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INTRODUCTION

Aromatic polysulfones, a class of polymers processable by

thermoplastic means, have a major problem in their tendency to
swell and dissolve in many common solvents. This dissolution

causes structural components which are fabricated from these poly-

mers to be susceptible to damage by these solvents and precludes

use of polysulfones for many applicationsl, 2.

Aromatic polylmldes, conversely, are a class of polymers

which are known to be resistant to solvents, but they are gener-

ally not processable by thermoplastic means 3. The polyimides

are exceptional in their thermal stability and, llke polysulfones,
their use temperature is generally governed by the softening temp-

erature of each system.

A polymer system which possesses the processability of the

polysulfones and the solvent resistance of the polylmides offers a

considerable advance to the state-of-the-art The synthesis and

characterization of such a system is'the subject of this paper.

Although the subject polylmide has some unusual physical

properties that make it interesting from an engineering stand-

point, this is not the first polyimidesulfone to be prepared.

Scroog, et al., have reported the preparation of polylmides from

pyromell-_ic---dianhydride and two isomeric sulfone-containing

diamines 4. Brode, et al., prepared several polyimides from sul-

fone arylether dlamines 5, and Acle patented a copolyimide which

' contained sulfone unlts 6.

EXPERIMENTAL

Preparation of the Polymer. The monomers used in the prep-
aration of the thermoplastic/solvent-resistant polyimidesulfone

(PISO2) were 3,3',4,4'-benzophenone tetracarboxylic dianhydrlde
(BTDA) and 3,3'-dlaminodiphenylsulfone (3,3' DDS). The BTDA was a

. polymer grade material used as received from Gulf Chemicals* ,

m.p. 215". The 3,3'DDS was obtained from FIC Corporation and was

used as received, m.p. 165-167"C.

*Use of trade names or manufacturers does not constitute an

official endorsement, either expressed or implied, by the

National Aeronautics and Space Administration.



The polymerization of the two monomers in stoichiometric
quantities was carried out in reagent grade bis(2-methoxyethyl-
ether). This trlether which is commonly called diglyme was
obtained from at least four different commercial sources and used
as the medium for polymerization. The reaction was conducted at
20-25"C at a concentration of 15-25% solids by weight in the rea-
gent grade dlglyme. A typical preparation was as follows: The
BTDA (25.8 g) was added to a solution of 3,3' DDS (19.9 g) in
diglyme (258.6 g). This mixture was allowed to stir at room temp-
erature until all of the BTDA had dissolved. The solution was
allowed to stir for an additional two hours to allow for molecular

weight build up. At this stage the polymer in solution was the
polyamide acid.

Characterization. The inherent viscosity of the polyamide
acid solution was obtained at a concentration of 0.5 percent in
N,N-dimethylacetamlde at 35"C. Thermomechanical properties of the
polymer were obtained by torsional braid analysis (TBA). Glass
braids were coated with a 5 percent polymer solution and heated to
300"C in air before obtaining TBA spectra. Glass transition temp,

eratures (Tg) of various films, composites, and moldings were
measured by thermomechanical analysis (TMA) on a DuPont 943 Ana-
lyzer in static air at a temperature program of 5"C/min. Thermo-
grams of the polymer were obtained by thermogravimetric analysis
(TGA) by heating at a rate of 2.5"C/mln in static air (dynamic
TGA) or by holding the polymer at 316"C in static air (isothermal
TGA). Melt flow properties were observed by use of a parallel
plate plastometer accessory for the DuPont 943 Thermomechanical
Analyzer. Mechanical properties of moldings, composites, and
adhesive bonds were obtained on a Model TT Instron Testing
Machine. Solvent resistance of films was deduced from their

apparent glass transition depression as measured by TMA after
solvent exposure as well as by their physical behavior in the
solvents.

Preparation of Adhesive Scrim. The polyamide acid in diglyme
solution was brush-coated onto If2 E-glass which had an amino-
silane surface treatment (X-aminopropylsilane). This glass cloth
had a nominal thickness of O.01 cm and was used as a carrier for
the adhesive as well as for bondline thickness control. Coatings
of the polyamlde acid were applied to build up a scrim thickness
of 0.020-0.025 cm. After each coating the scrim was air dried at
room temperature until tack was lost and then placed in a forced
air oven and subjected to the following cure schedules:

(1) RT -> 100"C hold I/2 hour
(2) 100 -> ]50"C hold 1/2 hour
(3) 150 -> 200"C hold 1/2 hour



This cure eliminated the diglyme as evidenced by TGA and also
effected a conversion of the amlde acid to the imide as evidenced

- by infrared spectroscopy. The water of imidlzatlon was lost

primarily between 140-200"C and was carried out of the scrim along
with the solvent.

Preparation of Molding Powder. The polyamide acid solution

was poured very slowly into a mechanical blender containing dis-

tilled water. The contact with water caused the polyamide acid to
precipitate and the blender blades chopped this material to a

fluffy consistency. This.solid polymer was washed with copious

amounts of distilled water and was collected by suction filtra-

tion. The polymer was alr-dried overnight. This solid was spread
in a baking dish and placed in a forced air oven and heated to

100"C. The polymer was held at this temperature for one hour to

drive off residual water and solvent. The temperature of the oven
was then increased to 220"C and held for one hour to effect con-

version of the amide acid to the imlde.

Adhesive Bonding. The adhesive scrim cloth was used to bond

titanium 6-4 adherends. The titanium adherends (Ti 6AI-4V) to be
bonded were grit-blasted with 120 mesh aluminum oxide and treated

with Pasa Jell 107" in order to form a stable oxide on the sur-

face. A primer coating of the polyamlde acid solution was applied

to the adherends and they were thermally treated for one hour at
100"C and one hour at 200"C.

Single lap-shear specimens were prepared by sandwiching the

scrim cloth between primed adherends using a 1.27 cm overlap. The
specimens were bonded as follows:

(l) RT to 325"C at 7°C/mln, apply 1.38 MPa (200 psi) at
280"C

(2) Hold 15 min. at 325"C

(3) Cool under pressure

Adhesively bonded specimens (4 per condition) were aged at various

temperatures in forced air ovens and were tested according to ASTM
DI002.

Preparation of Unfilled Moldings. Approximately 25 grams of
molding powder was placed in a 5.72 cm diameter steel mold or 15

grams of the powder in a 19.0 cm x 2.5 cm rectangular steel mold

and each cured according to the following cycle:

*Trade name for a titanium surface treatment available from

Semco, Glendale, CA.
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(I) Heat the charged mold to 200"C without the top

(2) Insert the top and apply 6.89 HPa (I000 psi)

(3) Heat to 280"G

(4) Cool under pressure

Fracture toughness testing of the 0.16 cm thick discs was perform-
ed at the Naval Research Laboratory, Washington, DC. Round com-

pact tension test specimens were prepared from these discs and

tested for Gic (the openlng-mode strain energy release rate)
according to ASTM E399-78A. Flexural strength and modulus were

measured according to ASTM D-790. Tensile strength and modulus

were measured according to ASTM D-638 on the dogbone shaped speci-

mens that had been polished with #85 Barneslte. The tensile bars

had longitudinal and latitudinal strain gages mounted on both
sides.

Preparation of Graphlte-Fiber-Relnforced Moldings.

Graphite-Fiber-Relnforced moldings were prepared from the poly-

imidesulfone by initially applying the polyamide acid in dlglyme

at 5% solids onto drum-wound Celion_)6000 graphite fiber and

subsequently coating with the same material at 15% solids. The

initial coating at low solids content was employed to insure good

wetting of the fibers. This prepreg was air dried on the rotary

drum, cut into 7.6 cm by 17.8 cm pieces and stacked into 21-ply
unidirectional preforms. The preform was next B-staged in a vacu-

um bag with release plies and bleeder plies on both sides. The
vacuum bag assembly was heated under full vacuum to 200"C and held

at that temperature for four hours.

This B-staged panel with new release plies on both sides was

then placed in a 7.6 cm by 17.8 cm matched metal mold with open

ends. This unit was then vacuum-bagged and cured according to the

following schedule:

(1) RT to 288"C at 5"C/rain

(2) At 100"G, 1.38 MPa (200 psi) was applied

(3) AT 200"C the pressure was increased to 2.76 MPa (400
psi)

(4) These conditions were held for two hours

(5) The mold was allowed to cool to below 150"C prior to

removal of the molding



(6) Poetcure overnight at 250"C.

- The resin content on each laminate was determined by sulfuric

acid digestion of the polyimlde resin. This technique leaves only
the graphite fiber. The calculation of the percent resin or fiber

' is a simple gravlmetric type as follows:

% fiber, weight of dried fiber after digestion X I00
weight of sample prior to digestion

% resin = 100 - % fiber

Densities were determined from the weights of the laminate in

air and in water. Flexural strength s and moduli of the laminates
were determined using ASTM D-790. Short beam shear strengths were

determined using a span-to-thickness ratio of four and crosehead

speed of 0.127 cm/min on the Instron festlng machine.

RESULTS AND DISCUSSION

Resin Chemistry and Properties. The subject polyimldesulfone
was synthesized according to the reaction scheme in Figure I.

The synthesis was performed in diglyme because this solvent has

been shown to yield polymers with high adhesive strengths 7.

Diglyme is also easily eliminated so that moldings or laminates
can be prepared with essentially no voids 8.
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Figure 1. Polyimidesulfone preparation
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The polyamide acid from the reaction scheme had inherent vis-
cosities from several preparations that ranged from 0.4 to 0.8
dl/g. The thermal imldizatlon of the polyamide acids resulted in
linear, high molecular weight polyimides which had adequate flow
to allow for thermoplastic processing. This ability to be
processed as a thermoplastic relates to the flexibility of the _'
polymer chain due to the meta linkages in the dlphenylsulfone
portion. This enhancement in thermoplastic processing due to the
incorporation of meta linkages in linear, aromatic polyimides has
been previously explained9, I0.

This polyimldesulfone exhibited good thermooxidatlve stabil-
ity as evidenced by the isothermal and dynamic thermograms in Fig-
ures 2 and 3, respectively. After 350 hours at 316"C in air this
polymer had lost only 3.5% of its initial weight. The dynamic
thermogravlmetric run at a heating rate of 2.5"C/min in air showed
a temperature of 590"C for 50% weight loss.
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Figure 2. Polylmidesulfone weight loss at 316"C in air
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Figure 3. Polylmidesulfone weight loss in air with increasing

temperature

The Blass transition temperature (Tg) of the polyimidesul-
fone was determined by TMA on a film that had been cured in air
for one hour at 100"C, one hour at 200"C, and one hour at 300"C.
The T_ was found to be 273"C. The T_ as determined by TBA

after_the same pretreatment was 275"_ as illustrated in Figure 4.

The effects of solvent exposure on the polymer are shown in
Table I. A 2 cm x 0.5 cm piece of 25p thick film was immersed in
each of the solvents listed in the table. After exposure for 24

hours they were removed 'and their Tg was determined using TMA by
putting the solvent-ladensamples under tension and subjecting

them to a heat-up rate of 10"C/min! I. The only solvent that

caused a visible change in the polymer was N,N-dimethylformamide
(DMF). This observation was verified by the THA tests. The only

film that showed a decrease in Tg was the sample that had been

immersed in DMF. This Tg change was a depression from 273"C to
245"C.

Polymer softening characterization using the parallel plate
plastometer showed the softening to begin about 250"C and reached
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Table I. Polyimidesulfone Solvent Resistance.

IMMERSION Tg
SOLVENT EXPOSURETIME. VISUALEFFECT AFTEREXPOSURE,

hours C
,,,,,

NONE - -- 273

CHLOROFORM 24 NONE 215

,o METHYLENECHLORIDE 24 NONE 273

sym-TETRACHLOROETHANE 24 NONE 275

m-CRESOL 24 NONE 271

N,N-DIMEIHYLFORMAMIDE 24 SHRINKAGEISOFTENING 245

CYCLOHEXANONE 24 NONE 273

SKYJE[ _ 24 NONE 273
i



an apparent minimum at 280"C (Figure 5). Beyond 280"C there was
an increase in parellel plate displacement which was due to a
swelling or bulking of the sample. From processing experience it
is apparent that the viscosity continues to decrease with
increasing temperature beyond 280"C.

Adhesives. The titanium/titanium bonds were tested before

and after aging. The data are shown in Table II and in Figures
6-8. The polyimidesulfone on the woven glass carrier was fully
imidized prior to the bonding operation; therefore, the bonds were
fabricated in a thermoplastic manner. The bondlines were examined
after failure in the lap shear test and there was no evidence of
voids in any bond. There was a decrease in lap shear strength
with increasing test temperatue (4150 psi at ambient to 2620 psi
at 232*C).
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Figure 6. Adhesive strength of polylmideaulfone after 177"C
exposure - titanium adherends
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Figure 7. Adhesive strength of polyimidesulfone after 204"C
exposure - titanium adherends
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Figure 8. Adhesive strength of polyimidesulfone after 232"C
exposure - titanium adherends
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Table II. Polyimidesulfone Adhesive Properties.

TESTTEMPERATURE.AGINGTEMPERATURE,AGINGTIME. LAPSHEARSTRENGTH,
°C (OF) °C hours psi_

AMBIENT - 0 4650
177 5000 3250
204 5000 2980
232 1000 3500
232 5000 3640

177(350) - 0 3210
232 1000 3230
177 2500 3320
177 5000 3670

204(400) - 0 2920
204 2500 .3180
204 5000 2980

232(450) - 0 2620
232 1000 2920
232 2500 2790
232 5000 3560

'_PERASTMD1002.TITANIUMADHERENDS

K' ,I,



The data in Table II shows this adhesive has exceptional

thermal aging characteristics at temperatures to 232"C. After
5000 hours aging at 177"C, 204"C, and 232"C the ambient-tempera-
ture-tested lap shear samples exhibited pronounced decreases in
strength; however, the elevated temperature samples (tested at the
aging temperature) all exhibited strength increases. This beha-
vior is indicative of a completion of cure or an annealing effect.

The ambient temperature strength of lap shear specimens (4
per condition) that had been aged for 5000 hours at 232"C was 3640
psi and the 232"C strength of specimens aged under these same con-
ditions was 3560 psi. These data show this adhesive to have con-
siderable potential for aerospace structural applications.

Unfilled Holdings. Four rectangular moldings of tile poly-
imidesulfone were machined into tensile specimens according to
ASTM D638. These moldings were amber in color and transparent.
Latitudinal and longitudinal strain gages were mounted on both
sides of these specimens and they were tested, according to the
same ASTM standard, with strain gage readouts recorded.

The tensile data is summarized in Table III. Of particular
interest is the tangent modulus of this polymer. The average ini-
tial modulus was 719 ksi; 661 ksl average at 0.005 strain level;
and 603 ksi average at 0.01 strain level. The tensile modulus re-
ported for an unfilled polysulfone is 360 ksi 12. The high modu-
lus exhibited by this polymer ,_kes it attractive as a matrix
resin for the fabrication of graphite-reinforced structures for
aerospace applications. The failures on all four samples were of
a flaw-initiated, brittle type. The average failure strain was
0.0133. The average Poisson's ratio was 0.38. The average ten-
sile strength for the four samples was 9.1 ksi with a range of 8.6
to 9.7 ksi.

The GZc value determined on this polymer system was 1400
J/M 2 (average of two tests). This result indicates the poly-
imidesulfone is quite tough when compared to crosslinked systems
such as additlon-curing polyimides or epoxies 13

Graphite-Fiber-Relnforced Holdings. The graphite-reinforced
laminates that were prepared from the polyimidesulfone were
screened by monitoring the short-beam-shear strengths of the uni-

. directional fabricated panels. Approximately 40 test panels with
nominal dimensions of 7.5 cm x 15 cm x 0.5 cm were prepared from
tilesolvent-impregnated prepreg. The variables studied included
prepreg resin content, B-stage conditions, molding conditions and
postcures. The physical and mechanical properties from the
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Table III. Polyimidesulfone Tensile Properties.

TENSILE INITIAL TANGENTMODULUS,ksi FAILURETANGENT POISSON'S
SPECIMENSTRENGTH,MODULUS, AT AT STRAIN, RATIO

ksi ksi 0.005STRAIN 0.01 STRAIN cmlcm
i j

i 8.6 722 644 600 0.0123 0.38K

2 9.3 733 689 622 0.0133 0.37

3 9.7 702 667 611 0.0141 0.38

4 8.9 720 644 578 0.0135 0.37

AVERAGE 9.1 719 661 603 0.0133 0.38



resulting laminates that were monitored were thickness, resin

content, glass transition temperature, density, short-beam-shear
strength at room temperature and elevated temperature, and overall

weight loss during processing. These panels had considerable

variability in properties initially, but this variability lessened
as better cure cycles were developed. Representative data on

laminates prepared according to the procedure described in the

experimental section are in Table IV.

Table IV.- Properties of Graphlte-Fiber-Reinforced

Polyimldesulfone Composite Panels

Short-beam shear strength, psi

ambient - II,000 to 12,000

121"C - 7,500 to 8,500

172"C - 6,500 to 7,500

Flexural strength, ksi 190

Flexural modulus, ksi 21,000

Resin content, percent by weight 35 to 38

Density, g/cm 3 1.50 to 1.56

Laminate thickness, cm 0.25 (nominal)

Weight loss during cure, percent by weight 12.8 to 18.3
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CONCLUSIONS

A novel polyimidesulfone which shows considerable potential

as an engineering thermoplastic has been synthesized and charac-

terized. It is a high molecular weight linear aromatic system

which is flexible, tough, and thermooxidatively stable. Imidized

molding powder of this polymer was fabricated into void-free neat
moldings which exhibited a tensile strength in excess of 9 ksi and

a modulus of 719 ksi. This tensile strength is average for engi-

neering thermoplastics. However, the modulus is approximately

double the value reported.for such thermoplastics. The Gic
value for this polyimidesulfone is 1400 J/M 2.

Adhesive bonds prepared with the subject polymer and titanium

alloy adherends had high initial lap shear strength values at room

temperature (>4500 psi) and good adhesive strength was retained at
test temperatures up to 232"C (>2600 psi). After aging at temp-

eratures up to 232"C for 5000 hours the lap shear strengths were

still high at room temperature (>3600 psi) and had increased when

tested at 232"C (>3500 psi).

Graphite-reinforced composites were successfully prepared

from the polymer system using solvent-lmpregnated prepreg. The

short-beam-shear properties of unidirectional laminates were 11 to

12 ksi when tested at room temperature and 6.5 to 7.5 ksi for
177"C tests.

The solvent resistance of this polymer system also sets it

apart from the more commonly used thermoplastics.' There was no

change in the polymer when immersed in chlorinated hydrocarbons,

cresol, cyclohexanone, and aircraft hydraulic fluid (trlcresyl-

phosphate-base). There was slight swelling in dimethylformamide

and it is expected that other amide solvents will effect the poly-
mer in a similar fashion; however, these solvents are not likely

to be encountered in most service applications.

The combination of properties that this polyimidesulfone
exhibits makes it a very attractive candidate for aircraft struc-

tural applications such as adhesives and composites. Also,

because of the ready availability of raw materials necessary for
its preparation, the polymer has considerable commerical poten-
tial. _ _.
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