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John H. Seinfeld, Principal Investigator
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ABSTRACT

The object of this project was to define the problem of the assimilation
of remote sensing data into mathematical models of atmospheric pollutant
species. An object of remote sensing of the atmosphere is to enable recon-
struction of the concentration distribution of trace species over a region
based on the data available from the instrument. The data assimilation prob-
lem is posed in terms of the matching of spatially integrated species burden
measurements to the predicted three-dimensional concentration fields from
atmospheric diffusion models. General conditions have been derived for the
reconstructability of atmospheric concentration distributions from data typi-
cal of remote sensing applications, and a computational algorithm (filter)
for the processing of remote sensing data has been developed.
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RECONSTRUCTION OF ATMOSPHERIC POLLUTANT

CONCENTRATIONS FROM REMOTE SENSING DATA -

AN APPLICATION OF DISTRIBUTED PARAMETER OBSERVER THEORY"

Masato Koda* and John H. Seinfeld
Department of Chemical Engineering

California Institute of Technology
Pasadena, California 91125

ABSTRACT

The reconstruction of a concentration distribution from spatially-aver-

aged and noise-corrupted data is a central problem in processing atmospheric

remote sensing data. Distributed parameter observer theory is used to de-

velop reconstructibility conditions for distributed parameter systems having

measurements typical of those in remote sensing. The relation of the recon-

structibility condition to the stability of the distributed parameter obser-

ver is demonstrated. The theory is applied to a variety of remote sensing

situations, and it is found that those in which concentrations are measured

as a function of altitude satisfy the conditions of distributed state

reconstructibility.

*Permanent address: Department of Aeronautics, University of Tokyo, Hongo,

Bunkyo-ku, Tokyo 113, Japan

(This work was supported by NASA Research Grant NAG-1-71
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I.	 INTRODUCTION

In the remote sensing of tropospheric species, a ground-, aircraft-,or

satellite-based platform performs an instantaneous scan of a region of the

atmosphere and measures the species burden within the field of view. With air-

craft or satellite remote sensing the platform is in motion and the field of

view is constantly changing. An object of remote sensing of the atmosphere

is to enable reconstruction of the concentration distribution of trace species

over an entire region based on the data available from the instrument.

The reconstruction of a concentration distribution from spatially-aver-

aged and possibly noise-corrupted data is a central problem in processing

remote sensing data. In the absence of a mathematical model describing the

spatial and temporal concentration distributions, the reconstruction can be

carried out by standard data interpolation methods. However, when a mathema-

tical model exists,the problem becomes one of matching the remote sensing data

to the model solution in such a way that the incomplete data can be used in

conjunction with the model to produce an estimate of the region-wide concen-

tration distribution. This problem of the matching or assimilation of remote

sensing data into mathematical models for atmospheric constituents is the

subject of this paper.

There exist a few recent studies that assess the capabilities of remote

sensing for monitoring regional air pollution episodes. For example, Barnes

et al. [1] conducted a comparative analysis of satellite visible channel ima-

gery in ground-based aerosol measurements. For three cases, each of which

represented a significant pollution episode based on low surface visibility

and high sulfate levels, the results show that the extent and transport of

the haze pattern can be monitored from satellite data. The study demonstra-

ted the potential of the satellite to monitor both magnitude and aerial extent
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of pollution episodes. In a related study, Lyons, et al, [2] reported on a

demonstration project showing that currently available synchronous satellite

data can detect the aerial extent of large scale hazy air masses associated

with sulfate and ozone episodes.

A study related to that of the present work was reported by Diamonte, et

al. [3] in which they considered the comparison of remote and in situ data on

pollutant concentrations from point sources. They considered typical remote

sensing geometries to provide insight on estimation of plume properties from

these measurements. In a study also related to the present, Kibbler and

Suttles [4] considered the estimation of unknown parameters in a pollutant

dispersion model by comparing model predictions with remotely sensed air quality

data. A ground-based sensor provided relative pollutant concentration measure-

ments as a function of space and time. The measured data were compared with

the dispersion model output through a numerical estimation procedure to yield

parameter estimates that best fit the data.

The object of this paper is to define the problem of the assimilation of

atmospheric remote sensing data into mathematical models of pollutant behavior.

Since the atmosphere is a three-dimensional system, models of pollutant behavior

are of the distributed parameter type [5]. Remote sensing data represent spa-

tial averages of concentrations, so that the assimilation problem is, in es-

sence, one of distributed parameter state estimation.

First, the concept of distributed state reconstructibility is developed

for the class of problems of interest. That is, the first question to be

faced is - can the desired spatial-temporal concentration distribution infor-

mation be recovered from the measurements in the absence of noise. The deri-

vation of general conditions that allow one to answer this question is the

r ^:
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subject of Section II, In Section III a varieiy of common remote sensing

measurement configurations and atmospheric models are tested for reconstructi-

bility. We conclude in Section IV with general observations concerning the

inherent potential of remote sensing data in analyzing regional air pollution.

gY -.
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II. RECONSTRUCTIBILITY AND OBSERVERS FOR DISTRIBUTED PARAMETER SYSTEMS

Atmospheric pollutant models consist of partial differential equations,

linear in the case in which the species does not react chemically or in which

it is produced or destroyed by a first-order reaction of the form A 4 .. This

case represents a wide class of important situations and is the one to which

we direct our attention here. Nonlinear distributed models must be handled

by linearization and therefore also fall within the present framework.

Our interest in this section is to derive distributed parameter observers

for systems descro yed by linear partial differential equations with inhomo-

geneous boundary conditions characteristic of atmospheric models. An observer

is an algorithm that processes measurements of the state of a system to yield

an estimate of the entire system state. 	 An observer is most frequently

employed when not all of the states of a system are accessible for measure-

ment. In the present application, we will be generally interested in only a

single state variable, the measurements of which have limited spatial resolu-

tion. The observer is stable if its estimated state converges to the true

state after a sufficiently long time. The concept of state reconstructibility

is useful as a condition for the stability of the observer. Thus, if a meas-

urement strategy satisfies the condition of state reconstructibility, then

the corresponding observer is stable, and, the state (i.e. the concentrations)

can, in principle, be estimated from the measurements. The condition that

allows the reconstruction of the system state on the entire field is called

distributed state reconstructibility. Associated with distributed state re-

constructibility, the concept of uniform n-mode reconstructibility can be



r

developed. 3oth conditions, n-mode and distributed state reconstructibility,

will be applied, in Section III, to typical remote sensing measurement

configurations.

There exists some previous work on observer theory for distributed param-

eter systems [6-8]. Kitamura et al. [6] formally extended the lumped param-

eter observer to the distributed parameter case. Gressang and Lamont [7]

developed a more complete theory of the distributed parameter observer, includ-

ing reduced order observers. An application of distributed parameter observer

theory has been presented by Kohne [9]. The most complete treatment of observer

theory is that of Dolecki and Russell [8]. In the current work, distributed

parameter observers are derived in a form appropi^iate for application to the

class of systems representing atmospheric species behavior. In addition, a

result of the present work is an explicit relation between distributed parameter

reconstructibility and the stability of the observer. Observer stability is

demonstrated using a technique of Hale [10] in which Lyapunov stability theory

s extended to function spaces.

We consider the linear distributed parameter system,

au (X,t) = L
x u(x,t) + B(x,t)f(x,t)
	

(1)

defined for t > 0, x C D. The domain D is a connected subset of a d-dimensional

Euclidean space Ed with boundary surface @D. The d-dimensional spatial coordi-

nate vector is denoted by x. The state u(x,t) is a scalar function and Lx

is a linear partial differential operator with respect to x. It is assumed

that the operator L x is well-posed. The input f(x,t) is a known scalar

function and B(x,t) is a known coefficient.

6
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The boundary condition on (1) is

axu(x,t) = h(x,t)	 x 1 aD	 (2)

where 
^x 

is a linear, spatial differential operator of suitable order over

BD and h(x,t) is a known function. The initial condition is assumed to be
1

unknown or incompletely known.

We are interested in considering three types of measurements;

Case 1: Spa 0.,-.`yy-Independent Integral Measurements

The measurement takes the form

w(t) = f H(x,t)u(x,t)dx 	 (3)
D

where H(x,t) is a spatial weighting function.

Case 2: Spatially-Continuous Measurements

w(x,t) = C(x,t)u(x,t)	 (4)

where C(x,t) is a square-integrable function, i.e., C E L2.

Case 3: Spatially-Discrete Measurements

w i (t) = H i (t)u(xi ,t)	 i = 1,2,... Q	 (5)

where w i (t) denotes a measurement at the ith measurement location x i . By

taking the limit to small volumes of integration in (3), we can represent

a system such as (5) by choosing H(x,t) = H i (t)S(x-x i ), i = 1,2,..., Q.
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For the moment let us restrict the problem to one spatial dimension, i.e.,

0 < x < 1. Accordingly, boundary condition (2) can be expressed as

00u(x,t) = h 0 (t)	 x	 0
(6)

g 1u(x,t) = h l (t)	 x = 1

E
Then the solution of (1) and (6) with initial condition u(x,0) = u 0 (x) can be

expressed in the form*

t 1

u(x,t)	 ^* (r, 0; x, t)u0 (r)dr +f
	(P* (r,T;x,t)a(r,T)f(r,T)drdT

0	 00

ft('1
1+	 4)* (r,T;x,t)g(r,T)drdT

0 ^0

where

g(x,t) = 2h i (t)6(x-1) - 2h
0
(t)6(x) .

The adoint Green's function 4*(x,t;y,T) is governed by

*
H?(xa  ;YET) + LY(x,t;Y,T) = 0

with the terminal condition

0*( x ,t;Y,t) = 8(x-Y)
E

*The explicit form of operators L x , S0 , and ^ 1 are assumed as follows:

L
x ( ' ) = a2(x,t) 

a2 

2 + a 1 (x ' t) a
aX + a0(x,t)(•)

ax

^0 ( • )	 a2 (0,t) @(-	 + eo(M . )

1
	
a2 (l,t) a@(x	

+ el(t)(-)

—7-

(7)

(s)

(9)

(10)

a `1
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and boundary conditions

$0(p 	= 0
%
	 (11)

R** = 0	 j

1
j

k 	

The operators Lx, 0
0
, and R1 arethe adjoints of the operators t 	 S0 , and $1,

respectively.

The extension of the adjoint Green's functions to higher spatial dimen-

sions is straightforward. In higher dimensions, (9) and (10) remain the

same with the general boundary conditions

**
^x^ (x,t;y,T) = 0	 x E aD	 (12)

where ^x is the adjoint of the operator fix . In general, we nr f-e that 4) is

related to the Green's function 0 associated with the system (1) with

homogeneous boundary conditions by the relationship 4)(x,t;y,T) = 4) (y,.T;x,t).

The adjoint Green's function for well-posed distributed parameter sys-

tems can be constructed in a variety of ways. Expansion in spatial eigenfunc-

tions and construction of the adjoint Green's function from eigenvalues and

eigenfunctions is a powerful method for linear systems. Let us assume that

Lx has an infinite series of discrete eigenvalues { X
i 
1, i = 1,2,.... Using

standard methods, the adjoint Green's function that satisfies (9)-(12) is

found to be [11]

i	 (x,t;Y,T) _	 $n(x)^n(Y)e	 (13)
n=1

where the eigenfunctions {^ i ), i = 1,2,..., are the solution of the equation,

Lx^i = Xi0i, satisfying the boundary conditions (11) or (12).

r
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II.1 Reconstructibility Conditions

The objective of an observer is to reconstruct the system state when

the measurements are incomplete. To be able to reconstruct the state the

observer must be asymptotically stable.

An identity or non-reduced observer for the system (1) with measure-

ments (4) takes the form

auat
 t = Lx u (x,t ) + B(x,t)f(x,t)

+ G[w(x,t) - C(X,t)u(x,t)) 	 (14)

where u(x,t) is the observer output and G is a suitably chosen integral opera-

tor with the kernel G(x,y,t).

Before presenting a derivation of the observer, we will establish the

conditions under which the system (1) and (4) is reconstructible. We define

the reconstructibility kernel function by

t

Q(x,y,t) = ff (D* (x,t;r,T)G 2 (r,T) (D* (y,t;r,T)drdT	 (15)

 0 

It will be shown later that the observer (14) is stable if Q(x,y,t) has a so-

called generalized inverse, i.e., if there exists P(x,y,t) such that

fi
l (x,r,t)Q(r,y,t)dr  = &(x-y)
	

(16)

D

By formal differentiation of (15) with respect to time and use of the

properties of the adjoint Green's function (9) - (12), it is found that

Q(x,y,t) satisfies the following Lyapunov equation,
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a x 
^ _ - L*Q(x,y ,t) - Q( x,Y, t ) L* + C2 (x, t )6( x-Y)	 ( 17)

	

at	 x	 y

with the initial condition

Q(x,Y, 0 ) = 0	 (18)

and boundary conditions

sXQ =0 ,	 Q sy =0	 (19)

where L*Q = QLy. Although Q(x,y,t) is formally defined by (15), it is impor-

tant to note that Q ( x,y,t) may be computed from (17)-(19) without using the

adjoint Green ' s function.

By using the identity

	

8P(X, ,t) _ -	 P(x,r,t) 8 r,s,t P( s ,y ,t) dsdr	 (20)

DD

P(x,y,t) can be shown to obey the following Riccati equation,

"(X' t	 LxP(x,y ,t) + P(x,Y,t)Ly

9

	

P(x,r,t) 02(r,t)P(r, y,t)dr 	 (21)

D

with boundary conditions

SxP = 0,	 PBy = 0	 (22)

a

P(x,y,t) may be considered as the kernel of the integral operator P defined as

The impact of observation error on the design of an observer can be assessed
from (21) by comparing P to that from the corresponding distributed param-
eter filter.	

f
^a.

r -
^r

I
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U ( x) =	 P( x,Y,t)f(Y)dY
	

(23)

D

for f ^,' L2.

A linear distributed parameter system (1) and (2) with measurement (4)

is said to be distributed state recrons ructiKe if and only if Q(x,y,t) de-

fined by (15) has a bounded generalized inverse P(x,y,t) for t > 0. It may

be shown that Q(x,y,t) has a bounded generalized inverse whet% Q(x,y,t) it;

bounded and positive-definite for t > 0 [111 * . The system (1), (2), and (4)

will be defined to be uniformry n-modo reconstructible if there exists posi-

tive constants M 1 , M2 , and a such that

M1 < f 1 ^ (x)Qo(x,Y,t)^ (Y) dxdy < M2

iD JD

for all t > 0, where ^ (x) is the eigenfunction of LX and the modified re-

constructibility kernel Q"(x,y,t) is defined by

t

Qo (x,y,t) =	 *(x,,t;r,T)C2(r,,r)n*(y,t;r,T) drdT	 (25)

t-cr D

The system is distributed state reconstructible if (24) is satisfied for each

of the eigenfurctions. The uniform n-mode reconstructibility test (24) is

useful when P(x,y,t) cannot be found directly from Q(x,y,t). Since it is

straightforward to extend the concept of distributed state reconstructibility

to measurement Cases 1 and 3, detailed discussion is omitted here.

*Positive-definiteness of the kernel Q implies that

fff(x)Q(X,Y, t )f(Y) dxdy > 0

,D D

for all t > 0 and f E L21

(24)

t

}

._.._ mss.._.
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II.2 Minimum Variance Observers

II.2.1 Observer for Case 1

For the system described by (1) and (3), we define the reconstructi-

bility kernel function by

t	
('

Q(X,y,t) _ 	0 *(x,t;r,T)H (r,T)dr r H(s,T)O *  (y,t;s,T)dsdT 	(26)

0 D.	 D

where Q(x,y,t) obeys

aQ(X, ,t)= - L * Q(x,Y,t) - Q(x,Y,t) L*  + H (x,t)H(Y,t) 	 (27)at	 x	 y

with initial and boundary conditions given by (18) and (19). Assuming that the

system is di•r,tributed 	state reconstructible, the existence of the general-

ized inverse P(x,y,t) of Q(x,y,t), that satisfies

aP(
aty,t) = L XP(x,y,t) + P(x,Y,t)LY

- 

f P(x,r,t)H (r,t)dr J H(s,t)P(s,y,t)ds 	 (28)

D	 D

will establish the observer for the system (1), (2) and (3).

Following Meditch [ 12 ], we define the cost functional associated with

the observer as
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t :^

J 0 = 2f 1 u( x,0) - u 0 (x)]  Ax [u(Y,o)  -  uo(Y)ldx
D

t f	 2

	

+ 2 	(w ( t )  -  f 	dt	 (29)

0	 D

where t f is an arbitrary final time, u 0 (x) is an initial estimate of u(x,0),

and

	

Ax 	f p0(x,y){-Idy -1
	

(30)

D

PO(x,y)  is a bounded, symmetric, and positive-definite weighting func-

tion. The observer is found by selecting u(x,t) so as to minimize (29) sub-

ject tQ (1) and (2). By minimizing the augmented functional,

t 

J = J O +	a(x,t) Ia a t x't -  L
x 

u(x,t) - B(x,t)f(x,t) dxdt 	(31)

0 D

the result is the Euler-Lagrange equation,

aatx,t = - L * X(x,t) - ,H(x,t) w(t) -^ H(Y,t)u(Y,t)dY 	(32)

D

with the transversality conditions,

A(x,O) = A x [u(Y,o)  -  u0(Y)]

(33)
a(x,t f ) = 0

Equations (32) and (33) constitute a two-point boundary value problem

that may be solved by the sweep method. We assume the following Riccati

transformation for u(x,t),

J	 `
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u(x,t) = 	P (x,Y,t)X( y , t ) dY + p (x,t) 	 (34)

D

where the kernel P(x,y,t) and p(x,t) have to be determined.

Substitution of (34) into (1), (32) and (33) yields

3P e X t 
= L x p (x,t)  + B( x ,t)f(x,t)

+ f  P(x,r,t)H (r,t)dr w(t) - fH(s,t)p(s,t)ds 	(35)

D	 D

p(x0) = u 0 (x)	 (36)

Sx p(x,t) = h(x,t) 	 x E 3D	 (37)

3P 8t ,t = b x p (x,Y,t)  + P(x,Y,t)EY

-	P(x,r,t)H (r,t)dr fH(s,t)P(s,y,t)ds 	 (38)

D	 D

P(x,Y,O) = P 0 (x,Y)	 (39)

3 x P (x,Y,t)  = 0 1,	P(x,Y,t)^y = 0 	x,y E DD 	(40)

Equations (33) and (34) imply that p(x,t f ) = u(x,t f ) is the stdte esti-

mate at an arbitrary final time t f . It is important to note that (38) is

identical to (28). Thus we may conclude that the symmetric, positive-definite

kernel P(x,y,t) completely characterizes the minimum variance observer.

Equation (35) can be rewritten as

3u( x,t ) = L x u(x,t) + B(X,t)f(x,t)at

+ K(x,t) w(t) - f H(Y, t ) u ( y , t ) dY	 (41)
D

F

i.
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where a time-varying observer gain K(x,t) is defined by

K(x,t) = 	P(x,y,t) H(y,t)dy 	 (42)

0

The structure of the observer is identical to that of the distributed param-

eter filter [131.

We introduce the reconstruction or observer error e(x,t) = u(x,t) - u(x,t).

Then we obtain the following equation for e(x,t),

ae(x,t) = Lxe(x,t) - K(x,t) J H ( y ,t) e ( y , t ) dy	(43)
D

with initial and boundary conditions, e(x,0) = u 0 (x) - u(x,0), and ^ xe(x,t) ^ 0.

If the initial state is known exactly and the observer is initialized such

that u(x,0) = u(x,0), then the observer will reconstruct the state exactly.

It is not reasonable, however, to expect that the initial state will be known

exactly. It is, therefore, important to insure that if errors are present in

the initial conditions applied to the observer that the estimate will converge

to the true value of the state, i.e., the reconstruction error e(x,t) must

have the property limjje(x,t)jj = 0, for all e(x,0).
t-_

Asymptotic stability of the observer can be demonstrated by using (16),

(26), (27), and (43). We will consider a Lyapunov function defined by

V(e,t)= 	e(x,)Q(x,y,t)e(y,t)dydx 	 (44)

DD

It is first necessary to note that Q(x,y,t) is positive-definite and bounded

from below. Then the time derivative of the Lyapunov function is calculated

using (27) and (43). The result is



ae(x,t) 
= F e(x,t)at (50)

_16-
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e;	
dt V(e,t) = - 	e( x,t) H(x,t) H (Y,t) e (Y, t ) dydx 	(45)

r.	 0 D

which is a negative-semidefinite quadratic form. This is sufficient to show

that (43) is stable in the sense of L.yapunov [101.

II.2.2 Observer for Case 2

In a similar manner to that of Case 1, we can obtain the minimum vari-

ance observer for Case 2, i.e., for spatially-continuous measurements (4).

The observer dynamicsare described by

auat,t) = L x u(x,t) + B(x,t)f(x,t)

+ f G(x,y,t)[w(y,t) - C(y,t)u(y,t)idy 	 (46)

D

with initial and boundary conditions

u(x,t) = u
0 

(x)	 (47)

^ x u(x,t) = h(x,t), 	x E DD	 (48)

where the optimal gain kernel G(x,y,t) is defined by

G(x,Y, t ) = P(x, y ,t) C(Y,t)• 	 ,(49)

The Riccati equation for P(x,y,t) in (49) is identical to (21) with boundary

conditions given by (22). The reconstruction error e(x,t) = u(x,t) - u(x,t)

satisfies



ORIGINAL	[
OF POOR QUALrN

where the integro-differential operator F is defined by

F e(x,t) = L x e(x,t) - f G(x, y ,t) C ( y ,t) e ( y , t ) dy	(51)

D

We can demonstrate the stability of the observer by using the reconstructi-

bility kernel Q(x,y,t) defined by (15) and the Lyapunov function (44).

Under the reconstructibility assumption, the derivative of the Lyapunov func-

tion becomes

dt V(e,t) _ -

	

	e(x,t) C 2 (x,t)e(x,t)dx 	 (52)

D

which is a negative-semidefinite quadratic form.

II.2.3 Observer for Case 3

For the spatially-discrete measurements (5), i.e., Case 3, the observer

is given by the following system:

auax,t = L x u(x,t) + 5(x,t)f(x,t)

Q

+	Gi (x,t)[w i (t) - H i (t)u(x i ,t)] 	 (53)

where

Gi(x,t) = P(x,x i ,t)H i (t)	 (54)

and

aP 
2t 

,t = 
L x P (x, y ,t) + P(x,y,t)Ly

Q

-

	

	P(x,xi,t)Hi(t)Hi(t)P(xi,y,t) 	 (55)
i=1

F

E:

k-.
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with initial and boundary conditions given by (47), (48),, (39), and (40).

Under the distributed state reconstructibility assumption, the stability of

the observer can be demonstrated.

II.3 Comments

The relationship has been established between distributed state recon-

structibility and the existence of an observer. Distributed state reconstruc-

tibiiity is defined through the existence of the generalized inverse to the

reconstructibiiity kernel. The kernel associated with the observer gain

satisfies the same Riccati equation as does the generalized inverse of the

reconstructibility kernel.

III. REMOTE SENSING MEASUREMENTS AND ATMOSPHERiC MODELS

In this section we will test both the n-mode and state reconstructibility

of common remote sensing measurements with models of atmospheric pollutant

behavior. By far the predominant mode of remote sensing is to measure the inte-

grated quantity (burden) of material between the ground and some known altitude.

Thus, both cases we consider here involve vertically integrated data. Various

assumptions concerning the horizontal characteristics of the measurements will

be tested. Three-dimensional models of pollutant behavior are generally based

on the atmospheric diffusion equation [5] that describes the flow and diffu-

Sion of species. The object of this section is to ascertain if the customary 	 i

remote sensing measurements allow one, in principle, to reconstruct the detailed

concentration distribution. The distributed parameter reconstructibility con-
-

	

	 •r
dition derived in Section II will therefore be tested in each case.
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III.1 Measurements

The vertical

horizontal homogene

equation,

au =
at

in a Layer with Horizontal Homogeneity

concentration distribution of a pollutant in a 'layer with

ity can be described by the one-dimensional diffusion

K a2 2
	

(56)
az

subject to

K "= h 0 (t)z = 0 	 (57)

K az = 0 	 z = 1	
(58)'

where h o is a given flux at the ground (z=0) and K is the turbulent diffusion

coefficient.

The adjoint Green's function for the system (56)-(58) is

^D (zyt;z' ,T) = 1 + 2 7 cos(nrz)cos(n7Tz1)e(nir)2K(t -T)	 (59)
n=1

State reconstructibility is then wo be assessed by condition (24) using the 	 l

modified reconstructibility kernel (25).

We consider each of the measurement types (3), (4) and (5). The condition

for uniform n-mode reconstructibility is (24), which is written for ^ n = cos(nTTz), 	 ?

n = 0, 1,2,..., as

1 1

0 < M1 <	cos(n7z)Qa(z,z',t)cos(n7Tz')dzdz' < M 2 <Co (60)	 y

0 0

For each of the three types of measurement, the integral in (60) is:

;. e
fi
i'
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(61)

(62)

(63)

Case 1: Spatially-Independent Integral Measurements

	

t	2	1
e2(nir) K(t -T) f

	t-a	 o

2
H(r,T) cos (n7rr)dr	dT

Case 2: Spatially-Continuous Measurements

ft e2(n7r)2K(t-T)

 f,
 C(r,T)cos(nirr) 2 drdT

t- rj	 o

Case 3: Spatially-Discrete Measurements

ft e2(nir) 2K(t -T) S H. (T)cos(nwz. ) 2 dT

for n = 0, 1,2,...

	

	 i
,i

From (61)-(63), we see that uniform n-mode reconstructibility is com-

pletely dependent on the form of the measurement weighting functions, H(z,t),

C(z,t) and Hi (t) and on the eigenfunction, cos(mrz). The condition (60)
1

implies that f H(z,t)cos(nfrz)dz # 0. We may note that this inequality is	 J'

o
essentially equivalent to the observability condition derived by McGlothin

d

[14]. Similarly, (63) implies that the system state is reconstructible by

point sensors if the sensors are not located at the zeros of any of the eigen-

functions.

In the remote ser:G ing problem, the measurement weighting functions are

often taken as H(z,t) = 1 or C(z,t) = 1. When H(z,t) = 1, the condition (60)

holds only for n = 0 implying that the spatially-independent integral

r

F,
y..

t
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measurements do not allow reconstruction of the system state on entire

fields. *  This can be directly checked by computing the reconstructibility

kernel Q(z,z',t), The system with integral measurements cannot be distribu-

ted state reconstructible since the generalized inverse of Q(z,z',t) = t does

not exist, since Q is not an explicit function of z and z'.

When the measurements are spatially-continuous and C(z,t) 	1, the system

is distributed state reconstructible. From the definitions of Q(x,y,t) and

P(x,y,t) in (15) and (16), we have

1	
Co

Q(z,z',t) = t + 2	
2 cos(nTrz)cos(nTrz') e2 ( nTr )

2 
Kt _ 1)
	 (64)

TrKn=1n

and

2(n7r)2Kt	-1
P(z,z',t) = t + 4T r 2 K 1, n 2 cos(nTrz)cos(n7z') e	- 1	(65)

n=1

We may note that the integral equation (16) is satisfied when it is recognized

that

* A mode associated with the eigenfunction ^ o = 1 (n = 0) can be reconstructible
and the appropriate observer is

2^	
1	 i

8u = K 
Du +

1 w(t) _	u(z',t) dz,
at	az2 t 1	f

0

Stability of the observer can be demonstrated by constructing the Lyapunov
function 	 "M

1
V(e,t) = 	e(z,t)te(z',t) dzdz'

0 0

r e

,P
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S( z - z') = 1 + 2 1 cos(nNz)cos(n7rz') 	 (66)
n=1

P(z,z',t) is bounded and positive-definite, and for t > 0, the series (65)

is uniformly convergent.

III.2 Measurements of a Steady State, Point Source Plume

r	 The concentration distribution in a plume from a continuously emitting,

elevated point source can be described by

au = K a 2 
u + K a 2 u	 (67)

at	y ay2	z az2

where t is the time an element of fluid spends in the plume from emission,

equal to downwind distance x divided by the wind speed. The source is of

strength q located at t = 0, y = 1/2, z = z H (0 t WH 4 1). The boundary condi-

tions on (67) are

u( 0 , y , z ) = q¢ ( y - 1/2)6(z-zH)

8y=0	 Y=0,1

Kz az h o	z = 0

au =0	 z=1
^z

The adjoint Green's function for this system is

w(nn ) 2K (t-T)
4) (y,z,t y" ,z` "r) = 1 + 2	cos(nTry)cos(niry' )e	y	x

n=1

(npr)2Kz(t-T)
1 +2 co cos (mnz) cos (mrrz" )e

m-

', t

(68)

(69)

(70)

(71)

(72)
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Consider first a scanning measurement performed at a horizontal position

Y = Y*)

F^	 1

w(t) _ 	J(z)u(t,y*,z)dz 	 (73)

0

where the scanning data w(t) are taken on a coordinate that moves along the

t-axis. J(z) in (73) is the altitude-dependent weighting function for the

measurements. When J = 1, the reconstructibility kernel function becomes

Q (tPYVz; y '^z') = t

+
 K

cos n2	cos ( n7ry) + cos (n7ry' )	e 
(nTr) 2 K Ht - 

1

H -̂-q (nrr)

4	
co	00 cos(n7ry* )cos(mny* )	 (n2+m2)7r2KHt

+ K	S	 2	cos(n^ry)cos(nmy ) e	 - 1	(74)
H nn=1 m-1 ( n 2 +m2 ),n

The system is not distributed state reconstructible since the generalized

inverse of Q(t,y,z;y',z') does not exist. Therefore, we con , 	that

the scanning measurement (73) cannot, in principle, allow re p	tion of

the system state.

The same results can be obtained for the following measurement systems:

E

1 1

w(t) = 	u(t,y,z)dydz

0 0

1

w(t,Y) = fu(t,y,z)dz

0

r1

w(t,z) = a u(t,Y,z)dY
J^
0

(75)

(76) ,..

(77)
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In these cases, the reconstructibility kernel function Q(t)y,z;y',z') cannot

be written explicitly in terms of all the spatial variables y,z, and y',z'.

Thus, the generalized inverse P(t,y,z;y',z') does not exist, which allows

reconstruction of the system state on the whole domain. As a rule, if

Q(t,y,z;y',z') is expressible as an explicit function of all the spatial vari-

ables and if it satisfies the uniform n-mode reconstructibility test, then the

system is distributed state reconstructible.

Indeed, we can show that the system state is distributed state recon-

structible for the measurement

w(tsy,z) s u(t'Y'z)
	

(78)

this	 ^c. h
aveIn this case, .r4 .....

2(n^r)2KHt
Q (t,Y, z ;Y' ' z') = t+ K	12 cos(n^ry)cos(n7ry' ) e	- 1

H n=1 (nir)

+	
0	

1	c	
2(n.n)2KVt

KV n= 1 (n n)2
(n^rz )cos(n-nz' ) e	- 1

00	00	 ^	̂ %	2{(n^r) 2 K +(m^r) 2K }t
+ 2 cos(n uy)cos(mnz)cos(n7Ty )cos( mnz % e	

H	V - 1 	(79)
n=1 m= 1	(n7r)2KH+(mn)2KV

The generalized inverse of (79) is given by

A

i

't 3

C
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n

C ̀	 2(n7r)2K t	-1
N t,y,z,y',z') - t + 4K 	(nn)2 cos (n7ry) cos (nTry') C e	N - 1

n

°°	2	 2(mr)2K^t	-1

	

+ 4K^ I (nir) cos(wrz)cos(nrrz )Ce	 1
n=1

«*	00

+ 8 1	(nrr) 2 KH + (nrr)2 K
V
 cos(n7ry)cos(mrrz)cos(nTry')cos(nmz' )

n=1 m=1

xe2{(n-a)2KH+(m,r)2KV }t
 _ 

1 - 1	 ($0)

where (80) satisfies the Ri ccati equation associated with. the measurement (78) .

d;

9

r
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IV. CONCLUSION

This paper has examined the possibility of estimating atmospheric species

concentration distributions from remote sensing data. Atmospheric concentra-

tions can be modeled by partial differential equations of the diffusion type.

Remote sensing data generally represent spatial averages of the concentrations,

frequently in the vertical direction. The essential problem, therefore, is to

assess the possibility of estimating the state of a distributed parameter sys-

tem on the basis of spatially-averaged measurements. The theoretical basis

of the assessment is a condition for state reconstructibility of distributed

parameter systems. (The connection between state reconstructibility and the

stability of the distributed parameter observer has also been developed.)

A variety of remote sensing measurement configurations were tested for

reconstructibility. It was found, not unexpectedly, that those measurements

based on integration of the vertical concentration distribution over the

entire layer do not lead to distributed state reconstructibility, i.e., there

does not exist a generalized inverse of the reconstructibility matrix kernel

and therefore do not afford the possibility of estimating the concentration

distribution over entire field. Those measurement configurations that, on

the othe- hand, enable sampling of the concentration at vertical positions

lead to distributed state reconstructibility.

.r.

is

r
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Filtering and Smoothing for Linear
Discrete-Time

Distributed Parameter Systems Based on
Wiener—Hopf Theory with Application

to Estimation of Air Pollution
SIGERU OMATU, MEMBER, IEEE, AND JOHN H. SEINFFLD

Afotrort — Optimal filtering and srnooWng algorithms for linear dis•
trete•time distributed parameter s y stems are derived b) a unified approach
bayed on the %irner-Hopf theon. The Wiener-Hopf equation for the
estimation problems Is derived using the least-squares eWmatlnn error
criterion. Using the basic equation. thrre apes of the optimal smoothing
estimator are derived namet;, fixed-point. Med • Intenal. and liked-lag
smoother. Finallw. the rmhs obtained are applied to estimation of atmo.
spheric sulfur dioxlde cnn:entrations In the ToLushima prefecture of
Japan.

1. I NTRODUCTION

A
NUNIBER of important physical phenomena may be
modeled as discrete-time distributed parameter sys•

toms. When estimation problems are encountered in such
systems. the measurements are also frequend) discrete in
time. A great deal of work has been carried out on estima•
tion problems for continuous-time distribLited parameter
systems [1]-141. Tzatestac 15j. [6] and Nagamine et at [7[
hawe dertwed optimal estrwators for discrete-titre distrib-
uted parameter systems. Tzafcstas employed a Bayesian
approach. where Nagamine et ah considered only the filter-
ing problem based on the Wiener—Hopf theory. Recently,
Bencala and Seinfeld 131 have derived the optimal filter for
continuous-time distribt,t-a parame,er systems with dis.
crete-time obsmations by the Wiener—Hopf approach.

The object of this raper is twofold. First. we seek to
derive optimal filtering and smoothing algorithms for ;ts•
crete-time distributed parameter systenis by 9 unified
Wiener—Hopf approach. Fixed-point, fixeci-interval, ano
fixed lag smoothers are considered. Second, we wish to
apply the results to the estimation of atmospheric sulfur
dioxide concentrations in the Tokushima prefecture of
Japan.

II. DESCRIPTION OF THE DISTRIBUTED PARAMETER
SYSTEM r

Let D be a bounded open domain of an r-dimensional
Euclidean space with smooth boundary M The spatial
coordinate vector will be denoted by x = (xl , • • •, x,) E D.
Consider a linear distributed parameter system described
by

u(k + 1, x) = E,u(k, x) + G(k, x)w(k, x),	x E D
(1)

where u(k + 1, x) is an n-dimensional vector function of
the system, vv^k, x) is a vector-valued Gaussian process, E,
is a linear spatial matrix differential operator, and G(k, x)
is a known matrix function.

The initial and boundary conditions are given by

U(0' x) = ua(x)	 (2)

rt u(k -+' 1, E) = S(k + 1. 6).	E E BD	(3)

rJ [-]  = co-] +(I — a(E))a[']/an 	(4)

where n is an exte; or normal vector to the boundary aD at
a point J E aD and a(6) is a function of class cI on aD
satisfying 0 4 a(E) < 1. S(k + 1.6) denotes a source func-
tion at the boundary and is assumed to be known.
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Assume that uo(x) is a Gaussian random function the
mean and covariance functions of which are given b)

E[uo(x)) =0	 (5)

	

E[u0(x)U0'0'))=Po(x,}')	(6)
where E(-1 and the prime symbol denow the expectation
and transpose operators, respectiveh.

Let the observed data be taken at m points, xt,,
x"' E D = D U 8D and let an mn-dimensional column vec-
tor a",(k) be defined b)

u ",(k) = Col[u(k, x t ).---, u(k.x m )a.	(7)
Let the observations be related to the states by

	

:(k)=H(k)u",(k)+e(k).	(8)

where :(k) is a p-dimensional observations vector at the ni
observation] points, xt .- - •, x' E D. H(k) is a known
pxmn matrix. and v( k) is a p-dimensional vector.valued
white Gaussian process. Assume that the white Gaussian
process %Ik.x) in (1) and c(k) in (8) are statisticallc
independent of each other and also independent of the

initial condition uo(x). Their mean and covariance func-
tions are given b)

E[%,(k, x)) = 0.	E[e(k)) = 0	(4)

	

E[% ,(k. x)"'(s, y )) = Q(k, x. y)8,,.	x. y E D

()0)

E[c(k)c'(s)] = R(k)6,,,	 (11)
where SA, is the Kronecker delta function, and Q(k, x. } )
and R(k) are symmetric positive-semideftnite and positive-
definite matrices. respectivel}.

111. DESCRIPTION Or THE E2TI^tAT10N PROBLEMS

The general problem considered here is to find an esti-
mate ut r, x, k I of the state u(r. x) at time r based on the
measurement data :', denoting a famih of :(a) from
o = 0 up to the present time k. Specificalh. for r > k we
have the prediction problem. for r = k the filtering prob-
lem, and for r < k the smoothing problem. As in the
Kalman-Buoy approach. an estimate u(r. xJk) of u(r, x)
is sought through a linear operation on the past and

present observation values :'
.

0
 as follows:

k

	

u(r.x,1k)=	F(r.x,0):(0)	(12)
0=0

where F(r. x. a) is an ny matrix kernel function.
To differentiate between the prediction, filtering. and

smoothing problems, we replace (12) with different nota-
tion for each problem:

1) Prediction (r> k)	 i
k

	

u(r, x/k) =	A( r, x, o):(o).	(13)
a=0

2) Filtering (r = k)
k

	

G(k,x/k)=	F(r,x,o):(0).	(14)
0=0

3) Smoothing (r < k)
k

WHIN,	 O(r.x/k)= I B(r,k,x,a):(a).	(15)
0=0

The estimation error is denoted by D(r, x/k),

	

Y(r, x/k) = u(r, x)-0r. xfy).	(16)

The estimate 6(r, x/k) that minimizes

	

J(u) = E[Ji:O(r, x/k)I' =]	(17)
is said to be optimal, where It ' I: denotes the Euclidian
norm.

F—

X

X

d'1

,
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Theorem l (Wiener-Hopi theory) A necessary and
sufficient condition for the estimate At r. x'k) to be opti•
mal is that the following_Wiener—Hopi equation holds for
a=0.1.---.A and x6D.

A

AT. X. o)E[:(o):'(a)] = E[u(r, x):'(a)].
•Qo	

(Ig)

Furthermore, (18) is equivalent to
x!k):'(a)] = 0	(19)

for a=0.1.-••.k and x ED.
Proof Let FA(r. x. o) be an np mauix function and

let c be a sca)ar•valued parameter. The trace of the covari-
ance of the estimate,

A

ir,(r,x/k)= I MT. z,o)+cFx(r,x,o)):(o)
e=0

is given b)

A

E;:u(r.x)— u(T,x/k)—r I F,(r,x.o):(o)!''
.=6

= E u(r, X, 1 4 1' z] — 2,E 0'(T. x,'k)	FA(T. x. a):( a)

(t 	

e=0

tt o=C

A necessary and sufficient condition for u(T.x/k) to be
Optimal is that

aJ(u )^
0,

do h=6

that is.

((	 A

Elu'(:,x.'k)	Fj(r.x.o):(a)
1
 =0

It	o=(1

for any n_rp matrix F%(r. x, a ). Using the relation between
the trace and inner product }fields

rr	 A	 11

EIu'(r,xlk) y F^(r,x.o):(o)

Jl` 

^ E^ r̂O 
	 A

=tT(T.x/k) T :'(a)F^(r,z,o)
J 0=0

A

_ I tr[E[u(r,x/k)z'(a)]F^(r,x,a)]=0.
a=6

Setting F,(r. x, k) = E(ir(T, x/k):'(o)) in the above equa-
tion, it follows that (19) is a necessary condition for
ir(r,x1k) to be optimal. Sufficiency of (19) also follows
from the above equation.	 Q.E.D.

Corollas 1: (Orthogonal projection lemma). The follow-
Mg orthogonabt , condition holds,

E[u( •r, xlk)u'(t. y/k)] = 0,	z, y E D (20)

where t is any time instant, for example, (' < k, t = k or
t > k.

X

X

A 

r.

(
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E O(T. X 'k) 2	 a)	0,
0.0

Substituting (12) into the above equation yields (20). IEEE: SYST., MAN, CYBEAN,
Q.E.D.

Then the following lemma can be proved,
Vol.	 Issuq

Lemma 1: (Uniqueness of the optimal kernel). Let
A ,% x, a) and P(T, x, a) + N( ,r. x. P) be optimal matrix Galley No.
kernel function, satisfying the Wiener—Hopi equation (18).
Then it follows that

X(T. x, a) ra 0.	v=0.1.••• .kandxE5, (21) ^1

and the optimal matrix kernel function t(7-, x, a) is unique.
Proqf. From (18) we have

°=0
E[U( T. X	0

2 (AT. X. 0) + X(T. x.
0=0

Thus,

Multipl ying each side of the above equation b) A" (r. x, a)
and summing from a = 0 to a = 4- yields

N( ,r. x. o)E[:(o):'(a)] S'(,r. x. a) = 0.

On the other hand, from (8) and (11) we have

HWE111jo )U',W) H'(a)	R(06,
Then it follows that

0=6 0=0

-i- S X(T, x. o)H(o)R(o)H'(o).V'(T, x. a) = 0.

Since both terms on the right side of the above equation
are positive-semidefinite because of the positive-definiteness
of R(o), a necessan and sufficient condition for the above
equation to hold is F(-% x. a) = 0. a = 0.1., - -. k and x e
D. Thus. the proof of the lemma is complete.	Q.E.D.

In order to facilitate the derivation of the optimal esti-
mators, we rewrite (18) in terms of the following corollar).

Corollat) 2; The Wiener—Hopf equation (18) is rewritten
for the prediction, filtering, and smoothing problems as
follows.

1) Prediction (T > k)

7, A( ,r, x,	 E[u(,r. x).-'(a)].
0=0

(22)

for a = 0, 1.- - -, k and x 6 5,
2) Filtering (T

F(k, x, o)E[:(o)z'(a)]	E[u(k, x):'(a)] (23)
0.0

for a = 0. 1.- - -, k and x C-5
3) Smoothing (,r < k)

2 B(-r, k. x,	 E[u(,r. x P.)]
0=0

(24)

for a = 0. 1,- - -, k and x ED,
In what follows. let us denote the estimation error covari-
ance matrix function bN' P(,r. x, ylk),

P(T, x, ylk)	E[ri(-r, xlk)ri'(T. y1k)].	(25)

x.
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In this section. we derive the optimal prediction estima•
for b) using the wiener-Hopf theory in the previous
section.

Theorem :: The optuital prediction estimator is given by

a(k + 1. x/k) = E,6(k, x/k)	(26)

.r(4(k + 1, E/k) = S(k + 1, E),	F E aD, (27)
Proe f. From (22) and ( 1) we have

A

A(k + 1, x. o )E[:(a):'(a)] = E,E[u(k. x):'(a)]
eQo

since a^k. x) is independent of :(a), a = 0, 1.• • k. From
the Wiener-Hopf equation (23) for the optimal filtering
problem we have

A

I (A(k+1, x, a)—Ej(k.x, o)^E[:(a):'(a)]=0,
0=0

Defining, (k, x, a) b^
K(k+ 1. x, a)= A(k -r, 1,x,e)—E,F(k.x.a).

it is clear that A(k + 1, x, a) 4 N(k + 1. x, a) also satis-
fies the Wiener-Hopf equation (22), From the uniqueness
of A(k + 1, x, a) bN Lemma 1 it follows that N(k +
1, X. o) = 0, that is,

A(k+1, x, o) = C,F(k, x. k).	(28)

Thus, from (13) and (14) we have
A

6(k+1.x1k)=E, I F(o,x.o):(a)= E,u(k.x/k),
oa0

Since t)x forms of ri and S(k + 1. F) are knaw,n. the
predicV:d estimate 6(4 - 1. f k) also satisfies the same
boundar% condition as (3), rtu(k - 1. J . 1k) = S(k + 1. J).
( E aD. Thus. the proof of the theorem is complete. Q.E.D.

Theorem 3: The optimal prediction error covariance ma-
trix function P(k + 1, x. )-r'k) is given b%

P(k T 1. x, ) %k) = C,P(k, x. y /k )C,' + Q(k, x. ) ).
(29)

r( P(k + 1. J, y/k) = 0,	f e aD	 (30)

where

Q(k, x, y) = G(k. x)Q(k, x, y)G'(k. )').	(31)
Proof: From ( 1). (16). and (26) it follows that

u(k + 1, x/k) = E D(k.. x/k) + G(k, x)%,(k, x)
(s2)

and from ( 3), (16), and (27),

rt u(k + 1, ilk) = 0,	E E aD.	(33).

Then we have from (31) P(k + 1, x, p/k) = E(u(k +
1. x/k)a'(k + 1. y/k)) = E,P(k, x, y/k)E' + Q(k, x, y)
and from (33). E(r't ri(k + 1, f1k)0'(k + 1, y/k)) =
rt P(k + 1, E. y/k) = 0. Thus, the proof of the theorem is
complete.	 QED.

IV, DERIVATION OF THE OPTIMAL FILTER

Let us derive the optimal filter by using'the Wiener-Hopf
theorem for the filtering problem. From (23) it follows that

F(k + 1, x, k + 1)E[:(k + 1):'(a)]
A

+	F(k+ 1, x,a)E[:(a):'(a)]
0=0

E[u(k + 1. x):'(a)]	 (34)
for a=0, 1.-- ,k+1.
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From (1) and the independence of :0	and N{k - 1. x). ORIGINAL PACE 6S
it	(0110%5 that E(u(k + 1. x):'(a)j = 1:,E(u(4-. x):'(a)). O^ P00^ QUALITY
App)}ing the Wiener-Hopi equation (23) to the right side
of the above equation Fields

E[u(k + 1. x)-'(a)) = E,	F(k, x, a)E{:(o):'(a)j. _
° -o ICEC: SYST., 6IAN, CYSERN.

(35) Vol.	issue
Furthermore, from (8) and the whiteness of v(k + 1) we Au:	 '+	° f	'have

E[:(k + 1):'(a)j — H(k + I)E[u,,(k + I):'(a)). Galley No.

Let us introduce C.(•) rind (•jC; as follows,

E.-I-1	0

E.[• J —	 (36)
o	E, -[•j

and

Then from (1) and (7) it follows that

um(k..:.1)=0.u.(k)-rNr,(k)	 (38)

4MM = Col{G(k. x t )%-(k. x'). • • • ,
t^G(k,x°')w(k.xw)j.	(39) .RI

Then we have for a <k + 1, E(:(k+ )):'(a))= H(k+
t)c,E(u,,(k):'(a)j. Applying the Wiener—Hopf equation
(23) to the right side of the above equation yields

A

=H(k +1)C. s. F(,9.o)E[:(0):'(a)j
o=C°

(40) _

where

F(k,
F,(k.o)={F(k.x".a),	

(41)

Substituting (35) and (40) into (34) yields j
A

AA(4.x.o)E[:(o):'(a)j=0.	a = 0,1, ••	,k
a=0

where

Tj(k.x,o)=F(	1,x,k+l)H(k+1)E.F„(k,a) .E.c.k

—E,F(k.x.a)+ F(k + 1,x.a).

Since it is clear that F(k. x. a) + N.%(k. x, o) also satisfies
the Wicner—Hopf equation (23), it follows from Lemma I 1
that A^(k, x, a) = 0. Thus. we have the following lemma.

Lemma ?r The optimal matrix kernel function F(k, x, a)
of the filter is given by

a

F(k +1, x, a)= E,F(k. x, a)

— F(k + 1.x,k+ 1)H(k+ I)E.F,,(k,a).

a = 0, 1, , .. , k.	 (42) I
1

Theorem 4: The optimal filtering estimate u(k, x/k) is
d

given by

0(k + 1, x/k + 1) = E,ir(k, x/k)
+F(k+1,x,k+1)v(k+ 1)

(43)

v(k + 1) = x(k + 1) — H(k + I)C.0jk1k)
(44)

w,,.. 12(0. x/0) = 0	 (45)
170(k +1,Vk +1)=S(k+I, F).	EaD	(46) F	.'

where

u,n(k/k) = Col{iu(k, x'/k). • • •, u(k. x"'/k)]. (47) )
i

X
!	f.

1)
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Proof: Using (14) and (421 ) yields
Ok+1.x/k+I)=F(k+1.x.A'+1):(k+1)

A

+EX I F(k.x,o):(v)
a=o

— F(k + 1, x, k + 1)H(k + 1)C.
A

F.(k,v):(o).
.00

Again from (14) we have
0(k + 1. x/k + 1) = C,6(k, x/k )

+F(k + 1. x. k + 1) r(k + 1).

Since we have no information at the initial time, it is
suitable :o assume an initial value of ii(k + 1. x/k + 1) as
0(0. x10) = El uo(x)) = 0. Furthermore, since we know the
exact forms of rt and S(k + 1. E ), the bounder) value
u(k + 1. elk + 1) also satisfies the same boundar y condi-
tion as u(k + 1.0. Thus. we have 170(k + 1. ilk + 1) _
S(k + 1, F), E!?A and the proof the of the theorem is
complete.	 Q.E.D.

Note that r(k + 1) defined by (44) is rewritten b) using
the prediction value of (26) as follows.

r(k-r 1) =:(k + 1)—H(k+ 1)4.(k+ 1/k) (48)

or

r(k +1) H(k-r1)u",(k+ 1/k)+o(k+1)(49)
where

^m(k + 1,'k) — Col[u(k + 1, xi /k), • .

u(k + 1, x"'/k)] (50)
and

G,„(k-1 k)=u".(k ^ 1)--u",(k- I lk). (51)
a1k -* 1) is termed the innovation process )8). (9).

In order to find the optimal metric, kernel function
F(k - ).,%, k -f 11 for the filtering problem, we introduce
the following notation.

P",(r. x 'k) _ [ P(r, x. x '/k).—.. , p(7, x, x'lk )]
(52)

and

P(r. xi'/k)

P ('r, x" , "k )

P(r. X i , Xi/k),.... P( r, Xi , X"/k)

P(r,x"',xt/k),.. ,P(r,xm.x"'/k)

(53)

Note from the definitions ofp,"(r, x/k) and p. ,(71k) that

	

p,,( r , x/k ) _ £[ u ( r , X/k)a^%'i/k)]	(54)
and

	

pM",(r/k) _ £[4.(71k)G;.(r1k)].	(55)
Furthermore, we define the covariance matrix of the in-
novation process r(k + 1) by r(k + 1/k).

	

r(k + 1/k) = E[r(k + 1)r'(k + 1)].	(56)
Then from (49) it follows that

r(k+ I lk) =H(k+ 1)p„.,(k+ 1 /k)

	

•H'(k + 1) + R(k + 1).	(57)

Then the following theorem holds,

ORIGINAL Pk"C'E "'
OF POOR QUALITY
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theorem ; The optimal filtering gain mainx function
Fi. k - 1. X. A -I Its $ I%Cri b}

F(k +1.x,k+ 1)=p„(k+ 1.xlk)
•H'(k + 1)r- t(k + Irk) Css)

or

F(A, 1, k+ 1)=p,(k- I.x/k)
-+(k+ 1/k)H'(k+ I)R- t(k+ 1)

P,

	

	 (59)

where

f(k +I /k)=(I +A(k +I)p,,,(k + I /k)) 1(60)
and

Rik + 1) = H'(k + I)R t̀ (k + 1)ff(k + 1). (61)

Proof. From the Wiener-Hopi equation (23) it fol-
lows that

F(k 4- t,x,k+'))E[:(k+ 1).'(k+ 1))
A

+ I F(k +1,.x,a)E[:(e):'(k- 1))
6R0

= E[u(k	1.x): 'It k - 1))

Substituting (42) into the above equation yields

F(k+ I,x,k+ 1)^ E l f .(k+ 1)-H(k+1)c.

T F„,(k.u):(o>j:'(k'+ ))11

 I1
E11,+u(kI,x)-C:	F(k,x,o):(o):'(k+1)J.
 a=0 

Substituting ( 14) into the right side of the above equation
and using (26) and the ortho gonaht) condition of (20)

yields
A

Eku(k- 1.x)-1, r F(k,x,o):(n)}:'(k+1)^

= E[ il (k + 1. x , 'k W(k +) ))
= E[u(k 1 1. x/k)u„(k •+- 1)]H'(,? + 1)

= R,,(k T 1. % 'A ) H'(k -+ 1).
Using the orthogonality condition of (20) gives
E[v(k + 1):'(k + 1)) = H(k + I LE Djk + 1/k)r;,,

= H(k - I)p,„.,(k + I lk)

•H'(k + 1) + R(k + 1)
=?'(k + 1 /k).	 (62)

Then we have

F(k + 1,x,k + 1)r(k + I lk)

= p,„(k + ), x/k)H'(k + 1).
(63)

Thus (58) is derived. In order to show the equivalence
between (58) and (59), we use the following matrix in-
version lemma,

PH'(HPH' T R)-t = P(1 + H'R- 'HP)-t H'R-t,

(6f)

a,w.»	Fron (58) and (64) we have

F(k .E 1,x,k+ 1)=p^(k+ 1,x1k)

-^(k + 1 jk)H'(k + 1)R- t (k + 1).
Then (59) is derived, and the proof of the theorem is
complete,	 QED.

The equation for the optimal filtering error covariance
matrix function p(k + 1, x, y/k + 1) now must be de-
rived.

d !

'c
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Theorem 6 The optimal filtering error covanance matrix
functionp(k + 1. x. ti •'k + 1) is given by

p(k+ 1.x. € /k + 1) =p(k -4. 1.x,•€ 1k)
-P.( A+ 1.x'k)H'(k+ 1)
.r..t(k + 1/k)H(k + 1)

•p,;,( k + 1 . y1k )	(65)
Er	 or

p(k+1. x. ),/k +1)=,p(k,t 1, x,y/k)
-p,„(k --,. 1. x/ A )V (k - I /k )

^r	 'H(k'+ 1 )p,,( k+ 1, y/k)
(66)

,
i	 where

n(0. X. y/0) = po( x , A	(67)

and

rt p(k 1. E. y/4 + 1) = 0.	j E aD.	(68)
Proof From (1) and (421 we have

u(k+ 1, xlk -* 1) u 0(k a 1,xr/k)
-F(k+1.x.k+1)v(k+1)

(69)

and from (3) and (46)
rt A(k + 1, f rk + 1) = 0.	r E 2D.	(70)

Using the independence property between u(k + 1) and

A(k + 1, x/ k) or u(k + 1.,t• 1k) yields from (69).
p(k + 1, x, y/k + 1) = E[u(k + 1, XA' + 1)

.u'(k + 1, )./A - 1)]
p(A	1,x. ),'k)

+F(k- 1.x. k- I)E[r(k+ 1)

-F(k + 1.x,k - 1)H(k+ 1)
•E[4 M(k - I 'k)i,'(k -- 1,•t1k))
-E[a(k + 1, x;'k )u"' (k + Ilk)]
•H"(k	I)F'(k+ 1,y,k+ 1).

Using (58) and (63) it follows that
p (k - 1. x, y/k + 1) = p (k - t, x. y./k)

-&( k -r 1, x/k)H'(k + 1)
•F'(k+ 1, ), k + I)

=p(k+ 1,x,y1k)

-pJA + 1, x/k)H'(k + I r - ^

{-k + Ilk)H(k + ))p;'(k + 1, y/k).
Thus (65) is derived, The equivalence between (65) and
(66) is Basil; shown by using (64), Since the initial value
6(0, x10) of u(k + 1, x/k + 1) is zero from (45), it is clear
that f (0, x, y10) = EID(0. )-,/0)) = &x, y). Multiplying
each side of (70) by u'(k + 1, y/k + 1) and taking the
expectation yields rt ^(k + 1, E. y/k + 1) = 0, j E aD.
Thus, the proof of the theorem is complete.	Q.E.D.

Corollan 3. 0,,(k + Ilk + 1) and p,(k + 1, x/k + 1)
satisfy the following relations,

G,„(k + Ilk + 1)

fi ,(k + 1 /k) +.F,„(k + 1. k + 1)r(k + 1)
(71)

F,,,(k+1,k+1)

= p..(k+ 1/k)^(k+ 1/k)H'(k+ I)R"'(k+ 1)
(72)

or

F^fk+1.k+1)=P(k+ Ilk + 1)

•H'(k + I)R't (k+ 1) (73)

p., (k+ Ilk +1) = p,(k+ Ilk) -p,,,( k + Ilk)

•^(k + I/k)R(k + I)p_(k + 1 /k) (74)
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or	 1.

P,„,,,(k -I, + 1) =P.J4, + 1;' k )0( k + 1/4).
(75)

Proof From the definitions (41) and (50) of F.(k +
1. k — 1) and 0^(k + 1;k ). it is clear that (71).(72). and
(74) hold. From (60) and (74) it follows that

P.,,„(k+ 1 /k+ 1) = P.,.( k+ )1k)4(k + I lk)
(¢- I(k + 1 /k) — A(k + 1)

.p. ,(k+ Ilk))
= PM.,(k + 1 /k )$( 4 + 1 /k)

(I+ R(k + 1)P.,,.(k + 1!k)
— A(k + 1 )P.,., ( A + I lk))

= p„jk + IA)0(k + I lk).

Thus. (75) is derived and (73) is clear from (72) and (75),
Q.E.D.

The present result corresponds to that of Santis et al,
)17) which is an abstract form of the filter.

V. DERI%ATto*. Of THE EOL'ATIONS FORTHE

OPTIMAL SMoom.,4o ESTIMATOR

In this section, we derive the basic equations for the
optimal smoothing estimator b^ using the Wiener—Hopi
theorn.

Lernnia 3 The optimal matrix kernel .function Bi r, k +
1.. x, o) of the smoothing estimator is given by
B(T.k	1.x.a)=B(T.k,r.(T)

— B(T, k + 1.x, k + 1)H(k + 1)t ,F.,(k, o).
a = 0.). • • • , k.	 (76)

Proof From the H'iener—Hopi equation (24) we have
I-i

B(T, k + 1, X. o )E[:(a):'(a)] = E[u(T. x):'(a)],
a=t'

a=0,...,k+l

and
i

t	 +
x, c)E[r(o):'(a)] = E[u(r. x):'(a)],

0-0

a=0,	,k.
Subtracting the latter equation from the former yields

Bi-,k	1.x.k+1)E[:(k-1):'(a)]

IEEE: SYST., MAN, CYBERN.
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A

+	(B(r,k+ 1,x.a)
0-0

— B(T, k, x. a))E[:(o):'(c)] = 0,
From (g) and (23) we have

E[:(k + )):'(a)] = H(k + ))i,E[u.(k)^'(a)]
A

=H(k+ 1)C• . 7. F^(k,a)
.•o

Then it follows that
t

s.0
where

N(T.k,x,o)=B(T,k+ 1. x, a)— B(r,k, x. o)

+B(r, k + 1, x, k + 1)H(k + 1)E.F, (k, o).

Since it is easily se%n that B(T, k, x, o) + N(T, k. x, o)
also satisfies the Wiener—Hopi equation (24). from Lemma
I we have '^(,% k, x, a) = 0. and the proof of the lemma is
complete.	 Q.E.D.

Theorem 7: The optimal smoothing estimate u(T, x/k +
1) is given by	 t

u(T. x/k+ 1)= 4(T, x/k )+B(T,!c+ 1.x,k+ 1)
•r(k + 1) 	 (77)

rj 4(T. ilk +1)=S(T.J).EEaD	 (78)

k=T.T+ 1.

(„u..,.

6r'
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Proof From (15) it follows that

4( y . x 'k n , 1) - B(T, k + 1. x, k + 0* + 1)

A

+ I D(T. k + 1. x. o
000

Substituting (16) into the above equation yields

kr. X/k + 1)

B(T. k + 1, x, k + 1)

A

;(A + 1) - H(k + I)C. I F.(k.
too

+	B (T. k, x. a ): (a
0.0

Substituting (14) And (15) into the above equation yields

6(1-, x/k- + 1) = 4( ,r. x1k)

+B( , r, 4- + 1. x, k -r I)P(k + 1),

Since we have no additional information about the

boundar y  value of u( ,r-v), except [Of S(T, J) and the exact

form rp we have	f I k + 1) = S(-r. 0, 1 E 8D, and

the proof of the theorem is complete. 	 Q.E.D.

Theorem 8. The optimal smoothing gain matrix function

B(T. 4- + 1. x, k + 1) is given by

B(T. k + 1, x, k + 1)

(k + I)r- 1 (k + Ilk) 	(79)

or

B(T. k + 1. x. k + 1) = J( , r. xlk + 1)

- H'(k + I ),R - '(k-  + 1)	(80)

where

J(-r. x ik -4- 1) = L^(T, xy'k)C*.

(I -i- fl(k - I)p,,,(k - I 'k))-

L,( ,r. x,'k) = 4r, x. x'lk)., 	L(-r. x, x'101

and

L(T. X. ^'/k) = E[rt(-r, xlk)W(k, y/k)). (83)

Proof. From the Wiener-Hopf equation (24) it fc!-

lows that

B( , r, k + 1. x. k + I)E[:(k + 1):'(A ,  + 1))

A
+ 7, B( , r, k + 1, x. v)E[:(v).'(k + 1)]

0=0

' Ej U(T. X):'(k + 1)).

Substitutint (76) into the above equation yields

B( , r, k + 1. 1, k + I)E[s,(k + 1):'(A- + 1)]

= j - [O(T, xlk):'(k + 1)).

On the other hand, from (0 ^ and (49) we have

E[P(k + 1):'(k + 1)) =.C;v(k + 1)(s,(k + 1)

+H(k + 1)4.(k + Ilk))']

= Ef p (k + I)P'(k + 1)]

= r(k + Ilk). 	 (94)

From (8) and the independence of v(k + 1) and

0( ,r, x1k). we have

E[ 0(-r, xlk):'(k + 1))

= E[Q( ,r, x1k)0, '(k + Ilk)] H'(k + 1).

But from (26) and (38) it Wows that

fi^(k + Ilk) = E.0^(klk) + i^.(k). 	(95)

Then we have

B(7, k + 1, x, k + I)r(k + Ilk)

L.(-r. xlk)E.H'(k + 1).
I

". ^d



usmg t}u: match inversinn lemma (64) Thus the proof of
the theorem is complete.	 Q.E.D.

' l.ei us no% derive the equation for L(T. x, y/k + 1).
Using the orthogonahq condition (20) yields

L(r, x. y0k	1) = E[u(T, x)ii'(k +	 k + 1)^.
Substituting (69) into the above equation yields
L(T, x, y/k + 1) = L(T, x. y/k)C,'

-L,(T.x/k)i::H'(k+ 1)r(k+ 1, y,k+ 1).	(86)
From (3) and (78) it follows that rtA(T, ilk + 1) = 0, f E
0. Multiplying each side by u'(k + 1, y/k + 1) and tale-
ing the expectation yields

rrL(T, i. y/k + 1) = 0,	f E aD.	(87)

Then the following theorem holds.
Theorem o J( f- x tk ,	1) in (80) is given by

J(T. x/k t 1) = J(T, x_k):;+^(k + 1/1.)	(88)
.J J(T. x/T) = pm( T , x/7)	 (89)

rrJ(T. F/k + 1) = 0.	E E aD.	(90)

Proof From (86) and (59) it follows that
L,,,(v, x;/k + 1) = L^ (T, x )C*.

[I — R(k + 1)4'(k + I/ k)pM,,,(k + 1/k)).

But we have

1 — Au-PR)-iP=R(1+PAT,

°'( [(1 + PR )R' i — P)

- ^ _ ^(I t PR)R-i)-iR_i
+ P))-i

r!
 (I+RP)-i.

Thus.
i

1
.,..	L,„(T.x:AT1)=1j7-0c.

r.. ^I + Jt(k + 1)pmjk + I /k)) -i.
Therefore. from (81) it follows that

J(T. x /k : 1) = L,,,(T, x/k + 1)	(91)
and from (81) we have
J(T, x/k + 1) = J(T, x/k)E.

(1 + R(k + I)p,(k + I lk )TI.

Then it follows that
J(7, x!-r) = 1-,,,(T. x/T) = p,(-r, x/T ).

Since (90) is clear from '(87) and (91), the proof of the

theorem is complete.	 Q.E.D.
Let us now derive the equation for the optimal smooth-

ing error covariance matrix function p(T, x, y/k) defined
by

p(T, x, y/k ) = E[1l(T, x1k)u(T, y1k)].	(92)
From (77) and (78) it follows that

fl (T, x/k + 1) = u (T, x/k )

— B(T, k + 1, x, k + 1)r(k + 1)
(93)

rj O(T. ilk + 1) = 0,	E E aD.	 (94)
Then the following theorem holds.

Theorem 10: The optimal smoothing error covariance
matrix function p(T, x, y/k + 1) is given by
p(T, x, y/k + 1) =p ( T , x, y/k)

k+ 1/k)H(k + I)i;1.;„(T, y/k )

(95)

or

p ( T , x..t•/k + 1) = p(-r. x. y/k )
—J(T. x/k + 1 4'i

• (k+ I/k)R(k+ 1)J'(T, y/k+ 1)
(96)

r, p(T. f. i•1k + 1) = 0.	E e aD.	 (97)

`° 3a
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Proof.• From (431 it follows that «'	̀
p(T. x. i 'k + 1) = p(T, x. y/k) ORIOINAL PAC",' M	

f

+B(T.k+1, x. k+ 1)f.[v(k * I OF POOR QUALITY
(	B'(r,k+ I..,.k+ 1)

-B(T, k + 1, x, k + 1)E[v(k + 1)

}•/k)] -E[G(T.xlk)v'(k+ 1))
, B'(r, k + 1, y, k •"	I). IEEE: SYST, MAK, CYDEAN,

E[u(T.x/k)r'(k+1))=E[u(r.x/k)t;„(k/k)) Val.	 Issue

, E'.H'(k  + 1)
_

Au: t'nxt. AG.
= L,„(-r, x/k)E.H'(k + 1) Galley No.--,A—

and

F.[p (k 4.  1)0'(T.  t •/k)) = H(k + 1)E.L ,(T. yJk). !

Thue, we have
P( T ,:t, y/k + . 1) = p(-r, x, y/k) + B(-r, k + 1. x, k + 1)

• r( k+ Ilk) B'(r.k+ I.y.k+ 1)
-B(r, k + 1, x, k + 1)H(k + 1)

E .Lm( r , yJk ) - L r,( T , xik)
•E:H'(k + 1)B'(-r, k + 1, )•, 1, +. 1).

Substituting (79) into the above equation yields
p (T, x. ylk 1 1) = p(-r. x. t• /k) - L„,lT. x,/k )E.

k + 1)r -t (k + 1/k)H(k + I)E.L',(r. y/k)•
In order to derive (96). note that 5rom (8)),

L„,(r.s'k)-_%=J(r.x/k- 1)y -1(k+ Ilk)

and from the matrix inversion lemma (64),

H'(HPH'-R)- iH=(1+H'R -1 11P) tH'R-tH•

Then we hate

HUT llr 	I lk + 1, k)H(k - 1)

> (k ^ l rrk)R(k + 1)

and

P(7. X. t /k	1) = p(T, x, y/k) - J(T. x/k + 1)
.4 -1(k + 1/k)A(k + 1)J'(r, y/k + 1). ,

Multiplying each side of (94) by u(r, y/k + 1) and taking
the	expectation	yields	Yt p(T. J. y/k + 1) = 0, E E BD.
Thus, the proof of the throrem is complete,	Q.E.D.

CoroUan 4: J(T. x; k) satisfies the following relations.
J(-r, xlk - 1) = A(T. x)J„,(T + 1 /k + 1)	(98) a

and

J(r + 1, x/k) = D(r. x)J„,(T/k)	(99)
where

J(r x'/k)
J,„(r/k) - (100)

J(7, x”'/k)

A(T•x)=P.,(r,x/T)E:P,-,1(r+)/T)	(101) l

D( T , x) =Pm(T + 1, x^r)[Pm.(T/T)E;)-t
	(102)

Proof: Letting 4^(k + 1) be given by 0(k + 1)
E:(1 + R(k + 1)p„,„,(k + 1/k))'', from (88) and (89) it
follows	that J(-r, x/k •i 1) = pm(v, x/r)4)(r + 1)$(r +
2)`••'A(a+1) and J„,(T + Ilk +t)=p„,„,(r+1/r+
1)0(7 + 2) ` • • 0(k + 1). From the above equations and
(75) we have
J(T. x/k + 1) = p„,(r, x/T )0 (r + l)

•p; I (T + 11T + 1)a;„(r + 1/k + 1)

=p4r,x/r)EW(T+ 1 /7 ) y' - '( ,r 	l/r)

'p.,I(r+ 1/r)J„,(r+ 1/k+ I)

=A(r.x)41%T+ 1/k+ 1).'.

From	(88)	and	(89)	it	follows that J(T } 1. x /k) r
p„,(T+1.x!r-r1)4 T{2^	ilk)	and	J,(T`k ) = ^	

tT ;'r)4)(T + 1)O( T + 2) ` . • 4)(4). Thus. we have from ,o

the above equations,r.
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J(T+ 1.x'3 k) =p,,,(r+ 1. x;r+ 1)(1 "- A(T+ 1)

'pm^,(r+ 1/T )^(Pmm(r/T )t=:^^1 3m(rjk)

'p,,,( T + l.xjT)^pmm(r,'T)C:^-i 3m(r/k)
where the following equality derived from (66) has been
used.

pm(T+ 1,xjr+ 1) = pm(r+ 1,x/'r)

	

• (I + R(T + 1)pmm(T + 1 /,r	I , (103)
Thus. the proof of the corollary is complete.	Q.E.D.

Theorem I1: The optimal smoothing estimator is given
by

k

6(T,xjk)=O(T,x Pr) +	J(T.x/1)P(1)

(104)
r j 0(r.ilk) = S(T, 1),	16 aD	 (105)

where

	

€'(I)=H'(1)R-1(1)v(1).	 (106)
Furthermore, the optimal smoothing error covariance ma.
trix function p(T, x, y%k) is given by

k

	

p(r.x.y/k)=P(r•x,)'/T)-	J(T.X/I),;-1

	

(I U PI T , Vl)	(107)
r( p(T. J. y/k) = 0.	{ E aD.	 OO8)

Proof From (77) and (80). (104) can be directly ob-

tained and from (96). (107) is clear. Thus, the proof of the
theorem is complete.	 Q.E.D.

VI. SCMMARI OF THE OPTIMAL SMOOTHING

ESTIMATORS

A Fixed-Point Smoother (r =fixed, k = T + 1. T +
2,.--)

Theorem 1 The optimal fixed-point smoothing estima-
tor is gnen b\

u(r.x/k+ 1)=0(r.xjk) +J(7.xjk+ 1)F(k+ 1)
(109)

	

J(r.xjk+ 1)=J('r.x/k)e:y(k+i lk)	(110)

+).(k+1 k)=(1+A(k+l)p,,,m(k+1))-1 (111)
J(T. x/T) = Pm( T , xjr)	 (112)

rt ir(r, i/k + 1) = 5(T, #).	j E aD	(113)
rt J(F. xjk + 1) = 0,	F E aD.	 (114)

Furthermore, the optimal fixed-point smoothing error co-
variance matrix function p(T, x, yjk + 1) is given by

p(T.x, yjk+ 1).-p(T,x, yjk)-J(T.x/k+ 1 -^

k+ 1 jk).R(k+ 1)J'(-r, yjk + 1) (115)

ri p(r, F. ylk + 1) = 0,	j E aD.	(116)

A Fixed-Interval Smoothing Estimator (k =fixed, r = k
- 1,k-2,•-•)
From Theorem I 1 it follows that
u(r+ 1.x1k) = 6(r+ 1.x/T+ 1)

k

+ I 3 (T+ 1.x11)rr (1) (117)
/ =r+2

and

p(r+1,x. )./k)= p(T+1.x, )'.r+1)
k

/=r-2

	

R(!)J'(r+ 1. yjO.	(118)
Then the following theorem holds. 5•
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Theorem 19: The optimal fmcd• interval smoothing esti-
mator is given by

:t(r+ 1, x/k) = ir(r+ 1, x/r+ 1)
+A(T+1.x)[4.(T+2/A)-0.(T+2/r +1)]	(119)

r,0(7+ 1, F/k) = S('r+ 1.4).	tD.	(120) El

Furthermore, the optimal fixed interval smoothing error IEEE	 "R: SYST., MAN, CYBERN,covanance matrix function. is given by
p(T+ 1,x,) '1k)=p(r+ 1, x,y/r + 1) Vol.	Issue

Au—A(T+ 1 . x ) ( p. , ( r+ 1 /k)
—p_(T + 117))A'(T + 1. r) Galley No,	-^	ry

(12i) r
rt p(r + 1, f. y1k) = 0,	f E aD.	 ( 122)

e

Proof. From (98) and ( 117) we have

111(T +1.x1k)=0(r+1,x /T +1)
'	 ^kk+,

+A(T+ I.x)	G	J,(T+ I//)1'(1). t
/=r +2

But from Theorem 11,
1((T t '_ t/k) = U(T + 2, x1T + 2) j

k

and from (43) and (59).
4(7-+2.x/r+2)=4(7+2,x%r +1) 4

+F'( T + 2. x.7- + 2)!'(T + 2)
= u(.	 2..x'7-+ 1.)

Thus. we have
4,,(T t 2 ' k ) — 4,( - - 2 ' T 't` 1)

k

=	S'	J.(T t 2/1) 1•(1).
^

Then we have

4(T+ 1,a; k) = N(T+ 1.xIT+ 1)+A(T+ 1.x)
[ ti ( r +2/k)-4m(r+2/r+1)].

From ( 98) and (118).

p(T+1, x.Xj'k)=p(r+1, x,y/rt 1)
k

— A(T+ 1,x)	J,('r+2/1

(1^^R(1)Jm(r + 2/1)
•A'(T + 1,

From Theorem H.

p(T+2. x.y/k)=P(T+2.x,)'/T+2) $
k

—	 J(T+2,x/1)^-1(!/1-1)R(1) 3 '(r+2,)•/!)
1=+^ 3
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and from (66).

p(T+2, x. r/r+2)=p(T+2.x,) /T+ 1)
—pj-r +2.x!Tt 1)y(T+2/T+ 1)

•R(T+2)p.(T+2,)•/T+ 1).

Taking into consideration that, from(103). J(T + 2, x/T +
2) = p,,,(T + 2, x/T + 1)y(T + 2 /T + 1) and

p_(T + 2/k)  — p,„(T + 2 1/7 + 1)
A

Y I J.(T+2/!)y't( l/!— 1)R(!)J;(T+2/1),
tQ7Ti

we have p(T + 1, x. )',1k) = p(T + 1, x. ) ,,/T + 1) — A(T
+ 1, x)jp  „(T + 2/k) — p,„,„(T + 2:'T + 1)]A'(T + 1. y).
Since the boundary conditions (120) and (122) are clear
from (105) and (108). respectivel). the proof of the theorem
is complete.	 Q.E.D.

C Fixed-log Smoothing Estimator (T = k + 1, k = k + l
+ A. 9 = fixed)

From Theorem 11 we have

0(k + 1, xpk + 1 •r A) = u(k + 1, x'k + 1)
A- 1+1

+	J(k + 1, x;'!)P(1) (123)

.p(k+1.x.vIk	1+A)

=p(k+ 1,x, r,/k+ 1)

J(k+ 1.x/l)4
t=A-

• (l, l — ^)RU)J'(k + 1. y/!).

(124)

Yn

f

1

r
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Then the following theorem holds.
Theorem 14. The optimal fixed-lag smoothing estimator

is given by
4(k+1,x/k+1+A)

= E,u(k, x/k + A) + C(x, k + 1, A)

F,,(k + 1 + A/k + I + %)t-(k + 1 + A)

	

(4,n(k/k+A)-4^(k/k))	(125)
rt u(k	l.E,k+I+A)=s(l,+l. E),	EEaD

(126)
where

C(x, k + 1, A) = A(k + 1, x)A.(k + 1),

	

,A jk + A)	(127)
and

A(k. XI)

A m(k) _

AL, x')

Furthermore, the optimal fixed lag smoothing error covari •
ance matrix function p(k + 1, x, yrk + I + A) is given
b,,

P(k+1. x,y,fk+I+1)

p(k - 1. x,y/k) — C(x,k+ 1.A)
'Fm(k+1-A/k+I+A)H(k+I+A)

p J 1. l+A,'k+A)C'(y.k+ 1.A)—D(k,x)

	

[R,,,,,(kik)—PM,,,(k1-4A)]D'(k.})	(128)
	r t p(k+l.4.y/k+I+A)=0,	EEaD.

(129)

Proo'( From (43) and (59) we have

u(k — 1. x; k + l) = C,u(k, x/k)
+ 3 (k+ 1.x/k — I)G(k+1),

From (123) and the above equation it follows that
0(k + 1, x/k + l + A) = E,G(k, x/k)

k+S
+	J(k+ 1,x,!k)r(1)

'(k+I,x/1+ I+A)B(k+I+A).

From (88) it follows that
J(k+ 1.x/k+ 1 +A)=p,,,(k+ 1.x/k+ 1)

•E;y(k + 2/k + 1)

•C.^(k + 31k + 2)

•C.^(k +2+A/k+l+A).

IEEE: SYST., MAN, CYBERN.
Vol.	Issue
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J(k+ 1.x/k+ ) +A)

= p, (k + 1, x/k + 1)e'.p;„(k + 2/k + 1)

.P.,.(k + 2/k + 2)1!. y(k + 31k + 2) . , •

-C'.y(k+2+A/k; 1+A).

Repeating the same procedure and using ( 101) yields
J(k + 1. x/k + 1 + A)
A(k . 1. x)A,(k + 2) ... Am( k + A)
pTm(k+)+A/k+l+A).

Thus we havt
J(k+ 1,x/k+ 1 +A)

D(k+1+A)= C(x. k+ 1.A)pr,.(k+1+A/k+I+A).
(130)

From (99) it follows that
L x	 4-A

J(k-t-l.x/l)r,(1)_ 7, P„r(k+1.x/k)
l=tTt	 l=s.—I

But from (29) we have
i	 pm(k 'f 1.x1k)=E,pm(k.x/k)E.+Qm(k.x).
r

From (98) and (99) we have
J(k.z/l)
A(k.x)J,„(k+I/1)=P,,(T,x^z) :(P^rm(k/k)i';)-'J^(k/^)

Then it follows that
A—^	 A—.5s J(k-1.x/Or..(1) =L', I J(k.x;l)f-(l)

h 4—I	 !=d-I

^Qnr(k. x) ^ (Pmm (k k)I::^- 1J,n(k ^l li'(l)

IEECa SYST., MAN, CYBERN.
VW.	 Issue

Au:	^'J^'^R ^ll

Galley No,

J^
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and

Cs(k +1.x/k+1+A)
=t,u(4,x/k-4. A) •+C(x.k+ 1.Q)

-F,,,(k +I+A,lk+I + A )v(k +1+a)

	

J5	 k[+S

'^°Ym(kr x )^Pnm( kOk ) L +^
-1 

G '1n,( k/r)^(1 )•
r= ^+ 1

But from Theorem 1 I we have
k+S

ti,,(k,'k+A)—u,,,(k!k)= F. J,„(kf1)i(1).

Thus we have (125), From (65) and (124) it follows that

p(k+ 1. x.)/k +,A)= p(k+ 1.x.ylk)- 3 r-J
where

k-S
J1 =	J(k + 1, x/1)4 - '(1/1- 1)R(1)

r=k-I

•J'(k + 1. '/1)
J;=J(k-4- 1.x/k+1+A)^- 1( k+)+A/k+A)

R(k+1+A)J'(k+1. €'/k+)+A).
From (75) and (130) we have

J:=C(x,k+ 1.A)p,,,(k+l+A/k+1+A)

A(k-' 1 +A)P_,(k+ l +A/k+A)

C'(). k - 1. A)

=C(x,k+1.A)F,(k+ I+A,!k+I+A)
H(k+1 + A)& (k+1+A;k+A)
co, k+ ).A).

Substituting (99) into JI yields
R-S

3 I = D(k.x) ^' J,(k/l )4 1 (1'1- 1)
/=k-I

But from Theorem 11 we have

P (k . X. y/k + A) - P(4" X. )','k )

J(k,x/1)4'.`1(!/1- 1)R(1)J'(k, y11)

and

p, ,(k!k + A)-F_(k/k)
k-S

!= A + I
Then we have

p(k „  l,x,)-/k+l+A)
=p(k+ 1.x, y/k)-C(x,k+ 1,A)

• F.(k+ l +A/k + 1 +A)H(k+ 1 +A)

'p_(k + 1 + A/k + A)C'(y, k + 1, A) - D(k, x)

[ p^,^( k/k ) -p..( k/k+ A )] D '( k , f)•
Since the boundary conditions (126) and (129) are clear
from (105) and (108), respectively, the proof of the theorem

	

is complete.	 Q.P.D.
Kelly and Anderson (18) proved that the fixed-lag

smoothing algorithm of Theorem 14 ma) be unstable. but
Chirarattananon and Anderson [19) derived a stable ver-
sion of the algorithm. It is possible to derive a comparable
version here, although stability problems should not arise
in our use of the algorithm of Theorem 14 as long as it is
used over a finite time interval,
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IX. APPLICATION To ESTIHATIorr OF A IR

POL1.L'TION

Distributed parameter estimation theory has recently
been applied to simulated air pollution data to demon-
strate the capability of estimating atmospheric concentra•
tion levels from routine monitoring data 110). 111). A
problem identified in these] early studies was how to
specify the statistical properties of the assumed system and
observation noise. In this section we expand upon the prior
studies in two respects. First, we consider actual monitor-
ing data for sulfur dioxide (SO;) in particular those mea-
sured each hour during the period December 1-31,1975 at
four locations in Tokoshtma Prefecture. Japan (see Fig, 1).
Second. we apply the method of Sage and Husa 112) to
estimate the unknown noise covariances in the system
equation and measurements.

Hourly sulfur dioxide data are available at the four
locations shown in Fig. 1 for the period December 1-31,
1975, The data for day k at location i may be denoted by
e,(x', r). It is useful to average the data for December
1-30 to produce

w
(e(x', r))=	Â t ea(x', r)	(131)

where we will consider December 31 as a day to test the
algorithms.

If it can be assumed that the wand flows are such that
there are no north-south variations of concentration and

that vcrtizal mixing is rapid enough to eliminate variations
of concentration with altitude, then the region can be
considered to be one-dimensional along the east-west coor-
dinate. The SO; concentration at any particular time can
be assumed to be described by the atmospheric diffusion
equation 1131,

a^z`+S(x,r)	(132)

where t is the wind velocity, a is a diffusion coefficient.
and S is the rate of emission of S0: as a function of
location and time.

Equation Ob,) holds at any instant of time, but we
desire an equation go%erning the monthly mean concen-
tration (c). Although no such equation exists, we can
formally average (132) over the 30 realization, (days) to
produce

z
aŝ+ (^'c =^aac )+S.	(133)

ax axr

One object will be to estimate the diffusion parameter a.
This parameter will in general vary with location and time
of day, although for simplicity we seek a constant value for
the month, Thus, the first term on the right side of (133)
becomes a V(u)/axl . We can form the residuals, u = : —
(c) and z = e — (e). By subtracting (133) from (132) we
obtain

au +fax—(,ax} -°ax,'	
(134)

Since wind data are not available with which to evaluate

the second and third terms on the left side of (134) let us
rewrite (134) as

z
a = O T + w(x,r) 	 (135)

where %-(x, r) includes those unknown features associated
with the velocity terms.

The boundary conditions on (132) are
ac 

= 0, 	x = 0,1 	 (136)
TX

expressing the assumption that there is no diffusive flux of
SO_ into or out of the region at the boundaries. After
averaging and forming the residual. ( 136) becomes

Bit =0,	x= 0. 1.	(137)ilx

t •	i9
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The problem is nou to estimate u(x, t) based on the
data,

:(x'.r ) =u(x`,iI+cji),	i=1.2,3,4. (13$)

Since hourly data are available. ( 135) can be cast Lsto the
discrete-time fomt (1).

u(k + 1, x) = E,u(k, x) + tv(x, r)	(139)
with E, = 1 + a3 7,i8x°. Observation error is estimated
from the mean square error of predicted values and oM
served data.

	

PA(i) = 
1 1 ( =, ( k ) — .,(k/k — 1))= .	i= 1.2.3,4

A-1

(140)

An index of overall estimation error is
4

d = 7, PA(i). 	 (141)
0=t

To apply discrete-time distributed parameter estimation
theory to predict air pollution levels, we must consider
three problems. The first problem is bou to simulate the
distributed parameter system. The second is how to de-
termine the covariances of system and observation noise.
The last is how to determine the diffusion coefficient a. For
the first problem we use the Fourier expansion method and
approximate the original distributed parameter system by a
finite-dimensional system. For the second problem, we
appl

y the algorithm of Sage and Husa (121 that necessitates
the simultaneous application of the optimal filtering and
smoothing algorithms. For the third problem we apply the
maximum l kchhood approach in the smoothing form (14),
We nou consider these problems in more detail.

Fourier Expansion Method, It is well-known that the
state u( k.x) of the distributed parameter system (139)

^. • ,

	

	with boundan condition ( 137) can be represented by using
the eigenfunctions ¢,(x) as follows,

cc
u(k.x)	u,(k)o,( x )	(142)

Itrk

k.
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'p	 where

1:,¢,(x) = a ,4,(x ),	x E1(0'))	U
k(f) =	 n

	at 	o.	F = 0,1

and	 (143)

Au/Ed: placement of eq. no?

fi4,(x)o,(x) dx = a,,.

X, is the eigenvalue of C. corresponding to 0,(x). In this
case, it is easily seen that the eigenfunction 0,(x) and the
eigenvalue X, are given by

	

¢ 1 (x) = 1,	¢,(x) _ )r2- cos r.x,	i = 2,...
and

X, = 1 — ar. 2 (i — 1) 2 ,	i = 1,2.•..	(i44)

	Then ir(T, x/k). P(T, xZt/k), and A(T, x) can be rep-	1
resented as follows:

a
u(r. XA) _ I u,j(T/k)¢,(x)

	

P( T . X. Ylk ) =	P,J('r/k)0,(x)0 (Y)
i.J' 1

cc

	

A(T. X) _	aA(T)O,(X)•	(145)	̂/

A I
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Let us approximate these infinite expansions b.% the first J+
terms and define the following matrices and vectors,

4(T1k) = Col [u,(t/k )..... uh (r ""k )^.
A( T ) _. Cpl [at(T)...., oh•(r$

A = diag(kt•--•. X,,

P( T/k) =

gtt(k),,..,gth(k)
Q( k ) _

and

,^t(xa) 
...,4,(xt)

where q„(k) denotes the (t, J)th Fourier coefficient of
Q(k, X- .0,

Then, from Theorems 3-5 we have
d(k+ 1/k+ 1) = Ai(kj) + F(k + 1)t, (k+ 1)

F(k+l)=P(k+ 1/k)VH'(k+ 1)

[H(k + 1)4,P(k + 1/k)4),

k+ 1)+R(k+ I))-
P(k + 1/k) = AP(k Ik)A' + Q(k),

P(k + Ilk + 1) = U - F(k •+ 1)H(k + 04))

P(k+ I lk).	(146)

Furthermore, from Theorem 12 we have
u(r+ l ik) = u(r - )X-1) +A(r + 1)4)(4(T + 2/k•)

- i (r -'• 2, • r + 1)).

A(T+ l)=P(r- I/T- 1)AP - '(T- 1/T)4)-,
P(T+ 1/k)=P(r-'• l,/r+ 1)

-A(T+ 1)4)(P(T+ 1 /k)
-P(T-4 I/T))4)'A'(r+ 1)•	(ty^^

Note that the fixed- interval smoothing estimator does not
depend on the matrix 4) which reflects the effect of sensor
location.

Determination of the Noise Couartances: In order to
deterrtune the unknown covariance matrices of the system
and observation noises, we adopt Sage and Husa's algo-
rithm )12) given by

Q(k)= k 
/2t

( u ( j/k ) - Au ( j - Ilk))

(4(1/k) - Au(j - Ilk))'	(148)

and

R(k) = k 
f tG 

( z( j ) `- H(j)4)u(j/k))

( 1 ( j ) - H(j)4)4(j1k))'	(149)

where Q(k) and A(k) denoterthe estimated va)ues of
Q(k) and R( k), respectively. Note that in these identifica-
tion algorithm the fixed interval smoothing estimate 6(j1k )
is used.

Identification of the unknown Parameter a: To determine
the unknown parameter a we use the maximum likelihood
approach in smoothing form (14). The log-likelihood func-
tion y(k. a) is given from 1141 by

Y( k ; a ) = Z (Yb. + Yoe,)	(150)

t°
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where p is the dimension of :(A), and 6(j A - 1. a)
denote, 6 I t 'I, - 1) under the condition that the unknown
parameter is assumed to be a.

To maximize y(k, a) we use the following gradient
method.

a;-, = a, - G(i)yi (k; a,)

i^y(k; a)
y;(k.o ' ) W	

as	̀	
(1$1)

in-o

where G(:) is a suitable matrix. Therefore. we adopt the
following recursi%e aigonthm	to identify	the	unknown
parameters Q. R. and a

1) stake ar initial guess a,, of a.
21 Compute Qi w,, i and Ai a, 1 b; using (148) and (1491.
z) Compute a. by using (150).
4) compute 6 a , i and A(6,) by using (1481 and ()49).
5) Returr>rthree by changing i to ) - 1 and repeat until .

these values do not change

Nymprical Retu t We use the observed data from De-
cem^er 1-3(	to iden, ;!y the unknown parameter a and -
noise es%arianso Q and R After four iterations the alga•
rithn; for determining a comerged to the value 6 = O.O01
The Fourier etpansior. has been trum;ated at % = 4 The
estimated diagonal elements of noise covariance matrices
are

Q,	6.44	R,	=0.29
()::=1.40	R22=0.61
Q„ = 5.75	R„ _ ).9(
Qµ = 3.a	R„ = 1.34.

To consider the effect of the nuntT and location of r
monitoring stations. we assume that we hate data at only
one monitoring station. In this case from the previous
results of Kumar and Seinfeld (151 and Omatu or al. 1161
we expect that the optimal sensor location is closest to the
boundary. Thus, either xi or x' is the optimal single sensor
location among the four monitoring stations, x'. x2, x r . x'.
In Table i we show the values of PAM and J for several
monitoring stations We see that Aizumi or Matsusluge is
optimal for the one-point sensor location case. Similar

t

conclusions hold for two or three monitoring stations.
Finall), we illustrate the actual obsmation data and one-
hour ahead predicted values for December 31 in Figs. 2-5 '1
for Aizumi. Kitaj4ma, Kawauchi, and Matsushige, respec-
tivelc. Table 1. Figs. 2-5

Comparison w•irh Other Approaches: It is of interest to
compare results of the present filtering and smoothing
approaches with others available for air pollution estima-
tion. We consider, therefore. the same SO2 estimation i
problem by the following methods: 1) AR-model. 2) per•
s)stence, and 3) weighted ensemble.

The AR-model method is based on the followingAR(p)
model

u"'' = at uA"- , + 02 U '011 :  + ... +af uk ) p + e(l) 

r = 1. 2.3.4 	 (152)
F.

i
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where the u,`°°s are the concentration levels at time k and
at monitoring station x'. v i . a... . ar arc the come.
sponding AR-parameters, and the r, .s are widual He
used the Levinson algorithm to detemune the AR-
paramcicrs. %bile the optimal orO ., p of the AR-process is
determined b) using the tminm'im Akaike'6 Information
cntenon (AICI 120, Then the one-hour ahead predicted
concentration is given b^

4 1'! , -1	aI ui r»r w	.,. nru1,1t	(W)

and the prediction error variance is
4 t l	24

r= f:. t ;4	4 
..u

4 gar)`	(154)
!ai ' ins

Tabl 11 shoo;. the AR-parameters and minimum AIC
salut: at ca.h monitoring station

The persistence method consists merely of using the
obsenatton data u`,'i as the onerhour ahead prediction
value e,' , _1

The %eighted ensemble method uses the mean of the
past observation data at each time 4- ueighicd b} a linear
function of the source strength as the prediction .aiuc at

time R Based on the number oe emission sources, the
ueighting functions are assumed here lobe 0 15.0 4). 0.26,
and 0.16 at x'. A x'. x4, respectiscly Table IIi shows the
performance criteria of the four methods From Table f1)
uc can see that the present method possesses almost the
same zs"urJc,^ as the AR-model method B;+ muttip))mg
each etgenfunction coefficient b^ the corre6ponding eigen°
fumt;on and summing them. houevet. the present method
enab;e• us ti! estimate concentrauon> over ,!: entire rv.
gi-"r. Therefore, the present method is more poue*ful than
the A R•modej method
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Table Ili

U: cos:c'Lk SID%s

Ort ;mal c:iimators for discrete-tme distributed parame.
ter sNstemz Katie beer. denied hazed on wiener-Hopi
theor} A nowa le plant of the pre.,ent uorl, is that the
smomhmn estimators Katie beer, densed b} the same ap-
proach as the filer, thus presiding a unified approach for
tht, cla4, of dtstnbuted parameter estimation problems.
The estimation algonthms base been applied to the prob-
lem of predicting atmosphenc sulfur dioxide levels in the
Tokushima prefecture of Japar..
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Fig I Map of Tokustuma Prefecture lapgn The four air pollution
monaonng sianoru shown arc located as follows x' Aaum:. x^
Kitax:ma x' Kawauch: x' flatsusluge Sources of sulfur dioxide
Jim c been Jumped according to the three sources saes indicated b3 the
open circles V 30-50 m 'h 10-30 e,h o < 10 0,11;

Fig 2 kteasurcd and esummed sulfur diuxride concentrations on De.
amber 31.1975 at Aaurm monitoring. station Is I)

Fit 3 Meawred and estimated sulfur dioxide concentrations on De-
cembet 31. 19'$ at Kita)ttna monitoring station (x=)

Fig 4 Measured and estimated sulfur dioxide concentrations on De.
ccm6'r 31.19'$ at Kanauctu morutonng'station (x) I

Fig 5 Measured and esumated sulfur dioxide eoneentnuow on De.
amber 31. 19'5 at Matsushtge monitoring station (t' I
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N	 ESTIMATION OF ATMOSPHERIC SPECIES CONCENTRATIONS

FROM REMOTE SENSING DATA

Sigeru Omatu and John H. Seinfeld
Department of Chemical Engineering
California Institute of Technology

Pasadena, California 91.125

ABSTRACT

A basic problem in the interpretation of atmospheric remote sensing data

is to estimate species concentration distributions. Typical remote sensing

data involve a field of view that moves across the region and represent inte-

grated species burdens from the ground to the altitude of the instrument.

The estimation problem arising from this special measurement configuration is

solved bas,2d on the partial differential equation for atmospheric diffusion

and Wiener-Hopf theory. The estimation of the concentration distribution

downwind of a hypothetical continuous, ground-level source of pollutants is
	 i ,

studied numerically.
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I.	Introduction

In the remote sensing of atmospheric species, a ground-, aircraft-, or

satellite-based platform scans a region of the atmosphere and measures the

species burden within the field of view. An object of atmospheric remote sen-

sing is to reconstruct species concentration distributions over a region based

on the data available from the instrument.

There exist two recent studies that assess the capabilities of remote

sensing for monitoring regional air pollution episdoes [1,2]. 	Diamonte et al.

[3] developed theoretical results for the estimation of point source plume dis-

persion parameters from remote sensing data. In a similar vein, Kibbler and

Suttles [4] studied the estimation of unknown parameters in a pollutant disper-

sion model by comparing model predictions with .remotely sensed data. No results

have yet been reported in which actual remote sensing data have been used to

estimate species concentration distributions.

The present paper deals with the theoretical foundation of estimating atmo-

spheric concentration distributions from remote sensing data. Since the atmosphere

is a three-dimensional system, mathematical models of pollutant behavior are of the

distributed parameter type [5]. Remote sensing data usually represent spatial

averages of concentrations, so that the estimation problem concerns a distribu-

ted parameter system with spatially integrated, scanning data. Although dis-

tributed parameter state estimation has been considered extensively (see, for

example, [6] and [71), such problems with scanning and spatially integrated

measurements have not been considered previously. The purpose of the present

paper is to derive the required optimal estimators for the scanning and spatially

integrated measurement case by a unified method based on the Wiener-Hopf theory.

z

i
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In Section II, we define the remote sensing data analysis problem mathema-

tically. Sections III-VI are devoted to derivation of the optimal prediction,

r filtering and smoothing algorithms for the problem by Weiner-Hopf theory. Fi-

nally, in Section VII we present a detailed numerical example of estimating the

concentration distribution downwind of a continuous, ground-level line source to

illustrate the application of the thoery.

II. Problem Statement

We consider a single atmospheric species (nonreactive), the mean concen-

tration u(t,x l ,x 29 x 3 ) of which over a certain region is described by the follow-

*
ing form of the atmospheric diffusion equation [5],

	

u ^at + V 1 8x1 + V2 8x 2	ax3 Kv (x 3 ) 2x 3 + w(t^x 1 ^x 2 ^ x 3 )	 (1)

where V 1 and V 2 are the mean velocities in the 
xi- 

and x 2 -directions, respec-

tively, K v (x 3 ) is the vertical turbulent eddy diffusivity, and w(t,x 1 ,x 2 ,x 3 ) is

a random disturbance accounting for inaccuracies inherent in -the basic model.

The initial condition for (1) is u(t o ,x l5 x 2 ,x 3 ) = u o (x 1 ,x 2 ,x 3 ), and typical

boundary conditions are

- Y,v(x3) 	
8x	S(t,xl'x2), 	

x3 = 0

	

3	 (2)

lu

8x	- 0' 	
x3 = h

3

where S(t,x l ,x 2 ) is the ground-level species source emission rate, presumably

a known function, and h denotes the upper vertical boundary of the pollutant-

containing region, for example, the base of an inversion (stable) layer. For

convenience, we denote the coordinate vector by x and let

i1

Lx[•]

In this form of the
horizontal direction
common assumption in

V @1-1 - V a-] + a	K (x)
1 2x 1	2 2x 2	2x3	v 3 ax3 )

atmospheric diffusion equation, turbulent diffusion in the
is neglected relative to transport by the mean flow, a
treating atmospheric diffusion problems [5].

I

tr,

K	̂-
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Assume that the concentration of a species over a fixed spatial domain D

with its boundary aD is of interest. Let us define the operator rV g v aD

as follows,

- Kv(x3) ax3]	x3	0

ax	 x3	h.
3

Let S(t,E) be

f

S(t,x1,x2), 	 x3 = 0
S(t,E)

0	 ,x3 = h.

Thus, (1) can be represented as

au(X,x)= L x u(t,X) + w(t,x) (3)

and	(2) can be written as

r	u(t ' r)	= S(t,r), c aD. (4)

We assume that the initial 	condition u o (x) can be represented as a Gaussian,

process with statistics,

E[u 0 (n)] 	= uO(x)

E[Cu 0 (x) 	- uo(x))(uo(y) -	u o ( y ))]	= Po (x ' y) (5)

and the random disturbance w(t,x) is stochastically independent of u o (x) 	and is

a white Gaussian process with statistics,

-I

.'j

1

r
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E[w(t,x)l = 0 	

(6)

E[w(t,x)w(s,y)l = Q(t,x,y)S(t-s).

We assume that the remote sensing measurements are taken at time t  over

a view volume D(k) consisting of M pixels, as shown in Fig. 1. Since the sens-

ing platform may be in motion, the field of view, in general, moves with time

across the entire spatial domain D. We assume thvt the shape and extent of the

field of view D(k) remain fixed and only the location of the centroid of each

pixel changes with time. The ground-level location of the centroid of each

pixel of D(k) is denoted as (xl (k) , x 2 (k) ,0),  m = 1 1 2,..., M

We are interested in considering the vertically integrated measurement

given by

zm(k)(tk,nl = f 
h  

j m(k) (x 3 )u(t k ,xl (k) ,x2 (k) ,x 3 ) dx3
U

+ v( t k ,xI	,x2(k),hn)
	

(7)

M = 1 9 2,...,  M,

k=

where J m(k) (x 3 )is an altitude-dep

vertical position of the scanning

the vertically-integrated species

n = 1,2,..., N, h 1 < h 2 < ... < h 

1,2,...

endent instrument weighting function, and h 
n 

i s the

sensor. Physically, Z m(k) (t k ,n) represents

concentrations within each of the M pixels,

indicated by m(k), at each time, t k , from an altitude of h n* v(tk,xm(k),x2(k),

h n ) represents measurement errors.

r

a
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Some comments concerning the measurement configuration shown in Fig• l

are in order. Ordinarily remote sensing from an airborne platform would be

carried out at a single altitude. In such a case, it is not possible to esti-

mate the concentration distribution between the platform and the ground based

only on the integral of the concentration. Sakawa [81 and Koda and Seinfeld

[9) have shown that in problems of this nature it is impossible to estimate

the state uniquely based on integrated measurements from only a single sensor

position since the required distributed parameter observability condition does

not hold. Therefore, the estimation of species concentration distributions

necessitates traverses over the region at different altitudes. From a practi-

cal point of view this requirement restricts this type of monitoring to air-

craft platforms, which, for purposes of measuring air pollution, are the most

useful. Considering 'that atmospheric concentration distributions change gradu-

ally and that airplane speeds are fast, the configuration sketched in Fig. 1

implies that repeated measurements at several altitudes are possible using only

one .airborne platform.

.

r
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In order to represent (7) more compactly we introduce the following

notation:

and

x(m(k)) 	=	( x m(k) ,	x2(k))

n
i

n
	=

n
Jm(k)(x3,' 	

x3 ^ h 

0	 x3 > h 

J1 (k) (x3)
J n (tk5x3) 	 -

0	.	.	.	JM(k)(x3)

u(t k ,	x(l(k)), 	x3)

u(t k ,	x(2(k)), 	x3)

k
u(tk, 	x(M(k)),x3)

J1(tk,x3)

J(t k ,x 3 )	_

JN(tk,x3)

Zl(k)(tk,n)

Z(tk)n)

ZM(k)(tk,n)

Z(tk)l)

Z(t k )	-

Z(tk,N)

v(t k ,	x(l(k))„ 	hn)

v(tk,n)

v(t
k)

	x(M(k)), 	hn)

ORIGINAL PAGE IS
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v(tk)

v(tk.N)

Then (7) can be represented compactly as

h
fZ(t k ) = 	J(tk,x3)ut (x 3 )dx 3 + v(t k ).	 (8)
u	 k

We assume that v(t k ) is independent of w(t,x) and u o (x) and is a white Gaussian

process with s tatistics, E[v(t k )1 = 0 and E[v(tk)v'(tk)) = R(t k )d kk , where '

denotes the transpose operator and R(t k ) is an MNxMN positive-definite matrix.

The problem considered here is to estimate u(t,x) over D on the basis of

the measurement Z(t
CT

), c = 0, 1,..., k. The novel aspect of this problem frcwa

the point of view of distributed parameter estimation arises because of the

scanning and vertically integrated nature of the measurements. In what fol-

lows, we use k instead of t  as long as there is no ambiguity.

4 i

4

t ^'
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III. Estimation Problems and Wiener-Hopf Theory

Let us denote the estimate of u(t T ,X) based on the observation data

Z(t a ), a = 0,1 5 ... 2 k by u(t T ,x/t k ) which is given by the following linear

transformatirn of Z(t a ), a = 0,1,..., k)

4. k

u(t IT	t k )  =	F(tT,x,ta)Z(tQ)
a=0

where F(t, r ,x,t a ) is an unknown MN-dimensional row vector called the estimation

kernel function. When there is no ambiguity, we write (9) compactly as

k

u(7,x/k) _

	

	F(tT)x,ta)Z(ta).
a=0

Furthermore, we denote the estimation error and error covariance functions by

u(t T ,x /t k ) and P(t T ,x,y/t k ), respectively, where u( t T ,x/t k ) = u(t ,r ,x) - u(t,r,x/tk)

and P(t T ,x,y %t k ) = E[u(t T x/t k )u(t T ,y/t k )]. The estimate u(t T ,x/t k ) that mini-

mizes J(u) = E[u(t T ,x/t k ) 2 ] is said to be optimal. Note that by using

P(t T ,x,y/t k ),J(u) can be rewritten as J(u) = P(tT,x,x/tk).

To clarify the differences between the prediction, filtering, and smooth-

ing problems, we express F(t T ,x,t a ) differently for each problem as follows:

(i)	Prediction (t > tk)

k

u(t,x/tk)

	

	̂ A(t,x,ta)Z(ta)'
G=O

W

(9)

(10)

("11)
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(ii) Filtering (t T = t k )

k

u(t k ,x /t k ) 	F(tk,x,to)z(tc,).

r

(12)

(1B)

6

-g-

(iii) Smoothing (t T < t k )

k

u(t T ,x/t k )

	

	B(tTItk,x,tQ)Z(tc,),
a=0

Here we use three temporal arguments t T ,  t  and t. for the smoothing kernel

B(tI 'It k ,x,t)  since these parameters should be changed according to the measure-

ment data acquisition time. Then the following theo.rern can be proved similarly

to that of (6) for the continuous-time observation case,

[Theorem 1] (Wiener-Hopf Theorem)

A necessary and sufficient condition for the estimate u(t T ,x/t k ) to be optimal

is that the following Wiener-Hopf equation holds for rg 	0,1...., k art'.

x	n=D	2D,

k

oN tT,x,ta)E[Z(tc)Z'(t^)] = E[u(tT^x)z'(t^)]a 	 (14)

or equivalently, for 	= 0,1,..., k and x E?,

E[u(t T ,X/t k )Z'(t )] = 0. 	 (15)

[Corollary 1] (Orthogonal projection lemma)

The orthogonality condition, E[B(tT,x/tk)u(tT,y/tk)] = 0, x,y E U, holds where

t o is any time instant such as t o < t k ,  t o	t k ,  or t o > tk.



I
k

(117)
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[Proof] Multiplying each side of (15) by F'(t n ,y,t
r

) and summing from

w"	 = 0 to C = k yields

k
E[ u(t T ,x/t k )

	

	Z°(t)F'(tn,y,t)] = o.
^=o

`	 Using (9) in the above equation yields the desired relation completing the

proof of the corollary. Q.E.D.

[Lemma 1] (Uniqueness of the optimal kernel)

Let F(t T) x,t a ) be the optimal kernel function satisfying the Wienl^r-Hopf

equation (14) and let F(t T ,x,t c ) + F
t'

(t T ,x,t a ) be also the optimal kernel func-

tion satisfying the Wiener-Hopf equation (14). Then it follows that ^Q(t T IX)t 
a ) E 0,

a = 0,1,..., k and x,, D, i,e, the optimal kernel function is unique.

In order to consider the prediction, filtering,and smoothing problems,

separately, we rewrite (14) using the notation of (11) - (13).

[Corollary 21 The Wiener-Hopf equation (14) is rewritten for the prediction,

filtering, &nd smoothing problems as follows:

(i) 	Prediction (t > tk)

k

a=o 
A(t,x,ta)E[Z(ta)Z'(t^)] = E[u(t,x)Z'(t)]

	
(16)

for ^ =0,1,..., k and x E.  D.

(ii) Filtering (t T	t k )

k

F(tk,x.,ta)E[Z(ta)Z'(t^)] = E[u(tk)x)Z'(tC)]

a=0
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for ^ = 0,1,..., k and x E D,

(iii) Smoothing (t T < tk)

k

B(t T' t V x ' t CT )E[Z( t o ) p(t 	= E[u(tT,X)zl(t^)^
0=0

for	= 0,1,..., k and x4-  D.

x

A

(18)

A 1

i

f
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IV. Derivation of the Optimal Prediction Estimator

In this section we derive the optimal prediction estimator by using the

Wiener-Hopf theory in the previous section.

[Theorem 2] The optimal prediction estimator is given by

au(t,x/tk)

at	= L x u(t,x /t k ),	 t > t 	 (19)

r u(t,/t k ) = S(t,^), 	 C t @D.	 (20)

[Proof] Differentiating (16) with respect to t and substituting (3) yields

- k M(t,x.t )
E at	E[Z(tc)Z'(t^. 	Lx"[u(t,x)Z`(t ^)]
a=0

where the independence of w(t,x) anO Z(t^) is used. Substituting (16) into

the above equation yields

k

Y F (t,x,t^)E[Z(t^)Z-(t^)] = 0

where

aA(t,x,t )
F©(t,x,t^) =	

at	
c -LA(t,x,t

	

x	o).

From Lemma 1 we have

aA(t,x,te)

at	= LxA(t'x'tCY

1.

(21)
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k

Differentiating (11) with respect to t and substituting (21) yields (19).
i

Since the forms of r and S(t,^) are known, the predicted estimate u(t,x/tk)

also satisfies the same boundary condition (4). Q.E.D.

[Theorem 3] The optimal prediction error covariance function P(t,x,y/t k ) is

governed by 	 j

@P(t,X,y /tk)  
_ (Lx + L y )P(t,x,Y/t k ) + Q(t,x,Y), 	 (22)

r P(t,^,Y/tk) = 0, 	 t DD.	 (23)

[Proof] From (3), and (19) we have

at	= 
L x D(t,x/t

k ) + w(t,x) 	 (24)

and from (4), and (20)

y{rr.

	
k) = 0,	 E aD.	 (25)

14

Differentiating the definition of P with respect to t and using (24) yields

@P(t,X,Y/tk)_ (Lx + L
y )P( t ,x,Y /t k ) + E(t,x,Y)

where

Z(t,x,Y) = E[w(t,x)u(t,Y/tk)] + E["u(t,x/tk)W(t,Y)]-

Let the fundamental solution of L x be G(t,Q,x,y), where
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K(ta^,x,y) = ExG(t)a,x)y)s

F

*	 rCG(t,a,^,Y) = S( t ,C),	 aD

G(c,7,x,y) = &(x-y).

r
Then "u(t,x/t k ) of (24) can be represented in terms of G(t,a,x,y) as follows,

t
u(t,x/t

k )	O G(t ' t k' x ' a) " (t k'` X/t k )da + ff  G(t,a,x,a)w(-,a)dado,
t k D

Substituting (26) into L(t,x,y) and using (6) yields E(t,x,y) = Q(t,x)y).

Multiplying each side of (25) by u(t,y/t k ) and taking the expectation yields

(23). 	Q.E.D.

[Corollary 31 The optimal prediction estimate u(t,x/t k ) and prediction error

covariance function P(t,x,y/t k ) can be represented as

G(t,x/t k ) = f G^t,t k ,x,a)u(t k ,a/t k )da	 (27)
D

and

P(t,x,Y/t k ) = ff  G(t,t k ,x,a) P ( t k ,a,V tk)G(t,tk,y'^) dads
DD

t

+ f ff  G(t,o,x,a)Q(a,a,$)G(t,o,y,$) dadsda. 	 (28)
t k D D i

[Proof) It is clear that (19) and (22) possess unique solutions. Differen-

tiating (27) and (28) with respect to t yields (19) and (22),
a

respectively. Since (19) and (22) have unique solutions, (27) and (28) are

those solutions. Q.E.D. F

r .

t.4 ^

(26)
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V.	Derivation of the Optimal Filter

In order to derive the optimal f = ilter by using the Wiener-Hopf theorem

for the filtering problem, we represent the solution of (3) in terms of the

fundamental solution G(t,cs,x,y) as

u(t k+l ,x) _ f G(t k+l ,t k ,x,a)u(t k ,a) da
D

tk +1

+ t f	p G(tk+l' n " x  9a)w(n,a) dada	 ( 29)

k

and

ut	( x 3 )  = j G M( t k+l , t k , x 3 ,a Mt k ,a) da
k+1	D

tk+1

	

+ f
	

j G M( t k+l ,n,x 3a)w(t1,a) dada
t 

k

where

	

1(k+l) 1(k+l) 	1
G(t k+l ,n,  x 
	,x2	' x3 9a)

GM(t k+1 5n,x 3 ,a) _

G(t k+l ,n, x M(k +l),x2(k +l),x3^a)

From (17) we have

F(tk+11x'tk+l)E[Z(tk+1)Z'(t^

k

+ E F(t k+l ,x,t cy )ETZ(t 6 )Z'(t^)] = E[ u ( t k + l , x ) Z- ( t  )]
6=0

for	= 0,1,..., k+1.

(30)

(31)

(32)
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From (29) and the independence of Z(t), 	= 0,1 1 ..., 	k	and w(n,x),,

t 	< n < tk+1
it follows that

E[u(tk+l,x)Z"(t^)] = J G(tk+l,tk,x,a)E[u(tk,a)Z'(t^)] da.
D

Using the Wiener-Hopf equation (17), we have

f	

k

E[u( t k+l ,x)Z'(t)a = 	G(t k+l ,t k ,x,a) E F(tk,a,ta)E[Z(ta)Z'(tC).•
D	 cr=0

On the other hand, from (8) and the whiteness of v(t k+1 ), we have, for

t^	tk

E[Z(tk+l)Z'(tc)] =  fh  J(t k+l ,x 3 )E[u t 	(x3)Z'(t^)l dx3.
U	 k+1

Substituting (30) into the above equation and using the independence of

Z(t C ), t  < t  and w(n,a), t  < n < tk+1 yields

E[Z(tk+1)Z-(Y] = fh J(t k+1' 
x 3 ) f G M(t k+l ,t k ,x 3 ,a)E[u(t k ,a) Zl (t^)] dadx3.

o	 D

Again, we use the Wiener-Hopf equation (17) in the above equation and

h	 k

E[Z(tk+l)Z^(t^ 	f d(t k+1 ,x 3 )  f GM( t k+l , t k , x 3' a)  E F(tk,a,to)
o	 D	 a=0

E[Z(ta)Z'(t^)] dadx 3 •	 (34)

Substituting (33) and (34) in (32) yields

It ,

(33)
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FQ(t k ,x,t^)E Z(t Q)r (t) _ 0

^=0

where

hFo( t k ,x, t a ) = F(t
k+11

x,t k+1 ) f J(t k+1' X3 ) f G M(t k+l ,t k ,x 3 9a)F(t k ,a,t 6 ) dadx3
o	 D

+ F(tk+l,x't^) - f G(t k+l ,t k ,x,a)F(t k9 a,t a ) da.
D

Then from Lemma 1 we have F A (t k ,x,t a ) = 0, and we have the following lemma.

[Lemma 2] The optimal kernel function F(t k+l ,x,t Q) of the filter is given by

F(t k+l ,x,t o ) = f G(t k+l ,t k ,x,a)F(t k ,a,t a ) do,
D

h
- F(t k+l ,x,t k+1 ) f J^t k+1 ,x 3 )  f G M(t k+l ,t k ,x 3 ,a)F(t k ,a,t o ) dadx3.

[Theorem 4] The optimal filtering estimate u(t k+l ,x/t k+1 ) is given by

u(t
k+l ,x/t k+1 ) = u(t k+l) x/t k ) + F(t k+l ,x,t k+1  Mt 

k+1 
	(36)

h
v(t k+1 )	Z(t, =+l ) -	J(tk+l'x3)utkFl(x3/tk) dx 3 ,	(37)

U(t o ,x/t o ) = uo(x), 	 (38)

r u(t k+l' E/t k+l )  = S(tk +l'^), ^ E 8D 	 (39

where

r

a

x

I	 'i

(35)
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u( k+1'x1(kl)'x2(k+l)'x3/tk)
u t 	(x 3 /t k ) _

k+1	 u(tk+iaxM(k+1),XM(k+l),x /t) .
3 k

[Proof] Using (12) and (35) yields

u(t k+l' x/ tk+1) = F(tk+l,x,tk+l)Z(tk+l)

k

+f G(t k+l ,t k ,x,a) 	F(tk,a,ta)Z(ta) da
D	 a=0

 k
- F(t k+l ,x,t k+1 ) f ' i(t k+1 ,x 3 )  f GM( t k+l ,t k ,x 3 ,a)	F(tk,a,ta Mt a )  dadx3.

U	 D	 a=0

Then from (12) and (27) we have

u(t k+l ,x/t k+1 ) 	( G(t k+l ,t k ,x,a)u(t k ,a/t k ) da

h	r
+ F ( t k + l , x ,t k+l )(Z(t k+l )  -  f J(t k+l' x 3 ) ,J GM( t k+l ^t k ^x 3 ^a)u(t k ,a/t k ) dad x3

= u(t k+l ,x/t k ) + F(tk+l,x,tk+l)v(tk+l).

Since the initial and boundary conditions are clear, the proof of the theorem

is complete. Q.E.D.

To determine the optimal kernel function F(t k+l ,x,t ki-I ), we introduce

the following notation,

PM( t T $x ' Y3 /t k ) _ [P(tT^x,y1(k)/tk),..., P ( t T I X IY M(k) /t k )]	 (40)

and

F

3
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P(t T 'xl(k) 
) y3

/t 
0^r

P (t ' x	/t
MM T VY 3 k

P(t 'X M(k) IY3 /t
T	 k

1(k)	1(k)	 1(k) M(k)/tP(t 'x	y	/t	P(tT'X	lyF,	k	 k
(41)

	

M(k) 1(k)	 MM M(k)
P(t

T
,x	'y	A k)	

P(t T'X	'y	/t 
J-0

	where x m(k) 
= (x M(k) , x 

m(k) , 
x	and ym (k) = (y m(k) , y m(k) , y	

M	1,2^ ... M.
1	2	3	 1	2	3

From the definitions of P M 
(t T IXIY3/tk) and P MM (t T 

'x VY3 
/t 
k 

it follows that

P (t	/t	E(D(t ' x/t )D	 (42)
M ,' x ' y3 k	 k t 

T 
(y3/tk))

and

P (t	/t	E[D (x /t )0^	 (43)
MM T IX 3)y3 k	t 

T 
3 k t1r (y3/tk)]

where

	

D (x /t	U (x	u	 (44)
t	3 k	t	3 ) - ^t (x3/tk

and

1(k)
U( t rlx	/t 

k)
u

t  
(x 3 /t k) = ^
	

(45)

T	
u(t, 

'x M(k) 
/t 

0—

Furthermore, we define the covariance matrix of the innovation process %)(t k+1)

by r(t k+1 
/t k) = E ['J(tk+l).v'(tk+l)] . Then from 

(37) we have

h h
r(t 

k+1 
/t 

k ) f f 
J(t 

k+1' x 3 
)p 

MM 
(t k+11 

x VY3 /t k 
W(t k+11y3 ) dx 3 dy3

0 0

	

+ R(t k+1).	
(46)

4
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[Theorem 51 The optimal filtering gain function F(t k+l ,x,t k+l ) is

given by

F(tk+l'x'tk+1) _ f h PM(t k+1 ,x,Y 3 /t k )a"(t k+1 ^Y 3 )dy 3 r -  l(tk+l/tk).
U

[Prof] From the Wiener-Hopf equation (17) we have

F(tk+1}x'tk+l)E[Z(tk+l)Z"(tk+l)]

k

+ L F ( t k + 1'	,)E[Z(ta)Z"(tk+1)] = E[u(tk+l'x)Z"(tk+1)]•

Substituting (35) into the above equ;a , '.ion yields

hF(tk+1'x'tk+1)E[(Z(tk+l) - fd(tk+l,x3)ut k+1 (x3/tk)dx3)Z"( tk +l)]
p 

= C[(u(tk+l,x) - u(tk+l,x/tk))Z"(tk+l)l•

Using (8) and the orthogonality condition of Corollary 1 yields

h

	

E[u(t k +1' x/t k )Z"(t k+1 )] = J	E[U(tk+l'x/tk)ut 	(x3)]a"(tk+1,x3) dx3

	

a	 k +1

(h

0
J PM(t k+1' x ' x 3 /t k )d"(t k+1' x 3 ) dx3

and

h
E[v(tk +l)Z"(tk+1)] = o

fh 
fj(t k+1 ' x 3)PMM(tk+l'x3'y3/tk)j'(tk+l'y3 ) dx3dy3

+ R(t k+1 )  = r(t k+l /t k ).
	

(48)

(47)

,a

t
g:

r
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F(tk+1' x ' tk+l )r(t k+1 /t k ) - fh PM(tk+1'x'x3/tk)`^'(tk+1'x3) dx3
0

and the proof of the theorem is complete, Q.E.D.

(Theorem 63 The optimal filtering error covariance function P(tk+l,x,y/tk+l)

is given by

p(t k+l ,x,y/t k+l ) = P(tk+l,x,Y/tk)

h	h

f P;,i( tk+l' x ' x 3/t k )d (̂ +1 ,x3)-l(t k^l /t k )`^ (tk+l' y3 )PM (tk+1'y 'y3/t k ) dx3dy3

(49)

P(to ,x,y/to ) = Pok'A	 (50)

I' P(t k+1 5C5Y/t k ) = 0, 	 «E aD.	 (51)

[Proof] From (3) and (36) we have

u(t k+l ,x/t k+1 )  = u(t k+l ,x/t k )  -  F(tk+l,x,tk+1)v (tk +1)	 (52)

and from (4) and (39),

r EU(t k+1 ,^/t k+l )  = 0,	 C aD.	 (53)

Using the independence of v(t k+1 ) and u(t k+l ,x/t k ) or u(t k+l ,y/t k ) yields

P(t k+l ,x ' Y/t k + 1 ) = E[u(i.•k+l,x/tk+l)"u(tk+l)Y/tk+l)]

A 1

"V
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= P(tk+1'x'Y/tk) + F(tk+1'X,tk+l) E[v(tk+1)v'(tk +l))F"(tk +1'Y'`k +l)

h

- F(t k+1' x,t k+1 ) f J(t k+1 ,x 3 )E[u tk+1 (x 3 /t k ) u ( t k + l' Y/ t k )) dX3
G

h
f E[u(tk+1,x/tk)u:tk+i(y3/t^,)lJ''(tk+l'Y3)dY3F-(tk+19Y'tk+1)' ,.

Using (40) and (47) yields

P(tX,Y/ t 	) = P(t 	,x,y/t )
t:

kl	k+1	k+1	k

- f h J hPM(t k+l° X,X 3 /t k )J-(t k*1' x3	k+i)r-1(i'/tk)
r-	 o G

J(t k+l' Y3 )PM(t k+l' Y ' Y3 /t k ) dx3dy3.

Since the initial value u(t o ,x/t o ) is equal to 5 0 
(x),  it is clear that

P(t o ,x,y/t o ) = P 0 (x,y).  Multiplying each side of (53) by 9(t k+l , Y/t k+1 )  and

taking the expectation yields (51). Q.E.D.



-23-

ORIGINAL PAl27'2,: 1,"
OF POOR. QUAD.

VI. Derivation of the Optimal Smoothing Estimator

In this section we derive the optimal smoothing estimator by using the

Wiener-Hopf theory.

[Lemma 3] The optimal kernel function B(t TI t k+l ,x,t a )  of the smoothing estima-

tor is given by

B(t T ,t k+l ,x,t o ) = B(tT,tk,x,to)

h
	fB(tTItk+1'X'tk+1)O J(tk+1'x3) 	GM(tk+l,tk,x39a)F(tk'a'to) dadx

3 .	(54)

[Proof] From the Wiener-Hopf equation (18) for the smoothing problem we have

k+1

I B(t TI t k+l ,x,t %: )E [Z(t CTW ( t I }]  = E[u(tT,X)Z,(t^)], 	 (55)
0=0

n	 ,
= 0,^,..., k+1

and

kk

B(tT't[;,x,t,)E[Z(t. W( t  )] = E[ u ( t T , X ) Zl ( t  )], 	 (56)
0=0 

= 0 1 1,..., k.

f
Subtracting (56) from (55) yields

^r
B(tT,tk+l,x,tk+l)E[Z(tk+l)Z-(t^

k

+	(B(tTItk+l,x,to) 	B(t T It k ,x,t a ))E[ Z ( t o )Z'(t^)] = 0.
0=0

kr

From (8) and (17) we have
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E[Z(tk+1)Z"(t^)J = A(t k+1' 
x 3

)f  'M(tk+1"k'x3 a)E[u(tk'a)z*,(t^)] dadx3
o	 0

h	 k
of  J(t k+l ,x 3 j G M(t k+l ,t k ,x 3 ,a) ^oF(tk,a,tQ)E[Z(to)Z-(t^)] dadx3.

Then it follows that

k

FA (t T ,t k ^x^t 6 )E[z(t a )z'( t^)]  = 0
a=0

where

F,(tT,tk,x,tQ) = B(t T ,t k+l ,x,t 6 ) - B(tTItk,x,t6)

fh+ B(tT,tk+l,x,tk+1) 
o	 D
 J(t k+1 ,x 3 )  D GM(tk+1'tk,x39a)F(tk,a,ta

^

Since it is clear that B(t TI t k ,x,t o ) + F A (t T ,t k ,x,t a ) also satisfies the Wiener-

Hopf equation (18), from Lemma 1 F A (t T ,t k ,x,t Cy	0, cf = 0,1,..., k. Thus, 	
a

the proof of the lemma is complete, Q.E.D.

[Theorem 73 The optimal smoothing estimate u(t T ,x/t k+1 ) is given by

u ( t T , x /t k + 1 )	u(t T ,x/t k ) + B(t T,tk+1'x'tk+1)^(tk+1) 	(57)

a

F u(t T ,Ut k+1 ) = s(T, ), 	 E ao-	 (58)

[Proof] From (13) it follows that

i

u(t T , x /t k+1 )  = B(t -' t 11 +1' x ' t k+1
Mt 

k+1)
 l

k
+ I P'(tTItk+1,X,t6)Z(t6).	 •.,

6=0

r
Y
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Substituting (54) into the above equation yields

u(t T ,x/t k+l ) = B(tTItk,l,x,tk+l)v(tk+l)

E	 k

r-`	 + I B(tTItk,x,te)Z(t^)
6=0

and substituting (13) into the above equation yields (57). Since we have no

additional information about the boundary value of u(t T ,x) except for S(tT,C),

we have (58). Thus, the proof of the theorem is complete. Q.E.D.

[Theorem 8] The optimal smoothing gain function B(t TI t k+l ,x,t k+l )  is given by

L_

B(tTItk+l,x,tk+1) - J 
h N(t

T ,x,x 3 /t k+1  W (t k+l ,x 3 )dx 3 F (tk+1/tk) 	
(59)

0

where

N(tTlx,x3/tk+1) = 1 M(t T )x,Y/t k )OM(t k+l , t k , x 3 ,Y) dY
	

(60)

,I

* 1

and

(61)M(tT,x,Y/tk) = E[D(t T ,x/ t k Mt 
k5 Y/t k)].

[Proof] From the Wiener-flopf equation (18) we have

t
B( tT ,tk +l'x'tk +l)E[z(tk+l)Z'(tk +1)J

k

+ I B(t T ,t k+l' x,t Q)E[Z(t 6 )Z-(t k+l )]	E[u(tT,X)zl(tk+l)].
G=0

41
1 1
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g
.a

,
Substituting (54) into the above equation yields

'r.

B(t,t,tk+l:x,tk+l)E[v(`k+1)Z`(tk+,)^ 	E[u(tT'x/tk)Z"(tk+l);• 	 (62)

C	 ".

On the other hand, from (27) and (29)

r
"u(t k+1' x/t k )	t G(t k+l' t k' x ' y ) u ( t k' y / t k )  dy

D

tk+1	 a.

+ t 	1G(tk+l,n,x'y)w(,n,y) dydn•
k

Then we have

jhj
E[u(t T ' x/t k )Z'(t k+1 )3 = of 1D M( t r' x ' y / t k ) GM( t k + l , t k ' x 3 y )  dy J'(t k+l ,x 3 ) dx3

h
J N(t-'x'x3/tk+1)J-(tk+1,x3) dx3.
0

Substituting (40) and the above equation into (62) yields (59). Thus, the

proof of the theorem is complete. Q.E.D.

Let us now derive the equation for M(t T ,x,y/t k+1 ). Using the orthogonality

condition of Corollary 1 yields

M( t T ' x ' y/t k+l ) = E[u(tT'x)D(tk+l'y/tk+1)J• 	 (63)

Substituting (52) into the above equation yields

M(t T' x ' y /t k+1 ) 	,1 G(t k+1' t k' y ' a)M(t T ,x, a /t k ) da
D

h
- f N(tT'x'x3/tk+l)d'(tk+1,x3) dx3F^(tk+1'y'tk+1).

0
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From (4) and (58) we have

r »,

r N t T , Ut k+
l ) = 0 2 E	8D.	 (64)

t

r

Multiplying each side of the above equation by u(t k+1 ,y/t k+l )	and taking the

expectation yields rM(t T ,,y/t k+1 ) = 0 1	= 8D.	Thus, the following theorem
t

holds.

k

[Theorem 91 M(t T ,x,y/t k+l ) is given by

M( t T ,x,Y/t k+1 ) = 1 G(t k+l ,t k ,y,a)M(t T ,x,a/t k ^' da
D

fh
- J N(t T ,x,x 3 /t k+I W ( t k+1 , x 3 ) dx 3 F'(tk+l,y,tk+l), 	 (65)

U

M(tT,x,Y/t.,) = P(tT,x,Y/tT),. 	 (66)

r CM(t T 4,Y/t k+1 ) = 0, 	 E 9D.	 (67)

It remains to derive the equation for the optimal smoothing error covariance

function P(t T ,x,y/t k+1 ). From (57) we have

"u(t i ,x/t k+1 ) = D(t T ,x /t k ) - B(t T ,t k+l ,x,t k+1 M t k+l ).	(68)

[Theorem 101 The optimal smoothing error covariance function P(tT,x,y/tk+1)

is given by

P(t T ,x,Y/t k+1 ) = P(tT,x,Y/tk)

f f  N(tT'x'x3/tk+l j'. (tk+l,x3)r-1(tk+1/tkMtk+i,Y3)

N(t,r,Y,Y. /t,+i)  dx,dy, ,
	

(69)

A A
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r P(t V C , y /t k+1 )  = 0,	 t @D.	 (70)

[Proof] From (68) we have

P(t T Ix, y /t k+1 ) = E["u(tT,x/tk+1)u(tT'y/tk+l)]

= P( t T aX,Y/t k ) + B(tT,tk+l' x, tk+l)r(tk+l/tk)B'(tTItk+l)y,tk+l)

- B(tT'tk+1'X,tk+1)E[v(tk+l)u(tT9y/tk)]

- E[D( t T e X/t k W (tk+1)]B'(tTItk+1'Y'tk+l). 	 (7i)

But we have

h
E[D(t T ,X/t k )v'(t k+1 )l = ffD  G^(tk+l,tk,x3,a)M(tT,x,a/tk)

J'(t k+1 ,x 3 ) dadx3

and

h
E[v(tk+1)"u(tT,X/tk)] = ff  J(t k+1 ,x 3 )G E (t k+l ,t k3 X3 ,a)M(t T ,x,a)  dadx3.

Substituting the above equations and (47) into (71) yields (69). Multiplying

each side of (64) by u(t T ,y/t k+1 ) and taking the expectation yields (70). Q.E.D.

[Theorem 113 The optimal smoothing estimator is given by

k

u(t T ,x/t k ) = u(t T ,x/td + 	B(tT,tQ,X,tQ)v(tP, 	 (72)
Y,=T+1

Y

4
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and the optimal smoothing error covariance function P(t T ,x,y/t k ) is given by

P ( t T , x ,Y/t k ) = P(tT,x)Y/tT)

k	h h^	I 1 N(tT'x'x3/tQ)d-(tQ>x3)r-i(tQ /tQ -i)Y—
_

 T+1 0 0

d ( t k ,Yg) N ( t T t y $ y 3 / t
P,

) dx 3 dy 3 .	 (73)

A

f

^	1

:y

i

.a
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VII. Estimation of the Concentration Distribution Downwind of a Continuous,

Ground-Level Line Source

There has been much recent interest in the airborne measurement of pollu-

tant concentrations downwind of sources [9 ] - [11]. Here we wish to consider

a hypothetical, but realistic, situation in which an aircraft with a downward-

looking instrument, such as for example the JPL Laser Absorption Spectrometer

[12], is flown at different altitudes downwind of the source, and total species

burdens are measured at a series of downwind distances.

The steady-state concentration of a species downwind of a continuously

emitted ground-level line source (e.g. a highway) situated normal to the

direction of the wind flow is governed by the following form of the atmospheric

diffusion equation [5],

^1
au	a

 axl	ax3	Kv (x 3 ) ax 3 + w(x l ,x 3 )	 (74)

u(O,x 3 ) = u o (x 3 )	 (75)

Kv(Q) ax, _ ^d(x l ),	x 3 = 0	 (76)
J

ax = 
0 1	x3 = h	 (77)

3

where ¢ is the constant rate of 'release. For convenience we will take K  = 1,

since vertical variations of this constant are not essential to the estimation

problem we will consider. If we let t = x,/V 1 and x = x 3 , (74)-(77) become

au
at = @22 + w(t,x)

ax

(78)

^1
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Du = _ ^E(t), 	x = 0ax

Du	0,	 h.DXaX

In this case the measurements Z(t k ) are related to the concentration

u(t k s x ) b y (8),

Z(t k ) = fjn(t k) X)U(t 
k' 

x)  dx + v(tk)
U

where the instrument kernel function will be taken to have the form,

1	x < hn

J n (t k ,x) = 	 n = 1,2,..., N 	 (83)

0	x > h 

The theory developed in the prior sections can be applied directly to this

problem, and the optimal filter and smoother are given in Table I. The pre-

diction, filtering and smoothing algorithms were applied to hypothetical data

generated by solving (74)-(77) and forming Z(t k ) from (82), using noise

processes w(t,x) and v(t k ) with prescribed properties. The algorithms were

applied to estimate the concentration distribution u(t k ,x) as a function of

height x at several downwind distances, t 1 , t 2 ,... based on measurements taken

at one to four elevations. It is of interest to study the behavior of the

estimates as a function of downwind distance and of the number of elevations

at which data are simultaneously taken. Values of all parameters used in the

calculation are given in Table 2.

(80)

(81)

(82)

o
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Figs. 2-4 show selected results of the application of the filtering and

smoothing algorithms to the synthetic data of this example. Fig. 2 shows a

comparison of the true concentration distribution u(t l ,x) and the filter esti-

mates, G(t l ,x/t l ) based on two and four measurement elevations (t l  = 0.0002).

As expected, the profile estimated on the basis of four measurement elevations

is superior to that based only on two altitudes. Fig. 3 shows similar results

at t 8 = 0.0082. The filter estimate based on n = 4 virtually coincides with

the actual concentration distribution. The performance of the smoothing algo-

rithm is illustrated in Fig. 4, in which the true concentration u(t T ,x) is com-

pared with the filter estimate, u(t T ,x/t T ), and the smoothed estimates,

u(t T ,x/t 2 ), and u(t,r,x/t4), with t T = 0.0002, t 2 = 0.0012, and t 4 = 0.0032.

Table 3 gives the trace of the filtering error covariance matrix, P(t,x,x/t),

for the four measurement configurations at three downwind distances t. As expec-

ted, the trace decreases as the number of measurement elevations is increased

from 1 to 4.

VIII. Conclusions

Filtering and smoothing algorithms for the processing of remote sensing

data on atmospheric species concentrations have been derived using Wiener-Hopf

theory. The algorithms were applied successfully to estimate concentration

distributions from a hypothetical ground-level line source of material (e.g. a

highway) based on remote sensing data taken from several elevations at a number

of points downwind from the source. Although there has been increasing interest

in the remote sensing of airborne concentrations, a data set sufficient for ap-

plication of the theory developed in this paper does not yet appear to exist.

Nevertheless, it is hoped that the availability of the algorithms developed here

will facilitate processing of remote sensing data in conjunction with mathematical

models of air pollutant behavior.

1
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Table 2. Parameter Values Used in Line Source Estimation
Example

Truncation number N = 5

Measurement time t k+I = t  + 0.001, k = 1,2,3,---

where t l  = 0.0002

Fixed-point time for smoothing t ,, = 0.0002

Constant rate of release ^ = 	0.3

Measurement points h  = n/4, n = 1,2,3,4

Initial values and noise covariances

E [ u 0 W i = u 0 
(X)_	u0 i( x)

i=1
N

Cov[u 0 (x),u 0 ( y )] = P0 ( x , y )  _ I Pii¢i(x)^i(y)
i=l

Cov[w(t,x),w(s,y)] = Q(t,x,y)6(t-s), Cov [v( t k ),v( t n }] = R(tk)dkn

N
Q(t,x, y ) = G qii^(x)^j(y), 	R(tk) = diag[rl,r2,r3,r4I

i=l

l	 i=1

^ i (x) _

cos (i -1 )Trx	i > 2

) , i	(i-1)2,2	 i > 1

i 1 2 3 4 5

U 3.0 1.0 0.03 0.003 0.0003

ph i r 0.12 0.}12 0.0012 0.00012

1 0.52 0.252 0.1252 0.06252

r 
0.12 0.072 0.052 0.03?

i

L — a--,

r
Li	1
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Table 3. Tra,re of the Filtering Error Covariance Matrix P(t,x,x/t)

Measurements t = 0.0002 t = 0.0032 t = 0.0062

4 point

'	 (hl1h2$h39h4)
k

0.2405x101 0.1189x10-1 0.9616x10 2

3 point

(h l ,h Vh 3 ) 0.3441x101 0,1577x10' 0,1335x101

'	 2	point

(h l ,h 2 ) 0.1678 0.1195 0.1137

1	point

(h l ) 0.6700 0,2914 0.2338
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Figure Captions

1

Fig. 1. Remote Sensing Measurement Configuration
,

Considered in	This
Work.

Fig. 2. Ccmparison of True Concentration u(t l ,x) and the Filter Est , ;-

mates u(t l ,x/t,) based on 2 and 4 Measurement Elevations.

t l 	= 0.0002.
s

Fig. 3. Comparison of True Concentration u(t 8 ,x) and the Filter

Estimates u(t 8 ,x/t 8 ) based on 2 and 4 Measurement Elevations.

t 8 = 0.0082.

Fig. 4. Comparison of True Concentration u(t T ,x), the Filter Estimate

u(t T ,x/t T ) and the Fixed Point Smoothing Estimates u(tT,x/t2)
and u(t

T
,x/t 4 ).	t T = 0.0002, t 2 = 0.0012 5 t 4 = 0.0032.

f
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SUMMARY AND CONCLUSIONS

The object of this research grant was to initiate an evaluation of the

analysis of remote sensing data on pollutant concentrations in the troposphere.

Remote sensing measurements of pollutant concentrations are becoming increas•,

ingly important in understanding the transport and transformation of pollutants

over moderate to long distances in the atmosphere, Traditionally such data

have not been analyzed beyond the point of constructing mass fluxes and total

budgets over a region. The question studied in this research grant was that

of the further analysis of such data, particularly when one has a mathematical

model available. The specific problem then is to see how typical remote sens-

ing data can be used in conjunction with a mathematical model to extract addi-

tional information about the pollutant behavior in the region being studied.

The essential problem is one of estimation, that is, of using the typical

remote sensing data to determine full concentration distributions. Once full

concentration distributions are available, one can then assess the mechanisms

of the process through the mathematical model. The first step in the research

was to look theoretically at the question of the minimum amount of data needed

to reconstruct a concentration distribution from finite data typical of those

collected in remote sensing. Chapter I of this report presents a development

and derivation of a condition of reconstructability, namely rigorous conditions

that can be applied to a data sampling program to determine whether it will be

possible to estimate ,a 5pecies concentration distribution from such measure-

ments. Chapters II and III of this report are then devoted to the development

of a numerical algorithm that will process the data to produce concentration

distribution estimates in the cases when the data are a priori reconstructable.

Perhaps the most important result of this study is the indication of the

types of measurement strategies one s:,ould follow in remote sensing programs.

2
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In particular, it appears that the best measurement strategy is to attempt to 	
vi

obtain pollutant burdens at a certain location at a number o,' elevations at

times as close as possible.	 This strategy is recommended because the vertical 	 t`R,

distribution of pollutant concentrations in the first 1,000 meters of the atmo-

sphere is a crucial element of a mathematical model of such species. 	 The

t,
theory and numerical 	 techniques developed in this study will 	 tell one when

devising a measurement program and monitoring strategy the number of vertical

levels at which one should make measurements to be able to estimate relatively

` accurately the complete vertical	 concentration profile of the species of inter-

est.	 It is anticipated that these results will 	 be of value to those contem-

plating remote sensing measurement programs of tropospheric species that involve

measurements at several	 vertical levels.
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