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USE OF HIGH PRESSURE LIQUID CHROMATOGRAPHY IN THE STUDY
OF LIQUID LUBRICANT OXIDATION

Wilfredo Morales
National Aeronautics and Space Administration

Lewis f«,search Center
Cleveland, Ohio 44135

ABSTrAC r

The general principles of classical liquid chromatography and high-
pressure liquid chromatography (HPLC) are reviewer:, and their advantages and
disadvantages are compared. Several chromatographic techniques are reviewed,
and the analysis of a C-ether liquid lubricant by each technique is illus-
trated. An analysis by size exclusion chromatography of an ester lubricant,

o	 which had been degraded using a micro-oxidation apparatus, is illustrated to
^;	 show how HPLC can be used in the study of high-temperature lubricant

w	 degradation.

INTRODUCTION

High-pressure (or performance) liquid chromatography (HPLC) is a rela-

tively new separation method (the major developments occurring during the
years 1965 through 1969)) based on the classical separation technique, 'liquid
column chromatography [1]. Chromatography ; in general, is a method of
physically separating a mixture of substances due to the equilibrium distri-
bution of the substances between a stationary phase (or bed) and a mobile
phase which percolates through the stationary phase. The mixture of sub-
stances (to be separated) are solutes in a solvent mobile phase.

In liquid column chromatography (classical or HPLC) the mobile phase is a
liquid, whereas a gas mobile phase is employed in gas chromatography. Al-
though HPLC is not used as extensively as gas chromatography, its advantage
lies in the fact, that while only about 20 percent of all organic material is
volatile enough to be examined by gas chromatography [2], a higher percentage
of organic material can be dissolved in an appropriate solvent for examination
by HPLC.

HPLC has been utilized at Pennsylvania State University to study the high
temperature oxidation of ester-based lubricants [3,4], and has also been used
in the analysis of space-qualified lubricants [5]. At NASA Lewis Research
Center, HPLC is one of several laboratory instruments used to study the ,ompo-
sitions, oxidative mechanisms, and kinetics of candidate high temperature lub-
ricants. Understanding oxidation mechanisms is essential in facilitating a
logical approach to the synthesis and formulation of new lubricants with im-
proved high temperature stability in air.

Clas s ical Liquid Column Chromatogram

Fig. 1 represents the separation of a mixture of three substances

(solutes) by classical liquid column chromatography. The column is an open
tube which is commonly packed with alumina or silica. The mixture is sepa-
rated by adsorbing the solute substances from a small volume of solvent onto
the packed bed and then leaching the column with a sequence of solvents (the
mobile phase) of increasinpolarity. The eluant is then collected in
fractions for examination q[6].



Classical liquid column chromatography, although a valuable analytical
tool, has several drawbacks: (1) It is a time consuming method of separation;
(2) examination of the collected fractions is difficult because of poor reso—
lution; (3) the manual operation of the column is greatly dependent on the
operator's skill. HPLC, on the other hand, has several advantages; (1) Sep—
oration times are generally fast; (a) resolution is excellent ,, (3) there is
less dependence on the operator's skill as a result of automation.

Modern High Pressure Liquid -,C,hromatography

A modern HIM SyStOill 
Consists 

Or four major components (Fig. 2):
1 A solvent dolivery pump
2 A sample injection port
3 A separatory column (or columns)
4 A detector
The solvent delivery pump must provide a continuous, controlled flow of

solvent (the mobile phase) through the separatory column and to the detector,
and the sample injection port must provide the means of introducing the sampleunder 

Study into the HPLC system without interruption Of the solvent flow rate.
The detector must be capable OF detecting the separated solute substances that
elute f ►"0111 'tile COIL111111.

The first step in Sepa'-*ating a Mixture of substances by HPLC is to dis-
solve, a small quantity of the mixture into all appropriate solvent (tile mobile
phase) . A, small volume of the resultant solution is then injected into the
HIM system where it merges into the mobile phase (from the solvent delivery
PUMP to the separatory column). DUO to the packing of a column (tile station-
ary phase generally consists of very fine particles), the HIM system must
operate at high—COIL111111 inlet pressures to overcome the column resistance to
the mobile phase flow. The mobile phase flow rate is controlled by adjust-
ments to the solvent delivery PLIMP; flow rates of 1—milliliter per minute are
C0111111011. The Mixture Of Substances in the sample are separated because of
their different rate of passage through the column. Their presence is sensed
by detectors at the downstream segment of the column. A refractive index de—
Lector and a fixed wavelength ultraviolet light detector are two popular
oWcal Instruments used to detect the separated Substances which elude from
t e separatory column.

A refractive index detector is adjusted to the refractive index of the
mobile phase solvent and responds to any eluted substance (in the mobile
phase) that has a different refractive index from that of the mobile phase. A
-fixed wavelength ultraviolet light (UV) detector will respoilJ to any eluted
substance that is UV sensitive at that particular wavelength. The UV detector
wavelength may be adjusted.

A modern HPLC system, because it overcomes the inherent difficulties of
classical liquid COlUMn chromatovaphy, has gained widespread use in the lab—
oratory as a routine analytical instruillenit, 'In many instances its versatility
has allowed it to be Used as all on—line analyzer ill industrial process plants
[7]. It is also a valuable research tool in the Study of chemical reaction
mechanisms and kinetics and has been used extensively in Our laboratory for
the separation of the components of synthetic lubricants and for the separa-
tion of their oxidation degradation products.
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MODES  OF SHARAT1e)N

Different typos of Soparatory columns can 
be 

ONi► g rad in an HPLG system A—

paneling on then typo of separation host suited tear the particular mixture of
nubstances being studied. The two main classes of separation area those sepa-
rations n 1 frcted by the physical characteristics (size exclusion) of the sub-
stancos and those . affected by the chemical natures (;adsorption, partition) of
then substances Q,

Sizeion . Chromatoc ► Rj

This mode seuarates a mixture ofof substanceas according to their molecular

size (geometry of f for onces by permeation into a solvent— filled matrix in the
column jig. 31. This matrix can be either an inorganic (i.e,, silica gel) ear
organic (Q., styrene, divinyl benzene) stationary phase, The substances
having the greater molecular size will teed not to permeate into the matrix
pores as much as the smaller molecular size substances, Thus the Order of
elution from a sixes exclusion column is from the larger to the smaller
molecular size substances.

The ideal size exclusion process is illustrated  in t" ill. 4. There are
three regions of importance: The total exclusion region, then selective porme-
ation Sion, and they total permeation region. In they total exclusion region,
all substances ;above a certain molecular size (Q) will be excluded from
permeation into the y stationary phaso matrix; these substances will elute at
the' same time, t t ( the total exclusion time), In the selective? permeation
region, substa^nch having a molecular sire smaller than M will permeate

into the stationary phase matrix and olute at incroas"ing times greater than
T .. In then total porn stion region, all substances below a certain moleo-
uor size(Pi ta ) wi ll be 	 enough too travel throughout they stationary
phase! matrix with they mobiles phase molecules; 'those substances will oluto at
they same? time,  Tp (the tonal permonLion Lime).

A calibration curvo can be constructed for ,a size exclusion column by
plotting tho log of they molecular weights of known substances (molecular weight
is proportional to molecular size) versus their retention times. Figure 6 is
a calibration curves constructed from known standards. By measuring the
retention time of can unknown substance, its approximate molecular weight can
he calculated.

Aclsor^t ̂ oi^ .^hr^^^mat>u^^ a^^l^,v

In adsorption chromatography, chemical interactions (hydrogen-bonding,
dipole interactions) between the solute substances and then stationary phase
affect separation of a mixtures of substances. The solutes are reversible
adsorbed from a nonpolar mobile phase (W.,, heptane) onto the surface of a
polar stationary phase. Silica deal, which has a high concentration of
hydroxyl groups, is widely used as a stationary phase in adsorption chromAto-
graphy (Fig, G).

Figure I ill ustrates the mechani sm of separation on a silica gel station-
ary phase. The phenol solute, because ofits greater polarity, will interact
more strongly with the stationary phase than will the hindered phenol solute.
The phonol'soluto will to retained for a longer period of time, and thus will
dote from the column after the hindered phenol solute has eluted.
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Partition  iromato ra i

In this mode, the solute substances partition themselves between the

mobile phase and a stationary organic phase which can bw either coated or

chemically bonded to a solid bed support (silica is commonly used). Separa-
tion of the substances is achieved because of the different equilibrium dis-
tributions (solubilities) of the substances between the mobile phase and the

stationary phase. Partition chromatography can be classified as either
liquid—liquid chromatography or bonded phase chromatography. In liquid—liquid
chromatography, an organic liquid (the stationary phase) is coated onto the

surface of a solid bed support (Fig. 8). rho liquid stationary phase is nor-

mally a very polar substance such as 131 13 1—oxydiproprionitrile, and the

mobile phase a nonpolar substance such as heptane.
In bonded phase chromatography, an organic phase is chemically bonded to

a solid bed support. Bonded phase chromatography can be further classified as

either normal phase or reversed phase chromatography.
Normal phase chromatography results from chemically bonding a polar

functional group, such as M t —NH2 to a solid bed support (Fig! 9), The

substances to be separated are dissolved in a nonpolar mobile phase (hexane,

chloroform). Figure 10 illustrates a normal phase separation using a cyano
WN) bonded phase column, with the result that the less polar substance elutes

first.
Reverse phase chromatography is just the opposite of normal phase chro*-

ato raphy. A nonpolar functional grout such as —C8,C18 is chemically
, and thebonded to a solid bed support (Fig. 11 	 substances to be separated

are dissolved in a polar mobile phase (methanol, water). Figure 12 illustrates
a reversed phase separation using a Clybonded phase column, with the result
that the more polar substance elutes irst.

Gradient Elution

When a sample is a mixture of substances having a very wide variation of

polarity, the separation of the sample becomes more difficult; Fig. 13 illus-
trates the problem. A sample containing six substances (of different polar-

ity) is separated by adsorption chromatography. If a weak mobile phase is
used (heptano), then all six substances may not be eluted (Fig. 13(a)). If a

strong mobile phase is used (chloroform), then all six substances may not be

completely separated (Fig. 13(b)). A blend of the weak and strong mobile
phases may optimize the separation of the intermediate polar substances (the
center) but the separation of the nonpolar and polar substances will be un-

satisfactory (Fig. 13(c))
If, however, the separation of the sample mixture is started with the

weak mobile phase and then the strong mobile phase is gradually fed in, opti-

mum separation of all six substances will be achieved (Fig. 13(d)). This sep-
aration method is called gradient elution chromatography as opposed to an

"isocratic" chromatographic separation where the mobile phase composition is

constant with time. Figure 14 depicts one way of obtaining a polarity grad—
lent of the mobile phase. The most important variable in gradient elution is

the mobile phase program, which varies the mobile phase composition with time.
Gradient elution is a powerful chromatographic technique generally used

for the more difficult separations.



HPLC ANALYSIS OF A C-ETHER LUBRICANT

Figure 15 is the schematic of the HPLC system used to analyze a C-ether
lubricant, which is a blend of four chemical components [9]. Figure 16 de-
picas the chemical composition of the lubricant. Four modes of chromatography
were used to analyze the C-ether lubricant to illustrate and compare the more
common chromatographic techniques,

Size Exclusion Analysis

A set of size exclusion columns (Fig. 17) consisting of a 500 -A
u-styragel column and two 100-A u-styragel columns were used to analyze the
C-ether lubricant. This combination of columns allowed for the study of sub-

'	 stances to molecular weights of 10 000. Chloroform was used as the mobile
phase at a flow rate of 1 ml/min. Twenty microliters (ul) of the lubricant
was dissolved in 3 ml of chloroform, and 50 u1 of this solution was injected
into the HPLC system. Figure 18 is the chromatogram (the recorded separation)
of this sample. Peak A was identified as the mixture of the 4-ring phenyl
components (components Al, A2, and A3 of Fig. 16) and peak B as the 3-ring
phenyl component (component B of fig. 16). All peaks were identified by con-
centrating the sample with the four pure components of the C-ether lubricant
(one component at a time), injecting the sample into the HPLC and noting which
peak on the chromatogram increased relative to the other peaks.

Normal Phase Analysis

A -CN bonded phase column was then used to analyze the C-ether lubri-
cant. Heptane was used as the mobile phase at a flow rate of 1 ml/min.
Twenty ul of the lubricant was dissolved into 3 ml of n-heptane and 50 µ1 of
the resulting solution was injected into the HPLC system. Figure 19 is the
chromatogram of the injected sample. Peaks Al, A2, and A3 were indentified as
the 4-ring phenyl components and peak B as the 3-ring phenyl component.

Reversed Phase Analysis

Next, a C-18 bonded phase column was used to analyze the C-ether lubri-
cant. A mixture of tetrahydrofuran (THF) and water (50 percent THE and 50
percent water by volume) was used as the mobile phase at a flow rate of 1
ml/min. Ten ill of -the lubricant was dissolved into 3 ml of the solvent, and
20 u1 of this solution was injected into the HPLC system. Figure 20 is 0e
chromatogram of the injected sample. Peaks Al, A2, and A3 were identified as
the 4-ring phenyl components, and peak B as the 3-ring phenyl component.

Adsorption Analysis

Finally, a silica adsorption column was used to analyze the C-ether lub-
ricant. A mixture of n-heptane and chloroform (98 percent n-heptane and 2
percent chloroform by volume) was used as the mobile phase at a flow rate of
0.1 ml/min. Five ul of the lubricant was dissolved into 2 ml of the solvent,
and 10 µ1 of this solution was injected into the HPLC system. Figure 21 is
the chromatogram of the injected sample. Peaks Al, A2, and A3 were identified
as the 4-ring phenyl components, and peak B as the 3-ring phenyl component.



Comparison of Results

The size exclusion analysis (Fig. 18) of the C-ether lubricant (a blend
of four components) indicated the presence of only two components. The
u-styragel columns were able to separate the 3-ring phenyl component from the
4-ring components but were unable to separate the 4-ring components from each
other.

The normal phase analysis (Fig. 19) of the lubricant indicated the pre-
sence of all four components. However, the -CN-bonded phase column was able
to completely separate the 3-ring phenyl component from the 4-ring components
but unable to completely separate the 4-ring components from each other.

The reversed phase analysis of the lubricant also indicated the presence
of all four components. The C-18 bonded phase column, like the -CN-bonded
phase column, was able to completely separate the 3-ring phenyl component from
the 4-ring components but unable to completely separate the 4-ring components.

The optimum separation was obtained with the silica gel column used in
the adsorption mode. It completely separated all four components.

HPLC ANALYSIS OF AN OXIDIZED ESTER LUBRICANT

An ester lubricant (trimethylol propane triheptanoate) was oxioized using
a micro-oxidation techngiue, which is described in [3] to show how HPLC can be
applied in the study of lubricant oxidation. The size exclusion Mode was used
in the ester oxidation analysis to present an overall view of the ester and
its degradation products.

Figure 22 represents the micro-oxidation apparatus used to degrade the
ester. Forty ul of the unused ester was placed onto the surface of a metal
catalyst, keeping the apparatus at a constant temperature of 225 4 C. The
ester was heated for 30 minutes under four different conditions:

1 An iron catalyst was used with a nitrogen atmosphere
2 An iron catalyst was used with an air atmosphere
3 A copper catalyst was used with a nitrogeni atmosphere
4 A copper catalyst was used with an air atmosphere.
Figure 23 is the chromatogram of the unoxidized ester. Figure 24 shows

the ester degradation under a nitrogen atmosphere using an iron catalyst. The
loss of some ester as a result of evaporation is indicated by the decrease in
the RI peak height, wi^'h the formation of decomposition product (or products)
indicated by the broadening RI peak base and the detection of a UV peak.

Figure 25 shows the ester degradation under an air atmosphere using an
iron catalyst. Along with the substantial loss of the initial ester (decrease
of ester RI peak) is the formation of lower and higher molecular weight de-
gradation material with the detection of at least three UV absorbing products.

Figure 26 shows the ester degradation under a nitrogen atmosphere using a
copper catalyst. Evaporation of some ester occurred (see the RI peak) but
broadening of the RI peak base did not, indicating no or very little formation
of decomposition product. The UV detector was able to pick up at least three
decomposition products.

Figure 27 shows the ester degradation under an air atmosphere using a
copper catalyst. Unlike the air oxidization of the ester using an iron cat-
alyst, no substantial loss of the ester occurred. The RI detector indicates
higher molecular weight formation but not much. The UV detector also indi-
cates very little decomposition product formation.
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CONCLUDINa REMARKS

It has been shown that HPLC, with the various separation modes available,
can be used in the study of the high-temperature oxidative degradation of lub-
ricants. With HPLC it is not only possible to monitor how a lubricant de-
grades with time (kinetic study), but also monitor the formation of degrada-
tion products and isolate these products for identification, hopefully pro-
viding a clue for the high-temperature improvement of the liquid lubricant,
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Figure 1, - Classical liquid column chromatography.
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Figure 23. Size exclusion analysis of unused Ester lubricant.
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Figure 24. - Sine exclusion analysis of degraded Ester lubricant-catalyst, Iron.,
test atmosphere, dry nitrogen.
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Figure 25. - Size exclusion analysis of degraded Ester lubricant -catalyst, Iron ., test
atmosphere, dry air.
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Figure 26. - Size exclusion analysis of degraded Ester lubricant-catalyst,
copper, test atmosphere, dry nitrogen.

i 1
H  Ln

0
RI (8 XI

MOBILE PHASE: UV (1.0AUFS)
CHLOROFORM o 0	 254 n
FLOW RATE: G 1
0.8 ml/min rZ rZa a

^ a

15000 1000 422 226 i

MOLECULAR WEIGHT

Figure 27. - Size exclusion analysis of degraded Ester lubricant-catalysis,
copper: test atmosphere, dry air,
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