General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.

- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.

- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.

- This document is paginated as submitted by the original source.

- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)
ESTIMATION OF THE SUGAR CANE CULTIVATED AREA FROM LANDSAT IMAGES USING THE TWO PHASE SAMPLING METHOD (Instituto de Pesquisas Espaciais, Sao Jose) 6 p Unclas
<table>
<thead>
<tr>
<th>Title</th>
<th>ESTIMATION OF THE SUGAR CANE CULTIVATED AREA FROM LANDSAT IMAGES USING THE TWO PHASE SAMPLING METHOD</th>
</tr>
</thead>
</table>

A two phase sampling method and the optimal sampling segment dimensions are developed for the estimation of the sugar cane cultivated area. This technique employs visual interpretations of LANDSAT images and panchromatic aerial photographs considered as the ground truth. The estimates, as a mean value of 100 simulated samples, represent 99.3% of the true value with a CV of approximately 1%; the relative efficiency of the two phase design was 157% when compared with a one phase aerial photographs sample.
ESTIMATION OF THE SUGAR CANE CULTIVATED AREA FROM LANDSAT IMAGES USING THE TWO PHASE SAMPLING METHOD

Carlos Alberto Cappelletti
Francisco José Mendonça
David Chung Liang Lee
Yosio Edemir Shimabukuro

Instituto de Pesquisas Espaciais - INPE
Conselho Nacional de Desenvolvimento Científico e Tecnológico - CNPq
Caixa Postal 515, 12200 - São José dos Campos, SP, Brasil

ABSTRACT

A two phase sampling method and the optimal sampling segment dimensions are developed for the estimation of the sugar cane cultivated area. This technique employs visual interpretations of LANDSAT images and panchromatic aerial photographs considered as the ground truth. The estimates, as a mean value of 100 simulated samples, represent 99.31% of the true value with a CV of approximately 11%; the relative efficiency of the two phase design was 157% when compared with a one phase aerial photographs sample.

1. INTRODUCTION

In this paper a statistical system to estimate the sugar cane (Saccharum spp.) cultivated area in a subregion of São Paulo State, Brazil, is presented. The region under study is known as the Great Region of Jau, located in the central part of the state, within the parallels 22°00' and 23°00' South, and meridian 48°00' and 49°00' West, covering 5046 km².

For this region, the sugar cane acreage was determined by two different approaches. In the first approach, Koffler et al., (1980) made interpretations of panchromatic aerial photographs in the scale of 1:35000 and 1:45000, complemented with a rigorous field control. This information is considered as the ground truth.

In the second approach, Mendonça et al. (1981) used LANDSAT images in the scale of 1:250000 and visual interpretation, associating the spectral variations of the crop with temporal variations in different satellite pass. Channels 5 and 7 were used.

With this basic information, a sampling experiment was designed to estimate the sugar cane acreage and measure the error rate in relation to the ground truth. The applied sampling method was a two phase sampling with regression estimates.

2. STUDY OBJECTIVES

a) To determine segments size in order to have the maximum correlation between LANDSAT data and ground truth.

b) To estimate the sugar cane acreage with a sampling design using LANDSAT data and ground truth and considering the cost of each source of data.

3. SEGMENTS SIZE AND SAMPLING METHOD

a) Determination of segments size

With a grid of size 1 cm by 1 cm (corresponding to 2.5 km by 2.5 km) applied on a composition of LANDSAT images and on a mosaic of aerial photographs, the number of points with sugar cane in each unitary segment was determined.

From that information, a subarea of 60 km x 37.5 km was selected and a uniformity trial (Federer, 1967) was designed. The response variable was the number of hectares cultivated with sugar cane by segment of 6.25 km².

Ten different types of segments were considered:

<table>
<thead>
<tr>
<th>Type</th>
<th>Size</th>
<th>No. of Segments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1x1</td>
<td>2.5 x 2.5</td>
<td>6.25 km²</td>
</tr>
<tr>
<td>1x2</td>
<td>2.5 x 5.0</td>
<td>12.50 km²</td>
</tr>
<tr>
<td>1x3</td>
<td>2.5 x 7.5</td>
<td>18.75 km²</td>
</tr>
<tr>
<td>1x4</td>
<td>2.5 x 10.0</td>
<td>25.00 km²</td>
</tr>
<tr>
<td>2x2</td>
<td>5.0 x 5.0</td>
<td>25.00 km²</td>
</tr>
<tr>
<td>2x3</td>
<td>5.0 x 7.5</td>
<td>37.50 km²</td>
</tr>
<tr>
<td>2x4</td>
<td>5.0 x 10.0</td>
<td>50.00 km²</td>
</tr>
<tr>
<td>3x3</td>
<td>7.5 x 7.5</td>
<td>56.25 km²</td>
</tr>
<tr>
<td>3x4</td>
<td>7.5 x 10.0</td>
<td>75.00 km²</td>
</tr>
<tr>
<td>4x4</td>
<td>10.0 x 10.0</td>
<td>100.00 km²</td>
</tr>
</tbody>
</table>

The criterion of selection was the maximum correlation between the variables "response to the LANDSAT images interpretation", X, and "ground truth", Y.

b) Sampling design

A two phase sampling design with regression estimates was applied combining the two sources of information.

This design takes advantage of the correlation between X and Y and the cost ratio for collecting the data in each variable. The sample selection was done in two steps. In the first step, a relatively large sample in the less expensive variable, X in this case, was selected, and in the second step a small sample in the other variable that is more expensive to be observed, Y, was selected. This bivariate information permits the calibration of the information from X.

When the correlation between X and Y is sufficiently large, a reduction in the estimator variance and in the sample size is significant in comparison with a single phase sampling design on Y alone.
Before applying the sampling design, the region of study was redefined in order to eliminate parts of it where sugar cane is not cultivated, and also to eliminate some geographical accident as well as some incomplete marginal segments.

The theoretical considerations of the sampling method applied in this study are developed in Cochran (1963), Loetsch and Haller (1973) and Jessen (1978), among other authors.

4. ANALYSIS AND ESTIMATION

The sample size in the two phases was set to achieve a sugar cane acreage estimate within 5% of the corresponding complete acreage evaluation with a 95% confidence level at a minimum cost.

To calculate \(k \) and \(n \), the number of segments in the first and second phase, respectively, it was used \(s_y \) and \(o \) calculated from the complete enumeration of available ground truth data. When this information is not available, it is necessary to select a pilot sample.

With the obtained values of \(k \) and \(n \), it was simulated a sequence of one hundred samples in two phases by means of a simple random selection in each phase, being the second phase sample a simple random subsample from the first one.

The simulation produced a sequence of values of the random variables \(\hat{Y}_R \), estimate of the sugar cane acreage; \(V(\hat{Y}_R) \), variance of the estimate; and of \(D = \hat{Y}_R - a \), where \(a = 133888 \) ha is the total number of hectares cultivated with sugar cane from the ground truth complete enumeration. This value is assumed without error.

Finally, the simulated data were analysed statistically.

5. RESULTS

a) The selected segment size in the uniformity trial was the one with dimension \(2 \times 3 \), corresponding to \(5.0 \text{ km} \times 7.5 \text{ km} = 37.50 \text{ km}^2 \) or \(3750 \) ha. The maximum correlation coefficient between \(X \) and \(Y \) was \(r = .82 \) for this size, being \(r = .66 \) and \(.73 \) for segments of size \(6.25 \text{ km}^2 \) and \(100.00 \text{ km}^2 \) respectively.

b) The sampling frame, after being redefined (3 b), had 86 segments with an area of \(3082 \text{ km}^2 \), 16% of them incomplete, but with an area greater than one half of the complete one.

c) The standard deviation of \(Y \) was \(s_y = 777.46 \) ha and the correlation coefficient \(p_{xy} = .82 \). The cost ratio considered \(c_1 : c_2 = 1:13 \), where \(c_1 \) and \(c_2 \) are the unit cost of observing one \(X_i \) (in phase one) and one \(Y_i \) (in phase two), respectively. The sample sizes were \(k = 58 \) and \(n = 11 \) for a relative variance of 5% with a confidence level of 95% and a minimum cost of \(C = 201 \) monetary units. The regression equation of ground truth and LANDSAT data was \(Y = 442 + .69X \).

d) The results from the analysis of the simulated data were \(M(\hat{Y}_R) = 132889 \) ha (99.5% of the ground truth value), \(SD(\hat{Y}_R) = 1013 \) ha (SD% = 1%). Range (\(\hat{Y}_R \)) = max \(\hat{Y} \) - min \(\hat{Y} = 29393 \) ha. \(D = M(\hat{Y}_R) - a = -999 \) ha. The confidence interval for the sugar cane acreage at the 95% level was (130063; 134915) = (.97; 100.1%), and for the mean difference \(u_D \) at the 95% level was (-3025; 1027).
6. CONCLUSIONS

The sampling design applied in this study shows the benefits, in cost and precision, relative to a complete inventory through a more expensive method of data collecting like aerial photography.

The authors understand that these results are limited to a small region like the one selected for this study. Besides that, much work has yet to be done in this sampling approach.

7. REFERENCES