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SUMMARY

The objective of this program, conducted by Shaker Research Corporation,
was to develop and document the design of a digital device for structural
dynamics simulation. The simulator design has incorporated state-of-the-
art digital hardware and software for the simulation of complex structural
dynamic interactions, such as those which occur in rotating structures.
The targeted uses of this system include simulations and parametric design
studies to identify improved design criteria and methodology, to identify
structural dynamics instabilities and to evaluate the effects of local

non-linearities, transient loadings, and engine control instabilities.

The system has been designed to use an array of processors wherein the
computation for each physical subelement or functional subsystem would be
assigned to a single specific processor in the simulator. These node
processors are custom designed microprogrammed bit-slice microcomputers
which function autonomously and can communicate with each other and a
central control minicomputer over parallel digital lines. Inter-processor
nearest neighbor communications busses pass the constants which represent
physical constraints and boundary conditions. Each node processor has its
own program and data memory. Each node processor calculates its results
independently and simultaneously with the other node processors. The node
processors are connected to the six nearest neighbor node processors to

simulate the actual physical interface of real substructures.

Computer generated finite element mesh and force models can be developed
with the aid of the central control minicomputer. The program so developed
1s converted to the proper format, segmented and loaded into the individual
processors which make up the simulator. The control computer also oversees
the animation of a graphics display system, disk-based mass storage along

with the individual processing elements.



The mathematical approach to simulating the dynamic behavior of an engine
system is based upon the explicit time integration of the state vectors
assigned to the individual processors. An integration technique such as

fourth order Runge-Kutta is applicable to this analysis.

The hardware was designed as an array of 125 processors in a cubic structure.
Each node processor was designed for very high speed multiplication and
addition which are fundamental requirements for the time-step integration
alpgorithms. This implementation of an array of processors operating 1in
parallel has the capability of solving simulation problems an order of

magnitude faster than a conventional serial computer.



INTRODUCTION

This program was initiated to investigate and document the design of a
Digital System for Structural Dynamics Simulation. The intended use for
the system is a design and analysis aid for the production of gas turbine
engines. This simulator would realize both a savings of money and of

time by reducing the need for extensive prototyping during the develop-
ment of gas turbine engine hardware. While simulation methods exist for
use on main frame computers, this system uses the architecture of an array

of processors for greater throughput.

Current and on-going work in the field of parallel processing and simulation

was reviewed and is summarized in Appendices I and II.

Special acknowledgement is given to Mr. L. James Kiraly, Project Manager
of the Digital System for Structural Dynamics Simulation at NASA-Lewis
Research Center. Mr. Kiraly's contributions were pertinent to the success

of this effort. His ideas are reflected throughout this final report.

The scope of this work included the study of simulation techniques useful
with parallel processors, the design of the system architecture, the hard-
ware design of the individual processors in the array (node processors),
and the design and flowcharting of the processor instructions. Special
emphasis was placed upon the design of the system architecture and the

node processor hardware. Particular attention was paid to the high risk
areas of the node processor design. For instance, floating point hardware
for multiplication, addition, subtraction and division was designed through
detailed schematic diagrams. The CPU and communications controller, being
more conventional, were detailed only to the block diagram stage. The

node processor memory was designed to the schematic level.

Software design centered on the node processor. A very large and powerful
custom instruction set tied intimately to simulation techniques was devel-
oped. The concepts necessary for on line and off line software were

started, but no attempt was made to write this software.



The concepts of simulation with regard to an array of processor solution
were developed in broad terms. Segmentation of a problem, problem size
and computational requirements were carried to the level sufficient for

node processor definition.

For a successful implementation of this system, follow-on is needed in

all three of the above areas. A sample problem must be developed and
programmed on a main frame computer. Further hardware detailing is neces-
sary to complete the node processor design. A breadboard version of a
node processor should be constructed, microcoded, and programmed with

the sample problem. Software development is needed to reach this proto-
type stage. Additional software development is then required to imple-

ment the entire array of processors.

The following section describes the simulation analysis leading to the

system architecture and node processor architecture.



ANALYSIS - REQUIREMENTS FOR SIMULATION

In this section the groundwork for the Digital System for Structural Dynamics
Simulation is developed. Two sample problems are discussed. The first
problem describes a simplified nonlinear simulation problem and its solution
on an array of processors. The second problem is linear and is used to set
the bounds on the hardware by limiting the overall size of the physical model.
Some additional detail on problem substructuring is brought out. A time

step integration method appropriate for the solution 1s developed. Finally,
the hardware and software requirements are outlined prior to their detailed

discussion in the following two sections.

SAMPLE PROBLEM 1

This sample problem, based on work by J. J. Tomko, is used to illustrate
techniques that can be used to solve a simulation problem on an array of
processors with time step integration methods. Other models and techniques
other than the ones presented for this model can also be employed. The
model is shown in Figure 1. The model contains m disks including shaft seg-
ments which have mass. Each disk may contain n blades and there are b

bearings.

Disk Representation

Each disk is represented by five coordinates. These coordinates are two
translations and three rotations. Each disk is taken as rigid. The disk

equation 1s of the form:

My ] {4y = £, 0a,; Y {agyds 14y 4% {ag 593 14y b {ag 449}

CHPIO TR IS N I R R e

where {qdi} is the five element state vector for disk 1
{qd i—l} 1s the five element state vector for disk 1-1

{qd i+1} is the five element state vector for disk i+l

{qbij} is the state vector for blade j on disk i. This vector
can contain 4 elements.



SAMPLE PROBLEM |

PHYSICAL MODEL BEARING

BEARING

Figure 1 Model Containing m Disks (Including Shaft Segments
Having Mass). Each Disk Can Contain n Blades.

There are b Bearings. Model Based on That of
Tomko, J.J.



{qci} 1s the state vector for the casing at disk i. This
vector can contain 4 elements at a bearing or 80 elements

at a bladed disk.

M can be non-diagonal and time variable. The non-diagonal

di]
character arises from the use of a point other than the
mass center for the definition of the translational
degrees of freedom. The time variation arises from this

and from the use of fixed Cartesian coordinates.

Blade Representation

Each blade is represented by two lumped masses having two degrees of freedom

each. These degrees of freedom are axial and circumferential translation.

The equation for each blade is of the form:

Myg5] Wy g3 = Fles {850 fag b {ageds {aggds {aggds faggd (2)
where

{qbij} is the 4 element blade state vector, and where

{qci} is the state vector for the casing at disk i. This vector

can contain, say, 40 radial and 40 axial coordinates for

a casing cross-section at a bladed disk.

The matrix [Mbij] is assumed to be diagonal and cohstant — the equations

for the blades must be written using inertial coordinates.

Casing Representation

Assume the casing has been modeled by a large scale finite element program
which includes, say, 40 nodes at each disk. Each of these nodes can have
radial and axial displacement. At bearing stations, the finite element

program provides at least two displacements and two rotations.

Assume also, that the finite element program produces up to 10 modes. For



each mode, the mode vector is {ur}, where this vector contains all of the
points used in the finite element analysis. The vector{uri} is that part

of the modal motion occurring at cross-section 1.

At disk i (i.e., cross-section 1), the casing coordinates are given by

10
{qu} = ril {uri} cr(t) where cr(t) is the modal motion of mode r.

The equation of motion for mode r is

2

fu_ }HLE() )
c_ + 2nw é_ + w
r rr r

(3)

o
It
N3

=1 (u )" ] fu}

where n 1s a user-supplied modal damping factor, W, is the modal frequency,
{f(t)} is the force of the blades or of the bearing on the casing at
station i1, and [Mc] is the mass matrix for the finite element model. Note

that {ur}T-[MC]-{ur} 1s a single scalar number for each mode and need be

computed only once.

At each disk cross—-section {url} and {f(t)l} can contain 80 elements.

Consequently the {qci} can also contain 80 elements.

The force {f(t)i} for blade j is, in general, represented by

@) = £,Uah (o) (a5 Tag D

A Parallel Processing Approach

One approach to simulate the motion of the engine (1.e., to solve the dynamic
equations of motion) is as follows (in this, each box denotes a processor
and each line denotes transmission of information between processors). The

controlling minicomputer is not shown.
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Typical Node Processor Assijnment

The array of processor nodes are assigned such that
Bi denotes a processor that treats all the blades on a disk,

D1 denotes a processor that treats a disk or a lumped mass

segment of the shaft, and

Ci denotes a processor that treats a portion of the casing
(i.e., that portion of the casing associated with a disk

or with a lumped mass shaft segment).

X
“The first casing processor has tasks beyond those of casing processors

C2 through Cm'



The functions of each processor are as follows:

PROCESSORS D, through D,

1

In general, [Mdl] must be evaluated at each time step and then inverted

From adjacent D's, get {qd i—l}’ {qd i—l}’ {Qd 1+1}, and {dd i+1}'

From the B, get average of {qblj}’ {qle},

where 3 =1, . . ., Ni' (For bladed disk only.) Five

averages are received.

From the casing processor, get {ﬁci} and {qci}, (For bearings, all quanti-
ties may be needed to solve equation (1l). For
a bladed disk, only the radial displacements
will be necessary. The forces of the blades
on the disk in the radial direction can be ob-
tained by curve fitting the best ellipse to the
radial casing displacements and then evaluating

blade interference via a tip circle approach.)

Equation (1) may then be solved.

PROCESSORS B, through BI+1

1

For each blade [Mbij] can be inverted once and stored 1f, as assumed, this

matrix is constant (time-independent).
From disk, get {qdi} and {qdi}. (These are needed for the blade force cal-

culation. The radial velocity of the disk 1s necessary to compute the

Coriolis component of circumferential blade acceleration.)

-10-



From casing, get velocities and positions of curve-fitted averages of
casing points (i.e., best ellipse in plane of cross-section and in an
axial plane, etc.). Processor must then determine which blades are rubbing

and what the circumferential and axial forces on those blades are.

Equation (2) may then be solved.

PROCESSORS Cl through Cm

These processors do not solve modal state equation (3). (Only processor

C1 solves this state equation, see below.)

From blades (if present at disk i), get best tip ellipse in plane of cross-
section and 1n an axial plane. (This tip circle is used for part of the

computation of the forces of the blades on the casing.)

From disk get {qdi} and {qdi}. (If disk with blades is located at cross-
section i, the radial displacement of the disk is used for the remaining

part of the computation of the forces of the blades on the casing.)

From C,, get C_(t), r =1, . . ., M where M is the total number of casing
1 r
modes (say 10). The processor C1 contains mode shape information for this

(the ith) cross-section. Therefore {dci} and {qci} can be determined from

Cr(t)‘

The processor G, determines force of either shaft on casing (using {qdi}
and {qdiD or of blades on casing (using these and {ébij} and {qbijb. For
the latter, blade forces on casing are computed via the tip circle approach
and via comparison of the best tip ellipses with the casing displacements.
The forces are assigned to nearest casing nodes (nodes in the cross-section
and circumferentially nearest to rubbing points). The processor Ci then

determines contribution of this cross-section to the right side of equation

(3).

-11-



Processor Cl solves equation (3). Contributions to right side of (3) are
recelved from processors Ci’ 1=2, ..., m. The total for each mode is

assembled and then each modal equation (3) 1s solved.

Number of Path Variables

- Time not included. Time 1s tracked by each processor. Timing

1s controlled by controlling minicomputer (not shown).

— Volume of data transmitted along a path is generally equal in

both directions.

PATH 1 Assume rotor modeled as a beam with torsion. Have two displace-

*
ments and two slopes plus torsion. Result is 5 x 2

*
PATH 2 Into Di — 5 average displacements. Result is 5 x 2

PATH 3 Into Bi — best ellipses (4 coordinates for each plane). Result

*
1s 8 x 2 = 16 scalars.

Into Ci — best ellipses (4 coordinates for each plane). Result

*
is 8 x 2 = 16 scalars.

PATH 4 Into Ci — say 4 degrees of freedom for bearing/casing interactiom.

Result 1s 4 x 2* = 8 scalars.
*
PATH 5 Into C1 — say 10 modes. Result is 10 x 2 = 20 scalars.

*
From Ci — one contribution for each mode. Result 1s 10 x 2 =

20 scalars.

*
Factor 2 is for velocities.

~12-
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Simulation Procedures

There are several choices in the method chosen for simulation. These

choices fall into two categories, explicit methods and implicit methods.

Explicit methods require equations of motion in first order form. Velocities
and accelerations are obtained at each time step and then integrated. The
integration is separate from the equations of motion. These methods are
relatively simple to implement. Two explicit methods are the Runge-Kutta

and the Predictor-Corrector method.

In the Runge-Kutta method, more solutions of equations of motion are necessary
at each time step for a given accuracy. There is no inherent measurement of
error. No history of the problem is required. It is self starting, rela-

tively simple and easy to change time steps.

In the Predictor-Corrector method, fewer solutions of equations of motion
at each time step for a given measure of accuracy are necessary. There is
an inherent measure of error. A history of the problem is required. It is
not self starting, relatively complicated and relatively hard to change

time steps.

Implicit methods require equations of motion in second order form. Velocities
and accelerations are represented by finite differences so that displace-
ments are obtained directly at each time step. The integration procedure
is closely coupled with the equations of motion. These methods are rela-

tively complicated.

The Runge-Kutta method has been chosen as the most suitable for the struc-
tural dynamics simulator because it is self starting, does not require a

history and is relatively simple to program.

-13-



SAMPLE PROBLEM 2 - DETERMINATION OF PROCESSOR COMPUTATIONAL CAPABILITIES

This sample problem 1s linear and 1s developed to determine the functions,
the memory, communications, instructions and speed desired of the parallel

processing system.

Largest Linear problem

The physical problem discussed will be the largest linear problem that the
system is designed to accept. Computational requirements for the linear
problem can be assessed in a straightforward manner. Extent and nature of
nonlinearities are not known so that their computational requirements can-
not be established. However, computation capabilites for typical nonlinear
calculations will be available since the actual associated linear problem
w1ll normally be much smaller than this largest linear problem. To allow
for nonlinear computations, the following functions at a minimum, should be

available:

. -1~/
sinx, tan "x, Y x.

X
Less important, but also desirable, are the functions a  and logpx where a

and x are real numbers and where p is either 10 or e.

The overall equation for the entire linear physical problem being simulated

can be written in the form

M] {4} + [c] {q} + [K] {q} = {f(t)} (4)

where {q} is a vector contamning N elements. The matrices [M], [C], and
[K] are the mass, damping, and stiffness matrices, respectively. The
vector {f(t)} contains N elements whose values, at any time, can be computed

directly.

Time Dependence of Matrices

The matrices [M], [C], and [K] can contain elements whose values are functions

of time.

—14~



This is true because elements of [M] which vary with time can arise for a
certain choice in coordinate systems and in their associated coordinates
{q}. Time variation in elements of [C] and [K] arise when problems con-

taining parametric excitation are considered.

Banding of Matrices

The matrices [C] and [K] can be formulated such that they are banded.
These matrices will be banded for structural stiffness matrices since a
generalized displacement applied at a node will produce forces at only

that node and at its neighbors. (Proper node sequencing is required.)

Diagonal Nature of Mass Matrix

The matrix [M] is locally diagonal; i.e., the matrix has the form

= 3
£ 0 0 o
<0500
00 E o
0005‘

where the shaded regions only have non-zero elements.

This assumption is critical in that it provides for mass decoupling of
regions of the problem. To produce such a mass matrix, each of these
reglons must be connected to the other regions only by members having
stiffness and damping properties but no mass. In addition, the general-
ized coordinates used for each region of the problem must not reference

coordinates in other regions of the problem.

With the above properties, Equation (4) can be put in the form

-15-
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(5)

where the bandwidth of the second and third matrices is greater than the
rank of the largest locally diagonal sub-matrix of the first matrix. For
the ith region, its equation of motion is that associated with the 1th

shaded region in the first matrix. That equation of motion is
] {q } + [e) {agr +Ic ] {q } + (K] {q } + (K] {q} =
{£,(t)} (6)

where {qi} is the vector for the coordinates of the ith region, and where
{qn} is the vector for the coordinates of the regions which are neighbors
to the ith region. The matrix [Mi] 1s that for the ith shaded region of
the first (the mass) matrix. The corresponding portions of the second
(the damping) and the third (the stiffness) matrices are denoted as [Ci]
and [Ki]’ respectively, and couple the equations for the ith region to
those for the neighboring regions. It is noted that matrices [Mi]’ [C1]’
and [Kl] are square while the matrices [Cn] and [Kn] are not square but
have the same number of rows as do the i matrices. Also, the vector

{f(t)} has the same number of rows as do the i matrices.

Equation (6) can be put in first order form by defining "state" variables

{Z} such that

~16-
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o S M
! ( | { !
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i ) '
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- —-'w.J L ' ! ._.._J (7)
where I is the identity matrix.
From (7) there results
— . | \
I 0 ;-I +0 0 V/ \
. _ L i
K, | C. K i C Z }
i i i " n n _)
I 1 ' /
l— ' | -
(8)

which is the first order equation that will be solved by the node processor
assigned to region i in the simulation system. The computational require-

ments for that node processor are determined below from this equation.
The largest linear problem that can be contained in the processor region i

1s one in which the matrices [Mi]’ [Ci]’ [Ki]’ [Kn]’ and [Cn] are full.

Therefore, treatment of matrices having rank equivalent to the number of

-17-



generalized coordinates for region i can be required. Also, the matrix
[Mi] must be 1nverted at every evaluation of {Z} in Equation (8). As a
result, it may be necessary to invert at each time step a matrix ({Ml})

having rank equivalent to the number of generalized coordinates for region 1.

Number of Generalized Coordinates

The 1limit of 200 for the number of generalized coordinates for region i
was chosen arbitrarily. This number determines the local data memory size

and the maximum time required to solve Equation (8).

Given that {qi} can have 200 elements, the mass matrix for region i can have
rank 200. From reference [1], approximate numbers for multiplications/divi-
sions and for additions/subtractions to invert a 200 x 200 matrix are 200
and 200(199)2, respectively. Carrying out the indicated multiplications
gives approximately 8 x 106 multiplications/divisions and 8 x 106 additions/

subtractions.

It should be noted that other computations are necessary in this linear
problem besides the matrix inversion. Numerous matrix multiplications

are also to be made, primarily those of a vector by a matrix. The numbers
for multiplication/divisions and for additions/subtractions required in
multiplying by an m x p matrix by an n X m matrix are n-m-p. The multi-
plication of a 200 x 1 matrix (a column vector) by a 200 x 200 matrix
therefore requires about 2002 =4 x 104 multiplications/divisions and

4 x 104 additions/subtractions. This is negligible in comparison to the
number of operations associated with the inversion of the mass matrix.
Consequently, the inversion requirements are used to establish the overall

multiplication/division and addition/subtraction requirements for the maxi-

num linear problem to be treated by the processor for region i.

Externally Communicated Coordinates

The maximum coordinates for external communication from region 1 are 25%

of the generalized coordinates used for region i.
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The ratio of external to local coordinates can vary considerably with the
specific problem being considered. A problem, consisting of two complex
regions, connected by a few simple springs will be associated with a low
ratio for each region. A problem consisting of 1egions intimately connected
at many points will be associated with a large ratio for each region. For
readily envisioned problems, the 257 ratio appears reasonable and one which

need rarely be exceeded.

With this assumption, a maximum of 25% of the state variables for region i
need be communicated to neighboring regions. Since there are 400 state

variables maximum, 100 variables can be communicated to (and from) neigh-
boring processors. As a result, the maximum size of each matrix [Cn] and

[Kn] is 200 x 50.

With the size of [Cn] and [Kn] established, the sizes of all the matrices

1 Equation (8) for region i are known. These sizes are:

[, ] = 200 x 200
[X,] = 200 x 200
[ci] = 200 x 200
[Cn] = 200 x 50
(K] = 200 x 50
{£,()} = 200 x 1
{Zi} = 400 x 1
[z ] = 100 x 1
{2i} = 400 x 1

It should be noted that this memory space for the largest linear problem
does not include memory for intermediate results involved 1n matrix manip-
ulations (e.g., inversion and multiplication), nor does it include program

memory.
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Nearest Neighbor Communications

A maximum of 6 neighboring processors will exchange state variable information

with the processor for region i.

The number of neighboring processors was arbitrarily chosen, and corresponds
to the physical elements which can apply forces or moments to the physical
element represented by the processor for region L. Six 1s sufficiently
large to allow a complex structure, but also the smallest number which can
be used to treat a three-dimensional structure in a symmetric manner. It

is noted that as many as 100 variables can be transmitted along any of

these paths (if no variables are transmitted along the other 5 paths).

If all 6 paths are transmitting information and .f the number of variables
transmitted on each path is the same, then each path will carry 100/6

variables.

Summary of Node Processor Requirements

Maximum computations per derivative equation (Equation (8)) per

processor
Multiplications/Divisions 8 x 10
Additions/Subtractions 8 x 106

Number of generalized coordinates per

processor 200
Number of state variables per processor 400
Approximate numerical memory size (in
floating point numbers) per processor

(not including that for matrix manipu-

lation) 150,000

Number of state variables transmitted

to and from each processor 100
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Number of separate transmission paths from

each processor to neighbor 6

Primary desirable functions matrix operations
sin x

tan 1 x

Secondary desirable functions o
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SOFTWARE REQUIREMENTS

The Digital System for Structural Dynamic Simulation, as can be seen by the
previous discussion, has the requirement for a great variety of software.

This software can be broken into five segments.

1. Offline programs for the central minicomputer to process user
specifications of models, to prepare Node Processor programs for
execution, and to aid in the development of Node Processor opera-

tional programs.

2. Realtime programs for the central minicomputer to load Node
Processor programs and data, to coordinate execution of the

model and to provide operator controls and displays.

3. Operational programs for the Node Processors to cause them to
simulate substructures of the model and to communicate with

neighbors and the central minicomputer.

4. Microcode (sometimes called firmware) to define the instruction

set of the Node Processors.

5. Diagnostic Software.

HARDWARE REQUIREMENTS

Hardware requirements for the simulation hardware are listed below.
1. An array of Node Processors to perform the simulation.

2. Node Processors properties include:
a) A large local memory for program and data storage.
b) TFast instruction times.
c¢) Auxiliary hardware for fast floating point multipli-
cation, addition, subtraction, and division.
d) Microcoded processor for a custom instruction set.
e) Parallel communication paths to the six nearest

neighbor Node Processors.

3. A central control minicomputer to direct the operation of the Node

Processors and develop all associated software.
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OVERVIEW OF SYSTEM ARCHITECTURE - SOFIWARE

The Digital System for Structural Dynamics Simulation consists of a three
dimensional array of processors controlled by a minicomputer. Each processor
in the array 1s capable of communicating directly with its six adjacent
processors and with the minicomputer controller. The term Node Processor

is used to identify a processor in the array.

The individual Node Processors are logically organized as a three dimen-
sional array with each node having an address specified by three subscripts
[e.g.: P(5,2,3)]. Each Node Processor will have a bidirectional communi-
cations link with the adjacent processor in both directions for each dimen-
sion. The first and last Node Processor 1in each dimension will be linked

to make each dimension a full circle of processors (a hypertorous). The
system has been designed with five processors in each dimension for a total

of 125 processors. Processors will be numbered from 1 to 5 in each dimension.
For example, P(2,5,3) will communicate directly with processors P(1,5,3),

P(3,5,3), P(2,4,3), P(2,1,3), P(2,5,2), P(2,5,4); see Figures 2 and 3.

All of the processors will be conmnected to the minicomputer based controller
with a bidirectional data and control bus. Data being sent from the con-
troller to the processors will be prefaced with address information. Only
the Node Processor(s) which need the data will store it in its local memory.
When several Node Processors must transmit data over the common bus,

the controller will command one Node Processor at a time to put data on

the bus for use by the controller and/or other processors (Figures 4 and 5).

CONTROLLER OPERATING SYSTEM SOFTWARE

The software for using the Digital System to perform structural dynamics

simulations wi1ll consist of the following five segments.

1. Offline programs for the central minicomputer to process
user specifications of models, prepare Node Processor programs
for execution and aid in the development of Node Processor

operational programs.

) R .



5x5x5

NODE PROCESSOR ARRAY

€f> N

Y

NN

v
e
L~
>

INTERPROCESSOR
COMMUNICATIONS

S

PATHS
REE 3.2

Figure 2 NASA/Lewis Structural Dynamics Simulator Block Diagram



~GT-

/6 BIT BI-DIRECTIONAL RANK LOOP (25 LOOPS)
=

PASS | mss2

" ooE pROCESSORS
DEEP

16 81T
B;—DIRECT‘ONAL

COLuMN L




32 — BIT CONTROL
MINICOMPUTER

GLOBAL DATA AND CONTROL BUSSES / (

NODE NODE NODE NODE
PROCESSOR || PROCESSOR PROCESSOR | @« e e | PROCESSOR
/ 2 3 N
(N<125)

SYSTEM BLOCK DIAGRAM

rer 3.1

Figure 4 Structural Dynamics Simulator Block Diagram

—26—-



CENTRAL
MIN-COMPUTER

_LZ_

<: MEMORY?ll{

; >

< covTrRoL | {B0s

NODE PROCESSOR - GLOBAL BUS
INTERFACE SUB DETALL

NOTES

1) ARROWS WOICATE AN EXAMALE OF FLOW, WHEN ONE AOOE
{NODE iN SLICE 2) TALKS TO ANOTHER NODE (NOGE iN
SLICE 5) NOTE THE DIRECTION OF DRIVERS AND THAT
ALL OTHER NODES LISTEN

Figure 5 SDS Global Bus Interface Block Diagram



2. Realtime programs for the central minicomputer to load Node
Processor programs and data, coordinate execution of the

model and provide operator controls and displays.

3. Operational programs for the Node Processors to cause them
to simulate substructures of the model and communicate

with neighbors and the central minicomputer.

4. Microcode (sometimes called firmware) to define the instruction

set of the Node Processors.

5. Diagnostic Software.

OFFLINE MODEL DEVELOPMENT SOFTWARE

The offline software will consist of a linker and assembler for generating
the specific code to be executed by a Node Processor and a compiler for a
Model Specification Language to assist users in programming the application

sof tware.

Node Processor Assembler

The Node Processor Assembler program will translate the symbolic assembly
language programs written for the Node Processor into object modules that
may be linked to other modules and form an executable memory image for

the Node Processor. This assembler should have moderate macro capabilities
and a full complement of assembler directives so as to ease the task of
programming at the machine level. Also, the assembler should interface

easily with the higher level Model Specification Language compiler.

Node Processor Linker

The Node Processor Linker will take one or more object modules created by
the Node Processor Assembler and produce the memory image to be loaded into
the Node Processor for execution. It is the linker's task to resolve all
inter-module address references and relocate all intra-module addresses

based on the location of the module within the executable memory image.
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The linker should be capable of linking the user defined data tables created
during model specification with the appropriate Node Processor operational
programs. It is also the linker's task to build a symbol table for use by
the Execution Control Program. The symbol table will be used when loading
the Node Processors with data tables and functions when the operational
program is already resident in the Node Processor memory. Also, the symbol

table will be used during debugging and crash dump analysis.

Model Specification Language Compiler

A high order language will be developed which will consist of a set of

rules governing the definition of models and forcing functions. The compiler
program (sometimes called translator) will translate the model specification
into the data tables and functions needed by the Node Processor operational

programs.

The user will use the minicomputer text editor to create and modify text

files containing the model specification. For linear problems, the bulk

of the model specification will consist of numerical values for various
matrices in the state equations. For non-linear problems, the user may

need to specify a function for each element. These functions will be

specified in Fortran-like arithmetic expressions. Other statements in

the language will allow the user to specify the coupling between substructures,

the forcing functions and the desired outputs.

The compiler program will read the text file containing the user's speci-

fication of the model and perform the following operations.

1. Assign substructures to processors using an algorithm to
balance the processing load of each processor and optimize
interprocessor communications. The compiler will be told
how many Node Processors are operational in each dimension
of the processor array. If there are more substructures
than processors, substructures with the greater interaction

will be assigned to the same processor.
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To ensure proper balancing of the processing load the user
will be able to specify the relative execution times for
various substructures. The assignment subprogram will use
the relative execution times as a weighting factor when
assigning more than one substructure to a single processor.
An iterative algorithm would be the simplest approach to

making the best assignments.

Once the substructures have been combined, the compiler will
optimize the interprocessor communications. Interacting
substructures will be assigned to adjacent processors so

that as much communication as possible can occur in parallel.

2. Generate the data tables each Node Processor operational
program will use to solve the state equitions for the sub-

structures assigned to it.

3. Generate the tables to specify to each processor the inputs
from each of its six adjacent processors, the inputs from
the bidirectional data bus, the outputs to each of its six
adjacent processors, and the outputs to the bidirectional

data bus.

4. Generate a data file for the realtime central minicomputer

program to specify the forcing function and the system outputs.

The compiler produces the required data modules which are loaded with the
appropriate operational program into the Node Processor for execution.

This makes the structure of the operational programs dependent on the output
of the Model Specification Language compiler, but makes the compiler some-
what machine independent. Only the functions generated will be actual
machine code. These functions will be specified in Fortran-like state-
ments, thus making the language syntax independent of the Node Processor.
The compiler's code generating functions will be tailored to the Node

Processor.
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The instruction set of the Node Processor was designed to assist the task
of automatically generating code from Fortran arithmetic expressions. The
data format for floating point numbers was chosen to conform to the popular
PDP-11 data format. To simplify the generation of the data tables as de-
scribed above, many addressing modes are available to the Node Processor

for building address lists as needed.

REALTIME MODEL EXECUTION SOFTWARE

The realtime software will consist of a debugging facility for developing
operational programs and an execution control program for doing actual

simulations.

Execution Control Program

The Execution Control Program will be responsible for loading the Node
Processors with operational programs, controlling the network of processors
during execution, collecting data for animated displays as the execution

proceeds and gathering the final results when the simulation completes.

Loading Node Processors

There will be two types of program loading for the Node Processors: The
first type consists of loading the entire Node Processor with its operational
program and data. The second type consists of only loading the data portioms
of the operational program. Typically, when the array of processors is
brought up, they will be loaded with their operational programs and data

for the first simulation run. Subsequent simulations will only be loaded
into the data tables required by the operational programs if the model

is compatible with the resident programs.

During the initial program load the Node Processor will be forced to execute
1ts microcode from location 0. The microcode at this location may execute

a few diagnostics to determine the integrity of its local memory and exercise
the communications link with the controller. The processor will then wait

for a command from the central minicomputer controller. The central mini-
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computer will poll the Node Processors to determine which are on line and

ready.

When each Node Processor has acknowledged its readiness status, the central
minicomputer controller will send a command to a processor telling 1t to
accept the ensuing data stream as a memory image. Following the memory
image will be the initial program counter value. Typically, this value
will address a program routine which will wait for the '"Start Execution"

command from the controller.

After the execution of a simulation is completed, the operational program on
the Node Processor will enter a routine to wait for additional commands from
the controller. Subsequent simulations which use the same operational pro-
gram will then need only to load the data portion of the programs. The
operational programs should be table driven as much as possible to accommo-

date this scheme.

Controlling the Processor Network during Execution

The Execution Control Program will broadcast the start simulation command
to all nodes. The operational programs on the Node Processors will then
execute the time step until 1t needs to communicate with other processors.
A control bus line will be raised by the Node Processor when it 1s ready.
The bus line will only appear active to the controller once all processors
are ready. The controller will then send the commands to initiate trans-
fers between neighbors. When transfers are completed in the requested
direction, the controller is then notified by each processor. After all
are ready again, the controller will broadcast to the nodes to start

transferring data in the opposite direction.

After the nearest neighbor communications have completed, the controller
w1ll command each node in turn to put its global state variables on the
data bus. All processors will listen to the global bus as state variables
appear and will store only those state variables from other nodes as it is
directed by its internal tables. The controller will also store those

state variables it needs for the graphics display.
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Once all the state variables have been transferred, the controller may
then interrogate individual Node Processors for additional data needed
to update the graphics display. When Node Processors have completed all
the necessary communications, they will continue on with their simulation

computations.

During the communications procedure all on-line Node Processors are required
to signal acceptance of data. If the controller does not receive the accept-
ance signal, the controller will time out. The Execution Control Program
will interrogate the Node Processors individually to determine which one(s)
are not responding. Special status lines on the control bus may be used to
selectively put a Node Processor offline or cause the processor to go into

a microcoded diagnostic routine to determine the reason for the failure.

Collecting Graphics Display Data

The Execution Control Program will interrogate selected Node Processors
for data needed to drive a graphics display. The collection of the data
will be directed by the data tables generated during the Model Specification
compilation. The data transfers from Node Processors to central minicomputer

will take place between time steps of the simulation.

Gathering Final Results

The Execution Control Program will collect the final state variables from
each Node Processor after the simulation has completed. The data collected
w1ll be stored in disk files for analysis by other analysis programs. The
data tables generated during compilation of the Model Specification will
direct the Execution Control Program to command the appropriate variables to

be sent from a node to the host.

Node Processor Program Debugger

A Node Processor Program Debugger facility is needed to assist in the develop-
ment of the operational programs. This debugger will perform the functions
required by the realtime Model Execution Program but will support more

operator interaction.
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A special library of debugger modules will be available to the program
developer. These modules will be linked to operational programs under
development to support features such as instruction execution tracing,

breakpoints and memory examination/modification.

When programs are linked to the debugger modules and loaded into the pro-
cessors with the Node Processor Debugger Facility, the operator may inter-
act with the execution of the program. This powerful facility will greatly

increase the system programmer's productivity.

NODE PROCESSOR OPERATIONAL PROGRAM

The Node Processor Operational Programs are those programs which will cause
each processor to simulate a substructure and communicate with its neighbor
and the central minicomputer. The programs will be written in assembly
language or possibly a Fortran-like language that is easily translated

into assembly language code.

The content of these programs will be highly dependent on the actual model
being used for the simulation. The programs should be structured so as to
operate on the data tables that are generated by the Model Specification

compiler. The data tables and special functions generated by the compiler
must be easily linked with the Operational Program to perform the required

simulation.

NODE PROCESSOR MICROCODE

The Node Processors will be microcoded to provide a typical general purpose
minicomputer instruction set. In addition to the general purpose instruction
set, special high-level microcoded routines will be available for doing
matrix and vector operations, communicating with nearest neighbors and the
central minicomputer and providing support for diagnostics. The microcoded

instruction set is described in the Node Processor Instruction Set Reference.
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DIAGNOSTIC SOFTWARE

Diagnostic software will be implemented at the following three levels.
1. Diagnostic Control Program in the central microcomputer.
2. Diagnostic Program in each processor.

3. Diagnostic Machine instructions implemented 1n microcode.

The Diagnostic Control Program in the central minicomputer will load the
Diagnostic Program into each processor, accept operator direction, issue
control commands to the processors, input results from the processors, and

display the results to the operator.

The Diagnostic Program in each processor will run various tests as commanded
by the central minicomputer. The tests will progress from simple ones which
test a minimum of circuitry to more complex ones. Tests will be included
for the interprocessor communications, bidirectional bus communications,

and the internal circuitry on each microprocessor board.

The Diagnostic Machine instructions will be designed to thoroughly exercise

the processor board circuits and aid in fault isolation.

NODE PROCESSOR ARCHITECTURE

The Node Processor is part of an array of processors, each capable of
communicating with a central host computer and directly with six neighbors.

It consists of a bit-slice 32-bit CPU, up to 256K of 64-~bit memory, 256

72-bit floating point scratch pad registers and floating point units capable
of overlapping multiplication with either addition, subtraction or division.
The instruction set of the Node Processor includes a full complement of
instructions typically found on a general purpose minicomputer plus additional

high level instructions to handle vectors and matrices.

Each instruction for the Node Processor is 64 bits and contains an opcode

and up to 2 operand fields. There are 13 possible addressing modes per
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operand with a minimum of restrictions on the addressing modes available
for each instruction. With over 130 opcodes and up to 13 addressing modes
per operand there are over 10,000 distinct instructions defined. This
addressing scheme gives the Node Processor a very versatile and powerful

Instruction set.

MEMORY

Main memory appears as 64 bits to the machine level programmer. The internal
data bus connecting memory with the bit-slice CPU and floating point scratch
pad memory is 32 bits wide, therefore 2 transfers are made to access a 64-bit
word and only 1 transfer for a 32-bit half-word. The number of memory trans-
fers required by a processor instruction is dependent on the type of data
being manipulated. The actual transfers made are under control of the micro-
code and are not the responsibility of the machine language programmer. The
machine language programmer is capable of addressing memory only at 64-bit
word boundaries, thus there is never the possibility of addressing memory at
a half word boundary. If memory were addressed at 32-bit boundaries under
program control, it is possible that alignment problems could arise when
addressing 64-bit floating point quantities. This problem 1s eliminated

since all programs are restricted to addressing at 64 bit boundaries.

The memory is 1-bit error correcting, 2-bit error detecting. If the Node
Processor detects a 2-bit error during execution of an instruction a trap
via location 4 is performed. One bit errors are corrected by the hardware

and the currently executing instruction is completed normally.

There is a memory address comparison register (MACR) which is accessed
whenever memory is written. When memory is written the address being used
is compared to the value in MACR and the appropriate bits in the processor

status word (PSW) are set.

Main memory is used to hold data and program instructions. With the exception
of the lowest 70 words of memory, instructions and data may be anywhere in

memory. Memory locations O through 69 are used for processor traps and
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holding constants required by certain high level instructions. Main memory
size is either 256K, 512K, 768K or 1 million 32-tit words. Each memory
board in the system may hold 256K 32-bit words (128K 64-bit words).

DATA TYPES

There are 4 data types handled by the Node Processor: integer, floating
point, vectors and matrices. Integer data is 32 bits wide and left justi-
fied in a 64-bit memory word. The LSB of the integer is at bit 32 while
the MSB is at bit 63. The integer data type is used to represent numerical
quantities and hold memory addresses. When used as an address, only the
low order 19 bits of the integer are used. However, all 32 bits are used
for calculating memory addresses and no checks are made to ensure that the

unused portion of the integer is all zeroes.

Floating point data is 64 bits in main memory and 72 bits in the floating
point scratch pad memory. The increased scratch pad representation allows
for 7 extra bits of precision in the mantissa. When transferring main memory
to the scratch pad registers, the 64-bit number must be expanded to 72-bits.
The sign and exponents will be the same in both formats. Bit 62 is set

to 1 in the scratch pad register 1f the exponent 1s non-zero. The main
memory mantissa 1s mapped to bits 61-7 of the scratch pad register and

bits 6-0 are set to O to complete the mantissa. When going from the scratch
pad registers to main memory, the sign and exponent are copied directly and
bits 61-7 are taken as the mantissa. (Note: The MSB bit of the mantissa,

1 if non-zero number, is not stored in main memory. The mantissa is

truncated to 55 bits when going to main memory.)

Vectors are arrays of floating point values which reside in consecutive
locations of main memory. The address of a vector is the location of the
first floating point value. The length of a vector is the number of floating

point values making up the vector.
Matrices are two dimensional arrays of floating point values and reside in

a contiguous block of main memory. Each row of the matrix is stored in

consecutive memory locations with the first row starting at the beginning
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address of the matrix. If there are N elements in a row then the second row
will start at the matrix address + N. Likewise, the third starts at matrix
address + 2N and so on until the number of rows in the matrix 1s exhausted.
The elements of each column 1n a matrix are separated by N-1 memory locationms.
(Note: The autoincrement addressing modes of the instruction set enable the
programmer to easily access each memory of a column without the need for

doing complex address calculations.)

NODE PROCESSOR REGISTERS

The machine level programmer has access to 8 general purpose 32-bit integer
registers, 3 special purpose 32-bit integer registers and 250 72-bit floating
point scratch pad registers. The general purpose integer registers are
designated RO through R7 and are used to hold integer numerical quantitives
and addresses. These registers are not affected by the Node Processor

instruction unless specified as an operand by the programmer.

The special purpose integer registers are the system stack pointer (SP),
program counter (PC) and a vector/matrix size register (MS). The stack
pointer contains the address of an area of memory set aside by programs

for dynamic storage. The stack grows (increasing memory addresses) as
words are placed (pushed) onto it and shrinks (decreasing memory addresses)
as words are removed (popped). The program counter 1s used to specify the
location from which the next instruction 1s to be taken. The vector/matrix
size register stores an integer value which conveys the length of a vector

or the number of rows of matrix to certain high level instructions.

The floating point scratch pad registers are designated FO through F249.
They are general purpose floating point accumulators and are under programmer
control except for the actions of certain high level instructions which may

destroy their contents during execution.

PROCESSOR STATUS WORD

The Processor Status Word (PSW) contains information on the current status

of the Node Processor. Selected portions of the PSW are affected by the
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execution of instructions. Each instruction described below will detail
which bits of the PSW are affected during execution. In general, bits 0-3
reflect the results of the last 32-bit integer operation on the bit-slice
CPU, bits 4-7 reflect the results from the last floating point multiply
operations, bits 8-11 reflect the last floating point add/subtract/divide
result, bits 15-16 reflect the error status of the last memory read, bits
13-14 are under the programmers control for enabling traps, bit 17 is
concerned with host/node synchronization and bits 18-20 reflect comparisons

of memory addresses when doing writes.

High level instructions affect the PSW in a manner different from simple
instructions. Since all high level instructions involve multiple operations
on either or both of the floating point units, the final PSW state reflects
multiple operations. The only status bits which are meaningful are the
overflow (FOV1,FOV2) and divide by zero (FDZ) bits. If any of these bits
are set during execution of a high level instruction then they will be set
at the end of instruction. The status of all other PSW bits for the inte-

ger and floating point units are undetermined.

Bit Mnemonic Contents

0 CR Integer carry

1 ov Integer overflow

2 NE Integer result negative

3 ZE Integer result zero

4 FUN1 FP multiply underflow

5 FOV1 FP multiply overflow

6 FNEL FP multiply negative

7 FZE1l FP multiply result zero

8 FUN2 FP add/subtract/divide underflow

9 FOV2 FP add/subtract/divide overflow

10 FNE2 FP add/subtract/divide result negative
11 FZE2 FP add/subtract/divide result zero
12 FDZ FP divide by zero

FTR Trap enable on FDZ, FOV1, or FOVZ via
location 10

[
W
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14 TRC Trace enable. Trap after each instruction.

15 PAR One bit error from memory access
16 RER Two bit error from memory access
17 RDY Write only. Signals to host this processor
is done with current step.
18 BPT Enable trap on setting of FEN
19 FEN Memory write address equals MACR
20 FLT Memory write address less than MACR
INPUT /OUTPUT

The Node Processor communicates with the central host computer and each of
its six nearest neighbors. I/0 is synchronous in that there are no interrupts
caused by I/0 transfers. Each Node Processor program must explicitly invoke

an I/0 command before any data transfer.

PROCESSOR TRAPS

There are a number of exceptional conditions which cause the Node Processor
to trap to fixed locations. These conditions may be due to hardware or
software failures. When a trap is executed the error condition will cause
the processor to push the present PSW and PC onto the system stack and take
the new PSW and PC from consecutive memory locations. The memory locations
and conditions are listed below. It is the software's responsibility to

load the proper addresses for the trap service routines.

Trap Condition Location

Two-bit Memory Failure 4

Illegal Instruction

Out of Limits (CLIM) 8
FTR and (FOV1 or FOV2 or FDZ) 10
Attempt SQRT with Negative 12
Stack Underflow 14
Trace Enabled 16
FEN and BPT 18
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INSTRUCTION FORMATS

The Node Processor instruction length is 64 bits. Each instruction contains
an 8-bit opcode field which allows up to 256 distinct opcodes. Since less
than 256 instructions have been defined, there are opcodes left for future
instructions. Instructions may require zero or riore operands for execution.
For instructions with 2 or less operands, each operand is completely speci-
fied within the instruction word. A 4-bit address mode, 4-bit register
select and a 20-bit field are contained in the instruction to specify the
effective address of the operand. The 20-bit quantity may represent an
index, immediate operand, actual address, floating point register select,
general register to autoincrement by or autoincrement value as required by
the addressing mode. In the description of instruction formats below, this
20-bit quantity is always labeled index though it may represent something

else depending on the addressing mode.

For instructions with 3 or more operands the first 2 operands will be speci-
fied as 1n the 2-operand instruction while the rest of the operands will be
taken from pre-specified registers as defined by each instruction. The

general format of the 64-bit instruction is:

‘ T
| OPCODE | Fpl | FD2 FLD3 FLD4

FLD5 FLD6

PRSS—

63 55 51 47 43 39 19 0

For no operand instructions only the 8-bit opcode field is used. For
l-operand instructions FLDl specifies the operand addressing mode and FLD2
specifies the general register to be used if required by the addressing mode.
If the addressing mode requires an index, displacement, actual address or

autoincrement value then it is contained in FLD5. The general format for a

l-operand instruction is:

OPCODE MODE REG - - ] INDEX -

L]

63 55 51 47 43 39 19 0
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For 2-operand instructions, the first operand is specified as in the
l-operand instruction. The second operand uses FLD3, FLD4, FLD6 to specify
addressing mode, register select and index respectively. The format of a

2-operand instruction is:

OPCODE MOD1 REG1 MOD2 REG2 INDEX1 INDEX2

63 55 51 47 43 39 19 0

The uses of the fixed fields in the 64-bit instruction are outlined below.

Instruction

Field Bits Contents

OPCODE 63-56 Operation code. (0-255)

FLD1 55-52 First address mode. (0-12)

FLD2 61-48 Register select. 0-7 for RO
through R7. 8 for MS, 9 for
SP, 15 for PC (Note: 10-14
not allowed. These registers
are dedicated to the microcode.)

F1D3 41-44 Second address mode (0-12)

FLD4 43-40 Second register select as in FLD2

FLD5 39-20 First address index value, immediate
operand, actual address, register
select (as tn FLD2) with auto-
increment value or F.P. register
select (0-249)

FLD6 19-0 Second address index value, imme-

diate operand, actual address,
register select with autoincrement
value or F.P. register select

(0-249).
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NODE PROCESSOR INSTRUCTIONS

OPCODE OPERANDS DESCRIPTION

Integer Instructions:

MOVE SRC,DST Move integers

BLKM ADR1,ADR2 Move block of integers

ADD SRC,DST Add integers

SUB SRC,DST Subtract integers

MUL SRC,DST Multiply integers

DIV SRC,DST Divide integers

JSB Rn,ADR Jump to subroutine

RSB Rn Return from subroutine

PUSH SRC Push onto stack

POP SRC Pop off stack

SAVEM Rn,CNT,ADR Save multiple registers

LOADM ADR,Rn,CNT Load multiple registers

JMP ADR Unconditional jump

JMPLE ADR Conditional jump if <=

JMPLT ADR Conditional jump if <

JMPGE ADR Conditional jump if >=

JMPGT ADR Conditional jump if >

JMPEQ ADR Conditional jump if =

JMPNE ADR Conditional jump if <>

SKPLE SRC1,SRC2 Compare and skip if SRC1l <= SRC2
SKPLT SRC1,SRC2 Compare and skip if SRC1l < SRC2
SKPGE SRC1,SRC2 Compare and skip if SRC1 >= SRC2
SKPGT SRC1,SRC2 Compare and skip 1f SRC1 > SRC2
SKPEQ SRC1,SRC2 Compare and skip if SRC1 = SRC2
SKPNE SRC1,SRC2 Compare and skip if SRC1l <> SRC2
TSTLE SRC,ADR Test and jump if <= 0

TSTLT SRC,ADR Test and jump if < O

TSTGE SRC,ADR Test and jump if >= 0

TSTGT SRC,ADR Test and jump if > O

TSTEQ SRC,ADR Test and jump if = O

TSTNE SRC, ADR Test and jump if <> 0

BITNE SRC1,SRC2 Test bit(s) and skip if not zero
BITEQ SRC1,SRC2 Test bit(s) and skip if zero
SJGT SRC, ADR Subtract and jump if positive
TRAP ADR Trap

RTP Return from trap

SPS SRC Set processor bits

CPS SRC Clear processor bits

RPS DST Read processor bits

TPSNE SRC Read PSW and skip if selected bits are set
TPSEQ SRC Test PSW bits and skip if O

SWAP SRC,DST Swap words

ASHL CNT,DST Arithmetic shift left
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ASHR CNT,DST Arithmetic shift right

LSHL CNT,DST Logical shift left

LSHR CNT,DST Logical shift right

AND SRC,DST Logical and

IOR SRC,DST Inclusive or

X0R SRC,DST Exclusive or

COM SRC,DST Complement

NEG SRC,DST Negate

CLR DST Clear

INC DST Increment

DEC DST Decrement

ADC DST Add carry

ABS SRC,DST Absolute value

CEA SRC,DST Compute effective address

CLIM LO,HI Compare against limits

CASE SRC,HI Case statement

ISKP SRC,DST Increment and skip if within limat
DSKP SRC,DST Decrement and skip 1f within limit

Floating Point Instructions:

FADD Fm,Fn Floating add, reglister to register

FADD Fn,DST Floating add, register to memory

FADD SRC,Fn Floating add, memory to register

FADD SRC,DST Floating add, memory to memory

FSUB Fm,Fn Floating subtract, register to register
FSUB Fn ,DST Floating subtract, register to memory
FSUB SRC,Fn Floating subtract, memory to register
FSUB SRC,DST Floating subtract, memory to memory

FMUL Fm,Fn Floating multiply, register to register
FMUL Fn,DST Floating multiply, register to memory
FMUL SRC,Fn Floating multiply, memory to register
FMUL SRC,DST Floating multiply, memory to memory

FDIV Fm,Fn Floating divide, register to register
FDIV Fn ,DST Floating divide, register to memory

FDIV SRC,Fn Floating divide, memory to register

FDIV SRC,DST Floating divide, memory to memory

FMOV Fm,Fn Floating move, register to register

FMOV Fn,DST Floating move, register to memory

FMOV SRC,Fn Floating move, memory to register

FMOV SRC,DST Floating move, memory to memory

FBLK ADR1,ADR2 Floating block move

FPUSH SRC Push floating

FPOP DST Pop floating

FSAVE Fn,CNT,ADR Save floating point registers Fn to F<n+CNT-1>
FLOAD ADR,Fn,CNT Load Floating point registers from memory
FSKPLE SRC1,SRC2 Compare floating and skip 1f SRC1l <= SRC2
FSKPLT SRC1,SRC2 Compare floating and skip 1f SRC < SRC2
FSKPGE SRC1,SRC2 Compare floating and skip if SRC1l >= SRC2
FSKPGT SRC1,SRC2 Compare floating and skip 1f SRC1 > SRC2
FSKPEQ SRC1,SRC2 Compare floating and skip 1f SRC1 = SRC2
FSKPNE SRC1,SRC2 Compare floating and skip if SRC1 <> SRC2
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FIMLE
FIMLT
FIMGE
FIMCT
FIMEQ
FIMNE
FJLE
FJLT
FJGE
FJGT
FJEQ
FINE
FTSTLE
FTSTLT
FTSTGE
FTSTGT
FTSTEQ
FTSTNE
FABS

High Level Instructions:

SIN
coS
ATAN
SQRT
MTMUL
MTADD
MVMUL
SOLVE
MSVEC
ASVEC
VCMUL
VCADD
MTMUL2
MTADD?2
MVMUL?2
RKM1
RKM2
RKM3
RKM4
RKM5
RKERR

ADR
ADR
ADR
ADR
ADR
ADR
ADR
ADR
ADR
ADR
ADR
ADR
SRC,ADR
SRC,ADR
SRC,ADR
SRC,ADR
SRC, ADR
SRC, ADR
SRC,DST

SRC,DST
SRC,DST
SRC,DST
SRC,DST
MAT1 ,MAT2
MAT1 ,MAT2
MAT,VEC
MAT,VEC
SRC,DST
SRC,DST
SRC1,SRC2
SRC1,SRC2
MAT1 ,MAT?2
MAT1,MAT2
MAT,VEC
SRC1,SRC2
SRC1,SRC2
SRC1,SRC2
SRC1,SRC2
SRC1,SRC2
SRC,DST

Branch
Branch
Branch
Branch
Branch
Branch
Branch
Branch
Branch
Branch
Branch
Branch

if
if
if
if
if
if
if
if
1f
if
if
if

FP
FP
FP
FP
FP
FP
FP
FP
FP
FP
FP
FP

multiply result <=0
multiply result < O
multiply result >= 0
multiply result > O

multiply result

= 0

multiply result <> 0

add, divide
add, divide
add, divide
add, divide
add, divide
add, divide

or
or
or
or
or
or

subtract
subtract
subtract
subtract
subtract
subtract

result
result
result
result
result
result

Branch if floating SRC <= 0
Branch if floating SRC < O
Branch 1f floating SRC >= 0
Branch if floating SRC > O
Branch if floating SRC = O
Branch if floating SRC <> 0
Absolute value of floating point

Sine

Cosine

Arc tangent

Square Root

Matrix multiplication

Matrix addition

Matrix-times vector

Gaussian Elimination

Scalar times vector

Add scalar to vector

Cross product

Add 2 vectors

Generalized matrix multiplication general
Generalized matrix addition
Generalized matrix times vector
Performs step 1 of the integration
Performs step 2 of the integration
Performs step 3 of the integration
Performs step 4 of the integration
Performs step 5 of the integration
Computes the local truncation

A
[t}

n v
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TABLE 1

Addressing Mode Execution Times

Integer F.P. Integer F.P.
Modes Source Source Destination Destination ADR
0] Register 1 1 1 1 -
1 4.5 6 6.5 8 1
2 Immediate 1 1 - - -
3 Memory 4.5 6 6 8 1
4 4.5 6 9 2
5 Indirect 8 9.5 11 12.5 4.5
6 5.5 7 7.5 9 2
7 4.5 6 6.5 8 2
8 Indirect 8 9.5 12 13.5 5.5
9 Indirect 8 9.5 11 12.5 4.5
10 Indirect 8 9.5 11 12.5 4.5
11 5.5 7 7.5 9 2
12 4.5 6.0 6.5 8 2

The numbers are ucycles. If the ucycle involves a memory access, then 1t
is 1.5 pcycles. 1Integer memory reference modes use 1 memory access, floating
point involves 2. Indirect integer modes have 2 memory cycles, floating point

indirect modes involve 3 memory accesses.
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TABLE 2

Addressing Mode Time Estimates in useconds
Uses Table 1 ucycles * 150 nsec. per cycle

Integer F.P. Integer F.P. Jump
Source Source Dest. Dest. Address
Mode ISRC FSRC IDST FDST JADR
0 Register .15 .15 .15 .15 -
1 .675 .9 . 975 1.2 .15
2 Immediate .15 .15 - - -
3 Memory .675 .9 . 975 1.2 .15
4 .675 .9 1.125 1.35 .3
5 Indirect 1.2 1.425 1.65 1.875 .675
6 .825 1.05 1.125 1.35 .30
7 .675 .9 . 975 1.2 .30
8 Indirect 1.2 1.425 1.8 2.025 .825
9 Indirect 1.2 1.425 1.65 1.875 .675
10 Indirect 1.2 1.425 1.65 1.875 .675
11 .825 1.05 1.125 1.35 .30
12 .675 .9 .975 1.2 .30

Used 150 nsec for read cycle time; 225 nsec for memory read/write time.

(Usually there are 2 cycles involved in memory access; lst does read, 2nd
does check for 1 or 2 bit error. Would save overall time if 2nd ucycle
was short.)
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TABLE 3

Example Execution Times for Instruction

(NOTE:

MOVE

g |

3

FADD

FMOV

SINE (typical)
ATAN (typical)

MTMUL
(Matrix multiply)

SOLVE

(Gaussian Elaimination)

RKM1

Each Instruction is Without Fetch Cycle
Which Adds in 4 pcycles (.6 psec.))

Times in ucycles

2 + ISRC + IDST

2 + ISRC + IDST

1 + JADR
5 + JADR
R/R 6
R/M 10
M/R 6
M/M 6
R/R 6
R/M 10
M/R

M/M 6
R/R 6
R/M 10
M/R 6
M/M 6

+ + + +

+ + + 4+

Add time

Add time + FDST

Add time + FSRC

Add time + FSRC + FDST

Mult.,
Mult.
Mult.
Mult.

FDST

+ FSRC
FDST + FSRC

+

time

time + FDST

time + FSRC

time + FSRC + FDST

73 + 14 adds + 11 multiplies

76 + 10 adds + 6 multiplies + 2 divides

36 + R*(3 + C*SZ + add tlmeg)

v
overlaps multiply

2 N> 2 N

on order of 2N*DT + N *MT +-§— *ST + N *ST +-§ AST

where DT
ST
MT

N

= divide time

subtract time

multiply time

# of rows, # of columns in matrix

9 + N*(4 + MT) + FSRC + FDST
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TABLE 4

The following are the expected execution times for various Node Processor

instructions. To simplify the tables and give a best guess sampling of

instruction times, the following assumptions have been made.

a.

For operands labled REGISTER, the operand may come from a

register or be immediate (i.e., part of instruction).

Operands labeled MEMORY are either mode #1 or #3. (Probably
the most typical.)

Average microcycle time for bit slice is 150 nsec., 1nstruction
with memory access is 1.5 microcycles. See Table 2 for

explanation.

Floating point operation times used:

1.0 = Multiply
1.5 = Add or Subtract
15.4 = Divide

These numbers used would probably be smaller with sparsely
filled matrices since operations with one zero operand are

significantly faster.

Times do not include the instruction fetch times, which will

be approximately .6 microseconds per instructiom.

Instructions with comparable execution times :

MOVE, ADD, SUB, AND, IOR, XOR, COM, NEG, INC, DEC, ADC, ABS, PUSH, POP

JMpP, JMPLE, JMLT, JMPGE, JMPGT, JMPEQ, JMPNE

SKPLE, SKPLT, SKPGE, SKPGT, SKPNE, SKPGE, BITNE, BITEQ

TSTLE, TSTLT, TSTGE, TSTGT, TSTEQ, TSTNE

ASHL, ASMR, LSHL, LSHR
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FADD, FSUB

FMOV, FPUSH, FPOP

FSKPLE, LT, GT, GE, NE, EQ

FTSTLE, LT, GT, GE, NE, EQ

FJMLE, LT, GE, GT, NE, EQ, FJLE, LT, GE, GT, NE, EQ

Register to Register to Memory to

Function Register Memory Register
MOVE .6 1.425 1.125
ADD .6 1.425 1.125
JMP - - -
JSB - - -
FADD 2.4 4,2 3.3
FMUL 1.9 3.7 2.8
FMOV .9 2.7 1.8
SINE 42.95 44,15 43.85
ATAN 63.2 64.4 64.1
MTMUL (10x10) - - -

(50x50)
SOLVE (10x10) - - -

(50%50)

RKM1 (10) state variables
(50) state wvariables

*
Time 1n useconds except as noted
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1.95
1.95
.3
.9
4.5
4.0
3.0
45,05
65.3

189.9
4.53 ms

1.3 ms
101.6 ms

17.35
81.35



SOFTWARE SPECIFICATION SUMMARY

The software identified for the Digital System for Structural Dynamics

Simulation includes the following segments.

Offline Model Development Software.
Realtime Execution Control Software.

Node Processor Operational Programs.

S owond -

Node Processor Instruction Set.

Offline Model Development Software

The Offline Model Development Software includes the linker/assembler programs
for generating Node Processor executable programs and a compiler to translate
user specifications of simulation problems into a form that can be handled

by the Node Processor operational programs.

The assembler and linker programs are necessary to generate programs for the
Node Processor. These programs are needed for any newly designed computer

system.

The Model Specification language compiler is designed to quicken the task

of preparing for simulation runs. The language must first be designed before
the compiler (translator) can be fully specified. Before the language is
designed, a sample problem should be identified. The purpose of the sample
problem is to provide a focal point during the development of the language.
It will provide useful guidelines for the language and thus reduce the

probability of a costly over-generalized language.

The translator should not be considered as a full blown compiler for languages
such as Fortran, Basic and ADA. The language in all likelihood would be
rigidly formatted and limited in scope so as to ease the tasks required by

a compiler. The compiler would need to parse arithmetic expressions and

generate the appropriate code for the Node Processor. Elaborate capabilities

would probably not be cost effective.
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Realtime Execution Control Software

The Realtime Execution Control Software includes a debugging facility and
the Execution Control program for running simulations. The debugging
facility is essential for developing the operational programs. The Node
Processor has been designed to facilitate the operation of a debugger.

The instruction trace enable bit in the Processor Status Word and the hard-
ware memory address breakpoint comparator provide the necessary 'hooks"

for a debugger.

The Execution Control Program is the software utility for controlling simu-
lation runs. It must be capable of handling the network 1in realtime. A
simplified communications protocol and hardware design are essential to
keep the complexity of the program to a minimum. Polled operation was
selected over interrupt or asynchronous operation for the communications

because of the need for a simple hardware and software design.

Node Processor Operational Program

The Node Processor Operational Programs are needed to execute the substructure
simulations within each processor. Full software specifications for the
operational programs are not possible until a sample problem is selected

and the Model Specification Language is defined. The need for the operational
programs 1s clear. Different sets of programs are needed for the various

models the Digital System 1s to handle.

Node Processor Instruction Set

The Node Processor Instruction Set was designed as a comprehensive instruction
set to accommodate the requirements of the simulation problems. The identi-

fied needs of the instruction set included:

1. General purpose instructions for flexibility in programming

the Node Processor.
2. Matrix and vector operations for solving the state equations.

3. High speed floating point operations on double precision

operands.
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4. Comprehensive addressing modes for handling the data structures

required by the simulation programs.

5. Microcoded parallel operation during lengthy calculations

and I/0 with nearest neighbors.

The instruction set designed has incorporated the needs identified above.
It includes a full complement of instructions typically found on the latest
generation of minicomputers. The many addressing modes and opcodes speci-
fied provide over 10,000 distinct operations. The vast capability did not
slow the expected execution speeds of instructions since the hardware
incorporates the latest techiiques in pipelined architecture. 1In addition,
the proper selection of instruction decoding and execution techniques
enabled the extensive use of microcode subroutining, thereby keeping the

size of the operational microcode within reason.

The higher level instructions specified for the Node Processor all take
advantage of parallel operations where possible. Software pipelining [2]
techniques were used in instructions which do matrix multiplication,
gaussian elimination, sine/cosine calculation and Runge-Kutta-Merson inte-
gration. The use of software pipelining was possible because of the autono-

mous floating point multiplier and adder units.

In addition to using software pipelining wherever applicable, the floating
point units were optimized for the operations expected during simulations.
Floating point calculations are done on mantissas with 7 extra bits of
precision so as to reduce round off error during intermediate calculations.
The exponent range is the same in the floating point units as main memory.
To speed up calculations on large matrices which contain many zero valued
elements the floating point units detect zero operands on input and return

their result immediately. When either operand is zero, the floating point
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result 1s returned up to 70% faster.

SOFTWARE ASSESSMENT

A very powerful custom-made processor instruction set was designed and
flowcharted. These instructions range from basic moves and integer
operations to complex floating point operations with matrices. Since the
node processor 1s microprogrammable, the suggested instruction set 1s not
cast in concrete. The instructions were designed with simulation in mind

and will make the solution of simulation models as efficient as possible.

Software routines for all levels of the system, however, are presently
only in the conceptual stage. Offline model development software, real-
time execution control software, and node processor operation programs
remain to be designed. Each section of the software 1s in itself a sub-

stantial task.

The offline model development software will be made up of a compiler for

the model specification language, an assembler and a linker for the node
processor instruction set. It is not likely that an existing language

will satisfy the need for the model specification language, so 1t must also
be designed. The compiler for this language will translate the user model
into node processor assembly language while segmenting the problem equally
among the node processors. The assembler and linker would be fairly standard

and similar to many available for minicomputers.

The realtime model execution software will consist of an execution control
program which controls loading of the node processors and the synchronization
of the processor array during run time. It also will collect data from the
processors when appropriate. A node processor program debugger will be a

part of this software to aid in the development of operational programs.

The node processor operational programs will be the true simulation programs.

These programs will be dependent on the simulation model.



The node processor microcode, while flowcharted, remains to be written.
These routines, sometimes called firmware, will implement the node processor

instruction set.

Above and beyond all of the simulation programs, it will be necessary to
have diagnostic software to insure the proper operation of the control
computer with the node processor array. Lower level programs should be

capable of identifying board level faults within a node processor.

The above software assemblage will provide a functionally complete and

convenient package for structural dynamics simulation.
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NODE PROCESSOR HARDWARE

The Node Processor hardware consists of seven major blocks of hardware:

1. The microprogram controller has the function of decoding
program instructions and controlling the proper operation

of the remaining six sections of hardware.

2. The registered arithmetic logic units (RALU's) perform the
integer arithmetic and logic functions of the node processor.

The RALU's are the BIT-SLICES.

3. The dynamic memory is the main storage area for local pro-

gram and data storage within the node processor.

4. The node processor communications hardware provides the I/0
ports necessary for the six nearest neighbor communications

and communications with the central minicomputer.

5. The floating point bus interface and scratch pad 1is used
between the CPU of the node processor and the floating point
units to buffer, hold intermediate floating point values,

and expand/truncate floating point values.

6. The floating point multiplier 1s used to perform all floating

point multiplies within the node processor.

7. The floating point adder/subtractor/divider performs all
floating point addition, subtraction, and division within

a node processor.

The relationship of the above hardware is shown in Faigure 6.

Each node processor has its CPU implemented with microprogrammed bit-slice
hardware. Bit-slice hardware is currently available in ECL or TTL tech-
nology. TTL technology was chosen because of difficulties in designing
with ECL. ECL consumes a great deal of power, the variety of circuits

available is limited, and second sourcing of parts 1s a problem.
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Figure 6 NASA/Lewis Simplified Node Processor Block Diagram



In TTL technology, Advanced Micro Devices (AMD) is the leader in bit-slice
hardware. Other manufacturers second source many of AMD's products.
Standard TTL, lower power Schottky, Schottky and new advanced Schottky

are all compatible with the bit slice hardware. The most flexible, low

power power, high speed design 1s possible with TTL technology.
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MICROPROGRAM CONTROLLER

The microprogram controller is the section of the node processor CPU which
selects a coherent sequence of microinstructions used to execute the various
instructions required by the processor. Each elemental task performed by
the processor is called a microinstruction. A single machine instruction
will take one or more microinstructions to execute. These microinstructions
are stored in a permanent memory called microcode PROM. A sequence of
microinstructions 1initiated by a machine instruction is called a micro-
routine. Because there is a great deal of functional overlap, many machine

instructions will execute microroutines that share portions of the microcode.

The node processor microprogram controller consists of the following hard-
ware: the Instruction Register, the Instruction Mapping Prom, the Address
Mode Mapping Prom, an Address MUX, the Microprogram Sequencer, the Condition
Code Select MUX, the Microprogram Memory, and the Pipeline Register. Also

shown on the block diagram of Figure 7 is the Clock Generator.

Instruction Register

The Instruction Register 1s a 64-bit edge triggered register which holds
the next machine instruction to be executed. It takes two microcyles to
fetch the instruction from the dynamic memory and load it in the IR. Each
microcycle may only fetch 32 bits. Since the instruction 1s so wide, it
contains 7 different fields capable of implementing a very complete

instruction set.

oP MODE REGISTER MODE REGISTER INDEX INDEX
CODE SELECT #1 | SELECT #1) SELECT #2} SELECT #2 i1 ##2
8 BITS 4 BITS 4 BITS 4 BITS 4 BITS 20 BITS 20 BITS

INSTRUCTION REGISTER

The 8-bit op code allows for up to 256 different op codes. Two registers
and their addressing modes may be selected. Two separate index values may
be specified. Of course, not all instructions will use all fields and the

format may vary slightly among instructions.
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Instruction Mapping PROM

The Instruction Mapping PROM is a code converter which converts the eight
bit Op Code into a 12-bit microaddress. It is a 256 x 12 bit wide area
of PROM. The 12-bit microaddress is typically the start of the micro-

routine for the given microinstruction.

Address Mode Mapping PROM

The Address Mode Mapping PROM is a code converter which takes 4 bits from
the Branch Address field of the Pipeline Register and 4 bits from one of
the two address mode select fields of the instruction register and converts
it into a 12 bit microaddress. Only several of the possible 256 different

addressing modes are actually implemented.

Address MUX

The Address MUX selects one of four different branch addresses to the
Am 2910 microprogram Controller. The four choices are the Instruction
Mapping PROM, the Branch Address field of the Pipeline Register, the Address
Mode Mapping PROM, or the least significant 12 bits of the Memory Data

Register (MDR —MDRO).

11

Microprogram Controller

The Am 2910 Microprogram Controller [3] is an address sequencer intended for
controlling the sequence of execution of microinstructions stored in
microprogram memory. Besides the capability of sequential access, 1t
provides conditional branching to any microinstruction within its 4096-
microword range. A last in, first out stack provides microsubroutine
return linkage and looping capability allowing five levels of nesting

subroutines.

Condition Code Select MUX

The Condition Code Select MUX selects the branch condition to the CC input

of the Am 2910 Microprogram Controller. The conditions are:
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10.
11.
12.

13.

Floating Point Multiplier

a. ZERO
b. CARRY
c. NEGATIVE

d. OVERFLOW
Floating Point Adder

a. ZERO

b. CARRY

c. NEGATIVE
d. OVERFLOW
Integer CPU

a, ZERO
b. CARRY
c. NEGATIVE

d. OVERFLOW

(Floating Point Trap Enable) AND (Floating Point Multiplier
Overflow)

(Floating Point Trap Enable) AND (Floating Point Adder Overflow
OR Divide by Zero)

Trace bait set in Processor Status Word

Memory Error

a. One Bit Error

b. Two Bit Error

Floating Point Multiplier DONE

Floating Point Adder/Subtractor/Divider DONE

ALL READY on Global Bus

Data Received on input latch

Memory Write Fault (Memory Address Register g Address Fence)
on write operation

MEMORY TRAP: (One Bit Error) OR (Two Bit Error) OR (Write AND

Memory Address Register < Address Fence)
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Microprogram Memory

The Microprogram Memory contains all of the microroutines which form the
instruction set of the node processor. Since the microcode word for the
node processor has not been completely defined, nor has the microcode been
written, the width and depth of the PROM area is not specified. Due to
hardware development constraints the microcode depth is limited to 4K words

and 1t is preferable to keep the width at 64 bits or fewer.

Two possible choices for the PROM chips are the Am 275185A (2K x 8) or
the Intel 3632 (4K x 8).

Pipeline Register

The Pipeline Register allows an overlap of the fetch of the next micro-
instruction while the current microinstruction is being executed. The
next instruction is being decoded while the microinstruction latched in
the pipeline register is being executed. The position of the pipeline
register immediately after the microprogram PROM causes this arrangement

to be called the instruction - data based architecture.

Clock Generator

The Clock Generator is the Am 2925 System Clock Generator and Driver. This
integrated circuit is programmed by the microcode in order to vary the
microcycle length. It also contains the HALT/RUN and SINGLE STEP logic
used for system debugging. Up to 8 different cycle lengths of the four

phase output may be generated.
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REGISTERED ARITHMETIC AND LOGIC UNITS (RALU's)

The RALU's are the hardware where the integer arithmetic and the logic
operations of the node processor are performed. The RALU's have associated
with them Register Select Input Multiplexers, Direct Input Select Multi-
plexers, Shift Control Logic, Memory Address Register, Memory Data Register,
Memory Data Bidirectional Buffer, Processor Status Word Multiplexer, and

Processor Status Word Register. See Figure 8.

The above hardware 1s responsible for the generation of the next macro-
address and together with the Microprogram Controller, forms the node

processor CPU.

RALU's

The RALU's are the Am 2903 four bit bipolar microprocessor slices. There
are eight of these bit slices for a 32-bit CPU. The RALU's perform all
of the integer arithmetic such as memory address and all of the logical
functions needed by the CPU. The RALU's contain 16 internal dual port

registers, various internal latches, and shifters.

REGISTER SELECT INPUT MULTIPLEXERS

The Register A Select Input Multiplexer selects one of five different groups
of 4 bits to be the A Register address. The five bit fields are the REG {1
instruction field, the least significant 4 bits of INDEX #1 or INDEX #2
instruction field, or the A SEL field of the Pipeline Register, or the

MODE 2 field.

The Register B Select Input Multiplexer selects one of four different groups
of 4 bits to be the B Register address. The four bit fields are the REG #1
or REG #2 instructions, the four least significant bits of the Memory Data

Register, or the B SEL Pipeline Register field.

DIRECT INPUT SELECT MULTIPLEXERS

The Direct A Input Select Multiplexer selects one of four different sets of
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inputs to the DA 2903 inputs. These fields are the 8 bit field formed by
the Index #1 or Index #2 Instruction Register fields, an 8 bit latched

constant, or the Processor Status Word.

Shift Control Logic

The Shift Control Logic determines the type of shift done by the Am 2903.
A one or a zero may be selected as the shift input, or a rotate may be

selected.

Memory Address Register (MAR)

The MAR 1s a 20 bit wide positive edge triggered register used to hold
the current dynamic memory address. This register also buffers the

address onto the Address lines.

MEMORY DATA REGISTER (MDR)

The MDR 1s a 32 bit wide positive edge triggered register used to hold
values to be placed on the MEMORY DATA BUS.

MEMORY DATA BIDIRECTIONAL BUFFER

This buffer buffers the 32 bit wide output of the MDR to the MEMORY DATA
BUS and it buffers the data from the MEMORY DATA BUS to the INTERNAL DATA

BUS.

PROCESSOR STATUS WORD MULTIPLEXER

The PSW multiplexer selects between the Internal Data Bus and the various

Processor Status bits as inputs to the PSW register.

PROCESSOR STATUS WORD REGISTER (PSW)

The PSW holds information concerning the current status of the node processor.

The PSW bits are defined as follows:
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16
17

18
19
20

Mnemonic

CR
ov
NE
ZE
FUN1
Fovl
FNE1
FNE1
FUN2
FOV2
FNE2
FZE2

FTR

TRC

PAR
RER
RDY

BPT
FEN
FLT

PROCESSOR STATUS WORD

Contents

Integer carry

Integer overflow

Integer result negative

Integer result zero

FP multiply underflow

FP multiply overflow

FP multiply negative

FP multiply result zero

FP add/subtract/divide underflow
FP add/subtract/divide overflow

FP add/subtract/divide result negative

FP add/subtract/divide result zero
FP divide by zero

Trap enable on FDZ, FOV1, or FOV2
via location 10

Trace enable. Trap after each
instruction.

One bit error from memory access
Two bit error from memory access

Write only. Signals to host this
processor is done with current step.

Enable trap on setting of FEN
Memory write address equals MACR
Memory write address less than MACR
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DYNAMIC MEMORY

Each dynamic memory board contains 256K x 32 bits of memory (TMS 4164),
a dynamic memory controller, memory and refresh timing, and a section for

error detection and correction as shown in Figure 9.

A maximum of four (4) boards may be addressed by each node processor. A
node with four memory boards would have 1 megaword (32-bit words). Except
for CPU registers and floating point registers, all of the program and

data values used by the node processor are stored in the dynamic RAM.

Each board contains 156 64K dynamic RAMS. The memory array has 128 inte-
grated circuits while the error detection and correction section uses the

remaining 28.

The Am2964B Dynamic Memory Controller is used to provide all address handling,
as well as RAS and CAS decoding and control. The device has 18 input latches
for capturing an 18-bit address for memory control. The two highest order
addresses are used to select one of four 64K x 32 bit blocks of RAM. The
Am2964B also contains an 8-bit refresh counter used to provide the necessary

256 line refresh mode. The CAS output is inhibited during refresh.

Normal operation of the Dynamic Memory Controller 1s to provide the address,
close the address latches and start off a normal memory cycle. This 1s

accomplished by bringing the RAST input LOW which will cause one of the

RAS outputs to go low. After the required memory timing, the MSEL input
is used to switch the multiplexer to the CAS latch. Then the CASI input

will be driven LOW and execute the CAS part of the memory cycle.

The refresh cycle 1s executed by driving the RFSH signal low which causes
all four RAS outputs to go low. This will simultaneously refresh all four
banks of memory controlled by the Dynamic Memory Controller. When either
the RFSH or ﬁxgiiinput is brought high, the refresh counter is advanced

so 1t will be ready for the next cycle.
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Data interface among the dynamic memories, the Am2960 EDC circuit, and the
node processor data bus is accomplished by means of the Am2961 bus buffers.
Each 2961 contains two internal latches, a multiplexer, and a RAM driver

output buffer. Each 2961 is 4 bits wide so 8 are used in this 32-bit system.

The bus input latch of the 2961 is used for data storage during a memory
WRITE. The bus output latch in the 2961 is used predominantly for storing
the output data if the processor is in single step mode. In the single
step mode it 1s necessary to hold the output data on the system data bus

but the memory must be free to be refreshed.

A pair of Am2960 Error Detection and Correction units (EDC's) contain all
the necessary logic to generate check bits on a 32-bit data field according
to a modified Hamming code and to correct the data when the check bits are
supplied. Operating on the data read from memory, the EDC's can correct
all single bit errors and will detect all double and some triple bit crrors.

For 32-bit worcs, 7 check bits are used.

Some additional circuitry 1is required to provide proper memory access
sequencing and timing for memory refresh. Since the 16 bits of address

must be multiplexed into the dynamic RAMs 8 address lines, the memory

timing is necessary. It 1s necessary to allow the memory to be refreshed,
with an eight bit address, when 1t 1s not being accessed. When the CPU 1s
running, refresh is automatic and transparent within the microcode sequences.
When the CPU is halted, such as during single step mode, a special refresh

counter periodically refreshes the RAM.

Aside from the two refresh modes described above, the memory normally has
three operating modes. In the write mode, a 32-bit value 1s loaded into
the data input latch. The 7 check bits are generated by the EDCs which

correspond to the 32-bit value. At the end of the write cycle, the data

and the check bits are written into the proper RAM location.

In the detect mode the EDCs examine the contents of the Data Input latch

(from the RAM) against the Check Bit Input Latch, and will detect all

-70-



single bit errors, all doublt-bit errors, and some triple bit errors. If
one or more errors are detected, the ERR status line to the CPU is pulled

low. If two or more errors are detected, MERR is pulled low. Both ERR and

MERR are open collector signals that remain high if there are no errors.
In the Detect mode, the contents of the Data Input latch are driven directly

to the Data Output Latch without correction.

In the Correct mode, the EDCs function the same as in the Detect mode ex-
cept that the correction network is allowed to correct (complement) any
single bit error of the Data Input Latch before putting it into the inputs
of the Data Output Latch. If multiple errors are detected, the output of
the correction network is unspecified, and both the ERR and MERR lines are
pulled low. 1If the single-bit error is a check bit, there is no authomatic
correction; if desired, this would be done by placing the EDCs in generate
mode to produce the correct check bit sequence for the data in the Data

Input Latch.

An option on the memory board is the Memory Fence Comparator. These inte-
grated chips should only be installed on one memory board per node. 1If
present, a special instruction called the Write Fence Instruction will load
an immediate 20-bit value into the Fence register. Whenever memory is
written, the address is compared to the 20-bit Fence value. If address
equals fence the status line EQAD is brought high., If address is less

than fence the status line FENCE is brought high. The EQAD status line
finds use as a means of generating a hardware breakpoint. The FENCE status

line finds its use in detecting illegal memory writes.

The Memory Fence feature is used to insure that an area of dynamic memory
has not been overwritten by mistaken. For example, a function look up

table may have been loaded into the lower memory area and the Memory Fence
is set at the top of this table. 1If a programming error or a hardware

error forced a write to this area of memory, the FENCE line would be brought

high. This FENCE signal would be detected and warn the system operator
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that the resulting computations in the node processor may have been corrupted.
The EQAD line 1s brought high when the Memory Fence value equals the memory

address. This feature is used as a hardware break point during program

debugging.
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NODE PROCESSOR COMMUNICAT IONS

The Node Processor Communications hardware is the most difficult part of

the system architecture to define. (Unless otherwise noted, Node Processor
Communications refers to communications between a node and its six nearest
neighbors.) There are three schemes for this communication: shared memory,
FIFO Buffers and six way communications controller. Each is discussed in

the following paragraphs.

Shared Memory

A system with shared memory between nearest neighbors would enable a node
to directly access a section of its neighbor's memory. This is a fast,
perhaps the fastest possible, method of data transfer between processors.
There are several important disadvantages. The memory for such a system

is more complex; it would require dual port memories that are expensive.
The memory width is 32 bits plus address and control lines. In dealing
with six nearest neighbors, more than 200 connections would be needed on
each processor to implement shared memory. A large number of interconnects

are not desired because of low reliability.

FIFO Buffers

A second method uses narrower data paths (16 bits per transfer) with a FIFO
buffered input and output. Data are transferred between boards in two
separate events or passes. Pass one consists of loading three output FIFOs
and unloading three input FIFOs. Pass two changes the direction of the
data transfer. Each pass sends data to three nearest neighbors and receives

data from the remaining threec neighbors.

For example, during pass one, data are passed from processor N to neigh-
bors 1, 2, and 3. Data are received from neighbors 4, 5 and 6. During
pass two, data are received from neighbors 1, 2, and 3. Data are sent to

neighbors 4, 5, and 6. See Figures (Pass 1 and Pass 2) on page 74.
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The maximum number of variables sent along the path from one processor to
its neighbor is 100, Each variable is a 64 bit number. The path width
chosen for data transfers is 16 bits. A FIFO depth of 400 is needed to
hold the variables during any single path. The block diagram for the FIFO

scheme is shown in Figure 10.

The above two methods of processor communications are quite costly in terms
of the amount of hardware involved. Upon reference to Sample Problem 2
(Determination of Processor Computational Capabilities) implementation of
either scheme seems unjustified. If 8 x 106 floating point computations
were performed for each time step at a cost of 2 usec per operation (being
very optimistic about the speed) the compute time would be 16 sec. The
time it would take a node to output 100 variables, 16 bits at a time, 500
nsec. per transfer, (being conservatively slow), then input 100 variables
in the same manner would be 400 usec Even if data transfer occurred that
slowly, nearest processor communications would only represent .0025% of a
single time step. This leads to the conclusion that communications may be

performed adequately with less hardware by a simpler set of six input/output

ports.
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S1x Way Communications Controller

The six way communications controller is a set of six I/0 ports under control
of the node processor CPU. Except for the address, all six ports are identi-
cal. Each port 1s hardwired to the appropriate port on the six nearest

neighbors of the node. See Figure 11.

Each port consists of two 16-bit output latches with a common clock and
separate output enables. There are two 16-bit input registers with separate

clocks and a common output enable.

Output of data to the nearest neighbor 1s accomplished by fetching a 32-bit
value and latching it in the output latch. The high order half word (16 bits)
is sent when the CPU receives the EMPTY status signal from 1ts nearest neigh-
bor. The low order half word is sent in the next microcycle. To send a 64-
bit value this procedure must be done twice. Figure 12 1s a flow chart of
the output loop of the six way communications controller. Figure 13 depicts

the typical output operation of the controller.

Input of data from the nearest neighbor can occur when the EMPTY status
signal 1s sent to the nearest neaghbor. First the high order half word is
clocked into the high order input register. 1In the next microcycle, the
low order half word is latched into the low order input register and the
Eﬁ§T§-51gnal is set (=1). Once EMPTY = 1 the CPU may take the data and put
it in 1ts intended destination. Figure 14 1s a flow chart of the input loop
of the six way communications controller. Figure 15 depicts the typical

input operation of the controller.

There are three signals used for handshaking between nodes. When EMPTY is

active low, the input port 1s ready to be loaded from the nearest neighbor.
The other two handshake lines clock the data into the input register of the
nearest neighbor. The two clocks CKH and CKL clock the upper and lower

halves of a typical transfer into the input register of the nearest neighbor.
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Global Bus Communications Port

Each node processor has a single 32-bit bidirectional port known as the
global bus port. This port 1s used for communications between any node

and the control computer.

At the node processor, the port consists of a 32-bit input latch, a 32-bit

output latch, and a status flip flop.

The type of handshake to be used has not been decided at this time.
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FLOATING POINT BUS INTERFACE (FPBI) AND SCRATCH PAD

The FPBI and Scratch Pad is designed to buffer, format and store data
between the node processor CPU and Floating Point units (i.e., Floating
Point Multiplier and Floating Point Adder/Subtractor/Divider).

Typical CPU floating point values are 64-bits wide and take up two 32-bit
wide words of CPU memory. On the other hand, the Floating Point units both
handle 72-bit wide floating point values. Hence the need for a CPU to
Floating Point unit interface. The two Floating Point word formats are

shown below:

64 BIT CPU Floating Point Value

63 QZ 55 54 32 31 0

___Y____J\_ ~ J

[-55 Bit Mantissa

- 8 Bit Biased Exponent

~ - Sign Bit of Mantissa

72 BIT Floating Point Bus Value

71 70 63, 62 6L 0
L ) < N -/

62 Bit Mantissa

— — Zero Bit

8 Bit Biased Exponent

Sign Bit of Mantissa
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CPU to FPBI Transfers

As shown above the FPBI must accept two 32-bit values from the CPU and
expand this value to 72 bits. The mapping of this expansion 1s shown

below:

CPU Word\\\\\ CPU Word
N —r—
54-32 l 31-0

CPU BIT : 63l 6255 ‘ -------
F.P. BUS BIT: 71) 70-63 | #62

i

61-39 38-7 [**6-0 = "0O"

*F.P. Bus Bit 62=0 1f bits 62-55 are all zero; else 62=1.

**F.P. Bus Bit 6-0 are all set to "O".

FPBI to CPU Transfers

Bit 62 and bit 6-0 of the FBPI word are truncated on a transfer from

the FPBI TO THE CPU:

F.P. BUS BIT: 71 70-63 61~39 38-7
CPU BIT : 63 62-55 54-32 32-0
R S
CPU Word CPU Word

SCRATCH PAD Area

The SCRATCH PAD area of the FBPI is a 256 x 72 bit wide area of fast static
RAM. The SCRATCH PAD serves several purposes: 1) It allows quick access of a
commonly used operand (i1.e., parallel access to all 72-bits versus two accesses
to the slower CPU Dynamic RAM); 2) Greater precision is maintained in the
72-bit intermediate value; 3) In matrix operations, a whole row of a matrix

may be stored for convenient access.
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Operating Details of FPBI

Write to SCRATCH PAD from CPU

Step 1: An 8-bit address is sent to the F.P. address transparent latch
while the least significant 32-bits of the F.P. value is latched

in an 1nput latch.

Step 2: The higher order 32-bits of the F.P. value are sent along with
the write command which causes the proper 72-bit value to be

written in the scratch pad at the appropriate address.

Read from SCRATCH PAD to CPU

Step 1: An 8-bit address is sent to the F.P. address transparent latch
and the upper 32-bits are read in on the data bus while the lower

32-bits of the F.P. word are latched.

Step 2: The lower 32-bits are read in from the latch to complete the

transfer.

Write from SCRATCH PAD to FLOATING POINT BUS

An 8-bit address is sent to the F.P. address transparent latch, the F.P.
bus drivers are enabled, and a scratch pad Read is enabled. At the end
of this step the appropriate register in a Floating Point Unit latches

the F.P. value from the bus.

Read from FLOATING POINT BUS to SCRATCH PAD

An 8-bit address is sent to the F.P. address transparent latch, the F.P.

bus receivers are enabled, a scratch pad write is enabled and the appropriate
register in a Floating Point Unit is enabled on the bus. At the end of the
cycle the result is latched into the scratch pad. F.P. status is also

latched in the seven bit status latch.
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REGISTER to REGISTER transfer

Step 1: An 8-bit (source) address is sent to the F.P. address transparent
latch, a scratch pad Read is enabled and the output transfer latch

stores the 72-bit floating point value.

Step 2: An 8-bit (destination) address is sent to the F.P. address trans-
parent latch, the output transparent latch is output enabled,
the F.P. bus receivers are enabled and a scratch pad write is

enabled.

FPBI Hardware Description

The FPBI has five main parts: The floating point address latch, CPU memory
data bus buffers and latches, an 8-bit comparitor, 256 x 72-bit scratch pad

RAM, floating point bus buffers and latches. See Figure 16.

The floating point address latch holds the 8-bit address from the CPU of
the scratch pad RAM. This latch 1s transparent which means it may be opened

during one cycle and stored on subsequent cycles.

The CPU memory data bus buffers and latches are used to multiplex and trun-
cate the F.P, data on a scratch pad read. Data 1s latched, buffered and
expanded during a scratch pad write. Two cycles are required for a read or

write to the memory bus since it is only 32-bits wide.

An B8-bit comparitor compares the exponent with zero and sets the zero detect

bit on a write from the CPU to the scratch pad.

The 256 x 72-bit scratch pad is a fast read-write memory used to hold the

expanded double word operands used in the floating point units.
The floating point bus output latch and input buffer isolates the F.P. bus

from the F.P. UNITS and the F.P. scratch pad. There 1s a 72-bit buffer from
the F.P. BUS to the scratch pad. There 1s a 72-bat transparent latch from
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the scratch pad to the F.P. bus.

The floating point control lines are derived from CPU microcode baits.

The floating point status lines are latched in a seven-bit latch.
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FLOATING POINT BUS CONTROL L1NES

A low on this line is used to write data into a Floating Point

Unit.

A low on this line is used to read data from a Floating Point

Unit.

A high on this line is used to access to the Floating Point
Adder/Subtractor/Divider. A low on this line is used to access

to the Floating Point Multiplier.

These lines determine the register of the Floating Point Unit
accessed and in the case of the Adder/Subtractor/Divider, the

function to be performed.

RDFP ADD /MULT FPR2 FPR1 TFPR@

WRFP

RDFP

ADD /MULT

FPR2-FPR{

WRFP
H H
L H
L H
L H
L H
1 H
L H
L H
L H
H L
L H
L H
H L
X X
L L

X X X X NO oP

H L L L Write X operand to Adder

H L L H Write Y operand to Adder -

- Function:Add

H L H L Write Y operand to Adder -
Function:Subtract

H L H H Write Y operand to Adder -
Function:Float to Fix

H H L L Write Y operand to Adder -
Function:F1ix to Float

H H L H Write Y operand to Adder -
Function:Check Status

H H H L Write Y operand to Adder -
Function:Divide

H H H H NO OP

H L L 1. Read Adder result and status

L X L I  Write X operand to Multiplier

L X L H Write X operand to Multiplier

L X L 1.  Read Multiplier result and
status

L X H X NO OP

X X X X 1Illegal Condition
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FLOATING POINT BUS STATUS LINES

OVF Low on this line indicates the result is beyond the range of numbers

which can be represented. All bits of the result set to 1.

UFL Low on this line indicates the result 1is smaller than the smallest
number which can be represented. All bits except for the ZERO BIT
(BIT 62) are set to O.

NEG High on this line indicates the result of the operation was a neg-

ative number. It 1s the same as the negative bit of the mantissa.

ZER Low on this line indicates the result of the operation was zero.

All bits of the result are zero.

DNM Low on this line indicates the Multiplier is done and ready for

new input.

DNA Low on this line indicates the Adder 1s done and ready for new
input.
DBYZ Low on this line indicates a divide by zero error in the floating

point Adder/Subtractor/Divider.
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FLOATING POINT MULTIPLIER (FPM)

The Floating Point Multiplier is a very high speed microprogrammed logic
board designed to exclusively perform all floating point multiplication

within a node processor.

The FPM 1s connected to the CPU of a node via the Floating Point Bus Inter-
face (FPBI). The interface buffers, formats and stores up to 256 72-bit
floating point values for processing by the CPU or the Floating Point units.,

(See Floating Point Bus Interface.)

The FPM has threg registers which are accessed via the FPBI. They are the
X operand input register, the Y operand input register, and the Result and
Status output register. The floating point control bus signals required to

access these registers are:

RDFP WRFP ADD /MULT FPRI FPRO

H H X X X No Op
H No Op (FPA)
H L L L L Load X operand of multiplier
L H Load Y operand of multiplier
L L Read Result and Status of
Multiplier

The FPM is loaded under control of the node processor CPU. The order of
operand loading is important. The X-operand is ordinarily loaded first.

Upon the loading of the Y operand, the multiplier begins execution. On a
succeeding multiply, if the X operand does not change, only the new Y operand
need be loaded. The multiplier will proceed using the old X operand and the

new Y operand. The result returned is a 72-bit product with appropriate

status bits.
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Assembly Language Instructions

The floating point multiplier is under control of the node processor CPU.

The instruction FMUL is the only instruction which uses the FPM.

Multiplication Algorithm

The floating point numbers have the representation of 1 sign bit, an 8-bit
exponent with a bias of 128 and a 63-bit mantissa for a total of 72 bits.
This format provides a range of 10_37 to 1038 with 19 digits of precision.
In all cases the floating point inputs are normalized numbers. Also, if the
exponent is zero (—12810) then the number is zero. This eliminates gradual

underflow or operation with vanishing numbers

71 70 63 62
\_,,//'\K\_J \w__,/—\\j

63-bit mantissa (bit 62 is also the
zero bit)

8-bit biased exponent

- -~ mantissa sign bit

The floating point multiplication is done in two relatively independent
processes. One process determines the sign and exponent of the result,
the other process determines the mantissa. The two processes interact when
the final mantissa may need to be normalized, thereby changing the exponent

of the result. The multiply algorithm is flowcharted in Figure 17.

The sign of the result is 1 (negative) if, and only if, the signs of the

inputs are not equal. The exponent is found by adding the input exponents
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<: START A:)

- Multiply
1p,2D,3D,4D
E:=eX-128,
Cs:=C,,,¢
%=0 YES
NO
g€1=c+eY < @
C2:=C
out
ZERO RESULT
YES FZEl:=1
Y=0 FINl:=1
NO
Mulﬁiply
1c,2C,3C,4C (:j RETURN 4:)
S:=2D4D
‘\\\\\\ l/////J\\\\\\\A RESULT :=
All 1's
Cl=c2 >IES c120 NO FOVL:=1
N FINl:=1
NO YES
N:=S+1D3D FUN1:=1 (:i RETURN )
YES
NO

Figure 17 Floating Point Multiply Flowchart
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Multiply
1B,2B, 3B, 4B
S:=N+2C4C

|

N:=S+1C3C

Multiply
1A,2A,3A,4A
S:=N+2B4B

1

N:=S+1B3B

S:=N+2A4A

N:=S+1A3A

[

N:=N +
Round Biq

Figure 17 Continued

ZERO RESULT
FUN1:=1
FZEl:=1
FINl:=1
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and subtracting the bias (12810). After the result has been normalized

underflow will occur if the exponent is below the minimum allowed. Over-—

flow will occur if the exponent is greater than the maximum.

The calculation of the result mantissa is done by finding the sum of 16
partial products, each 32 bits, to form a 128-bit result. The result is

then normalized, rounded and truncated to 63 bits.

The X and Y input mantissas are represented by four 16-bit fields. The
63-bit input mantissas are left justified within these 64 bits.

The 32-bit result of a 16 x 16 multiply is represented by the 2 16-bit fields
multiplied. The 16 32-bit partial products are added to form a 128-bit
result. The partial products must have their LSB aligned with the proper

bit in the 128-bit result before adding. The alignment of the partial

products may be visualized as:

Hh
4
4R
4A m
3c
IB
1A N
20
| 28 |
24 D
10
1R
1A
RESULT |
127 0
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The hardware does not maintain the full 128-bit result. The lower 64 bits
are used to set guard and sticky bits are used when rounding is accomplished.

(See round and normalize hardware.)

F.P. MULTIPLIER HARDWARE

The FPM hardware consists of: a microprogram controller and PROMS, two
operand input registers, an exponent ALU, four array multipliers, a mantissa

ALU, a mantissa shifter, round and normalization logic and an output buffer.

See Figure 18,

Microprogram Controller and PROMs

The FPM has its own microprogram contained in PROM. The microprogram

counter is a binary up counter with preset and reset capabilities. The
counter is reset to zero when the Y operand is loaded. The counter normally
sequences through the microcode. Certain microinstructions allow conditional
or unconditional presetting of the counter which causes branching to different
sections of the microprogram. At the end of the multiply microroutine,

the counter is disabled until the new operand(s) is(are) loaded.

Operand Input Registers

The input registers are positive edge triggered registers which are addressed
and loaded under the control of the CPU. There are 2 72-bit input registers.
One holds the X operand; the other holds the Y operand. Also on the input
of the FPM is some decoding logic which determines from the CPU FP control
signals whether the X operand is to be loaded, the Y operand is to be loaded

or the Result is to be read.

Exponent ALU

The exponent ALU consists of an eight bit ALU, an output register, an output
buffer and two selectable constant inputs. The A input of the exponent ALU

may be either the exponent of the X operand or the output of the latch or
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the adder output. The B adder input may be the exponent of the Y operand,

the constant -1, or the constant -128.

Array Multipliers

There are four 16 x 16 array multipliers which are used to generate four
32-ba1t partial products simultaneously. Four multiplies are done in each
multiplier to compute all 16 partial products. The bits generated by the

multipliers are latched in four separate 32-bit tristate registers.

Mantissa ALU

The mantissa ALU 1s a 68-bit wide ALU. The ALU output 1s loaded into the
parallel load input of a 68-bit shifter. The A input of the adder may be
either the output of the 68-bit shaifter, or the output of the 68-bit shifter

right shifted 16 buits.

The B input of the ALU selects between two pairs of latched multiplier

outputs.

Mantissa Shifter

The mantissa shifter latches the output of the 68-bit adder. The shifter

1s used to left shift the result if normalization is necessary.

Round and Normalize Logic

Since there are more bits computed than are retained for a final result, it
is necessary to round the result. All results are rounded to the nearest
expressible value, with rounding to even 1f the value is exactly between

the 2 possible representations. In this scheme, a guard bit and a sticky

bit are necessary. The result of a mantissa multiplication is 64 bits.

The LSB of the intermediate result is designated as the rounding bit. The
guard bit is the bit immediately to the right of the LSB which would normally
be lost. 1In the event the intermediate result must be left shifted to
normalize, the guard bit 1s shifted into the LSB of the result and becomes

the rounding bat.
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The sticky bit and guard bit are used to correctly determine which direction
to round when done. The sticky bit "remembers" 1f there were any bits set
in the low order 63 bits of the 128-bit result. These low order bits are
not carried through the computation. Instead, during each of the four
multiply steps, the low order 16 bits are passed to the guard and sticky
bit logic. This logic does the following:

1. Logical OR of guard bit with sticky bit
2. Logical OR 15 least significant bits with sticky bit
3. MSB of 16 bits becomes new guard bit

In the round step a 1 is added to the mantissa if and only if

1 = (Bit 63) -« (Bit 0) + (Guard + Sticky) + (Bit 63) + (Guard) (Sticky)
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FLOATING POINT ADDER/SUBTRACTOR/DIVIDER (FPA)

The Floating Point Adder is a high speed microprogrammed logic board
designed to perform floating point addition, subtraction and divisaion.

The FPA also will convert a floating point number to fixed point, a fixed
point number to floating point, and set the appropriate status for a single

input.

The FPA is connected to the CPU of a node via the Floating Point Bus Inter-
face (FPBI). The interface buffers format and store up to 256 72-bit float-
ing point values for processing by the CPU or the Floating Point units (see

Floating Point Bus Interface).

The FPA has three registers which are accessed via the FPBI. They are the
X-operand input register, the Y-operand input/command register, and the
result/status output register. Floating Point control bus signals to access

these registers are:

WRFP  RDFP ADD /MULT FPR2 FPR1  FRR{

No Op
No Op (FPM)
Write X-Operand to FPA

[ e e B o o]
o = = =
jooliie= B S
B o
oo X
oo

Write Y-Operand to FPA
Function: ADD

L H H L H L Write Y-Operand to FPA
Function: SUBTRACT

L H H L H H Write Y-Operand to FPA
Function: FLOAT to FIX

L H H H L L Write Y-Operand to FPA
Function: FIX to FLOAT

L H H H L H Write Y-Operand to FPA
Function: CHECK STATUS

H L H L L L Read FPA Result and Status
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FP Adder/Subtractor and Divider Hardware

The FPASD hardware consists of: a microprogram controller and proms, an
exponent ALU, a mantissa ALU, a mantissa shifter, and output buffers and

latches. See Figure 19.

Microprogram Controller and Proms

The FPASD has 1ts own microprogram contained in PROM. The microprogram
counter is a binary up counter with preset and reset capabilities. The
counter 1s preset to a special address in the lower address space of the
microcode PROM upon the loading of the Y-operand. The preset address is
determined by the FP register control bits. The microprogram then executes
the instructions for the proper algorithm. Certain microinstructions allow
conditional or unconditional branching to different sections of the micro-

program. Otherwise, microprogram execution is sequential.

At the end of a microprogram, the counter is disabled until the new operand(s)

is (are) loaded.

Operand Input Registers

The input registers are positive edge triggered registers which are addressed
and loaded under control of the CPU. There are two 72-bit input registers.
One contains the X-operand while the other contains the Y-operand. Also on
the input of the FPASD is some decoding logic which determines from the CPU
FP control signals whether the X-operand is to be loaded, the Y-operand is

to be loaded, or the Result is to be read.

Exponent ALU

The exponent ALU consists of an 8-bit ALU, four registers, and a 8-bit counter.
The farst register is on the output of the ALU. The output of the first
register feeds the 8-bit counter, a second register which has its output
driving the A input of the ALU, and a third register used to hold the exponent
result and drive the FP bus. The fourth register is on the outputs of the

8-bit counter and drives the B inputs of the ALU.

-101-



=201~

FLOATNG  POINT CONTROL AND STATUS  BUS

iy

[

MICROPROGRAM
COUNTER

1§

MICROPROGRAM
MEMORY

U

AM2925

PIPELINE

REGISTER

BRANCH

A0DRES S| BRANCH deamrRor.

OTHER
EONTROL

| MuX

g—ﬁ@

FLOATING  FONT

DATA_ S

COMMAND INPUT
STTUS BUFFER
AND  LATCH BUFFER AND DECODE| 74K 74 rar 74
e
SEREN I ‘ERLE
y § H §
5N 3
§ ¥
H COMMAND
S REGISTER
1
START ADDRESS
MUX
be— 2EE
kowormon
oo wxf— il
PE-—
7 mp ]
oso’r‘«: :{r ——q — T , caney

EXPONENT  INPUT  REG STERS

WEPLY P
I
|

8las l
80w

-

L

=2
Sy

Ego EB7

ANTISSA  INFUT

H
RESSTERS -3

J—r
4 8 24F374

AP - A3

I

|
!
!
|
iy el
|
|
|
I

1-74F g "
15 295 36
© uF182

y Resav g
A BTy

|
i ose  17-RiFR4 i
SHFT | oM at e |
CONTROL [ _T_ - ]
e s b il = —— — 741 -
| 7RI STATE |
Epe_ED7 ! LATCH
a I f !
3 cour 8-23F373
i L 1
2
I b w - - - - e 1
J:. H AP _Ao3
3 3T )
\.7 *(; ~y )
OVER +3 s a A
VERFLOW 74F374 25523 2ars2t 17} & 2243
UNOERFLOW
PR A popoes | H /I” 3
H °
g g
[ < FLOATING PONT  BATA BUS
I oce A A

Figure 19 NASA/Lewis SDS Node Processor Block Diagram Floating Point Adder/Subtractor/Divider



In other words, input A to the ALU may come from either the X input register
or register number 2. The B input of the ALU may come from either the Y input

register or register number 4.

Mantissa ALU

The mantissa ALU consists of two 64-bit latches, a 64-bit ALU, a 68-bit shifter,
a 64-bit transparent latch, a 64-bit zero detect circuit, and a 72-bit shifter.

Either of the two 64-bit intermediate mantissa registers may be loaded from
the X operand input register, the Y operand input register, the transparent
latch, the output of the A register itself, or the 72-bit shifter.

The ALU A input may come from either the X or Y operand input registers,
the transparent latch, or the A intermediate mantissa register. The ALU B

input may only come from the B intermediate mantissa register.

The input of the 68-bit shifter may only come from the 64-bit ALU. The input
of the 64-bit latch may only come from the 68-bit shifter.

The 72-bit shifter, the zero detect circuit, and the 64-bit output buffer
all have the same inputs as the ALU A input.

Assembly Language Instructions

FLOATING POINT ADD
FLOATING POINT SUBTRACT
FLOATING POINT DIVIDE
FIX TO FLOAT

FLOAT TO FIX

STATUS CHECK
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Floating

Point Addition Algorithm

Floating

point addition is performed in the Floating Point Adder/Subtractor/

Divider according to a two's complement addition algorithm described below.

X and Y are the floating point input operands and Z is the sum. The flow-

chart for this algorithm is shown in Figure 20.

Compare X-operand and Y-exponent. If Y-exponent 1s greater
than X-exponent swap X and Y so that the larger value is in

X. 1If the exponents are equal, leave X and Y alone.

Subtract the exponents so that D = X-exponent - Y-exponent.

If D 1s greater than or equal to 63 the answer is X and the

Convert the signed magnitude mantissa to two's complement

Perform a two's complement addition of the two mantissas.

Shift the result one place to the right and increment the

Convert the two's complement result to sign magnitude form.

Normalize the result by shifting the mantissa left until a

1 appears 1in the most significant bit. Decrement the

point subtraction differs only slightly from floating point
If Z = X-Y, change the sign of Y and proceed with steps 1 through

floating point addition algorithm. The flowchart for the algorithm

1.
2.
procedure may be stopped, otherwise continue.
3.
form.
4. Shift Y-mantissa to the right D times.
5.
exponent 1f a carry is generated.
6.
7.
exponent for each shift.
8. Round and latch result.
Floating Point Subtraction Algorithm
Floating
addition.
8 of the
1s shown in Figure 21.
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Figure 20 Floating Point Addition Flowchart
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H=E
SZ+S (MSB)
B+«S

S(MSB)=0

S«B plus 1
1
S+0
Yes E<0
FZE2+«1
NO
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UNTIL S (MSB-1)=1
COUNT IN CNTIR
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C<~Cout

E«All 1's
S+«All 1's
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Figure 20 Continued
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Figure 21 Floating Point Subtraction Flowchart
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Floating Point Division Algorithm

Floating point division is performed in the Floating Point Adder/Subtractor/

Divider according to a non-restoring binary division algorithm described

below.

The divisor 1s X, the dividend Y and the quotient is Z. The flow-

chart for the algorithm is shown in Figure 22.

1.

10.

11.

12,

Subtract the exponents so that Z exponent = X exponent - Y exponent

+ bias.

Compare the mantissas. If X mantissa is greater than the Y mantissa

shift X mantissa to the right one bit and increment Z-exponent.
Set counter I to 62. Clear Z-mantissa (Z mantissa = 0).

If X-mantissa equals zero, then stop.

Perform subtraction X = 2X-Y.

Test result of subtraction. If negative go to step 10, else

continue.

Set bit I in quotient to 1 (Z(I) = 1).

Decrement I.

If T does not equal zero, go to step 4, else stop.
Add X = 2X+Y.

Decrement I.

If I does not equal zero, go to step 6, else stop.
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Figure 22 Floating Point Division Flowchart
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HARDWARE ASSESSMENT

The system architecture of an array of node processors controlled by a
central minicomputer was chosen. The node processor design was based upon
the computational requirements of a structural dynamics simulator. A
microprogrammable bit~slice architecture allowed an extremely powerful
custom instruction set. Additional hardware was designed to greatly speed

up floating point calculations.

Every node processor may access a large dynamic memory. Nearest neighbor

communications have been implemented for efficient interprocessor communi-

cations.

The dynamic memory, CPU to floating point unit interface, and two floating
point units, were designed up through schematic diagrams. The CPU and the

communications interfaces were designed through hlock diagrams.

The hardware architecture chosen is as powerful as is possible while eco-
nomically feasible with today's technology. As upgraded versions of the
circuitry become available, the speed to cost ratio will increase. Waiting
for future advancement poses few advantages. New products are rarely ready
on schedule. The hardware suggested here is available now to provide an

extremely powerful and useful tool for structural dynamics simulation.
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DISCUSSION OF RESULTS

The approach taken in this design of a Digital System for Structural Dynamics
Simulation is innovative. From a hardware standpoint, the system takes
advantage of decreasing costs and increased computational power of state-
of-the-art digital technology. The software associated with this system

is of necessity state-of-the-art. The main concepts of value in the simu-
lation application are the segmentation of the problem (into 125 equal parts),
a custom instruction set tailored for simulation, and the high speed of the

computing hardware.

At this point it is suggested that the detailed design of a node processor
be completed and a prototype constructed., The instruction set should be
microcoded and small programs should be written to exercise the hardware/
firmware. At the conclusion of this phase, the decision can be made as to
purchase of a control minicomputer and subsequent production of the entire

array of processors.

The technical risk of producing a single functioning node processor is not
great and results primarily from the tedium of microcoding such a machine.
Constructing the entire system represents a challenging problem in packaging,

cooling, interconnecting, and testing.
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SUMMARY OF RESULTS AND RECOMMENDATIONS

The subject of this report has been the design of a Digital System for

Structural Dynamics Simulation.

The results of this program can be summarized as follows:

1.

A search of the field of parallel processing/simulation was done
to discover work which would be a duplication of effort of this

program. No such duplication was found.

The principles of simulation modeling methods were explored and

a method (Runge-Kutta) chosen for this class of problems.

The architecture of an array of processors was conceived as the

best possible solution to the simulation problem.

The node processor architecture of bit-slice microprogrammed CPU,

large dynamic memory and custom floating point hardware was chosen.

The floating point hardware and dynamic memory were designed to
the detailed schematic stage. The CPU was designed to the block

diagram level.

The instruction set was designed and flowcharted. This infor-
mation is contained in the Node Processor Instruction Set Reference
and the Microcode Flowcharts for the Node Processor Instruction

Set provided to NASA as a separate report.

System software requirements were outlined.

For meaningful continuation of this program, additional effort in the areas

below 1s recommended.

1.

A sample structural dynamics problem should be developed, its

solution coded and run on a main frame computer.

The hardware and firmware (microcode) for a single node processor

should be prototyped.

Segments of the sample problem should be run on the node processor

with results being checked back to the main frame solution.
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The control minicomputer should be specified and software design

started for the system.

The debugged prototyped node processor can then be produced in
quantity. Packaging and interfacing to the central minicomputer
followed by system checkout will complete the program.
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APPENDIX I

Summary of Current Similar Simulation Programs



1-I

SUMMARY OF CURRENT SIMILAR SIMULATION PROGRAMS

ORGANIZATION PURPOSE OF WORK APPROACH PRESENT STATUS
1. Univ. of Wisconsin Solution of partial differ- Net of computers., Study Stage.
ential equations Nearest neighbor (2 dimen-
sional array).
Global bus structure
2. NASA Ames Calculation of three- Use of parallel progessing System design.
dimensional flows for concepts to get 10° FLOPS.
aircraft, Architecture not based on
physical problem.
3. NASA Langley Solution of static finite Array of asynchronous Four node system
element equation. microprocessors. Each operating. Tharty-
connected to 12 nearest s1x node prototype
neighbors for communica- under development.
tion of displacements.
Iterative solution.
5w*x@
4. Goodyear Aerospace Processing of satellite Use of 128 x 128 array of To be completed
imagery. processors to process in 1982.
simultaneously bit serial
data. Each connected to
four nearest neighbors.
Custom VSLI CMOS/SOS chips
are used for non-memory
portions of each processor.
5. Rensselaer Polytechnic Assessment of chip tech- Evaluation of current and Started in 1980.
Institute nology as related to future chip usage in numeri- To be completed

structural engineering.

cal algorithm evaluation.
Predaiction of impact of
chip technology on numeri-
cal analyses.

in 1982.
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SUMMARY OF RECENT PAPERS DESCRIBING PARALLEL PROCESSING

"Tasks Scheduling on a Multi-
processor System with Inde-
pendent Memories,'" SIAMJ
Computing, Vol. 6, No. 1,
Mar. 1977, pp 167-187

Purdue University

DETERMINISTIC MODELS,
WORST-CASE BOUNDS,
MEMORY CONSTRAINTS.

COMPANY/
REFERENCE ORGANIZATION KEY WORDS SUBJECT

1. Baskett, F. and A. J. Smith, Stanford University, MEMORY INTERFERENCE, Analyzes the memory inter-
"Interference in Multiprocessor University of California ,MULTIPROCESSING, ference caused by several
Computer Systems with Interleaved Berkeley INTERLEAVED MEMORY processors simultaneously
Memory,'" ACM, Volume 19, No. 6, TRACE DRIVEN using several memory modules.
June 1976, pp. 327-334. SIMULATION. Results are computed for a

simple model.

2. Baudet, G. M., "Asynchronous Carnegie-Mellon Univer- ASYNCHRONOUS ALGORITHMS,Asynchronous 1terative methods
Interative Methods for Multi- sity, Pittsburgh ASYNCHRONOUS MULTIPRO- presented for solving a system
Processors" Journal ACM, Volume CESSORS, PARALLEL AL- of equations. Conditions given
25, No.2, April 1978, pp 226-244, GORITHMS, INTERATIVE to guarantee convergence. Ad-

METHODS, CHAOTIC RE- vantages of purely asynchronous
LAXATION, ANALYSIS OF methods.
ALGORITHMS

3. Bhandarkar, D. P., "Some Per- Australian National MEMORY INTERFERENCE, Guidelines for multiprocessor
formance Issues in Multipro- University, Canberra, MEMORY INTERLFAVING, system architect. Preferred
cessor System Design," IEEE Australia MULTIPROCESSORS. design alternatives and/or
Trans. Computers, Volume C-26 tradeoffs,

No. 5, May 1977, pp 506-11.

4. Enslow, P. H., '"Multiprocessor Georgia Institute of COMPUTER SYSTEM OR- Time-shared buses, crossbar switch
Organization—A Survey," Technology, Atlanta GANIZATION, CONCURRENT matrix, multibus/multiport
Computing Surveys, Volume 9, OPERATIONS, INTERCON- memories, interconnection systems
No. 1, Mar. 1977, pp 103-129. NECTION SUBSYSTEMS, discussed. Three operating systems

MULTIPROCESSOR OPERAT- master-slave, separate executive

ING SYSTEMS. for each processor, symmetric
treatment of all processors
reviewed.

5. Rafura, D. G. and V. Y. Shen., Iowa State University, SCHEDULING, ALGORITHMS, Scheduling strategies evaluated

for system of identical processor
with a private memory.
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REFERENCE

(Continued)

COMPANY/
ORGANIZATION

KEY WORDS

SUBJECT

Kinney, L. L., and R. G.
Arnold, "Analysis of a Multi-
Processor System with a Shared
Bus,"” Conference Proceedings
5th Ann. Symp. Computer
Architecturs, Palo Alto, CA
April 1978, pp 89-95.

Kuznia, C. H., R. Kober, and

H. Kopp, "SMS - A Structured
Multimicroprocessor System with
Deadlock-Free Operation Scheme"
Conf. Proc. 3rd Ann. Symp.
Computer Architecture, Clearwater,
Florida, Jan. 1976, p. 122

0'Grady, E. P., "A Multiprocessor
for Continuous System Simulation',
Proceedings 1979 Int. Conf.
Parallel Processing, Bellaire,

MI, Aug. 1979, p. 306.

Pearce, R. C. and J. C. Majithia,
"Upper Bounds on the Performance
of Some Processor-Memory Inter-
comnections,' Proc. 1967 Int.
Conf. Parallel Processing,
Walden Woods, MI, Aug. 1976,

p. 303.

University of Minnesota,
Honeywell Corporation,
Minneapolis

SIEMENS AG
Hofmannstr, Germany

Arizona State University
Temple

University of Waterloo,
Ontario

FIFO, QUEUE,
MULTIBUS SYSTEM,
FIFO SHARED-BUS.

DISTRIBUTED MEMORY,
MULTIPROCESSOR,
COMMUNICATIONS MEMORY

SIMULATION, INTER~

Analysis of a multiprocessor
system with shared-bus. Determin-
ing the processing power as the
number of processors is increased.

Multiprocessor system design for
large systems of differential
equations.

Simulation-oriented multiprocessor

PROCESSOR COMMUNICATION,system employing a new concept in
BIT-SLICE MICROPROCESSORjnterprocessor communication is

BUS CONTROL PROCESSOR.

CROSS-POINT, TIME-
SHARED BUS, PIPELINED
LOOP, BINARY SWITCH.

described. Parallelism in con-
junction with address-mapping
memories realize an efficient
high-speed transfer mechanism.

Multiprocessor performance evaluated
for cross—-point, time-shared pipe-
lined loop, and binary switch
methods.



SUMMARY OF RECENT PAPERS DESCRIBING PARALLEL PROCESSING

REFERENCE

(Continued)

COMPANY/
ORGANIZATION

KEY WORDS SUBJECT

10. Pearce, R. C. and J. C. Majithia

11.

12.

13.

"Performance Results for an
M.I.M.D. Computer Organization
Using Pipelined Binary Switches

and Cache Memories,' Proc. Inst.

Electronic Engineers (England),
Vol., 125, No. 11, Nov. 1978,
pp. 1203-1207.

Sastry, K. V. and R. Y. Kain,
"On the Performance of Certain
Multiprocessor Computer Or-
ganization," IEEE Trans.
Computers, Vol. C-24, No. 11,
Nov. 1975, pp. 1066-1074.

Yang, Chao-Chih, 'Gast Algo-
rithms for Bounding the
Performance of Multiprocessor
Systems,'" Proc. 1976 Intl,
Conf, Parallel Processing,
Walden Woods, Mich., Aug. 1976,
pp. 73-82.

Patel, Janak H., "Processor-
Memory Interconnections for
Multiprocessors," Conf. Proc.
6th Ann. Symp. Computer
Architecture, Philadelphia,
PA, April 1979, pp. 168-177.

University of Waterloo,
Ontario

Sperry Univac
Roseville, Mainn.,
University of Minnesota

Unaiversity of Alabama
Birmingham

School of Electrical
Engineering,
West Lafayette, IN

PIPELINED PROCESSING,
CACHE MEMORIES,
M.I.M.D. ARCHITECTURE

Throughput performance with
respect to variations 1in

cache memory parameters,

number of processors, processing
time of a system in which a binary
switch 1s used as the intercon-
nection network.

ANALYTIC MODELS, IN- Performance of a multiprocessor
STRUCTION EXECUTION system with different storage
RATES, MEMORY CONFLICTS,allocations for instructions and
MULTIPROCESSORS. data with interleaving in the
instruction space 1s presented.

PRECEDENCE PARTITION, Proposing two types of scheduling
PARTTIALLY ORDERED TASKS for more efficient execution of
a multiprocessor system.

INTERCONNECTION NET- Interconnection networks proposed
WORKS, CROSSBAR SYSTEMS, for processor to memory communl-—
DELTA NETWORKS cation and multiprocessing
system allows a direct link
between any processor to any
memory module.
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