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FOREWORD

This document reports on the turbulence measurements performed in a swirl-

ing, confined jet flowfield. The experiments were supported by Oklahoma

State University (Purchase Requisition 31256) as part of NASA Grant No.

NAG 3-74, "Investigations of Flowfields Found in Typical Combustor Geo-

metries." The experiments conducted in the Dynamics Technology facility

were perfonned with a triple hot-wire probe utilizing a specially con-

stricted probe drive fabricated by students at Oklahoma State Univer-

sity. Included as Appendix A of this report is AIAA paper No. 82-1262

which reports on turbulence measurements performed in a confined jet at

Oklahoma State using a six-orientation single hot-wire technique. A por-

tion of the analysis of the data in that paper was performed, at Dynamics

Technology under the noted subcontract.

The authors would like to acknowledge the assistance of Professor David

Lilley of OSU and especially his students in support of our experiments.

The financial support of NASA Lewis Research Center and the Air Force

Wright Aeo,onautical Laboratories is also acknowledged. Finally the

authors would like to thank Professor Toshi Kubota and Dr. Robert Gran for

their suggestions regarding the interpretation of the experimental data.
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ABSTRACT

DT-8178-02

The investigatio., of an axisymmetric swirling confined jet flowfield,

similar to the ones encountered in gas turbine combustors, has been car-

ried out using a triple hot-wire probe. The raw data from the three sen-

sors are digitized using ADC's and stored on a Tektronix 4051 computer.

The data are further reduced on the computer to obtain timE!-series for the

three instantaneous velocity components in the flowfield. Finally, the

time-mean velocities and the turbulence quantities are deduced.

Qualification experiments were performed and where possible comparisons

are made with the results of independent measurements. For example. the

mean velocity components are compared with the results of five-hole pitot

probe measurements. The major qualification experiments involved measure-

ments performed in a non-swirling flow compared with conventional X-wire

measurements. In the swirling flowfield advantages of the triple wire

technique over the previously used multi-position single hot-wire method

are noted. The results of the present measurements provide a data base

with which the predictions of turbulence models in a recirculating swirl-

ing flowfield can be evaluated in detail.
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NOMENCLATURE

I(

n 

A,B,C Calibration constants	 in Equation	 (3.1)

D Test section diameter

d Inlet nozzle diameter

E Not-wire voltage

un Velocity normal	 to a single wire

u,v,w Velocity components in the coord;nate system defined
by a single wire.

uo ,vo ,wo Velocity components in the coordinate system defined
by the three wires.

u',v',w Velocity components in the coordinate system defined
by the probe support axis.

u Instantaneous axial 	 velocity in facility coordinate

system.

v Instantaneous radial	 velocity in facility coordinate
system.

w Instantaneous swirl 	 velocity in facility coordinate

system

G Pitcn factor.

K Yaw factor

N Number of points digitized per channel

r Radial	 location	 in the flowfield.

x Axial	 location in the flowfield.

z Effective cooling velocity acting on a wire.

a Side-wall	 expansion angle.

0 Swirl	 vane angle.

9 1 Probe pitch angle.

`)z Probe yaw angle.

Subscripts

1,2,3	 Refer to the three wires of a triple-wire probe.

rms	 Root-mean-squared quantity.

Superscripts

Time-mean averaged quantity.C-)
( ')	 Fluctuating quantity.
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1. INTRODUCTION

1.1 Background and Previous Studies

Swirling confined jets have bean under intens i ve investigation in the

recent years. One application of such flowfields is a gas turbine com-

bustor, an example of which is shown in Figure I. Flowfields within such

combustors typically have a rapid expansion and strong swirl imparted to

the incoming air, which result in corner and central recirculation

zones.	 The presence of swirl and the re-circulation zones increase the

complexity it terms of fluid dynamic analyses of such flowfields. This
complexity is further increased by the processes of combustion and heat

transfer within the flowfield. Despite the complexity of combustor flows,

signifirant progress is being made in their analysis as discussed in

Reference 1.

During an initial attempt to perform measurements of mean velocity and

turbulence quantities, a much simplified combustor flowfield was model-

ed. Figure 2 shows the schematic of idealized geometry with a control of

side wall expansion and degree of swirl imparted to the flow. The figure

shows various recirculation regions experienced in such a flowfield. This

idealized swirling confined jet is being i nvestigated at Oklahoma State

University and at Dynamics Technology, with a variety of methods of

approach. Analytically, a computer code (STARPIC) presents a theoretical

model designed specifically to calculate the swirling confined jet flow-

fields 2 . Experimentally, a series of flow visual , zation experiments

coupled with 5-hole pitot probe measurements have been used to character-

ize the time-mean flowfield3.

-1-
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In addition to the mean properties, turbulence measurements are being per-

formed using various hot-wire techniques. At Oklahoma State University, a

technique of using a single, normal hot-wire at six different orientations

has been developed which can measure time-mean velocities and normal and

shear stresses. Some of the analysis of the measurements was performed at

Dynamics Technology under the present sub-contract and is therefore

included here as Appendix A.

The six-orientation technique is hisically a statistical technique applic-

able to stationary turbulent flows which uses mean voltage and root-mean-

square voltage fluctuation measurements and an extensive data reduction

method to produce estimates of the components of mean velocity together

with normal and shear turbulent stresses.

1.2 Present Study

At Dynamics Technology_ a triple-wire measurement technique has been

developed for the purpose of measuring mean velocity and turbulent

stresses. The thi,c-.e wires are simultaneously operated by three closely

matched constant temperature anemometers, from which time series of these

velocity components can be deduced. The instantaneous signals are digi-

tized using ADC's which dre controlled by a Tektronix 4051 computer. The

subsequent data analysis is performed by digitally correlating the three

signals and thereby obtaining the time-mean velocities and the velocity

fluctuation products which can be averaged to produce Reynolds stress

estimates. A significant advantage of the three-wire method is that the

data reduction is performed on instantaneous measurements so that time

records of velocity components (and fluctuations) can be obtained. Con-

sequently more detailed information on the turbulence (including time

domain information) can be obtained which is not possible with the single

wire, six-position technique.

E,
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The data analysis is based on a study done by Yavuzkurt, Crawford and Mof-

fat 5 who used a triple-wire probe in a three dimensional turbulent flow-

field. Yavuzkurt et al. developed a network of analog devices with which

co process their signals. This data ,,ocessing in the present study has

been replaced by software coding operating on digitized signals.

2. PROBE DESCRIPTION AND INSTRUMENTATION

2.1 The Triple-Wiry

The three-wire probe used in the present study is DISA type 55F81. (See

Figure 3.). The three sensors are 5 µm diameter platinum plated tungsten

wires. The wires are oriented in a mutually orthogonal array. The probe

support lies symmetrically between the three wires making an angle of 54.7

degrees with each of the wires or 35.3 degrees with the plane defined by

any of the two wires (see Figure 4). The gold-plated and stainless-steel

prongs are embedded in three independent ceramic bodies mounted in the

stainless-steel probe shank.

The probe is operated by three separate but closely matched constant tem-

perature anemometers (DISA type 55C12). The hot-wire raw signals are con-

ditioned by DISA type 55N20 signal conditioners. TFe signal conditioners

allow low pass filterin : of the hot-wire signals at a des; rad frequency.

2.7 Experimental Facility

Figure 5 shows the overall schematic of the entire facility. It consists

of a 1400 C.F.M. fan manufa:,tured by Joy Manufacturing Co. The fan drives

the air througi a 9" diameter section of flow straighteners into a dif-

fuser which has two perforated plates inside in order to prevent flow

4

	 separation within the diffuser. The flow then passes through a turbulence
I

management section which has several screens and flow straighteners to

decrease the turbulence levels. The air then enters a contraction section

-3-
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and exits through a round jet of 6 inch diameter and expands into the test

section which consists of a five foot long plexiglass tube 12 inches in

diameter. A swirler designel and built at Oklahoma State University can

be installed at the nozzle exit along with the desired expansion block

(see Figure 5.).

2.3 The Probe Drive

The probe drive, shown in Figure 6 was designed speci'ically for triple-

wire measurements. The drive has three degrees of freedom: pitch and

yaw, (necessary to aim the probe in the direction of the mean flow at any

location in the flowfield) and vertical translation for surveying an axial

station.

2.4 Data Acquisition System

The hot-wire signals from the three wires are digitized using analog-to

digital converters which can scan each of the three channels simultane-

ously up to a sampling rate of 9 kHz. The ADC's are controlled by the

Tektronix 4051 laboratory computer. The digitized data are stored on mag-

netic tape and further reduced and plotted using the laboratory com-

pul ter.	 The entire data acquisition and reduction system is automated,

thereby eliminating the intermediate handling of experimental data.

3. THEORY AND DATA REDLIM041

3.: Resin ise Equations

Before measurements in a turbulent flowfield, the triple-wire probe is

calibr,ited in the uniform-flow region of the free jet. A calibration

equation relating velocity to the hot-wire voltage for a single wire can

be written as:

-4-
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E 2 - A + B Un 1/2 + C U n	(3.1)

where E is the hot-wire voltage and U n is the component of velocity normal

to the wire. For a triple-wire, three such calibrations are required for

the three individual sensors. There are two methods of calibration

reported in literature. One method, used by Gaulier 6 for example, calls

for orientation of the individual sensors normal to the calibration (in

smooth potential flow) jet and "thus obtaining an E vs U n curve fit given

in Equation '3.1). The second method, used by Yavuzkurt et al. 5 , calls

for orientation of the probe axis colinear with the calibration jet and

resolving the velocity components in directions normal to the three wires

to obtain an E vs U n calibration for 0e three respective wires. For the

present study, both the methods were tried and the method where the probe

support axis is colinear with the jet was found to produce better results

and hence is used in the analysis. Equation (3.1) can be now inverted and

can he written in terms of the individual cooling velocities experienced

by the three wires as:

Un l	{ -B 1 + {B1 - 4C 1 (Al - E2)}1/2/2C1 }2

Un 2 = {-B 2 + {32 - 4C
2
 (Al - E2)}

1/2/20 2 } 2	(3.2)

Una = (-6 3 + {63 - 4C 3
 (A

3
- E2 1/2/203}2

Jorgensen ) introduced the sensitivity of a normal single hot-wire to flow-

field angularity by an equation:

.I

Z 2 = v 2 + G 2 u 2 + K 2 w2
	

(3.3)

-5-
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where u,v, and w are velocity components in the coordinate system def

by the probe (see Fiyure 7), z is the apparent cooling velocity and

pitch and yaw sensitivity factors are defined by Jorgensen 7 as:

G= v (u'w=0)
N N N
u (v ,W = 0)

N N N
v (u^w=0)K 
w (u,v = 0)

and

(3.4)

evaluated from calibrations perfoi)ned in the three directions defined by

Figure 7. The apparent cooling velocity z i is the velocity that would be

calculated from the hot-wire voltage E i (for the i th wire) `rom one of
equations (3.2).

As described in section 2, the wires of a triple-were probe form a tri-

hedral.	 Figure 8 shows the Liordinate system (x o ,yo ,zo ) defined by the

three wires. Equation`, (3.3) can now be written for each wire as:

Z 2
1  

K1 U 2 + V2  + G 1 wo

z2 =G2 u®
+K2vo+wo

Z23	 o= u 
2 

+ G3 o
2

v + K 3 ►r 
2
o

(3.5)

Equation (3.5) can also be written in the matrix form as:

-6-
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Z2. K1
1

G1 uo

z2 G2
K2

1 vo

z 3 1 G2K 3 wo

we can define a sensitivity matrix K given by:

K 1 1 G1
K G2 X2 1

^I. G3 K3

(3.6)

(3.7)

Equation (3.5) can be inverted to obtain velocity components in the xo,yo

and zo directions (coincident with the orientation of the three wires):

u 2	 z20	 1

vo	 s	
K-1
	 Z22

W2o	 z3

In calculating the velocity components u o ,vo and wo from three squared

values it is assumed that each component is the positive square root of

the squared quantity.	 T;0 s is	 equivalent to assuming that the velocity

vector lies within 54.7 degrees of the probe axis. In highly turbulent

regions, points in time in which the velocity is outside the 54.7 ,4egree

cone are incorrectly resolved. This is perhaps 4he most serious source of

error in the triple-wire measurement technique.

In the calculation of the u o ,vo and wo velocity components at some ;;oints

in time negative values of squared quantities are obtained (indicating

-7-
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imaginary velocity components). re believe this is related to the situa-

tion in which the direction of tae velocity vector is outside the 54.7

degrees probe cone. There are two ways in which we handle such data. The

first method is to completely discard the point from the data set. The

second method is to set the individual velocity component (whose squared

value is negative) to zero and include the data point in the set. Com-

parison of final flowfield estimates calculated by the two ways provides a

measure of the uncertainly of the quantity.

Using the above described methods, the u o , vo and wo velocity components

are calculated at each point in time. These data can then be transformed

into a coordinate frame x',y' and z' defined by the probe support as shown

in Figure 4 by:

u'	 cos45 cos35	 cos45 cos35	 cos45 cos35	 uo

-cos45	 cos45	 0	
v 
	 (3.9)

w'	 cos45 sin35	 cos45 sin35	 -cos35	 wo

There is yet a final transformation that is performed to obtain the velo-

city components in the facility coordinates (x,y,z). This transformation

depends ;upon the orientation of probe axis in the flow. Assuming 9 1 , to

be the pitch angle and e2 be the yaw angle of the probe the final trans-

formation equation can be written as:

ru	 coso1 cose2	- sine 2	 -cose2 sine,	 u'

!! w	 =	 cose, sine 	 cos62	 -sine, sine 	 v'	 (3.10)

v 	 L	 sine,	 0	 cose2 cose,	 w'
J

-8-
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where u is the instantaneous axial velocit,;, w i.. instantaneous swirl

velocity and v is the instantaneous radial velocity. Thus Equation (3.10)

gives the time series for the three velocity components u,v, and w in the

facility coordinate system x,y and z.

Thus the time mean velocities are computed with

n

u	 ui /N

i=1

N

v	 a	vi/N	 (3.11)

i=1

N

w	 wi/N

i=l

where N is the total number of points digitized per channel.

Similarly. the turbulent normal stresses can be written as:

N

}	 (u i - u)`'

N

 (3.12)

N
`•	 (%I - 

w).

i=l

-9-
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Finally, the turbulent shear stresses can be written as

N

(ui - u)(vi - v)

N

( u i - u)(w i - w)

u'w' = i=1

N

(v i - v)(w i -w)

77 w7 
= i=1	 —

N

(3.13)

Equation (3.2) through (3.13) are solved on a Tektronix 4051 computer

usinq the digitized raw signal: from the three wires. The computer is

equipped with a graphics package which fa0 1itates the plotting of radial

and axial distributions of time-meal and turbulence quantities. 	 These

data are presented in the next section.

4. RESULTS

Measurements of time-mean and turbulence quantities using a triple-wire

probe were carried out in the idealized, non-reactive flowfield at various

axial locations. Experiments were performed with the swirler vane angle

set at 38 degrees and the side wall expansion angle a of 90 degree.

4.1 Data Sampiing and Reduction;

As discussed earlier the signals f-om the three wires sometimes experience

large differences generating negative values for squared quantities in

-10-
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Equation 3.8. We suspect the problem to be caused by large local flow-

field angles. Another possibility is that the turbulent scale sizes in

the thin shear layer portions of the flowfield are small, and in some

cases of comparable size to the triple hot-wire probe. In these cases

probe resolution problems could lead to inaccuracies such as those

experienced in the data.

As discussed earlier data are either discarded or processed by setting

individual unresolvable velocity components to zero.The effect of discard-

ing data is difficult to estimate. Initially, a large number of data

points are recorded so that enough points are retained to maintain statis-

tical significance. This is tested by comparing the results of processing

100, 200 and 400 data points and demonstrating "convergence" of the time-

mean estimates. A second method involved comparing data calculated from

the two methods of Handling data with negative square roots discussed

above. The most reliable method for estimating the accuracy of the data

processing technique however, involved comparing results of the three-wire

measurements with the results of independent measurements. In the swirl-

ing flowfields comparisons are made with measurements of mean ^,alocity

components made with a five-hole pitot probe. In non-swirling flawfields

comparisons are made with conventional x-wire measurements performed by

Chaturvedi 9 of both mean and turbulent velocity components. Finally,

comparisons are also made with turbulence measurements performed in an

identical swirling confined jet flowfield 4 using a six-orientation,

single hot-wire technique. However, it appears that the present three-

wire probe technique is in fact more accurate ana reliable than the six-

orientation, single wire method. This will be discussed further with the

presentation of the measurement results.

-11-
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4.2 Techn;qut Verification in Non-Swirling Flo,:

Preliminary measurements were performed in a non-swirling confined jet at

x/D = 2.0 with 0 = 0 and a = 90 degrees. The results are compared with a

similar study performed by Chaturvedi 9 in a corresponding flow situation

using a cross-wire probe. Figure 9 shows the radial distribution of time-

mean and turbulence quantities. The two studies show very favorable

Agreement. Overall, the results show impro^,nent over the results obtain-

ed by the six-orientation hot-wire technique reported in Reference 4,

Appendix A. In particular, the radial turbulence intensity, when measured

by the six-orientation technique was lower than the one measured by Cha-

turvedi 9 (at the x/D=2 station; see Reference 4).	 The triple-wire

measurements show the radial turbulence intensity to agree very well with

the Chaturvedi measurements.	 Generally speaking, the non-swirling con-

fined jet measurements verify the triple-wire technique.

4.3 Mean-Velocity Field in Swirling Flow:

In a swirling confined jet flowfield, the axial and azimuthal velocity

components are the two dominating components. The swirling confined jet

flowfield measurements reported here have all been performed with para-

meters D/d=2, the swirl angle 0 =38 deg and the expansion angle a=90 deg.

These parameters all correspond exactly to those used by Yoon 8 in an

experimental study of the mean flow of the confined swirling jet. Moon's

measurements were all performed with a five-hole pitot probe at axial

coordinates x/D=0.5,1.0,1.5, etc. In addition, he reported radial distri-

butions of mean axial and swirl velocity components in the confined jet

exit plane (at x/D=O). These velocity measurements indicate that the cen-

tral recirculation zone starts at the base of the center hub. Outside of

the center hub wake, the angle of the flow is approximately 28 deg. to the

facility axis (compared with the blade angle 0 of 38 deg). Figure 10, 11

and 12 show the radial profiles of the axial, radial, and azimuthal com-

ponents of mean velocity. The data are compared with the five-hole pitot

-12-
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probe measurements 3 . The two studies are in excellent agreement in the

case of the axial component of mean velocity. The radial component of

mean velocity also shows favorable agreement with the five hole pitot

probe measurements for x/D 21. The swirl component measured by the

triple-wire however, is up to twenty five percent lowe, than the one

measured by the five- hole pitot probe at axial location of 1.5 and

higher. At lower axial locations, the two measurements seem to agree very

well.

As mentioned earlier, the measurements have been performed in a swirling

confined jet in which the angles of the swirl blades have been set to

38°. After expanding to the larger diameter (D=30 cm) from the exit dia-

meter (D=15 cm), local flow angles significantly increase to near 60 0 to

the facility axis. The differences in the swirl velocity component

measurements, seen in Figure 12, represent differences in local flowfield

angles of up to 10 0 . The reason for this discrepancy is not known at this

time. It is important to note however, that measurements of the swirl

velocity component made with both the present three-wire method, and with

the six-orientation single-wire technique are in almost perfect agreement

(Compare solid symbols in Figure 12 with solid symbols in Figure 10,

Appendix A).

4.4 Turbulence Intensity Measurements:

The primary purpose of the hot-wire probe is to measure the velocity fluc-

tuations in a flowfield, taking advantage of the inherent fast time

response of the instrument. A triple-wire probe makes it possible to

measure the three components of the turbulence velocity in the swirling

flow under investigation. Figures 13, 14 and 15 shows the radial distri-

butions of the mean-square of three components of the turbulence velo-

city. The triple-wire data are compared with data obtained with the six-

orientation hot-wire technique 4 . The two studies show reasonable agree-

ment in quantifying the mean square of three components of the turbulence

velocity.

-13-
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f In general the turbulent fluctuations are higher in regions of higher mean

shear, such as evidenced on the edge of the recirculation region at an

axial station x/D=0.5. However, there appear to be substantial turbulence

levels throughout the recirculation region which we suspect is caused by

the large scale "breathing" of the region. Understanding of the phenome-

non will require more detailed measurements and signal analysis than was

possible in this study.

i 4.5 Turbulent Shear Stresses:
i

	

j	 Shear stresses are the most difficult turbulent quantities to measure

accurately in a complex three-dimensional flowfield. 	 Uncertainities in

measurements of mean velocities and turbulence intensities are multiplied

in determination of the shear stresses. Figures 16, 17 and 18 show the

turbulent shear stresses deduced from the three-wire hot-wire measure-

ments. When compared with the corres ponding measurements performed in the

non-swirling confined jet, (Figure 9), it can be seen that at most axial

stations the radial location of highest turbulent shear stresses has moved

outwards, corresponding to the shear layer displacement induced by the

centrifugal forces.	 Note, that the measurements produce primarily
k

negative values of the shear stress component u'v' which is expected in

the viccinity of the recirculation region where the gradient of the axial

	

j	 velocity (au/ar) is predominantly positive.

4.6 Comparison of the Three-Wire and the Six-Orientation Single

Hot-Wire Measurement Techniques:

The three-wire measurement technique was adopted to the present research

study with the idea that improved experimental data would result. In par-

ticular, accurate estimates of turbulent shear stresses are difficult to

obtain with any measurement technique (laser Doppler and hot-wire anemo-

knetry being the two most practical). Measurements were previously per-

formed in the Oklahoma State University confined jet facility (with

-14-
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a=90 deg and 0=38 deg) with the six-orientation single hot-wire tech-

nique. The resultinC data are shown on many of the present figures and in

more complete form in Reference 4 included as Appendix A.

The u'v' data deduced from the six-orientation single hot-wire measure-

ments are all shown as positive because the method used in that study was

unable to distinguish between positive and negative radial velocity com-

ponents. If the six-orientation single-wire data were assigned their

expected sign (to correspond to the results of the three-wire measure-

ments) then the two sets of data would be in closer agreement. However,

the u'v' data from the six-orientation single wire technique are usually

larger in magnitude than the triple-wire data and exhibit significantly

more scatter.

It could be argued that the u'v' data from the present method are more

accurate than the single wire measurements. First, the time mean radial

and axial velocity components are more accurately determined (as shown by

the comparison with the 5 hole pitot probe measurements). Second, the

turbulence measurements made in the non-swirling flow are slightly more

accurate (as shown by comparison with Chaturvedi's x-wire measure-

ments9 ). Finally, the magnitudes of all the turbulent stresses, as deter-

mined by the three-wire method, are of similar magnitude to the corres-

ponding data measured in the non-swirling flow, if account is taken of the

large changes in the recirculation geometry. 	 The six-orientation single

wire measurements indicate a larger u'v' component of the turbulent stress

in comparison with the non-swirling confined jet. This does not seem

reasonable to us because we would expect the centrifugal field to stabi-

lize the turbulence rather • than amplify it. Thus, in summary, the present

three-wire measurements appear to be producing more reliable results than

the previous single wire-measurements.

°
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Uncertainty estimates were made on the data by two methods. First the

sensitivity of the calculations to small changes in primary measured quan-

tities was determined. These calculations showed significantly less error

magnification than was determined for the six-orientation single hot-wire

method 4 . Additionally, hot-wire signals were ana;yzed using the two met-

hods of handling data with negative squared quantities discussed earlier

in Section 3.1. The difference between data determined in these two man-

ners provides a measure of the uncertanity in the final estimates. A

representative sample of the data is shown in Figure 19. Included are the

profiles of mean axial velocity, the axial component of turbulence velo-

city and the u'v' component of the turbulent shear stress, measured at

x/D=1.0. The solid circles represent estimates in which negative squared

quantity data are eliminated from the data set. The open circles are

estimates in which individual velocity components (in wire coordinates)

are set equal to zero when encountering a negative squared quantity.

These two estimates define an anticipated bound for the actual data.

Included on the figures (with the x symbol) are the estimates obtained

from the six-orientatiun single hot-wire measurements 4 . Note that there

is very good agreement between the two methods in the estimates of axial

mean velocity and axial turbulence velocity. For this comparison, u'v'

values measured by the six-orientation technique have been assigned the

appropriate sign corresponding to the results of the triple-wire study.

In the turbulent shear stress estimates, there is typically more scatter

in the single wire measurements with indicated magnitudes usually larger

than the triple-wire measurements.

A final point to be made regarding the comparison between the two hot-wire

methods concerns the ability of the triple-wire technique to produce time

series data as opposed to the single-wire technique whose reduced data is

alwave 4n time averaged form. A detailed discussion on time-series data

is presented in the following section.

-16-
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4.7 Real-time Measurements:

The triple-wire study presented here is unique in the sense that it pro-

vides time-series for the velocity vector sensed by the three wire

probe. The previously used multi-orientation single hot-wire technique

uses the averaged and root-mean-squared fluctuation values of hot-wire

voltage for data reduction. The triple-wire data acquisition is automated

and signals are digitized using re,-.1-time analog to digital converters.

The triple-wire technique thus has a definite advantage over the six-

orientation single wire method.

Figure 20 shows the time-series of the velocity experienced by one of the

three wires.	 This record was obtained in the swirling confined jet at

x/0=1.0, r/D=0.3 with ^=38 degrees, and a=90 degrees.	 The figure shows

large variations in velocity occuring at frequencies up to about 200 Hz.

Most of the turbulence energy is carried at these low frequencies. In

addition, there are large peaks occuring at even lower frequencies such as

20 Hz.

Figure 21 shows the power spectral density of the signal from a single

hot-wire in the confined jet flowfield. In this record 1024 points were

digitized at a rate of 32 kHz. The plot shows that most of the energy of

turbulence is contained in frequencies lower than 1 kHz. A decision was

:hen made to set the data digitization rate at 2.0 kHz for production run

experiments.

A review of Figure 20 and 21 suggests that the hot-wire is sensing a con-

siderable amount of low frequency, undoubtly large scale fluid motions.

It is possible that these large scale motions are coupling with the acous-

tic modes of the test chamber. For example, the fundamental plane wave

mode for the test chamber is approximately 45 Hz and the spinnirrq modes

are correspondingly higher in frequency. 	 These acoustic modes surely

cause the recirculation regions to "breathe" producing considerable energy

in low frequency fluctuations.	 This low f requency energy is mostly

-17-
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deterministic in nature and therefore is not best represented by

conventional turbulence models. 	 The triple-wire hot-wire technique

developed in this study could be used to conduct a detailed study of the

large scai q motions and their acoustic interactions in the swirling

confined jet flowfield. Such a study would provile valuable information

to aid in the interpretation of combustion instabilities in axisymmetric

combus^.,)rs.

F:.

BI I

if (
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5. CONCLUSIONS

5.1 -Summary

The measurements of time-mean velocities and shear stresses in a complex

three-dimensional flowfield have been carried out using a triple-wire

probe. Tha salient features of the outcome of the present study can be

Suir»-iia ri zed as follows:

1. Mean velocities measured by the triple-wire probe are in very good

agreement with measurements performed with a five-hole pitot probe in

an identical flowfield.

2. Io the non-swirling confined jet, turbulence measurements are in

very good agreement with previous measurements performed by Chatur-

ved1 9 using a conventional x-wire probe.

3. In the swirling confined jet flowfield the turbulence intensities

and turbulent shear stress estimates ootained from the triple-wire

technique are in general agreement with the corresponding measurements

performed with the previous six-orientation single hot-wire method.

In fact, the present measurements appear to be more accurate (and

hence more reliable) insofar as they retain the time series

information lost in the single-wire method.

5.2 Further Study:

In the present study the triple-wire measurements have been performed for

a confined jet flowfield with the swirl vane angle "38 deg. with an

expansion angle a=90 deg. The measurements have produced detailed baseline

turbulence data which can be used to evaluate the applicability of various

turbulence models in this swir'ing flowfield.

I
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An obvious extension of this work would include a parametric study of the

effect of vane angle and expansion angle on the turbulence properties.

The ability of the triple-wire probe to perform real-time measurements in

complex (swirling) flowfields suggests a detailed examination of velocity

transients and their coupling with acoustic modes. This type of study

should also by performed with downstream blockage found in realistic com-

bustor geometries.

-20-
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Figure 1. Typical Axisymmetric Combustion Chamber of a Gas Turbine Engine.
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Figure 6. The Three Dimensional Probe Drive.
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Figure 7. Coordinate System Defined by a Single Wire.
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Figure 8. Coordinate System Defined by the Three Wires.
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APPENDIX A

Turbulence Measurement In A Confined Jet

Using A Six-Orientation Hot-Wire Probe Technique
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TURBULENCE MEASUREMENTS IN A CONFINED JFT USING A
SIX-ORIENTATION HOT-WIRE PROBE TECHNIQUE

S. I. Janjua* and D. K. McLaughlin**
nynamics Technology, Inc., Torrance, California

and

T. Jacksont and D. G. Lilleytt

Oklahoma State University, Stillwater, OK;

Abstract

The six-orientation single hot-wire technique
has been applied to the complex flowfield of a

swirling, confined jet. This flowfield, which

contains a rapid expansion with resulting recircu-
lation regions, is typical of those found in gas

turbine engines and ramjet combustors. The pre-

sent study focusses on turbulence measurements in
such a flowfield in the absence of chemical

reaction.

A modification to the six-orientation hot-wire

technique developed by King has been made, which

incorporates the determination of turbulent shear
stresses (in addition to normal stresses) and

ensemble averaging of redundant turbulence output

quantities. With this technique,flowfield surveys
have been performed in both swirling and nonswirl-

ing axisymmetric confined jets. Where independent

data exist, comparisons have been made which

demonstrate the reliability of the technique.
Finally, a sensitivity analysis of the data reduc-
tion technique has been completed which forms the

major ingredient in an uncertainty analysis.

Nomenclature

A.B.0	 Calibration constants in Equation 1
AO,BO,CO Cooling velocity functions in Table 1
D Test section diameter
d Inlet nozzle diameter

E Hot-wire voltage
U Velocity function for axial velocity
W Velocity function for	 azimuthal velocity
V Velocity function for radial velocity
G Pitch factor
K Yaw factor

K z z
P

Covariance for cooling velocities
Zp, and ZQ

P,Q,R Selected hot-wire probe positions

Red Inlet Reynolds number

u Axial velocity	 in

v Radial velocity	 coordinates
w Azimuthal	 (swirl) velocity	 on facility

u,w,v Three components of velocity in probe
coordinates defined by Figure 5

x,r,O Axial, radial, azimuthal	 cylindrical
volar coordinates

Z Effective cooling velocity acting on a
wire
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a Side-wall expansion angle

Y Z Z Correlation coefficient (estimated)
i between cooling velocities of

adjacent wire orientations
a Z Variance of a given a 	 itity

m Inverse function of calibration equation
Swirl vane angle

Subscripts

1,2,3,4,5,6	 Refers to the six probe measuring

positions
i,j Dummy indicies which take the values

1to3
P,Q,R Refers to the three selected

measuring positions
rms Root-mean-squared quantity

Superscripts

Time-mean average

' Fluctuating quantity

1. Introduction

1.1 The Gas Turbine Combustor Flowfield

Recent emphasis on fuel economy and pollutant

suppression has sparked a renewed interest in gas

turbine combustor analysis. A typical axisym-
metri c gas turbine engine combustor is shown in

Figure 1. Flowfields within such combustors typi-

cally have a rapid expansion and strong swirl im-
,drted to the incoming air, which result in corner

and central recirculation regions. The swirling,

recirculating, turbulent flows within combustors
present one of the more difficult fluid dynamic

problems to analyze. This complexity is increased

many fold by the processes of combustion and heat

transfer within the flowfield. Despite the com-
plexity of combustor flows, si gnificant progress
is being made in their analysis.

,A in d Sq

.,.

Figure 1. Ax1sy111metrlc Combustor

of a Gas Turbine Engine
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The present paper reports on research which is

part of an extensive experimenta l and computa-
tional study of gas turbine flowfields in the

absence of combustion. Figure 2 shows the Charac-

teristics of the simplified flowfield being inves-
tigated. Flow enters through a jet of diameter d
into a tube of diameter D, after being expanded

through an angle a. Before entering the tube, the
flow may be swirled by a swirler located upstream
of the inlet plane. Shown schematically are the

corner recirculation zone (CRZ) and the central
toroidal recirculation zone (CTRZ) which are typi-
cally present in these flows.

SWIRL VANE ANG
INLET TKE kjo
 

D/2

/(a) SCHEMATIC OF TEST SECTION
J	 GEOMLTRY

CRZ

=TRZ _-

(b) EXPECTED RECIRCULATION ZONES

Figure 2. Idealized Combustor Flowfield

The swirling confined jet flowfield shown 
I 

7igure 1 is being investigated at Oklahoma State

University and at Dynamics Technology, with vari-
ous methods of approach. Analytically, a computer

program (STARPIC) has been assembled which is de-

signed srecifically to calculate the swirling con-
fined jet flowfields. 2 Experimentally, a series
of flow visualization experiments coupled with 5-

hole pitot probe measurements have peen used to
characterize the time-mean flowfield. 3 	Hot-wire
measurements of the turbulence properties are also
being conducted. This paper reports on the ini-

tial results of the hot-wire measurements in the

confined jet flowfield.

Several studies on time-mean flowfields of the

type just described have been carried out us±n^

various turbulence measuring techniques." -1U

Unfortunately, most of the techniques used do not
give complete and detailed information about the
flow in terms of all its time-mean and turbulence
quantities. In addition, no experiments have been
performed on the specific geometry of the present
study in the presence of inlet swirl. To develop
further the flowfield computational techniques,
including the turbulence modeling, there is a
strong need to obtain experimental estimates of
the tw-hulence and mean flow quantities in such
flows.

1. 2 The Turbulence Measurement Problem

Turbulence mea.urement in a complex flowfield
has always been a complicated problem encountered
by engineers. In the past, turbulence phenomena
have hee,, D iscussed by various authors in detail
and varic,-, methods of turbulence measurements

have been suggested. 11-13 One of the most widely
used instruments to obtain turbulence quantities
is the hot-wire anemometer, the most common of
which is a single hot-wire. When used at a single
orientation and in a two-dimensional flow with a
predominant flow direction, a single hot-wire can
measure the streamwise components of the time-mean
velocity and the root-mean-square velocity fluc-
tuation at a particular location in the flowfield.
A two-wire probe can be used to determine the
time-mean velocities, streamwisse and cross stream
turbulence intensities, and the cross correlation
between the two components of the velocity fluc-
tuations.14-15

Hot-wire measurements In complex three-dimen-
sional flowfields are considerably more difficult
than in one- or two-dimensional flowfields in
which the mean flow is predominantly in one direc-
tion. To measure the three velocities and their
corresponding fluctuating components in a three-
dimensional flowfield such as encountered in com-
bustor simulators, there are two methods that can
be employed at a point in the flowfield:

1) A three-wire probe used with a
single orientation.

2) A single- or double-wire probe
used with multi-orientation.

The three-wire probe technique permits the
necessary simultaneous measurements from which
three instantaneous velocity components can be
determined. The appropriate signal processing can
produce estimates of mean velocity components and
normal and shear turbulent stresses ( such as

u' ,' and u' v') .

The three-hot-wire probe technique is signifi-
cantly more complex than the single wir^ multi-
orientetion techniques. A multi-dimensional probe
drive is required to orient the probe in Lpproxi-
mately the mean flow direction. Also, sophistica-
ted signal processing electronics is required to
handle the three instantaneous hot-wire voltages.
Finally, the three-wire probe typically has less
spatial resolution in comparison with a single
wire probe.

Multi-orientation of a single hot-wire 1s a
novel way to measure the three components of a
velocity vector and their fluctuating components.
A method devised by Dvorak and Syred i6 uses a
single normal hot-wire oriented at three different
positions such that the center one is separated by
45 degrees from the other two. The velocity
vector at a 1 ation 1s related to the three
orthogonal components using pitch and yaw factors
as defined by Jorgensen. 17 The data are obtained
in the form of mean and root-,, l ean-square 4oltages
at each orientation. However, the measurements
done with a single wire do not supply all the
Information needed to obtain the turbulence quan-
tities. Therefore, in addition to a single wire,
Dvorak and Syred used a cross-wire probe to obtain
the covariances between the voltages obtained at
adjacent ho g-wire orientations.

King 1e modified the technique developed by
Dvorak and Syred. His method calls for a normal
hot-wire to be oriented th ,'ough six different po-
sitions, each orientation separated by 30 degrees
from the adjacent one. Mean and root-mean-square



voltages are measured at each orientation. The
data reduction is performed using some assumptions
regarding the statistical nature of turbulence,
making it possible to solve for the three time-
mean velocities. the three normal turbulent
stresses, and the three turbulent shear stresses.

1.3 The Scope of the Present Study

In the present study, the six-orientation
single normal hot-wire technique is being employed
to obtain the turbulence quantities in the combus-
tor simulator confined jet flowfield. Measure-
ments have been carried out for both swirling and
nonswirling flow with expansion angles of 90
degrees (sudden expansion) and 45 degrees (gradual
expansion). Only the 90 degree angle data are
presented here and the Reynolds number of the
inlet flow is . 5 x 10 4 which is comparable with
aircraft combustor flows (although our experiments
are performed in nonreacting flows). The data
reduction procedure extends King's technique to
ob_a'n turbulent shear and normal stresses using
six ►:sic response equations representing the six
orientations of a normal riot-wire positioned in
the flowfield. Certain modifications are made in
the procedure to calculate covariances which are
an integ-al part of the data reduction procedure.
An uncertainty analysis is performed on the tech-
nique which reveals the sensitivity of this tech-
nique to various input parameters discussed in the
later parts of this paper. Some of the turbulence
quantities obtained are compared with measurements
performed by Chaturvedi 5 using a crossed-wire
probe in a corresponding flow situation.

2.	 Experimental Facility and Instrumentation

2.1 Idealized Flowfield

The facility, designed and built at Oklahoma
State University, is a simulation of a typical
axisymmetric combustion chamber of a gas turbine
engine Shown in Figure 1. The schematic of the
test facility with the idealized flowfield is
shown in Figure 3.	 Arabi ei t air enters the low-
speed wind tunnel through a foam air filter. The
air then flows through an axial flow fan driven by
a 5 h.p. varidrive motor. Thus. the flow rate can
be varied for different test conditions. The flow
passes through a turbulence management section
which has two fine-mesh screens, a 12.7 cm length
of packed straws, and five more fine-mesh screens.
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The zxisymmetric nozzle was designed to pr 11-
duce a minimum adverse pressure gradient on lie
boundary layer to avoid flow unsteadiness asso-
ciated with local separation regions. The area
ratio of the cross sections of the turbulence
management section to that of the nozzle throat 1s
approximately 22.5.	 The diameter, d, of the
nozzle throat is approximately 1i cm.

The test section is composed of a swirler
(optional), an expansion block, and a long plexi-
glass tube. The expansion block. attached after
the swirler, is a 30 cm diameter annular disk of
wood.	 At present, there are three expansion
blocks, and the appropriate choice gives a 3 90,
70, or 45 degrees. The flow is expanded into a
plexiglass tube of diameter. 0, of 30 cm, thus
giving a diameter expansion ratio (D/d) of 2. The
test chamber has no film cooling holes or dilution
air holes, and the chamber wall of the test sec-
tion is a constant diameter pipe.

2.2 Hot-Wire Instrumentation

the anemometer used for the present study 1s
DISH type S5M01, CTA standard bridge. A normal
hot-wire probe, DISA type 55P01, is used in the
experiments. This probe has two prongs set
approximately 3 mm apart which support a 5 Wn
diameter wire which is gold plated near the prongs
to reduce end effects and strengthen the wire.
The mean voltage is measured with a Hickok Digital
Systems. Model DP100, integrating voltmeter and
the root-mean-square voltage fluctuation is mea-
sured using a Hewlett Packard, Model 400 Ilk, AC
voltmeter.

The hot-wire is supported in the facility by a
traversing mechanism shown schematically in Figure
4.	 It consists of a base that is modified to
mount on the pl exi gl ass tube of the test section
at various axial locations. The hot-wire probe is
inserted into the tube through a rotary vernier
and the base. The rotary vernier is attached to a
slide which can traverse across the flow chamber.
Thus, it is possible for the probe to be traversed
to any radial location at selected downstream
locations in the flowfield and to be rotated
through 180 degrees.

T,...,q unit

ŴL
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Schematic of the Experimental 	 Fi9rre 4. Not-Wire probe Mounted on the
Facility	 Test Section

*	 !,Irovided for information and not necessarily a
product endorsement.
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2.3 Calibration Hoz p le 	 IF POOR QUA LfTY

The hat-wiry is calibrated in a small air jet.
The facility consists of a compressed air line,

which delivers the desired flow rate through a
small pressure regulator and a Fisher and Porter
Model 10A1735A rotameter. The Jet housing con-

sists of an effective flow management section fol-

lowed by a contoured nozzle with a 3.5 cm diameter

throat. A rotary table is used to hold the probe
while it is being calibrated in three different
on entati ors.

3. Hot-W i re Data Anal si.

3.1 Hot-Wire Respo:mse Equations

The six-orientation hot-wire technique
requires a single, straight, hot-wire to be cali-
brated for three different flow directions in

order to determine the directional sensitivity of
such j probe. The three directions and three

typical calibration curves are shown in Figure S.

In these relations, tildes signify components of
the instantaneous velocity vector in coordinates
on the probe.	 Each of the three calibration

curves is obtained with zero velocity in the other
two directions. The calibration curves demon-

'rate that the hot-wire is most efficientiy
cooled when the flow is in the direction of the u

component, whereas, the wire is most inefficiently

cooled when the flow is in the direction of

the w component. Each of the calibration curves

follows a second order, least square fit of the
form:

E1 - A i + 
B i u i

/2+ 
Ciui	 tl)

which is an extension of the commonly used Kinn's
law. In this equation, A i , B i , and C I are
calibration constants and u i can take on a value
of u, v, and w for the three calibration curves,
respectively.

S 0	 U
V	 I	 Ef - 8.0096 . 3.9493 1^2- O.O921 u

w ^^

A	
- E 7	 7.6016 • !.S!!tl 1112. O.0l62 i

f^
IW1151

E7 • 9.6111 • 1.35S6 
r1i2- 

O.Dm i

where G and K ave the pitch and yaw factors

defined by Jorgensei O to be.

G v
(u and wZ0) and

u(v and w=0 )

K	 v(u and w-0)	 (3)

w(u and vn R))

which are evaluated from the three calibration

curves (Figure 5) for a constant value cf E2.

Equation (3) shows that the pitch and yaw factors

a re calculated with the v component i n 2 in equa-

tion (1) of Oe effectiv cooling velocity as the
reterence. There. r -, ..c calibration constant;:
used in equation (., -. -°e the coefficients in the E
vs. v calibration of Figure 5., i.e., in a general

flowfield:

E2 . A2 + B2 Z 1/2 + C2 Z

with Z as given in Equation (2) above.

Figure 6 shows the pitch and yaw factors as a

function of hot-wire voltage determined fr,m the
calibration curve of Figure F. Both factors v!ry

with hot-wire voltage, but the yaw factor is far
more sensitive. The sensitivity analysis dis-

cussed in the next se .:tion demonstrates that
uncertainties associated with the varying pitch

and yaw factors do not seriously affect the accur-

acy of the estimated flovi quantities.

,e

ref

L ^.

i0	 ft	 f7	 7f	 f.	 i5	 f.

.OT-Hitt VOL1A(.1 tIVQftl

u	 70	 l0	 60	 60	 100	 170	 Ile	 160	 140

Vt10(Iir

Figure 5. the Three-Directional Hot-Wire

Calibration

When the wire is placed in .. three dimensional

flowfield, the effective cooling ve lnci;.y experi-

enced by the hot-wire is:

Figure S. Pitch an*_ Yaw Factors Plotted Against.

Hot-Wire Mean Effective Voltage

To carry out measurements in the confined het

flowfield, the wire is aligned in the flow in such
s %dAy that In the first orientation, the wire 1s

,normal to the flow in the axial direction and the 	 =_

probe :z,,)rdinates coincide with the coordinates of

r ^'

A.
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the experimental facility. Thus, the six equa-
tions for the instantaneous cooling velocities at

the six orientations, as given by King la are:

Zi = V 2 + (32u2 + K2w2

Z2	 v 2 + G 2 (u cos 300+ w sin 300)2

+ K 2 (w cos 300- u sin 300)2

Z2
3
	 v2 + G 2 (u cos 600+ w sin 600)2

+ K 2 (w cos 60 0- u sin 600)2

Z"
4
	 V 2 + G 2w 2 + k 2u 2	 (4)

Z2
5
	 v 2 + G 2 (w sin 1200 ~ u cos 1200)2

+ K 2 (u sin 1200- w Cos 1200)2

Z2
6
	 v 2 + G 2 (w sin 1500+ u cos 1500)2

+ K 2 (u sin 1500- w cos 1500)2

Solving simultaneously any three adjacent equa-

tions provide expressions for the instantaneous

values of the three velocity components, u, w, and
v in terlvis of the equivalent cooling velocities
(Z 1 , Z2 and Z 3 for example, when the first three

equations are chosen). Thus, the general form of
the instantaneous velocity components is given as:

U = ({AO + (A0 2 +	
2^ 112

)	 }	 1	
1/2

(G2-K2)

N = ({ -AO + (A02 + B)
02

1/2}	

111/2	

(5)
(G2-K2) 

V = CO - (G2+K2)	
2 + g02 112 112

(^	 - 1--)	 1
(G2-K2)

The values of A0, BO and CO depend on the set

of the three equations chosen and are given in

Table 1 for appropriate equal-on sets.

TAIII.E 1

values of AO. RO, and CO in Various Equation Sets

However, these equations cannot be directly

used because it is impossible to obtain Z 1 , Z2 and
Z 3 at a single instant in time with a single wire

probe. Therefore, Equations (5) must be expressed
in terms of mean and root-mean-square values.
Equation (1) can be written '+s:

Zi= [ - B2 + {B2+ 4C2 (A2 -E i )} 1i2 /2C2 1 2 	(6)

The above equation is in terms of instantaneous
velocity Zi and i nstz itaneous voltage E i .	 In
order to obtain an expression for time-mean velo-
city as a function of time-mean voltage, a Taylor

series expansion of Equation (6) can be carried
out as follows:

Z 1 = Z1(E1+E i)= 0(E i ) +Tr ams'

E'

+i

E'2

a2m +..	 (7)
aEi

where 4 =	 ?1(E1).

The Taylor series is truncated after second order
terms assuming the higher order terms to be rela-
tively small. Time averaging both sides of the
above equation and employing the fact that E'=0,
yields:

Z i = 4 +.7 62 4i a2E	 (8)

	

aEi	 i

To obtain Z' 2 = aZ	the relationship as given by
Hinze 19 is:	 i

Zi t = 02 = Expec [Zi] - (Expec [Z ])2 . (9)
i

Using Equation (8) as the basis, Expec [Zi]

and (Expec[Z 1 ]) 2 can be evaluated and substituted

into Equation (8) to get:

2_ ?_af2 2	 1a2f 2 2
Zi	

aZi-	
aEi-(	 6E2 a E i )	 (10)

i

Thus, Equations (8) and (10) give the mean and

variance of effective cooling velocities in terms
of the mean and variance of the appropriate vol-
tages.

In a 3-dimensional flow, it is usually desir-

able to obtain the mean and variance for the indi-

vidual velocity components in axial, azimuthal,

and radial directions, and also their cross cor-

relations. The procedure to obtain the mean and

variance of the individual velocity components is

the same as for the effective cooling velocities
except, that u, w and v are functions of three

random variables and there are extra terms in the
Taylor expansion to account for the covariances of

the cooing velocities. Thus, the axial mean

velocity component as given by Dvorak anO Syred,16
and King la is:

(	 ) 1 
3 a2U 2	 3	 a2U	 Ku U Zo,ZQ ,ZR

 + 2" 1 Z
2 azi+iI a^ Z

i Z] (11)1. i
where KZIZ] is the covariance of the cooling velo-

cities Z i and Z] and is defined as:

5
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	KZiZj . T o (Z i - Z i )( Zj- Zj ) dt	 (12)

Identical expressions for w and v can also be
obtained in terms of W and V, respectively.
Derivatives of the form 6 2U/8Z i aZ j are determined

analytically from equations (5) and Table 1.

Also, the normal stresses are given as:

3	 2	 3	 3
au

u'2 	
( 6U
-67-)i '^i+ 

I I 
a-r 

m- 
KZ i Zji i*j j

-[ 1

 i=1 aZi 
•aZi+i<j ra^ . K ZiZj ]2 (13)

with similar expressions for w' 2 and v 12 .

Finally, the expressions for shear stresses as
given by Dvorak and Syred" are of the form:

3 au by2	
3	

3 au 8V
u v = i

Z l	 dZi + 
j i#jji	 j KZiZj

-377-677

- L 1
	

62U 
°j + L E a2U . K2 Li=1 aZi - i ii^jj 

a^ZiZj

(	
a?v	

OZ +	 aa	
. 

KZ Z.) (14)
i=1 ()Z2i	 i i<j j 	 i	 J	 i J

Expressions for u'w' and v'w' can also be obtained
in a similar manner and are given in Reference 22.

3.2 Calculation of Covariances

Dvorak and Syred 16 used a DISA time correlator
(55A06) to find the correlation coefficients
between the velocity fluctuations in the three
directions. King's approach is to use the infor-
mation obtained by all six orientations and devise
a mathematical procedure to calculate the covari-
ances.

Covariances are calculated using the relation-
ship:

K	
Q2 a2 1/2

Zi Zj = yZi ZJ ( Zi	 Zj	 (15)

where yZiZ. is the correlation coefficient between

the two cooling velocities Z i and Zj . By defini-

tion, the absolute va l ue of the correlation coef-
ficient yZ

iJ
Z, is always less than 1.

King 18 made certai n issunptions to calculate
the covariances. However, he observed that at

times the calculated value of the correlation

coefficient is greater than one at which instance

he assigned previously fixed values to the corre-

lation coefficients. He argued that if two wires
are separated by an angle of 30 degrees, the fluc-
. iAting signals from the wires at the two loca-

tions w•juld be such that their contribution to the
cooling of the wire would be related by the cosine
of the angle between the wires. This assumption
leads to the following three values of the corre-
lation coefficients.

Y	 = cos 30 - 0.9
ZP ZQ 	 (16)

y?-ZR = cos 30 = 0.9

To relate y ZPZR with y ZPZ andy ZQZR , King intro-
duced the following relationship:

y ZpZP. = 
a yZPZQ 

y
YR
	 (17)

where r) is given a value of 0.8. 	 Hence yZPZR
becomes:

yZPZR = (0.8)(0.9)(0.9) = 0.65	 (:8)

The three covariances are then obtained by substi-
tuting the corresponding values of the correlation
coefficients into Equation (15).

The present study, however, uses Equations
(16) and (18) during the enti re data reduction.
The reason for this is contained in the results of
the sensitivity analysis presented in the next
section. This analysis demonstrated that there is
not significant error magnification in the data
reduction due to the correlation terms.

4. Results of Hot-Wire Measurements

The six-orientation hot-wire technique was
employed to measure the turbulence quantities for
swirling and non-swirling flow conditions in the
confined jet facility described earlier. Also, an
extensive sensitivity analysis of the data reduc-
tion was conducted to assist the estimation of the
uncertainties in the output quantities.

4.1 Uncertainty Analysis

The uncertainty analysis includes a deter-
mination of the sensitivity of the six-orientation
hot-wire data reduction to various input param-
eters which have major contributions in the
response equations. Pitch and yaw factors (u and
K) are used in the response equations described in
Section 3 in order to account for the directional
sensitivity of the single hot-wire probe. Figure
6 shows the pitch and the yaw factors plotted
against the hot-wire mean effective voltage. Both
the pitch and yaw factors are functions of the
hot-wire mean effective voltage, but the yaw
Factor is far more sensitive. 	 A one percent
increase in the hot-wi.e voltage reduces the
pitch factor by 1.3 percent and the yaw factor by
56 percent. For the present study, the values of
these factors are chosen at an average hot-
wire	 voltage	 experienced	 in the flowfield.
This was a ppropriate since the output quantities

(u, ups , u'v', etc) are only weakly dependent on
the value of K. This can be seen in the data of
Table 2 which summarizes a sens i tivity analysis
performed on the data reduction program at a

6
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r

1

•1 .D.OI -0.01 • 0.01 • 0.01 1 0.0 %01 0.0 0.0 0.0

,,	
2ro Q

•1 •0.05 0.0 •0.14 -0.13 -0.13 -1.77 0.0 .2.86 •1.49

, 7Q2R
•1 •011 •0.01 •0.05 -1.63 •0.13 -0.19 0.0 . 5.71 •1.19

• 3 -0.16 •0.19 -0.09 •0.13 0.0 +0.69 -2.0 •2.86 0.0
I	 2n1e

TURBULENCE

QUANTITY

TURBULENCE QUANTITY SOLVED BY Sir CONBINATIONS MEAN

a

Si NMIARD
EVIATIOM

u/a1,2,3 2,3,1 3,6,5 1,5,6 5,6,1 6.1,2

u/uo 0.21 I	 0.20 0.21 0.21 0.19 0.18 9.20 0.01 0.06

r/uo 0.10 NO 0.11 0.17 0.17 0.17 0.14 0.04 0.26

"!uo 0.40 0.39 0.39 0.38 0.37 0.40 0.39 0.01 0.03

r.11%
0.14 C.14 0.14 0.07 0.08 0.08 0.11 0.03 0.31

r/u o 0.06 0.11 0.11 0.08 0.08 0.09 0.09 0.02 0.23

"res /o0
0.13 0.15 0.10 0.11 0.10 0.12 0.12 O.C2 0.20

177.2 NF NN 0.017 NX 0.005 0.004 0.007 0.006 0.62

U .'/uo 0.002 0.010 0.002 0.001 0.001 0.000 0.005 0.003 0.72

_7
r'"'/uo D.003 NR 0.003 0.003 0.007 0.001 0.003 0.002 O.SB

Not Resolved
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representative position in the flowfield.

Table 2 demonstrates the percent change in the

output quantities for a 1 percent change in most
of the important input quantities. For the data

presented in this table only quantities calculated

from the probe orientation combination Z 50 Z6 and

Z 1 are used, for simplicity. In this swirling

flow Z6 was the minimum of the 6 mean effective

cooling velocities. King 18 has argued that the

probe orientation combination approximately cen-
tered around the minimum effective cooling velo-

city produces more accurate estimates of calcu-
lated turbulence quantities, than do the other

orientation combinations.

tions of data from adjacent wire orientations.

One measure of the uncertainty in the output quan-
tities can be obtained by examining the variance

in these quantities calculated from the six dif-
ferent position combinations. Table 3 shows these

comparison data for a representative position in
the flowfield.	 For each of the output quanti-

ties, an ensemble mean x is calculated together

with an_ ensemble standard deviation o. The
ratio a/x is a measure of the uncertainty in the

output quantity. In this table, NR stands for

'not resolved', a problem that occurs when the
data reduction program attempts to take the square

root of a negative quantity. In addition, quan-

tities which are more than three standard devia-
tions outside the mean are rejected as spurious
calculations.

It is not unusual in hot-wire anemometry to

have the mean velocity components and turbulence

quantities that are measured, be quite sensitive

to changes in mean hot-wire voltage. For inter-
preEive purposes, the mean hot-wire voltage varia-

tions can be thought of as being either errors in
measuring the mean voltage, or shifts in the indi-

vidual wire calibrations due to contamination or

strain 'aging' of the wire. The data of Table 2

demonstrate that the most serious inaccuracies in
the measurement and data reduction technique will

be in the estimates of turbulent shear stresses,

the most inacu:rat.e output term being u'w'

As already discussed in Section 3, an ad hoc
assumption is made regarding the numerical values

of the correlation coefficients used in the deduc-
tion of time-mean and turbulence quantities. The

results of the sensitivity analysis (Table 2) show

the time-mean and turbulence quantities to be

relatively insensitive to variations in the cor-

relation coefficients.	 Therefore, the major ad
assumption made in the technique does not seem

to have a great effect on the quantities

compared to the effect of other ir,)ut quantities.

As mentioned earlier, turbulence quantities

the output) can be calculated from six combina-

The data in Tables 2 and 3 can be used to pro-

duce estimates in the uncertainties of the calcu-

lated turbulence quantities. The data suggest
that uncertainties on the order of 5 percent are

to be expected in the mean velocity component

estimates. Normal turbulent stress estimates
(u 

I
rms, 

etc.) have uncertainties on the order of

20 to 30 percent and turbulent shear stress esti-

mates are significantly highE , although most of
this is a consequence of taking a product of terms

such as u' and v'.

These uncertainty estimates are considered to

be somewhat conservative. More accurate estimates

are quite difficult to obtain because, to our

knowledge, similar measurements have not been per-

formed with any other instrumentation system in

this geometry flowfield. Also, comparisons of

several representative points with independent

measurements suggest that the ensemble averages
estimates are typically in closer agreement than

are selected sets of three orientations. There-

fore, all turbulence estimates presented in this

paper are calculated from ensemble averages of six
groups of three adjacent wire orientations. Any

data not resolved are not included in this avera-
ging.	 This approach represents a departure from
the technique developed by King18 who typically

* x/D=1.5, r/D = 0.25, e38 deg (swirling flow).



selected one group of three orientations from

which to calculate his turbulence estimates.

4.2 Results of Flowfield Surveys

Radial distributions of time-mean velocities,
turbulent normal stresses and shear stresses are

obtained for both nonswirling and swirling con-
ditions, at various axial locations in the flow-
field.

Nonswirling Flow. In the confined jet, the

exper ments have been conducted with expansion

angles of 90 degrees (sudden expansion) and 45
degrees (gradual expansion) and the results for

both cases are presented in Reference 22. In the

interest of brevity, only the data for a 90 degree
expansion are presented here.

Figure 7 shows the radial distribution of
time-mean axial and radial velocity components at

various axial locations. The axial velocity dis-
tributions are compared with a similar study per-
formed by Chaturvedi s with a crossed hot-wire
orobe. Because of the inability of the six-orien-

tation hot-wire technique to determine the sense
of the flow direction in a nonswirling flow, the
presence of the corner recirculation zone was

abst-rved by a sudden increase in the axial velo-
city closer t•) the wall.

Figur_ ^ shows the radial distribution of

axial and radial components of the turbulence

intensity at various axial locations in the con-
fined jet flowfield. These turbulence intensity

components are compared with Chaturvedi's measure-
ments 5 and reasonable agreement is found. In
fact, the agreement in most cases is better than

the uncertainty estimates derived from the data
reduction sensitivity analysis.

Included on Figure 8 are measured turbulent

shear stress component (u'v/U(2 ) profiles for the

nonswirling confined jet. For the most part,

these measurements are in reasonable agreement
with those made by Chaturvedi s with a crossed wire
probe. The two significant exceptions to the good

agreement occur at the furthest upstream and fur-

thest downstream locations. Upstream, at x/D =

0.5 the shear layer is very thin and, therefore,
matching data from several wire orientations

obtained at somewhat different times may be prac-

tically difficult. We believe the overly large

measured turbulent shear stress on the centerline

at the furthest downstream station (x/D = 3.0) to

be a consequence of the transient nature of the
flow. The recirculation regions in the confined

jet oscillate somewhat at a low frequency, likely

characteristic of the main acoustic modes in the
tube.	 These large scale oscillations can have

significant correlated velocity fluctuations (such

as	 u'v').

Swirling Flow	 The measurements performed in
the swirling Flow are with a = 90% t = 38% and

x/D = 0.5, 1.0, and 1.5. The object of these

limited number of experiments was to evaluate the
reliability and accuracy of the six-orientation

hot-wire technique before making extensive use of
the technique.

ORIGINA 1 i'At:._
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The hot-wire results in the case of time-mean

axial and azimuthal (swirl) velocities shown in
Figures 9 and 10, are compared with five-hole

pitot probe measurements performed by Rhode 3 in
the same experimental facility. Agreement among

the two studies is fairly good. King 18 suggested
a method to determine the sense of the axial velo-

city. He advised comparing the magnitudes of Z3

and Z5 given by Equations 4. In the present flow-

field, the swirl velocity is always positive and

the two equations giving Z 3 and Z 5 differ only in

the sign of axial velocity. Therefore, when Z5

is greater than Z 3 , the axial velocity is nega-

tive, otherwise it  is positive. With the proper

sense being assigned to the x velocity mean cow
ponent, the presence of central toriodal recir-
culation zone is evident in the results of both
measurement techniques.

Figure 11 shows the radial distribution of the
time-mean radial velocity at various axial loca-
tions for a swirl vane angle of 38 degrees and
wall expansion angle of 90 degrees. Flow visuali-
zation and five-hole pitot probe measurements per-
formed in Rhode's study 3 show the time-mean radial
velocity to be negative at axial locations greater
than x/D = 0.5. In spite of the inability of the
six-orientation hot-wire technique to determine
the sense of the radial velocity, the data are
presented with the appropriate sign change. There

is a reasonable agreement among the two studies in
measurements of time mean radial velocities except
at the initial measurement station.

Figure 12 shows the radial distribution of
axial, radial and azimuthal turbulent intensities
at three axial locations presented. At axial
locations closer to the inlet of the confined jet,
the axial turbulence intensity is fairly high, up
to 32 percent for x/D = 0.5 which is due to the
l arge axial velocity gradients closer to the wall.
However, in the case of radial turbulence inten-
sity, the profiles are rather flat. The mean azi-
muthal velocity also experiences sudden changes in
gradients and, hence, the outcome is a large azi-
muthal turbulence intensity closer to the wall at
x/D = 0.5.

Figure 13 shows the shear stresses u'v'/Uo,

u'w'/U o , and v'w'/U o as a function of radial and

axial distance. The sensitivity analysis showed

that we should expect large uncertainties asso-
ciated with evaluation of turbulent shear stresses

using the six-orientation technique. 	 Therefore,

the reliability of the profiles of these shear
stresses	 shown in Figure 13	 is uncertain at

this time.	 Nevertheless, stresses u'v'/Uo and

u'w'/U o are found to have large values closer to

the wall that one would expect due to steep axial
and azimuthal velocity gradients. The fact that

we have found no other measurements of this type

in a swirling, recirculating flow attests to the

fact that accurate measurements in such a flow are

quite difficult.
Closure

The six-orientation hot-wire technique is a

relatively new method to measure time-mean velo-

city components and turbulence quantities in co*-

ple>; three-dimensional flowfields. 	 Applied in

C
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this study to nonreacting axisymmetric flowfields,
measurements of time-mean and root-mean-square

voltages at six different orientations contain

enough information to obtain the time-mean velo-

cities, turbulence intensities and shear stresses.
At each location in the flow, there are six dif-

ferent values of each of the above quantities that

can he obtained using six sets of measurements of

three adjacent orientations. Ensemble averages of

the output quantities from the six combinations of

data appear to produce estimates with the best

i4 reement with independent measurements.

Flowfield surveys of both swirling and non-

swirling confined jets have been made with the

six-orientation single hot-wire technique. These

measurements have been used to calculate estimates

of the mean velocity components and the normal and

shear turbulent stresses. Where independent data
exist, comparisons have been made which demon-

strate the reliability of the technique.

In addition, a sensitivity analysis of the

data reduction technique has been conducted which i
10
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forms the major ingredient in the uncertainty 	 sured technique applied to swirl flows is still an
analysis.	 It is demonstrated that the largest 	 open question.

uncertainties are to be expected in the turbulent
shear stress estimates.	 Nevertheless, in non-	 Acknowledgement
awirlinq flows the measured shear stresses are in

reasonable agreement with previous measureme nts	 The authors wish to extend their sincere gra-
made with a crossed-wire probe. In swirling flow, 	 titude to NASA Lewis Research Center and the Air
Previous similar measurements have not been found. 	 Force Wright Aeronautical Laboratories for support
Consequently, the universal accuracy of the mea- 	 under Grant No. NAG3-74.
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