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ABSTRACT

The scanning multichannel microwave radiometer (SMMR) aboard the Seasat

satellite measured emitted radiation in both horizontal and vertical polariz-

ations at microwave frequencies of 6.6, 10.69, 18.0, 21.0 and 37.0 GP,-. Retrieval

algorithms, for sea surface temperature (SST) determination, from subsets of

one to three SMMR channels are obtained by a two step statistical technique.

The technique first selects the best subsets of a given size defined by an R2

criterion (coefficient of determination), of a given size by the application

of an efficient 'leaps and bounds' technique on a statistical data base. It

then performs a regression analysis on the selected subsets. The statistical

data base employed a large 600) set of seasonally and geographically diverse

atmospheric and surface parameters for radiative transfer calculations. The

results of the study of one to three channel subset retrieval algorithms indicate

the possibility of using 6.6V, 6.6H and 18V channels for SST determination from

Seasat-SMMR data. A comparison of SMMR SST derived from three channels mentioned

above and expendable bathythermograph (XBT) mesurements over the North Pacific

provided an r.m.s. difference of —1.4K which is comparable to the accuracy

obtained from a five channel subset (6.6V, 6.6H, 110.69H, 18.OV, 21.OH) retrieval

algorithm. The retrieval technique has the ability to recognize severe noise in

brightness temperature measurements which may lead to unacceptable parameter

retrieval. This may be achieved by setting up a quality control criteria either

using different subsets of the same size or of different sizes. The three channel

retrieval Compares within —1.2K with Chester's algorithm, which is being used

at Jet Propulsion Laboratory for geophysical processing.

Ten day and monthly average SMMR SST contour maps are produced using three

channel retrieval for the period July 7 - Aug. 6, 1978 over western North Pacific, 	 r

20-50N, 140-180E. These contour maps are compared against similar maps obtained 	 "y
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from Chester's algorithm and ship's observations. All the SMMR SST maps show

the major climatological features and are in reasonable agreement with ship's

SST maps.
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1 .	 I NTRODU CTtON

SST measurements taken from a satellite platform (which is the only practical

method of covering vast oceanic regions,) are an important means for increasing

our understanding of a variety of processes related to the interaction of oceans

and atmospheres. For example, small surface temperature changes in the tropical

regions might influence the weather in mid-latitudes, or modify such a seasonal

atmospheric phenomenon as the Monsoon [Shukla, 1975]. As another example, SST

monthly average fields are required for global climate monitoring [Namias, 19721.

All of these applications demand accurate and timely availability of SST data.

Because of the importance of SST, a large effort has been expended on its

measurement from satellites using infrared sensors [Fritz and Winston, 19621.

These SST retrievals are degraded by the presence of clouds, although recent

advances in cloud filtering techniques [Chahine, 1977, Smith, 1978], have improved

the retrieval. SST retrieval using microwave sensors is less affected by the

presence of clouds, due to the unique cloud penetrating capability of microwaves,

although more Effected by uncertainty in wind-emissivity relationships. The

first experimental effort to determine SST using satellite-borne microwave

radiometers, was made with the launch of Seasat in 1978. SMMR aboard Seasat and

Nimbus satellites measured both horizontal and vertical polarization at narrow

band microwave frequencies of 6.6, 10.69, 18.0, 21.0 and 37.0 GHz and are described

in detail by Gloerson and Barath (1977) and Njoku et al (1980b). Combinations of

these measurements provide information about surface and atmospheric properties

with which sea surface temperature and other geophysical parameters are derived.

Before geophysical processing, however, the digital data received from the satellite

are processed at different stages for calibration [Swanson and Riley, 1980] and

for antenna pattern correction, as described by Njoku et al (1980a). At each 	 E`

stage errors may be introduced which contribute to the overall errors in the	 =,_-



final geophysical parameters. In some instances, sun-glint and radio frequency

interference effects render the data difficult to interpret [Lipes, 1980].

The proximity of land and rain in the antenna footprint also affects *he SST

retrieval.

To derive, the geophysical parameters, all ten of the SMMR chancels may be

used if the observed brightness temperatures (TR's) and the geophysical models

are known precisely. However, due to uncertainty in the wind-emissivity model

and the known biases in TB's, these are not known precisely. These retrieval

techniques assume that the parameter is homogeneously distributed within the

satellite's field of view (FOV). .Let us consider a FOV in which a particular

parameter is inhomogeneous. As an example, scattered clouds such as the cumulus

convection within the FOV of the high frequency channels which are sensitive to

clouds, will not be resolved on a 54km x 54km scale. The radiometer channel will

respond to the average value of the parameter which has certain variability and

may be different than the true value of the parameter if the parameter would have

been homogeneous within FOV. This channel if used for parameter retrieval will

affect the retrieval accuracy by way of providing errors in the bias. Thus, to

derive a given geophysical parameter, one should heavily weight those channels

which are most sensitive to that parameter and less sensitive to other atmopsheric

parameters. Using a small number of channels to retrieve a given geophysics,

parameter minimizes the sensitivity of the algorithm to channel dependent biases.

No previous attempts have been made to evaluate the suitability of one, two or

three channels to retrieve SST from Seasat SMMR data, although efforts to retrieve

water vapor and liquid water from two channels have successfully been made from

earlier Nimbus satellites [Grody,1976, Staelin et al 1976]. Hofer et al (1981)

used five channels to retrieve SST from Seasat-SMMR data by the application of

a forward regression method on a statistical data base. In a previous paper, the

2
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authors [Pandey and Kakar, 1982a] developed a two-step statistical technique for

retrieving a given geophysical parameter from multiwavelength measurements and
k

examined subsets of four to ten radiometric channels for SST estimation. We

present in this paper, results of the evaluation of the effectiveness of the best

i
one to three channel subsets of SMMR for SST retrieval, The SMMR-SST's are com-

pared with in situ XBT-SST observations and also with the results of Chester's

algorithm [Lipes and Born, 19813, A brief summary of Chester's algorithm is

given in the Appendix, The SMMR-SST fields (contour maps) obtained from three

channels are compared with ships' SST climatology fields on a monthly and ten
r

day average basis for the period July 7 - Aug. 6, 1978 over the Pacific, 20°-50°N,

1400-1800E.

3
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2.	 Retrieval Algorithm

Retrieval techniques described in the literature include, among others,

statistical [Waters et al 1975, Grody, 1976, Wilheit and Chang, 1980, Pandey et al,

1981, Hofer and Njoku, 1981, Pandey and Kakar, 1982a], nonlinear iterative [Wentz,

19821, and fourier transform techniques, the latter developed by Rosenkranz (1978).

The retrieval equations discussed and used here have been derived using a two-step

statistical technique described in detail by Pandey and Kakar (1982a). The technique

is based upon the application of an efficient algorithm, known as 'Regressions

by leaps and bounds' [Furnival and Wilson, 1974], to a statistical data base in

order to select the 'best' subsets of radiometric channels. The 'best' is defined

using the R 2 coefficient of determination criterion, widely used in statistical

literature. Our approach is unique, in the sense that it provides an opportunity

to examine a number of subsets and also different subsets of the same size, which

is not possible by other methods. The statistical data base consists of an

ensemble of realistic sea surface temperatures, wind speeds, atmospheric water

vapor profiles, temperature profiles and cloud models and are summarized in

Table 1. Our approach to generating the data base is also slightly different than

that used by earlier investigators. We have used a non-linear regression equation

between water vapor and SST, which exist in nature, to generate the data base,
A

along with other parameters. This relation was obtained from the analysis of water,

vapor and SST data obtained from ocean station PAPA (50 0 N, 145 0W) and the Monex 179

experiment. The analysis gave a value of 0.77 for the coefficient of correlations.

These are used to calculate brightness temperatures by means of a surface emission

model [Pandey and Kakar, 1982b] and a radiative transfer model, The retrieval

equations are then obtained by using multiple linear regression on the selected

subsets, based upon the statistical relationship between geophysical parameters
`	 4

and the calculated brightness temperatures. Non-lirfearity of the problem was 	 .dv

4
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TABLE 1. Range of environmental parameters used in generating theoretical
brightness temperatures. Integrated water vapor (WV) includes correction
due to saturation within clouds. Cloud density set to zero for atmospheric
temperature <-40°G.

Model	 Weather	 Number	 Range of parameters
Atmosphere	 Specification

SST	 WS	 WV,	 LW	 RR
K	 m/sec	 g/ cm,-, 	g/m3	 mmlh

Annual Tropic	 clear	 93

cloud	 57	 286-310	 0-35	 2R7-7.51	 0-.55	 0-2.5

rain	 12

Sub Tropical	 clear 97	 273-307	 0-35	 0.8-8.33	 0-.45	 0-5

cloud 53

rain 31

Mid Latitude	 clear 97	 273-307	 0-35	 0.8-6.11	 0-.45	 0-3.5

cloud 53

rain 31

Sub Arctic	 clear 111	 271-292	 0-35	 0.6-5.33	 0-.25	 0-3.5

cloud 39

rain 17

r.
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mitigated by using functions of brightness temperature [f(T
B
) x In (280-TS)a

}

In lieu of brightness temperatures themselves, for high frequency (18.0, 2110,

b	 37.0 GMz) channels. Theoretical brightness temperatures were perturbed by Gaussian

noise, characteristic of the SMMR instruments, which smoothed the regression

coefficients and provided a more realistic approach to the problem.

The flow diagram of the leaps and bounds procedure is given in Fig. 1. In

the on-line part of the flow diagram, the quality control criterion is shown for

sea surface temperature as an example and may be replaced for other parameters

and either the same or a different quality-control criterion can be set up. The

threshold value of the parameter for quality control will depend upon the parameters

bung estimated and the	 obtainable from such measurements.h a ccuracyacr y

We have further studied the effect of nonlinearities in the above equations

by using second order regression relations. Th.se r6.1",O ons have the same form

as given earlier, except that the squares of the measured brightness temperatures

are included as predicting observations. Thus, the number of predictor variables

In the regression equations are doubled.

The results of the leaps and bounds algorithm for selecting the best subsets

of 1 to 3 channels are given in Table 2 along with the R 2 values. As an example,

the second best subsets are also given and may be used for analysis as well.

This capability could be exploited to set up a quality control criteria in future

algorithms as proposed in the earlier paper CPandey and Kakar, 1982aa. Table 3 	 {

gives the regression coefficients for the selected best subsets, including linear

and nonlinear equations. The coefficients in Table 3 are related with brightness

temperatures by the following relations:

3

SST(P) = a o + ^ p a i Tg(vi ) + ^P b i T62(vi)	 ^;1i-1	 i-1	 ,

where p is the size of the subset, ao is the intercept and ai's are the

6
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TABLE 2. Output of the leaps and bounds technique for selecting 'best` subset of

sizes 1 to 3. The second best subset is also shown as an example.

No. of	 R2	 Variables
Variables	 Selected

for
_Re q re s s i on

1	 75.71	 6.6V

	

34.19	 10.6H

2	 93.34	 6.6V, 10.611

	

92.62	 6.6V, 10.6V

3	 94.97	 6.6V, 6.6H, 18.OV

	

P4.83	 6.6V, 18.OV, 21.OV

R

5

I.

`a

4
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TABLE 3.	 Coefficients of the multiple linear regression on the selected best
subsets given in Table 1.

Type of Regression
Channels	 Regression Coefficients r.m.s.	 error R2

(K)

6.6V linear ao	 68.9391
al	 1.4436 4.5 75.71

6.6V, 10.6V	 linear ao	 31.8548
al	 2.8115
a2	-1.0533 2.40 93.34

non-linear ao	 -505.2264
al	 8.6364
a2	 .0537
bl	 -.0195
b2	 -.00282.01 95.35

6.6V, 6.6H,	 18.OV	 linear ao	 -103.1898
al	 2.4618
a2	 -.5687
a3	 15.2752 2.08 94.97

non-linear ao	 ..,185.9112
al	 3.0475
a2	 2.9708

63	 -41.2869
b2	 -.0023
b2	 -.0182
b3	6.4685 1.57 97.17

jX
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regression coefficients and T B 'vi)'s are the brightness temperatures for 6.6 it

and 10.69 GHz frequencies; and functions of brightness temperature for 18, 21 and
i

37 Ghz channels as described earlier. The bi's coefficients are multiplied by

the square of either Tb's or functions of TB , depending upon frequencies for

non-linear regression analysis. The theoretical r.m.s. error is also shown in the

k	
Table. It should be pointed out here that the theoretical r.m.s error isi

dependent upon the range in variations of geophysical parameters used in the

statistical data base and should not be directly compared with r.m.s. error

obtained by other investigators.

3.	 Results of comparisons over the North Pacific:

3.1	 Comparison with in situ SST measurements and Chester's algorithm.

The Seasat-SMMR data for September 14-26, 1978, over the North Pacific,

were used for comparison with in situ SSTs measured by XBTs. The ground truth

XBT measurements are inherently accurate to better than .0.2°C, but the time dif-

ference between the satellite pass and the ships' observations, a difference of

about one day, introduces additional noise to the in situ measurements. Moreover,

additional uncertainty is introduced because of different sampling characteristics

of SMMR and XBT observations. This may further compound the problem if the

actual SST has significant horizontal gradients. These aspects should be kept

in mind while comparing satellite derived SST with in situ SST observations.

The results of the comparison are shown in Table 4.	 The r.m.s. error and bias

are
a

also given	 in the Table. The subset of channels 6.6V, 6.6H, and 18.OV gives

the minimum r.m.s.	 error of —1.4K which compares well with the r.m.s. error

obtained earlier [Pandey and Kakar,	 1982a] using a subset with five channels. 	 Non-
{

linear effects hove also been studied and the results are presented in Table 4. i`s

The single channel	 retrieval gives an rms error of 2.03K with a bias of -3.89K.;

The bias and retrieval	 error using non-linear terms was not attempted for the

10`

x
N'

^krlr
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TABLE 4. Results of the SMMR-SST Versus in situ XBT/AXBT-SST analysis for 	 i

descending passes over North Pacific region. Bias is the difference
between SMMR-SST and XBT-SST.

f

	Subset	 Channels	 RMS Error (K)	 Bias (K)

	

Size	 Linear	 Non-Linear	 Linear Non-Linear	 f

'f
a

1	 6.6V	 2.03	 -	 -3.89

2	 6.6V, 10.69V	 1.75	 1.72	 7.81	 6.38	 }

3	 6.6V, 6.6H, 18.OV	 1.40	 1.56	 0.10	 1.86
d:

5	 6.6V, 6.6H, 10.60H, 18.OV, 21.OH 	 1.43	 -	 -	 -

a

r.
rr. hr

pd-

t
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single channel case because of the known poor retrieval accuracy (-4.5K) of a single

6.6 GHz channel as obtained from a simulated theoretical data base and presented

in Table 3. The comparison with a 5 channel subset was made after correcting

biases (N6K) which were obtained by comparison of Seasat SMMR SST with XBT-SST

measurements obtained over the North Pacific.

No improvement is obtained over linear retrieval (Table 4). However, non-linear

retrieval from a statistical data base showed some improvement ("fable 3). It is

interesting to observe that linear regression equation for three channels has

almost negligible bias and thus may be used for Seasat SMMR SST retrieval. This

is probably due to the fact that bias in the individual channels and/or combinations

of channels has a nullifying effect on the other's offset. Figure 2(a) shows

the plot of SMMR SST obtained using a three channel subset (6.6V, 6.6H, and 18.OV)

and in situ measurements. An r.m.s. difference of N1.4K was obtained with neglig-

ible bias. The temperature range was -10'-30 0 C. Figure 2(b) shows the plot of

residuals versus predicted SST. Random scatter around the mean line reflects the

aptness of the model for retrieving SST. The advantage of using a small number

of channels is that the effect of multi-collinearity, which may be present if

all channels are used, is minimized. The problem of multi-collinearity has been

discussed in many statistical texts. If high multi-collinearity is present the

following problems may occur (Green and Carrol, 1978):

1. Reduced precision in estimating the coefficients of predictive functions and

Y	 increased difficulty in disentangling the separate effects of each predictor

variable on the criterion variable, may take place.
	 7,

2. Estimation of regression coefficients may become highly sensitive to a specific

sample; addition or deletion of a few observations can produce marked
r

differences in the values of the regression coefficients including changes

f•
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in algebraic sign. Unfortunately some eollinearity will always be among the

predictor variables, but the question is how much multi-collinearity can be

tolerated without seriously affecting the results. Unfortunately there is no

simple answer to this question. Using the minimum number of channels helps,

perhaps, to reduce the multi-collinearity problem.

Figure 3 shows the plot of SMMR-SST retrieval using 3 and 5 channels. The

five-channel retrieval was corrected for the bias using the method described

earlier by Pandey and Kakar (1982a).

Table 5 gives the results of the comparison of SMMR-SST retrieval using

subsets of 1, 2 and 3 channels to the results of Chester's algorithm [Lipes and

Born, 19631]. Two hundred data points from grid 1 (spatial resolution -.150 km2)

and columns 1-3 were used for comparison. These data spanned from the equator

to -50 0 Latitude in the North Pacific region. As can be seen from Table 5,

both Chester's and the present algorithm using 2 and 3 channels for both linear

and nonlinear terms, agree within an r.m.s. error of —lK with a bias of —lK for

3 channel retrieval. Even retrieval with the single 6.6V channel gives an r.m.s.

error oV — 1).5K. The plot of SMMR-SST from the present three channel retrieval

and Chester's algorithm are shown in Fig. 4. The plot shows a rotation of the

regression line about —290K which could be corrected empirically by comparing a

large number of high quality in situ observations covering a wide geographic

area. Chester's algorithm incorporates this correction. This has not been

attempted in the present analysis as we did not observe this behavior in our

comparisons over the North Pacific. This correction may be more noticeable

for very low (<280K) and very high temperature (>300K).

3.2 Description and comparison of SMMR-SST maps against ships' SST maps.

The previously mentioned capability of SMMR-SST retrieval using three

channels, has been further investigated by comparing SST maps generated from

14
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TABLE 5. Results of the comparison of SMMR-SST derived using present algorithm
with Chester's algorithm.

Subset	 r.m.s. error (K)	 Bias (K)
Size	 Linear	 Nonlinear	 Linear	 Nonlinear

1	 1.52	 -	 -3.25	 -

2 	 1.12	 1.13	 7.27	 6.33

3	 1.15	 1.15	 0.97	 2.51

5	 1.54	 -	 -
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SMMR data against SST maps generated from in situ ships' reports [Bernstein,

19821 and SST maps produced by using Chester's algorithm. We have used the

period from July 7 to August 6, 1978, for SST mapping. The data analysis region

and period are the same as used by Bernstein (1982) for ease of comparison, but

the mapping procedures are differen;. In our approach, the brightness tempera-

ture data were used to obtain SST using a linear 3-channel algorithm as described

earlier. These parameters were then interpolated for a fixed 2°x2° latitude

longitude grid extending froa 20°-50 1 N, 1400 -180 1 E, for further analysis.

Since the algorithm is applicable only to sea surfaces, any data near land will

produce error and should be avoided. The interpolated values of SST at each

grid point were obtained using a weighted average of all data within a 2° radius

of influence for each grid point according to

EWi SSTi
SST =	 --	 (1)

IW''r

The weighting factors Wi assigned to the individual data values are given by the

Cressman formula

D2-d2
W i = D

2 d2	
di < D

= o	 1	 di > D

where D is the 2 0 radius of influence and d is the distance of the data points

from the grid position, The uniform grid of SST created by this weighting process

was used as input for the contour package. The software used to generate these

contour plots was developed by Chelton at Jet Propulsion Laboratory and implemented

on a Digital VAX 11/780 using the Pilot Ocean Data System. It should be noted

that Chelton's program uses a "box filter" method of smoothing the data in which

the contents of a box surrounding the point of interest are averaged to derive a

new grid point value. In the contour plots presented here a 6 0x2° box filter was

17 f
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used (Figures 5, 7, 8(a), and 8(b)). 	 A•

The SMMR data (Table 6) were blocked into three consecutive 10 day intervals

and tAe maps were produced. The SMMR-SST fields are displayed in Figure 5.

Figure 6 shows the SST fields obtained from ships' data [Bernstein 19821. Some

difference between the two fields is noticeable particularly in data sparse regions,

but the major features of both the fields are in overall agreement. Both fields

show a strong gradient around 40 1 and agree reasonably well in terms of gradient

intensity, direction, extent and absolute magnitude. The isotherm contour obtainer

from SMMR data does not show wavy-like structure as displayed by isotherms obtained

from ships' observations. Bernstein (1982) attributes this "bulls-eye" feature

to internal inconsistency of neighboring ships' reports. A careful examination

of ships' reports might reveal more insight into this aspect. Figure 7, which is

similar to Figure 5, displays the SMMR-SST field obtained by Chester's algorithm,

using 3-channels. This method of comparing contour plots avoids the discrepancy

which might arise by using different mapping procedures.

In order to suppress the noise further, we have produced an average monthly

map by combining the data. This map is shown in Figure 8 along with the monthly

SST maps obtained from ships' observations and from Chester's a'Igorithm. The

noise in the isotherm is now much reduced but some of the irregularity in ships'

SST fields is still there. Again, the major features are in reasonable agreement

in all SST fields. Figure 9 shows the long term average of the SST

fields for the month of July which was obtained by using the Surface II Mapping

Procedure described by Bernstein (1982). Our monthly SST map compares favorably

with this long term SST map.

4.	 Conclusions and Remarks

The results of thep resent study indicate the possibility of using three

18
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TABLE 6. Summary of the Seasat revolutions used 'in generating the SST fields.

Orbit No. Date Times Equator Crossing °E

147 7 July 78 0744-0754 137.8
175 9 July 78 0639-0650 155.5
204 11	 July 78 0718-0727 148.1
218 12 July 78 0648-0652 156.9
233 13 July 78 0756-0807 140.6
262 15 July 78 0834-0845 133.3
276 16 July 78 0803-0814 142.1
290 17 July 78 0733-0735 151.0
304 18 July 78 0701-0712 159.8

319 19 July 78 0810-0821 143.5
3,33 20 July 78 0737-0753 152.4
458 21	 July 78 0848-0902 136.1
362 22 July 78 0816-0831 145.0
376 23 July 78 0745-0759 153.8
390 24 July 78 0713-0727 162.6
391 24 July 78 0854-0908 137.6
405 25 July 78 0824-0838 146.4
419 26 July 78 0752-0806 155.2
433 27 July78 0720-0734 164.1
434 27 July 78 0901-0915 139.0
462 29 July 78 0759-0813 156.7
477 30 July 78 0909-0922 140.5
505 1	 Aug 78 0806-082.0 158.1
520 2 Aug 78 0915-0930 141.9
534 3 Aug 78 0845-0859 150.7
548 4 Aug 78 0813-0828 159.6
549 4 Aug 78 0953-1007 134.5
563 5 Aug 78 0922-0936 143.4
577 6 Aug 78 0851-0906 152.2

#a

r^

a

1.
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channels for SST determination. Theoretical retrieval accuracy of N2K is achievable

as shown in Table 3. The advantages of this approach are the reduction of the

bias problem, and reduction of the cost of instrumentation for future satellites.

The maps of SST fields produced with three-channel retrievals compare well with

SST fields obtained by using ships' observations over the North Pacific and

display the major climatological features. Moreover, the SMMR-SST comparison

reported in the present paper between three-channel and five-channel retrieval

shows reasonable agreement. However more comparisons with varied atmospheric
i{

conditions, at different geographical locations and times, are needed to deter-
.

mine the validity of the algorithm for global SST predictions. Also, more sub-

sets should be examined with actual SMMR data to determine the suitability of	 !

the subsets for SST retrieval. This will also provide the opportunity to

evaluate the effectiveness of other SMMR channels in retrieving SST.
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APPENDIX

Chester's Sea Surface Temperature Algorithm

The starting point is the linearized
GHz for wind speeds greater than 7 m/s supplied

TB (6.6V) = 160 + 0.52(SST - 28^K) + 0.73(W
+ 0.05(C - 20 mg/cm ) + 1.9(0 -

TB (6.6H) = 105 + 0.33(SST - 2862K) + 1.52(W
+ 0.07(C - 20 mg/cm ) - 0.2(e

iependence of the TB's for 6.6
by Tom Wilheit:

2) m/s) + 0.1(V	 2.4 g/cm2)
490)

- 2j m/s) + 0.l(V - 2.4 g/cm2)
0

1

4

where W = wind speed, V = column density of water vapor, C = column density of

liquid water (cloud), and 0 = incidence angle. Let

Ta(6.6V) = T B (6.6V) - 160 - 0.1(V - 2.4) - 0.05(C - 20) - 1.9(o - 49)

TB (6.6H) = T B (6.6H) - 105 - 0.1(V - 2.4) - 0.07(C - 20) + 0.2(o - 49)

Then
k

I

T B (6.6V) = 0.52(SST - 286) + 0:73(! - 21)

T'(6.6H) = 0.33(SST - 286) + 1.52(W - 21)

These two equations can be inverted to yield

SST = 286 + 2.77 TB(6.6V) - 1.33 TB(6.6H)

W = 21 - 0.60 TB(6.6V) + 0.95 TB(6.6H)

Considering only SST and expanding,

SST = 254.62 + 2.77 TB(6.6V) - 1.33 TB(6.6H) - 5.530 - 0.05C - 0.14V

An improved estimate of SST was obtained by fitting two constants to 17 XBTs

taken during Rev 1223 in the NW Pacific, giving

SST ' = SST + 55.89
1.203

Thus, the final equation used for SST (dropping the prime) is

SST = 267.54 + 2,303 TB(6.6V) - 1.106 TB(6.6H) - 4.5970 - 0.042C - 0.116V

The cloud and vapor formulae are given in SMMR Mini-Workshop IV report (Lipes

and Born, 1981) later, although the vapor formula used in the SST algorithm does

not reflect the last small change made to it. When substituted into the above, 	 x`.
ai .A

Y`
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SST = 257.74 . + 2.303 T8(6.6V) - 1.106 T8(6.6H)

+ 1.343 In (280 - T18V) - 6.210 In (280

- 1.392 In (280 - T21V) - 0.329 In (280

+ 6.463 In (280 - T370 + 1.522 In (280

These formulae are valid for columns 1 .3. For colu

2.6 K is added to the above formulae.

4.4618

T181i)

T21H)

- T37H) (kelvins)

mn 4, a bias correction of

k	 ^

y i7
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