
N A s A - C r< - / t:, '1, D / 7

NASA-CR-168019
19830005868

NASA CR-168019
MTI83TR12

U,i'GLEl flt:SEf,RCH CE:.iel:
LIGf\fRY Nr'\SA, HA:,jFrotl, VA.

DIGITAL SYSTEM FOR
STRUCTURAL DYNAMICS SIMULATION

by A.1. Krauter, L.J. Lagace, M.K. WOjnar and C. Glor

SHAKER RESEARCH CORPORATION

prepared for

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

NASA Lewis Research Center
Contract NAS 3-22546

111
NF01875

1 Report No I 2 Government AccesSIon No 3 RecIPient's Cltalog No
NASA CR 168019

4 TItle and SubtItle 5 Report Date

DIgItal System for Structural Dynam1cs S1mulation November, 1982
6 PerformIng OrganIzatIon Code

7 Author(s) 8 PerformIng OrganlZltlon Report No

A. 1. Krauter, L. J. Lagace, M. K. WOJnar, C. Glor 83TR12
10 Work Unit No

9 PerformIng OrganizatIon Name Ind Address

Shaker Research Corp.
968 Albany-Shaker Road 11 Contrlct or Grlnt No

Latham, New York 12110 NAS3-22546
13 Type of Rlport and PerIod Covlred

12 Sponsortng Agency Name and Address Contractor Report NASA
Lew1s Research Center 14 Sponsortng Agency Code
21000 Brookpark Rd
Cl pvp 1;, nrl OH 44 I 1t;

15 Supplementary Notes

FInal Report Project Manager: L. J. KIraly
MS 23-2
NASA Lew1s Research Center

16 Abstract

The obJect1ve of thIS program, was to develop and document the des1gn of a digital device for
structural dynamICs simulat10n. The simulator design has incorporated state-of-the-art digital
hardware and software for the simulation of complex structural dynam1c interactions, such as
those wh1ch occur 1n rotat1ng structures. The targeted uses of this system include simulations
and parametr1c des1gn studies to identify 1mproved design crlter1a and methodology, to identify
structural dynamICs 1nstabllit1es and to evaluate the effects of local non-linearities, transIent
loadIngs, and eng1ne control 1nstabilities.

The system has been des1gned to use an array of processors where1n the computat10n for each
phYSIcal subelement or functional subsystem would be ass1gned to a single specific processor 1n
the s1mulator. These node processors are custom deSIgned mIcroprogrammed bit-slice microcomputers
which function autonomously and can communicate with each other and a central control minicomputer
over parallel dIgital lines. Inter-processor nearest neighbor communications busses pass the
constants which represent phys1cal constraints and boundary conditions. Each node processor has
its own program and data memory. Each node processor calculates its results independently and
simultaneously WIth the other node processors. The node processors are connected to the six
nearest neIghbor node processors to simulate the actual physical 1nterface of real substructures.

Computer generated f1n1te element mesh and force models can be developed with the aid of the
central control min1computer. The program so developed is converted to the proper format,
segmented and loaded into the 1ndividual processors wh1ch make up the simulator. The control
computer also oversees the an1mat10n of a graphics display system, disk-based mass storage along
w1th the 1ndiv1dual processIng elements.

The mathematical approach to Simulating the dynamic behavior of an engine system is based upon the
exp11cit t1me 1ntegrat10n of the state vectors assigned to the individual processors. An
lnteoratl0n techn10ue such as fourth order Runoe-Kutta 1S applicable to thIS analvs1s.

17 Key Words (Suggested by Author(s)) 18 D,strtbut,on Statement

Slmulat10n, H1gh Speed Rotat1ng System Unclass1f1ed, Unlimited
S1mulat10n, Rotat1ng Structures S1mulation
Parallel. ProcessIng Methods. Dig1tal Processor
Arrays

19 SecUrtty ClISSlf (of thIS report) 120 Securtty Classlf (of th,s page) 21 No of Pages 122 Prtce'

UnClaSSlf1ed Unclassif1ed 125

• For sale by the NatIOnal Technical InformatIOn SerVice, Springfield, Virginia 22161

NASA·C·168 (Rev 10·75)

TABLE OF CONTENTS

Page

SUMMARY. • • • • • • • • • • • . • 1

INTRODUCTION. • . • 3

ANALYSIS - REQUIREMENTS FOR SIMULATION. •••• ••••••••• ••••••••••• ••••••• 5

SAMPLE PROBLEM 1 - TOMKO PROBLEM................................... 5

SAMPLE PROBLEM 2 - DETERMINATION OF PROCESSOR
COMPUTATIONAL REQUIREMENTS. •• 14

SOFTWARE REqUIREMENTS.. 22

HARDWARE REqUIREMENTS.. 22

OVERVIEW OF SYSTEM ARCHITECTURE-SOFTWARE •• ••.••••••.••.•••••••••.••••• 23

CONTROLLER OPERATING SYSTEM SOFTWARE............................... 23

OFFLINE MODEL DEVELOPMENT SOFTWARE................................. 28

REALTIME MODEL EXECUTION SOFTWARE..................... •• • • • • • • • • • •• 31

NODE PROCESSOR OPERATIONAL PROGRAM................................. 34

NODE PROCESSOR MICROCODE.. . • . • • • • • • • • . . • • • . • • • • • • . • • • . • • • • • • . • • • . •• 34

DIAGNOSTIC SOFTWARE.. 35

NODE PROCESSOR ARCHITECTURE.. . • . • • • • • • • • • • . • • • • • . • • • • • • . • . • • • . • • • • • • •• 35

MEMORY.. ••• .• .•••• ••••••••• ••••••••••• ••••••• •• .• •• ••• •• ••••••••••• 36

DATA TyPES .••••.••• 37

NODE PROCESSOR REGISTERS... 38

PROCESSOR STATUS WORD.. 38

INPUT /OUTPUT . • . • • • • • • • . . • . • • . • • • • • • . • • • • • • . • . • • • • • • • • . • • • • • • • • • • • •• 40

PROCES SOR TRAPS... • . • • • • • • • •• 40

INSTRUCTION FORMATS.. 41

NODE PROCESSOR INSTRUCTIONS.. 43

SOFTWARE SPECIFICATION SUMMARy.. 51

SOFTWARE ASSESSMENT... 54

NODE PROCESSOR HARDWARE... 56

MICROPROGRAM CONTROLLER........ •• • • • • • • • • • • • • • • • • . • • • • • • . • • • • • • • • •• 59

REGISTERED ARITHMETIC LOGIC UNITS ••••••••••••••••.••••••••••••••••• 64

DYNAMIC MEMORY ••.•••••••.•••• 68

NODE PROCESSOR COMMUNICATIONS...................................... 73
83 FLOATING POINT BUS INTERFACE AND SCRATCH PAD•........•......•..

FLOATING POINT MULTIPLIER 91

/ / 100 FLOATING POINT ADDER SUBTRACTOR DIVIDER

HARDWARE ASSESSMENT•.............................. 110

DISCUSSION OF RESULTS "••.....•....•.....•.......•..... 111

112 SUMMARY OF RESULTS AND RECOMMENDATIONS•....•.•..•.................

APPENDIX I - SUMMARY OF CURRENT SIMILAR SIMULATION PROGRAMS

APPENDIX II - SUMMARY OF RELEVANT PAPERS DESCRIBING PARALLEL
PROCESSING SIMULATION PROCEDURES

LIST OF ILLUSTRATIONS

1. Sample Problem 1 Physical Model............................ 6

2. 5 x 5 x 5 Node Processor Array•.....•..•••••......•.••. 24

3. To/From Six Nearest Neighbor Block Diagram •.•.•.•.......•.. 25

4. System Block Diagram..• •. .•• .• .. • . • . . 26

5. Global Bus Interface Block Diagram.... . • • • . . • .• . • . • • . . . • • • • 27

6. Node Processor Block Diagram ••.•.........•..•...••.••••.•.. 57

7. Microprogram Controller Block Diagram... • .• .• .•• 60

8. RALU Block Diagram... • .• .• .• • •. . .•• •. • . • •• .• •• . . • 65

9. Dynam~c Memory Block Diagram.. .• •• • •• •• • .. . 69

10. FIFO Buffered Communications Interface Block Diagram •...•.. 75

11. Six Way Communicat~ons Interface........................... 77

12. Six Way Communications Controller, Output Loop .•.•.....••.. 78

13. Output Operat~on of the Six Way Communicat~ons Controller •• 79

14. Six Way Communications Controller Flowchart, Input Loop ...• 8Q

15. Input Operation of the Six Way Communications Controller •.. 81

16. Floating Point Bus Interface Block Diagram •.•............•• 87

17. Floating Point Multiplier Flowchart........................ 94

18. Floating Point Multiplier Block D~agram............. ..•.... 97

19. Floating Point Adder/Subtractor/Divider Block Diagram ••••.• 102

20. Floating Poin t Add~ t~on Flowchart.......................... 105

21. Floating Point Subtraction Flowchart. .••••.••..•...•.••..•. 107

22. Floa tmg Point Division Flowchart. •••..•.....••............ 109

SUMMARY

The objective of this program, conducted by Shaker Research Corporation,

was to develop and document the design of a digital device for structural

dynamics simulation. The simulator design has incorporated state-of-the

art digital hardware and software for the simulation of complex structural

dynamic interactions, such as those which occur in rotating structures.

The targeted uses of this system include simulations and parametrlc design

studies to identify improved design criteria and methodology, to identify

structural dynamics instabilities and to evaluate the effects of local

non-linearitles, transient loadings, and engine control instabilities.

The system has been designed to use an array of processors wherein the

computation for each physical subelement or functional subsystem would be

assigned to a slngle specific processor in the simulator. These node

processors are custom deslgned microprogrammed bit-slice microcomputers

which function autonomously and can communicate with each other and a

central control minicomputer over parallel digit,ll lines. Inter-processor

nearest neighbor communications busses pass the constants which represent

physlcal constraints and boundary conditions. E.lch node processor has its

own program and data memory. Each node processor calculates its results

independently and simultaneously with the other node processors. The node

processors are connected to the six nearest neighbor node processors to

simulate the actual physical interface of real substructures.

Computer generated finite element mesh and force models can be developed

with the aid of the central control minicomputer. The program so developed

lS converted to the proper format, segmented and loaded lnto the individual

processors which make up the simulator. The control computer also oversees

the animatlon of a graphics display system, dlsk-based mass storage along

with the individual processing elements.

, -1-

The mathematical approach to simulating the dynamic behavlor of an englne

system is based upon the expllcit time integration of the state vectors

assigned to the individual processors. An integration technique such as

fourth order Runge-Kutta is appllcable to this analysls.

The hardware was deslgned as an array of 125 processors ln a cubic structure.

Each node processor was designed for very high speed multlplicatlon and

addition which are fundamental requlrements for the tlme-step integratlon

algorithms. This lmplementation of an array of processors operating ln

parallel has the capabillty of solving simulation problems an order of

magnltude faster than a conventional serial computer.

-2-

INTRODUCTION

This program was initiated to investigate and document the design of a

Digital System for Structural Dynamics Simulatlon. The intended use for

the system is a design and analysis aid for the productJon of gas turbine

engines. This simulator would realize both a savings of money and of

time by reducing the need for extensive prototypJng during the develop

ment of gas turbine engine hardware. While simu1ation methods exist for

use on main frame computers, this system uses the architecture of an array

of processors for greater throughput.

Current and on-going work in the field of parallel proc£>ssing and simulation

was reviewed and is summarized 1n Appendices I and II.

Special acknowledgement is given to Mr. L. James Kiraly, Project Manager

of the Digital System for Structural Dynamics Simulation at NASA-Lewis

Research Center. Mr. Kiraly's contributions were pertinent to the success

of this effort. His ideas are reflected throughout this final report.

The scope of this work 1ncluded the study of simulation technlques useful

w1th parallel processors, the design of the system archltecture, the hard

ware design of the individual processors in the array (node processors),

and the design and flowcharting of the processor instructions. Special

emphasis was placed upon the design of the system architecture and the

node processor hardware. Particular attention was paid to the high risk

areas of the node processor design. For instance, floating point hardware

for multiplication, addit10n, subtraction and dhision was designed through

detailed schematic diagrams. The CPU and communJcations controller, being

more conventional, were detailed only to the block diagram stage. The

node processor memory was designed to the schematic level.

Software design centered on the node processor. A very large and powerful

custom instruction set tied lntimately to simulation technlques was devel

oped. The concepts necessary for on line and off line ~oftware were

started, but no attempt was made to write this software.

-3-

The concepts of simulation with regard to an array of processor solution

were developed in broad terms. Segmentation of a problem, problem Slze

and computational requirements were carried to the level sufficlent for

node processor deflnition.

For a successful implementatlon of this system, follow-on is needed ln

all three of the above areas. A sample problem must be developed and

programmed on a main frame computer. Further hardware detalling is neces

sary to complete the node processor design. A breadboard verSlon of a

node processor should be constructed, microcoded, and programmed with

the sample problem. Software development is needed to reach this proto

type stage. Additional software development is then required to lmple

ment the entire array of processors.

The following section describes the slmulation analysis leading to the

system architecture and node processor archltecture.

-4-

ANALYSIS - REQUIREMENTS FOR SIMULATION

In this section the groundwork for the Digital System for Structural Dynam1cs

S1mulation is developed. Two sample problems are discussed. The f1rst

problem describes a simplified nonlinear s1mulation problem and its solution

on an array of processors. The second problem is linear and is used to set

the bounds on the hardware by limiting the overall size of the physical model.

Some additional detail on problem sub structuring is brought out. A time

step integration method appropriate for the solution 1S developed. Finally,

the hardware and software requirements are outlined prior to their detailed

discussion in the following two sections.

SAMPLE PROBLEM 1

Th1s sample problem, based on work by J. J. Tomko, is used to illustrate

techniques that can be used to solve a simulation problem on an array of

processors with time step integration methods. Other models and techniques

other than the ones presented for this model can also be employed. The

model is shown in Figure 1. The model contains m disks including shaft seg

ments which have mass. Each disk may contain n blades and there are b

bearings.

Disk Representation

Each disk is represented by five coord1nates. These coordinates are two

translations and three rotat10ns. Each disk is taken as rigid. The disk

equation 1S of the form:

[Mdi] {qdi} f(t,{qdi}, {qdi} , {qd 1-l}, {qd . I}, 1- {qd 1+l}, {qd i+1}

{qbiJ }, {qbij }, {qci }, {qci}) (1)

where {qdi} is the f1ve element state vector for disk 1

{qd i-I} 1S the f1ve element state vector for disk 1-1

{qd i+l} is the five element state vector for disk Hl

{qbij} is the state vector for blade J on dt&k i. This vector

can contain 4 elements.

-5-

SAMPLE PROBLEM

PHYSICAL MODEL

Figure 1 Model Containing m Disks (Including Shaft Segments
Having Mass). Each Disk Can Conta1n n Blades.
There are b Bearings. Model Based on That of
Tomko, J.J.

-6-

1S the state vector for the casing at disk i. This

vector can contain 4 elements at a bearing or 80 elements

at a bladed disk.

can be non-diagonal and time variable. The non-diagonal

character arises from the use of a point other than the

mass center for the definition of the translational

degrees of freedom. The time variation arises from this

and from the use of fixed Cartesian coordinates.

Blade Representation

Each blade is represented by two lumped masses helving two degrees of freedom

each. These degrees of freedom are axial and circumferential translation.

The equation for each blade is of the form:

where

is the 4 element blade state vector, and where

is the state vector for the casing at disk i. This vector

can contain, say, 40 radial and 40 aXla1 coordinates for

a casing cross-section at a blad(!d disk.

The matrix [~ij] is assumed to be diagonal and ('ohstant - the equations

for the blades must be written using inertial coordinates.

Casing Representation

Assume the caslng has been modeled by a large scale finite element program

Wh1Ch 1nc1udes, say, 40 nodes at each disk. Each of these nodes can have

radial and axial displacement. At bearing stations, the flnlte element

program provides at least two displacements and two rotations.

Assume also, that the finite element program produces up to 10 modes. For

-7-

each mode, the mode vector is {u }, where this vector contains all of the
r

points used in the finite element analysis. The vector{u .} is that part r1
of the modal motion occurr1ng at cross-section 1.

At disk i (i.e., cross-sect10n 1), the casing coordinates are glven by

10
L

r=l
{uri} cr(t) where cr(t) is the modal mot10n of mode r.

The equation of mot10n for mode r is

2 t m {u .} {fed }
+ 2nw C + L

r1 1
(3) C W c r r r r r i=l {u }t [M] {u }

r c r

where n 1S a user-supplied modal damping factor, w. is the modal frequency,
1

{f(t)} is the force of the blades or of the bearing on the cas1ng at

station i, and [M] is the mass matrix for the finite element model. Note
T c

that {u } ·[M]·{u } 1S a slng1e scalar number for each mode and need be r c r
computed only once.

At each disk cross-section {u } and {f (t) } can conta1n 80 elements. r1 1
Consequently the {q .} can also contain 80 elements. C1

The force {f(t).} for blade j is, in general, represented by
1

{f (t) .} = f. ({ q .}, { q .}, { qb . . }, { qb .. }) 1 1 C1 C1 1J 1J

A Parallel Processing Approach

One approach to simulate the mot10n of the engine (l.e., to solve the dynamic

equations of motion) is as follows (in this, each box denotes a processor

and each line denotes transmiSS10n of information between processors). The

controlling mlnicomputer is not shown.

-8-

~r!- ~:-I- 3

--e. •••

I - ~I}I
--.J __ Di-l_J- I Di _ ---..,. ...

C * 1

~I_. --4--
.

I • I c i _ l I ; ci+l, .

~,---I_ - __ .. . _____ I -J.-[_J ___ L_~..l..--___ ' ---LI_-_J _

Typical Node Processor Assignment

The array of processor nodes are assigned such that

)~

B. denotes a processor that treats all thp blades on a disk,
~

D denotes a processor that treats a disk or a lumped mass
~

segment of the shaft, and

C. denotes a processor that treats a portion of the casing
~

(i.e., that portion of the casing associated with a d~sk

or with a lumped mass shaft segment).

The first casing yrocessor has tasks beyond those of casing processors
C2 through Cm'

-9-

......

The functions of each processor are as follows:

PROCESSORS Dl through D[+l

In general, [Md1] must be evaluated at each time step and then 1nverted

From the B.,
1

where J 1, . . ., N.. (For bladed disk only.) Fwe 1.
averages are received.

From the casing processor, get {q i} and {q .}, (For bearings, all quant1.-
c C1

ties may be needed to solve equation (1). For

a bladed disk, only the rad1a1 d1sp1acements

will be necessary. The forces of the blades

on the disk 1n the rad1.a1 d1rect10n can be ob

tained by curve f1.tting the best ellipse to the

radial casing displacements and then evaluating

blade interference via a t1.P circle approach.)

Equation (1) may then be solved.

PROCESSORS B1 through BI+1

For each blade [M
b

..] can be 1.nverted once and stored 1f, as assumed, th1S
1.J

matrix is constant (time-independent).

From d1.sk, get {4di} and {qdi}. (These are needed for the blade force ca1-

cu1at1.on. The radial velocity of the disk 1.S neeessary to compute the

Corio1is component of circumferent1.a1 blade accelerat1.on.)

-10-

From casing, get velocities and positions of curve-fitted averages of

casing points (i.e., best ellipse in plane of cross-section and in an

axial plane, etc.). Processor must then determine which blades are rubbing

and what the circumferential and axial forces on those blades are.

Equation (2) may then be solved.

PROCESSORS Cl through C
m

These processors do not solve modal state equation (3). (Only processor

Cl solves this state equation, see below.)

From blades (if present at disk i), get best tip ellipse in plane of cross

section and 1n an axial plane. (This t1P circle is used for part of the

computatlon of the forces of the blades on the cdsing.)

From disk get {qdi} and {qdi}' (If disk with blades is located at cross

section i, the radial displacement of the disk is used for the remaining

part of the computation of the forces of the blades on the casing.)

From Cl , get Cr(t), r = 1, ... , M where M is the total number of casing

modes (say 10). The processor C contains mode shape information for this
1

(the ith) cross-section. Therefore {q i} and {q .} can be determined from
c C1

C (t).
r

The processor Ci determines force of either shaft on casing (using {qdi}

and {qdi}) or of blades on casing (using these and {qbij} and {qbij }). For

the latter, blade forces on casing are computed via the tip circle approach

and V1a compar1son of the best tip ellipses w1th the casing displacements.

The forces are assigned to nearest casing nodes (nodes in the cross-sect10n

and circumferentially nearest to rubbing points). The processor Ci then

determlnes contribution of this cross-section to the right side of equation

(3) •

-11-

Processor Cl solves equation (3). Contr1butions to right side of (3) are

rece1ved from processors C., 1 = 2, •.• , m. The total for each mode is
1

assembled and then each modal equation (3) 1S solved.

Number of Path Variables

PATH 1

PATH 2

PATH 3

PATH 4

PATH 5

~~

Time not included. Time 1S tracked by each processor. Timing

1S controlled by controlling minicomputer (not shown).

Volume of data transmitted along a path is generally equal in

both directions.

Assume rotor modeled as a beam with torsion. Have two displace-

ments and two slopes plus torsion. Result is * 5 x 2 10 scalars.

* Into D -
i 5 average d1splacements. Result is 5 x 2 10 scalars.

Into B. - best ellipses (4 coord1nates for each plane). Result
1 *

1S 8 x 2 = 16 scalars.

Into C. - best ellipses (4 coordinates for each plane). Result
1 *

is 8 x 2 = 16 scalars.

Into C. - say 4 degrees of freedom for bear1ng/casing 1nteraction.
1

* Result 1S 4 x 2 = 8 scalars.

* Into C say 10 modes. Result is 10 x 2 = 20 scalars.
1

* From C. - one contribut10n for each mode. Result 1S 10 x 2
1

20 scalars.

Factor 2 is for veloc1ties.

-12-

Simulation Procedures

There are several choices in the method chosen for simulation. These

choices fall into two categories, explicit methods and implicit methods.

Explicit methods require equations of motlon in first order form. Velocities

and accelerations are obtalned at each time step and then integrated. The

lntegration is separate from the equations of motion. These methods are

relatively slmple to implement. Two explicit methods are the Runge-Kutta

and the Predictor-Corrector method.

In the Runge-Kutta method, more solutions of equations of motion are necessary

at each time step for a given accuracy. There is no inherent measurement of

error. No hlstory of the problem is required. It is self starting, rela

tively simple and easy to change time steps.

In the Predictor-Corrector method, fewer solutions of equations of motion

at each time step for a given measure of accuracy are necessary. There is

an inherent measure of error. A history of the problem is required. It is

not self starting, relatively complicated and relatively hard to change

time steps.

Impllcit methods require equations of motion In second order form. Velocities

and accelerations are represented by flnite differences so that displace

ments are obtained directly at each time step. The integration procedure

is closely coupled with the equations of motion. These methods are rela

tively complicated.

The Runge-Kutta method has been chosen as the most suitable for the struc

tural dynamics slmulator because it is self starting, does not require a

history and is relatively simple to program.

-13-

SAMPLE PROBLEM 2 - DETERMINATION OF PROCESSOR COMPUTATIONAL CAPABILITIES

Th1S sample problem 1S llnear and 1S developed to determ1ne the funct1ons,

the memory, communications, 1nstructions and speed desired of the parallel

process1ng system.

Largest Linear problem

The physical problem discussed will be the largest llnear problem that the

system is des1gned to accept. Computational requirements for the llnear

problem can be assessed in a straightforward manner. Extent and nature of

nonl1near1ties are not known so that the1r computational requirements can

not be established. However, computation capab1l1tes for typical nonlinear

calculat10ns w1ll be available Slnce the actual associated llnear problem

w1ll normally be much smaller than this largest linear problem. To allow

for nonlinear computations, the following functions at a minimum, should be

available:

-1 ,.-
sinx, tan x, V x.

Less 1mportant, but also desirable, are the funct10ns aX and log x where a
p

and x are real numbers and where p is either 10 or e.

The ovC'rnll equntlon for the entire lmear physical problem bemg slmulated

can be written in the form

[M] {q} + [C] {q} + [K] {q} {f (t)} (4)

where {q} is a vector conta1ning N elements. The matrices [M], [C], and

rK] are the mass, damping, and stiffness matrices, respectively. The

vector {f(t)} conta1ns N elements whose values, at any time, can be computed

directly.

T1me Dependence of Matrices

The matrices [M], [C], and [K] can contain elements whose values are functions

of time.

-14-

This is true because elements of [M] which vary with time can arise for a

certain choice in coordinate systems and in their associated coordinates

{q}. Time variation in elements of [C) and [K] arise when problems con

taining parametric excitation are considered.

Banding of Matrices

The matrices [C) and [K] can be formulated such that they are banded.

These matrices wl11 be banded for structural stiffness matrices since a

generalized displacement applied at a node will produce forces at only

that node and at its neighbors. (Proper node sequencing is required.)

Diagonal Nature of Mass Matrix

The matrix [M] is locally diagonal; i.e., the matrix has the form

! = 0 0 0

0 - 0 0

1
0 0 - 0

0 0 0 -

where the shaded regions only have non-zero elements.

This assumptlon is critical in that it provides for mass decoup1ing of

regions of the problem. To produce such a mass matrix, each of these

reglons must be connected to the other reglons only by members having

stiffness and damping properties but no mass. In addition, the general

ized coordinates used for each region of the problem must not reference

coordinates in other reglons of the problem.

With the above properties, Equation (4) can be put in the form

-15-

r '

,
"

I

0 0 0

1--1
'0 I ",0 ,

I' = i , j

u 0 0 ! +
\ I It: q + -I q

0 a 0 I , I I ' , I I \ I: I I i
0 0 ~

, j - -, j. . I o , j ~ 0',

= f (t)
(5)

where the bandwidth of the second and third matrices is greater than the

rank of the largest locally diagonal sub-matrix of the first matrix. For

the ith region, its equation of motion is that associated with the lth

shaded region in the first matrix. That equatlon of motlon is

[M.] C' } + [C] {q.} + [C] {q } + [K] {q } + [K] {q } l ql l l n n l l n n

{f.(t)}
l

(6)

where {q.} is the vector for the coordinates of the ith region, and where
l

{q } is the vector for the coordinates of the reglons which are neighbors
n

to the ith region. The matrix [M.] lS that for the ith shaded reglon of
l

the first (the mass) matrlX. The corresponding portions of the second

(the damping) and the third (the stiffness) matrices are denoted as [C.]
l

and [K.], respectively, and couple the equations for the ith region to
l

those for the nelghboring regions. It is noted that matrlces [M.], [C],
l l

and [K] are square while the matrlces [C] and [K] are not square but
l n n

have the same number of rows as do the i matrlces. Also, the vector

{f(t)} has the same number of rows as do the i matrices.

Equation (6) can be put in first order form by defining "state" variables

{Z} such that

-16-

so that (6) becomes

I 0

-1
, 0 0 -I I 0 0 ?

Z. = I , ~i -, - --- -- -
0

I

Mi I 1. I
f. (t) K Ci K C Z 1.) n I n n

L

where I is the identity matrix.

From (7) there results

IZi\ l -;-Ma{~3t)1 [0 :-I i-:~
\

0 0 ~l K. : C.
--j

K I C 1. 1. n n J) I
- I

which is the first order equat1.on that will be solved by the node processor

assigned to region i in the simulation system. The computational require

ments for that node processor are determined below from this equation.

The largest linear problem that can be contained in the processor reg1.on i

1.S onE' in WhICh the matrices [M.], [C.], [K.], [LZ], and [C] are full. 1. 1 1. n n
Therefore, treatment of matrices having rank equivalent to the number of

-17-

(7)

(8)

generalized coordlnates for region i can be required. Also, the matrix

[M.] must be lnverted at every evaluation of {Z} in Equation (8). As a
1

result, lt may be necessary to lnvert at each time step a matrix ({M })
1

having rank equivalent to the number of generalized coordinates for region i.

Number of Generalized Coordlnates

The 1imlt of 200 for the number of generalized coordinates for region i

was chosen arbltrari1y. ThlS number determines the local data memory Slze

and the maximum time required to solve Equation (8).

Given that {q.} can have 200 elements, the mass matrix for reglon i can have
1

rank 200. From reference [1], approximate numbers for mu1tip1ications/dlVi-

sions and for addltions/subtractions to invert a 200 x 200 matrix are 200
3

and 200(199)2, respectively. Carrying out the indicated mu1tip1icatlOns

gives approxlmate1y 8 x 106 mu1tip11cations/divi<Hons and 8 x 10
6

addltions/

subtractions.

It should be noted that other computations are necessary in thlS linear

problem besides the matrix inversion. Numerous matrlx mu1tip11cations

are also to be made, prlmari1y those of a vector by a matrix. The numbers

for mu1tlp1ication/divisions and for additlons/subtractions requlred ln

multiplying by an m x p matrix by an n x m matrlx are n·m·p. The mu1tl-

(a column vector) by a 200 x 200 matrix

4 x 104 mu1tip1ications/dlvlsions and

p1icatlon of a 200 x 1 matrix

therefore requires about 200 2

4 x 104 additlons/subtractions. This is negligible in comparison to the

number of operations associated with the inverSlon of the mass matrlX.

Consequently, the inversion requirements are used to establish the overall

mu1tlp1ication/dlvlsion and additlon/subtraction requirements for the maxi

num linear problem to be treated by the processor for reglon i.

Externally Communicated Coordlnates

The maximum coordinates for external communication from region 1 are 25%

of the generalized coordlnates used for reglon i.

-18-

The ratio of external to local coordinates can vary considerably with the

specific problem being considered. A problem, consisting of two complex

regions, connec ted by a few simple springs will he associated with a low

ratio for each region. A problem consisting of legions intimately connected

at many points will be associated with a large ratio for each region. For

readily envisioned problems, the 25% ratio appears reas-onab1e and one which

need rarely be exceeded.

With this assumption, a maximum of 25% of the state variables for region i

need be communicated to neighboring regions. Since there are 400 state

variables maximum, 100 variables can be communicated to (and from) neigh-

boring processors.

[K] is 200 x 50. n

As a result, the maximum sizto of each matrix [e] and n

With the size of [e] and [K] established, the sizes of all the matrices
n n

ln Equation (8) for region i are known. These sjzes are:

[M
i

] 200 x 200

[Ki] 200 x 200

[e
i

] 200 x 200

[e] 200 x 50 n

[K] 200 x 50 n

{f.(t)} 200 x 1
1

{Z.}
1

400 x 1

[Z] 100 x 1 n

{Zi} 400 x 1

It should be noted that thlS memory space for the largest linear problem

does not lnc1ude memory for lntermedlate resu1tb ~nvo1ved ln matrlx manip

ulations (e.g., inversion and mu1tip11catlon), nor does it include program

memory.

-19-

Nearest Neighbor Communications

A maximum of 6 neighboring processors will exchange state variable information

with the processor for region i.

The number of neighboring processors was arb~trarily chosen, and corresponds

to the physical elements which can apply forces or moments to the phys~cal

element represented by the processor for region L. Six ~s sufficiently

large to allow a complex structure, but also the smallest number which can

be used to treat a three-d~mensional structure in a symmetric manner. It

is noted that as many as 100 variables can be transmitted along any of

these paths (if no var~ables are transmitted along the other 5 paths).

If all 6 paths are transmitt~ng ~nformat~on and Lf the number of variables

transmitted on each path is the same, then each path will carry 100/6

variables.

Summary of Node Processor Requirements

Maximum computations per der~vative equation (Equat~on (8» per

processor

Multiplications/D~visions

Additions/Subtractions

Number of generalized coordinates per

processor

Number of state variables per processor

Approximate numerical memory size (in

floating point numbers) per processor

(not including that for matrix manipu

lation)

Number of state var~ables transmitted

to and from each processor

-20-

200

400

150,000

100

Number of separate transmission paths from

each processor to neighbor

Primary desirable functlons

Secondary desirable functions

-21-

6

matrix operations

sin x
-1 tan x

x
a.

log x

SOFTWARE REQUIREMENTS

The Digital System for Structural Dynamic Simulatlon, as can be seen by the

previous discusslon, has the requirement for a great varlety of software.

This software can be broken into five segments.

1. Offline programs for the central minicomputer to process user

specifications of models, to prepare Node Processor programs for

executlon, and to aid ln the development of Node Processor opera

tional programs.

2. Realtime programs for the central minicomputer to load Node

Processor programs and data, to coordlnate executlon of the

model and to provide operator controls and dlsplays.

3. Operatlonal programs for the Node Procesbors to cause them to

slmulate substructures of the model and to communicate with

neighbors and the central minicomputer.

4. Microcode (sometlmes called firmware) to deflne the lnstruction

set of the Node Processors.

5. Diagnostlc Software.

HARDWARE REQUIREMENTS

Hardware requirements for the slmulation hardware are llsted below.

1. An array of Node Processors to perform the simulatlon.

2. Node Processors properties include:

a) A large local memory for program and data storage.

b) Fast instruction times.

c) Auxillary hardware for fast floating point multipli

cation, additlon, subtraction, and division.

d) Mlcrocoded processor for a custom lnstruction set.

e) Parallel communication paths to the six nearest

neighbor Node Processors.

3. A central control minlcomputer to direct the operatlon of the Node

Processors and develop all associated software.

-22-

OVERVIEW OF SYSTEM ARCHITECTURE - SOFTWARE

The D1gital System for Structural Dynamics Simul~tion consists of a three

dimensional array of processors controlled by a lnin1computer. Each processor

in the array 1S capable of communicating directly with its six adjacent

processors and with the minicomputer controller. The term Node Processor

is used to identify a processor in the array.

The individual Node Processors are logically org~n1zed as a three d1men

sional array with each node having an address specified by three subscripts

[e.g.: P(5,2,3)]. Each Node Processor will have a bidirect10nal communi

cations link with the adjacent processor in both direct10ns for each dimen

sion. The first and last Node Processor 1n each dimenS10n will be linked

to make each dimension a full circle of processors (a hypertorous). The

system has been designed with five proces~ors in each dImension for a total

of 125 processors. Processors will be numbered from 1 to 5 in each dimension.

For example, P(2,5,3) will communicate directly with processors P(1,5,3),

P(3,5,3), P(2,4,3), P(2,1,3), P(2,5,2), P(2,5,4); see F1gures 2 and 3.

All of the processors will be connected to the minicomputer based controller

with a bidirect10nal data and control bus. Data being sent from the con

troller to the processors will be prefaced w1th address information. Only

the Node Processor(s) which need the data w1ll store it in its local memory.

When several Node Processors must transmit data over the common bus,

the controller will command one Node Processor at a t1me to put data on

the bus for use by the controller and/or other processors (Figures 4 and 5).

CONTROLLER OPERATING SYSTEM SOFTWARE

The software for using the Digital System to perform structural dynam1cs

simulations w1ll consist of the follow1ng five segments.

1. Offline programs for the central minicomputer to process

user specifications of models, prepare Node Processor programs

for execution and aid in the development of Node Processor

operational programs.

-7~-

5x5x5

NODE PROCESSOR ARRAY

INTERPROCESSOR
COMMUNICATIONS

PATHS
REF. 3.2

Figure 2 NASA/Lewis Structural Dynamics Simulator Block Diagram

-24-

\
t'l
V'

\
P,oW

R .. N~

pORT"

tOl-ulA'"
pORT ,..

RoW L
OOp (25
~ LOOPS)

R,t.l'i'o(
pOp,T a

16 BIT BI-DIRECTIONAL RANK LOOP (25 LOOPS)
='~.,;;[o;~

<J

~ASSf 'FW;S2~

o
0 0 AX 5 ~. M ESSORS

l"'---r f'A:?-' NODE PROC

16alT
BI_DIRECTIONAL
COLUMN LQOP

(25 LOOPS)

~PASS I

DEEP

C-OI.U)AN

pORT a

",(1H

pORT \I
MAX 5 SORS ~ IV~~~SS 2 PROCES 0

NOD'","" ~

reI£. pRQCESSOR
suB DETAIL

Figure 3 50S ~oIFrO~ Sb< Nearest Block U.sg

ram

32 - BIT CONTROL
MINICOMPUTER

GLOBAL DATA AND CONTROL BUSSES

NODE
PROCESSOR

1

NODE
PROCESSOR

2

NODE
PROCESSOR

3

NODE
• • ,. PROCESSOR

N
(NS,125)

SYSTEM BLOCK DIAGRAM
REF. 3.1

Flgure 4 Structural Dynamics Simulator Block Diagram

-26-

I
N
.......
I

CENTRAL
MN-COIrFUT£R

G.OB4L
9.JS

~--,l

G.OBAL BUS
CONTRa.

rNoDi OOcEssOR - - - - - - 1

I

I

I
L

GLceAL
BUS

I

.J

NODE PROCESSOR - GLOBAL BUS
INTERFNE SUB CETAIL

MJrES

I) AR*)WS /NDICATE All £XANPL£ OF FLOW. WHD/ CNI' NOO£
(~ IN SLICE Z) TALKS TO ,ANOTHER. NODE CNOOL IN
SLlC£ 5) NOT. THE DlIlf.£CTION OF' DI/IJ\Ifl"S AND THAT

ALL OTHeR M::IOIES LI~TEN

Eigure 5 SDS Global Bus Interface Block Diagram

2. Realtime programs for the central minicomputer to load Node

Processor programs and data, coordinate execut10n of the

model and prov1de operator controls and displays.

3. Operational programs for the Node Processors to cause them

to simulate substructures of the model and communicate

with neighbors and the central minicomputer.

4. Microcode (sometimes called firmware) to define the instruct10n

set of the Node Processors.

5. Diagnostic Software.

OFFLINE MODEL DEVELOPMENT SOFTWARE

The off11ne software will consist of a linker and assembler for generating

the specific code to be executed by a Node Processor and a compiler for a

Model Specification Language to ass 1St users in programming the application

software.

Node Processor Assembler

The Node Processor Assembler program will translate the symbo11c assembly

language programs written for the Node Processor into object modules that

may be linked to other modules and form an executable memory image for

the Node Processor. This assembler should have moderate macro capabilities

and a full complement of assembler directives so as to ease the task of

programming at the machine level. Also, the assembler should 1nterface

easily with the higher level Model Specificat10n Language compiler.

Node Processor L1nker

The Node Processor L1nker will take one or more object modules created by

the Node Processor Assembler and produce the memory image to be loaded into

the Node Processor for execution. It is the linker's task to resolve all

inter-module address references and relocate all intra-module addresses

based on the location of the module within the executable memory image.

-28-

The linker should be capable of linking the user defined data tables created

during model specification with the appropriate Node Processor operdt1onal

programs. It is also the linker's task to build a symbol table for use by

the Execution Control Program. The symbol table will be used when loading

the Node Processors with data tables and functions when the operational

program is already resident in the Node Processor memory. Also, the symbol

table will be used during debugging and crash dump analysis.

Model Spec1fication Language Compiler

A high order language will be developed which will consist of a set of

rules governing the definition of models and forcing functl0ns. The compiler

program (sometimes called translator) will trans1ate the model speclfication

into the data tables and functions needed by the Node Processor operational

programs.

The user will use the minicomputer text editor to create and modify text

files containing the model specification. For 11near problems, the bulk

of the model specification will consist of numerical values for various

matrlces in the state equations. For non-linear problems, the user may

need to specify a function for each element. These functl0ns will be

speclfied in Fortran-like arithmetlc expressions. Other statements in

the language will allow the user to specify the coupling between substructures,

the forcing functions and the desired outputs.

The compiler program will read the text file containing the user's speci

fication of the model and perform the following operations.

1. Assign substructures to processors using an algorithm to

balance the processing load of each processor and optimize

interprocessor communications. The compiler will be told

how many Node Processors are operational in each dimension

of the processor array. If there are more substructures

than processors, substructures with the greater interaction

will be assigned to the same processor.

-29-

To ensure proper balanclng of the processing load the user

will be able to specify the relative execution times for

various substructures. The assignment '3ubprogram will use

the relative execution times as a weightlng factor when

assigning more than one substructure to a single processor.

An iterative algorithm would be the slmplest approach to

maklng the best assignments.

Once the substructures have been combined, the compiler will

optimize the lnterprocessor communlcations. Interacting

substructures will be asslgned to adjacent processors so

that as much communication as possible can occur in parallel.

2. Generate the data tables each Node Processor operatlonal

program wll1 use to solve the state equltlons for the sub

structures assigned to it.

3. Generate the tables to specify to each processor the inputs

from each of its six adjacent processors, the inputs from

the bidirectional data bus, the outputs to each of its six

adjacent processors, and the outputs to the bidlrectional

data bus.

4. Generate a data fl1e for the realtlme central mlnlcomputer

program to specify the forclng function and the system outputs.

The compiler produces the required data modules which are loaded with the

appropriate operational program into the Node Processor for execution.

This makes the structure of the operational programs dependent on the output

of the Model Specificatlon Language complIer, but makes the complIer some

what machine independent. Only the functions generated will be actual

machine code. These functions will be specified in Fortran-like state

ments, thus making the language syntax independent of the Node Processor.

The compiler's code generating functions will be tailored to the Node

Processor.

-30-

The instruction set of the Node Processor was designed to assist the task

of automat1cally generating code from Fortran arLthmetic expressions. The

data format for floating point numbers was chosen to conform to the popular

PDP-II data format. To simp11fy the generation of the data tables as de

scribed above, many addressing modes are available to the Node Processor

for building address llStS as needed.

REALTIME MODEL EXECUTION SOFTWARE

The realtime software will consist of a debugging facility for developing

operational programs and an execution control program for doing actual

s1mulations.

Executl0n Control Program

The Execution Control Program will be responsible for loading the Node

Processors with operational programs, controlling the network of processors

during execution, collecting data for animated displays as the execution

proceeds and gathering the final results when the simulation completes.

Loading Node Processors

There will be two types of program loading for the Node Processors: The

f1rst type cons1sts of loading the entire Node Processor with its operational

program and data. The second type consists of only loadlng the data portions

of the operational program. Typically, when the array of processors is

brought up, they will be loaded w1th their operat10nal programs and data

for the first simulation run. Subsequent s1mulations will only be loaded

1nto the data tables required by the operational programs if the model

is compatible with the resident programs.

During the initial program load the Node Processor will be forced to execute

1ts microcode from location O. The microcode at this location may execute

a few diagnostics to determine the integrity of its local memory and exercise

the communications link with the controller. The processor will then walt

for a command from the central minicomputer controller. The central mini-

-31-

computer will poll the Node Processors to determine which are on line and

ready.

When each Node Processor has acknowledged its readiness status, the central

minicomputer controller will send a command to a processor telling 1t to

accept the ensuing data stream as a memory 1mage. Following the memory

image will be the initial program counter value. Typically, th1s value

will address a program routine wh1ch will wait for the "Start Execution"

command from the controller.

After the execution of a simulation is completed, the operat10nal program on

the Node Processor will enter a routine to wait for additional commands from

the controller. Subsequent simulat10ns Wh1Ch use the same operat10nal pro

gram w1ll then need only to load the data portion of the programs. The

operational programs should be table driven as much as possible to accommo

date thlS scheme.

Controlllng the Processor Network during Execution

The Execution Control Program w1l1 broadcast the start slmu1ation command

to all nodes. The operational programs on the Node Processors will then

execute the t1me step until 1t needs to commun1cate w1th other processors.

A control bus line will be raised by the Node Processor when it 1S ready.

The bus line will only appear active to the controller once all processors

are ready. The controller will then send the commands to initiate trans

fers between neighbors. When transfers are completed in the requested

direct10n, the controller is then notified by each processor. After all

are ready again, the controller will broadcast to the nodes to start

transferring data in the opposite direction.

After the nearest neighbor communications have completed, the controller

w11l command each node 1n turn to put its global state variables on the

data bus. All processors will listen to the global bus as state variables

appear and will store only those state variables from other nodes as it is

directed by its internal tables. The controller will also store those

state variables it needs for the graphics display.

-32-

Once all the state variables have been transferrt~d, the controller may

then interrogate individual Node Processors for .tdditional data needed

to update the graphics display. When Node Proce,sors have completed all

the necessary communicatlons, they will continue on with their simulation

computations.

During the communications procedure all on-line ~ode Processors are required

to signal acceptance of data. If the controller does not receive the accept

ance signal, the controller will time out. The Executlon Control Program

will interrogate the Node Processors individually to determine which one(s)

are not responding. Special status llnes on the control bus may be used to

selectlvely put a Node Processor offline or cause the processor to go into

a microcoded diagnostic routine to determine the reason for the failure.

Collecting Graphics Display Data

The Execution Control Program will interrogate selected Node Processors

for data needed to drive a graphics display. The collection of the data

will be directed by the data tables generated durlng the Model Specification

compilation. The data transfers from Node Processors to central minicomputer

will take place between time steps of the simulation.

Gathering Final Results

The Execution Control Program wlII collect the final state variables from

each Node Processor after the simulation has completed. The data collected

wlII be stored In disk files for analysis by other analysis programs. The

data tables generated during compilation of the Model Specification will

direct the Executlon Control Program to command the appropriate variables to

be sent from a node to the host.

Node Processor Program Debugger

A Node Processor Program Debugger facility is needed to assist in the develop

ment of the operational programs. This debugger will perform the functions

required by the realtime Model Execution Program but will support more

operator interaction.

-33-

A speclal library of debugger modules will be available to the program

developer. These modules will be linked to operational programs under

development to support features such as instructlon execution traclng,

breakpoints and memory examinatlon/modification.

When programs are linked to the debugger modules and loaded into the pro

cessors with the Node Processor Debugger Facility, the operator may inter

act with the execution of the program. ThlS powerful facllity wlll greatly

increase the system programmer's productivity.

NODE PROCESSOR OPERATIONAL PROGRAM

The Node Processor Operational Programs are those programs which wlll cause

each processor to simulate a substructure and communlcate with its nelghbor

and the central minicomputer. The programs will be written in assembly

language or possibly a Fortran-like language that is easily translated

into assembly language code.

The content of these programs will be highly dependent on the actual model

being used for the simulation. The programs should be structured so as to

operate on the data tables that are generated by the Model Speclficatlon

compiler. The data tables and special functions generated by the complIer

must be easily linked with the Operatlonal Program to perform the requlred

simulation.

NODE PROCESSOR MICROCODE

The Node Processors will be microcoded to provide a typical general purpose

minicomputer lnstruction set. In addition to the general purpose instruction

set, special hlgh-Ievel microcoded routlnes will be avallable for dOlng

matrix and vector operations, communicating with nearest neighbors and the

central minicomputer and providlng support for dlagnostlcS. The microcoded

instruction set is described in the Node Processor Instructlon Set Reference.

-14-

DIAGNOSTIC SOFTWARE

Diagnostic software will be implemented at the following three levels.

1. Diagnostic Control Program in the central microcomputer.

2. Diagnostic Program in each processor.

3. Diagnostic Machine instructions implemented ln microcode.

The Diagnostic Control Program in the central minicomputer will load the

Diagnostic Program into each processor, accept operator direction, issue

control commands to the processors, input results from the processors, and

display the results to the operator.

The Diagnostic Program in each processor will run various tests as commanded

by the central minicomputer. The tests will progress from simple ones which

test a minimum of circuitry to more complex ones. Tests will be included

for the interprocessor communications, bidirectional bus communications,

and the internal circuitry on each microprocessor board.

The Dlagnostic Machine instructions will be designed to thoroughly exercise

the processor board circUlts and aid in fault isolation.

NODE PROCESSOR ARCHITECTURE

The Node Processor is part of an array of processors, each capable of

communicating wlth a central host computer and dtrectly with six neighbors.

It consists of a bit-slice 32-bit CPU, up to 256K of 64-bit memory, 256

72-bit floating point scratch pad registers and Eloatlng point units capable

of overlapping multiplication with either addition, subtraction or division.

The instruction set of the Node Processor includ~s a full complement of

lnstructions typically found on a general purpose minicomputer plus additlonal

high level lnstructions to handle vectors and matrices.

Each instruction for the Node Processor is 64 bits and contains an opcode

and up to 2 operand fields. There are 13 possible addressing modes per

-35-

operand w1th a min1mum of restrictions on the addressing modes available

for each instruction. With over 130 opcodes and up to 13 addressing modes

per operand there are over 10,000 distinct lnstructions def1ned. This

address1ng scheme gives the Node Processor a very versatile and powerful

1nstruction set.

MEMORY

Ma1n memory appears as 64 bits to the machine level programmer. The internal

data bus connecting memory with the bit-slice CPU and floating point scratch

pad memory is 32 bits w1de, therefore 2 transfers are made to access a 64-bit

word and only 1 transfer for a 32-b1t half-word. The number of memory trans

fers required by a processor instruction is dependent on the type of data

being man1pulated. The actual transfers made are under control of the micro

code and are not the responsibil1ty of the mach1ne language programmer. The

mach1ne language programmer is capable of address1ng memory only at 64-bit

word boundaries, thus there is never the possibility of addressing memory at

a half word boundary. If memory were addressed at 32-bit boundar1es under

program control, it is possible that alignment problems could arise when

addressing 64-bit floating p01nt quantities. Th1S problem 1S elim1nated

since all programs are restr1cted to address1ng at 64 b1t boundaries.

The memory is I-bit error correctlng, 2-bit error detecting. If the Node

Processor detects a 2-bit error during execution of an instruction a trap

V1a locat1on 4 is performed. One bit errors are corrected by the hardware

and the currently executing instruction is completed normally.

There is a memory address comparison register (MACR) which is accessed

whenever memory is written. When memory is written the address being used

is compared to the value in MACR and the appropr1ate bits 1n the processor

status word (PSW) are set.

Main memory is used to hold data and program instruct1ons. With the except10n

of the lowest 70 words of memory, instruct10ns and data may be anywhere in

memory. Memory locations 0 through 69 are used for processor traps and

-36-

holding constants required by certain high level instructions. Main memory

size is either 256K, 512K, 768K or 1 million 32-r.it words. Each memory

board in the system may hold 256K 32-bit words (J28K 64-bit words).

DATA TYPES

There are 4 data types handled by the Node Procehsor: integer, floating

point, vectors and matrices. Integer data is 32 bits wide and left justi

fied in a 64-bit memory word. The LSB of the inleger is at bit 32 while

the MSB is at bit 63. The integer data type is used to represent numerical

quantities and hold memory addresses. When used as an address, only the

low order 19 bits of the integer are used. However, all 32 bits are used

for calculating memory addresses and no checks are made to ensure that the

unused portion of the integer is all zeroes.

Floatlng point data is 64 bits in main memory and 72 bits in the floating

point scratch pad memory. The increased scratch pad representation allows

for 7 extra bits of precision in the mantissa. When transferrlng main memory

to the scratch pad registers, the 64-bit number must be expanded to 72-bits.

The sign and exponents wlll be the same in both formats. Bit 62 is set

to 1 in the scratch pad register If the exponent 1S non-zero. The main

memory mantissa lS mapped to bits 61-7 of the scratch pad register and

bits 6-0 are set to 0 to complete the mantissa. When going from the scratch

pad registers to main memory, the sign and exponent are copied directly and

bits 61-7 are taken as the mantissa. (Note: The MSB bit of the mantissa,

1 if non-zero number, is not stored in main memory. The mantissa is

truncated to 55 bits when going to main memory.)

Vectors are arrays of floatlng point values which reside in consecutive

locations of main memory. The address of a vector is the location of the

first floating point value. The length of a vector is the number of floating

point values making up the vector.

Matrices are two dimensional arrays of floating point values and reside in

a contiguous block of main memory. Each row of the matrix is stored in

consecutive memory locations wlth the first row starting at the beginning

-37-

address of the matr1X. If there are N elements in a row then the second row

will start at the matrix address + N. Likewise, the third starts at matrix

address + 2N and so on until the number of rows in the matrix 1S exhausted.

The elements of each column 1n a matr1x are separated by N-l memory locat10ns.

(Note: The autoincrement addressing modes of the instruction set enable the

programmer to easily access each memory of a column without the need for

doing complex address calculations.)

NODE PROCESSOR REGISTERS

The machine level programmer has access to 8 general purpose 32-b1t 1nteger

registers, 3 special purpose 32-bit 1nteger reg1sters and 250 72-b1t float1ng

point scratch pad registers. The general purpose integer registers are

des1gnated RO through R7 and are used to hold integer numer1cal quant1t1ves

and addresses. These reg1sters are not affected by the Node Processor

instruct10n unless spec1f1ed as an operand by tht· programmer.

The special purpose integer registers are the system stack pointer (SP),

program counter (PC) and a vector/matrix size register (MS). The stack

pointer contains the address of an area of memory set aside by programs

for dynamic storage. The stack grows (increas1ng memory addresses) as

words are placed (pushed) onto 1t and shrinks (dl'creasing memory addresses)

as words are removed (popped). The program counter 1S used to spec1fy the

locat1on from which the next instruction 1S to be taken. The vector/matr1x

size register stores an 1nteger value Wh1Ch conveys the length of a vector

or the number of rows of matrix to certain h1gh level instructions.

The floating point scratch pad registers are des1gnated FO through F249.

They are general purpose floating point accumulators and are under programmer

control except for the act10ns of certain high level instructions which may

destroy the1r contents during execution.

PROCESSOR STATUS WORD

The Processor Status Word (PSW) contains 1nformatlon on the current status

of the Node Processor. Selected portions of the PSW are affected by the

-38-

execution of instructions. Each instruction described below will detail

which bits of the PSW are affected during execution. In general, bits 0-3

reflect the results of the last 32-bit integer operation on the bit-slice

CPU, bits 4-7 reflect the results from the last floating point multiply

operations, bits 8-11 reflect the last floating point add/subtract/divide

result, bits 15-16 reflect the error status of the last memory read, bits

13-14 are under the programmers control for enabling traps, b1t 17 1S

concerned with host/node synchronization and bits 18-20 reflect compar1sons

of memory addresses when doing writes.

High level 1nstructions affect the PSW in a manner different from simple

instructions. Since all high level instructions involve multiple operations

on either or both of the floating point units, the f1nal PSW state reflects

multiple operations. The only status bits which are meaningful are the

overflow (FOVl,FOV2) and d1v1de by zero (FDZ) b1ts. If any of these bits

are set durinR execution of a high level instruction then they will be set

at the end of instruction. The status of all other PSW b1ts for the 1nte

Rer and floating point units are undetermined.

Bit Mnemonic Contents

0 CR Integer carry

1 OV InteRer overflow

2 NE Integer result negative

3 ZE Integer result zero

4 FUN 1 FP multiply underflow

5 FOVI FP multiply overflow

6 FNEI FP multiply negat1ve

7 FZEI FP multiply result zero

8 FUN 2 FP add/subtract/divide underflow

q FOV2 FP add/subtract/divide overflow

10 FNE2 FP add/subtract/divide result negat1ve

11 FZE2 FP add/subtract/divide result zero

12 FDZ FP divide by zero

13 FTR Trap enable on FDZ, FOVl, or FOV2 via
location 10

-39-

14 TRC Trace enable. Trap after each ~nstruction.

15 PAR One bit error from memory access

16 RER Two bit error from memory access

17 RDY Write only. Signals to host this processor
is done w~th current step.

18 BPT Enable trap on setting of FEN

19 FEN Memory write address equals MACR

20 FLT Memory write address less than MACR

INPUT/OUTPUT

The Node Processor communicates w~th the central host computer and each of

its six nearest ne~ghbors. I/O is synchronous ~n that there are no interrupts

caused by I/O transfers. Each Node Processor program must explic~tly ~nvoke

an I/O command before any data transfer.

PROCESSOR TRAPS

There are a number of exceptional conditions which cause the Node Processor

to trap to f~xed locations. These conditions may be due to hardware or

software failures. When a trap is executed the error condit~on w~ll cause

the processor to push the present PSW and PC onto the system stack and take

the new PSW and PC from consecut~ve memory 1ocations. The memory locat~ons

and cond~tions are listed below. It is the software's respons~bil~ty to

load the proper addresses for the trap service routines.

Trap Cond~t~on

Two-bit Memory Failure

Illegal Instruction

Out of Limits (CLIM)

FTR and (FOVI or FOV2 or FDZ)

Attempt SQRT with Negat~ve

Stack Underflow

Trace Enabled

FEN and BPT

-40-

Locat~on

4

6

8

10

12

14

16

18

INSTRUCTION FORMATS

The Node Processor instruction length is 64 bits. Each instruction contains

an 8-bit opcode field which allows up to 256 distinct opcodes. Since less

than 256 instructions have been defined, there are opcodes left for future

instructions. Instructions may require zero or flore operands for execution.

For instructions with 2 or less operands, each operand is completely speci

fied wlthin the instructlon word. A 4-blt addre3s mode, 4-bit register

select and a 20-bit field are contained in the lnstruction to speclfy the

effective address of the operand. The 20-bit quqntity may represent an

index, immediate operand, actual address, floating point register select,

general register to autoincrement by or autoincrement value as required by

the addresslng mode. In the description of instruction formats below, thlS

20-bit quantity is always labeled index though it may represent something

else depending on the addressing mode.

For instructl0ns wlth 3 or more operands the first 2 operands will be speci

fied as ln the 2-operand instruction while the rest of the operands will be

taken from pre-specified registers as defined by each instructlon. The

general format of the 64-bit instruction is:

! I I t
OPCODE FLDI I FLD2 Fill 3 FLD4 l FLD5 FLD6

j I l
I

63 55 51 47 43 19 19 o

For no operand lnstructions only the 8-blt opcode field is used. For

I-operand instructions FLDI specifies the operand addressing mode and FLD2

specifies the general register to be used if required by the addressing mode.

If the addressing mode requires an index, displacement, actual address or

autoin~rement value then it is contained in FLD5. The general format for a

I-operand instruction is:

OPCODE MODE REG INDEX

63 55 51 47 43 39 19 o

-41-

For 2-operand instructlons, the first operand is specified as in the

I-operand instruction. The second operand uses FLD3, FLD4, FLD6 to specify

addresslng mode, register select and index respeetively. The format of a

2-operand instruction is:

OPCODE MODI REGI MOD2 REG2 INDEXI INDEX2

63 55 51 47 43 39 19 o

The uses of the fixed fields in the 64-bit lnstructl0n are outllned below.

Instruction

Field

OPCODE

FLDI

FLD2

FLD3

FLD4

FLD5

FLD6

Blts

63-56

55-52

61-48

41-44

43-40

39-20

19-0

Contents

Operation code. (0-255)

First address mode. (0-12)

Reglster select. 0-7 for RO

through R7. 8 for MS, 9 for

SP, 15 for PC (Note: 10-14

not allowed. These registers

are dedicated to the microcode.)

Second address mode (0-12)

Second regi'3ter select as in FLD2

First address lndex value, immedlate

operand, actual address, reglster

select (as In FLD2) with auto-

increment vdlue or F.P. register

selec t (0-21+9)

Second address lndex value, imme

dlate operand, actual address,

register select wlth autoincrement

value or F.p. reglster select

(0-249) .

-42-

NODE PROCESSOR INSTRUCTIONS

OPCODE OPERANDS

Integer Instructions:

MOVE SRC,DST
BLKM ADRl,ADR2
ADD SRC,DST
SUB SRC,DST
MUL SRC,DST
DIV SRC,DST
JSB Rn,ADR
RSB Rn
PUSH SRC
POP SRC
SAVEM Rn,CNT ,ADR
LOADM ADR,Rn,CNT
JMP ADR
JMPLE ADR
JMPLT ADR
JMPGE ADR
JMPGT ADR
JMPEQ ADR
JMPNE ADR
SKPLE SRCl,SRC2
SKPLT SRCl,SRC2
SKPGE SRCl,SRC2
SKPGT SRCl,SRC2
SKPEQ SRCl,SRC2
SKPNE SRCl,SRC2
TSTLE SRC,ADR
TSTLT SRC,ADR
TSTGE SRC,ADR
TSTGT SRC,ADR
TSTEQ SRC,ADR
TSTNE SRC,ADR
BITNE SRCl,SRC2
BITEQ SRCl,SRC2
SJGT SRC,ADR
TRAP ADR
RTP
SPS SRC
CPS SRC
RPS DST
TPSNE SRC
TPSEQ SRC
SWAP SRC,DST
ASHL CNT,DST

DESCRIPTION

Move integers
Move block of integers
Add in tegers
Subtract integers
Multiply integers
Divide integers
Jump to subroutine
Return from subroutine
Push onto stack
Pop off stack
Save multiple registers
Load multiple reg1sters
Unconditional jump
Conditional jump if <=
Conditional jump if <
Conditional jump if >=
Conditional Jump if >
Conditional jump if
Conditional jump if <>
Compare and skip if SRCI <= SRC2
Compare and skip if SRCI < SRC2
Compare and skip if SRCI >= SRC2
Compare and skip 1f SRCI > SRC2
Compare and skip if SRCI = SRC2
Compare and skip if SRCI <> SRC2
Test and jump if <= 0
Test and jump if < 0
Test and jump if >= 0
Test and jump if > 0
Test and jump if = 0
Test and jump if <> 0
Test bit(s) and skip if not zero
Test bit(s) and skip if zero
Subtract and jump if positive
Trap
Return from trap
Set processor bits
Clear processor bits
Read processor bits
Read PSW and skip if selected bits are set
Test PSW bits and skip if 0
Swap words
Arithmetic shift left

-43-

ASHR
LSHL
LSHR
AND
IOR
XOR
COM
NEG
CLR
INC
DEC
ADC
ABS
CEA
CLIM
CASE
ISKP
DSKP

CNT,DST
CNT,DST
CNT,DST
SRC,DST
SRC,DST
SRC,DST
SRC,DST
SRC,DST
DST
DST
DST
DST
SRC,DST
SRC,DST
LO,HI
SRC, HI
SRC,DST
SRC,DST

Floatlng Point Instructions:

FADD
FADD
FADD
FADD
FSUB
FSUB
FSUB
FSUB
FMUL
FMUL
FMUL
FMUL
FDIV
FDIV
FDIV
FDIV
FMOV
FMOV
FMOV
FMOV
FBLK
FPUSH
FPOP
FSAVE
FLOAD
FSKPLE
FSKPLT
FSKPGE
FSKPGT
FSKPEQ
FSKPNE

Fm,Fn
Fn,DST
SRC,Fn
SRC,DST
Fm,Fn
Fn,DST
SRC,Fn
SRC,DST
Fm,Fn
Fn,DST
SRC, Fn
SRC,DST
Fm,Fn
Fn,DST
SRC,Fn
SRC,DST
Fm,Fn
Fn,DST
SRC, Fn
SRC,DST
ADRI,ADR2
SRC
DST
Fn ,CNT ,ADR
ADR, Fn ,CNT
SRCI,SRC2
SRCI,SRC2
SRCI,SRC2
SRCI,SRC2
SRCI,SRC2
SRCI,SRC2

Arithmetlc Shlft right
Logical shift left
Loglcal shift right
Loglcal and
Incluslve or
Exclusive or
Complement
Negate
Clear
Increment
Decrement
Add carry
Absolute value
Compute effective address
Compare against llmits
Case statement
Increment and skip if wlthin limlt
Decrement and skip lf wlthin limit

Floating add, reglster to reglster
Floating add, register to memory
Floatlng add, memory to register
Floating add, memory to memory
Floatlng subtract, register to reglster
Floating subtract, reglster to memory
Floating subtract, memory to register
Floating subtract, memory to memory
Floating multlply, register to reglster
Floating multiply, reglster to memory
Floating multiply, memory to register
Floating multiply, memory to memory
Floating dlvlde, register to register
Floating divide, register to memory
Floating divide, memory to register
Floating divide, memory to memory
Floating move, reglster to register
Floating move, register to memory
Floating move, memory to register
Floating move, memory to memory
Floating block move
Push floating
Pop floating
Save floating pOlnt registers Fn to F<n+CNT-I>
Load Floating point registers from memory
Compare floating and skip lf SRCI <= SRC2
Compare floating and sklp lf SRC < SRC2
Compare floating and skip if SRCI >= SRC2
Compare flodtlng and SklP lf SRCI > SRC2
Compare floating ~nd skip lf SRCI SRC2
Compare floating and SklP if SRCI <> SRC2

-44-

FJMLE
FJMLT
FJMGE
FJMGT
FJMEQ
FJMNE
FJLE
FJLT
FJGE
FJGT
FJEQ
FJNE
FTSTLE
FTSTLT
FTSTGE
FTSTGT
FTSTEQ
FTSTNE
FABS

ADR
ADR
ADR
ADR
ADR
ADR
ADR
ADR
ADR
ADR
ADR
ADR
SRC,ADR
SRC,ADR
SRC,ADR
SRC,ADR
SRC,ADR
SRC,ADR
SRC,DST

Hlgh Level Instructions:

SIN
COS
AT AN
SQRT
MTMUL
MTADD
MVMUL
SOLVE
MSVEC
ASVEC
VCMUL
VCADD
MTMUL2
MTADD2
MVMUL2
RKMI
RKM2
RKM3
RKM4
RKM5
RKERR

SRC,DST
SRC,DST
SRC,DST
SRC,DST
MATI,MAT2
MATI,MAT2
MAT,VEC
MAT,VEC
SRC,DST
SRC,DST
SRCI,SRC2
SRCI,SRC2
MATI ,MAT 2
MATI,MAT2
MAT, VEC
SRCI,SRC2
SRCI,SRC2
SRCI,SRC2
SRCI,SRC2
SRCI,SRC2
SRC ,DST

Branch if FP multiply result <= 0
Branch if FP multiply result < 0
Branch if FP multiply result >= 0
Branch if FP mult1ply result > 0
Branch if FP mult1ply result = 0
Branch if FP multiply result <> 0
Branch if FP add, divide or subtract result <= 0
Branch if FP add, divide or subtract result < 0
Branch 1f FP add, d1vidc or subtract result >= 0
Branch 1f FP add, divide or subtract result> 0
Branch if FP add, divide or subtract result = 0
Branch if FP add, div1de or subtract result <> 0
Branch if float1ng SRC <= 0
Branch if floating SRC < 0
Branch 1f floating SRC >= 0
Branch if floating SRC > 0
Branch if float1ng SRC 0
Branch if floating SRC <> 0
Absolute value of float1ng point

Sine
Cosine
Arc tangent
Square Root
Matrix multiplication
Matr1x addition
Matrix-times vector
Gaussian Elimination
Scalar times vector
Add scalar to vector
Cross product
Add 2 vectors
Generalized matrix multiplication general
Generalized matrix addition
Generalized matrix times vector
Performs step 1 of the integration
Performs step 2 of the integration
Performs step 3 of the integration
Performs step 4 of the integration
Performs step 5 of the integration
Computes the local truncation

-4')-

TABLE 1

Addressing Mode Executlon Tunes

Integer F.P. Integer F.P.
Modes Source Source Destlnation Destination ADR

0 Register 1 1 1 1

1 4.5 6 6.5 8 1

2 Immediate 1 1

3 Memory 4.5 6 6.5 8 1

4 4.5 6 7.5 9 2

5 Indirect 8 9.5 11 12.5 4.5

6 5.5 7 7.5 9 2

7 4.5 6 6.5 8 2

8 Indirec t 8 9.5 12 13.5 5.5

9 Indirect 8 9.5 11 12.5 4.5

10 Indlrec t 8 9.5 11 12.5 4.5

11 5.5 7 7.5 9 2

12 4.5 6.0 6.S 8 2

The numbers are wcyc1es. If the wcyc1e lnvo1ves a memory access, then lt

is 1.S wcyc1es. Integer memory reference modes use 1 memory access, floatlng

pOlnt involves 2. Indirect integer modes have 2 memory cycles, floating point

lndirect modes involve 3 memory accesses.

-46-

Mode

0

1.

2

3

4

5

6

7

8

9

10

11

12

TABLE 2

Addressing Mode Time Estimates in ~seconds
Uses Table 1 ~cyc1es * 150 nsec. per cycle

Integer F.P. Integer
Source Source Dest.

ISRC FSRC IDST

RegIster .15 .15 .15

.675 .9 .975

Immediate .15 .15

Memory .675 .9 .975

.675 .9 1.125

Indirect 1.2 1.425 1.65

.825 1.05 1.125

.675 .9 .975

IndIrect 1.2 1.425 1.8

Indirect 1.2 1.425 1.65

Indirect 1.2 1.425 1.65

.825 1.05 1.125

.675 .9 .975

F.P. Jump
Dest. Address
FDST JADR

.15

1.2 .15

1.2 .15

1. 35 .3

1. 875 .675

1.35 .30

1.2 .30

2.025 .825

1. 875 .675

1.875 .675

1.35 .30

1.2 .30

Used 150 nsec for read cycle time; 225 nsec for memory read/write time.

(Usually there are 2 cycles involved in memory access; 1st does read, 2nd
does check for 1 or 2 bit error. Would save overall time if 2nd ~cyc1e
was short.)

-47-

MOVE

ADD

JMP

FADD

FMUL

FMOV

SINE (typical)

ATAN (typical)

TABLE 3

Example Executlon Times for Instruction
(NOTE: Each Instruction is Without Fetch Cycle

Which Adds in 4).1cyc1es (.6 jJsec.))

Times in).1cycles

2 + ISRC + IDST

2 + ISRC + IDST

1 +JADR

5 +JADR

R/R 6 + Add time

R/M 10 + Add time + FDST

M/R 6 + Add time + FSRC

M/M 6 + Add time + FSRC + F])ST

R/R 6 + Mult. time

R/M 10 + Mult. time + FDST

M/R 6 + Mult. tlme + FSRC

M/M 6 + Mult. time + FSRC + FDST

R/R 6

R/M 10 + FDST

M/R 6 + FSRC

M/M 6 + FDST + FSRC

73 + 14 adds + 11 multlplies

76 + 10 adds + 6 multiplies + 2 divides

MTMUL 36 + R*(3 + C*(2 + add tlme})
\ .

(Matrix multiply) V

SOLVE
(Gaussian Ellmlnation)

overlaps multLply

2 N3
on order of 2N*DT + N *MT + --

2

where DT dlvlde time
ST subtract time
MT = multiply time
N = II of rows, II of columns

RKMI 9 + N*(4 + MT) + FSRC + FDST

-48-

in matrix

TABLE 4

The following are the expected execution times for various Node Processor

instructions. To simplify the tables and give a best guess sampling of

instruction times, the following assumptions have been made.

a. For operands labled REGISTER, the operand may come from a

register or be immediate (i.e., part of instruction).

b. Operands labeled MEMORY are either mode #J or #3. (Probably

the most typical.)

c. Average microcycle time for bit slice is 150 nsec., 1nstruction

with memory access is 1.5 microcycles. See Table 2 for

explanation.

d. Floating point operation times used:

1.0 Multiply

1.5 Add or Subtract

15.4 Divide

These numbers used would probably be smaller with sparsely

filled matrices since operations with one zero operand are

si~nificantly faster.

e. Times do not include the instruction fetch times, which will

be approximately .6 microseconds per instruction.

Instructions with comparable execution times

MOVE, ADD, SUB, AND, lOR, XOR, COM, NEG, INC, DEC, ADC, ABS, PUSH, POP

JMP, JMPLE, JMLT, JMPGE, JMPGT, JMPEQ, JMPNE

SKPLE, SKPLT, SKPGE, SKPGT, SKPNE, SKPGE, BITNE, BITEQ

TSTLE, TSTLT, TSTGE, TSTGT, TSTEQ, TSTNE

ASHL, ASMR, LSHL, LSHR

-49-

FADD, FSUB

FMOV, FPUSH, FPOP

FSKPLE, LT, GT, GE, NE, EQ

FTSTLE, LT, GT, GE, NE, EQ

FJMLE, LT, GE, GT, NE, EQ, FJLE, LT, GE, GT, NE, EQ

Reglster to Reglster to Memory to Memory to
Functlon Register Memory Register Memory

MOVE .6 1.425 1.125 1. 95

ADD .6 1.425 1.125 1. 95

JMp .3

JSB .9

FADD 2.4 4.2 3.3 4.5

FMUL 1.9 3.7 2.8 4.0

FMOV .9 2.7 1.8 3.0

SINE 42.95 44.15 43.85 45.05

AT AN 63.2 64.4 64.1 65.3

MTMUL (10x10) 189.9
(50x50) 4.53 ms

SOLVE (lOx10) 1.3 ms
(50x50) 101. 6 ms

RKM1 (10) state variables 17.35
(50) state variables 81.35

* Time In pseconds except as noted

-50-

SOFTWARE SPECIFICATION SUMMARY

The software identified for the Digital System for Structural Dynamics

Simulation includes the following segments.

1. Offline Model Development Software.

2. Realtime Execution Control Software.

3. Node Processor Operational Programs.

4. Node Processor Instruction Set.

Offline Model Development Software

The Offline Model Development Software includes the linker/assembler programs

for generating Node Processor executable programs and a compiler to translate

user specifications of simulation problems into a form that can be handled

by the Node Processor operational programs.

The assembler and linker programs are necessary to generate programs for the

Node Processor. These programs are needed for any newly designed computer

system.

The Model Specification language compiler is designed to quicken the task

of preparing for simulation runs. The language must first be deslgned before

the compiler (translator) can be fully specified. Before the language is

designed, a sample problem should be identified. The purpose of the sample

problem is to provlde a focal point during the development of the language.

It will provide useful guidelines for the language and thus reduce the

probabllity of a costly over-generalized language.

The translator should not be considered as a full blown compiler for languages

such as Fortran, Basic and ADA. The language in all likelihood would be

rigidly formatted and limited in scope so as to ease the tasks requlred by

a compiler. The complIer would need to parse arithmetic expressions and

generate the approprlate code for the Node Processor. Elaborate capabilities

would prohab1y not he CObt effective.

-51-

Realtime Execution Control Software

The Realtime Execut10n Control Software includes a debugg1ng facil1ty and

the Execution Control program for runn1ng simulat1ons. The debugg1ng

facility is essential for developing the operational programs. The Node

Processor has been designed to facilitate the opEration of a debugger.

The instruction trace enable bit in the Processor Status Word and the hard

ware memory address breakpoint comparator prov1de the necessary "hooks"

for a debugger.

The Execution Control Program is the software utJ1ity for controlling Slmu

lation runs. It must be capable of handling the network 1n realt1me. A

simpl1fied communicat1ons protocol and hardware des1gn are essent1al to

keep the complexity of the program to a min1mum. Polled operation was

selected over 1nterrupt or asynchronous operation for the commun1cat1ons

because of the need for a simple hardware and software design.

Node Processor Operational Program

The Node Processor Operational Programs are needed to execute the substructure

simulations with1n each processor. Full software specifications for the

operational programs are not possible until a sample problem is selected

and the Model Specif1cat1on Language is defined. The need for the operational

programs 1S clear. Different sets of programs are needed for the various

models the Digital System 1S to handle.

Node Processor Instruct10n Set

The Node Processor Instruction Set was des1gned as a comprehensive instruction

set to accommodate the requirements of the simulat10n problems. The 1dent1-

fied needs of the instruction set included:

1. General purpose 1nstructions for f1exibi11ty 1n programming

the Node Processor.

2. Matrix and vector operations for solving the state equations.

3. High speed float1ng p01nt operations on double precision

operands.

-52-

4. Comprehensive addressing modes for handling the data structures

required by the simulation programs.

5. Microcoded parallel operation during lengthy calculations

and I/O with nearest neighbors.

The instruct10n set designed has incorporated the needs identified above.

It includes a full complement of instructions typically found on the latest

generation of minicomputers. The many addressing modes and opcodes speci

fied provide over 10,000 distinct operations. The vast capability did not

slow the expected execution speeds of instructions since the hardware

incorporates the latest tech1iques in pipelined architecture. In addition,

the proper selection of instruct10n decoding and execution techniques

enabled the extens1ve use of microcode subroutining, thereby keeping the

size of the operational m1crocode within reason.

The higher level 1nstructions specified for the Node Processor all take

advantage of parallel operations where possible. Software pipelining [2]

techniques were used in 1nstructions which do matrix multiplication,

gaussian elimination, sine/cosine calculation and Runge-Kutta-Merson inte

gration. The use of software pipelining was possible because of the autono

mous floating point multiplJer and adder units.

In addition to uS1ng software pipelining wherever applicable, the floating

point units were optimized for the operations expected during simulations.

Floating point calculations are done on mantissas with 7 extra bits of

precision so as to reduce round off error during intermediate calculations.

The exponent range is the same in the floating point units as main memory.

To speed up calculations on large matrices which contain many zero valued

elements the floating point units detect zero operands on input and return

their result immed1ately. When either operand is zero, the float1ng point

-53-

result 1S returned up to 70% faster.

SOFTWARE ASSESSMENT

A very powerful custom-made processor instruct10n set was des1gned and

flowcharted. These 1nstructions range from basic moves and integer

operations to complex floatlng pOlnt operat1ons wlth matrlces. Slnce the

node processor 1S microprogrammable, the suggested 1nstruction set 1S not

cast in concrete. The 1nstructions were designed with simulat10n in mind

and will make the solution of simulat10n models as efficient as poss1ble.

Software routines for all levels of the system, however, are presently

only in the conceptual stage. Offline model development software, real

t1me execution control software, and node processor operation programs

remain to be designed. Each section of the software lS in itself a sub

stantlal task.

The offline model development software will be made up of a compiler for

the model specification language, an assembler and a 11nker for the node

processor lnstruct10n set. It is not likely that an existing language

wll1 satisfy the need for the model specification language, so lt must also

be designed. The complIer for this language will translate the user model

into node processor assembly language whlle segmenting the problem equally

among the node processors. The assembler and linker would be fairly standard

and slmilar to many available for m1nlcomputers.

The realtime model execut10n software will consist of an execut10n control

program Wh1Ch controls loading of the node processors and the synchronization

of the processor array durlng run t1me. It also \nll collec t data from the

processors when appropriate. A node processor program debugger will be a

part of th1S software to ald in the development of operational programs.

The node processor operational programs will be the true simulatlon programs.

These programs Wl] I be dependent on the slmu] ation model.

The node processor microcode, while flowcharted, remains to be written.

These routines, sometimes called firmware, will implement the node processor

instruction set.

Above and beyond all of the simulation programs, it will be necessary to

have diagnostic software to insure the proper operation of the control

computer with the node processor array. Lower level programs should be

capable of identifying board level faults wlthin a node processor.

The above software assemblage will provide a fun('tionally complete and

convenient package for structural dynamics simulation.

-55-

NODE PROCESSOR HARDWARE

The Node Processor hardware cons1sts of seven major blocks of hardware:

1. The m1croprogram controller has the function of decod1ng

program 1nstruct1ons and controlling the proper operation

of the remaining SlX sections of hardware.

2. The reg1stered arithmetic logic un1ts (RALU's) perform the

integer ar1thmetic and lOglC funct10ns of the node processor.

The RALU's are the BIT-SLICES.

3. The dynam1c memory is the ma1n storage area for local pro

gram and data storage with1n the node processor.

4. The node processor communications hardware provides the I/O

ports necessary for the SlX nearest neighbor communicat1ons

and communications with the central m1nicomputer.

5. The float1ng point bus interface and scratch pad 1S used

between the CPU of the node processor and the float1ng point

un1ts to buffer, hold intermediate float1ng point values,

and expand/truncate float1ng point values.

6. The float1ng point multipl1er 1S used to perform all float1ng

point multiplies with1n the node processor.

7. The floating p01nt adder/subtractor/divider performs all

floating point addit1on, subtraction, and d1vision w1th1n

a node processor.

The relat10nship of the above hardware is shown in F1gure 6.

Each node processor has its CPU implemented with microprogrammed bit-slice

hardware. Bit-sl1ce hardware is currently available in ECL or TTL tech

nology. TTL technology was chosen because of difficulties in designlng

with ECL. ECL consumes a great deal of power, the variety of circuits

available is llmited, and second sourcing of parts 1S a problem.

-56-

I
Ul,
I

I

CPU DYNAMIC

REGISTERED K ~ RAM MICROPROGRAM
..... ,/

MEMORY CONTROLLER ARITHMETIC

LOGIC UNITS 44
4.3,1 43.3

MlCRtXXXE FLOATING
FLOATtm POINT

PROM POINT BUS
A

~ MUlTIPLIER
INTERFACE K r-V 432 4.3.5

45

SIX- WAY NEAREST NEIGfBOR

C~AnQNS INTERFACE FLOATING POINT

~ ADDER/SIBTIflACTOR 4.3.4A /' DIVIDER

r=::J. 43 4.6
I> I~ A /',. /~ /\. ~

GLOBAL

VVV\)\)\i BUS
4.3.4B

, ,,, I

NEAREST NEIGHBORS

REF. 3.3

Figure 6 NASA/Lewis Simplified Node Processor Block Diagram

In TTL technology, Advanced Micro Devices (AMD) is the leader in bit-slice

hardware. Other manufacturers second source many of AMD's products.

Standard TTL, lower power Schottky, Schottky and new advanced Schottky

are all compatible with the bit slice hardware. The most flex1ble, low

power power, high speed design 1S possible w1th TTL technology.

-58-

MICROPROGRAM CONTROLLER

The microprogram controller is the section of the node processor CPU which

selects a coherent sequence of microinstructions used to execute the varl0US

instructions required by the processor. Each elemental task performed by

the processor is called a microinstruction. A single machine instruction

will take one or more microinstructions to execute. These microinstructions

are stored in a permanent memory called microcode PROM. A sequence of

microinstructions 1nitiated by a machine instruction is called a m1cro

routine. Because there is a great deal of functional overlap, many machlne

instructions will execute microroutines that share portions of the microcode.

The node processor microprogram controller consists of the following hard

ware: the Instruction Register, the Instruction Mapping Prom, the Address

Mode Mapping Prom, an Address MUX, the Microprogram Sequencer, the Condition

Code Select MUX, the Microprogram Memory, and the Pipeline Register. Also

shown on the block diagram of Figure 7 is the Clock Generator.

Instruction Register

The Instruction Register 1S a 64-bit edge triggered register which holds

the next machine instruction to be executed. It takes two microcyles to

fetch the instruction from the dynam1c memory and load it 1n the IR. Each

microcycle may only fetch 32 bits. Slnce the instruction 1S so wide, it

contains 7 different fields capable of lmplementing a very complete

instruction set.

-'-------1-- -------j--··--S OP MODE REGISTER MODE
CODE SELECT #1 SELECT #1 SELECT #2

8 BITS 4 BITS 4 BITS 4 BITS
---- ... ----- --- ... --- -----

REGISTER
SELECT 112

4 BITS

INSTRUCTION REGISTER

INDEX
111

20 BITS

The 8-bit op code allows for up to 256 d1fferent op codes. Two registers

and their address1ng modes mdY be selected. Two separate index values may

be speCified. Of course, not all instructions wlll use all f1elds and the

format may vary slightly among instructions.

-')9-

A

J2
"I

MEMORY DATA J2

.32 JJ:
~ C.K 64 BIT INSTRUCT/ON REGISTER CI(I--

OP COCE MOCE I REG. MODE REG. INDEX I INDEX
"'I ., "'2 "2 "'1 ""2

~ ~ ~~
f!5

~~ t~ ~87 47
INSrRUCTION ADDRESS MOC£ .3.3 • .3 CLOD<

MAPPNG MAPPNG PRaI mHz ~ GEl£RATai
PROM CRYSTAL

o.

Rl ,~
{MDRI/-MORC

~& ~~
ADDRESS ADDRESS

MUX SELECT
OTHER

PSW STATUS

I
t urr

~ Am2910
V1~

COt-OTION c.c.
4 CC.£N MCFa'ROGRAM CODE
v PI:. SEQU£NCER SELECT

MUX

~~ JL MICROPROGRAM MEMORY
(Am27S185A) PIPELINE

OUTPUT

~
~ OE PIPELINE REGISTER

BRANCH I A~Mlss ccfJfkx ASEL 185£L lEA 4111 MICRO
ADDRESS SELECT LINES

DA eM "'-,_4 CNSTAN7

, '7 '4 7 ~ 4 '47 , 87-

Figure 7 NASA/Lewis SDS Node Processor CPU
Microprogram Controller

-60-

-
~
t::

REF. 4.3.1

Instruction Mapping PROM

The Instruction Mapping PROM is a code converter which converts the eight

bit Op Code into a 12-bit microaddress. It is a 256 x 12 bit wide area

of PROM. The 12-bit microaddress is typically the start of the micro

routine for the given microinstruction.

Address Mode Mapping PROM

The Address Mode Mapping PROM is a code converter which takes 4 bits from

the Branch Address field of the Pipeline Register and 4 bits from one of

the two address mode select fields of the instruction register and converts

it lnto a 12 bit microaddress. Only several of the possible 256 different

addressing modes are actually implemented.

Address MUX

The Address MUX selects one of four different branch addresses to the

Am 2910 microprogram Controller. The four choices are the Instructlon

Mapping PROM, the Branch Address field of the Pipeline Register, the Address

Mode Mapplng PROM, or the least significant 12 bits of the Memory Data

Reglster (MDR
11

-MDR
O
)'

Microprogram Controller

The Am 2910 Microprogram Controller [3] is an address sequencer intended for

controlling the sequence of execution of microinstructions stored ln

microprogram memory. Besldes the capability of sequential access, lt

provides conditional branching to any microinstruction within its 4096-

microword range. A last in, flrst out stack provides mlcrosubroutine

return linkage and looping capability allowing five levels of nesting

subroutines.

Condition Code Se1ectMUX

The Condition Code Select MUX selects the branch condition to the CC input

of the Am 2910 Mlcroprogram Controller. The conditions are:

-61-

1. F10atlng Point Multiplier

a. ZERO

b. CARRY

c. NEGATIVE

d. OVERFLOW

2. Floating Point Adder

a. ZERO

b. CARRY

c. NEGATIVE

d. OVERFLOW

3. Integer CPU

a. ZERO

b. CARRY

c. NEGATIVE

d. OVERFLOW

4. (Floating Point Trap Enable) AND (Floating Point Mu1tipller

Overflow)

5. (Floating Point Trap Enable) AND (Floating Point Adder Overflow

OR Dlvide by Zero)

6. Trace blt set In Processor Status Word

7. Memory Error

a. One Bit Error

b. Two Bit Error

8. Floating Point Multiplier DONE

9. Floating POlnt Adder/Subtractor/Divider DONE

10. ALL READY on Global Bus

11. Data Recelved on input latch

12. Memory Wrlte Fault (Memory Address Register ~ Address Fence)

on wrlte operatlon

13. MEMORY TRAP: (One Bit Error) OR (Two Blt Error) OR (Write AND

Memory Address Register ~ Address Fence)

-62-

Microprogram Memory

The Microprogram Memory contains all of the microroutines which form the

instruction set of the node processor. Since the microcode word for the

node processor has not been completely defined, nor has the microcode been

written, the width and depth of the PROM area is not specified. Due to

hardware development constraints the microcode depth is limited to 4K words

and It is preferable to keep the width at 64 bits or fewer.

Two possible choices for the PROM chips are the Am 275185A (2K x 8) or

the Intel 3632 (4K x 8).

Plpellne Re~ister

The Pipeline Register allows an overlap of the fetch of the next micro

lnstruction while the current microinstruction is being executed. The

next instruction is being decoded while the microinstruction latched in

the pipeline register is being executed. The position of the pipeline

register immediately after the microprogram PROM causes this arrangement

to be called the instruction - data based architecture.

Clock Generator

The Clock Generator is the Am 2925 System Clock Generator and Driver. This

lntegrated clrcuit is programmed by the microcode in order to vary the

microcycle length. It also contains the HALT/RUN and SINGLE STEP logic

used for system debugging. Up to 8 different cycle lengths of the four

phase output may be generated.

-63-

REGISTERED ARITHMETIC AND LOGIC UNITS (RALU's)

The RALU's are the hardware where the integer arithmetic and the lOglC

operations of the node processor are performed. The RALU's have assoclated

w1th them Register Select Input Multiplexers, Direct Input Select Mult1-

plexers, Shift Control Lo~ic, Memory Address Reg1ster, Memory Data Reg1ster,

Memory Data B1directional Buffer, Processor Status Word Multiplexer, and

Processor Status Word Register. See Figure 8.

The above hardware 1S responsible for the generat10n of the next macro

address and together with the M1croprogram Controller, forms the node

processor CPU.

RALU's

The RALU's are the Am 2903 four b1t bipolar microprocessor sllces. There

are e1ght of these bit slices for a 32-bit CPU. The RALU's perform all

of the 1nteger ar1thmet1c such as memory address and all of the logical

functions needed by the CPU. The RALU's contain 16 internal dual port

reg1sters, varlOUS internal latches, and sh1fters.

REGISTER SELECT INPUT MULTIPLEXERS

The Reg1ster A Select Input Multlplexer selects one of flve dlfferent groups

of 4 b1tS to bl~ the A Reg1ster address. The five bit f1elds are the REG #1

instructlon field, the least slgnlficant 4 bits of INDEX #1 or INDEX #2

1nstruction field, or the A SEL field of the Pipeline Register, or the

MODE 2 field.

The Register B Select Input Multiplexer selects one of four dlfferent groups

of 4 b1ts to be the B Register address. The four blt flelds are the REG #1

or REG #2 instruct10ns, the four least significant blts of the Memory Data

Register, or the B SEL P1peline Register fleld.

DIRECT INPUT SELECT MULTIPLEXERS

The Direct A Input Select Multiplexer selects one of four different sets of

-64-

I
0\
I.J1
I

S,

~21N0f:X N:lEX

~v.y'y~

J1IIllJJl
DIRECT A N'UT

v SAU.TREX8? &. LOGIC

MJX 5~_CTRLI

~
L'::}1S~ ~ w ••

CO<
I-

.-~ LATCH -----"
LATCH v 5

.-~ f-;o-r--S CK

'---- MUX

'---

/. ..
I

REG INDEX INOEX IttJOE A REG RE" LATCH 8
., ~ 5EL

471 "7 ..: "7": 47 ~ilillLlL
Yy'~y'.y, VV.V9.

~ REGISTER A SELECT

~ 5 tPUT I..Ii.A-TlPL£X£R ---v

~47

>2 "" A

2903 29Ql
alO

AIR4Y SHIFT I Ca'lTFVL ~o RALU'S
I

... 1 "-

E .. or. .. I ••

FfPELIE itJ
~207

-+-MEMCRf AW£SS
_S I/£GlSTER

(AlAR) -
A Jot " 20 AEMCRY AlX:R£SS ZO

" V

--+<

I£U)RY DATA BJS
I I

TO FLOATING
POINT 8JS
liTFREAC£

F£GlSTER 8 SELECT
S tPUT AU.TPLEXER =:J

":47
Boa 3Z

"-
QIO J SHIFT
SID Ca'lTFVL

y

fl'NTERNAL DATA BUS

~7 32

'" IEMCRf /)ITA -Of. 'tGISTER
"'DR)

~ II
Dill ~D4~

'"' 8lJIF£CTICWAL BUFFER -

MDII
':v-'

1J
""""" '2
':V:"

a£CT 8 NVT
SAU.TPLEX£R & LOGIC

Toe.,
... a,

"'" FP H03 STU'

VY.V~Y.>
I~U'U4U4U;1

-!J D
::= S PROCESSlJR STAruS

IIOI?D AU.TIPL£X£R ::= -
,

PROC£SSCR STATUS IIOI?D
'" REGISTER

(PSW)

;)

Figure 8 NASA/Lewis SDS Node Processor CPU Registered ALU's Block Diagram

"'-
32
i/

1..3.3

inputs to the DA 2903 inputs. These fields are the 8 b1t f1eld formed by

the Index #1 or Index #2 Instruct10n Register f1elds, an 8 bit latched

constant, or the Processor Status Word.

Shlft Control LOglc

The Sh1ft Control Logic determines the type of Shlft done by the Am 2903.

A one or a zero may be selected as the shift lnput, or a rotate may be

selected.

Memory Address Register (MAR)

The MAR lS a 20 bit wlde positlve edge triggered register used to hold

the current dynamic memory address. ThlS reg1ster also buffers the

address onto the Address lines.

MEMORY DATA REGISTER (MDR)

The MDR 1S a 32 bit wide pos1tive edge triggered reg1ster used to hold

values to be placed on the MEMORY DATA BUS.

MEMORY DATA BIDIRECTIONAL BUFFER

This buffer buffers the 32 blt w1de output of the MDR to the MEMORY DATA

BUS and it buffers the data from the MEMORY DATA BUS to the INTERNAL DATA

BUS.

PROCESSOR STATUS WORD MULTIPLEXER

The PSW multiplexer selects between the Internal Data Bus and the various

Processor Status bits as inputs to the PSW reg1ster.

PROCESSOR STATUS WORD REGISTER (PSW)

The PSW holds informat1on concernlng the current status of the node processor.

The PSW bits are defined as follows:

-66-

Bit

o
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Mnemonic

CR

OV

NE

ZE

FUNI

FOVI

FNEI

FNEI

FUN 2

FOV2

FNE2

FZE2

FDZ

FTR

TRC

PAR

RER

RDY

BPT

FEN

FLT

PROCESSOR STATUS WORD

Contents

Integer carry

Integer overflow

Integer result negative

Integer result zero

FP multiply underflow

FP multiply overflow

FP multiply negative

FP multiply result zero

FP add/subtract/divide underf10w

FP add/subtract/divide overflow

FP add/subtract/divide result negative

FP add/subtract/divide result zero

FP d1vide by zero

Trap enable on FDZ, FOVl, or FOV2
via location 10

Trace enable. Trap after each
instruction.

One bit error from memory access

Two bit error from memory access

Write only. Signals to host this
processor is done with current step.

Enable trap on sett1ng of FEN

Memory write address equals MACR

Memory write address less than MACR

-67-

DYNAMIC MEMORY

Each dynamic memory board contains 256K x 32 bits of memory (TMS 4164),

a dynamic memory controller, memory and refresh tim1ng, and a sect10n for

error detection and correction as shown 1n Figure 9.

A maximum of four (4) boards may be addressed by each node processor. A

node with four memory boards would have 1 megaword (32-b1t words). Except

for CPU registers and floating point reg1sters, all of the program and

data values used by the node processor are stored in the dynam1c RAM.

Each board conta1ns 156 64K dynamic RAMS. The memory array has 128 inte

grated C1rcUlth while the error detection and correction section uses the

remain1ng 28.

The Am2964B DynamIc Memory Controller is used to prov1de all address handl1ng,

as well as RAS and CAS decoding and control. The device has 18 input latches

for captur1ng an l8-bit address for memory control. The two highest order

addresses are used to select one of four 64K x 32 bit blocks of RAM. The

Am2964B also conta1ns an 8-blt refresh counter used to provide the necessary

256 line refresh mode. The CAS output is inh1bited during refresh.

Normal operat1on of the Dynamic Memory Controller 1S to prov1de the address,

close the address latches and start off a normal memory cycle. Th1S 1S

accomplished by brlnging the RASI input LOW which WIll cause one of the

RAS outputs to go low. After the required memory tIming, the MSEL input

is used to switch the multiplexer to the CAS latch. Then the CASI Input

will be dr1ven LOW and execute the CAS part of the memory cycle.

The refresh cycle IS executed by driv1ng the RFSH signal low which causes

all four RAS outputs to go low. Th1S will slmultaneously refresh all four

banks of memory controlled by the Dynam1c Memory Controller. When e1ther

the RFSH or RASI input is brought hIgh, the refresh counter is advanced

so 1t wlll be ready for the next cycle.

-68-

1
0\
\.0
1

~
g
§

~

I 1 1
-. - _. -- _. -- _. --- _ _-"' -.~

~ "-.... -A.. 16 ADDR ~-O7 8 4-Am2965 [3Z ~~
APDfl. ?

V V r 1
8-I.IC1.I6665 8 - MCJ.I6665 8-MCM6665 8-MCI.I6665 7-MCM6665

Am2964B 1
~ RA~D RASO 1
~ CASP

RASe.

I2
Rs.'£l.

.... 1 Am2966 I

L ~~ A" "SEL,
..... I "I APbA. •

8-MCM6665 8-I.IC1.I6665 8-MCAl6665 8-MC1.I6665 7-I.IC1.I6665
- -' ~ % 1 I I---- RA5C.

~i-:~~ CAS CJI I-- CAS(.

1 1
I I Sl: ~}~ 1 I

ADOA~7

8-MCM6665 8-MCA/6665 8-I./CI./6665 8-MCI.I6665 7 -I.ICJ,I6665
'--- - RASa

1 - CASB

c

fl.

1 1

1 1 ~ APOR_

1 1 8-MCM6665 8-UCAl6665 8-I.ICM6665 8-MCM6665 7-MCM6665 t1
"""" I 1 C.ASA

1
w. - - -1

t ~ /0':. /0':. /0':. " L ~ 1

~1 ~~ ~t ~t t
~

1 Am2966 I
I" I;'; 1:: ~! • c .. ~,:t.. 1 - .. S~f- ~f c_-I~ J91 S &

1 r:=-= • -it- -J ,. -l-
~ 1 1 I - - - - - -, • 7- - -,I ';. - - ~ ~/ - -. ~7 - I r - :,7"

I I I I I ~ I £R.ROR c.aAA.£C.TION

~ I 1

I
........ TIPlE 8lJS, 2 Am2961 2 Am2961 2 Am2961 2 Am2961 Am2960 SUf'FER5

L - - - - - - - - _I I
A ..

I 1 ~ I """,1 8

- -~; ;1- - -I; . A ..
~

RI£Ff'ESoH L- _____ : - - __ .J)-~ T _

!;GHI,. ... T"'~8-Z ~ ~ a .. ~ .. r - - ~ Am2960
r=\I" x Q Q

I-- ------ --- .. ~ IER_I>ETE~
SC.HEMATIC <48Z-D-loa-1 AND t.OIlRUT,OtII

"1

I UN'TS

L.z\.. ERAO~ - - - --- -I-- DETEC.TION AND
! C.OR.REC TIOH C.ONTft.OL.... II .

(;C, •• TAO<. a
REF.

I A ~"-
4.4

= < 31 Io£MORf ll4TA BUS 3&

I.I£I.IORY AI ..

~
FENCE

COAIPARATOR K DHI9
ANO LATCH

"

Figure 9 NASA/Lewis Node Processor CPU Dynamic Memory 256K WD x 39 Bit

Data 1nterface among the dynamic memories, the Am2960 EDC c1rcu1t, and the

node processor data bus is accomplished by means of the Am296l bus buffers.

Each 2961 contains two internal latches, a multiplexer, and a RAM driver

output buffer. Each 2961 is 4 bits wide so 8 are used 1n this 32-bit system.

The bus input latch of the 2961 is used for data storage during a memory

WRITE. The bus output latch 1n the 2961 is used predominantly for storing

the output data if the processor is in single step mode. In the single

step mode it 1S necessary to hold the output data on the system data bus

but the memory must be free to be refreshed.

A pair of Am2960 Error Detection and Correction units (EDC's) contain all

the necessary logic to generate check bits on a 32-bit data field according

to a mod1fied Hamming code and to correct the data when the check bits are

supplIed. Opelating on the data read from memory, the EDC's can correct

,111 single bit errors and will detect all double and bome triple bit l'rrors.

For 32-bit worGs, 7 check bits are used.

Some additional c1rcu1try 1S requ1red to provide proper memory access

sequenc1ng and tim1ng for memory refresh. Slnce the 16 bits of address

must be multiplexed into the dynamic RAMs 8 address llnes, the memory

timing is necessary. It 1S necessary to allow the memory to be refreshed,

with an eight b1t address, when 1t 1S not being accessed. When the CPU 1S

running, refresh is automatic and transparent w1thin the m1crocode sequences.

When the CPU is halted, such as during slng1e step mode, a special refresh

counter period1ca11y refreshes the RAM.

Aside from the two refresh modes described abOVE, the memory normally has

three operating modes.

the data 1nput latch.

In the write mode, a 32-bit value 1S loaded 1nto

The 7 check bits are generated by the EDCs which

correspond to the 32-b1t value. At the end of the write cycle, the data

and the check bits are written into the proper RAM location.

In the detect mode the EDCs examine the contents of the Data Input latch

(from the RAM) against the Check B1t Input Latch, and will detect all

-70-

single bit errors, all doublt-bit errors, and some triple bit errors. If

one or more errors are detected, the ERR status line to the CPU is pulled

low. If two or more errors are detected, MERR is pulled low. Both ERR and

MERR are open collector signals that remain high if there are no errors.

In the Detect mode, the contents of the Data Input latch are driven directly

to the Data Output Latch without correction.

In the Correct mode, the EDCs function the same as in the Detect mode ex

cept that the correction network is allowed to correct (complement) any

slngle bit error of the Data Input Latch before puttlng it into the inputs

of the Data Output Latch. If mUltiple errors are detected, the output of

the correction network is unspecified, and both the ERR and MERR llnes are

pulled low. If the single-bit error is a check bit, there is no authomatic

correction; if desired, this would be done by placing the EDCs in generate

mode to produce the correct check bit sequence for the data in the Data

Input Latch.

An option on the memory board is the Memory Fence Comparator. These inte

grated chips should only be lnstalled on one memory board per node. If

present, a speclal instructl0n called the Wrlte Fence Instruction will load

an immediate 20-blt value into the Fence register. Whenever memory is

written, the address is compared to the 20-bit Fence value. If address

equals fence the status line EQAD is brought hlgh. If address is less

than fence the status line FENCE is brought high. The EQAD status line

finds use as a means of generating a hardware breakpoint. The FENCE status

llne flnds its use in detecting illegal memory writes.

The Memory Fence feature is used to insure that an area of dynamic memory

has not been overwritten by mistaken. For example, a function look up

table may have been loaded into the lower memory area and the Memory Fence

is set at the top of this table. If a programming error or a hardware

error forced a wrlte to this area of memory, the FENCE llne would be brought

high. ThlS FENCE signal would be detected and warn the system operator

-71-

that the resulting computations in the node processor may have been corrupted.

The EQAD llne 1S brought high when the Memory Fence value equals the memory

address. Th1S feature is used as a hardware break p01nt during program

debugg1ng.

-72-

NODE PROCESSOR COMMUNICATIONS

The Node Processor Communications hardware is the most difficult part of

the system architecture to define. (Unless otherwise noted. Node Processor

Communications refers to communications between a node and its six nearest

neighbors.) There are three schemes for this communication: shared memory.

FIFO Buffers and six way communications controller. Each is discussed in

the following paragraphs.

Shared Memory

A system with shared memory between nearest ne~ghbors would enable a node

to directly access a section of its neighbor's memory. This is a fast.

perhaps the fastest possible. method of data transfer between processors.

There are several important disadvantages. The memory for such a system

is more complex; it would require dual port memorles that are expensive.

The memory width is 32 bits plus address and control lines. In dealing

with six nearest ne~ghbors, more than 200 connections would be needed on

each processor to implement shared memory. A large number of interconnects

are not desired because of low reliability.

FIFO Buff ers

A second method uses narrower data paths (16 bits per transfer) wit}, a FIFO

buffered input and output. Data are transferred between boards in two

separate events or passes. Pass one consists of loading three output FIFOs

and unloading three input FIFOs. Pass two changes the direction of the

da ta transfer. Each pass sends data to three nearest neighbors and receives

data from the remaining three neighbors.

For example, during pass one, data are passed from processor N to n('igh

bors 1, 2. and 3. Data are received from neighbors 4, 5 and 6. During

pass two, data are received from neighbors 1, 2, and 3. Data are slnt to

neighbors 4, 5, and 6. See ~igures (Pass 1 and Pass 2) on page 74.

-73-

The maximum number of variables sent along the path from one processor to

its neighbor is 100. Each variable is a 64 bit number. The path width

chosen for data transfers is 16 bits. A FIFO depth of 400 is needed to

hold the variables during any slngle path. The block diagram for the FIFO

scheme is shown in Figure 10.

The above two methods of processor communicatlons are quite costly in terms

of the amount of hardware involved. Upon reference to Sample Problem 2

(Determlnation of Processor Computatlonal Capabillties) implementatlon of
6 either scheme seems unjustifled. If 8 x 10 floating point computations

were performed for each time step at a cost of 2 psec per operation (being

very optimistic about the speed) the compute time would be 16 sec. The

time it would take a node to output 100 variables, 16 bits at a time, 500

nsec. per transfer, (being conservatively slow), then input 100 variables

in the same manner would be 400 psec Even if data transfer occurred that

slowly, nearest processor communications would only represent .0025% of a

single time step. This leads to the conclusion that communications may be

performed adequately wlth less hardware by a simpler set of six input/output

ports.

3 3

4 O----:~--i)------':~ 1 4

5

6 6

Pass 1 Pass 2

-74-

I
U1
I

~ ~

, ~M~~MO~R~Y __ B~U~S~ __________ -r ____ -.
~ v
~ ~

" STATUS BUS
r=~rT~==~------ro---r----~

~ t J t tt tt ~
CONTROL BUS

,) , v
A 1 I ~ 1

!u K ROW LOOP 1 ,I!:' COWIAN LOOP I ,'" RANK LOOP
-!::: " ~ ~ :t::" c
~~ <\II~).. -"'-" -I~ -<\I-~ -~ -<\I
Ci~ -.Jt!:!~ ~~!:!Vl~~ ~t!:!." t~!:!~~~ _it !:II§; ~- !H!
~ ~ "\.)' ~ ~ if ~ '" ... Ii ~ Cl e "\.)' ... ~ a ~ ~ ~ Cl Cl Ii ~ "\.)' trl ~ it ~ ~ ~ It if
;! "l h! '" '" '" :::JI@ '" '" '" '" '" '"
l.:i .,.. OUT - ~ ~ IN - ~ $I $ ~ OUT - ~ 4- 1\ - ill if! ~ ~ OUT r- ill '-+ IN I-- ill I $

FIFO ~ FIFO is ~ fi: FIFO C;j FIFO ~ ~ ~ FIFO ~ FIFO ~ I ~

I~ - ~I - 1 ~r - r - I I~ f-- r r---
ru,w; I I ~ I ~l .: ~ I 1 ~ I ~ 4~ 1 I ro I >0 L ~

CIiUITRYI I I I IL--_L-I_---,

0L~ 0L~ L' 0L~~
~ - ~ 1* 1*

m TRJ SELECT TRJ rRI SELECT TRI TRI SELECT
DRIVER OOVER _ awER CRIIt£R f+- DRIVER CRN£R f+-

.{ ~ L ~ 1 /~ L ''\ ~ ,A

i I ~
A "'/ A V i ,'.I1L_"'--""-7 __ ------'----'--_---' <.; ROW PmT A <.; CQ/.MII PmT A RAf'.I< PORT A o '< U

I IlJW PC1'IT 8 ~ I CQ/.MII PORr 8 => I RAN< PORr 8 => -./1 v v

ROW caUMN RANK

REF. 4.J.4A

Figure 10 NASA/Lewis SDS Node Processor CPU Block Diagram Six-Way Communications Interface

s~x Way Communications Controller

The six way communicat~ons controller is a set of six I/O ports under control

of the node processor CPU. Except for the address, all six ports are identi

cal. Each port ~s hardwired to the approprlate port on the six nearest

neighbors of the node. See Figure 11.

Each port conslsts of two 16-bit output latches wlth a common clock and

separate output enables. There are two 16-bit lnput registers with separate

clocks and a common output enable.

Output of data to the nearest neighbor lS accompl~shed by fetchlng a 32-blt

value and 1atchlng it in the output latch. The high order half word (16 bits)

is sent when the CPU receives the EMPTY status slgnal from ltS nearest nelgh

bor. The low order half word is sent in the next mlcrocyc1e. To send a 64-

bit value thlS procedure must be done twice. Figure 12 lS a flow chart of

the output loop of the six way communications controller. Flgure 13 depicts

the tYPlcal output operation of the controller.

Input of data from the nearest neighbor can occur when the EMPTY status

signal lS sent to the nearest nelghbor. First the high order half word is

clocked lnto the high order lnput register. In the next mlcrocycle, the

low order half word is latched into the low order input register and the

EMPTY slgnal is set (=1). Once EMPTY = 1 the CPU may take the data and put

it in ltS intended destination. Flgure 14 lS a flow chart of the input loop

of the six way communications controller. Figure 15 deplcts the tYPlcal

input operatl0n of the controller.

There are three signals used for handshaking between nodes. When EMPTY is

active low, the lnput port is ready to be loaded from the nearest nelghbor.

The other two handshake lines clock the data into the lnput register of the

nearest neighbor. The two clocks CKH and CKL clock the upper and lower

halves of a typical transfer into the input register of the nearest neighbor.

-76-

I
'-l
'-l
I

'NP(Jr
REGISreR

TcffROJI I/CIGHBOR ~ TO/FROItI He,G/_EOR ,

Figure 11 NASA/Lewis Six-Way Communication Interface Block Diagram

C=?utput Instruction

CPU Accesses~~oryl
or Register

1
r---32-Bit Data Latched
~proper Output Register

J~
/ Check <: EMPTY of

eighbor = 1

Output Enable Upper Hal-f-Of--o-u-tput~
Register, Clock Data Into Nearest

Neighbor's Upper Half of Input Reg1ster
With CKH '---,------------

Output Enable Lower Half of Output
Register, Clock Data Into Nearest

Ne1ghbor's Lower Half of Input Register
with CKL

------r------ -----

Figure 12

Another
Output

"" Instructioty
'" ' " ,to

YES

Six Way Communications Controller, Output Loop

-78-

LOAD OUTPur
REGISTER

TEST STATUS (EMPTY)
WHEN EMPTY == 0 SEND
HIGH HALF WORD WITH
CLOCK CKH

SEND LOW HALF-WORD
WITH CLOCK CKL

Figure 13 Output Operation of the Six Way Communications Controller

-79-

Figure 14

Input Instruct10n)

~----~/

/.~TY =- 0
of Input

Port

'"

Output Enable Input Re~iS;~1
of Proper Port,Put Data in

Proper Destination

Another
Input

Instruc tion YE 5

NO

(Continue)

Six Way Communications Controller Flowchart,
Input Loop

-80-

32

.-----'--, L

ASSERT EMPTY = 0 WHEN
READY FOR INPUT

THE HIGH ORDER HALF WORD
IS SENT AND LATCHED BY
THE ADJACENT NODE

THE LOW ORDER HALF WORD
IS SENT AND LATCHED BY
THE ADJACENT NODE. EMPTY = 1
(Not empty)

EMPTY = 1 IS DETECTED BY
THE CPU AND THE DATA IS
READ FROM THE INPUT LATCH
EMPTY IS SET TO O.

Figure 15 Input Operation of the Six Way Communications Controller

-81-

Global Bus Communications Port

Each node processor has a slngle 32-bit bidlrectional port known as the

global bus port. Thls port IS used for communications between any node

and the control computer.

At the node processor, the port consists of a 32-blt input latch, a 32-bit

output latch, and a status fllP flop.

The type of handshake to be used has not been decided at thlS time.

-82-

FLOATING POINT BUS INTERFACE (FPBI) AND SCRATCH PAD

The FPBI and Scratch Pad is designed to buffer, format and store data

between the node processor CPU and Floating Point units (i.e., Floating

Point Multiplier and Floating Point Adder/Subtractor/Divider).

Typical CPU floating point values are 64-bits wide and take up two 32-bit

wide words of CPU memory. On the other hand, the Floating Point units both

handle 72-bit wide floating point values. Hence the need for a CPU to

Floating Point unit interface. The two Floating Point word formats are

shown below:

64 BIT CPU Floating Point Value

I I
63 62 55 S4 32 31

''---y--J '--______ -y

L 55 Bit Mantissd

o
J

L 8 Bit Biased Exponent

Sign Bit of Mantissa

72 BIT Floating POl.nt Bus Value

I I
6L 0
I _______ -------~)
" --------y-

71 ~62

62 Bit Mantissa

Zl'ro Bit

8 Bit Biased Exponent

~------------------------
Sign Bit of Mantissa

-83-

CPU to FPBI Transfers

As shown above the FPBI must accept two 32-bit values from the CPU and

expand this value to 72 bltS. The mapping of thJS expansion lS shown

below:

~CPuword~ CPU Word
[

A (\ r l(4

CPU BIT
63\

62-55 I ------- \54-32 II
31-0

F.P. BUS BIT: 71 70-63 *62 61-39 38-7 I , I

*F.P. Bus Bit 62=0 If blts 62-55 are all zero; else 62=1.

**F.P. Bus Bit 6-0 are all set to "0".

FPBI to CPU Transfers

.....,

I::~~~---

Bit 62 and blt 6-0 of the FBPI word are truncated on a transfer from

the FPBI TO THE CPU:

F.P. BUS BIT: 71 70-63 61-39

CPU BIT 63 62-55 54-32
L ___ ---y-

CPU Word

SCRATCH PAD Area

I 38-7

32-0
J\.~

CPU Word

"0"

The SCRATCH PAD area of the FBPI is a 256 x 72 blt wlde area of fast statlc

RAM. The SCRATCH PAD serves several purposes: 1) It allows quick access of a

commonly used operand (l.e., parallel access to all 72-bits versus two accesses

to the slower CPU Dynamic RAM); 2) Greater precislon is malntalned In the

72-bit intermedlate value; 3) In matrix operatlons, a whole row of a matrix

may be stored for convenient access.

-84-

-

Operating Details of FPBI

1.]rite to SCRATCH PAD from CPU

Step 1: An 8-bit address is sent to the F.P. address transparent latch

while the least significant 32-bits of the F.P. value is latched

in an 1nput latch.

Step 2: The higher order 32-bits of the F.P. value are sent along with

the write command which causes the proper 72-bit value to be

written in the scratch pad at the appropriate address.

Read from SCRATCH PAD to CPU

Step 1: An 8-bit address is sent to the F.P. address transparent latch

and the upper 32-bits are read in on the data bus while the lower

32-bits of the F.P. word are latched.

Step 2: The lower 32-bits are read in from the latch to complete the

transfer.

Write from SCRATCH PAD to FLOATING POINT BUS

An 8-bit addrec,c, is sent to the F.P. address tn.lnt>pnrent latch, the F.P.

bus drivers are enabled, and a scratch pad Read is enabled. At the end

of this step the appropriate register in a Floating P01nt Unit latches

the F.P. value from the bus.

Read from FLOATING POINT BUS to SCRATCH PAD

An 8-bit address is sent to the F.P. address transparent latch, the F.P.

bus receivers are enabled, a scratch pad write is enabled and the appropriate

register in a Floating Point Unit is enabled on the bus. At the end of the

cycle the result is latched lnto the scratch pad. F.P. status is also

latched in the seven bit status latch.

-85-

REGISTER to REGISTER transfer

Step 1: An 8-bit (source) address is sent to the F.P. address transparent

latch, a scratch pad Read is enabled and the output transfer latch

stores the 72-b1t floating point value.

Step 2: An 8-bit (destination) address is sent to the F.P. address trans

parent latch, the output transparent latch is output enabled,

the F.P. bus receivers are enabled and a scratch pad wr1te is

enabled.

FPBI Hardware Description

The FPBI has f1ve main parts: The floating point address latch, CPU memory

data bus buffers and latches, an 8-bit comparitor, 256 x 72-bit scratch pad

RAM, floating p01nt bus buffers and latches. See F1gure 16.

The f1oat1ng p01nt address latch holds the 8-b1t address from the CPU of

the scratch pad RAM. This latch 1S transparent whlch means it may be opened

during one cycle and stored on subsequent cycles.

The CPU memory data bus buffers and latches are used to mu1t1p1ex and trun

cate the F.P. data on a scratch pad read. Data 1S latched, buffered and

expanded dur1ng a scratch pad write. Two cycles are required for a read or

wr1te to the memory bus Slnce it is only 32-bits wide.

An 8-bit compar1tor compares the exponent with zero and sets the zero detect

bit on a write from the CPU to the scratch pad.

The 256 x 72-b1t scratch pad is a fast read-write memory used to hold the

expanded double word operands used in the floating point units.

The floating point bus output latch and input buffer isolates the F.P. bus

from the F.P. UNITS and the F.P. scratch pad. There 1S a 72-bit buffer from

the F.P. BUS to the scratch pad. There 1S a 72-b1t transparent latch from

-86-

I
00
I

f.lEMORY D4TA

DZ3-D3111 "ca· Nil _I 1
nl I

'3Z ,< >< '-Z -I "
B A

BBiT

COMPARfTOR LATCH & LOGIC

74F251

~1 =0

F

rnl._1:'"7.

t ..
ID-4~- RM7 ____ If --

'Nfl SCRAT£H PA

----1 dA- D. A._o D.'-7 RAM} A,.o D" .. ZERO
9.3L422 w~ SIGN d wa DETECT

:: EXPONENT ~$ BIT

LATCH
704F37i

FPII/- FP71

72 BIT FLOATlNt;

CONTROL STATUS
I I

FLOATING
POINT STATUS

,t.ND CONTROL

ZD
olD-

,-

-J £J.FFER
704F~"''''

~l
17 ..

l&-.. ...
~7

Figure 16 NASA/Lewis SDS Node Processor CPU Floating Point Bus Interface Block Diagram

3Z

REF. 4 3, ~

the scratch pad to the F.P. bus.

The floatlng point control lines are derived from CPU microcode blts.

The floatlng point status lines are latched In a seven-bit latch.

-88-

FLOATING POINT BUS CONTROL LINES

WRFP

RDFP

ADD/MULT

FPR2-FPR0

WRFP RDFP

H H
L H
L H

L H

L H

H

L H

L H

L H
H L
L H
L H
H L

X X
L L

A low on this line is used to write data into a Floating Point

Unit.

A low on this line is used to read data from a Floating Point

Unit.

A high on this llne is used to access to the Floating Point

Adder/Subtractor/Divider. A low on this llne is used to access

to the Floating Point Multipller.

These llnes determine the register of the Floating POlnt Unit

accessed and in the case of the Adder/Subtractor/Divider, the

function to be performed.

ADD/MULT FPR2 FPRl FPR0

X X X X NO OP
H L L L Write X operand to Adder
H L L H Write Y operand to Adder -

Functwn:Add
H L H L Wrlte Y operand to Adder -

Function:Subtract
H L H H Write Y operand to Adder -

Function:Float to Fix
H H L L Write Y operand to Adder -

Function:Flx to Float
H H L H Write Y operand to Adder -

Function:Check Status
H H H L Write Y operand to Adder -

Function:Divlde
H H H H NO OF
H L L L Read Adder result and status
L X L L Write X operand to Multiplier
L X L H Write X operand to Multipher
L X L L Read Multiplier result and

status
L X H X NO OP
X X X X Illegal Condition

-89-

FLOATING POINT BUS STATUS LINES

OVF Low on this line indicates the result is beyond the range of numbers

wh~ch can be represented. All b~ts of the result set to 1.

UFL Low on th~s line indicates the result ~s smaller than the smallest

number which can be represented. All blts except for the ZERO BIT

(BIT 62) are set to O.

NEG H~gh on this line ~ndicates the result of the operation was a neg

at~ve number. It ~s the same as the negat~ve b~t of the mant~sSd.

ZER Low on th~s line indicates the result of the operation was zero.

All bits of the result are zero.

DNM Low on this line ~ndicates the Mult~plier is done and ready for

new input.

DNA Low on this line ind~cates the Adder ~s done and ready for new

~nput.

D~Z Low on this line indicates a divide by zero error in the floating

point Adder/Subtractor/Divider.

-90-

FLOATING POINT MULTIPLIER (FPM)

The Floating Point Multiplier is a very high speed microprogrammed logic

board designed to exclusively perform all floating point multiplication

within a node processor.

The FPM is connected to the CPU of a node via the Floating Point Bus Inter

face (FPBI). The interface buffers, formats and stores up to 256 72-bit

floating point values for processing by the CPU or the Floating Point units.

(See Floating Point Bus Interface.)

The FPM has three registers which are accessed via the FPBI. They are the

X operand input register, the Y operand input register, and the Result and

Status output register. The floating point control bus signals required to

access these registers are:

RDFP WRFP ADD/MULT FPRI FPRO

H H X X X No Op

X X H X X No Op (FPA)

H L L L L Load X operand of mu1 tiplier

H L L L H Load Y operand of multiplier

L H L L L Read Result and Status of
Multiplier

The FPM is loaded under control of the node processor CPU. The order of

operand loading is important. The X-operand is ordinarily loaded first.

Upon the loading of the Y operand, the multiplier begins execution. On a

succeeding multiply, if the X operand does not change, only the new Y operand

need be loaded. The multiplier will proceed using the old X operand and the

new Y operand. The result returned is a 72-bit product with approprlate

status bits.

-91-

Assembly Language Instructions

The floating point multiplier is under control of the node processor CPU.

The instruction FMUL is the only ~nstruct~on wh~ch uses the FPM.

Multiplication Algorithm

The floating point numbers have the representation of 1 sign bit, an 8-bit

exponent with a bias of 128 and a 63-bit mantissa for a total of 72 bits.

This format provides a range of 10-37 to 10 38 with 19 digits of precision.

In all cases the floating point inputs are normalized numbers. Also, if the

exponent is zero (-12810) then the number is zero. ThlS eliminates gradual

underflow or operation wlth vanishing numbers

I I
71

--- -------

63-bit mantissa (bit 62 is also the
zero bit)

8-bit biased exponent

--- mantissa sign bit

The floating point multiplication is done ~n two relatively independent

processes. One process determines the sign and exponent of the result,

the other process determines the mantissa. The two processes lnteract when

the final mantissa may need to be normalized, thereby changing the exponent

of the result. The multiply algorithm is flowcharted ln Figure 17.

The sign of the result is 1 (negatlve) if, and only if, the slgns of the

inputs are not equal. The exponent is found by adding the input exponents

-92-

START

Multiply
lD , 2D , 3D .4D
E:=e:X-l28.

e::=e:+e:Y
C2:=C out

NO

Multiply
lC,2C,3C,4C

S :=2D4D

N:=S+1D3D

YES

YES

YES

YES

ZERO RESUL
FZEl:"l
FINl:"'l

FUNl: .. l

Figure 17 Floating Point Multiply Flowchart

-93-

RESULT:
All l's
FOVl:=l
FINl:-l

Multiply
lB,ZB,3B,4B

S:=N+ZC4C

N:=S+1C3C

Multiply
lA,ZA,3A,4A

S:=N+ZB4B

N:=S+1B3B

S:=N+ZA4A

N:=S+IA3A

N:=N +
Round Bi

YES

RETURN

SHIFT
RESULT

E:=E-l

Figure 17 Continued

-94-

ZERO RESULT
FUNl:=l
FZEl:=l
FINl:=l

RETURN

and subtracting the bias (12810), After the result has been normalized

underflow will occur if the exponent is below the minimum allowed. Over

flow will occur if the exponent is greater than the maximum.

The calculation of the result mantissa is done by finding the sum of 16

partial products, each 32 bits, to form a 128-bit result. The result is

then normalized, rounded and truncated to 63 bits.

The X and Y input mantissas are represented by four 16-bit fle1ds. The

63-bit input mantissas are left justified within these 64 bits.

X A B c D

Y 1 2 3 4

The 32-bit result of a 16 x 16 multiply is represented by the 2 16-bit fields

multiplied. The 16 32-bit partial products are added to form a 128-bit

result. The partial products must have their LSB aligned with the proper

bit in the 128-bit result before adding. The alignment of the partial

products may be visualized as:

RESULT

127 o
-95-

The hardware does not maintain the full l28-bit result. The lower 64 bits

are used to set guard and sticky bits are used when rounding is accompllshed.

(See round and normalize hardware.)

F . P. MULTIPLIER HARDWARE

The FPM hardware consists of: a microprogram controller and PROMS, two

operand lnput registers, an exponent ALU, four array multipliers, a mantissa

ALU, a mantissa shifter, round and normalization logic and an output buffer.

See Figure 18.

Microprogram Controller and PROMs

The FPM has its own microprogram contained in PROM. The microprogram

counter is a binary up counter with preset and reset capabilities. The

counter is reset to zero when the Y operand is loaded. The counter normally

sequences through the microcode. Certain microinstructions allow conditional

or unconditional presetting of the counter which causes branching to different

sections of the microprogram. At the end of the multiply microroutine,

the counter is disabled untll the new operand(s) is(are) loaded.

Operand Input Registers

The input reglsters are positive edge triggered registers which are addressed

and loaded under the control of the CPU. There are 2 72-blt input registers.

One holds the X operand; the other holds the Y operand. Also on the lnput

of the FPM is some decoding logic which determines from the CPU FP control

signals whether the X operand is to be loaded, the Y operand is to be loaded

or the Result is to be read.

Exponent ALU

The exponent ALU consists of an elght bit ALU, an output register, an output

buffer and two selectable constant inputs. The A input of the exponent ALU

may be either the exponent of the X operand or the output of the latch or

-96-

I
\.0
-....J
I

r

Figure 18

"8r D ". I

aocx G[~
AI~~

t(NGJ).j ~rrn.

~.~, .. ,. ~~

3S:~l

A1D·s

NASA/Lewis SDS Node Processor Floating Point Multiplier Block Diagram

i
I

--~~~ .;~.:-:: 1] r-~- I

'KVC' J,OCJ r
· c, «r..- :

,:~ '-P,",.r .. n

the adder output. The B adder input may be the exponent of the Y operand,

the constant -1, or the constant -128.

Array Multipliers

There are four 16 x 16 array multipllers which are used to generate four

32-blt partial products simultaneously. Four multiplies are done in each

multiplier to compute all 16 partial products. The blts generated by the

multlpliers are latched in four separate 32-bit tristate registers.

Mantlssa ALU

The mantissa ALU lS a 68-blt wide ALU. The ALU output lS loaded lnto the

parallel load lnput of a 68-bit shifter. The A input of the adder may be

either the output of the 68-bit shlfter, or the output of the 68-bit shlfter

right shlfted 16 blts.

The B input of the ALU selects between two pairs of latched multiplier

outputs.

Mantlssa Shlfter

The mantlssa shlfter latches the output of the 68-blt adder. The shifter

lS used to left shift the result if normalization is necessary.

Round and Normalize LOglC

Slnce there are more bits computed than are retained for a final result, it

is necessary to round the result. All results are rounded to the nearest

expresslble value, with rounding to even If the value is exactly between

the 2 posslble representatlons. In this scheme, a guard blt and a sticky

bit are necessary. The result of a mantlssa multipllcation is 64 bits.

The LSB of the intermediate result is deslgnated as the rounding blt. The

guard bit is the blt immedlately to the right of the LSB which would normally

be lost. In the event the lntermediate result must be left shifted to

normalize, the guard bit lS shifted lnto the LSB of the result and becomes

the rounding blt.

-98-

The sticky bit and guard bit are used to correctly determine which direction

to round when done. The sticky bit "remembers" l.f there were any bits set

in the low order 63 bits of the 128-bit result. These low order bits are

not carried through the computation. Instead, during each of the four

multiply steps, the low order 16 bits are passed to the guard and sticky

bit logic. This logic does the following:

1. Logl.ca1 OR of guard bit with sticky bit

2. Logical OR 15 least significant bits with sticky bit

3. MSB of 16 bits becomes new guard bit

In the round step a 1 is added to the mantissa if and only if

1 = (Bit 63) (Bit 0) • (Guard + Sticky) + (Bit 63) • (Guard)(Sticky)

-99-

FLOATING POINT ADDER/SUBTRACTOR/DIVIDER (FPA)

The FloatIng Point Adder is a high speed mIcroprogrammed logic board

designed to perform floatIng point addition, subtraction and divisIon.

The FPA also will convert a floating point number to fixed pOInt, a fIxed

point number to floating pOInt, and set the appropriate status for a single

input.

The FPA is connected to the CPU of a node via the Floating Point Bus Inter

face (FPBI). The interface buffers format and store up to 256 72-bIt float

Ing point values for processIng by the CPU or the Floating Point units (see

Floating Point Bus Interface).

The FPA has three registers WhICh are accessed VIa the FPBI. They are the

X-operand input register, the Y-operand input/command register, and the

result/status output regIster. Floating POInt control bus sIgnals to access

these regIsters are:

WRFP

H

L

L

L

L

L

L

L

H

RDFP

H

H

H

H

H

H

H

H

L

ADD/MULT

X

L

H

H

H

H

H

H

H

FPR2

X

X

L

L

L

L

H

H

L

FPRl

X

X

L

L

H

H

L

L

L

-100-

FRR~

X

X

L

H

L

H

L

H

L

No Op

No Op (FPM)

Wrlte X-Operand to FPA

Write Y-Operand to FPA
Function: ADD

Write Y-Operand to FPA
Function: SUBTRACT

WrIte Y-Operand to FPA
Function: FLOAT to FIX

WrIte Y-Operand to FPA
FunctIon: FIX to FLOAT

WrIte Y-Operand to FPA
FunctIon: CHECK STATUS

Read FPA Result and Status

FP Adder/Subtractor and Divider Hardware

The FPASD hardware consists of: a microprogram controller and proms, an

exponent ALU, a mantissa ALU, a mantissa shifter, and output buffers and

latches. See Figure 19.

Microprogram Controller and Proms

The FPASD has 1tS own microprogram contained in PROM. The microprogram

counter is a binary up counter with preset and reset capabilities. The

counter 1S preset to a special address in the lower address space of the

microcode PROM upon the 10ad1ng of the Y-operand. The preset address is

determined by the FP register control bits. The microprogram then executes

the instructions for the proper algorithm. Certain microinstructions allow

conditional or unconditional branching to different sections of the micro

program. Otherwise, microprogram execution is sequential.

At the end of a microprogram, the counter is disabled until the new operand(s)

is (are) loaded.

Operand Input Registers

The input registers are positive edge triggered registers which are addressed

and loaded under control of the cpu. There are two 72-bit input registers.

One contains the X-operand while the other contains the Y-operand. Also on

the input of the FPASD is some decoding logic which determines from the CPU

FP control signals whether the X-operand is to be loaded, the Y-operand is

to be loaded, or the Result is to be read.

Exponent ALU

The exponent ALU consists of an 8-bit ALU, four registers, and a 8-bit counter.

The f1rst register is on the output of the ALU. The output of the first

register feeds the 8-bit counter, a second register which has its output

dr1ving the A input of the ALU, and a third reg1ster used to hold the exponent

result and drive the FP bus. The fourth register is on the outputs of the

8-b1t counter and drives the B inputs of the ALU.

-101-

I
!-'
o
N
I

nOATU; ~, CCWTfO.. ~ STATUS BUS

raTION
ODE lIUX

"".

U>aR

""Rn""
tnTRFlCW

n"-n~

FtQ41l'1G fa<lT ~TA BUS

- -,

_I

- -I
"\/ I

n ,I
:1

r64-&T AW-: I ~, --'"y"-----,

I

II
I

11
I
1

I itf!iM.T ~
OUW1l"'~

ITRfST.A7F - -~9
LArCH~

~ ~ - -~-~----------------
I~, ,:i rl---------------.

I,.. If.!

Figure 19 NASA/Lewis SDS Node Processor Block Diagram F1oat1ng Point Adder/Subtractor/Divider

.~r dt:.

In other words, input A to the ALU may come from either the X input register

or register number 2. The B input of the ALU may come from either the Y input

register or register number 4.

Mantissa ALU

The mant~ssa ALU consists of two 64-bit latches, a 64-bit ALU, a 68-b~t shifter,

a 64-bit transparent latch, a 64-bit zero detect circuit, and a 72-bit shifter.

Either of the two 64-bit intermediate mantissa registers may be loaded from

the X operand input register, the Y operand input register, the transparent

latch, the output of the A register itself, or the 72-bit shifter.

The ALU A input may come from either the X or Y operand input registers,

the transparent latch, or the A intermediate mantissa register. The ALU B

input may only come from the B intermediate mantissa register.

The input of the 68-bit shifter may only come from the 64-bit ALU. The input

of the 64-bit latch may only come from the 68-b~t shifter.

The 72-bit shifter, the zero detect circuit, and the 64-bit output buffer

all have the same inputs as the ALU A input.

Assembly Language Instructions

FLOATING POINT ADD

FLOATING POINT SUBTRACT

FLOATING POINT DIVIDE

FIX TO FLOAT

FLOAT TO FIX

STATUS CHECK

-103-

Float1ng Point Add1tion Algorithm

Floating point addition is performed in the Floating Point Adder/Subtractor/

Divider according to a two's complement addition algorithm described below.

X and Yare the floating point input operands and Z is the sum. The flow

chart for th1S algorithm is shown in Figure 20.

1. Compare X-operand and Y-exponent. If Y-exponent 1S greater

than X-exponent swap X and Y so that the larger value is 1n

X. If the exponents are equal, leave X and Y alone.

2. Subtract the exponents so that D = X-exponent - Y-exponent.

If D 1S greater than or equal to 63 the answer is X and the

procedure may be stopped, otherwise continue.

3. Convert the slgned magnitude mantissa to two's complement

form.

4. Shift Y-mantissa to the r1ght D times.

5. Perform a two's complement addit10n of the two mantissas.

Shift the result one place to the right and increment the

exponent 1f a carry is generated.

6. Convert the two's complement result to slgn magnitude form.

7. Normal1ze the result by shifting the mant1ssa left until a

1 appears 1n the most signif1cant bit. Decrement the

exponent for each shift.

8. Round and latch result.

F1oat1ng Point Subtraction Algorithm

F1oat1ng p01nt subtract10n differs only slightly from floating point

addition. If Z = X-Y, change the sign of Y and proceed w1th steps 1 through

8 of the floating point add1t1on algorithm. The flowchart for the a1gor1thm

1S shown 1n Figure 21.

-104-

E+e:A-e:B
C+COUT

T

B+MY

S+B
CNTR+E

SHIFT S
RIGHT CNTR

TIMES

B+S
E+EA

S+A+B
H+E

CNTR+O

YES

YES

E+EA

S+A

E+H+l
SHIFT S
RIGHT 1

S+B plus 1

A+S

S+B plus I

B+S

E+e:B-e:A
S+A

CNTR+e:

SHIFT S
RIGHT CNTR

A+S
E~·e:B

Figure 20 Floating Point Addition Flowchart

-105-

E+EB
S+B

YES

S+B plus 1

S+O
y~ E+O

SHIFT S LEFT
UNTIL S(MSB-1)=1

COUNT IN CNTR

E+H-CNTR
C+C

out

FIN2+1
FNE2+SZ

RETURN

Figure 20 Continued

-106-

FZE2+1

E+A111's
S+A11 l's
FOV2+1

START

SY+Sy

Figure 21 Floating Point Subtraction Flowchart

-107-

Float1ng Point Division Algorithm

Floating point division is performed in the Floating Point Adder/Subtractor/

Divider according to a non-restoring binary divlsion algorithm described

below. The d1v1sor 1S X, the dividend Y and the quotient is Z. The flow

chart for the algorithm is shown 1n Figure 22.

1. Subtract the exponents so that Z exponent = X exponent - Y exponent

+ bias.

2. Compare the mantissas. If X mantissa js greater than the Y mant1ssa

shift X mantissa to the right one bit and increment Z-exponent.

3. Set counter I to 62. Clear Z-mantissa (Z mantissa = 0).

4. If X-mantissa equals zero, then stop.

5. Perform subtraction X = 2X-Y.

6. Test result of subtraction. If negative go to step 10, else

continue.

7. Set b1t I in quotient to 1 (Z(I) 1).

8. Decrement I.

9. If I does not equal zero, go to step 4, else stop.

10. Add X = 2X+Y.

11. Decrement I.

12. If I does not equal zero, go to step 6, else stop.

-108-

If (CA-1) S+S-B
E+EX-EY FZE2+1 Else S+S+B

RESET STATUS S~ Shift CA into T
E+O CNTR-CNTR-1 YES FIN2+1

NEITHER CNTR-O B+T
B+MY RETURN

U+ .. E

YES FZE2+1 B+T
S+O
E+O

FIN 2+1 S+T
E+H+200

B
FDVZ+1

S+T
SZ+sXOSY

S+A-B Shift S until
CA+C out CNTR=O

S+A Normalize
and

Round FNE2+SZ
FOV2+1
FIN2+1
S+l 's
E+2' s

E+H+l
Shift S right 1

RETURN

H+E FZE2+l
FUN2+l
S+O

E+64 E+O
SZ+O Clear T FIN2+l

FNE2+SZ
FIN 2+1

CNTR+E

RETURN

Figure 22 Floating Point Division Flowchart

-109-

HARDWARE ASSESSMENT

The system architecture of an array of node processors controlled by a

central minicomputer was chosen. The node processor design was based upon

the computational requirements of a structural dynamics simulator. A

microprogrammable blt-slice architecture allowed an extremely powerful

custom instructlon set. Additional hardware was designed to greatly speed

up floating point calculations.

Every node processor may access a large dynamic memory. Nearest neighbor

communications have been implemented for efficient lnterprocessor communl-

cations.

The dynamlc memory, CPU to floating pOlnt unit interface, and two floatlng

pOlnt units, were deslgned up through schematic diagrams. The CPU and the

communicatlons interfaces were designed through hlock diagrams.

The hardware archltecture chosen is as powerful as is possible while eco

nomically feaslb1e with today's technology. As upgraded verSlons of the

circuitry become avallable, the speed to cost ratio will lncrease. Walting

for future advancement poses few advantages. New products are rarely ready

on schedule. The hardware suggested here is ava~lable now to provide an

extremely powerful and useful tool for structural dynamlcs simulatlon.

-110-

DISCUSSION OF RESULTS

The approach taken in this design of a Digital System for Structural Dynamics

Simulation is innovative. From a hardware standpoint, the system takes

advantage of decreasing costs and increased computational power of state

of-the-art digital technology. The software associated with this system

is of necessity state-of-the-art. The main concepts of value in the simu

lation application are the segmentation of the problem (into 125 equal parts),

a custom instruction set tailored for simulation, and the high speed of the

computing hardware.

At this point it is suggested that the detailed design of a node processor

be completed and a prototype constructed. The instruction set should be

microcoded and small programs should be written to exercise the hardware/

firmware. At the conclusion of this phase, the decision can be made as to

purchase of a control minicomputer and subsequent production of the entire

array of processors.

The techn1cal risk of producing a single functioning node processor is not

great and results primarily from the tedium of microcoding such a machine.

Constructing the entire system represents a challenging problem in packaging,

cooling, interconnect1ng, and testing.

-111-

SUMMARY OF RESULTS AND RECOMMENDATIONS

The subject of thls report has been the design of a Digltal System for

Structural Dynamlcs Slmulation.

The results of this program can be summarized as follows:

1. A search of the field of parallel proceE.sing/simulatlon was done

to dlscover work WhlCh would be a duplication of effort of this

program. No such duplication was found.

2. The princlples of slmulation modeling mE'thods were explored and

a method (Runge-Kutta) chosen for this ('lass of problems.

3. The archltecture of an array of processors was conceived as the

best possible solution to the simulation problem.

4. The node processor architecture of bit-slice microprogrammed CPU,

large dynamic memory and custom floating point hardware was chosen.

5. The floating point hardware and dynamic memory were designed to

the detalled schematlc stage. The CPU 'vas designed to the block

diagram level.

6. The instruction set was designed and flJwcharted. ThlS infor

mation is contained lTI the Node Processor Instruction Set Reference

and the Mlcrocode Flowcharts for the Node Processor Instruct10n

Set prov1ded to NASA as a separate report.

7. System software requirements were outlined.

For meaningful continuat10n of thlS program, addltlonal effort 1n the areas

below lS recommended.

1. A sample structural dynamlcs problem should be developed, its

Solutlon coded and run on a maln frame computer.

2. The hardware and firmware (microcode) for a slngle node processor

should be prototyped.

3. Segments of the sample problem should be run on the node processor

with results being checked back to the maln frame solution.

-112-

4. The control minicomputer should be specified and software design

started for the system.

5. The debugged prototyped node processor can then be produced in

quantity. Packaging and interfacing to the central minicomputer

followed by system checkout will complete the program.

-113-

REFERENCES

1. Burden, R., Falnes, J. and Reynolds, A., "Numerical Analysls",
Prindle, Weber & Schmidt, Boston, Mass., 5th Printing~ August 1980.

2. Chatsworth, A. E., "An Approach to SClentific Array Processing: The
Architectural Design of the AP-120B/FPS-164 Family", Computer, Vol.
14, No.9, Sept. 81, pp. 18-27.

3. Advanced Micro Devlces, "The Am 2900 Family Data Book", Advanced
Micro Devlces, California (1979).

-114-

APPENDIX I

Summary of Current Similar Simulation Programs

H
I

t-'

1.

2.

3.

4.

5.

ORGANIZATION

Unlv. of Wisconsin

NASA Ames

NASA Langley

Goodyear Aerospace

Rensselaer Polytechnic
Instltute

SUMMARY OF CURRENT SIMILAR SIMULATION PROGRAMS

PURPOSE OF WORK

Solution of partial dlffer
ential equations

Calculation of three
dlmensional flows for
aircraft.

Solution of statlc finite
element equation.

Processing of satelllte
imagery.

Assessment of chip tech
nology as related to
structural engineerlng.

APPROACH

Net of computers.
Nearest neighbor (2 dlmen

sional array).
Global bus structure

Use of parallel pro§esslng
concepts to get 10 FLOPS.

Archltecture not based on
physlcal problem.

Array of asynchronous
mlcroprocessors. Each
connected to 12 nearest
nelghbors for communica
tlon of dlsplacements.
Iteratlve solution.

1",)~4-

Use of 128 x 128 array of
processors to process
slmultaneously bit serial
data. Each connected to
four nearest nelghbors.
Custom VSLI CMOS/SOS chips
are used for non-memory
portions of each processor.

Evaluation of current and
future chip usage in numeri
cal algorlthm evaluation.
Predlction of lmpact of
chip technology on numeri
cal analyses.

PRESENT STATUS

Study Stage.

System design.

Four node system
operating. Thlrty
SlX node prototype
under development.

To be completed
m 1982.

Started ln 1980.
To be completed
ln 1982.

APPENDIX II

Summary of Relevant Papers Describing Parallel
Processing Simulation Procedures

1.

2.

3.

4.

5.

SUMMARY OF RECENT PAPERS DESCRIBING PARALLEL PROCESSING

REFERENCE

Baskett, F. and A. J. Smith,
"Interference in Multlprocessor
Computer Systems with Interleaved
Memory," ACM, Volume 19, No.6,
June 1976, pp. 327-334.

Baudet, G. M., "Asynchronous
Interatlve Methods for Multi
Processors" Journal ACM, Volume
25, No.2, April 1978, pp 226-244.

Bhandarkar, D. P., "Some Per
formance Issues in Multipro
cessor System Design," IEEE
Trans. Computers, Volume C-26
No.5, May 1977, pp 506-11.

Enslow, P. H., "Multiprocessor
Organiza tion-A Survey,"
Computing Surveys, Volume 9,
No.1, Mar. 1977, pp 103-129.

Kafura, D. G. and V. Y. Shen.,
"Tasks Scheduling on a Multi
processor System wlth Inde
pendent Memorles," SIAMJ
Computing, Vol. 6, No.1,
Mar. 1977, ~p 167-187

COMPANY/
ORGANIZATION KEY WORDS SUBJECT

Stanford Unlverslty, MEMORY INTERFERENCE, Analyzes the memory inter
ference caused by several
processors slmultaneously
using several memory modules.
Results are computed for a
slmple model.

Universlty of Californla,MULTIPROCESSING,
Berkeley INTERLEAVED MEMORY

TRACE DRIVEN
SIMULATION.

Carnegle-Mellon Unlver
slty, Pittsburgh

Australian Natlonal
University, Canberra,
Australia

Georgia Instltute of
Technology, Atlanta

Iowa State Unlverslty,
Purdue Universlty

ASYNCHRONOUS ALGORITHMS,Asynchronous lteratlve methods
ASYNCHRONOUS MULTIPRO- presented for solving a system
CESSORS, PARALLEL AL- of equations. Conditions given
GORITHMS, INTERATIVE to guarantee convergence. Ad-
METHODS, CHAOTIC RE- vantages of purely asynchronous
LAXATION, ANALYSIS OF methods.
ALGORITHMS

MEMORY INTERFERENCE,
MEMORY INTERLEAVING,
MULTIPROCESSORS.

COMPUTER SYSTEM OR
GANIZATION, CONCURRENT
OPERATIONS, INTERCON
NECTION SUBSYSTEMS,
MULTIPROCESSOR OPERAT
ING SYSTEMS.

SCHEDULING. ALGORITHMS,
DETERMINISTIC MODELS,
WORST-CASE BOUNDS.
MEMORY CONSTRAINTS.

Guidelines for multiprocessor
system architect. Preferred
design alternatlves and/or
tradeoffs.

Time-shared buses, crossbar switch
matrix, multibus/multiport
memories, interconnectlon systems
dlscussed. Three operating systems
master-slave, separate executlve
for each processor, symmetrlc
treatment of all processors
reviewed.

Scheduling strategles evaluated
for system of identlcal processor
with a prlvate memory.

SUMMARY OF RECENT PAPERS DESCRIBING PARALLEL PROCESSING
(Continued)

REFERENCE

6. Kinney, L. L., and R. G.
Arnold, "Analysis of a Multi
Processor System with a Shared
Bus," Conference Proceedings
5th Ann. Symp. Computer
Architecturs, Palo Alto, CA
April 1978, pp 89-95.

COMPANY/
ORGANIZATION KEY WORDS

University of Minnesota, FIFO, QUEUE,
Honeywell Corporation, MLLTIBUS SYSTEM,
Minneapolis FIFO SHARED-BUS.

SUBJECT

Analysis of a multiprocessor
system with shared-bus. Determin
ing the processing power as the
number of processors is increased.

7. Kuznia, C. H., R. Kober, and SIEMENS AG DISTRIBUTED MEMORY,
MULTIPROCESSOR,
COMMUNICATIONS MEMORY

Multiprocessor system design for
large systems of differential
equations.

H. Kopp, "SMS - A Structured Hofmannstr, Germany

8.

Multimicroprocessor System with
Deadlock-Free Operation Scheme II
Conf. Proc. 3rd Ann. Symp.
Computer Architecture, Clearwater,
Florida, Jan. 1976, p. 122

O'Grady, E. P., "A Multiprocessor
for Continuous System Simulation",
Proceedings 1979 Int. Conf.
Parallel Processing, Bellaire,
MI, Aug. 1979, p. 306.

9. Pearce, R. C. and J. C. Majithia,
"Upper Bounds on the Performance
of Some Processor-Memory Inter
connections," Proc. 1967 Int.
Conf. Parallel Processing,
Walden Woods, MI, Aug. 1976,
p. 303.

Ar1zona State University SIMULATION, INTER- Simulation-oriented multiprocessor
Temple PROCESSOR COMMUNICATION,system employing a new concept in

University of Waterloo,
Ontario

BIT-SLICE MICROPROCESSORtnterprocessor communication is
BUS CONTROL PROCESSOR. described. Parallelism in con

junction with address-mapping

CROSS-POINT, TIME
SHARED BUS, PIPELINED
LOOP, BINARY SWITCH.

memories realize an efficient
high-speed transfer mechanism.

Multiprocessor performance evaluated
for cross-point, time-shared pipe
lined loop, and binary switch
methods.

SUMMARY OF RECENT PAPERS DESCRIBING PARALLEL PROCESSING
(Continued)

REFERENCE

10. Pearce, R. C. and J. C. Ma]ithia
"Performance Results for an
M.I.M.D. Computer Organization
US1ng Pipel1ned B1nary Switches
and Cache Memor1es," Proc. Inst.
Electron1c Engineers (England),
Vol. 125, No. 11, Nov. 1978,
pp. 1203-1207.

11. Sastry, K. V. and R. Y. Kain,
"On the Performance of Certain
Multiprocessor Computer Or
gan1zation," IEEE Trans.
Computers, Vol. C-24, No. 11,
Nov. 1975, pp. 1066-1074.

12. Yang, Chao-Chih, "Gast Algo
rithms for Bounding the
Performance of Multiprocessor
Systems," Proc. 1976 IntI.
Conf. Parallel Processing,
Walden Woods, Mich., Aug. 1976,
pp. 73-82.

13. Patel, Janak H., "Processor
Memory Interconnect1ons for
Multiprocessors," Conf. Proc.
6th Ann. Syrup. Computer
Arch1tecture, Ph1ladelphia,
PA, April 1979, pp. 168-177.

COMPANY/
ORGANIZATION

University of Waterloo,
Ontario

Sperry Un1vac
Rosev1lle, M1nn.,
University of Minnesota

Un1versity of Alabama
Birmingham

School of Electr1cal
Eng1neering,
West Lafayette, IN

KEY WORDS

PIPELINED PROCESSING,
CACHE MEMORIES,
M.I.M.D. ARCHITECTURE

SUBJECT

Throughput performance w1th
respect to var1at1ons 1n
cache memory parameters,
number of processors, processing
time of a system 1n which a binary
sW1tch 1S used as the 1ntercon
nect10n network.

ANALYTIC MODELS, IN- Performance of a multiprocessor
STRUCTION EXECUTION system w1th d1fferent storage
RATES, MEMORY CONFLICTS,allocations for 1nstruct1ons and
MULTIPROCESSORS. data w1th interleaving 1n the

1nstruction space 1S presented.

PRECEDENCE PARTITION, Propos1ng two types of schedul1ng
PARTIALLY ORDERED TASKS for more efficient execution of

a mult1processor system.

INTERCONNECTION NET- Interconnect1on networks proposed
WORKS, CROSSBAR SYSTEMS,for processor to memory commun1-
DELTA NETWORKS cat10n and multiprocess1ng

system allows a direct llnk
between any processor to any
memory module.

End of Document

