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ABSTRACT

This four-volume final report is concerned with Phase TI of

4rk the D05/JP4 project "RR Model of the Distribution System As a

Communication Channel," An earlier Phase I effort was concerned with

the design, implementation, and verification of a computerized model 	
i

for predicting the steady-state sinusoidal response of radial (tree)

configured distribution feeders. That work demonstrated the feasi-

bility and validity based on verification measurements made on a

limited size portion of an actual live feeder, The Phase II effort

is concerned with 1) extending the verification based on a greater	 J

variety of situations and network size, 2) extending the model caps-

bili	 f	 arse direction propagation,invests atin	 ara-ties of revs, 	 3) investigating p	 ,

metor sensitivities, 4) improving transformer models, and 5) investi.

gating procedures/fixes for ameliorating propagation "trouble spots."
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STATEMENT ON NEW TECHNOLOGY

During the performance of the work on this Phase II, no

reportable items of new technology have been identified.
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PREFACE

This volume contains a summary of the Phase II work.

6
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A. FOREWORD

This volume attempts to present an overview-summary of the

background work, status, and conclusions associated with the comple-

tion of the PHASE II effort and is directed to readers who do not

have the need or desire to study the more detailed aspects as reported

in the other volumes of this series. In the event the reader has not

had access or opportunity to read the Volume 2 - Summary associated

with the PHASE I work, a (slightly edited) copy of a "Tutorial Overview

to Modeling Feeder Network For PLC* Propagation" has been included,

for their reference, as the last section of this volume. For further

details, the reader is referred to the PHASE I final reports subject.

..

*PLC - Power Line Carrier

f
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B. PURPOSE

The primary purpose of the earlier and completed PHASE I

effort was to develop, implement, and verify against measurements,.

a model to determine the feasibility of predicting, via the model,

the propagation of Power Line Frequency (PLC) on radial type distri-

bution feeders. Since emphasis was to determine feasibility (at

that time unknown) the approach was taken to avoid making any more

engineering assumptions in the modeling than necessary and to inten-

tionally choose a test circuit which was physically long enough to

exhibit standing wave phenomenon, but otherwise, as little encumbered

as possible with confounding complexities. (See Section H of this

report). Comparing model predictions with measurements made on this

"ideal" (but real) test circuit, it was concluded that it was poten-

tially feasible to predict PLC propagation with sufficient accuracy

to be useful for PLC communication purposes.

On the basis of having established an initial feasibility in

PHASE I, the primary purpose of the PHASE II follow-on was to

continue the verification activity, comparing model predictions 	 h'i

against measurements, using more complicated feeder circuits and

situations. Also included as secondary objectives wer°:

Continue development and application of exact

"perturbation" procedures for the calculation of

reverse direction propagation.

Investigate parameter sensitivies and procedures of

reducing "set-up" time for modelling.
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,	 Continue Transformer Modeling

r	 Investigate procedures/fixes for ameliorating

k^	 propagation "trouble spots",

The specific details of these PHASE II objectives are contained

in Section D of this volume which presents the PHASE II contract

work statement.



C. HISTORICAL BACKGROUND

C-1

The earlier and completed PHASE I began in May, 1977 after

award of an ERDA RFP2100 ti,'titled:

RF MODEL OF THE DISTRIBUTION SYSTEM AS A
COMMUNICATION CHANNEL

Contract No. EC-77-C-01-2100

and under the technical direction of Mr. Carl Gilchriest of the Jet

Propulsion Laboratory (JPL). A six volume final report was written

during the interval 12/78 and 6/79*. Reproduction copies can be

obtained through JPL.

During the "INTERPHASE" time interval between the end of

PHASE I and the be g inning of this PHASE II contract; the General

Electric Co. continued to make model modifications and apparatus

measurements. This work resulted in the model and implementation

extensions shown on the following Figure C-1. The program listings

contained in Volume 4 of this final report include all of these

associated updates.

*Section G of this volume contains a listing of sections of these

PHASE I reports which are no longer applicable due to extensions

and modifications made during this PHASE II wor.



Extensions to Model and Implementation Made by

The General Electric Company During the

"Interphase" Between PHASE I and

PHASE II

Figure C-1

3;2, 2:1 Transition Logic

Open Delta Transformer Connection Logic

t

More Compact and Better Organized Conversational Input for Analysis
Programs.

Perturbation Logic Development Completed, Implemented and Arithme-
tically Validrat?d.

0

Binary Tree Consistency Checking with Non Stop Diagnostics.

Line Type Consistency Checking with Non Stop Diagnostics.

More Efficient DPU File Directory Procedures

Absolute Frequency Available in Analysis Programs

Greatly Reduced Record Size in DPU and NT Files. 	 1

Network Reversing Program

Limit and Logical Input Error Detection Added to FEEDPUSj

Limit and Logical Input Error Detection Added to DISEM7Sj
a

Improvements in Program FEEDPUSj Operating Procedures

Improvements in Program FEEDPUSj to Greatly Reduce Disk Space for
DPU Files.

New Program to Automatically Reformat DNWKINij Network Files

New Program to Compute Total Number of Transformers by Type in
Network Files.

New Program to Automatically Generate Generic Three Phase Test
Networks.

C-2
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Two New Progrh",s to Perform Reduction of Parallel Neutrals.

New Program to Extract a "Sub Network" Portion Out of a Network
File.

New Program to Compute Three Phase Admittance Associated with
Trapped Capacitor Bank (Neutral Trapping).

New Program to Simplify Generation of Three Phase Data Base Files.
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D. PHASE II WORK STATEMENT

P	 Following is a PHASE II Work Statement which has been edited
f

to reflect certain small augmentations made since the contract wwavd.

This edited version has been included for reference to supplement

r
Section I of this Volume 1, and also the more detailed tasks reported

i	 comprising Volume 2 of this final report. As such, only these portions

of the Work Statement affecting the major work activities has been

included.

The work of these tasks was performed under a program sharing

arrangement between the Jet Propulsion Laboratory and the General

Electric Company/Niagara Mohawk Power Corporation, in the following

fashion:

Task (1) Verification

Entirely supported by the General Electric Company (GE) and

Niagara Mohawk Power Corporation (NMPC). The principal contributors

are listed in Section E of this report, but also include at times up to

three technicians. All direct and indirect computing services and equip-

ment (instrumentation, vans, etc.) were provided by GE. NMPC provided

access to their distribution system (Grooms Road Substation and its

feeders), line crews (frequently 2) and "bucket trucks" to install

various equipment and gain electrical access to the feeders, including

the isolation of a long underground get-away cable for measurement.

Task (2) Perturbation

Originally this task was to have been supported by the )n tract.

However, as a consequence of events, primarily the long INTERPHASE (see

section C) and the manner in which measurements were made (both outbound
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and inbound during the same field experiment), this task received consi-

derable GE support. As a result, it is felt that the perturbation logic

was developed to a higher state*, more complete documentation was pre-

pared, and more extensive validation accomplished than otherwise might

have occurred under the original plans.

Task (3) Parameter Sensitivity

Most of labor cost associated with this task was supported by

contract. However, the labor of a junior engineer was contributed by

GE „and as well, the computing costs. It is again felt that this combined

work resulted in a much more extensive investigation than would otherwise

have been possible.

Task (4) Transformer Modeling

This task was almost entirely supported by contract. The exceptions

were the computational costs and the contribution of NMPC in providing

distribution transformers for measurement. Also included in the final

task report are the supporting results of various measurements made as

part of other GE internal activities.

Task (5) Investigation of Line Compensation

This task was also almost entirely supported by contract. The

exceptions were the computational investigations reported in parts of

Task (1) activities associated with simple terminations.

SUMMARY

In summary, it was the policy of the General Electric Company to

provide, on a reasonable b &sis, the extra support that would gain a large

*Task (2) revisions were made to utilize cummulated voltage transfer
matrices and reciprocity to vastly improve efficiency and make its use
for distributed source analysis a feasible future development.

D-2
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increment in "benefit/cost ratio" in terms of a more efficient computa-

tional procedure, better understanding, and better documentation. Also,

it was the policy of the General Electric Company to fully disclose and
U

incorporate in the documented software all the improvements that were

`

	

	 developed during the INTERPHASE interval, so that the software documen-

tation is current up to the "press time" associated with this report.

D-3
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SCHEDULE

Cc

ARTICLE 1. STATEMENT OF W-DRK

(a) The contractor shall, as a continuation of work begun under
DOE Contract EF-77-C-01-2100, perform a Phase II Study of
"RF Modelling of the Distribution System as a Communication
Channel" which will consist of the following:

(1) Continue experimental verification of the analytic model
by performing measurements on the target network as out-
lined in the Phase I effort with the following effect:

(A) Select a more highly loaded feeder where loads more
closely approach the characteristic impedance of the
feeder than the "ideal network", where verification
measurements were previously made. This can be a
combination of higher density housing and larger
individual loads such as shopping centers.

(B) Select a longer feeder than the ideal network pre-
viously used that has a greater variety of installed
hardware (power factor correction capacitors as an
example) and that may have a greater number of
voltage nodes in the frequency range less than 10 kHz.

(C) Select a feeder that has transitions between overhead
construction and underground construction. Verifica-
tion should demonstrate signals going from overhead
to underground and from underground to overhead.
These verifications may be szlected from outbound or
inbound signals.

(D) Select a feeder-secondary combination and verify
that the model is capable of predicting signal levels
at the "meter terminals" of the secondary. A two-step
process of calculations consisting of feeder calcula-
tions and Distribution Transformer-secondary network
calculations is acceptable.

(E) Extend the frequency range of verification to satisfy
the objective of Phase I.

(2) Continue the "Perturbation Analysis" begun in the Phase I
effort and:

D-4



Contract No. 955647

(A) Apply it to the calculation of inbound signals for the
networks selected for (a)(1)(A), (B), (C), and (D)
above.

(B) Perform verification measurements based on the calcula-
tions of (a)(2)(A) to demonstrate the usefulness of the
"Perturbation Analysis" to predict signal levels from
the "meter terminals" to the substation or other appro-
priate test point.

(3) Perform a "Parameter Sensitivity Study" by exercising the
computer programs developed in the-Phase I effort with
variations of the parameters to:

(A) Determine the significance of the various parameters.

(B) Determine if the "set up" time for the computer inputs
can be significantly reduced.

(4) Perform studies of "transfe rmer modelling" to obtain discrete
parameter models from the measured data on transformers of 	 tij
Phase I to attempt to correct the "physically realizabiiity"
problems encountered in Phase I. This effort is to be applied
to both Distribution Transformers and Ratio Bank Transformers.
If this modelling is successful, incorporate it into the
computer programs developed i;i Phase I.

(5) Investigate further techniques to alter or work around the
performance of "trouble spots" such as the termination used
to correct high standing wave ratios encountered in Phase I,

(6) Prepare and distribute 40 copies of Phase I Final Report
required by DOE Contract EC-77-C-01-2100 in accordance with
a distribution list to be furnished by JPL.

(7) Provide Phase I computer programs and files to the GE time
share computer for JPL to exercise by telephone.

(8) The contractor shall prepare and deliver to JPL the following
documentation in the numbers and copies specified as follows:

(A) One (1) copy of a Monthly Technical Status Report.

(B) Five (5) copies of a Monthly Contractor's Financial
Management Report, NASA Form 533M, March 1973, prepared
in accordance with the instructions contained on the
reverse side thereof,

(C) Ten (10) copies of a Preliminary draft of the Final
Report.

^U
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(D) One (1) reproducible and forty (40) copies of the final
report incorporating JPL comments,

D-6
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F. ORGANIZATION OF PHASE II FINAL REPORT VOLUMES

The final report of the PHASE II work is contained in the

following volumes:

Volume 1	 Summary Report

Volume 2	 Task Reports

Volume 3	 Appendices (See Fig. F-1 for Table of Contents)

Volume 4	 Software Source Program and Illustrative ASCII

Database Listings

For convenience, a Table of Contents for Volume 3 is attached as

Figure F-1.

F-1
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VOLUME 3 APPENDICES

Table of Contents

1. Tutorial Review of Exact "Perturbation" Theory as Imple-

mented in DIFNAP Software Program NTWKANSj - R. C. Rustay.

2, Using Reciprocity to Compute Reverse Direction Voltage

Transfer Ratio Matrices - R. C. Rustay

3. Y Parameter Analysis of Symmetric Distribution Transformer

with Balanced Loading and Brief Discussion of RLC Lumped

Parameter Model - R. C. Rustay

4. Program for Computing and Plotting RLC Transformer Model

Predicted Responses- R. C. Rustay and R. C. Wentz

5. Matrix Based Generalized Neutral Reduction Program -

R. C. Rustay

6. Main Program NETGENSI for Generating Generic Networks

R. C. Rustay

7. Main Program SUBNETSI to Extract Subnetworks - R. C. Rustay
Y.

8. Network References - R. C. Wentz

Figure F-1
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G. COMMENTS ON PHASE I FINAL REPORTS

Since the edition date of the PHASE I final reports, many

improvements and modifications have been made in the model and soft-

ware implementation, and as a result, various portions of the PHASE I

reports are either not current or are obsolete, to be replaced by up-

dated material. This section lists such portions, with comments as

appropriate. PHASE I final report sections not listed below can be

assumed still applicable.

The following codes will denote

N/A	 No Longer Applicable

M	 Requires Modification

Title

Tutorial Overview to-Modeling Feeder
Network for PLC Propagation

See Section M of this PHASE II volume

Section	 Code

PHASE I - Volume 1 - Summary

0	 M

	

P
	

M
	

Status of the Model and Computer Program

See Section K of this PHASE II volume

PHASE I - Volume 2 - Program and System Reference Manual

	

SO	 M	 The DIFNAP System

Delete references to files:

DATRANij

DASECDij

DARBTRij

G-1
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Section

MP

DB

',I

Code	 Title

M	 Main Program Description

Delete references to above files.

Listings of NTWKERSi and NTWKANSi are obsolete
and should be replaced by counterparts in
Phase II, Volume 4.

Refer to following Figure G-1 for revised
LTYP code convention.

M	 ASCII Data and Random Binary Database File Description

Delete any reference to files:

AFRBTRij	 DARBTRij

Replace by ASCII file RBTRDATA explained
in Phase II Volume & History for NTWKERS4.

AFTRANij	 DATRANij

Replace by user named file - see subroutine
TRANADS4 in Volume 4.

AFSECDij	 DASECDij

Analytic Transformer Model not yet imple-
mented.

Figure DB1-1 - replace line number 1128 with
line number 1140.

Page DE2.-1, add FREQ (in kHz) to line 1010.

Page DB3-1, delete references and data columns
corresponding to LTYO and ICCD.

Page DB3-5, Figure DB303, replace by Figure G-1
of this volume.

Page DB13-1, structure of the NT	 file
has been revised. See listings of NTWKERS4
and NTWKANS4.

M	 Description of Main Programs for Generating .....

Only the discussions concerning SFPRYLSi are
applicable; source listing in Volume 4 for
SFPRYLS2 is current version. Similarly for
FEEDPUS5.

G-2
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Section	 Code	 Title

SO	 M	 Subroutine Program/Library Description ..

PHASE 4, Volume 4, contains complete set of
current versions of all sub programs. See
annotation/comments imbedded in each source
for further detail.

MI	 N/A	 Miscellaneous Programs

No longer applicable.

PHASE I - Volume 4 - User Handbook

SF	 M	 Surveying Feeder Network

Page SF-1 replace "three .... single phase
branching" with "3:2, 3:1, 2:1 Transition".

AD	 M	 Augmenting/Build n Dataata Base Files

Page AD-1, Delete all references to DARBTRij,
DATRANij, DASECDij files.

OD	 M	 Operation of the DIFNAP System Procedure

Delete all references to above files.

Beginning page OD-3 and thereafter, use only
as general guide: conversational interaction
structure has been modified.

PHASE I - Volume 5 - Statistical Analysis on the Driving Point Admittance

This approach has not been further pursued in this PHASE II. 	 4a

a
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H. DESCRIPTION OF THE NIAGARA MOHAWK POWER CORPORATION FIELD TEST AREA

This section briefly describes the Niagara Mohawk Power Corp.

(NMPC) feeder #34556 originating out of the Grooms Road Substation

located in Clifton Park, N.Y. (near the tri cities area of Albany,

Troy and Schenectady). It is on this feeder that most of the verifi-

cation measurements have been made for this PHASE II (and PHASE I).

This feeder, #34556, is a radial distribution circuit with a

main trunk-circuit of about 10 miles and operates at 13.2 kv line-

to-line (WYE) except for two single phase sections operating at 4.8 kv

line-to-line and .supplied by 7.62-4.8 kv ratio transformers. Distribu-

tion transformers on these two 4.8 kv single phase branches are connected

phase to phase. Elsewhere they are connected line to neutral.

Additional features found on this feeder are:

1. Power factor correction capacitors

2. Direct buried underground cables

3. Ratio transformers (two)

4. "Densely" loaded residential areas

5. Three phase commercial and light industria ► .,Ads

6. Long single phase branches

7. Overhead-underground transitions

8. Considerable variety of overhead conductor geometry
and conductor sizes.

A sketch of the feeder #34556 is shown on Figure H-1. Note that

much of the loading is served by a relatively long "trunk". The veri-

fication sub tasks summaries to follow and the detailed reports in

Volume II will frequently refer to this circuit.

0
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I. SUM11ARY OF TASK ACTIVITIES
t

In this Section, a brief summary will be given of the work

and conclusions associated with each of the tasks specified in Section

D of this volume. The following Figure I-1 is a quick reference guide.

i	 f
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TASK TITLE

(1)(A) Densely Loaded Feeder Sections

(1)(B) Full	 Size Distribution Feeder

(1)(C) Overhead-Underground Transitions

(1)(D) Meter Terminals on Secondary

(1)(E) Extended Frequency Range

(2)(-) Continue "Perturbation Analysis"

(2)(A) Perturbation Calculation of Inbound Propagation 	
a!

(2)(B)
ii

Inbound Path Propagation Measurements

(3)(A)

i

Parameter Sensitivity-Significance of Parameters
t

(3)(B) Parameter Sensitivity-"Set-up" Time Reduction 	 j

(4)
i

Transformer Modelling
{

(5) Line Compensation and Termination Techniques

Figure I-1

List of Task Titles
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Task (1)(A) Densely Loaded Feeder Sections

The work of this subtask was concerned with the verification of

the model on a densely loaded network. A part of the 34556 feeder

which originates	 from Niagara Mohawk Power Company's Grooms Rd. Sub-

station in Clifton Park, N.Y. was chosen for this purpose. 	 The nominal

7 operating voltage of this 	 feeder is	 13.2 kv line	 to line.	 Figure 1

shows the general	 location of the densely loaded section in relation

to the total	 feeder.	 Figure 2 is part of an operating map provided by

the utility showing the densely loaded section in more detail. 	 This

feeder section was selected for study because of the relatively large

_- number of distribution transformers per unit length of circuit.

A carrier voltage was placed on the feeder phase conductors at a

capacitor bank location, shown at Point 1, Figure 2. 	 Coupling was

i

accomplished by connecting the transmitter to the common point of the

F capacitors and an inductor which completed the circuit to neutral. 	 The

inductor was originally placed in the capacitor bank ground lead in

order to prevent the bank from providing a large current sink to the

carrier signals.	 The transmitter voltage was monitored at this same

point.

A coupling network with appropriate carrier frequency voltage

r`
measurement equipment was connected near the end of the densely icaded

i section.	 This measurement apparatus was located at Point 2, Figure 2,

and was capable of measuring each phase voltage.

A power factor correction capacitor bank was located at another

terminal	 point of the densely loaded section.	 This bank was located

at Point 3, Figure 2.	 An inductor was placed in the ground lead of

° I-3
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this bank also for the reason mentioned above. The carrier frequency

voltage across this inductor was recorded during the measurements.

The end result of the field measurements were voltage transfer

ratios. Individual phase voltages at the transmission point were calcu-

lated by use of the measured transmit voltage at Point 1. By assuming

the admittance of the power factor correction capacitors was much larger

than the admittances seen looking out onto the feeder network at the

capacitor bank location, the phase voltages at the capacitor bank are

nearly equal to the voltage at the transmission point. Knowledge of

these phase voltages at the transmission point provides a means to

calculate individual voltage transfer ratios for each phase between

Point 1 and Point 2 on Figure 2. Also, since the inductor voltage (a

vector sum representative of the phase voltages at that point) was

measured at the capacitor bank at Point 3, voltage transfer ratios

between Point 1 and Point 3 were calculated from the measurements.

The inductor voltage calculations in the simulation were performed

off-line. Given a knowledge of the admittance matrix of the capacitor-

inductor network at Point 3, the capacitor current vector [I = YE]

could be calculated by using the phase voltages provided by the program

at that point. The vector sum of these currents was then used to cal-

culate the carrier frequency voltage across the inductor. The inductor

voltage is centrally about 10 db lower than the vector sum of the phase

voltages.

The model simulations show agreement of sufficient accuracy with

the measured data for communication system engineering purposes. The

model results are influenced somewhat by the loading level of the

distribution transformers. The power factor of the load on the

T
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distribution transformer secondaries was assumed to be .8 lagging.

It should also be kept in mind the model assumed a time invariant

network with respect to loading, while during the field test there

probably was some variation in the feeder loading,

k

1



Task (1)(B) Full Size Distribution Feeder

	

.	 The work of this subtask is concerned with verification of the

model on a; full size distribution feeder having a variety of installed

	

r	 nardware and topology.

Feeder 34556 of the Niagara Mohawk Grooms Road Substation in

Clifton Park, N.Y. was selected for this purpose. The feeder operating

voltage is 13.2 kv line-to-line t;-ith single phase sections where the

operating voltage is reduced to 4.8 kv line-to-line. These sections

are shown in Figure 1. Simulations of these measurements were performed

using the DIFNAP system programs in order to verify their utility in

predicting distribution line carrier propagation as an aid to communica-

tion system engineering.

Feeder 34556 is a radial distribution circuit. The total length

of the main trunk circuit is about 10 miles. The following common

distribution system features are found on 34556.

1) Power factor correction capacitors

2) Direct buried underground cables

3) Ratio ;yank transformers (13.2 kv-4.8 kv)

4) Long single phase branches

5) "Densely" loaded residential areas

6) 30 commercial & light  industriral loads

7) Several different overhead conductor geometries and
conductor sizes.

The points labeled 1, 3 & 4 on Figure 1 denote the location of 30

capacitor banks. An inductor was placed in the ground lead of the

capacitor banks in order to prevent the capacitors from providing a

large current sink to the carrier signals. During the measurements,

t

T	
¢

1—^	
I

s,



61M INAL4f ILICTRIC

ORIGINAL PAGE 13

OF POOR QUALITY

	

"r 
A.	 0 0,

TAlw*M in 1	 ^4%

	

7 \
	 .(11)

Is

NUT 
IRA"	 UM4xv

LA we= ra^ N
0Mr .) MWy lK

Mc amy A&	
CT.	 x"AM ff.	

Pau v

'ItH
BMW In

V:
4-H44-^TM 

It,

Kow"W AMML
PCU 0

"w?

W.", 
ANCOM NJ In	 cio	 I	

KM 4%

X*"= maw

	

I	
No of Ml

	

TMM ra	 M3w
IM MIA	 MEM MW

AT TW MU a

	

raC,	

0
TIL
04

I 

DUN= On

IVAM ?A

ILIA MAW 001

I Lff AVE

-'CJFT= PAM CBI

Z	

gr w	
AM

-
IMLLM W.

i	 t3XV4WV

WMM Am	 rl r 
HS M, ILWTATIM

Draw IL	
MAY M.

WOMEW ML	

tww NKLIL

% FN&J-

Figure 1. 34556 Grooms Road Substation Feeder

1-9

4	 ^

j.



the carrier voltage across the inductor was monitored and recorded

to give an indication of the vector sum of the phase voltages.

Sufficient precautions were taken to prevent 60 Hz voltages from

affecting the carrier voltage measurements.

Individual phase voltages were monitored at point (2), Figure 1.

At this point, access was gained to the individual overhead phase

conductors. Within a few hundred feet of this pole is a cable riser

providing service for the Country Knolls West residential area which

is served by direct buried underground cable. Extensive measurements

and DIFNAP simulations on this cable network were reviewed in a

previous report. The coupling network employed at Carlton Rd. (point

2, Figure 1) is shown in Figure 3. 	 ^r

During the field measurement, three distinct conditions existed

on the feeder which were treated by simulation. These conditions were:

Condition 1. No coupling network connected at Carlton Rd,

Inductor voltages were monitored at Points (1) and (3) shown

on Figure 1. Transmit voltages were monitored on phase A at

the substation as shown in Figure 4. Phase voltages were

assumed equal at the substation for modeling purposes.

Condition 2. Coupling network connected at Carlton Rd,, but

with 'Luning inductors disconnected. Individual phase voltages

were monitored at Carlton Rd. Inductor and transmit voltages

monitored as in Condition 1.

Condition 3. Coupling network connected with tuning inductors

in place at Carlton Rd. The same quantities mentioned in

Condition 2 were again recorded,

I-10



Simulations were performed at the following frequencies:

5010 Hz

6990 Hz

8130 Hz

9510 Hz

Corresponding to measurements performed on the feeder.

The simulations performed on the 34556 distribution feeder and

subsequent comparisons to measured results were subject to several

assumptions, these being:

1) The network configuration was specified accurately by

utility personnel and on system maps. -

2) Conductor lengths specified on utility map were accurate
1

for engineering purposes.

3) The assumption that each transformer was loaded to 20%

of full	 kva capacitor with a	 .8 power factor lagging

load was a valid representation for the feeder loading.
i

Under this assumption, the total connected load kva

employed in the model was 3200 kva, if the load factor

mentioned above was assumed.	 The measurements were per-

formed during off-peak loading hours for the most part

under moderate climatic conditions with respect to

heating and cooling loads.

4) The coupling and tuning network components were known with
^i

sufficient accuracy for model 	 purposes, and loss components
1

present in these circuit elements were negligible at the

fregjency of interest.

^i

i.
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5) Errors in field voltage measurements and data reduction

were minor.

In general, the predictions and measurements were within 6 dbv

of each other. This should be sufficient accuracy for communication

sys'.em engineering given an accurate kivowledge of feeder .noise charac-

teristics. Since the voltage transfer ratio of the feeder is sensitive

to loading level, it would also be advisable for engineering purposes,

to study the feeder response parametrically as a function of loading

level in order to bracket system performance limits.



Task (1)(C) Overhead-Underground Transitions

The work of this subtask was concerned with measurements on three

distinct physical situations, and detailed descriptions and results are

i
contained in the following internal reports which are included as part

E

of Volume 2:

.,

A. Analytical Verification of G.R.S.S. Underground Cable

Verification.

B. Underground Cable Tree Network Measurement Verifications

C. Model Verification of Field Measurement Performed on

Carlton Rd. O.H.-U.G. Network

all written by R. Wooding. The physical• situation in B. involved an

area called Country Knolls South, served by Niagara Mohawk Power Corp.

(NMPC) feeder #34551, and in general, consists of a large trunk cable with

a number of single phase branches implemented with smaller conductor

cable. The main trunk cable is about 1600 meters long and is composed

of 500 KCMIL concentric neutral cable. The single phase branch circuits

are composed of #2 A.W.G. concentric neutral cable. The physical situa-

tion in C. involved a lateral off NMPC feeder #34556 and consisted, in

approximate terms, 650 meters of three phase open wire overhead feeding

a large underground trunk cable of 500 meters length. Several single

phase feeder cables branch from this trunk and have a total accumulated

length of approximately 600 meters. The trunk cable and feeder cables

are the same as above for B.

Chronologically, it was first attempted to verify (predict and

compare with measurements) case B. using the BPA EMT cable parameters

I-13
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program. However, the generic cable parameter models contained therein

were not well suited to the physical construction of the actual cables

which were "complicated" by a helically wound "skid" wire outer sheath,

two internal concentric semi conductor sheaths for electric field control

and a separate bare copper ground wire also buried in the trunk. Using

this software required considerable approximations and also for the reason

later determined to be an incorrect value for the dielectric constant,

the calculated prediction of propagations did not agree very well with

measurements. Looking at the data suggested that calculated velocity

of propagation in the cable was not proper.

After significant effort to reach the above conclusion, it was

decided to seek out a location where measurements could be made on an

"ideal" unbranched U.G. cable. With the cooperation and very significant

effort of NMPC, an U.G. 750,000 CMIL, unbranched trunk cable of length

1.98 miles, was isolated and made available for our measurements. The

details and results are reported in A. above. In addition, a new

program UGZYGESi was written by R. Wooding to more appropriately compute

the cable parameters.

Both transient (periodic pulse) and steady state CW (2 to 100 kHz)

excitations were applied for a variety of terminations and connections.

	

`	 One immediate result of these measurements was to determine (from both

	

4i	 the transient pulse time delay and the CW phase roll measurements) that

the cable length was slightly different (approximately 5%) than indica-

ted by the maps. Using the BPA EMT cable parameters program with

proper dielectric constant (for Ker,ite) still resulted in unsatis-

factory verification due to the lack therein of a generic cable model

	

E	 tailored to the actual construction involved. The new cable parameter

I-14



program did lead to very good verification results for case A.

Some significant conclusions reached from case A were:

1) As expected, the electro magnetic field coupling between

the three phases, although quantitatively predicted, is

practically so small as to be negligible, i.e., the three

phase cable behaves essentially like 3 electrically

isolated single phase cables.

2) The characteristic impedance was approximately 15.50, and

speed of propagation about .35 free space.

3) The main diagonal elements of the measured and predicted

driving point admittance (DPA) matrix agreed very well

with frequency (after the map determined length was mo0l -

fied to the length determined by measurement).

4) Off diagonal elements of the DPA did not agree well but

for understandable and negligible importance. As mentioned

above, the EM coupling between phases is believed to be small,

so that any external unmodeled conductive coupling, although

small*, could effect the measured off diagonal elements. In

any event, it is believed that because the off diagonal

elements are small in either case (measured and computed),

they are quickly "lost" in any applications due to other

phase-to-phase effects.

5) During these prediction calculations, some insight was

obtained regarding the influence of factors such as:

a) earth resistivity

b) main conductor and neutral wire temperature

c) physical spacing of conductors in trunk

d) exact dielectric constant of insulation system,

e) actual cable length.

*In fact, measurements with open receiving end termination indicated
this.

cN	
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The apri on cable length i nfortnation is apt to be the most
t

critical since, to a first approximation, it is directly

related to frequency response effects.

Having now, in time chronology, obtained what is believed to be

a credible cable parameter model, work on Items B. and C. were redone.

The verification work for situation n (Underground Tree Network)

was entirely devoted to comparing measured and predicted DPA matrices

at discrete frequencies between 5 and 25 kHz. Assuming all distribution

transformers (DT) resistively loaded at 40% of (their full load rating,

what is considered to be very good results (for PLC design) were

obtained for the main diagonal elements, say like 6 db and 15 degree errors in

magnitude and phase, respectively. It is, of course, realized that

these main diagonal elements are significantly effected by DT loading

(phase to neutral), cable length and to lesser extent, earth resistivity

and cable temperature assumptions. Again, as in situation A, the off

diagonal terms in both cases (measurement and predicted) were much smaller

(on the order of 30 db) than the diagonal elements, and therefore of

negligible importance.

In situation C (Carlton Road O.H.-U.G. Network) the branch DPA

matrix was measured as before and also the magnitude of the voltage

transfer to several DT secondaries were measured. Also, these same

quantities were measured vs. frequency with a reactive load placed on

the end of the trunk cable to partially compensate the line. Again,

the verification results were very good (subject to assumption of DT

loading level) and some of the significant conclusions were:

1) The relatively short overhead section provided substantial

amount of interphase (EM) coupling.

J^)
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2) The DPA comparison showed agreement including the off

diagonal elements which now are not small compared to main

diagonal elements due to the OH interphase EM coupling.

3) The predictions and measurement of DT secondary voltage

showed good agreement especially considering the fact

that at this time no attempt was made to account for the

effect of frequency and load on the voltage transfer

across the DT. It is believed that this agreement helps

substantiate the models ability to predict down to the

DT secondary terminals.

As before, apriori values for loading and line length are significant.

As an overall conclusion reached as a result of these three

Task (1)(C) activities is that:

a) Apriori uncertainties in parameters, especially line

lengths may typically limit the frequency range of model-

ling to, say, 25 kHz. Given more exact parameters, and

the effects of apparatus loading at higher frequencies,

no frequency limitation is as yet known.

b) The effects of unknown loads at any instant of time does

not represent a defect in the modelling, i.e, such an

effect actually exists in "real life". Therefore, it is

suggested that such variable loading effects be investi-

gated parametrically via the model for various loadings

considered typical.
	 4I



Task (1)(D) Meter Terminals on Secondary

The purpose of this subtask was to verify the models ability to

predict voltages at the "meter terminals" on the secondary service

of distribution transformers. Inasmuch as it was not planned as part

of this PHASE II effort to have a distribution transformer analytic

model implemented, the equivalent prediction is presently performed by

a "two step" process. The first step is to predict propagation on the

feeder with distribution transformers (DT) represented by a phasor

admittance load connected to the proper phase and representing the DT

primary driving point admittance associated with the specified DT and

connected secondary load. Then having the predicted feeder phase

voltages, an off-line calculation or response curve look up could be

used to predict the DT secondary terminal voltage. The voltage propa-

gation down to the meter terminals could also be done off-line using

electrically short (primarily a lumped series impedance) secondary

circuit representation.

Originally it was hoped to find a DT on NMPC feeder 34556 which

had a single customer at the end of a long secondary service. To

verify with a "multi drop" secondary would have required simultaneous

measurement of each customer load-current and voltage which was not

considered feasible. However, no long single customer service was

found. Therefore, no uniquely applicable test and verification was

conducted.

However, several related activities and characteristics have some

positive bearing on this objective. First, as part of TASK 1C, propa-

gations were made from a location on the feeder (removed from the DT

I-18
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location) to the secondary terminals of various DT's, and the results
a

were supportive. Secondly, as part of TASK 4 DT modeling extensive

response measurements were made that show, For the lower frequency

range (say less than 25 klix) the primary to secondary transfer is 	 = j

primarily the turns ratio effect with a few D5 accounting for reactance

^ `	 drop caused by secondary load. Finally, any v^,ltage drops oil

secondary circuit would depend oil 	 estimate for the simultaneous

loads for each customer. Since the secondary circuits are electrically

short, the computation, given the loads, presents no conceptual problem.

It is believed, therefore, that compared to predicting propagation

oil the feeder, analysis of the DT primary to secondary (terminals)

transfer and prediction on the secondary terminals present no conceptual

difficulty.

t
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*This material is ver atum from Volume 1
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TASK (1)(E)

Extended Frequency Range*

The objective of this subtask was to extend the frequency range

of verification to satisfy the objective of PHASE I. Because of

technical considerations mentioned in 1) and 2) below, it was deemed

higher priority to verify first the models capability at the lower

frequencies. Hence, the other tasks associated with verifying the

model were given scheduling priority. For the reasons cited below,

the work called for by this task was not accomplished.

1) Uncertainties in Specifying Line^ths

As ►York progressed to the point of verifying the model at lower

frequencies, it was realized that apriori estimates (based on utility

records) of line lengths are not always reliable. The effect of uncer-

tainties in the knowledge of actual line lengths is conceptually evident

for unloaded transmission lines, i.e., line length z analytically always

fzappears in the factor V where v is the speed of propagation, so that at

higher frequencies, an error in assigned length corresponds to a higher

fraction of a wavelength. Note also that a slower speed of propagation

also further a bjravates the effect of line length errors. This trend

still exists in the presence of line loading. Experiences during verifi-

cation, see Task 1-C "GRSS U.G. Getaway"and "Country Knolls South U.G.

Network" indicate that 5% errors in line length estimates are not un-

reasonable. Based on our experience (somewhat confounded by other higher
t

frequency effects) we judge that 50-100 kz may be a reasonable upper limit.

PIP-
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2) Transformer Response

As the transformer modelling and measurements progressed,

appeared more and more promising that with a simple extension (to th

60 Hz R-L-M two winding transformer model, a lumped parameter model

could be used to predict transformer response up to 25-50 kHz and

which was not too sensitive to variations in construction, i.e., with

the simple extension the similarity of 60 Hz performance could be exten-

ded to 25-50 kHz. (Characteristics do vary with KVA). Beyond this

frequency range, variations in response at PLC due to differences in

manufacturing construction may become important, If this is tree, then

either a much more detailed inventory of transformer characteristics and

identification of installed transformers is required, or additional

modeling errors accepted.

3) Resource and Time Limitations

During the process of verifying the model, several contingen-

cies were encountered. One involving line length uncertainties was
i

mentioned above. The most significant contingency involved verification 	 j

'`	 1
with circuits involving underground cables. Identifying the source of

the problem, arranging for appropriate tests (see Volume II, Task (1)(C),

writing a new cable parameter program involved considerable effort and

delay. Another contingency involved making admittance measurements of

the Grooms Road Substation. Special measurement equipment had to be

designed and built and special facilities installed by Niagara Mohawk 	 I'`

Power.

ii
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As a result, resources (and time) were not available to proceed

with higher frequencies.

4) Vendor Trends to Lower Frequencies

Supporting the above stated priority is what appeared to be

a trend by virtually all parties to gravitate to the lower frequencies

for distribution feeder communication.
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Task (2)(-) Continue "Perturbation Analysis"

This subtask 2(-)is concerned with the continued development of

"exact perturbation" analysis to include reverse path propagation from

any remote point on feeder back to the original source or to any other

point. Also included in this subtask is the coding , implementation and

arithmetic validation of the coding.

Because this capability was needed for an unrelated application

during the INTERPHASE interval before commencement of PHASE II, this

work was actually completed using General Electric resources.

A tutorial review of the underlying theory is contained in PHASE II,

Volume 3, Appendix 1 with relevant material also conatined in Appendix 2.

The coding was arithmetically validated by comparing the results

for reverse path propagation using the exact perturbation theory with

that obtained by "reversing the network" to make the new source point a

new root node and the original root section just another section, This

network reversing procedure was accomplished by a software program

NETREVSI, also written and tested during the INTERPHASE and whose listing

is contained in PHASE II, Volume 4. The load perturbation logic was

similarly validated by comparing perturbation predictions against those

obtained by rerunning NTWKERSi and NTWKANSi with the revised load and

sources.

Note that the perturbation reverse path logic/procedure allows a

completely general matrix Norton's Source representation to be applied

anywhere, not just (but including) an ideal current injection or an ideal

voltage source (which can be created by using an ideal current source

with values automatically determined by program).

I-23
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The advantages claimed for this perturbation procedure are:

1) Economical and convenient computation of single load

variation effects, such as faults, on propagation.

2) Economical and convenient computation of propagation from

any new (completely general matrix-vector Norton's) source

location to any other point in network, not necesarily, but

including the original source.

3) Extendability to the computation of propagation to any

point due to any number of "dispersed" sources throughout

the network.

The perturbation procedure is implemented in NTWKANS4 in

conversational/interactive fashion which is reasonably self prompting

on execution.

The key items making the perturbation procedure possible and

pra:tical are:

1) The two phase network analysis, i.e., the descending

admittance reduction performed by NTWKERSi and the

ascending propagation and Norton's source parameters

calculated by NTWKANSi.

2) Appropriately saving on a random binary file prior

computed results for each section.

I-24
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Task (2)(A)

	

	 Perturbation Calculation of Inbound
Propagaticn

This subtask was concerned with using the implemented perturbation

technique to predict inbound/reverse propagation. What actually was

done was to predict inbound propagation using both perturbation techni-

k a
	 ques and an alternate procedure involving a "network reversal" operation*

followed by a normal outbound prediction from the "new" source to, say,

the substation. The purpose of using this alternate procedure was first

to give an "exact" numerical check on the perturbation arithmetic imple-

mentation and also as a more convenient procedure for the general veri-

fication of the model. The result of this model verification is con-

tained in Task (2)(B) report "Model Verification-Inbound Path Propagation".

The arithmetic results using the perturbation and the reversed network

procedures gave exactly (except for negligible differences due to

numerical round-off considerations) the same results in all cases.

Similar comparisons were made on other synthetic networks designed to

test various topological considerations, and again the results were

identical. As a result of these tests, it iE believed that the imple-

mented perturbation logic is validated.

"A main program "NETREVSI" was implemented during the INTERPHASE
interval and which can automatically generate from a given network
file a new network file having a specified remote node as a new
source.

I-25
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Task (2)(B) Inbound Path Propagation Measurements

The work of this subtask involved inbound signal propagation

measurements on a "typical" 13.2 kv distribution feeder and, in

particular, the 34556 feeder on Niagara Mohawk's Grooms Road Sub-

station in Clifton Park, N.Y. Inbound transmissions were coupled to

the feeder via a capacitor bank located about 7.7 miles away from the

substation. Inbound signals were measured at an intermediate point

and at the substation.

It was not possible to readily measure individual phase voltages

at the substation during the field measurements. The individual phase

currents at the substation were readily available, though. Therefore,

individual phase currents were used for model verification purposes at

the substation.

Measurements of inbound signal propagation were made under three

conditions at the intermediate point:

1) No coupling and measurement apparatus

2) Coupling and measurement equipment attached. No tuning

inductors attached.

3) Coupling and measurement equipment attached. Tuning

indicators attached.

Therefore, under condition (1), no voltage measurements were

obtained at this intermediate point.

For conditions 2 and 3 where measurements at Carlton Road were

available, the agreement with predictions was generally very good.

The agreement for the substation phase currents was not as good,

possibly for reasons to be mentioned below, but are still considered

useful for design.	
e
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When making calculations of inbound signal propagation, it

necessary to find some representation for the admittance looking batik

into the substation it, ,lf. The substation admittance matrix was

obtained by field measurements which were not performed at the same

time the inbound propagation measurements were made. Since the 34556

feeder snares a common su^Istation bus with other distribution feeders,

1.,	 the input admittance of the substation could be quite variable due to

changing load levels on the other feeders sharing that bus. Also,

the current transformers at the substation are subject to saturation

effects because of the relatively large 60 Hz currents present at the

substation and could contribute to discrepancies between measured and

calculated carrier

seem	

at the substation.

  seG	 M	 I 'aw	 IAN	 -AAA.The re
s
ult

s	
m tt3 suppor t ti Ac Sion th at un certai nt ies in the

substation admittance and current measurements* may be the cause of

the larger divergence between prediction and measurements. It is

observed that because the substation admittance will usually be high

(relative to other system admittances) that it will highly correlate

with the voltage/currents which will actually occur, and for the same

reason, the predictions will be strongly sensitive to uncertainties

in specifying its value. None the less, it is felt that useful pre-

dictions, say based on worst case assumptions, will be useful for

design purposes, and in fact, reflect requirements placed on the

design.

*Also involved in the separate measurement of the substation admittance.
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Task (3)(A) Parameter Sensitivity - Significance of
Parameters

The purpose of this task was to investigate the sensitivity

of such computed items as voltage propagation, driving point admit-

tances (DPA), etc. to such items as variations in line construction,

conductor temperature, earth conductivity, etc. These sensitivities

would offer guidance to such (example) questions:

a) Does the proximity effect of various miscellaneous

conductors significantly effect the solution, or

can they be neglected?

b) Now serious are errors in estimating conductor

temperature, earth resistivity, line lengths?

c) Is it necessary to distinguish between small dimen-

sional changes in line configuration and/or conductor

size?

It is expected that these sensitivities, for the reasons implied, will

also possibly enable some time saving in the preparation of input files

and data base files if these can be reduced in number and variety.

The various "independent" variable items considered are shown

in Tabulation (3)(A)-1.

For those items affecting the transmission line parameters,

their effect on the eigenvalue vector and the characteristic admittance

matrix were examined by computing and comparing one at a time* for the

listed items,	 the resulting variations in the eigenvalues and the

characteristic admittance against a "nominal" case. Where the "continuous"

*Some"two at a time" variations were also considered.
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TABLE (3)(A)-1

Variations

*1. Phase conductor diameter.

*2. Neutral conductor diameter

*3. Phase conductor to phase conductor spacing

*4. Phase conductor to earth spacing

*5. Neutral conductor to earth spacing

*6. Miscellaneous conductors added

*7. Triplex neutral conductor

*8. Spacer cable configuration

*n . Diagonal load at the end of the line removed

*10: Admittance of each D.T. load doubled

*11. Diagonal load removed and D.T. load admittances doubled

*12. All D.T. loading neglected

13. Admittance of each D.T. load cut in half.

15. Phase conductor diameter and admittance of each D.T. load
cut in half.

15. Neutral conductor diameter , and admii„ranee of each D.T. load
cut in half.

16. Phase conductor to phase conductor spacing and admittance of
each D.T. load cut in half.

17. Phase conductor to earth ,pacing and admittance of each D.T.
load cut in half.

18. Neutral conductor to earth spacing and amittance of each D.T.
load cut in half.

*also done on 1/4 wavelength network
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15, Miscellaneous conductors added and admittance of each R.T.
load cut in half.

20. Triplex neutral conductor and admittance of each R,T. load
cut i ll half,

21, Spacer cable configuration and admittance of each D.T. load
cut in half.

*32. Number of sections reduced by aggregation

*23. Number of sections reduced and admittance of each D.T. load
doubled.

*24. Temperature

*25, Earth resistivity

*36, Neutral not assumed grounded

27. Total length varied * 510.

*28. Earth resistivity varied for cable feeder

*29, 1'emperature varied for cable feeder

*30. Number of sections reduced by aggregation for cable feeder

*31	 Admittance of each R.T. load doubled for cable Feeder

*32. Admittance of each D.T. load cut in half for cable feeder

*33. All D.T. loading neglected for cable feeder

34, Total length varied + 5%,

35. Aggregation tested on a description of an actual feeder

alsq oC^ n ^o ►1 114 Wavelength network

f J
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nature of a variable permitted, normalized sensitivity ratios** were

computed. ror binary items (for example a basic clids9e in 
line con-

figuration such as Oil cross arm vs, spacer cable construction), tile

decimal percent change 
in 

eigonvalues and characteristic admittance

were noted,

Tile effect of all items oil prQpagation were "investigated" by

demonstration, using two hypothetical networks, and computing tile corres-

ponding changes in the input driving point admittance matrix and voltage

transfer ratio from input to end, and as before, for one at a 'time

variations in 
tile 

Items mentioned above. Also (► s before, where appro-

printe normalized sensitivity ratios wQro computed, The two hypothe-

tical networks were simple unbranched uniform three phase lines, with

uniformly located constant size distribution transformer loading

cyclically connected to the feeder phase conductors, Also, 
(a 

terminal

end three phase load was applied, Those distribution transformer

loadings and terminal load were selected to represent a plausible I oadi ► q

density. Tile specific. details of these hypothetiul nominal networks

are shown in the following Table (3)(A)-2. The "nominal" overhead (014)

was conventional cross arm while the underground (UG) was three single

phase cables with a propagation speed of approximately .36 speed of

I 
I 
ght.

Tile input driving point admittance (OPA) was examined, because

if such a line were a branch-14teral, its affect oil -tile remainder of the

n etwo rk is, of course, entirely determined by this DPA. In order to

*relative change In the d a-pendent variable divided by the relative
change in the independent variable.
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Table (3)(A)

Hypothetical Test Network Characteristics

OH #1	 OH #2	 UG #1	 UG #2

Frequency 8.13 kHz 8.13 kHz 8.13 kHz 8.13 kHz

Total	 Length* 16000M 8800M 16000M 3400M

Electrical	 Wavelength %.45a %.24x ti1.25a ti.26N

DT Loading** -78 DB	 -27.3 0 for all (nominal)

UT Spacing 200M 110M 200M 42.5M

Number of DT 80 180 80 80

Terminal	 Loading All	 three phase wye 4.77.10 -4 mhos

-68.2 1 each phase

*Unbranched uniform three phase

**Cyclically assigned to phase conductors
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provide some visual insight into voltage propagation, plots were made

of the magnitudes of the three phase voltages versus distance from the

source. Also, the algebraic sensitivities associated with the terminal

end voltages were also tabulated.

The voluminous results and conclusions of this study are con-

tained in Volume 2, Chapter (3)(A). It can be appreciated that such an

investigation as this must at best be finite and in this study, con-

sisted only of a demonstration based on a few network examples. The

effects of parameter variations on other networks may not be similar.

Hence, these results are considered only demonstrations and are offered

as some qualitative guide. Many other demonstration situations have

not been examined and experience by users will have to be accumulated.

The following are some very generalized observations (not

itemized in any particular order). It should be noted that the quali-

tative assessments to be followed are guided by the notion that for

communication purposes, 3 db represents a reasonable

threshold to judge an effect significant or not significant.

1) Commonly encountered phase conductor diameters could be "graded"

into two or three sizes with satisfactory results.

2) Reasonable variations in conductor spacing are not significant.

However, radical changes in OH construction (say, for example,

cross over vs. spacer cable) can be significant for sufficiently

long lengths (how long is long, has not been evaluated).

3) Spacing between neutral and phase conductors (DH) may be significant.

4) The shielding effect of miscellaneous conductors seems to usually

be insignificant.

I-33	 i'
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5) QN line loading can Have significant voltage propagation effects

so that changes in the average levels of DT secondary loading need

to be investigated parametrically.

5) Three phase loads can significantly effect propagation,

7) Loading of UO lines by DT's has negligible effect on voltage

propagation,

8) Variations in feeder loading will, of course, have strong relation-

ship to input driving point admittance.

9) Whether or not the neutral is analytically assumed at ground

potential (DIFNAP IASM option) is insignificant (as expected) for

voltage drives involving the feeder phase conductors,

10) Fractional (factor) uncertainties in total line length are to a

good approximation equivalent to the same fractional change in

frequency. Line length uncertainties can have significant effects.

Assuming that the basic topology of a feeder network is known

(disconnect, tie, reclosure switches, etc) and a reasonable identifica-

tion of line configur^ations has been made, the principal sources of

model prediction errors seems to be apriori uncertainties in:

level of feeder loading

length of lines.

The first requires a parametric model evaluation to ascertain "worst

case" considerations. The second requires care in specifying line

lengths and probably making "neighborhood" frequency response predic-

tions to observe what possible effects length errors may have, or

equivalently parametrically varying the various line lengths.
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Task (3)(6) Parameter Sensitivity "Set-up" Time
Reduction

The purpose of this task was to investigate what reasonable

approximations could be made 'to decrease the time required to

prepare network data base files and network files before actual

propagation predictions can be initiated.

It is appropriate to distinguish bet4een the preparation of

data base files and network files. Ideally, as time progresses,

the data base files will become more and more complete as they are

augmented with catalogued items. For example, at this time, a

reasonably extensive inventory of DH and UG line configurations have

been catalogued and included in the LTYP DATA (See Chapter M of this

volume) so that as new applications occur, it is probable that it will

contain already most of the required configurations so that any

required augmentation will be small. Similarly, for the data base

file containing distribution transformer data. The data base files

for three phase loads is not so complete so that it can be expected

that more work would be required to augment this file, especially

since at this time* lumped parameter models are not used therein,

requiring construction of admittance data at any new application

frequency. However, it is clear that as each new application is

encountered, it can be expected that less and less time will be

required to establish the data base files. Finally, note that with

*Some limited effort has been applied in the direction of using
lumped parameters for certain apparatus.
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the present implementation data base files associated with	 con-
1

figuration and distribution transformers are easily generated for

any new frequency of interest and involves only trivial 	 effort. fi	
f

`	 Generating the network file representing symbolically the net-

work is, of course, unique to each application area.
r

F'	 The sensitivity analysis of Task (3)(A) can be of help in

reducing the effort to augment the data base files by offering guide-

lines for grading the encountered line types into either existing i

catalogued varieties or reducing the number of new varieties that

need to be added.	 Also, the sensitivity analysis combined with "DT
ii

aggregation" to be explained below, may again offer guidelines to

reducing the number of sections 	 (lines/records in the network files)
ti:	

J

necessary to adequately represent the feeder. 	 However, to do this
1

would require (rather simple) modifications to present procedures to

allow more than one DT to be assigned to each section, i.e., DT aggre-

gation mentioned above. 	 The approximation involved in DT aggregation

have been investigated in this task.

The approximation due to DT aggregation have been investigated

to the extent that reasonable degree of aggregation introduce very

little approximation.	 The limits to which this can be carried have

not been established-.	 The idea of DT aggregation was applied to an

a::Lual	 feeder (NMPC 34556) by reducing each occurrence of cascaded

sections of identical 	 line type to a single section of same total

length and all	 DT's in the cascade located together at the terminal

end of the equivalent single section.	 In this application, the number
3

of sections was reduced by approximately 37% with negligible error
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(as compared to the original more detailed representations).

A

	
Again, as stated above, criteria to guide how far this can be done

iI
^1.
	

has not been fully developed.
. f

Based on this observation, it is recommended that after

sufficient confidence has been established in the model, and assuming

the need exists, that the rather minor program modification be made

to allow more than one DT to be assigned to a section.

! I

a

t	 4
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Task (4) Transformer Modelling

^.	 This task was concerned with the modeling of two winding trans

formers in the context of use at PLC frequencies. Distribution trans-
. 	^

formers are included in this category by assuming them electrically

symmetric and having balanced secondary loads with the net result

they becdme effectively two winding transformers.

The purpose behind the effort was to obtain a suitable computa-

tional model which would lead to an automated software procedure (not

requiring manual intervention) for predicting two-way propagation

through the transformers, i.e., from primary to secondary and secondary

to primary. Also, with such a model, the effect of different levels of

secondary loading (deterministic and random, i.e., MONTE CARLO) could

be easily accomplished. From a system engineering point of view, PLC

propagation through transformers represents a critical item in system

performance and having a physical model is very useful for understanding

these limitations and the effect of possible fixes such as tuning and

bypass procedures.

Transformers of interest are:

Distribution Transformers (assuming electrical symmetry
and balanced seccndary loading)

Single Phase (most are) Ratio Bank Transformers

Three Phase Transformer Banks (Three Single Phase
Transformers) including open delta banks.

Single Core Three Phase Transformers were not considered.

Synopsis of Phase I Transformer Modeling Activities
i;

Transformer modeling was initiated in Phase I of this project.	
r;

At that time, little previous apriori knowledge existed regarding the
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behavior of distribution transformers at PLC frequencies and, in

particular, when the various higher order levels of distributed/stray

capacity became important. Also, it was originally intended that

models be developed for frequencies to 500 kHz. Therefore, it did

not appear that an analog type lumped parameter model could be developed

and an associated parameter data base established within the time,

available manpower, and funding constraints associated with the

Phase I effort. Therefore, it was decided to use measured

"Y" parameters which would be frequency dependent (And of course KVA

and other constructional features) but otherwise completely general

This approach was encouraged by several references on the subject.*

Therefore, concurrent activities of measurement, and model

development and software implementation were ;vitiated. An extensive

set of "Y" parameter measurements** were made on 5, 10, 15, 25, 50 KVA

distribution, transformers for frequencies to 500 kHz. Subsequently

when attempting to use these measured "Y" parameters, significant

inconsistencies were discovered. After much deliberation, it was

hypothesized that the "Y" parameters must be measured/determined with

an accuracy and precision that was not realized and would probably not

be practical even with more sophisticated procedures..

By the time this conclusion was reached, only limited resources

and time remained. In order to temporarily overcome this problem, a

procedure was implemented using a file containing measured primary

driving point admittances (for specified level of secondary loading).

*See pgs. 635-641 "Magnetic Circuits and Transformers" MIT EE Staff,
John Wiley & Sons.

**Six "Y" parameters plus an open circuit impedance.
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This allowed predictions to be made on the feeder for the specified

loading implied in the transformer file being used. Prediction "down

to" the secondary would be a second manual step using again measured

voltage transfer characteristics. This "two step" procedure was not

in any way deficient as an approximation, but did require manual inter-

action and did not admit random "MONTE CARLO" procedures.

Synopsis of INTERPHASE Transformer Modeling Activities

During the approximately one year interval between the conclusion

of PHASE I contract effort and the commencement of this PHASE II con-

tract, the General Electric Co, sponsored extensive response type

measurements on distribution transformers, single phase power trans-

formers, and various single core three phase transformers. These

measurements were made at (GE) Corporate Research and Development with

the cooperation of the Niagara Mohawk Power Company who provided access

to the various transformers, and (GE) Mobile Radio Department. The

measurements included bidirectional driving point admittance and

voltage transfer ratios as a function of frequency (limited range) and

various loadings (primary and secondary). It was from these measure-

ments that adequacy of a single RLC lumped parameter model for fre-

quencies up to, say, 50-100 kHz, was suggested.

Synopsis of PHASE II Transformer Modelinq Activities

Still faced with need and solution for an adequate transformer

model, this activity was continued as Task 4 in the PHASE II contract.

Four modeling approaches were considered:

1) All "Y" parameter model (as in PHASE I) with greater
measurement precision.

j
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2) "Y" parameter derived algebraic model

3) Table look-up of measured responses

4) Simplified lumped parameter model

Approach 1) was rejected because of the reasons cited previously and

the uncertainty whether sufficient measurement precision could be

obtained. Approach 3) was rejected (after 2 and 4 appeared feasible)

because of the large number of interpolating dimensions (frequency,

magnitude of loading, primary and secondary, phase of loading) and the

prohibitively large amount of measurements required.

During the above deliberations, an algebraic basis was deve oped,

corresponding preliminary measurements were made, and a computer program

written to establish the feasibility of approach 2). Appendix 3 con-

tains analyses relevant to this approach. The key difference between

this approach and the "Y" parameter approach 1) was to assume that:

a) at frequencies of interest, distribution transformers are

electrically symmetric (two secondary windings),

b) a balanced secondary load (no basis exists for assuming

otherwise for purposes of PLC propagation modeling),

and to replace some of the "Y" parameters with other more readily and

algebraically less sensitive measurements such as open circuit voltage

transfer ratios. As a result of laboratory measurements on several

transformers, a set of derived parameters were selected which were

relatively insensitive to transformer construction. The resulting

algebraic model was implemented in a temporary test (computer) program

which very successfully predicted responses corresponding to measure-

r	
ments. The feasibility of this approach appears to be proven. Like

"'Y" parameters, these derived parameters would be frequency and KVA

I-41
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dependent but independent of loading, and would predict bi"directional

drivingo,int admittances and voltage transfer ratios. It does not

appear that this model has any frequency limitations (other than

measuring them at such frequencies). It does not, of course, represent

a physical model.

Measurements (see last page of Appendix 3) made during the

INTERPHASE interval strongly suggested that a simple RLG lumped

parameter model iiiight be adequate for frequencies limited to, say,

less than 50-100 kHz, A test computer program was written to

evaluate the model and quite successfully duplicated the measurements

cited above. On this basis, subject to the limitations on upper

frequency, the simplified 'lumped parameter model also became a viable

contender. It should be noted that it is realized a more complicated

lumped parameter model could be derived to extend this frequency

limitation, but doing so at this time is not considered necessary.

Results of PHASE II Transformer Modeling Activities

Several sets of distribution transformer data have been compiled:

i ) PHASE, I "Y" parameters

ii) INTERPHASE response measurements as a function of load

iii) INTERPHASE measurements by the (GE) Mobile Radio Dept.

iv) PHASE II parameter and response measurements

The last set constitutes the most detailed for the purpose of estab-

lishing and choosing a model. Based on the selection of candidate

modes 2 and 4 (above), the following measurements were made during

this PHASE II:
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a
Parameter Measurements

a) L-L admittance "locking" into secondary, primary short
circuited.

b) Transadmittancex voltage applied to primary, currents
measured in short circuited secondary, and vice versa.

c) Primary admittance "looking" -into primary with secondary
short circuited,

d) L-L admittance "looking" into secondary, primary open
circuit.

e) Primary admittance "looking" into primary, secondary
open circuited.

f) Open circuit voltage transfer from primary to secondary
(2-2).

g) Open circuit voltage transfer from secondary (L-L) to
primary.

Res ponse Measurements to Verify Model

h) Primary admittance "looking" into primary, secondary
resistively loaded at various fractional per unit load,.

i) Secondary admittance "looking" into secondary, primiary
resistively loaded with 10, 10 0 1000 ohms.

j) Primary to secondary voltage transfer ratio with
secondary resistively loaded as in h) above.

k) Secondary to primary voltage transfer ratio with primary
resistively loaded as in i) above.

The magnitude and phase were determined for each of the above and

recorded graphically as a linear function of frequency from 2.5 kHz

to 100 kHz.*

Also, while thin above measurements were bey ng made, a computer

program ZPTRANSI (see Appendix 4, : volume 3) was written incorporating

the proposed simple RLC lumped parameter model. This program generates

"ZETA" X-Y plots of the magnitude and phase for each of the above

*Various other miscellaneous items were also measured.
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response measurements and with the same dimanalonal scaling so that

the measurements and predictions can be physically compared by over-

laying on one another,

These comparisons indicate that the simple lumped parameter

modal was quite adequate for frequencies, say, to 60 kHz. Volume 2,

Chapter "TASK (4)", has a more detailed account of these comparison

and modelling details. Based on those results, and assuming the model

is not used beyond 50-100 kHz, It is recommended that the simple RLC

modal be adopted. Obviously, as a lumped parameter physical modal,

it affords a physical insight and also implicitly contains frequenqy

dependency so that one set of RLC parameters suffice for all fre-

quencies, simplifying file structures and easily adapting to Womatic

frequency response cal call anti ons.

* I
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Task (5) Line Compensation and -^• ination Techniques

This task was concerned with investigating techniques 'to minimize

the adverse effects, when ecountered, due to phenomenon related to the

"transmission line" characteristics of feeder sections, branches and

i`
	 lateral . Rased on limited  exampl es examined at this time, it appears

that the most frequently encountered adverse effect is due to low

impedances that sometimes can be presented the feeder by low impedance

laterals that occur by virtue of their resonance or low characteris-

tic impedance, such as cables which have a high capacity per unit

length. Lessfrequently occurring is the possibility of standing wave

minimum on long feeder _runs with light loading.

Up until recently, when this model became operatiohal, the only

evidence that the application engineer would have regarding these kinds

of situation/problems occurred after some sort of limited deployment

trial installation or some sort of field measurements also usually, for

practi ca'i reasons, limited  i n the number of observation locations.  Prior

to realizing and understanding the nature of these problems, it was

difficult for the same reasons to even identify reasons for the

difficulties.

Therefore, the problem is two-fold; 1) to identify potential or

1
actual problem locations, and 2) to devise possible corrective proce-

dures, and of particular interest > ,*,in, techniques of line  compensa-

tion.

	

To assist in the first problem of identifying potential problem	 )

areas the model software was augmented to include an output profile

option which presents for each section comprising the network a set
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SEC	 Section number

SIB	 Sibling number (if present)

of easily scanned data. The data items presently

are;

PAR Parent nip giber

r.
CUMDIST Cumulative distance from source

1 1 	 IV^I I	 ^I	 g	 ^	 ,.
V magnitudesPhase voltage mag1 V

ZTR/MIN The maximum impedance magnitude seen looking
individually between each phase conductor and
neutral.

VF Voltage flag (set when a user defined threshold exceeds
the magnitude of each phase voltage)

`	 ZR Impedance flag (set when ZTR/MIN is less than a user
defined threshold) i

YINMX The reciprocal of the largest element magnitude in the
input driving point admittance for the section.

YSIBMX The reciprocal	 of the largest element magnitude in the
input driving point admittance of its sibling section
(if present)

YNORMX The reciprocal of the largest element magnitude of the
equivalent Norton's source admittance lookin g backwards
from the input of the section.

SIB/* Ratio YSIBMX/YINMX

SIB/N Ratio YNORMX/YINMX

GRAD Maximum element magnitude in section output voltage
vector minus input voltage vector all divided by the
section length.

POWER Power level

The user can easily replace any of the above by others of his

choice, The items VF and ZF are useful to quickly locate trouble spot

areas. The other quantities are useful to pinpoint problem sections.

F	 Obviously many of these items are correlated.
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The above type of scan profile for the entire network has proved

very useful for identifying the location and nature of "trouble spots".

Limited experience to date seems to indicate that "trouble spots"

seem to be related to laterals with low impedance, due to resonance or

low intrinsic characteristic impedance (cables),

In the cases so far examined involving low impedance laterals

"joining" high impedance (overhead) feeder construction, the impedance

level of the lateral can be raised by various types of shunt (inductive)

compensation, both terminal and distributed. For mono chromatic systems,

many compensation circuits and locations are possible and an approach

is described in the detailed report on this subject contained in

Volume II, Task (5). With broadband system requirements distributed

compensation appears desirar^;•.

The detailed reports in Volume II for Subtasks (1)(B), (1)(C)

describe some actual results obtained using simple compensation.
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J. Conclusions and Observations

This section is a summary assessment of the restrictions,

assumptions and scope of the model at this time. Figure J-1 presents

a list of fundamental restrictions associated with the current model

and implementation. As noted, items 2 and 3 are not essential res-

trictions. Figure J-2 presents a list of engineering assumptions

implied in the model.

As a result of experience gained during this PHASE II effort,

the conclusions and observations are made;

a) Uncertainties in apriori knowledge of line lengths

Since, as a reasonable qualitative approximation,

the parameters frequency and line length appear in

the various mathematical formulae as a product pair,

errors in the apriori knowledge of line length

effect propagation in corresponding similar fashion

as a change in frequency. In particular, errors in

line length represent a,higher fractional wavelength

as the frequency is increased.

If our verification experiences are considered typical,

then the model should be used with caution for fre-

quencies greater than (say) 25-50 kHz. 	 If line

lengths are known with correspondingly higher

accuracy, then this limit can be increased, of

course, subject to other limitations mentioned below.

As a result, it is recommended that a parametric

variation investigation on frequency or length be

made in the neighborhood of the apriori values to

determine the possibility of any severe resonance

phenomena being missed due to apriori errors in

line length.

J-1
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b. Transformer Secondary Loading Variations

Model based studies have indicated that propaga-

tion on the feeders can be significantly effected

by the normal variations in loading presented to

the feeder by transformers whose secondary loading

varies as a natural circumstance. Hence, it is

recommended that this affect be investigated via

the model by parametric variation of the transfor-

mer secondary loading.

c. "Set-up" Time Required to Make Analysis Can be Reduced (some)

Results of the PHASE II Parameter Sensitivity Task

has indicated that the detail and effort to prepare

the DNWKINij file can be reduced, primarily by distri-

bution transformer aggregation and line type (configu-

ration) grading. That is by using, judiciously, a

fewer number of distinct line types than may be actually

encountered on a feeder and aggregating several trans-

formers so as to be located at fewer numbers of dis-

tinct locations than may be actually encountered on

the feeder, the number of sections required to repre-

sent a feeder may be greatly reduced. This in turn

would similarly reduce the number of line entries

required to prepare the DNWKINij network files.

Classification and the development of a lumped parameter

data base file for -the various types of transformers and

their loads would greatly reduce the effort to establish

data base load files as is presently required. The

distribution transformer modeling Task 4 PHASE II is

an example.

As further experience is obtained, it may be possible to

further reduce the set-up time by apriori absorbing or

neglecting very (electrically) short line segments and

representing underground laterals with appropriately

sized lumped capacitors.
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d. Uncertainties in Substation Admittances

In those cases of model prediction of propagation, 	 r

such as inbound, which involve a substation will
	

i
i

usually require some sort of estimate for its equiva-

lent load admittance. For transmissions from the sub-

station (outbound) it is usually implied that the

transmitter has sufficient drive to "force" design

voltages to occur on the buss so that in this case the

substation buss admittance is not involved in the pro-

pagation calculations. However, for inbound reception

at the substation (or elsewhere) the substation repre-

sents a significant termination admittance. Whether

the receiver operates on voltage and/or current signals,

the substation admittance will be a significant factor"

in reality and modeling predictions.

Obtaining an estimate for the substation admittance

load to be used in the modeling predictions is at the

present time somewhat of an "unknown". The substation

buss admittance is obviously effected by;

a) other feeders connected to the buss

b) substation transformers and the "source"
	 * 9

admittance seen by them looking back into the

subtransmission network,

c) other station equipment.

At this time it is believed that a) can have a signi-

ficant effect on the total admittance. Conceptually,

these other feeders could be modelled to obtain pre-

dicted driving point admittances. Obviously that

procedure has practical drawbacks.
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Our experience to date has been limited to the NMPC

Grooms Road Substation. For that substation we learned

that it was necessary to measure the complete driving

point admittance looking into the buss "from the"

NMPC 34556 feeder. Due to the generally (expected) high

admittance and physical construction, it was very diffi-

cult to make these measurements; many specialized proce-

dures were used.

Hopefully future applications will allow other substation

admittances to be measured to obtain some better appre-

ciation. However, unless these measurements somehow

lead to a reasonably reliable estimation procedure, it

is likely that inbound predictions will be greatly

influenced by uncertainties in substation admittance

estimates. It is noted that "real life" receiver per-

formance will similarly be affected. For this reason it

is possible that receiver system designs many include

procedures to minimize this variability and then, of

course, the model predictions will correspondingly be

less sensitive to these uncertainties. It is also felt

that despite these uncertainties, a limited parametric

variation or "worst case" prediction could still be

useful.

l
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Figure J-1

Fundamental Restrictions

1) No grid typa networks including interconnected loops

2) Single source (for now)

3) No geometrically paralleling feeder circuits (for now)

4) Continuous neutral conductors through sectionalizing

switches are assumed at zero potential at such points.



Figure J-2

Engineering Assumptions

1) Linearity

2) Affects of minor apparatus ignored

3) No conductive coupling between feeder phase wires

except possibly by loads

4) Radiation losses ignored

5) Overhead conductor sag ignored

6) Underground cables laid with uniform spacing

7) Simple approximation for miscellaneous cables such

as telephone

8) E-M field effects at geometrical discontinuities

neglected

9) Miscellaneous conductors at zero (ground) potential

10) Carson's approximation assumptions

A I
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a

specificat ions for overhead lines and generates, in a specific format des-
	j

cribed in PHASE 1, Vol.2, the matrix Z and Y parameters for that line. Any

equivalent line parameter program could be used for this purpose.

A synopsis of the capabilities presently included in the model

implementation are shown in Table K-1. Some comments are in order to

explain the "two step" procedure -for primary 	 secondary propagation.

Because the distribution transformer analytic model (IOPC = 0, 1, 2) is

not implemented in software, a two step procedure is required to predict

propagation to and from the secondary circuit. To illustrate, consider

the procedure required, now, to predict propagation from a source on

the feeder (say a substation) to the secondary of a particular distri-

bution transformer (DT) or perhaps to an actual residence service entrance.

First, the (assume balanced) load on DT secondary is determined by

assuming individual house loads and analyzing the secondary circuit

(electrically short and an easy analysis). Either using the analytic

model or measured DT response characteristic for that secondary load

and frequency of interest, determine the input (to primary) driving

point admittance (DPA) which will tend to be dominated by the leakage

reactance. This DPA then is placed its an ASCII data base file. Actually,

it is possible that precompi ted standard DT DPA's (for each DT KVA and

relative secondary loading) would be used. Then, the DIFNAP program

is operated and will use this loading for that DT and correctly predict

the voltage at the OT primary terminals, which then can be used "off

line" to predict the secondary terminal voltage and subsequently the

r-
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t
K. Status of Software

This section summarizes the status of the software and offers

various pertinent comments.
,LL

Source Proaram Files
d
r

r	
Volume 4 of this PHASE II final report contains source

w°
	

listing of all programs generated as part of this work. All are written

in FORTRAN, with most containing embedded explanatory comments and repre-

sent the most current version as of the date of the listing. Some listings

contain addit-'onal annotation. Naturally, the software is in a continued

process of evolution and refinement.

Honeywell DPS-1

The programs mentioned above are designed for execution on

a Honeywell DPS-1 computer system with a 4JS1 operating system. As such,

various FORTRAN subroutine calls for ISO, file procedures (opening,

detaching, access, etc.) and special control may be peculiar to 	 this

system. Furthermore, various special subroutines (Complex Matrix

Inverse , for example) are local. Other routines such as EIGCC are

contained in the IMSL library.

The present programs at any one execution re quire a maxi-

mum of 46K word core memory and no overlay or virtual memory proce-

dures are used.

Availability

Inquiries regarding the availability of these programs

should be addressed through Mr. Carl Gilchriest (see Section E of this

report). The only program not listed and not avilable is the proprie-

tary program DISEM7S3. This program inputs geometrical and electrical

K-1
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service entrance voltages. The procedure for the reverse direction

is similar except that feeder loading of the DT primary terminal is

obtained from the NTWKANSj analysis program so that the DT.secondary

to primary voltage transfer ratio and secondary DPA can be obtained,

Section L of this volume contains recommendations for the

implementation of features that could be but are not yet implemented.

If

1 ,4
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TABLE K-1

Capabilities Presently Included

WYE and DELTA connected feeder

Wye system can be operated with or without neutral
at zero potential.

DELTA system depends on feeder transmission line
capacitance to ground to establish phase to ground
voltages.

Transitions 3:2, 2:1, 3:1

Three phase WYE to single phase (two conductor)
DELTA not permitted at present but can easily be
extended.

Tra,ispositions

Single Phase Ratio Transformer Model & Logic

RLC model

Primary - Phase to Neutral

Secondary - Phase to Phase

Relies on downstream admittance to avoid
singularity same as real life.

RBTRDATA - Ratio Transformer ASCII Data Base File

See NTWKERS4 listing for imbedded components

Open Delta Transformer Load Logic

All loads (other than DT) contained in Primary Load File

Power factor correction capacitors

Three phase transformer loads

Open Delta transformers

etc.

K-3
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Distribution Transformer - Primary -K" Secondary Procedures

File of DT Admittances (IOPC = 3)

Frequency Code ITTY (kva), Scalar Phas,er Admi ttance

See TRANADS4 listing for imbedded comments.

One file for each implied DT secondary loading

Correctly predicts feeder propagation

Off-line "two step" procedure for primary ^ secondary

Ignore DT (IOPC<O)

Automated analytic (RLC) model (IOPC = 0, 1, 2) not
implemented.

See Section L of this report

Supportinq Software

s	 Main programs for generating random binary dataI
ase files.

UG line parameters program

Program ads for construction ASCII data base
files

Prototype programs to compute three phase
transformer bank models.

K-4
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I

L, Recommendations

This section is primarily concerned with offering recommen-

dations for improving and extending the capabilities and convenience

of the model software implementation,

Model Extensions

a) Implement Distribution Transformer Model

b) Implement Capability For Geometrically Paralleling
3-Phase Circuit

Common Buss Drive

Non Common Buss Drive

c) Implement Distribution Transformer Aggregation*

d) Develop and Implement Procedures for Introducing
Dispersed Sources

Incoherent Noise Sources

Coherent Sources

e) Extend and Implement Three Phase Load (RLC) Lumped
Parameter Modeling

Including Bank and Common Core Transformers

f) Extend and Implement Three Phase Ratio Transformers

Data Base Catalog Extensions

g) Develop Line Type Catalog a Picture Book Dictionary
of Standard Types

h) Develop Three Phase Load Catalog - Picture Book
Dictionary of Standard Types

i) Develop Distribution Transformer Catalog

*Can be done with present implementation using zero length sections.

si
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Az



Streamline Main and Support Program Operation

F	 j) Streamline Interactive Conversation in Main Programs
r^t

k) Merge DISEM753 and UGZYGESI

1) Introduce More Automation
6

!	 RLC Lumped Parameter Models
(Implied Frequency Dependency)

e

b

Automatic Frequency Response Capability

Automatic Generation of Required Database Files

Translate Software to a Popular Mini Computer

Continue Investigation to Determine Limits to Simplifying
Network Representation

L-2
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on Figure OS-2.

M. COPY OF "TUTORIAL OVERVIEW ..." FROM PHASE I SUMMARY
FINAL REPORT	 ;I

i

The following material is a copy, with some minor 	 t,

updating editing, of Section 0, PHASE I, Volume 1-Summary 	
l

Final Report. It is provided here for readers not pre-
[,

viously familiar with this work. a

0.	 TUTORIAL OVERVIEW TO MODELING FEEDER NETWORK
FOR PLC PROPAGATION

(Os). Introduction
This overview is intended for the reader who is not well-

acquainted with the subject of distribution feeder networks viewed j 1.
ii

as a PLC communication channel, nor with the work of this contract

which is aimed at developing models and computational procedures

for predicting PLC signal propagation on-the feeder network. The

discussions presented in this overview are based on visual aids

and material prepared for the DOE/EPRI Review held ,Tune 9, 1978,

in Detroit, Michigan.

A more complete review of the computational procedure and im-

plementation is contained in Volume 2, which includes an introduc-

tion containing similar information as is presented here. 	 ;t

This project is concerned with developing the model and compu-

tation procedures for predicting the propagation of PLC voltage/

current on a tree network structure from a source to destination,

taking into account a variety of network features. See Figure OS-1.

The result of this development has been a general purpose "de-

terministic" model and computational procedure which is summarized

.;
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ORIGINALAL PAGE 13
OF POOR QUALITY

(1) Two-Step Procedure to Calculate PLC Propagation on a Feeder
Network w i th a Tree Configuration.

Step 1 - Perform Admittance and Voltage Transfer Matrix
Reduction Inbound from Tree Tips Towards Source

Step 2 - Compute Voltage, Currents, Power, Outbound from
Source to Specified "Node."

(2) Structured to Take into Account Models for the Following:

Different Line Types

3:2, 3:1, 2:1 Transitions

3-Phase Transposition

Specified Feeder Load (Capacity Banks, etc.)

Ratio Bank Transformers and Voltage Regulators

Distribution Transformer Loading

Unlimited (Essentially) Levels of Branching
and Number of Sections

Oth,?r Special Situations

(3) Computes Using Vector-Matrix Procedures.,

Figure OS-2. General Purpose "Deterministic" Model and Computa-
tional Procedure	 "i

f



(Od). Description and Representation of a Distribution
Tree Network

The work of this contract is limited to distribution feeder

networks which can be represented in tree form, as contrasted to

a multiloop, highly gridded form. Figure OD-1 is a much simpli-

fied sketch of a typical local Niagara Mohawk Power Corporation

suburban feeder network with a maximum distance from the Grooms

Road substation of approximately eight miles. This network con-

tains such features as overhead and underground feeders, three-

phase to single-phase transitions, power factor correction capacitor

banks (not Shown), three-phase wye to three-phase delta ratio bank

transformers, voltage regulators, considerable residential areas

with both overhead and underground distribution transformers and

secondary circuits, and other miscellaneous apparatus.

The top half of Figure OD-2 is an illustrative schematic of

a segment of a feeder tree network, and shows the decomposition

into "sections."* This schematic illustrates a three-phase wye

feeder with its neutral conductor, and an illustration of a three-

phase to one-phase branch/transition. Also shown by the notation
q are attached loads which represent single-phase loads, such as

distribution transformers, and three-phase loads, such as capaci-

tor banks, or the net effect of a three-phase branch. The bottom

half of Figure OD-2 illustrates a symbolic representation of the

same section using labelled section numbers. The notation

Q,

	 0
*The use of the description "section" is synonymous with and super-
sedes the description "node" which was used earlier and may still
appear on various computer program source listings.

i
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has been used for convenience to represent a section composed of

a length (possibly zero length) of a homogeneous multiconductor line

terminated by some sort of discontinuity, such as an attached load.

Figure OD-3 presents a formal definition of a "section," and

Figure OD-4 gives examples of various section types. Later, an

explanation will be given for a coding scheme that has been adopted

to logically specify to the computer programs which type of sec-

tion is involved at each point in the network.

Referring to Figure OD-2, which illustrated the idea of a "sec-

tion" as an element in the network and also introduced a symbolic

scheme for representing a segment in a network, consider Figure OD-5,

which illustrates a small, binary tree network and its logical

representation via• a tabular format. The strategy is self-evident,

however, a few comments are in order.

(a) This tabular representation, which specifies for each
section a parent section and can specify a binary branch
in terms of an LSON (left son) and RSON (right son) sec-
tion, completely determines a binary tree configuration.

(h) Only one section will be a root section with a specified
source at its imput terminals. This is indicated by the
zero in the parent column.

(c) The assignment of section numbers can be completely arbi-
trary as long as they are not duplicated and represent a
consistently defined network.

(d) When a section is not followed by a binary branch,
it is arbitrary which of the LSON or RSON entries
are assigned to zero.

(e) A terminus node is logically specified by zero in
both the LSON and RSON entries.

With this tabular representation, it is easy to determine the path

from any section to the source (root section). It is also implied

that ternary and higher order branching is not allowed. Howev,!r,

A "11

0-7
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}

i
6

"SECTION" =

1) Length of Homogeneous Multiconductor Transmission
Line Terminated by a Discontinuity Such as

Branching
Connected Load (including open circuit, i.e, end point)
Transition (3:2, 3:1 , 2:1

Transposition
Apparatus (such as Ratio Banks Transformers, Voltage
Regulators, Auto Reclosures, etc.
Special Conditions

2) Transition

3) Transpositions

4) Apparatus (through which signal must propagate)

5) Special Network Situations

Figure OD-3. Definition of Section

i 1
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1
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3
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OF POOR QU-A'^-ITY

Ratio - Bank
Transformers
3-Phase Y/Y

Ratio - Bank
Transformers
3-Phase Y /®

Similarly for Voltage Regulators
Automatic Reclosures, etc.

1
2
3

"I

3-Phase Transposition
Figure OD-4. Examples of Sections (Cont'd)
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OF POOR QUALITY

this does not represent a limitation, if the concept of a "zero

length" section is admitted. Figure OD-6 illustrates the use of 	 }
i

a zero length section to expand a ternary branch into a sequence 	 j

of two binary branches. The restriction to binary (branching)
	 a

trees is not essential, but has been made to capitalize on the ex-

isting and extensively developed algorithms for determining proc-

essing sequences for binary trees.

In addition to the columnar data associated with the parent,

LSON, and RSON sections, additional columns can and have been added
i

to describe other characteristics of the network. Figure OD-7 spec

ifies the columnar entries presently adopted for representing the

network. Columns 1 through 5 (node = section) are self-evident

from the preceding discussion. Column 6 contains a line-type code

(LTYP) number chosen according to the schedule shown in Figure OP 8.

These line-type codes are used by the main network programs to prop-

erly control logic, and to address, as appropriate, various data

files. Column 7 (Figure OD-7) is an integer number representing

the length (in meters x 10) of ,Che homogeneous line involved when

100<LTYP<999. This interval (100,999) allows a maximum of 900 dif-

ferent transmission line type configurations to be identified in

this manner. Figure OD-9 illustrates some overhead configurations

and their assigned LTYP codes. In these sketches, 336.4 indicates

wire size. M3 indicates a miscellaneous cable-type conductor,

such as telephone or cable TV. This range of codes would also in-

elude underground cable configurations.

0-13
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ORIGINAL PAGE V 

OF POOR QUALITY	 LTYp, ASSUMPTION CODE, 10PC CODE

I
CONVENTION

1 30 + 1 0 	Y Using Phase 1	 and Neutral

2 30 -* 10	 Y 2

i
3 30 + 10	 Y 3

E 4 30 + 10	 0 "	 1,2	 (+ polarity sense)
5 30 + 1 0 1,3 	 (+

. 6 30 + 1 0 2,3 	 (+
7 30 + 10 2,1	 (_  ^^	 )

8 30 + 10 3,1

9 30 + 10 3,2

12 Transposition Phase 1	 and 2 interchanged

13 11	 u 1	
It It

23 2 3

24 30 + 20	 Y Using Phase 1, 2 and Neutral

i 25 30 -* 20 1 2	 3

26 30 + 20	 Y 2,	 3

27 20 + 10	 Y " 2 out of 1,2, and Neutral

28 20 + 10	 & "	 1	 out of 1,2,

29 Same. as 27 I

30 Same as 28

31 Same as 28

32 Same as 27

33-39	 Ratio Bank Transformers

Assumption	 Secondary Secondary Feeder Misc.
Code	 Neutral Conductors Neutral Cond.

1	 0 0

2	 0 0 0

3	 0 0 0

4	 0 0 0 0
:. 5 0

IOPC Code

1 -	 Open Circuit	 <0 - Ignore Transformer Loading

0 -	 Short Circuit

2 -	 Analytical Model 0-15

3 -	 Special Array Figure OD-8.	 Line Type Code, LTYP,
Schedule

t•
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OF POOR QUALITY

Record Contents

1. Line Number (Sequence Error Check)

2. Node Number

3. Parent Node - 0 for Root Node

4. Leftson Node - 0 if None

5. Rightson Node	 0 if None

6. Line Type Code

7. Length of Node Code (Length x 10)

8. Earth Resistivity Code

9. Transformer Code

10. Phase Code for Transformer Connection

11. Number of Service Drops

12. 'Primary Load Type Code

13. Neutral-to-Ground Impedance

_1

Continuing with reference to Figure OD-7, Column 8 contains a

single-decimal digit representing the earth resistivity code.

Figure OD-10 shows a tentative assignment for these codes. Column

9 contains a transformer identification type code which is used by

the main network programs to address a data-base file for the trans-,;

former parameters. Zero indicates absence of a distribution trans-

former. Column 10 is the phase connection code which follows the

same strategy as for 1 < LTYP < 9 shown in Figure OD-8. Column 11

contains the number of drops served by the distribution transformer

and has been included in anticipation that this parameter may be

used to statistically define a total secondary load. Column 12 con-

tains a primary load identification/type number, which if nonzero,

is used by the main program to address a data-base file containing

0-19 .wr
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OHMMCODE

2	 50
4	 100
b	 200

CODE	 OHM-METERS

Figure OD-•10. Earth Resistivity Code Assignments
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ORIGINAL PAGE 13
OF POOR QUALITY

previously specified feeder loads, Column 13 is an integar repre-

sentation of the user's estimate for the neutral to (true) ground

resistance in ohms. This value is used only when operating the main

network programs in the modes in which the neutral is not assumed at

zero potential.

Figure OD-11 is a slightly modified (to include the annotation

on line 1000) listing of such a user pr-pared network file. This

file represents a portion of an actual feeder network. Figure OD-12

is presented for possible interest and shows the "tree" topology of

the network defined in Figure OD-11.

(On). Netw0M k Computational Procedure

This section will briefly describe the two-stage approach used

to compute the response on the network. Before doing so, consider

Figure ON-1 which illustrates the input and output of a section,

its associated primary load Y L , which may be zero, and a termination

admittance Y2 connected to the output. Also implied in this illus-

tration is a transmission line type section, i.e. 100 < LrYP < 999.
ti

This is arbitrary and could be any other type section. Obviously

Y 2 + YL represents the total admittance connected to the output ter-,I

minals of the transmission line. Given the parameters of the trans-

mission line (see Appendix A of the Technical Appendixes Volume) their

voltage transfer ratio VTOPH (matrix) relating the output voltage E2
y

to the input voltage E 1 (vectors), and the driving-point admittance

matrix, YIN looking into the input terminals, can be computed. This

logically leads to the first of the two stages, a recursive admit-
:;

tance and voltage transfer reduction.

This recursive admittance reduction stage is explained in Fig-

ure ON-2, which illustrates the example binary tree network intro-

0-21
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OF POOR QUALITY

• NAAA * RRAiY}I}PONd ► 11RAdARAwAI/ AAMMA1tA f► AddMfhR1^ARA*R+F}d1 ► MAMNIFA^lM1► ARAAilAItRkNf

R ,RUSTAY L/11T14K 1.422 	 05/15/78	 10:02

♦ ApAAd*00 4 0 d *N Md ****JF*0**##** 1W#** ** * **014fii *** t*** F****iF****ir#i► *11***0

1000 NODE IPAR ILSN IRSN LTYP ILCD IOHM ITTY APHS LASER IPRL	 I"!GD
1010 68 0 69 0 111 604 4 0 0 0 0 0
1020 69 68 '70 0 125 591 4 25 3 3 0 0	

J

1030 70 69 71 0 125 . 591 4 0 0 0 0 0
1040 71 70 72 0 111 5R7 4 0 0 0 0 0
1050 72 71 73 0 115 533 4 10 2 2 0 0
1060 73 72 74 0 111 832 4 10 1 1 0 0
1070 74 73 75 76 111 3066 4 0 0 0 0 0
1080 75 74 0 0 111 622 4 0 0 0 0 0
1090 76 74 77 0 139 610 4 25 1 1 0 0
1100 77 76 78 0 117 2786 4 10 1 1 0 0
1110 78 77 79 0 117 567 4 10 1 3. 0 0
1120 79 78 80 0 119 610 4 0 0 0 0 0
1130 80 79 81 0 121 472 4 25 3 4 0 0
1140 81 80 82 0 121 482 4 0 0 0 0 0
1150 82 131 83 86 143 872 4 0 0 0 0 0
1160 83 82 84 88 143 1 4 0 0 0 0 0
1170 84 83 85 0 2 0 4 0 0 0 n n
1180 85 84 0 0 129 521 4 15 0 2 0 0
1190 86 812 87 0 2 0 4 0 0 0 0 0	 j
1200 87 86 0 0 129 428 4 10 0 1 0 0
1210 88 83 89 0 119 732 4 10 2 1 0 0
1220 89 as 90 0 139 732 4 50 1 3 0 0
1230 90 89 91 0 139 2076 4 0 0 0 0 0
1240 91 90 92 0 121 573 4 25 1 3 0 0
1250 92 91 93 0 119 750 4 10 3 1 0 0
1260 93 92 94 101 119 704 4 0 0 0 0 0
1270 94 93 95 0 3 0 4 0 0 0 0 01260 95 X74 96 0 131 165 4 0 0 0 0 0
1290 96 95 97 99 131 73R 4 0 0 0 0 0
1300 97 96 98 0 135 460 4 0 0 0 0 0
1310 98 97 0 0 129 767 4 50 0 1 0 0
1320 99 96 100 0 135 610 4 25 0 4 0 0
1330 100 99 0 0 129 716 4 10 0 2 0 0
1340 '101 93 102 0 119 1097 4 0 n 0 0 0
1350 102 101 10 '3 167 139 1731 4 0 0 0 0 0
1340 103 102 104 3 n 4 0 0 0 I) 0
1370 104 103 105 0 133 149 4 15 0 1 0 01380 105 1.04 106 0 133 540 4 1c) 0 1 0 0
1390 106 105 0 0 133 664 4 25 0 1 0 0
1400 107 ln2 106 0 119 792 4 25 3 2 0 0
1410 108 107 109 Ill 114 823 4 {) 0 0 0 0
1420 109 108 110 U 2 r 4 0 n 0 0 n
1430 110 109 G 0 133 1332 4 15 0 1 0 01440 111 108 112 0 139 823 4 1O 1 1 0 0
1450 112 111 113 0 139 1594 4 0 0 0 0 0
1460 113 112 114 0 119 762 4 0 0 0 0 0

Figure OD-11. Illustrative User Defined Network File*

*Actually represent4ng test network section shown in Figure OD-1	 ^y
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ORIGINAL PAGE S,7

OF POOR QUALITY

R-.RUSTAY 1 /NTWK 1 N22	 PAGE 2

1470 114 113 115 0 139 1524 4 0 0 0 0 0
1480 115 114 116 0 119 2192 4 0 0 0 0 0
1490 116 115 117 0 139 756 4 0 0 0 0 0
1500 117 116 118 126 ll q 643 4 0 0 0 0 0
1510 118 117 119 0 3 0 4 0 0 0 0 0
1520 119 118 12 0 0 129 1311 4 10 0 2 0 0
153 0 120 119 121 0 129 756 4 b 0 0 0 0
154 0 121 120 124 122 129 1198 4 0 0 0 0 0
X550 122 121 123 V 135 640 4 15 0 3 0 0
156 0 123 122 0 0 137 2210 4 10 0 2 0 0
1570 124 121 125 138 12 q 1381 4 0 R 0 0 0
1580 138 124 0 0 135 908 4 25 0 5 0 0
159 0 125 124 0 0 135 3A1 4 10 0 5 0 0
1600 126 117 127 0 141 646 4 25 1 3 0 0
1610 127 126 128 130 119 750 4 0 0 0 0 0
162 0 128 1?7 129 0 1 0 4 0 0 0 0 0
1630 129 128 0 0 133 424 4 10 0 2 0 0
1640 130 127 131 0 139 1524 4 0 0 0 0 0
1650 131 130 132 0 119 1591 4 0 0 0 0 0
1660 132 131 133 135 119 744 4 10 2 1 0 0
1670 133 132 134 0 3 0 4 0 0 0 0 0
1680 134 133 0 0 129 1704 4 10 0 2 0 0
1690 135 132 136 0 119 1490 4 0 0 0 0 0
1700 136 135 137 0 139 611 4 0 0 0 0 7
1710 137 136 0 0 119 2405 4 10 3 1 0 0

Figure OD-11. Illustrative User Defined Network File (Cont'd

,1



ORIGINAL PAGE S,7

OF POOR QUALITY

R-.RUSTAY1/NTWK1N 22 PAGE 2

1470 114 113 115 0 139 1524 4 0 0 0 0 0

146 0 115 114 116 0 119 2192 4 0 0 0 0 0

1490 116 115 117 0 139 756 4 0 0 0 0 0

1500 117 116 118 126 11 q 643 4 0 0 0 0 0

1510 118 117 119 0 3 0 4 0 0 0 0 0

'	 1520 119 118 12 0 0 129 1311 4 10 0 2 0 0
153 0 120 119 121 0 129 756 4 b 0 0 0 0
154 0 121 120 124 122 129 1198 4 0 0 0 0 0

- X550 i22 121 123 V 135 640 4 15 0 3 0 0
156 0 123 122 0 0 137 2210 4 10 0 3 0 0	 1
1570 124 121 125 138 12Q 1381 4 0 R 0 0 0
1580 138 124 0 0 135 908 4 25 0 5 0 0
159 0 125 124 0 0 135 3A1 4 10 0 5 0 0
1600 126 117 127 0 141 646 4 25 1 3 0 0
1610 127 126 128 130 119 750 4 0 0 0 0 0
162 0 128 1;7 129 0 1 0 4 0 0 0 0 0
1630 129 128 0 0 133 424 4 10 0 2 0 0
1640 130 127 131 0 139 1524 4 0 0 0 0 0
165 0 131 130 132 0 119 1591 4 0 0 0 0 0
1660 132 131 133 135 119 744 4 10 2 1 0 0
1670 133 132 134 0 3 0 4 0 0 0 0 0
1680 134 133 0 0 129 1704 4 10 0 2 0 0
1690 135 132 136 0 119 1490 4 0 0 0 0 0
1700 136 135 137 0 139 610 4 0 0 0 0 7
1710 137 136 0 0 119 2405 4 10 3 1 0 0

r

Figure OD-11. Illustrative User Defined Network File (Cont'd)

ff
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OF POOR QUALITY
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ti

E2 = VTOPH * El

Figure ON-1. Section Voltage Transfer Ratio and Input
Driving-Point Admittance



ORIGINAL PAGE IS
OF POOR QUALITY

O
a,q

U

a
U
s;
ro

_ 0

w^/

	

es.	
ZO

z C

	

E O	 ^4H

O 'OL.

^ N ^
,^ s

	

^.	 U
0. 0
^E
O
C)

a ari
H
H

N
1
2
O

M
•r4
w

r
I•

ii

li

li

s^
I}

i,

,a1

N OT T T
T

X

r^r^t
w m

' ,VC	 WCZ ,^ L
O

cz N

cr LL

^C , (D m
C 0) C

Zco 0. o 0

r > a)
04 4)

w

C Cn	 UJ

O

CrO
O

C C a'
O O

01 N '+• ;^ U

C	 W
N N Q _Z

d O 1'« cr C >-
LO O	 O

 cwO U Y V NC ` C ^.r

Ca .=
T-

momma:z 3:= .4--1E
o

V ® vEZ^ U,Q
T O	 C +^

"O
CL

CC O	 m

O
w 0=..

-o	 z F-
C	 C z0 O

OU ^w	
W?- >Cn

cO ^ z
z

0 Q^
U

O
C/)

0-27



duced earlier. Utilizing the section parent, left son, a d right

son entries contained in the user generated network file, a sequenc-

ing algorithm develops a computational sequence, not unique, such

as shown in Figure ON-2. The idea is simple. Progressing inbound

from a terminus node, it is evident that recursively applying, in

the sequence shown, the admittance transformation, using as appro-

priate, some amount (usually small) of temporary core store, the in-

put driving-point admittance and voltage transfer ratio for every

section can be determined, including the driving-point admittance
presented to the source by the network, i.e. associated with the

root section. All of these admittances and voltage transfer ratios

(and other useful matrixes) are saved in a file as each section is

computed. This first-stage procedure is accomplished in main pro-

aram NTWKERSI.

The second stage associated with the calculation of voltages,

currents, .end power at each section, begins with the determination

of the voltage at the input to the root section by utilizing a user

specified source, usually a Norton's Equivalent Source in vector-

matrix form. Again using the section and parent entries of the user

specified network file, a direct path sequence is established from

a user specified section (where he desires a response calculation)

to the first-encountered section (the root section for the first

time) whose input voltage has been previously determined. This

path sequence is saved in a push-down stack. Then using the saved

voltage transfer ratios, the voltages for each section along the

path are computed in the logical sequence saved in the stack. As

each voltage is computed, it is saved in the same file for possible

0-28
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OF POOR OUALITY

subsequent runs. This procedure is summarized in Figure ON-3. In

addition to the section voltages, other quantities such as Y  and

YOUT (see Figure ON-4) are computed and saved. The procedures of

this second stage are accomplished by the main network program

NTWKANSI.

7

Root	 4
Section

2	 9	 12

YiNNET #
1 	 s

Source	
5	

10
3

11
Given Source Excitation Specification, i.e. Norton's

	

t o Source Current Vector	 Yo Source Admittance Matrix

Compute Drive Voltage E o Vector

to	 Yo	 YINNET	 Eo

Then Use Saved Data Such as the Voltage Transfer Ratio Matrices to
Compute Voltages (and Then Currents) in Outbound Direction to
Desired/Specified Section. At All Sections on the Path, All Voltage,
Currents and Other Quantities Are Saved.

Computer Program NTWKANSI
Performs Sign-Al Propagation Calculations

Figure ON-3. Signal Propagation Calculation in Illustrative Tree Nictwork,

(Ot). Computer Program Interrelationships

The interrelationship between the various programs in the

DIFNAP system is shown in Figure Ot-1. The two main programs are

NTWKERSI and NTWKANSI.

Program NTWKERSI takes the network description from data file

DNWKINij and uses it to compute driving point admittance matrices

and voltage transfer ratio matrices. The procedure used is to

0
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OF POOR QUALITY

s

*	 T

Al

CONVERSATIONAL
	 CONVERSATIONAL

USER INPUT

CONVERSATIONAL DNWK1Nnm
USER INPUT	 NTlijknm	 Nlijkmn

	

USER	 NTWKERSI	 NTWKANSI
SPECIFIED

ZYDA Ijkp
FEEDPUSI	

DOCUMENTATION

DPUlijkn	 SUBROUTINE	 I'
LIBRARY

DOCUMENTATION	 DAPRYijk

	

1	 DASEC0i1
1

CONVERSATIONAL

DATRANij	 ^C SCADEI DOCUMENTATIONi

DARBTRij

Figure OT-1. T ;c D1.F'NAP System of Programs
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start at the terminal sections and work inwards towards the root

of the network. The program uses the following data base files:

DPUlijkn - parameter of lines used
DAPRYijk - primary load file
ASCII RBTRDAIA - for single phase ratio bank transformer*
ASCII TRANFILE - for distribution transformers**

Brief descriptions of the data base files are provided in

the User Handbook (Volume-4). The data file DPUlijkn is gener-

ated from the ZYDAijkp data file using the FEEDPUSI program. The

ZYDAijkp data files are, in turn, generated using the DISEM7S1 pro-

gram as described in the User Handbook. The primary output of

NTWKERSI is a random binary data file NTlijknm.

Program NTWKANSI takes the random binary data file NTlijknm

generated by NTWKERSI as its input and computes voltage and cur-

rents at specific points on the network. The user specifies the

source properties as a part of the conversational input. The out-

put is placed in an ASCII file Nlijkmn. In addition, the NTlijknm

file is updated so that the same network is analyzed with the same

source. At another time, computations already made need not be

-repeated.

In addition, the DIFNAP system also contains a program,

CASCADEI, which can be used for the computation of a non-branched

cascade of sections.

Descriptions of the conversational input to the DIFNAP pro-

grams are given in the User Handbook.

* See listing of NTWKERS4 (beginning with line 7250) in Volume 4.

** See listings of TRANADS4, TRANFILE in Volume 4.
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