (CAN) of the International Civil 

Aeronautical Organization (ICAO). As reviewed by Galloway,’ it involves making two 

sound level meter (SLM) measurements. First, the time-integrated A-weighted sound 

level is measured with a precision SLM, set on “slow” averaging time. Simultaneously, the 

time-integrated A-weighted sound level is measured on a separate impulse SLM, set on 

“impulse” averaging time. The difference between the two, in decibels, is the AsA 

impulse correction, which is added directly to any base measurement to account for the 

human response to the impulsive noise from helicopters. 

5.2 Westland Helicopters Limited, AwHL 

This method was proposed by Westland Helicopters Limited in England. In this 

method, the noise is electronically processed through two separate channels and combined 

by visually analyzing a graph of the result. The first channel consists of an octave band 

centered at 250 Hz that feeds a peak detector with a 200 psec rise time. The second 

channel consists of a precision SLM with an A-weighting frequency characteristic and a 

%lowl’ response integration time. The outputs of these channels are plotted graphically 

and a visual running average is determined. The AWHL impulse correction is derived 

from the difference between these two graphic levels, expressed as a crest level in 

decibels. AWHL’ which can be added to any one of several commonly used noise 

measurement scales, is found by referring to the transfer function given by Leverton and 

Southwood.1’ In this version, there is a lower crest level cutoff of I I dB, below which the 

impulse correction is defined as zero, but there is no upper limit. The I I dB cutoff 

eliminates many fluctuating but non-impulsive noises, e.g., white noise has a crest level of 

about IO dB. The function rises linearly from a 0 dB correction for an I I dB graphic crest 

level to a 6 dB correction for a 20 dB graphic crest level. 
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5.3 National Physical Laboratory, ANPL 

This method was proposed by the National Physical Laboratory in England. In this 

method, the noise signal is passed through an A-weighted filter (without detection) and 

then digitized at a 20 kHz sampling rate through an anti-aliasing filter with a IO kHz 

cutoff frequency. As presented by Berry et al.,’ the measurement involves computing a 

quantity based upon processing these samples with two different integration times: a long 

time constant, T , and a short time constant, 7. The mean square sound pressure over 

the longer period T would then be defined as 

/ 

T 

s = + p2 dt , 
0 

and the running average of the mean square for each of the shorter periods T, within T , 

would be defined as 

/ 

7 

f(j) = + p2 dt , 

0 

where j=l,2,3 ,... n. 

The measure of impulsiveness is taken to be the extent of the deviations between 

the running values f(j) and the long-term mean square S . Similar to the variance 

statistic in descriptive statistics, a quantity T is defined as 

T = 2 [f(j) ; S]’ . 
j=l 

With a value for the short integration time T of IOmsec, the series of quantities f(j) is 

calculated in real time from the sample values of the original signal amplitude Vi 

(proportional to sound pressure) according to 

m 

f(j) = -& 
c v; Y 
i=l 

where m is the number of samples in the time T seconds. Thus for a sample rate of 

20 kHz and 7 = IO msec, m = 200. 
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The longer integration time T is taken to be 0.5 set and the successive values of 

f(j) during each 0.5 set period are used to calculate the long-term mean square S by 

n 

s I =- 
n c 

f(j) . 

j=l 

Since n = T/T, with T = 0.5 set and T = IO msec, then n = 50 . For each period of 

0.5 set, the quantity T is calculated as shown above. 

The quantity IO log T = x , is used in conjunction with a transfer function to obtain 

the impulse correction, ANPL. ANPL is proposed as an addition to LpNT values, at 

0.5 set intervals, before calculating LEPN. The transfer function first suggested is 

ANPL 
= k (X - x0) , in dB, 

where x is IO log T for the signal, x0. is IO log T for A-weighted white noise, and k is 

approximately 0.6. In this formulation, ANpL is limited to a maximum of 6 dB, and 

ANpL is zero for x <_ x0 . A later formulation reduced k to equal 0.38 

5.4 Aerospatiale, AA 

This method was proposed by the French firm, S.N.I. Aerospatiale. As presented by 

d,Ambra and Damongeot,l t the method incorporates sensitivity to pulse shape, pulse 

amplitude (crest factor), and pulse repetition rate, all combined into one impulse 

correction. In this method, the helicopter noise signal is passed through an A-weighting 

filter followed by a low-pass filter with a 2500 Hz cutoff. The signal is then digitized, 

without detection, at a 5000 Hz sampling rate. N samples of Vi (proport ional to sound 

pressure) are taken every 0.5 set and the quantity Cl (coefficient d’ impulsivite) is 

computed as 

N 

Cl 

c 
i=l 

N 

c 
i=l 

This quantity is used to derive a correction factor, AA , from the transfer function: 

AA = I.14 (Cl - 3) . 
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A subsequent version was proposed in terms of log I o Cl and can be expressed as 

AA = -6.875 + 13.75 log Cl , 

where o 5 AAL 5.5P If perceived noisiness is considered as the base unit, AA is added 

to the LpNT values, in each 0.5 set interval, before computing LEpN. 

5.5 Internatimal Standardization Orcpnization, A Iso 

This method was recommended by Working Group 2 (TC43/SCl) of the International 

Standardization Organization (ISO),l’ based in Geneva, Switzerland. It was recommended 

to Working Group B of the Committee on Aircraft Noise (CAN) of the International Civil 

Aeronautical Organization (ICAO). However, the method was never finally adopted by 

ICAO, which chose instead not to incorporate any impulse correction for helicopter noise. 

The method is based upon the ANpL correction, but with the specification of 

sampling parameters that make it very. close to the AA correction. In the IS0 version, 

the short sampling time, T, is defined as 200psec, which corresponds to the 5000 Hz 

digitizing rate of the French AA computation scheme. In this version, the sampling rate 

itself is set at 5000 Hz. Thus, in the ANPL formulation, m = I and f(j) = VF , the square 

of the sampled value. Consequently, 

n N 

SC+ 
c 

v; = + 1 v; , 

i= I i= I 

si nce n , the number of short-term integration periods, becomes 

number of samples in the long-term integration period. Likewise, 

the same as N , the 

N [ 1 
2 

s2= I 
N c 

v; . 

i=I 
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By multiplying out the expressions in the equation defining T and by using the above 

relationship, it can be shown mathematically that 

-i-E 

N 

c 
i=l 

N 

N I [ 1 
2 

73. c 
V; 

i=l 

-I = 

N 

ii c 
V; 

i= I 

N [ 1 
2 

I 
-m c 

V; 

i= I 

-I. I 

When the above equation is compared with that defining Cl according to the AA method, 

the ANBL and the AA methods are seen to be related in a’simple manner, 

T =CI-I. 

Thus the Also method represents a true compromise between the English and the French 

proposals as far as the computation of the internal impulse correction is concerned. The 

different sampling parameters do necessitate a somewhat different transfer function, 

however. In the case of Also , 

qso = 0.8 (X - 3) , in dB , 

where x = IO IogT , with the limitation that 

0 5 Also <_ 5.5 dB . 

For larger values of x , Also is held constant at 5.5 dB. 

5.6 Crest Level, ACL 

This method was proposed by the American delegation to ISO, and exists in several 

versions. As presented by GaIlowayy9 this method has the advantage of being implemented 

with only analog instruments, avoiding the necessity to digitize the signal. The simplest 

approach obtains the difference between the maximum peak A-weighted sound level and 

the maximum A-weighted sound levels that occur during the helicopter flyover, irrespec- 

tive of when these maxima occur. These values may be conveniently obtained with an 

impulse sound level meter having a “peak hold” feature, and can be expressed as a crest 

level in decibels. 

An alternate method is to obtain a value for the crest level in each 0.5 set interval 

of the signal. This can be accomplished with a sound level meter by actuating the peak 
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hold reset each 0.5 set with the same timing signal that is used to generate the one-third 

octave spectrum readout in an L,-PN analysis. The peak level in each 0.5 set interval can 

be easily measured by means of an analog-digital converter on the output of the sound 

level meter. With most instrumentation, the A-weighted sound level in each 0.5 set 

interval is obtained from the normal one-third octave spectrum analysis used in the LEPN 

computations. 

These two forms of ACL are sometimes denoted CLM and CL0 5 . The transfer . 
function for applying them to base psychoacoustic measurement units involves direct 

application of the obtained crest level minus a constant for white noise (about I2 dB). 

Thus AcL = CL - I2 , which can be added to each 0.5 set interval in the case of 

computations of LEPN. 

5.7 Repetition Rate, AR 

This method was proposed by the American delegation to IS0 as an additional 

feature that could be added to any of the other impulse corrections in order to take 

account of the repetition rate of the helicopter impulses. In work reported by Calloway,y 

a regression analysis was made on human response data to helicopter blade slap with 

different repetition rates for the separate impulses. The regression analysis resulted in an 

impulse correction based on repetition rate that could be added directly to LEPN values. 

It is defined for helicopter sounds as 

AR = 0.74 + 0.20 Y. , 

where Y. is the pulse repetition rate. 

5.8 lzumi Method, A75A 

This method was presented in a paper by Izumi. I2 The method is based upon a 

regression equation that describes a convex three-dimensional surface relating the major 

parameters found by the author to be important in noisiness judgments of repetitive 

impulsive noises. This surface is part of what the author calls “The Perceived Noisiness 

Model of Periodically Intermittent Sounds 75-A”, which is summarized by the following 

formula: 

A75A 
= 6 loglo BTF + (IO loglo Y, + 10) (1 - e -I5 TOff) . 

Here BTF = burst time fraction, or on-time/on + off-time, Y. = repetition rate in 

pulses per second; and Toff = off-time in seconds. Some of the input parameters for this 
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method are different from those used in the other methods. The A75A method requires 

accurate definition of the pulse geometry, in particular the duty cycle of the pulse train. 

Such measurements are not typically reported in psychoacoustic experiments on heli- 

copter noise and may be difficult to realize given the nature of actuat helicopter blade- 

slap pulses. Thus, while of considerable interest, the A75A impulse correction has not 

been computed for the majority of the collected pool of empirical psychoacoustic data. 

5.9 Constant Correction, AC 

This method is proposed in IS0 R1996, titled “Procedure for Describing Aircraft 

Noise Around an Airport”. I3 It simply calls for a constant correction or penalty of +5 dB 

for any impulsive-type sound, where impulsivity is left loosely defined. The impulse 

correction is of ane all-or-none sort, with a single number to be applied to all impulsive 

sounds that pass the “impulsivity” criterion, irrespective of the degree of impulsiveness or 

repetition rate. 
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6.0 EXPERIMENTAL RESULTS 

Many psychoacoustic experiments have been conducted concerning people’s reac- 

tions to the unique properties of helicopter noise. The present review examines 34 of 

them. The studies are listed in alphabetical order by the first author’s name in Tables I 

through 4. These tables provide abbreviated information about important features of each 

experiment. Table I gives a profile of who conducted the study, i.e., the experimenter(s), 

and who served as listeners, i.e., the participants. Table 2 describes the physical stimuli 

that were presented. Table 3 gives the psychophysical procedures employed. Finally, 

Table 4 outlines the results of the investigation. The remainder of this section presents a 

short summary of each study, also in alphabetical sequence. 

6.1 Ahumada and Hersh ---- 

Ahumada and HershI investigated the detectability of IO Hz pulse trains with 

identical Fourier series amplitudes presented over earphones. Variations in phase were 

applied to a train of IO msec simulated’helicopter rotor pulses with an envelope maximum 

for the amplitude spectrum of 100 Hz. In a two-alternative forced choice detectability 

task, four observers were not able to detect any differences between pulses that had 

altered phase relations. Thus phase relations did not appear to be an important factor in 

the detection of helicopter impulses, and presumably in the above-threshold perception of 

them as well. 

6.2 Berry, Fuller, John, and Robinson, I 

Berry et al? conducted an experiment with recorded samples of impulsive helicopter 

noise. Eleven different recorded samples of helicopter noise were a priori assigned by the 

experimenters to categories of high, moderate, and slight degrees of impulsiveness. 

Twenty research participants compared various pairings of these sounds for relative 

annoyance in a free acoustic field. The participants did not base their annoyance 

judgments on the relative impulsiveness of the sounds, but rather on other ill-defined 

features of the stimulus. Thus, with recorded samples, no discrimination of impulsiveness 

was observed in annoyance judgments, and no impulse correction was needed. 

6.3 Berry, Fuller, John, and Robinson, 2 

Berry et al? investigated the effect of pulse width and crest level on annoyance 

judgments of helicopter blade slap presented in a free field. Single-cycle sine wave pulses 

were superimposed on a shaped noise chosen to simulate the continuous portion of a 
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Wessex helicopter noise spectrum. The sine waves ranged from 200 to 800 Hz and had a 

repetition rate of IO Hz and a crest level of IO or 20 dB. Thirty-one participants 

compared various combinations of the above parameters as well as combinations with the 

shaped noise alone. When unidimensional psychophysical annoyance scales were applied to 

the data obtained, the resulting annoyance scale values showed good agreement with the 

progfession of impulsiveness from non-impulsive to a crest level of IO dB to one of 20 dB. 

Thus crest level did play a significant role in determining annoyance judgments, although 

in this experiment pulse width did not yield such an orderly relationship. In some cases, 

longer pulses were judged more annoying than shorter ones. 

6.4 Berry, Fuller, John, and Robinson, 83 

Berry et al.5 examined the trade between impulsiveness and level in a psycho- 

acoustic study employing free-field listening to simulated sounds. Single-cycle 400 Hz 

sine wave pulses were superimposed at a IO Hz rate on a continuous noise shaped like that 

from a Wessex helicopter. Crest levels of IO dB and 20 dB were incorporated into signals 

with overall A-weighted levels of 70, 75, and 80 dB. In this way, twenty observers could 

compare various combinations of crest level and overall level for relative annoyance. 

From the results, a unidimensional annoyance scale was constructed. An orderly trade 

between crest level and overall level was obtained and permitted the calibration of other 

data obtained by the same authors in terms of relative levels. For a crest level of 20 dB, 

an impulse correction of about 5 dB would be indicated. Several impulse corrections were 

evaluated. ASA was generally insensitive and inadequate, and AWHL was sensitive, but 

exhibited wide variability with the spectral peak of the impulse component. By contrast, 

e/j and ANpL were moderate and well-behaved predictors of annoyance. 

6.5 Crosse, Davidson, Hargest, and Porter 

Crosse et al!5 undertook a large-scale psychoacoustic experiment in conjunction 

with an air show. An impressive sample of 1,009 attendants at the show participated in 

listening tests where they compared the disturbance of simulated helicopter-type sounds 

while listening in a semi-reverberant room. The signals were amplitude modulated 

samples of CTOL jet takeoff noise that were modulated at between 4 and I2 Hz with a 

50 percent duty cycle and a peak sound pressure level between 85 and 95 dB. The 

modulation depth was 8 dB and the rise time was 0.2 set, yielding an impulsive sounding 

signal. Instantaneous peak sound pressure levels, and by implication instantaneous peak 

perceived noise levels, were excellent predictors of the equal disturbance judgments made 

by the listeners. Furthermore, these judgments were not affected by the repetition 
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(modulation rate) or the overall level. Thus, instead of an impulse correction, the authors 

recommend the use of instantaneous peak perceived noise level for the measurement of 

helicopter noise. 

6.6 d’Ambra and Damongeot 

d’Ambra and Damongeot II report a psychoacoustic study where recorded helicopter 

impulses were electronically mixed with recorded helicopter broadband noise. This 

approach permitted the manipulation of several largely independent parameters in an 

extremely realistic acoustic stimulus. Overall levels varied from LPN = 90 dB to 100 dB, 

crest levels varied from I2 dB to 20 dB, and repetition rate varied from IO Hz to 35 Hz. 

Sixty-two listeners mode paired comparison judgments, comparing a synthetically mixed 

signal with the non-impulsive noise that served as its broadband component. Judgments 

were also collected with some real recorded helicopter signatures. The results indicated 

that anywhere from 0 to 7 dB had to be added, either to the perceived noise level, or to 

the effective perceived noise level, to reflect the annoyance of the impulsive noises. This 

amount did not change with repetition rate. Thus an impulse correction is recommended, 

but no repetition correction. Of the various impulse corrections evaluated, Also gave 

the best correlation with the psychoacoustic data. 

6.7 Fidel1 and Horonjeff 

Fidel I and Horonjeff I6 studied the detectability of single-cycle sine, triangular, and 

rectangular pulses of varying repetition rate (5 to 100 Hz) and fundamental frequency 

(100 Hz to I kHz) imbedded in a white noise background. Four listeners detected faint 

signals of this type in a free acoustic field. Both repetition rate and pulse width had a 

systematic effect on the signal-to-noise ratio necessary for detection. The minimally 

detectable signals tended to have a high fundamental frequency (I kHz) and an inter- 

mediate repetition rate (20 to 40 Hz). Both the fundamental frequency (pulse width) and 

different waveform shape could be accounted for by applying the Theory of Signal 

Detectability to the basic data obtained. Although these authors measured detectability 

of low-level impulses, they argue that a relationship exists between detectability and 

annoyance. Accordingly, the relative annoyance of a given sound can be predicted to a 

large degree from its relative detectability, i.e., highly annoying sounds tend to be more 

readily detectable. In this way, the data have implications for helicopter rotor noise: 

I. Differences of the order of IO dB may exist in impulsive wavetrains of equal 

annoyance and of equal total energy, but varying repetition rates and pulse 

widths. 
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2. Designs for minimum annoyance may be guided by the obtained relationships 

between repetition rate and pulse width. 

Naturally, these data tend to support the need for both an impulse and a repetition 

correction. 

6.8 Galanter, Popper, and Perera 

Galanter et al.17 conducted an experiment where forty participants gave magnitude 

estimates of the annoyance of recordings of several CTOL jet aircraft and two different 

kinds of helicopters in a semi-reverberant room. They obtained a 4 to 5 dB penalty for 

the helicopter noise relative to the CTOL jet noise in terms of the A-weighted sound level 

needed for equal annoyance. For effective perceived noise level, they report a similar 

penalty of 4 to 5 dB, but their data seem to support only about 2 to 3 dB. In terms of 

A-weighted sound level, a progressive increase in estimating annoyance was observed with 

increasing crest levels (18.5 to 26.8 dB). Conversion to effective perceived noise level 

(estimated by D-weighted level) eliminated these differences. Thus effective perceived 

noise level was found to be an adequate predictor of the annoyance due to helicopter 

sounds of differing impulsiveness, without any additional corrections. However, an 

impulse correction might be warranted when comparing VTOL with CTOL aircraft. 

6.9 Galloway 

Galloway’ evaluated several correction factors to account for helicopter impulsive- 

ness in annoyance judgments. Twenty listeners compared the annoyance of recorded 

helicopter sounds and simulated helicopter sounds to a standard non-impulsive helicopter 

(S-6 I) in a free field. Some stimuli were steady state (simulating hover) while others 

were time-varying (simulating approach and level flight). His results indicated that 

effective perceived noise level underestimated the human response to impulsive noise 

signals by 7 to 8 dB. Various impulse corrections were tested to find which one would 

reduce this discrepancy to a minimum. None of the traditionally proposed corrections 

tANpLY, AA’ and ACF ) satisfactorily reduced the scatter in the data below a chance 

level, when all the stimuli were considered. When only recorded helicopter stimuli were 

considered, AA per formed adequately. However, repetition rate proved to be a powerful 

variable. Thus a considerable improvement could also be achieved by applying a 

correction for repetition rate, AR. When combined with this repetition rate correction, 

all of the proposed measures became statistically significant. Thus both an impulse 

correction and a repetition correction were endorsed. 
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6.10 lzumi 

lzumi l 2 conducted two experiments on the loudness and the noisiness of repetitive 

impulsive sounds with different temporal patterns (duty-cycles and repetition rates). He 

used the method of paired comparisons with interrupted bursts of pink noise serving as 

impulsive sounds, and a steady pink noise serving as the standard. In the first experiment, 

seven participants judged pairs of sounds both in terms of loudness and noisiness while 

seated in a semi-reverberant room. Relative loudness and relative noisiness both varied in 

an orderly fashion with duty cycle (burst time fraction) and repetition rate. However, 

there was a consistent and significant difference between the loudness ‘and the noisiness 

reponses, with noisiness showing larger impulse corrections. The second experiment 

employed only noisiness instructions and had one additional participant. It was designed 

to further quantify and refine the re.lationships obtained in the first study. The results 

were presented as a three-dimensional surface that showed relative burst level, or the 

difference between the impulsive and non-impulsive signals, as a function of both burst- 

time-fraction and repetition rate. A quantitative model and an accompanying formula 

were developed and validated based upon: (I ) energy summation; (2) positive startle 

caused by the intermittency; and (3) negative startle caused by temporal masking. The 

model clearly points toward the need for a repetition rote correction, although some of 

the repetition rates investigated were lower than those commonly associated with 

helicopter rotor noise. 

6.1 I Klumpp and Schmidt 

Klumpp and Schmidt I8 conducted two psychoacoustic experiments on blade slop 

noise recorded from four types of helicopters. Seventy samples of helicopter noise were 

a priori rated as to the amount of blade slap present: 35 without, 9 weak, I I moderate, 

and I5 heavy. Two groups of listeners (altogether 28 people) each heard the helicopter 

sounds in a semi-reverberant room. The method of magnitude estimation was employed to 

register an annoyance response with the recorded noise from a city bus serving as the 

standard or reference sound. The results revealed an A-weighted level difference of from 

1.4 to 2.2 dB between equally annoying helicopter noises with and without blade slap. 

When the seventy sounds were reclassified according to a crest level criterion (above or 

below I5 dB) to separate blade-s.lap from no-blade-slap groups, the difference between the 

groups was 2.5 dB for equal annoyance. A small subset of five participants also judged the 

recorded helicopter sounds as if heard inside a house. In this case, all the sounds were 

filtered in a manner that simulates the transmission loss of a typical house. Again, a 

penalty of approximately 2 dB was obtained for helicopter samples containing appreciable 

blade-slap noise. Thus an impulse correction of 2 dB was recommended for periods when 

blade slap is present. 49 



6.12 Lawton 

Lawton l 9 simulated blade-slap noise by superimposing I- to 3-cycle sine waves on a 

continuous shaped broadband noise background. Forty listeners estimated the annoyance 

of the simulated helicopter noises on a IO-point scale while seated in a semi-reverberant 

room. Five parameters were varied simultaneously: (I) the number of cycles in a single 

pulse; (2) the frequency of the sine waves; (3) the imp u se repetition rate (8 to 20 Hz); I 

(4) the sou n pressure level of the continuous noise (65 to 80 dB); and (5) the idealized d 

crest level of the impulses (I5 to 25 dB). All five parameters exhibited a significant 

effect upon annoyance ratings, but the sound pressure level of the continuous noise and 

the idealized crest level exhibited a much stronger effect than the other variables. 

Idealized crest level is defined as the ratio of the peak of the impulses alone to the rms of 

the background alone, instead of the ratio of the peak of the impulses plus background to 

the rms of the background alone. Thus an impulse correction would certainly be endorsed 

by these data, and possibly a repetition rate correction as well. 

6. I3 Leverton 

Leverton2’ reported on some psychoacoustic experiments to determine the increase 

in loudness and annoyance associated with helicopter blade slap. A small sample of 

listeners was asked to adjust the loudness of a “banging” and “non-banging” helicopter, as 

recorded out of doors, until they were perceived as equally loud. The stimuli were 

presented to the listeners in three acoustic environments: (I) outdoors away from walls; 

(2) in a semi-reverberant lounge; and (3) in a reverberant office. In each of these three 

environments, the “banging” helicopter required an A-weighted sound level penalty of 6, 

7, or 8 dB, respectively, to achieve equal loudness with the “non-banging” one. In a second 

experiment, light music was played as a background (LA = 77 dB) in the semi-reverberant 

lounge, and annoyance, instead of loudness, matches were obtained. On the average, the 

“non-banging ” helicopter was adjusted to a level 6 dB above that of the “banging” 

helicopter, again indicating a 6 dB penalty in terms of A-weighted sound level. 

6. I4 Leverton and Southwood 

Leverton and Southwood IO reported an experiment where fifteen recordings of 

helicopter noise were played over earphones to twenty observers. These recordings had 

been a priori classified as to impulsiveness: none, marginal, mild, and severe. 
AWHL 

appeared to follow the growth in impulsiveness implied by this classification scheme. The 

experiment was conducted to relate the levels of helicopter noise adjusted to equal 

intrusiveness or annoyance to the crest level as measured by the AWHL method. The 
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data suggested that the AWHL impulse correction would be useful. The proposed 

correction had a lower cutoff at a crest level of I I dB, where it was set to zero, and rose 

linearly through an impulse correction of 6 dB for a crest level of 20 dB, but had no limit. 

6. I5 Leverton, Southwood, and Pike 

21 Leverton et al. report preliminary psychoacoustic tests using real and simulated 

recorded samples of helicopter noise with varying degrees of rotor blade slap and tail 

rotor noise. Rotor blade slap was accounted for rather well by the AWHL impulse 

correction. Moreover, a parallel correction was observed describing another penalty due 

to pronounced tail rotor noise. Tail rotor noise correction could add another A-weighted 

sound level penalty of 4 dB. This second correction for tail rotor noise presumably could 

not be accounted for by the tone correction scheme for effective perceived noise level. 

However, since the crest level of tail rotor noise is typically less than that of main rotor 

blade slap, with appropriate adjustments for the LEPN tone correction cutoff, the single 

AWHL impulse correction may suffice for both. 

6. I6 MAN-Acoustics and Noise, Inc. - 

MAN-Acoustics and Noise, 
22 

Inc., investigated possible differences in the human 

response to CTOL, VTOL, and STOL aircraft. Thirty-three recorded and simulated 

aircraft sounds (nine recorded helicopters) were judged for annoyance (magnitude estimo- 

tion with a USASI noise reference). The sounds were also judged for acceptability on an 

absolute binary scale. Thirty-six observers listened in a semi-reverberant room after the 

signals had been electronically filtered to simulate the expected spectra inside a home. 

The results indicated that perceived noise level overstimated the annoyance of helicopters 

relative to CTOL aircraft (about 2 dB). The addition of a tone correction reduced the 

obtained variability somewhat, and the addition of a duration correction reduced it 

markedly, to the point where effective perceived noise level could serve as an adequate 

predictor of annoyance. Thus no impulse correction would be justified, and if it were, the 

correction would be negative. However, the sounds in this study were all passed through 

an electronic house filter, which increased the rise time of any impulsive blade slap 

present in the signal. 

6. I7 Munch and King 

Munch and King 23 conducted a preliminary test to investigate the relationship 

between crest level and the perception of blade slap. Nine recorded helicopter noise 

samples were evaluated by the investigators themselves. These samples were classified as 
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to the existence and degree of blade slap and were equated in judged annoyance to the 

recorded noise from a series of reference aircraft. The results indicated A-weighted 

level penalties of 6 to I3 dB for crest levels from I4 to 21 dB. Below a crest level of 

I3 dB, the authors felt that there was no appreciable blade slap present, but for higher 

crest levels an impulse correction seemed appropriate. 

6.18 Ollerhead P 

In this section and in the two sections to follow, Ollerhead24 reports an interlocking 

series of psychoacoustic experiments. Altogether there were five pilot studies (P), one 

main experiment (M), and three replications (R). In the five pilot studies, forty research 

participants heard various recorded helicopter and aircraft sounds through earphones. 

Many of these stimuli were tape recordings of the same sounds that Powell25 had 

presented live by means of actual helicopter and airplane flyovers in the field. In most 

cases, the participants rated the sounds on an I I -point noisiness scale, although some 

participants also made level adjustments. 

In one pilot experiment, the listeners rated 33 test sounds relative to a reference 

sound (T-28 airplane), which itself was presented at eight different sound levels. This 

experiment permitted the establishment of a relationship to convert average noisiness 

rating scores (0 to IO) into equivalent relative noisiness ratings in dB. Such a conversion 

proved possible with a standard error of the mean of about +I dB. Certain test sounds 

were purposely repeated at different times throughout the experiment, and these all 

produced satisfactory consistency in noisiness ratings. In another experiment, approach 

sounds were presented in their full long-duration versions and again in versions truncated 

at their IO dB-down points. The results indicated that the early approach period before 

the first IO dB-down point makes no measurable contribution to the judged noisiness or 

annoyance of the entire event. Further pilot experiments explored changes in the verbal 

instructions given to the research participants; some versions emphasizing duration, 

others not; and some versions using “noisiness” and others using “annoyance” as the 

descriptor for the response being scaled. An additional experiment compared the results 

obtained with the I l-point noisiness scale with those obtained by the method of 

adjustment, using the same research participants. The rating method proved to be highly 

correlated with the method of adjustment. It also proved to be stable and insensitive to 

changes in verbal instructions. Overall, the pilot studies confirmed the suitability of the 

psychoacoustic methods proposed for a large-scale main experiment. 

52 



6.19 Ollerhead M 

01 lerhead24 conducted a major psychoacoustic experiment to investigate the need 

for a helicopter impulse correction with a sufficiently large number of recorded 

helicopter and CTOL sounds to constitute a sample of good size. Between 36 and 40 

participants listened to 89 helicopter and 30 CTOL sounds over earphones. The 

participants rated them on an I I -point annoyance scale with a T-28 aircraft noise serving 

as the standard. The 89 helicopter sounds were further divided into two classes of less- 

impulsive and more-impulsive, on the basis of a 4 dB criterion for the Also impulse 

correction. Perceived annoyance ratings were obtained from the participants for all these 

sounds, and the results were plotted against nine different commonly used measurement 

scales. In general, all time-integrated scales incorporating a duration correction were 

considerably superior as predictors of annoyance than those scales that did not have a 

duration correction. Tone corrections yielded minor improvement. The impulse correc- 

tions (Also and ACF ) did little to improve the scales to which they were applied. In 

fact, the impulse corrections tended to counteract the beneficial effects of the duration 

correction. When compared with CTOL sounds, the helicopters were overrated by about 

2 dB. In summary, if duration is accounted for in the traditional manner (+3 dB/doubling), 

the results of this study do not support further impulse corrections or penalties being 

added to effective perceived noise level or other time-integrated measures. 

6.20 Ollerhead R 

01 lerhead24 reported several psychoacoustic experiments designed to replicate some 

aspects of his main experiment, which employed I I9 different aircraft sounds. These 

replications were conducted: (I) with earphones but at a higher level; (2) in the Interior 

Effects Room (IER), a semi-reverberant simulated living room located at the NASA- 

Langley Research Center; and (3) in the Exterior Effects Room (EER), a semi- 

reverberant lecture theatre also located at NASA-Langley. Eighty research participants 

gave annoyance ratings on an I I -point scale to three-quarters of the recorded aircraft 

sounds employed in the main experiment. On the whole, the higher level earphone tests 

tended to corroborate the lower level earphone results of the main study. This replication 

did point toward slight improvement in predicting annoyance as emphasis was shifted 

toward the low frequencies. 

The IER results revealed the same approximately 2 dB overrating of helicopter 

sounds relative to CTOL sounds, but this time the duration correction did not yield any 

significant improvement in the predictive abilities of the various scales. The EER results 

were quite similar, except that some improvement was observed when the duration 
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correction was applied. In both loudspeaker experiments (IER and EER), the magnitude of 

the impulse correction practically vanished, presumably as a result of poor pulse 

reproduction and room reverberation. Nevertheless, the more-impulsive and less- 

impulsive helicopters were still rated much the same as when their impulsiveness was 

present in the earphone experiments. These findings provide evidence that the increased 

level and duration consequent to impulsiveness may be sufficient to account for helicopter 

blade slap without the need for a separate impulse correction. 

6.21 Patterson, MOZO, Schemer, and Camp 

26 
Patterson et al. conducted a psychoacoustic experiment with actual live helicopter 

flyovers. Nine helicopters executed I2 prescribed maneuvers for 25 listeners who rated 

the acceptability of the noises produced on a magnitude estimation scale. The standard or 

modulus sound was a C-47 aircraft. Spectral analyses of the noise produced by each flyby 

were used to calculate 21 predictors of annoyance. In general, A-weighted sound level, 

D2-weighted sound level, and effective perceived noise level performed the best. For the 

case of LA, on the average the entire collection of helicopter sounds was rated as more 

annoying than the C-47 aircraft by about 2 dB. However, no specific correction for blade 

slap was found. Crest level proved unable to account for the difference between heavy 

blade slap flybys and those with no blade slap. A modified crest level where the RMS 

value was measured between impulses provided a somewhat better distinction, but proved 

unwieldy to use. Likewise, the ratio of energy below 250 Hz to the high-frequency energy 

in the spectrum, as well as a collection of numerical weights applied to each one-third 

octave band, yielded some improvement but were also impractical. 

6.22 Pearsons 

PearsonsZ7 . Investigated the noisiness of eight different recorded samples of heli- 

copter noise in a paired comparison experiment using the recorded noise from a DC-8 and 

simulated jet aircraft noise as standards. Twenty-one participants judged the relative 

noisiness of the stimuli in a free field. The results were most accurately portrayed by 

perceived noise level, followed by N-weighted and A-weighted sound level. Duration and 

tone corrections did not improve predictability of the relative noisiness of the helicopter 

sounds. In fact, the duration correction increased the calculated mean difference 

between the standard and comparison sounds and increased the variability as well. A 

possible explanation of this result may lie in the shape of the flyby envelope of a 

helicopter relative to that of a jet aircraft. Whereas the jet aircraft envelope increases 

at an almost uniform rate, the helicopter envelope increases more gradually at first and 

then more rapidly just before reaching its maximum. 
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6.23 Powell, 1978 

Powell28 reported some further analyses of the data of Lawton. I9 First he 

determined that perceived noise level provided the best overall correlation with the 

human response data. Given LPN as the appropriate frequency weighting for helicopter 

noise measurements, the contribution of the five parameters in Lawton’s experiment could 

be evaluated relative to the changes in LPN produced by each parameter. Although each 

parameter had a significant effect upon judged annoyance, each parameter produced a 

similar change in LPN. Only the addition of an A-weighted crest level correction 

produced a slight but significant improvement in predictive ability. The amount of the 

correction was a function of A CF, but most of this correction could be accounted for in 

LPN changes. The regression equation describing the ACF function was similar to that 

obtained by Sternfeld and Doyle 29 but with a somewhat steeper slope in the present case. 

This difference in slope could be due to differences in experimental procedure: whereas 

Lawton employed loudspeakers that could induce whole-body vibration, Sternfeld and 

Doyle used earphones that were restricted to auditory simulation. In summary, a 

correction for impulses was implied, but no evidence was found for a repetition rate 

correction. 

6.24 Powell, 1980 

Powell * reported an experiment conducted by Ahumada, where the latter essen- 

tially replicated earlier results on the effects of phase using an I l-point annoyance scale 

instead of a detectability task. A total of thirty observers took part in three experiments. 

They listened over earphones to pulse trains with repetition rates of IO and 20 Hz. The 

pulse trains were modified in phase, but maintained the some Fourier series amplitudes. 

This time the results were somewhat different from those obtained earlier: the two less- 

impulsive sounds (random phase) were rated significantly more annoying than the two 

more-impulsive sounds (sine and cosine series). In the three experiments, the difference 

between these two types of pulse trains ranged from 2.7 to 4.5 dB. The conclusion was 

that a measure based solely on the amplitude (crest level) of the impulsive sound might 

not be adequate. 

* Powell, C.A., “Psychoacoustic Research Progress Report”, Working Group B, ICAO 
Meeting, October 6-8, 1980. 

55 



6.25 Powell, 1981 

Powell25 conducted two field tests with live helicopter and airplane operations. 

Two helicopters (OH-58A and 204-B) produced varying amounts of blade slap noise by 

changing flight characteristics. In addition, a T-28 single-engine propeller airplane was 

used as a non-helicopter reference sound. Ninety-one observers gave noisiness judgments 

on two different scales. The observers sat either outdoors or inside a house near the 

aircraft operations. The results revealed that the sample of observers judged the noise 

from the less-impulsive helicopter as more noisy than the noise from the more-impulsive 

helicopter (about I to 2 dB difference). Neither the Also nor the AcF impulse 

corrections produced any significant improvement in the ability of LEPN to predict the 

noisiness of the helicopter samples. A series of verbal category scales, including such 

descriptors as “thumping”’ “slapping”’ and “hammering”’ was found to be related to the 

noisiness judgments of the observers, but not to any of the impulse corrections examined 

in the study. Furthermore, when indoor versus outdoor listening were compared, the 

outdoor judgments were less variable and displayed more difference among aircraft 

types. 

6.26 Powell and McCurdy 

Powell and McCurdy6 investigated the effects of varying both crest level and 

repetition rate on the annoyance judgments of 48 listeners. The participants heard 

computer-generated simulated pulse trains presented in a free field as they rated the 

sounds on an I I -point scale in two separate experiments. Crest levels were varied from 

3.2 to 19.3 dB, and repetition rates were varied from IO to I I5 Hz. The results indicated 

that annoyance increased with increasing repetition rate to a maximum LEPN penalty of 

4 dB, over and above other corrections that were applied. The uncorrected effect of 

repetition rate was more on the order of LEPN penalties of 5 to I2 dB. Annoyance also 

increased with crest level to a maximum LEPN penalty of I3 dB, but this effect was found 

to be somewhat dependent upon overall level. A-weighted sound level predicted 

annoyance responses with less error than any of the other noise measures examined, and 

the inclusion of the Also or ACF impulse corrections did not generally improve 

predictability for the different measures. Annoyance responses were, however, highly 

correlated with the frequency of the perceived dominant one-third octave band. Thus a 

new frequency weighting was devised to account for this effect. The new weighting was 

modified at the low frequencies so that it fell somewhere between the D-weighting and 

the A-weighting curves. This modified weighting yielded a significant improvement in 

predictability. 
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6.27 Robinson and Bowsher 

Robinson and Bowsher3’ report an experiment involving 570 participants who judged 

the loudness and disturbance of recorded aircraft sounds by the method of paired 

comparisons. They presented combinations of four VTOL sounds and one CTOL jet sound 

in a free acoustic field. Various calculation procedures for predicting loudness and 

disturbance were applied to the stimuli, and the average errors were assessed under 

conditions of perceptual equality. The various calculating schemes ranked as follows in 

closeness of prediction: Zwicker phons, perceived noise level, A-weighted sound level, 

Stevens phons, and overall sound pressure level. Since only a small advantage was found 

for Zwicker phons over perceived noise level, and since the latter is in more widespread 

use for aircraft, it was surmised that LpN is the most appropriate measure to predict 

helicopter noise, producing errors of only I to 2 dB. 

6.28 Shepherd 

Shepherd3 l employed recorded samples of the same helicopter and propeller aircraft 

noises used by Powell25 in his earlier field study. Thirty-two participants sat in a semi- 

reverberant room and rated the recordings on the same I I -point noisiness scale as Powell 

had used. Thus the present experiment served as a partial replication in the laboratory of 

Powell’s field experiment. The results generally confirmed the field study. The relative 

noisiness judgments for the two studies showed statistically significant correlation 

(r = 0.661, indicating reasonable agreement between the results of the two experiments. 

The laboratory study revealed that neither of two proposed impulse corrections, Also and 

ACF’ p reduced significant improvement in prediction ability, just as had been found in the 

field test. The comparison of the noisiness of the two helicopters was in the same 

direction for both studies: the less-impulsive OH-58A generally was judged more 

annoying than the more-impulsive 204-B; however, the trend was not statistically 

significant in the laboratory case. 

6.29 Southwood and Pike 

Southwood and Pike32 conducted several experiments with simulated and recorded 

helicopter impulses. About 20 listeners adjusted the intrusiveness or annoyance of various 

test sounds presented through earphones until they matched the recording of a non- 

impulsive Wessex helicopter, which served as a standard. The simulated test sounds were 

single-cycle sine waves of 250 Hz fundamental frequency presented at a repetition rate of 

13.9 Hz. In a separate experiment, an impulsive Chinook CH-47A helicopter recording 

was also adjusted against the same standard. The results of the experiment with 
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simulated pulses showed that an impulse correction of from 0 dB to 6 dB was recom- 

mended over crest level range from I I dB to 20 dB, where crest level is defined as in 

AWHL. In the case of the Chinook versus Wessex recorded helicopter experiment, the 

more-impulsive Chinook helicopter seemed to warrant about a 6 dB penalty relative to the 

Wessex, as opposed to the implied negative correction found by Berry et al5 for the same 

two craft. 

6.30 Southwood 

Southwood employed three of the helicopter noise samples from a Bell B204-B 

recorded by Powe II 25 during his field study, and the recorded noise of a Wessex 

helicopter. The three impulsive Bell helicopter sounds were presented as recorded by 

Powell and also as modified through a “notch filter” that removed up to I2 dB between 

800 and 2000 Hz. The filtered sounds had the sharp transients largely eliminated just 

prior to passage overhead. Twenty observers listened over earphones and adjusted the 

Bell helicopter sound until it was perceptually equal to the Wessex sound, which had a 

maximum A-weighted sound level of 80 dB. The results revealed that the blade slap- 

dominated signal was underestimated by an A-weighted sound level of between 5 and 

8 dB, or an effective perceived noise level of between 2 and 5 dB. These laboratory 

results conflict with those obtained by Powell in the original field study, where the 

impulsive helicopter was judged less noisy. No consistent difference was observed in the 

results for the unfiltered and the filtered signals - the latter having less of the sharp 

impulses just before the overhead position. Thus an impulse correction is suggested which 

is not a function of the relatively brief overhead pulses that sometimes occur. 

6.31 Stent and Southwood 

Stent and Southwood conducted two psychoacoustic studies with simulated pulses 

combined with a recorded Wessex helicopter sound. The pulses were single-cycle sine 

waves with fundamental frequencies from 167 Hz to 667 Hz and repetition rates from IO 

to 40 Hz. A total of 41 participants listened over earphones and adjusted the simulated 

impulsive sounds until they were of equal annoyance to a recorded Wessex hover sound. 

The results showed an A-weighted penalty of about 5 dB for a crest level of I7 dB and an 

A-weighted penalty of about 7.5 dB for a crest level of 20 dB. The corresponding 

penalties in terms of perceived noise level were 3 dB and 4.5 dB, respectively. No 

statistically significant differences in the appropriate penalty were found for different 

repetition rates, although the mean penalties did show a trend toward a slight minimum at 

a repetition rate of about 25 Hz, dropping from about 8 dB to about 4 dB for A-weighted 

sound levels. 
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6.32 Sternfeld and Doyle 

Sternfeld and Doyle 29 investigated simulated helicopter sounds using the method of 

adjustment with 25 listeners. The impulsive and broadband component of each signal was 

derived from recordings of actual helicopter sounds modified to account for the earphone 

transducer. The impulse component and the broadband component were electronically 

combined to form a simulated blade-slap stimulus, with the listener having control over 

the amount of the impulse component that was added. Thus the listener actively 

participated in the creation of the combined impulsive-plus-broadband sound, while the 

broadband background spectrum of the combination served as the reference sound. The 

listener added enough impulsive sound to the broadband sound to make an annoyance 

match. The results showed that annoyance matches were a function of both level and 

impulsiveness, the latter being measured in terms of C-weighted sound level and idealized 

crest level. Regression equations were developed for both measures of impulsiveness, in 

terms of both A-weighted sound level and perceived noise level. For LA, the crest level 

correction yielded a correlation coefficient of 0.960, while the Lc correction yielded a 

correlation of 0.894. For LpN, the corresponding correlation coefficients were 0.931 and 

0.9 I I, respectively. Remaining inconsistencies in the data seemed to be attributable to 

an effect of repetition rate which did not appear in the method of adjustment results, but 

did appear in separate verbal ratings. 

6.33 Sternfeld, Hinterkeuser, Hockman, and Davis ---- -- -- 

Sternfeld et al?5 -- investigated the simulated noises from two proposed new 60- 

passenger aircraft systems - a tandem rotor VTOL and a turbofan STOL. In addition, the 

recorded flyby noise from a jet CTOL aircraft was included. Their experiment 

incorporated several unusual features: 

I. The 28 participants were housed in groups of 6 people in a trailer outfitted at 

one end like a work space and at the other end like a rest space. They rated the 

sounds on a 9-point annoyance scale first at the work end (two hours) and then at 

the rest end (one hour). 

2. The participants were engaged in normal, meaningful activities while they 

listened to the sounds over loudspeakers. At the work end they performed their 

own work-related reading and paperwork tasks. At the rest end they watched 

television, played cards, read, and conversed. 

3. The duration of the individual flyovers and the intervals between flyovers were 

representative of a range that might be expected to occur during commercial 

operation of the proposed aircraft, from 6 to 48 operations per hour. 
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4. Natural ambient backgrounds of two types of recorded traffic noise were 

provided instead of artificial quiet laboratory conditions. 

Thus the simulation of an appropriate psychological context for conducting the study was 

far above average. The results showed that the STOL noise was judged more annoying 

than the VTOL noise in terms of both perceived noise level and A-weighted sound level. 

However, the difference largely disappeared when a duration correction was applied, 

yielding effective perceived noise level and duration-corrected A-weighted level. Expo- 

sure to a high repetitive density of operations (e.g., 48 per hour) did not increase the 

annoyance judgment of each individual sound, even though the total exposure was 

described as unacceptable in separate questioning. Furthermore, temporal variations in 

the background traffic noise also had no effect upon the participant’s ratings. 

6.34 Williams 

Williams36 conducted a psychoacoustic experiment with earphones to evaluate 

various recorded and simulated helicopter sounds, including some with varying degrees of 

tail rotor noise. Forty listeners judged the noisiness of the helicopter sounds by three 

different methods: (I) adjustment. to an absolute “just noisy” criterion; (2) rating on an 

I I -point noisiness scale; and (3) adjustment to equal noisiness with a standard non- 

impulsive helicopter (Wessex). The results showed that A-weighted impulse correction of 

the order of 8.5 to 9 dB are necessary for main rotor blade slap, and of the order 6 dB for 

tail rotor noise. Higher corrections were produced by women than by men, and by 

recorded sounds than by simulated sounds. The method of adjustment produced less 

variable results than either of the other two methods. Thus, not only was a blade-slap 

impulse correction endorsed, but a possible tail rotor noise correction was also introduced. 
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7.0 SYNTHESIS OF RESULTS 

The 34 studies reviewed in the previous section exhibit certain trends in indicating 

those variables that might be important to providing a psychoacoustic foundation for 

measurements of helicopter noise. In increasing order of apparent importance they are 

phase relations, tail rotor noise, repetition rate, CTOL versus VTOL differences, and crest 

level. 

7.1 phase Relations 

Only two of the studies systematically manipulated the phase relations among the 

various Fourier frequency components of the impulsive waveform that constitutes 

helicopter blade slap. Ahumada and Hersh 14 found no effect of phase on the perception 

of simulated helicopter impulses. Powell’s* report of another experiment by Ahumada 

gives a 2.7 to 4.5 dB penalty to the !ess-impulsive random phase sounds, when compared 

with the more-impulsive sine and cosine phase-related sounds. The first experiment 

investigated detectability of faint sounds and may not be relevant to annoyance 

judgments. The second experiment represents more relevant annoyance judgments and 

could have important implications for impulse corrections to helicopter noise. Phase is 

closely related to the sharpness or rise time of impulsive waveforms, and rise time has 

been alluded to as having importance in the perception of blade slap (see Southwood and 

Pike32). If this single study reported by Powell is taken by itself and related to some of 

the crest level experiments in Tables I to 4, the results would support a negative impulse 

correction. However, since there is only one experiment, and since different complex 

phase relations are inevitably involved in the impulse signatures for different helicopters, 

as regards the present review, the effects of phase per se will be considered to be 

inconclusive and accounted for in other stimulus parameters, namely helicopter type and 

operations. 

7.2 Tail Rotor Noise --- 

Only two of the studies systematically investigated the human response to the noise 

from tail rotors on certain helicopters. Leverton et aI?1 found that an impulse correction 

of about 4 dB was needed to account for tail rotor noise, while Williams 
36 observed a 6 dB 

tail rotor correction. However, both studies found that a still greater correction was 

needed for main rotor blade slap. Thus tail rotor noise, even at its worst, is of secondary 

* Powell, C.A., “Psychoacoustic Research Progress Report”, Working Group B, ICAO 
Meeting, October 6-8, 1980. 
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importance to main rotor blade slap. For this reason, Williams has suggested that a main 

rotor impulse correction would be sufficient to account for both. Although recognized as 

an important source of noise from the viewpoint of physical acoustics (see Section 3), tail 

rotor noise may be regarded as a secondary characteristic of the acoustic spectrum from 

the viewpoint of human response. In addition, some helicopters, primarily twin main rotor 

types, do not have tail rotors. When helicopters do exhibit prominent tail rotor noise, as 

in the physical measurements of Leverton et al., this tail rotor noise generally appears 

above the other noise components during an early portion of the flyby, more than 

IO seconds before the maximum level is reached. Yet OIIerhead2’ has shown that 

acoustic events in the early time-history of helicopter flybys are not very important 

determinants of judged noisiness. Thus, for the purposes of the present review, tail rotor 

noise will be considered of lesser importance and will be handled conceptually as another 

variation in helicopter type and operation. 

7.3 Repetition Rate 

It has been suggested that the repetition rate of the individual pulses that constitute 

helicopter blade slap may be important in the overall human response to helicopter noise. 

Of the 34 studies reviewed in the present paper, ten of them investigated the repetition 

rate parameter in some systematic manner. These ten studies, and their outcomes with 

regards to repetition rate, are shown in the next to the last two columns in Table 4, 

labelled “Repetition Correction”. In terms of the tabulated outcomes alone, two studies 

indicate that no repetition correction is warranted, four studies indicate that a possible 

but weak repetition correction might be needed, while four studies indicate that some sort 

of quantitative repetition correction is required. This over-simplified summary would 

tend to support the need for a repetition rate correction on the basis of simply tallying 

votes. Yet, because the repetition rate corrections are not all in the same direction, an 

average for the amount of the correction is only about 0.7 dB. Thus a closer examination 

of each study is required in order to make a more astute evaluation. 

Crosse et al!5 found no repetition rate effect, with over 1,000 research partici- 

pants, but they used artificial modulated CTOL noise bursts to simulate helicopter blade 

slap. Thus it is not certain that the stimuli in their experiment represented a sufficiently 

close approximation to actual helicopter noise as heard in the field. d’Ambra and 

Damongeot l 1 reported no significant effect of repetition rate over the range from IO to 

35 Hz in rather carefully controlled psychoacoustic experiments with more realistic 

helicopter sounds. Thus their study should be considered as providing rather strong 

evidence against the need for a repetition rate correction. 
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Some studies provided only weak or inconclusive evidence for a repetition rate 

correction. Lawtonl’ and Powell28 scrutinized the same data from a multivariate 

experiment, simultaneously exploring the effects of five different variables. They both 

report statistically significant effects of repetition rate on annoyance judgments, but two 

other variables exhibited a much stronger effect. Over a range from 8 to IO Hz, the 

effect of repetition rate was only 0.3 points on a Y-point annoyance rating scale, with the 

higher repetition rate being judged slightly more annoying. In further treatment by 

Powell, no clear separation of the data by repetition rate was provided in a regression 

analysis approach. Likewise, Stent and Southwood also found a marginal effect of 

repetition rate. Their data revealed a vague U-shaped trend in the necessary impulse 

correction over the repetition range from IO to 40 Hz, with a minimum at about 25 Hz. 

The A-weighted penalty for impulsiveness dipped from about 8 dB at IO Hz, to about 4 dB 

at 25 Hz, and rose again to about 8 dB at 40 Hz. This trend was not statistically 

significant, however. Finally, Sternfeld and Doyle2’ found no evidence for a repetition 

rate correction in the main body of their psychoacoustic data collected by the method of 

adjustment. But, when less precise verbal category scales and a verbal checklist of 

adjectives (e.g., “booming”, “slapping”, “thumping”, “burring”, “thudding”, etc.) were 

employed, weak qualitative evidence for a possible repetition rate correction emerged. 

Four studies do present concrete evidence that a repetition rate correction might be 

needed. Fidel1 and Horonjeff I6 found a U-shaped function relating the detectability of 

impulsive sounds to the repetition rate of the impulses. Similar to those obtained by Stent 

and Southwood, the functions for single-cycle sine waves of low fundamental frequency 

obtained by Fidel1 and Horonjeff showed a minimum at repetition rates of 20 to 30 Hz and 

a range of variation of about 2 to 4 dB. But Fidel1 and Horonjeff investigated low signal 

level detectability, which may not be relevant to annoyance judgments. Thus the results 

of the Fidel1 and Horonjeff study are difficult to compare quantitatively with annoyance 

and noisiness experiments conducted by other investigators. Galloway’ presents the 

strongest evidence for a repetition rate correction. He also shows about a 3 to 4 dB shift 

in the necessary impulse correction with a change in repetition frequency from IO Hz to 

25 Hz. However, unlike the data of Stent and Southwood and those of Fidel1 and 

Horonjeff, the results presented by Galloway are in the opposite direction. The necessary 

impulse correction grows with repetition rate, at about 3 dB with each doubling of the 

rate. 

The results obtained by lzumi I2 could possibly be used to extend the repetition rate 

range, since lzumi varied repetition rate from I to 8 Hz, while Galloway investigated the 

range from IO to 25 Hz. For noisiness judgments, lzumi found that an increasing impulse 
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correction was needed with increasing repetition rate, and that the slope was again about 

3 dB for each doubling of the repetition rate. The absolute magnitudes of the impulse 

corrections at the transition repetition rate region from 8 Hz (Izumi) to IO Hz (Galloway) 

are different, however, for the two studies. lzumi reports about an 8.5 dB correction at 

8 Hz, whereas Galloway shows about a 3 dB correction at IO Hz. Thus the lzumi data do 

not represent a direct extension of the Galloway data down to lower frequencies. The 

discrepancy is probably due to differences in methodology between the two studies. 

Powell and McCurdy6 also show an increasing impulse correction with increasing 

repetition rate. Depending upon the particular experiment, repetition rate variations 

from IO Hz to I 15 Hz produced changes in predicted LEpN impulse corrections of 

between 5 and 12 dB. These correspond to approximate growth rates of between I.5 and 

3 dB per doubling of the repetition rate. 

In summary, four studies reported significant effects of repetition rate. One was 

not considered relevant to annoyance-type judgments. The data for the remaining three 

are shown in Figure 5, which portrays the estimated necessary impulse correction as a 

function of the impulse repetition rate. (The data of Powell and McCurdy have been 

shifted up by adding 6 dB to account for the D-weighting curve.) Although each of the 

three studies indicates a positive slope within the context of that particular study, when 

the data from all the studies are plotted together on a single set of coordinates, 

considerable scatter is observed. However, when the data of lzumi are excluded, a clear 

relationship does appear to exist. 

Methodologically, it is of interest to note that all ten studies which included 

concrete statements for or against the necessity of a repetition rate correction employed 

primarily electronically synthesized helicopter-like acoustic stimuli, or electronic modifi- 

cations of natural tape-recorded helicopter sounds. None of them presented exclusively 

natural helicopter noises, either live or tape recorded, to their listeners. There is a 

distinct possibility that the inclusion of synthesized stimuli in listening tests with 

helicopter noise can yield exaggerated psychoacoustic effects of the independent vari- 

ables under investigation. The use of only artificial helicopter noise stimuli maximizes 

the chances of obtaining possibly exaggerated or misleading psychoacoustic data. The 

exact nature of this methodological problem and possible reasons for it are explained in 

Section 7.6. Suffice it to say here that, on the whole, the collection of these ten studies 

concerning repetition rate may have a somewhat higher probability of producing a Type I 

error in the Bayesian sense of hypothesis testing: there really is no effect of repetition 

rate on annoyance judgments, but the studies indicate that such an effect does exist. 

Moreover, taken as a whole, this body of data presents several other problems which make 

it difficult to endorse a repetition rate correction: 
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I. The large degree of variability among the three studies showing the strongest 

effects: 

2. The contradictory findings as to the direction of the repetition rate correction 

among all eight studies indicating any repetition rate correction at all; and 

3. The one important study showing no effect (d’Ambra and Damongeot). 

Finally, a limited analysis of the potential effect of repetition rate was made on 

some of the results of 24 Ollerhead. The data on I5 of his test signals, displayed in 

Appendix C of his report, were used to determine repetition rate, which varied from about 

I2 to 28 Hz for that sample. There was little or no correlation between a possible impulse 

correction inferred from his data and the repetition rate. 

Thus the conclusion drawn from the present review is that repetition rate can exert 

a possible, as ye7 inconclusive, effect upon psychoacoustic measurements of helicopter 

noise. However, for present purposes repetition rate cannot be considered as an 

important variable. 

7.4 CTOL Versus VTOL Differences 

Most researchers agree that the noise from helicopters, or VTOL aircraft, sounds 

different than the noise from other types of airplanes (CTOL aircraft). The CTOL 

aircraft that have been most studied consist primarily of large turbopropeller and jet 

passenger planes. Although people might confuse some helicopter flyovers with those of 

certain smaller propeller-driven craft, for the most part people can readily discriminate 

helicopter noise from the noise of other airplanes. The presence of any noticeable blade 

slap would almost certainly result in a listener recognizing the sound as emanating from a 

helicopter. Just because people can easily discriminate VTOL noise from CTOL noise 

does not necessarily mean, however, that the two kinds of noise would be judged as 

different with regards to “annoyance”, “noisiness”, “intrusiveness”, or some other dimen- 

sion of human aversion. Thus, although VTOL noise may sound different from CTOL 

noise, the question still remains as to whether VTOL noise should be measured differently 

or not. 

Of the 34 studies reviewed, I I of them are relevant to the generic question of 

whether helicopters as a class should have a single-number correction applied to 

measurements of their noise relative to CTOL aircraft. The majority of the experiments 

listed in Tables I to 4 did not employ any noises from CTOL aircraft as stimuli, and so 

were eliminated because they cannot directly answer the question. A few studies were 

eliminated because they were primarily methodological pilot studies and their data only 

tended to agree with the results of the main empirical studies that were included. The I I 
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experiments that did employ CTOL sounds, either as reference stimuli or intermingled 

with other helicopter stimuli, are shown in the last two columns of Table 4, labelled 

“Helicopter Correction”. The first study, that of Crosse et al., I5 cannot be easily 

evaluated along with the others. A non-conventional type of measurement, peak LPN , 

was employed, and sufficient information is not given to convert this unusual unit to one 

with which quantitative comparisons can be made among the various other studies. 

All of the remaining IO studies report some sort of frequency-weighted or perceived 

noisiness average level, for the most part corrected for duration, primarily Lt-pN . For 

each study, the last column of Table 4 shows the recommended single-number impulse 

correction to be added to measurements of the noise from VTOL aircraft, as a class, 

irrespective of variations among helicopter types and operating parameters. Two studies 

indicate an impulse correction of about +2 dB, four studies indicate about -2 dB, while 

four studies indicate 0 dB. Overall, the case for a generic impulse correction for all 

helicopter noise does not look good. When one considers that two of the -2 dB 

recommended corrections were reported by Ollerhead in rather similar studies, the 

average comes out to very nearly 0 dB (-0.2 dB, to be exact). Thus, from the present 

review, a generic measurement correction is not warranted for helicopters as one type of 

aircraft, compared to CTOL aircraft as another. This is not to say that different 

helicopters may not still vary among themselves as regards the perceived annoyance or 

noisiness of the sounds that they produce. It does imply, however, that, as a class of 

aircraft, helicopters should not be rated any differently from CTOL aircraft for their 

noise output, when measured in terms of LEpN . 

7.5 Crest Level 

The single variable that has received the most attention with regards to impulse 

corrections for helicopter noise is the crest level of the signal or some variation thereof. 

With the exception of four studies that primarily concentrated upon phase relations, 

repetition rate or methodological concerns, the remaining 30 studies listed in Tables I 

to 4 either directly or indirectly manipulated the crest level of the signal. In some cases 

the crest level was under the experimenter’s direct control through the use of synthetic 

electronically generated signals. In other cases, tape recorded samples of helicopter noise 

with differing degrees of impulsiveness were selected as stimuli by the experimenter. In 

these instunces, the crest levels of the various helicopter noise samples were chosen to be 

quite different. The 30 studies that did employ varying degrees of crest level are 

indicated, along with their outcomes, in columns 5 through 8 of Table 4, labelled “Impulse 

Correction”. A simple binary tally of the results reveals that I8 studies supported the 
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need for an impulse correction based upon crest level, and I2 did not. The various 

amounts of the impulse correction suggested in Table 4 (column 8) correspond to signals 

with rather large crest levels, about 20 dB in most cases (column 7). Thus, for a 

helicopter noise with a crest level of 20 dB, one could take an average across all the 

positive estimates of the required impulse correction (column 8). This average impulse 

correction correction would be about 6.5 dB, computed by taking the mean of the I8 

entries in column 8 where a positive impulse correction was found. However, as in the 

case of repetition rate, before reaching a possibly premature conclusion concerning the 

importance of crest level, a more detailed examination of these studies is warranted. 

Most of the proposed impulse correction methods that are related to some variation 

of a crest level measurement, ASA, AWHL, ANpLy AA9 Also9 and AcL9 incorporate 

some sort of impulse correction transfer function, i.e., the amount of impulse correction 

to be added to the basic measurement of helicopter noise as a function of a crest level- 

derived physical measurement. Thus the elaboration of a functional relationship between 

the perceptually required impulse correction and the crest level in the stimulus is a 

central theme in most of the 30 studies that address the crest level problem. As a result, 

several researchers have attempted to display on common coordinates the data from all 

the relevant studies in order to examine the form that such a composite function might 

take. Unfortunately, because of a plethora of different experimental approaches, possible 

relevant psychoacoustic measurement units, and candidate impulse corrections, this has 

not been easy to accomplish. The data are often simply not compatible, and a limited 

composite is the best that can be achieved. One such limited composite function, 

presented by Williams and Leverton, is shown in Figure 6. The data displayed are from 

Berry et al? (NPL), L ever ton and Southwood I ’ (West land), d’Ambra and Damongeot l l 

(Aerospatiale), Galloway’ (BBN), and Leverton, Southwood, and Pike21 (WHL T/R), 

representing only a small subset of all the data that might have been displayed. Even with 

this small number of studies, the ordinate in Figure 6, AL , or the perceptually required 

impulse correction, involves some questionable mixing of units. Nevertheless, despite the 

considerable scatter, a general trend of growth in the required impulse correction with 

increasing crest level can be found. Many of the data from the remaining I3 studies 

which endorse a crest level-based impulse correction would probably fall in the general 

vicinity of the plotted data points. By contrast, some of the data from the remaining I3 

studies (for example, those of Klumpp and Schmidt, I8 
Lawton,l’ and Powell 28) show a 

maximum impulse correction of only 2 to 3 dB. These latter data would be likely to fill 

out the lower right-hand corner of the graph, if it were convenient to plot them on these 

coordinates. 
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So far the discussion has centered around those studies which have supported a crest 

level-based impulse correction. However, there are I2 studies which have produced 

empirical evidence against the need for such an impulse correction. In fact, in many of 

these cases the implied impulse correction was negative. Pearsons and Robinson and 

Bowsher found that LPN performed well in reflecting people’s reactions to. tape 

recordings of he I icop ter noise. Berry et al? and Galanter et al. I7 found that no crest level 

impulse correction was needed for recordings of helicopter noise; instead LEpN , which 

incorporates both a tone correction and a duration correction, was sufficient to describe 
22 the data. MAN-Acoustics and Noise, Inc., also used tape recordings of actual helicopter 

36 noise, along with simulations of other aircraft noise, while Sternfeld et al. employed 

carefully synthesized VTOL and STOL sounds. In both experiments no evidence for a crest 

level impulse correction was found, and LEPN could adequately describe the data. 

Likewise, Crosse et al!’ dispensed with an impulse correction based upon a crest level 

concept, since their data better supported a peak effective perceived noise level 

measurement. In the Crosse et al. experiment, although an impressive sample of over 

1,000 people participated, the acoustic stimuli were modulated bursts of jet takeoff noise, 

which may not have been representative of actual helicopter sounds. Thus these data may 

not be relevant. 

26 Patterson et al. and Powell25 conducted the only experiments using the field 

method with live helicopter sounds as stimuli. In many respects, these two experiments 

represent the epitome of realism and simulation among the 34 studies reviewed in the 

present paper. Neither experiment substantiated the need for any crest level impulse 

correction for helicopter noise. In fact, Powell’s data showed a more-impulsive helicopter 

to be less noisy than a less-impulsive one. When considered as a pair, these two studies 

complement each other from a methodological viewpoint as well. Whereas Powel I 

sampled only two types of helicopters, Patterson et al. employed 9 different helicopters 

executing I2 different maneuvers. Whereas Patterson et al. sampled only 25 listeners, 

Powell employed a more substantial sample size of 91 people in his experiments. 

Furthermore, the findings of Powell’s field study were carefully replicated and inde- 

pendently verified by two different investigators, Ollerhead24 (pilot study) and 

Shepherd.3 l These two laboratory validation experiments presented tape recordings of the 

actual sounds heard by the listeners in Powell’s field experiment. They obtained 

essentially the same results, the first using earphones and the second using loudspeakers. 

Thus, with respect to face validity and cross-validation, the results of these two field 

studies should be weighed heavily in evaluating the need for a crest level impulse 

correction. 
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The series of experiments conducted by Ollerhead 
24 should also receive considerable 

weight. This program of research embraces nine separate interlocking experiments that 

exhibit uncommon methodological and empirical cross-checks. The effects of variations 

in stimulus presentation, psychophysical methods, verbal descriptors, etc., were all tested 

to ensure a maximum of cross-coupling in the data obtained. From the standpoint of the 

number of stimuli presented, of the 34 experiments reviewed in the present paper, these 

experiments conducted by Ollerhead represent the most ambitious sampling of aircraft 

sounds: 89 helicopter noises and 30 CTOL noises in a single experiment. Some of the 

overall conclusions drawn from this series of experiments were: (I) that no crest level 

impulse correction was needed; (2) that the duration and tone corrections inherent in the 

LEPN calculating algorithm are sufficient to rate helicopter sounds; and (3) that 

helicopter sounds tended to be overrated as to their annoyance by about 2 dB when 

compared with CTOL sounds. 

Taken together, the Patterson et al. and Powell field studies, their attendant 

replications, and the carefully laid-out ‘Ollerhead experimental series represent the best 

examples of experimental methodology in practically all of the important categories of 

Tables I to 4. With the exception of the two studies that were conducted in conjunction 

with an airshow, Crosse et al!’ and Robinson and Bowsher, 3o Powell and Ollerhead 

employed the largest samples of research participants. This is in addition to the most 

realistic stimulus presentation method and the largest number of different helicopter 

sounds. Thus the consistent disavowal of an impulse correction in all of these studies 

must be taken seriously. 

7.6 Resoluticm --- 

Although, according to the taxonomy presented in Tables I to 4, the most impressive 

studies are aligned against a crest level-based impulse correction, there are some 

excellent experimental results supporting the notion. Of the I8 studies that endorse an 

impulse correction, several stand out as fine examples of psychoacoustic research. Then 

why the discrepancy in results? The source of this discrepancy may lie in the 

methodologies and approaches selected by the experimenters. The 30 studies that address 

the issue of a crest level impulse correction were separated into those studies that 

endorsed such a correction and those that did not. These classifications were further 

partitioned in various ways according to the methodologies employed in the various 

experiments. For example, one partitioning was according to the method of stimulus 

presentation: live, free-field, semi-reverberant field, or earphones. Another was 

according to the psychophysical technique of measuring people’s responses: comparison, 
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adjustment, or rating method. Still a third was according to the verbal descriptor 

employed: “annoyance” or “noisiness”. If each study was considered to be a single score, 

the resulting contingency tables showed no statistically significant relationships between 

the experimental methodology employed and the outcome of the experiment, as regards 

the need for a crest level based impulse correction. 

One methodological distinction did appear to offer more promise of showing such a 

relationship. That distinction was between natural and synthesized sound stimuli. An 

important decision that must be made in designing any psychoacoustic experiment on 

helicopter noise is whether to use natural helicopter sounds, either presented live in the 

field, or tape recorded in the field and reproduced under laboratory conditions. The 

alternative is to use artificial electronically synthesized sounds. The relative advantages 

and disadvantages of using synthesized helicopter sounds are enumerated in Section 4. I .6. 

In Table 5, 29 of the 30 studies that address the problem of a crest level impulse 

correction are partitioned according to whether they employed natural helicopter stimuli 

or synthesized stimuli, and according to whether an impulse correction was indicated by 

their data, or no impulse correction was indicated. The rationale for partitioning the 

studies was straightforward in most cases. The separation into those groups that 

supported a crest level impulse correction and those that did not was simply by the entries 

in column 5 of Table 4, just as in Section 7.5, with one exception. The study by Leverton 

al.,2’ et which endorsed the impulse correction, could not be included in Table 5 because 

of insufficient specification of stimulus presentation methods in the report. That is why 

Table 5 shows I7 studies in favor of an impulse correction and I2 against it, whereas 

Section 7.5 gives I8 for and I2 against. Otherwise, the four remaining studies that were 

eliminated are the same ones that were eliminated in Section 7.5. These four studies, 

listed in the insert at the lower right of Table 5, were not included for the same reasons 

given earlier, i.e., they concentrated upon other variables. 

Classification according to stimulus material, natural or synthesized, was accom- 

plished by inspection of column 3 of Table 2, labelled “Helicopter Source”. Here 

“synthetic” signals were obvious to classify, and “recorded” and “live” signals were 

classified as “natural stimuli”. There were a few special cases, however. Four studies 

(Galloway? Leverton and Southwood,t’ MAN-Acoustics and Noise, lnc.,22 and Williams36) 

employed a combination of synthetic and recorded signals. These studies were classified 

according to whether the majority of the signals presented were synthetic or recorded, as 

indicated in column IO of Table 2. Two studies employed what has been called “mixed 

recorded” stimuli in the nomenclature of the present review. d’Ambra and Damongeot II 

and Sternfeld and Doyle 29 started out with recorded samples of helicopter noise which 
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Table 5 

Classification of Studies Addressing 
Crest Level Impulse Correction Question 

NATURAL STIMUJ 
IMPULSE CORRECTION 

Authors 

Klumpp and Schmidt 
Lever ton 
Munch and King 

TOTAL = 3 

study 
No. 

2 
6: 
7. 
9. 

IZ: 

2263: 

3;: 
31. 

E: 

SYNTHESIZED STIMULI 
IMPULSE CORRECTION 

Autfmrs 

Berry et al., 2 
Berry et al., 3 
d’Ambra and Damongeot 
Fidel1 and Horonjeff 
Galloway 
Lawton 
Leverton and Southwood 
Powell, I978 
Powel I and McCurdy 
Southwood and Pike 
Southwood 
Stent and Southwood 
Sternfeld and Doyle 
Williams 

TOTAL = I4 

NATURAL STIMUJ 
NO IMPULSE CORRECTION 

Authors 

2. 
8. 

1”9- 
20: 
21. 

E: 
27. 
28. 

Berry et al., I 
Galanter et al. 
MAN-Acoustics and Noise, Inc. 
Ollerhead, M 
Ollerhead, R 
Patterson et al. -- 
Pearsons 
Powell, I98 I 
Robinson and Bowsher 
Shepherd 

TOTAL = IO 

SYNTHESIZED STIMUJ 
NO IMPULSE CORRECTION 

St* 
No, Authors 

5. 
33. 

Crosse et al. _- 
Sternfeld et al. 

TOTAL = 2 

NOT INCLUDED 

I. 
IO. 

1;: 
24. 

Ahumada and Hersh 
lzumi 
Leverton et al. 
Ollerhead P 
Powell, I980 
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they electronically separated into an impulsive component and a continuous component. 

Then they electronically mixed these two components back together in varying propor- 

tions to create a wider range of helicopter sounds than is likely to occur in nature. Since 

this approach eliminated some of the natural constraints on the possible impulsive/ 

continuous combinations that would be likely to occur in real helicopter noise observed in 

the field, these two studies were classified as having “synthesized” as opposed to “natural” 

stimuli. Similarly, Southwood engaged in electronic manipulation of recorded heli- 

copter sounds by applying a “notch” filter to attenuate some of the middle frequency 

components of helicopter blade slap. Although listed in column 3 of Table 2 as coming 

from a “recorded” helicopter source, the artificial electronic manipulation executed by 

Southwood was classified under “synthesized” as opposed to “natural” stimuli. Thus the 

governing principle for classification is the degree of constraint over acoustic parameters 

imposed by natural helicopter designs and operations. Electronic manipulations or 

simuiations that go beyond these constraints are considered “unnatural” or “synthetic”. 

Inspection of Table 5 shows a strong relationship existing between the type of 

stimulus employed and the outcome of the psychoacoustic study as concerns the need for 

a crest level impulse correction. Studies employing natural stimuli tend to reject an 

impulse correction, whereas studies employing synthesized stimuli tend to endorse it. If 

all of the 29 studies in Table 5 are given equal weight, a simple statistical test confirms 

the obvious conclusion that the type of stimulus and the need for an impulse correction 

are significantly related ( X2 = 12.26, I df, p < 0.01). There are two possible reasons for 

this relationship. 

First, as mentioned earlier, those experiments employing synthesized stimuli are 

likely to include combinations of acoustic parameters that do not occur in nature. Some 

of these acoustic parameters may have important psychoacoustic effects upon the 

annoyance or noisiness responses of people. However, they may be so combined by the 

natural physical constraints of real helicopter operations that their effects are compen- 

satory, i.e., one parameter always offsets the other. This is, after all, similar to the 

argument that has been made by Ollerhead 24 and Powellr2’ with natural helicopter 

stimuli, either presented live or via tape recordings, the combined duration, spectrum, and 

level changes that accompany helicopter blade slap are sufficient, within the context of 

LEPN measurements, to account for the human response to impulsive versus non- 

impulsive helicopter noise. The presence of blade slap, in and of itself recognized as 

contributing to increased annoyance, produces changes in other acoustic parameters that 

can compensate for or account for the increased annoyance caused by the presence of the 

blade slap. Altering the natural constraints among the acoustic parameters by electronic 

tampering can destroy this compensatory mechanism. 
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A second possible reason for the observed relationship between the type of stimulus 

and the need for an impulse correction is the existence of a bias that sometimes occurs in 

this sort of psychophysical testing. In Section 4.2.4, the fundamental response underlying 

all 34 psychoacoustic experiments on helicopter noise was shown to be that of discrimina- 

tion. Even when stimuli are perceptually matched for “equal annoyance” or “equal 

noisiness”, they are still discriminably different on other dimensions. The purpose of the 

verbal descriptor is to restrict the participant’s response. However, when one considers 

the exquisite sensitivity of the human observer, the contrivance of artificial psycho- 

acoustic experiments where carefully administered amounts of impulsiveness may be 

interjected by electronic means can militate against the experimenter in the following 

manner. 

In many of. the experiments using synthetic sounds, the listener hears a reference 

non-impulsive helicopter stimulus and a series of test helicopter stimuli composed of that 

same identical non-impulsive reference helicopter sound with a few different levels of 

impulses added to it. The danger exists in having this sort of experimental design too 

transparent to the participant who, despite the invoking of certain abstract verbal 

descriptors, is under a strong tacit motivation to please the experimenter and not to 

appear inconsistent. If sound A is that of a non-impulsive helicopter, and sound B is 

sound A-plus-impulses, to the listener, sound B must somehow be greater than sound A, 

for sound B is sound A plus something. Despite the verbal instructions exhorting the 

listener to pay attention only to the relative “annoyance” of the sounds, since the listener 

can readily discriminate that something has been added to the second sound, the listener 

may presume that the second sound must be louder and therefore more annoying than the 

first sound. The participant may perceive this, even if the impulses really exert some sort 

of soothing influence on the sound complex and actually make the combination less 

annoying. The experimenter obviously added something to the stimulus, and the listener 

wants to please the experimenter and not to respond in an inconsistent manner. In short, 

if the participant can discriminate among the stimuli, he will tend to discriminate among 

them, even if this discrimination is of no real consequence to his relative aversion for the 

sounds. Those psychoacoustic experiments which employ natural helicopter stimuli are 

less prone to encountering this sort of psychophysical bias, since they rarely have the 

luxury of careful, progressive, and wide variation of parameters. They usually present 

randomly scattered combinations of stimulus parameters that vary on many dimensions at 

the same time. With natural stimuli, typically the listener has considerably more 

difficulty in trying to second-guess the experimenter. 
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Thus two possible reasons have been offered for why those studies that employed 

natural stimuli tended to find no impulse correction and those that employed synthesized 

stimuli did find an impulse correction. These reasons may explain why the majority of the 

studies in Table 5 follow the general relationship. An examination of the five studies in 

Table 5 which do not uphold this general relationship might prove revealing as exceptions 

to the rule. Of the three investigations which used natural stimuli and supported an 

impulse correction, two of them (Leverton 20 and Munch and King23) were only pilot 

studies, possibly conducted with the experimenters themselves serving as the listeners, for 

no information is given on the number or kind of research participants who took part in 

the experiments. By contrast, the study conducted by Klumpp and Schmidt l8 represents a 

substantial psychoacoustic investigation. These researchers employed a rather incon- 

gruous reference sound, that of a city bus; but this should not have seriously affected the 

results. They di’d, however, only indicate the need for a modest impulse correction of 

2 dB. On the other side of the issue, two studies which employed synthesized stimuli did 

not support an impulse correction. 4s mentioned earlier, the investigation of Crosse 

et al!5 used modulated jet takeoff noise as a simulation for helicopter impulses. When 

compared with the acoustically more faithful simulations used in most of the other 

studies, the perceptual realism of this stimulus may certainly be questioned. Further- 

more, the classification of the Crosse et al. study according to whether it does or does not 

support a crest level impulse correction is open to interpretation. By a strict 

interpretation, Crosse et al. recommend a peak LpN measurement instead of a crest level 

measurement. However, one could argue that using a peak L,-+, measurement for 

helicopter noise, and using a time-averaged LPN measurement for CTOL aircraft noise, at 

least conceptually, represents an operation similar to making a perceptually adjusted 

crest level determination. In a similar manner, the experiment of Sternfeld et al.86 

possesses unusual features. As regards the stimulus parameters investigated, these 

researchers concentrated on overall level and spectrum shape as independent variables. 

They did not independently manipulate the crest levels of their stimuli. Furthermore, 

they employed an extremely realistic simulation of the psychological context for 

obtaining laboratory psychoacoustic data. Their superior psychological modeling of actual 

meaningful listening situations would make their study more resistant to the intrusion of a 

psychophysical bias for second-guessing the experimenter. Thus, for four of the five 

studies that do not uphold the general relationship, special circumstances may explain why 

they stand as exceptions. 

In summary, the question of whether or not a crest level-based impulse correction is 

needed in the measurement of helicopter noise resulted in a close vote: I8 studies in 

favor and I2 against. However, counted among the I2 negative votes were some of the 
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most carefully designed and realistically executed psychoacoustic experiments of all the 

34 studies reviewed. Practically all those studies that employed natural helicopter noise 

stimuli, either live or tape recorded, found that no impulse correction was needed. 

Conversely, practically all those studies that employed electronically modified helicopter 

noise or electronic simulations of helicopter noise found that an impulse correction was 

needed. Thus the outcome of the experiment is to some degree a function of the design of 

the psychoacoustic test and the methodology employed. In operational terms, the answer 

obtained depends upon the question asked. One question is: Can one construct a 

psychoacoustic experiment with helicopter-like sounds such that people will respond to 

the crest level of the acoustic signals? The answer is yes. People are sensitive to 

differences in the crest level or degree of impulsiveness in sounds. If one isolates the 

variable of crest level and systematically manipulates it, people will likely discriminate 

these changes in ‘the stimulus and will respond to them in a systematic way. This is not to 

say, however, that this seemingly systematic response necessarily represents changes in 

the actual annoyance experienced or in.some other psychologically meaningful feature of 

importance or of consequence to the listener. The other question is: Are differences in 

crest level important determinants of the negative reactions that people might have upon 

hearing actual helicopter sounds in their natural environments? The answer is probably 

no. Those psychoacoustic experiments that presented a wide variety of natural helicopter 

sounds, both live and recorded, under conditions that most nearly simulated actual 

listening environments, both acoustically and psychologically, practically all showed no 

effect of crest level on annoyance or noisiness judgments of the sounds. 
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8.0 CONCLUSIONS 

The present paper reviewed 34 psychoacoustic experiments on the human response 

to helicopter noise. Certain variables emerged as being of possible importance in 

providing a psychoacoustic foundation for measurements of helicopter noise. Of par- 

ticular interest were those variables which could be incorporated as possible corrections 

for impulsive blade slap. The importance of five factors was assessed: 

I. Phase Relations - The effects of varying the phase relations among the Fourier 

frequency components constituting helicopter blade slap have not been well 

researched. Of the 34 studies reviewed, only two related to this problem, and 

their results were contradictory. Thus, at present, phase relations are not 

considered to be an important variable. 

2. Tail Rotor Noise - Certain helicopters produce a distinct noise that emanates 

from the tail rotor. Tail rotor noise may have some effect upon the overall 

human response to helicopter noise, but it is not well understood, and its effect 

is probably secondary to that of main rotor blade slap. Of the 34 studies 

reviewed, only two addressed this issue. Both suggested that tail rotor noise can 

likely be accounted for in whatever manner is devised for main rotor blade slap. 

Therefore tail rotor noise is considered to be a secondary factor of relatively 

little importance. 

3. Repetition Rate - The repetition rate of the individual noise pulses that make 

up helicopter blade slap has been suggested as an important determinant of the 

human response to helicopter noise. Ten of the 34 studies reviewed investigated 

the repetition rate parameter to some degree. Two studies indicated that no 

repetition rate correction was needed, four provided weak evidence of a possible 

relationship, while four supported such a correction. Contradictory evidence 

concerning the direction of the effect, considerable variability in the data 

supporting the effect, and certain possible methodological drawbacks make the 

definition of a useful functional relationship extremely difficult. Consequently, 

for the present, repetition rate is not considered to be an important variable. 

Measurements of LEPN should be adequate to account for differences in 

repetition rate. 

4. CTOL Versus VTOL Differences - Some researchers have suggested that a 

single-number penalty should be applied to all helicopter noise in order to 

account for blade slap, irrespective of differences in helicopter type and 

operations. Eleven of the 34 studies reviewed addressed this question: two 
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5. 

suggested a +2 dB penalty, four suggested a -2 dB penalty, and four suggested no 

penalty (one study deleted). When properly adjusted for the specifics of each 

study, the average correction came out to be very nearly 0 dB. Thus, as a class, 

helicopters should not be measured differently from other aircraft. 

Crest Level - Most of the 34 studies reviewed (30 to be exact) either directly or 

indirectly investigated possible impulse corrections for helicopter noise based on 

crest level types of measurements. Of these, I8 studies supported the need for a 

crest level based impulse correction, and I2 did not. But this small majority in 

favor of a crest level type correction was offset by some of the larger scale and 

more realistically executed experiments aligning themselves against such a 

correction. Methodological considerations provided an exit from this dilemma. 

Practically all those studies that reported the need for a crest level impulse 

correction employed electronically synthesized or electronically modified 

examples of helicopter noise. These electronically created sounds represented 

many variations of helicopter .noise that do not occur in nature. Furthermore, 

such artificial simulation experiments are susceptible to certain possible psycho- 

physical biases. Conversely, practically all those studies that reported no need 

for a crest level impulse correction employed natural helicopter stimuli, 

presented either live or by tape recordings. These experiments often involved 

large samples of realistic helicopter noises under conditions that most nearly 

simulated actual listening environments. For this second group of studies, in 

practically all instances, the tone and duration corrections already inherent in 

the LEPN measurement scheme could adequately handle impulsive helicopter 

blade slap. Therefore, as concerns the possible negative reactions of people 

actually exposed to helicopter operations, the conclusion is that crest level, or 

one of its derivative measurements, is not an important factor to consider as the 

basis for an impulse correction. 

In summary, a careful analysis of the evidence for and against each factor reveals 

that, for the present state of scientific knowledge, none of these factors should be 

regarded as the basis for a significant impulse correction. The commonly used method of 

measuring effective perceived noise level, LEPN, with its inherent corrections for tonal 

components and exposure duration, is adequate for measuring helicopter noise as well. 

Thus, at present, there is apparently no need to measure helicopter noise any differently 

from other aircraft noise. 
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impulsive blade slap. The current method of measuring effective perceived noise level, 
LEPN , for conventional aircraft appears to be adequate for measuring helicopter noise as 
well. Thus there is apparently no need at present to measure helicopter noise any differently 
from other aircraft noise. 
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