General Disclaimer

One or more of the Following Statements may affect this Document

e This document has been reproduced from the best copy furnished by the
organizational source. It is being released in the interest of making available as
much information as possible.

e This document may contain data, which exceeds the sheet parameters. It was
furnished in this condition by the organizational source and is the best copy
available.

e This document may contain tone-on-tone or color graphs, charts and/or pictures,
which have been reproduced in black and white.

e This document is paginated as submitted by the original source.

e Portions of this document are not fully legible due to the historical nature of some
of the material. However, it is the best reproduction available from the original
submission.

Produced by the NASA Center for Aerospace Information (CASI)

N NP\L Pﬁ““?’"’ "‘:i !
 ho0R QALY {
ANNUAL REPORT
I

VALIDATION OF MULTIPROCESSOR SYSTEMS

IDaniel P. Siewiorek
Zary Segall
Gary York
Thomas Kong
Department of Computer Science
Carnegie-Mellon University
Pittsburgh, PA 15213

December 23, 1982

(NASA-=CR~16€667) VALIDATICN OF
MULTIPGOCESSOR SYSTEMS Annual Report
(Carnegie-Mellon Unive) 78 p HC AO5/MF AO!
CSCL 053
G3/60

.
,,@‘gi‘v’a*‘?m

AN P
R

1,

N83-14952
Unclas
02255 ,
§
v ;
£
']

s
:

&
o
3

g g e T L

a Table of Contents
1. Objectives

2. Background

2.1. Stage 1 - Standalone

2.2, Stage 2 - Operating System

2.3. Stage 3 - Integrated Instrumentation Environment
3. Proposed Experiments
4, References _ |

N OSSO ON -

B

Chapter 1
. ..V°tef Queue Length Experiments

-

1.1. Introduction

[

1.1.1. Background

In N-modular-redundancy (NMR) computer systems, the redundant modules are often computer-
memory pairs. The computers communicate information to be voted on cither by hardware voters

[26], or by software voters running on the processors [8] [21]. Software voting has a number of

distinct advantages over hardware voting, one of which is the flexibility of the voter. A software voter '

routine can change its expectations as th;: system changeé, thereby improving the system reliabiliiy.
Features such as dyhamic rcconﬁgt;ration‘havp been shown to improve system reliability [32] [14].
Most of ‘the research on NMR redundancy has made the assumption that the modules are
synchronizéd [4]. This assumption does not hold for a large class of systems, and often it is very
difficult to force processors to be tightly synchronized. Some people are beginning to realize that
asynchronous systems offer distincf advantages in reliability [21), and simplicity. The problem

remains though of how to design an asynchronous system that meets the reliability objectives.

1.1.2. Objectives .

In an asynchronous NMR computer system, the processors will each have their own clock, and will
make little or no effort to synchronize the clocks with each other. The random variation in clock
speed, and the difference in process exccution patterns will cause differences in the arrival times of

the data to be voted on by the voters. The voters should be able to reccive data asynchronously, so

, , 2

that they can vote on the data when a majority of the processes have sent it. The voters must be able
to’store message values, so that one processor can be calculating the 10t step in a préccdurc, while
another processor car be working on the 12th step. Eventually both processors should finish the
procedure, but as Jong as no datﬁ dependencies exist one processor sheuld not be forced to wait for
another to finish a calculation, Even when data dependencies do exist, when a majority of the
processor agree on the value of a step, there is no reason to wait for the rest of the processors to finish
before continuing with the next step. In fact, waiting can reduce reliability if a processor is faulty,
since it may'ncver {cspc;nd to the voter, There should, however, be a limit to the amount a processor
should be allowed to get behind before it is considered faulty. The random variation may cause
problems if one processor becomes hopelessly bchind‘due to the variation. Experiments have been
performed to discover the nature of ho'w variations in process cxccutipn speed affect the amount a

process gets behind the others. The effects of variation in process execution speed, as well as

variation of the number of instructions exécuted between votes have been examined.

Three experiments have been pérformcd. Each is designed to explore a different arca of the

synchronization problem. Experiment 1 has one process execute more instructions for every step in

the expcriment: This process is continuously slower. This experiment shows that the voter overh;ad
increases as the siow process falls behind. Bx'perirhent 2 has one process slower for a peﬁb&, followed
by being faster for a period. | These oscillations in process execution speed are realistic for some
systems. Experiment 3 has one process slower for a period, followed by a period of normal speed.
This experiment is most realistic, since processes are likely to fall behind in a system, but are not

likely to speed up.

3 ORIGIMAL FR%&I 1Y
OF POOR § «"

1.2. Experiment Description

e, .

A task to be performed is broken into equal subtasks., Each subtask is exccuted in order, with data '
being passed from one subtask to the next. It is assumed that each subtask has the exact same

exccution speed, and that only one word of data is passed from one part to the next.

Subtask 1

Subtask 2 ' I

TA S K ﬂ W ﬂ SuBtask [

Subtask n ' . ‘

Figure 1-1: Experiment Task Partitioning
Since thé¢ subtasks all have the same cxecution speed, the task can be simulated by a loop that
executes n times with a synthetic workload tha.t takes subtask, time inside the loop. Figure 1-1 shows
the partitioning. Each subtask is triplicated, and a vote occurs on the data passed between subtasks,

yiclding the structure iz: Figure 1-2, *

1.3. Subtask Description

The triplicated subtasks, all do the same function. They will calculate the ih data value, send a

copy of the data to each voter, and receive the voted value of the data from the associated voter. The

' 4 omiGHIAL pfvzr:u:.:z!;s(‘
OF. POOR Qus i

Figure 1-2: TMR Queue Length Experiment Structure

new data value is then used in calculating the (i+1)* daﬁa_value.1 The time each subtask takes to '
calculate the i data value is an experimental variable, Each of the triplicated subtasks could have a '
different calculation time for iteration i, allowing the simulation of variation in process execution

- speed. By varying the subtask speeds independently, synchronization issues can be explored. .

.

" 1.4. Voter Description ' , :

The voter is also triplicated. Each voter accepts three words of data, one from each subtask; and
votes on the data from the i iteration as soon as a majority (two for triplication) of the data values
for itcration iare rcc.eived by the voter, There are three input buffers (see Figurc 1-3), one 'fovr exch
subtask, in which a voter ca{n receive the data.The voter consta'ntly looks for data from each subtask :

* by examining the input buffers. A round-robin scheme is used to allow each subtask to have a "fair"

opportunity to have its new data received by the voter. 5

1C')ne can imagine wanting to pass more than one data valuc from one subtask to the next. THis can be done with a more
complicated voter. The entire state of a processor (or selected parts) could be passed as data, allowing a faulty processor to ‘ :
i

recover from a transient by accepting the voted state as its new state,

1]
o

S o T

L
L

-

S

R T

9
T g0 tf

g

ORIGINAL PRGE 7T
OF POOR QUALITY ’

Figure 1-3: Voter Structure with Three Separate Input Buffers

£}
.

As long as the subtasks h;we similar execution speeds, the voter should receive the i data value at
approximately the same time for each subtask. However, if one subtask is slower thah the other two,
" then the voter may receive the (i+1)® data value from a fast subtask before the slow subtask sends
the i? data value. (Remember tl;at the voter wili vote and send the voted data value as soon as a
majority -t;vo- of the values agrée.) S}nce the voter now has data.frorr‘x two different iterations, it
must be able to distinguish which data is associated with which iteration, and from which silbtask. A

voter queue is used to maintain this database, Each row in the qucue contains information about:

1. which iteration this row represents.
2. whether data has arrived from each subtask.

3. what the data value is from a source subtask (if it has arrived).

The column the data is stored in implicitly identifies the associated destination subtask.

P

Each subtask-must send the voter not only the data value, but also the iteration number. The voter

6

» »

can then scarch for an itcratiop.number in the voter queuc to find the row where the data for this
subtask befongs, If the iteration number is not found in the queue, then a row for this iteration is
placed in the queue, and the data is placed in the row. When al! of the data values for a particular
row bave arrived, the voter repoits any errors found while voting and then removes the row from the

queue.

The voter qucue has a finite maximum length. If one subtask has not sent any data to the voter in

*

the same period in which the other two subtasks have sent many data messages, then the voter queue

could conceivably become full. The voter handles a full queue by removing the oidest row
(associated with an iteration for which all the data has not arrived) from the queue, and then adding a
row associated with the new iteration number. Errors ars reported on the row rcmoved from the
c}ugue. The maximum length of the queue can be large, so that the queue will never become full in

.

experiments,

Since each subtask sends the iteration number, the messages nced not arrive at the voter in order.

On Cm* [12], the messages will always arrive in order, but some networks do not guarantee ‘ordered
arrival. The iteration number also is useful in identifying miséing messages. A voter could miss a
message cnlirely and still be able to associate later messages with the proper i'tcration. A reliability
model of the voter, though, must take into' account the probability of the iteration number being

faulty.

1.5. Experiment One

The first experiment performed with the above subtask-voter paradigm was designed to measure

the ability of the voter to synchronize the subtasks, when one subtask is continuously slower than the '

other subtasks. The frequency of voting (or granularity of the subtasks) was varied, and the exccution

specd of one subtask was varied. The qucue lengths of the voters were recorded, as a measure of how °

far the slow subtask fell behind the two faster subtasks. The granularity of 2 subtask is defined as

Mmem b a wa wa A iEA epee me b L F s e smeem ve emm a4 beam o keae e - St e e e e e oo a——e

. . 7

how many operations inust be performed to calculate a data value for. a subtask iteration. The slpwer
subtask performed 10% to 150% more operations in calculating the next value. The slower subtask
represents a process that requires more excecution time due fo an instruction fclry, or due to an
interrupt that it must handle, !n'thesc situations, one subtask will be temporarily slower; but as these
experiments show, it would be ill-advised to design a system where one subtask was continuously
slower (this cxperiment shows disign contraints for systems that have one ¢ontinuqus|y slowér
subtask), Each voter recorded the length of the voter queue every time a ncw iteration was received,
The queue length ipférmation was sent as a message to a process that stored the data in a file. The
recording of the queue length added some overhead to the voter, but each voter paid the same

overhead cost.

»

The queue length is plotted versus the iteration number for various granularities, and various
subtask degradation. The graphs are shown in Figures 1-4 to 1-7. For small granularity, one subtask
can be up to 50% slower, and the queue length stays at one. This implies that the voter overhead is

great enough so that the differences in speed is masked. For larger differences in speed, the queue

_ length grows to a value, and then levels off, The queue Iength is bounded due to an increase in voter

execution time as the queue length increases. The voter must search for the iteration number in the
queue, and the scarch proceeds linearly, The subtask that is slower, will not pay this overhead cost

since it has n messages waiting for processing, where n is the queuc length,

As the granularity increases, the qucue lengtl: grows more rapidly, Granularity is cieﬂned as the
number of operations the norma;l subtasks must perform to prepare a data value, The slower subtask
will perform 10% to 150% rr;orc operations in data value preparation. With granularity equal to 1024
(Figure 1-5), the 10% to 40% ad,diti;)nal operations curves appear to be bounded, but the 50%
additional operations curve is not bouhdcd. The curves for granularity equal to 4K (Figure 1-6) and
g::anularity equal to 16K (Figure 1-7) do not appear to have a bounded qucue length. ’l'his.in dueto

the-fact that the voter overhead takes a smaller percentage ol the total execution time for the larger

.gfanulaﬁty cases. The voter overhead is a fixed value for a specific queue length. When the slower

T TOTL U ORIGINAL PAGES 0 e e e

] OF POOR QUALITY

Gfiais vl vaa Ew?:q’-,; W |
OF POOR QUALYT_Y 3

.

subtask takes approximately the ‘same amount of time as the voter, then the voter overhead is
significant in comparison to the subtask exccution time. While the normal subtasks are waiting on ,
the vater to generate a voted data value, the slower subtask can be calculating a data value for one of

the old messages (when the queue length is greater thin one, the subtask will have data values to

calculate for all the messages in the queue),

£ 30, ___ Granularity = 256 + 10% slower
g» —.w— Granularity = 256 + 30% slov 2r
@251 Granularity = 256 + 50% slower
~4 eeem— Granularity = 256 + 75% slower
g ~— Graintlarity = 256 + 100% slower
g 20l — Granularity = 256 + 150% slower
e)
15} . -
'a_B_B,B_u,-a--u-——e-e—a-—e-—a"D'
10} ' 4
T }, a By g S ——f g
st B ' :
/ G’a.,a——a——a--u—an-e-vu—e-—-e—-ame--ﬂ——a--s—u-—a
" et — it~ B — A

0 20 40 60 80 100 120 140 160 180 200

. Time (in # of votes)
Voter Queue Length vs Time -

Figure 1-4: Granularity equal to 256, one subtask always slower

»

1.6. Experiment Two

The secongl experiment is a variation on the first experiment and was dcsigt‘led to explore the
synchronizing nature of voters more fully, In this experiment, one subtask is slower than the other
two subtasks by a percentage for a period.of time, then the same subtask is faster than the other
subtasks for the same period. The period was chosen to be 20 iterations. Fgr example, subtask A will
. perform 10% more operations in calculatirg the first 20 data values.. followed by performing 10%

fewer opcrations for the next 20 iterations.

While the subtask is operating slower, the queuc length should behave o ztly the same as in

- - P -ty

' OR‘M:K:F\J:). u"'a y)

' OF ‘\Q!‘iq QUA‘&E‘{ ’ i

-

.

s 30, ___ Granularlty = 1K + 10% slower
g) vromem Granularity = 1K + 20% slower ’
@ 251 —+— Granularity = 1K + 30% slower
=3 ~ Granularity = 1K + 40% slower '
g seeer Granularity = 1K + 50% slower .
g 20F D.-D" ‘n‘t"a.'u
(¢ L@ ar’
. u e D . -B‘
15¢ . a8 a-a—o -0
. H‘D.-El' B’a__a_a,a-a--o—-u— '
10} L 'O/u‘ G_.c._a...a—a--a'-a--u—-u :
a--u-a ‘
5 /D/U‘ P ,a—a'
- (38 g g B8 g— 0 ~p
/E B
x?i¢i=i=i9i?i=i’+
(o] 40 60 80 100 120 140 360 180 200
, Time (in #¢ of votes)
, ' Voter Queue Length vs Time
Figure 1-5; Granularity €qual to 1024, one subtask always slower
£ 500 Granularity = 4K + 10% slower '
) ..o — Granularity = 4K + 20% slower
5 —.— Granularity = 4K + 30% slower : '
~ 40} — Granularity = 4K + 40% slower . . o9
- «eso+ Granularity = 4K + 50% slower o .
. g o .
C 30 7 -t
' o & -
,.n’ B/B' _ o8
20; .a"‘g = .a"’a"a o-- 8 8
o' o” " _a &
10}

O 20 40 60 80 100 120 140 160 180 200
Time (in # of votes) '
Voter Queue Length vs Time .

. Figure 1-6: Granularity equal to 4K, one subtask always slower

. .

experiment one. Once the subtask is faster thar; the others, then this subtask should quickly catch up, o

-resulting in a decline in the queue length, The rate of decline in queue length should be greater than

.

- e were & S re e e mv ge o omaml SeE 6 iMee memk e SRR W N TERT s § me e s em eibee e aen e i i o A caters mmmm P 5oy ev—— e

MNP~ B T S

ORIGINAL PAGT 18 . 10
OF POOR QUALITY

£ 50c __ Granularity = 16K + 10% slower '

2 vsem— Granularity = 16K + 20% slower 0

o —ome Granularity = 16K + 30% slower & 0

~ 40 —— Granularity = 16K + 40% slower g 5} A

g +enee Granularity = 16K + 50%slower ,0° ,B/ /u,a’

o . F- - a’

3 - { o’

C 30} Ef"u a.,D’ '_a_..a
ey x,u’u" i '

N
o)

0 20 40 60 80 100 120 140 160 180 200

. Time (in # of votes)
Voter Queue Length vs Time

'Figure 1-7: Granularity equal to 16K, one subtask always slower - '

.

the rate of increase, since when the queue has length greater than one; the subtask being varied does
not have to wait for the voter to finish before beginning the next data value calculation.

This experiment is somewhat realistic, since random variation in processor speed is expected in any
n¢n-synchronous computer network. Non-uniform variations in process execution rate, such as local
error correction procedures, may cause a temporary variation in subtask execution speed, The

variation in these experiments, 10% to 100%, is realistic for a random variation in execution rate due

to software error recovery, and the data yields some interesting insights into the nature of voting

.

synchronization.

The first plot of queue length versus iteration number with granularity equal to 256, (Fignrc. 1-8)
shows the expected result. The queue length increases when subtask A is slower, and the rate of

- increase is the same as that form experiment one. As soon as subtask A begins executing fewer

opcrations per iteration, the queue length declines i‘apidly. reaching queue length -equal to one, -

When granularity equals 1024-(Figure 1-9), the same. result is evident, The rdte of queue length

1
9
¢

e

-

' n

decrease is greater than the rate’ of queue length increase. Figure 1-10 shows similar rcsulls.'

However, when subtask A is 50% faster, the queue length does go back to one, but the subtask barely .

gets to one before it begins to exccute the greater number of operations, The rate of decline of queue

length is greater than the rate of rise, but the rise continues for a much longer time,

If subtask A is executing 10% more operations for 20 iterations, then the following calculations

should hold:

o time spent exccuting 10% more operations = 20*(110% of nperation speed)
e time spent executing 10% fewer operations = 20*(90% of operation speed)

o percentage of time spent executing more operations = 55%

’

e percentage of time spent exccuting fewer operations = 45%

The subtask is spending 10% more time executing the long calculations, When the overhead of the

voter is approximately cqual to the additional time spent exccuting the longer calculations, then the

q;‘xcue luagidc will become one just in time to begin executing t}w lémger calculation iterations, It
appears as if this balance is met when granularity equal to 4K, and the subtask cxecutes 50% more
operations followed by 50% fewer opcrations.. If the granularity is increased to 16K (Figure 1-11)
then the éueue length is not restored to one, and there is a net increase in the queue length over time,
Upon careful ev.':!uation,Q this result is expected, however it is disheartening to see a net increase in

queue length when intuition would indicate a bounded queue length.

1.7. Expei’iment Three

The third expérimcnt is similar to experiment two, except it represents a more realistic class of
synchronization problems.. A subtask that is performing a calculation, may experience a temporary
slowdown, followed by a .period of normal b'chavior such as a subtask which ‘has to perform a
recovery routine because of a bus error, 6r has to perform a one time operating system task, Is the

processor running the subtask doumed to stay behind, or will it eventually catch up cven though it

: 2 origINAL paga 1y
| OF POOR QUALMY,

£ 30, Granularity = 266 +/» 10% speed variation every 20 votes
=] seemme Granalarily = 266 4 /- 30% speed vatiation every 20 votes
5 25 —'— Granulatity = 256 + /- 50% speed variation every 21 votes
ol ~ = Granularity = 256 + /. 76% speed variation every 20 votes
g veass Granularity = 266 + /- 100% speed variation every 20 votes
8 20} :
(¢

15}

10}

n% ‘ .’* ‘s ' a %‘ *- \
WWQMW Maﬁi Q%BW oy‘!ﬂ
o 40 60 80 100 120 140 160 180 200

. Time (in # of votes)
Voler Queue Length vs Time

1y .

Figure 1-8: Granularity cqual to 256, one subtask slower half the gimc. faster half the time *

£ 30, Gratularily = 1K + /- 10% speed variation every 20 votes ! '
o vormma Qranularity = 1K + /- 20% spred variation every 20 votes
5 25l —— ranularity = 1K + /- 30% speed variation every 20 vofus
~ ~ = Granularity = 1K + /- 40% speed variation every 20 votes .
. g ---- Granularity = 1K + /- 50% _speed variation every 20 votes , '
@ 20|
o
15}
10}
5}

.' 0;\

o 4 100 1 20 140 160 180 200‘

, Time (in # of votes).
Voter Queue Length vs Time

. Figure 1-9: Granularity cqual to 1024, one subtask slower half the time, faster hal’the time

always takes as long to calculate a new data value as the others? As soon as a subtask falls behind, it

no longer pays the overhcad cost, since it has messages queued up waiting for processing. This fact

ORIGINAL PAGE IS '
OF POOR QUAMTY -
£ 30, ___ Granularity = 4K + /- 10% speed variation every 20 votes '
o - Granularity = 4K + /- 20% speed variation every 20 voles ,
5 25 —.— Granularity = 4K + /- 30% speed variation every 20 voles
~ [- - Granularity = 4K + /- 40% speed variation every 20 votes
g ----- Granularity = 4K + /- 50% speed variation every 20 voles
& 20}
O .
-18}
10p . - g 8 F’.]
/ \ /. \- n) n q ﬂ no
°l E}; b ’3 g %:»: kit s
g, ,,x ’\-\ % W
0 6 80 100 120 140 160 180 200

Time (in & of votes)
Voter Queue Length vs Time

Figure 1-10; Grapularity equal to 4K, one subtask slower half the time, faster half the time

] 30, —— Granularity = 16K + /- 10% speed variation every 20 votes
- Oy .ov .- Granularity = 16K + /- 20% speed variation every 20 votes

5 25 —»=— Granularity = 16K + /. 30% speed variation every 20 votes

- i — - Granularity = 16K + /- 40% speed vériation every 20 votes

g ----- Granularity = 16K +/- 50% speed variation évery 20 votes

9 .20t

3

(<)

0 20 40 .60 80 700 120 140 160 180 200
Time (in # of votes)
Voter Queue Length vs Time

Figure 1-11: Granularity equal to 16K..onc subtask slower half the time, faster half the time

would imply that a subtask can catch up, and the rate at which it catches up is the voter overhead cost

. per iteration,

!
}
il
“

. .o 14 ORIGINAL PAGE {8
OF POOR QUALITY
The experiment'can be described as follows: one subtask will do additional operations (10% to

50%) for 20 itcrations followed by a period of normal behavior (performing the same r.mmbcr of
operations as the other subtasks). The results of the #xperiment are shown in Figurcs 1-[12t01-14. It
can be scen that during the pc;iods of normal operation for all three subtasks, the cjucue length
declines, and given a long enough period of normal behavior would reach one. The rate of decline of

qucue length during normal subtask behavior indicates the effect of votei overhead on the subtasks,

£ 40, Granularity = 1K +10%, 0 every 20 votes
ga s @Granularity # 1K +20%, C every 20 votes
S 35t ., —.— Granularity = 1K +30%, 0 every 20 votes
-4 ~ = Granularity = 1K +40%, 0 every 20 votes
g 30F Granularity = 1K +50%, O every 20 votes
Q
3 .
<] 25L . .
20}
, 16 e

o 20 40 60 ao 1oo 120 140 160 180 200 -
Time (in # of voles)
Voter Queue Length vs Time

Figure 1-12: Granularity equal to 1024, one subtask slower half the time, same half the time

1.8. Experimental Analysis

The three experiments performed give a clear picture of a synchronization model for the équal

subtasks paradigm. There appear to be two factors involved ir the model. The factors are:

1. There is a minimum voter overnead that is due to the time required by the, voter to .
receive a message, handle the data, and vote on the data. The subtasks that have a queue
length of one must pay this overhead cost every iteration of the experiment. One might

be encouraged to design a voter with vcry hlgh overhead, in order to allow greater proccss
. speed variation.

15

op3E
WAL ¥
O QOR QUAL!
£ 40; ——— Granularity = 4K +10%, 0 every 20 votes
g) veomm Granularity = 4K + 20%, 0 every 20 votes .
o 35 .~ Granularity = 4K +30%, 0 every 20 votes
- — - Granularity = 4K +40%, O every 20 voles
g 30 -.... Granularity = 4K +50%, O every 20 votes a a
) g 0 A
8 25} nn m'ﬂ'” (‘
o o % v
20} LIV S WA
B-ﬂ B)’ b (' - «D
P By T et e
151 e B‘:d/ oy ," %4"
10 Og -"?";"* No"‘ﬁ ¥OT e, x“'x'**
L RHD n*“ L /‘“N ’(x.x e
; A N X K¢
° S .(W
15 o N
0-9-0-0-0 .

Voter Queue Lengthvs Time

0 20 40 60 80 100 120 140 160 180 200
. Time (in # of votes)

Figure 1-13; Granularity equal to 4K, one subtask siower haif the time, same halfthe time

a
Q

& - Granularity = 16K + 10%, O every 20 votes B8qagn

o «s.— Granularity = 16K +20%, O every 20 votes o

5 35F _.— Granularity = 16K +30%, 0 every 20 votes Q .

~ ~ ~ Granularity = 16K +40%, 0 every 20 votes - «

g 30F Granularity = 16K +50%, 0 every 20 vot&sﬁau,ﬂ a,u " ' e

Q. i} »

3 , »

G 25¢ uﬂ ‘,”‘ H’ ﬁ."% o’./o
v/ Bﬂﬁ. u. » °/° > ‘
201 , B.E; » -« x-“

Haw, Ta" Mo f
joff] W I 4 v xTXy ./
15¢ On & Ve ek
‘ 'M*. ," *‘x >
o8g _g9te o “Mee
10} &-*‘ET("')’ - Rl
5 Q’Q S L SR e t0ee

0 20 40 60 80 100 120 140 160 180 200
Time (in # of votes)

Voter Queue Lengthvs Time

Figure 1-14: Granularity equal to 16K; one subtask slower half the time, sam¢ half the time

2. The overhead cost increases as the voter queue length increases due to an increase in the
data handling cost. This factor would indicate that for a long enough queue, the voter

. 16

. - 4

could mask any difference in process speed, For practical qucue lengths, though, the'
increase in voter overhead masks only some of the subtask speed variation.

1.9. Conclusions ' .

The synchronization experiments can give some design principles for TMR asynchronous voting
systems, These principles can be applied to optimize the voter queue length, to.choosc a subtask
grzfnularity, and to determine the amount of process speed variation allowed in a design. Proper
application of the principles will lead to a design that will have a bounded queue length for all

possible variations in process exccution rate, The principles can be summarized as follows:

1. Smaller granularity subtasks have a higher probability of having a bounded queue length,

2, As subtask granularity increases, the random variation in process speed becomes
increasingly important in ensuring a bounded queue length.

3. A system that spends an equal_amount of time being faster, and slower will have a
bounded queuc length, : o .

4. Greater voter overhcad allows a greater variation in process execution rate. This yi¢lds an '
interesting trade-off in voter design, since a faster voter process will increase system
throughput, but will decrease the amount of variation permitted in process exccution rate,

These results can be generalized for synchronous voting, as well as asynchronous voting, If the
maximum voter length is fixed at one, then the system is synchronous like SIFT [9] [8] [6] and C.vmb
[26] [19]. Both of these NMR systems use a synchronous voter with queue length pf one, C.vmp has
a hardware voter with a built in wait feature. The length of the wait corresponds to the voter
overhead in these experiments. SIFI: uses fixed scheduling, sc a vote proceeds when the next time
slot i>cgins. The voter overhead 'corrcspdpds to the design margin in the fixed schedule (the time

between the end of the process execution, and the end of the time slot),

M K B whiem D d g ms o meet cev g mmes i 8 emy . me fmee tmaem i es ame ek B e e e R d e s b e e— ¢ T S o P31 4 o bt s woenay bt

T

i

[2

3]

l

8]

(6]

7]

(8]

1l

. 17 ORtaial P 1
OF POOR QUALITY . ;,
References éi

Abraham, Jacob A., and Siewiorek, Danicl P.

An Algorithm for the Accurate Reliability Evaluation of Triple Modular Redundancy
Networks.

IEEE Transactions on Computers :682-692, July, 1974,

Apperson, Jerry L.
Bliss-11 Programmer’s Manual
Digital Equipment Corporation, 1974,

Castillo, Xavier. .
Workload, Performance, and Reliability of Digital Computing Systems.
PhD thesis, Carnegie-Mecllon University, December, 1980,

Davies, Daniel and Wakerly, John F,
Synchronization and Matchmg in Redundant Systems.
IEEE Transactions on Compulers C-27(6):531-539, June, 1978.

Dolev, Danny.

'The Byzantine Generals Strike Again,
Journal of Algorithms , December, 1981,
Stanford University.

Forman, Phil and Moses, Kurt.

SIFT: Multiprocessor Architecture for Software Implemented Fault Tolerance Flight Control
and Avicnics Computers.

Thll‘d Digital Avionics Systems Conference :325-329, November, 1979.

Fnson Steve and Wensley. John.

Interactive Consistency and Its Impact on the Design of TMR Systems.

In 12th Annual International Symposium on Fault Tolerant Computing, pages 228-233. 1EEF
Computer Society, June, 1982,

Goldberg, Jack.

The SIFT Coinputer and Its Development.
1980. - .

SRI International.

Goldberg, Wemstock Green, Kautz, Lamport, Melliar-Smith, -
Development and Evaluation of a SIFT Computer: SIFT Operating Syslem
Interim Technical Report 2, SRI International, April, 1980,

.

R T T T

(10)

[11]

12
{13]
[14]

[15]

16]

{17]

18}

- 19}

18

Goldberg, Jack,

The SIFT Approach to Fault To‘«'mm Computing.
1981,

SRI International.

Hecht, H,

Reliable Software for Spacecraﬁ.

In Proceedings of Compcon, pages 143-146. IEEE Computer Socicty, 1980, -
Spring.

Jones, Anita K., and Gchringe.r, Edward F,
The Cm* Multiprocessor Project: A Research Review.
Technical Report CMU-CS-80-131, Carnegic-Mellon Univerisity, July, 1980,

Kong, Thomas H.
Measuring Time for Performance Evaluation of Multigrocessor Systems.
Master's thesis, Carnegie-Mellon University, November, 1982,

Kuehn, Ralph E.
Computer Rcdundancy"Design Performance, and Future,
IEEE Tranactions on ReIzabahlyR 18(1):3- 11 February. 1969.

Lala, Jay H., and Smith, CharlesJ
Performance and Economy of a Fault-Tolerant Multiprocessor,

In 1979 Proceedings of the National Compuler Conference pages 481-492, Nanonal Computer
Conference, 1979.

Lamport, Leslie,
Time, Clocks, and the Ordering of Events in a Distributed System.
Comniunications of the ACM 21(7):558-565, july, 1978.

Malaiya, Yashwant K., and Su, Stephen Y, H.

A Survey of Methods for Intermittent Fault Analysis. ‘

In 1979 Proceedings of the National Computer Conference, pages 577. National Computer
Conference, 1979.

McConnel, Stephen R., and Siewiorek, Daniel P,
CMU Voter Chip.
Technical Report CMU-CS-80-107, Carnegxe Mellon University, March, 1980. .

McCox'mcl Stephen R., and Siewiorck, Daniel P.
Synchronization and Voting.
IEEE Transactions on Computers C- 30(2):161-164, Fcbruary, 1981.

[20]

21)

(2]

23]

[24]

[25].

[26]

(27]

28]

(29]

19

Meclliar-Smith, P, M., and Schwartz, R. L.
Hierarchical Specification of the SIFT Fault Tolerant Flight Contro)' System,
Technical Report, SRI International, 1980.

Michalopoulos, Demetrios A.
Uniquely Maneuverable Fighter Plane to Use Digital Processors.
Computer , October, 1982, '

Musa, John D,

Softwarc Reliability Mcasures Applied to System Engineering.

In 1979 Proceedings of the National Computer Conference, pages 941-946, Nauanal Computer
Conference, 1979.

Ousterhout,.John K., Scelza, Donald A, and Sindhu, Pradeep S.
Medusa: An Experiment in Distributed Operating System Structure,
Communications of the ACM 23(2):92-105, February, 1980,

Pease, M., Shostak, R., and Lamport, L.
Reaching Agreement in the Presence of Faults.
Journal of the ACM 27(2):228, April, 1980. '

. Segall, Singh, Snodgrass, Jones, Siewiorek.

An Integrated Instrumentatiqn Environment for Multiprocessors.
1982,
Carnegie-Mellon University.

Siewiorek, Kini, Mashburn, McConnel, and Tsao. ’

A Case Study of C.mmp, Cm®*, and C.vmp; Part 1 - Experiences with Fault Tolerange in
Multiprocessor Systems.

Proceedings of the IEEE 66(10):1178-1199, October, 1978,

Siewiorek, Daniel P, and Swarz, Robert S.
The Theory and Practice of Reliable System Design.
Digital Press,-Bedford, Mass., 1982,

Siewiorek, Daniel P.; Bell, C. Go'rdon, and Newell, Allen.
Computer Science Series: Computer Structures: Principles and Examples.
McGraw Hill, 1982. -

Sindhu, Pradeep and Singh, Ajay.
Performance Evaluation of Message Mechanisms.
Carnegic-Mellon University.

(30]

131]

"[32)

(33]

[34]

' 20
Singh, Ajay. '
Pegasus: A Controllable, Interactive, Workload Generator for Multiprocessors. .
Master’s thesis, Carnegie-Mellon University, December, 1981,

[N

.

Sklaroff, J. R.
Redundancy Management Technique for Space Shuttle Computers.
IBM Journal of Research and Development :20-28, January, 1976.

Snyder, F. G.

A Comparison of Redundant Computer Configurations.

In Proceedings of Compcon, pages 125-133. IEEE Computer Society, 1980,
Spring,

Wensley, Lamport, Goldberg, Green, Levitt, Melliar-Smith, Shostak, and Weinstock.
SIFT: Design ard Analysis of a Fault-Tolerant Computer for Aircraft Control.
Proceedings of the IEEE 66(10):1240-1255, October, 1978,

Yemini, Yechiam and Cohen, Danny.

Some Issues in Distributed Processes Communication,

In Proceedings of the First International Conference on Distributed Computing Systems, pages
199-203. 'IEEE, October, 1979.

Huntsville, AL.: .

<

e

ABSTRACT

The trend towards integration of avionics in flight controls in future aerospace systems requires an
ever increasing complexity in the on- board computing systems. NASA Langley'Research Center has
created an Avionics Integrated Research Laboratory (AIRLAB) as a facility for developing the
methodology for integrating avionics in flight controls. Due to the complexity of these systems,
extensive testing will be required to validate that the system hardware and software function
according to specificaticn, Engineering prototypes for two fault tolerant multiprocessors--SiFT
(Software Implemented Fault Tolerance) and FTMP (Fault Tolerant Multiprocessor)--have been
delivered to AIRLAB,

The goal of this research was to define experiments that can be used to validate fault free

" performance of multiprocessor systems. These experiments were refined through implementation on

the Cm* multiprocessor testbed at Carnegie-Mellon University. Future research will adapt and modify
these experiments for FTMP and/or SIFT.

LS

1. Objectives

The National Aeronautics and Space Administration (NASA) has ongoing research into the
integration of avionic and control functions for aircraft in the 1990-and-beyond time frame, As a focus
for this technology, NASA Langley Research Center (LARC) has established an Avionics Integrated
Research Laboratory (AIRLAB). The goals of AIRLAB are to [1]:

1. develop the technology and methodology required to integrate avionic and control
functions for aircraft

2. evaluate and study candidate system architectures
- 3, validate implementation technologies
4, establish a data base of performance, reliability, and experimental statistics,

The benefits to be derived from AIRLAB include:

1. definition and assessment of advance avionic system concepts including high reliability,
fault tolerance, and effective maintenance

2. development of a credible data base for industry including systematic definition of system
concepts, a catalogue of alternative features, and a methodology for design evaluation
and design trade-offs ' -

3. demonstration of experimental systems.

Computers on-board cdrrent jet transports perform isolated functions, are usually of simple
architectures, and are not flight critical. If a computer fails, the flight crew can assume the functiqn
formerly done by the computer. In the Aircraft Energy Efticiency (ACEE) Program, NASA studied the
design of innovative aircraft which reduce fuel consumption. Operating with reduced stability
margins, these aircraft require active computer control. These computers must have a reliability
cbmparable to other aircraft subsystems. A goal of 100 failures per hour has been set,

In order to meet the active flight control and reliability requirements, complex compufer structL‘lres
have evelved. NASA Langley Research Center has contracted engineering prototypes of two
multiprocessor architectures: SIFT (Software Implemented Fault Tolerance) [2] conceived py SRI
international and fabricated by Bendix Corpo’rétion; and FTMP (Fault Tolerant Multiprocessof) {3]
conceived by MIT's Charles Stark Draper Laboratory, Inc. and fabricated by Collins. The engineering

e rawsm e . am me em A geem ewun - e s emem eam te e m - Fr e s am e te e e At ememes e aAEd e W esseiem th ot

- .

prototypes for both SIFT and FTMP have been delivered to the AIRLAB facility,

The goal of the research is to define a set of tasks that can be used to provide a demonstration of
the fault free performance of SIFT and/or FTMP, Here we take the meaning of performance in its
broadest se nse to include functionality and speed.

2. Background

Digital computer systems are enormously complex. In order to make them easier to comprehend, it
is necessary to divide the system into several levels [6], One can then proceed from the most
primitive level upwards to the highest conceptual level by introducing a series of abstractions. Each
abstraction contains only information important to its particular level, and suppresses unnecessary
information about lower levels, The levels in a digital system frequently coincide with the system's
physical boundaries since the concept of levels was utilized by the system’s designers to manage
complexity. Once details at one level are comprehended, only the functionality provided for the next
higher level need be considered. Figure 1 depicts one possible set of leveis ¢ | abstractions,

Level Sublevel Typical Components

Multiprocessor . ' Processor, memory, switches

Program ' App;ication Software Display, navigation, flight control
Executive Software Message system, task scheduler,

memory allocator

Instruction Set Memory state, processor
state, effective address
calculation, instruction execution
Hardware : Logic Gates, flip-flops, registers,
sequential machines

Figure 1. Levels of Abstraction in Multiprocessor Systems

AIRLAB is a facility for testing and measuring fault tolerant architectures. Our experience at CMU
indicates multiprocessors go through an evolution of stages. A stage is defined by the amount of
functionality avéilable to the user. This functionality, in turn, determines the complexity and
sophistiéation of experiments that can be run.

e e e oy

There are several activities in the life of an experiment, First, the code has to be designed and
written, Next, it must be compiled, followed by loading, debugging, measurement, and analysis.
Another view of the stages of a system's life is the number of these activities that are directly
supported by the system for the user,

The lollowing are three representative stages in the evolution of a system,
2.1, Stage 1 - Standalone

The system is completed through the instruction set level of abstraction. That is, the instruciion set
has been defined and the hardware has been implemented. There Is virtually no software to support
user applications. The only software utility would be a loader whereby programs compiled on another
\machlne can be loaded into the system under test. Experiments are limited to simple, regular,
compute bound algorithms. Only a limited number of parameters may be varied, and this variation
requires rewriting of the source code of the experiment. There are several attributes to Stage 1
experiments, The programmer must be a hardware expert since there is little software to provide a
higher level virtual (abstract) machine. Hence the program is tied closely to the hardware. The user
must specify where code is placed, define the memory map, and write code to initialize the raemory,
create processes, manage resources, and collect data.

Typical experiments in Stage 1 include:

e Hardware Saturation. Programs consist of two or three instruction loops with variation
in placement of code and data. The capacity of various system hardware resources is
determined as well as the impact of contention for those resources.

e Speedup due to Algorithm/Data Variation. Experiments seek the impact of
synchronization for data, as well as variation due to data dependencies and size of data.

o Errors. Diagnostic programs can be continuously :.:n and monitored on the system.
Distribution of diagnostic detected errors can be studied.

2,2, Stage 2 - 6perating System

The user is presented the abstraction provided by the executive software. Thi's software provides
basic fu'nctions such as resource management and scheduling. In programming experiments, the
user is employing operating system primitives. Hence, the user needs a substantial operating system
expertise. Also, che;racteristic for this phase is the discrete incremental nature of the experimentation
process; each exderiment represents one point in the design space.

¥

The attributes of Stage 2 applications can be stated as follows:

e very regular, data bound with limited variation of parameters

o the general program organization has a Master process controlling a collection of Slave
processes doing the actual computation

» code is replicated
¢ heavy use of OS mechanisms

Typical axperiments are:

e Measurements of the cost-per-feature of the operating system’s functions.
Experimenis exercise statically each OS function on a one by one basis, Examples
include: memory management, coinmunication primitives, synchronization, scheduling
and exception handling.

¢ Measurements of dmerent implementation of parallel algorithms. The impact of

using various strategies in parallel program organization, data struciure and resource
allocation is studied.

2.3. Stage 3 - Integrated Instrumentation Environment)

At this stage hardware and software have been provided for generating experimental stimulus,
dynamically observing kardware and software activities, and analyzing results. With this enhanced
support, the user can experiment at the application . Jel of abstraction with full variation of
parameters. A major characteristic of this stage is the provision of stimulus generation, monitoring,
data collection and analysis grouped under a unique user interface. Also the OS, the support
software and the user application are uniformly instrumented enabling improved behavior visibility.
Only with this capability, the interaction between OS, suppart software and user application became
measurable with acceptable effort. Hence, the programmer could be a relative system novice.
Experiments at this stage have the following attributes:

o Measurements of dynamic behavior of OS and applicstions.

o Measurements are continuous. Prcgram could be monitored on-line and sometimes in
real-time. ’

o Studies of different virtual machines,

o Studies of different logic intercommunication structures.
¢ Scaling application performance with respect to different virtual machines.

Examples of experiments at this stage include:

o Comparison of variaus OS policies as reflected by classes of appiic'mions, ,
o Tuning a virtual machine for a specific applicmibn.

e Designing application oriented architectitres,

o Study of multiprocessor intercoimmunication strategies,

e Validation of fault-free performance of an emul::" ¥d system.,

3. Proposed Experiments

For purposes of exnerimental transfer, the target AIRLAB system will be assumed to be equipped
with Stage 2 software (i.e., software through the executive level of abstraction with the ability to load a
prcgram and for the program to write a lile of experimental data). All these experiments were
conducted on Cm*, CMU's 50 processor multiprocessor system, Thus, experiments have been
attempted and scientific questions formulated prior to implementation at AIRLAB. These experiments
were up to and including executive software level of abstraction. No assumptions were made about
constraints at the application leve! of abstraction which would limit the utilization profile of the lower
levels. Performance and logical limits of individual executive and hardware functions were explored.
Points where the system saturated or ceased to perform to specification were scught and
documented, Each of these individua! dimensions are dynamically stressad by an application. With
the limits of performance documenied, we can intelligently select application level experiments that
are more likely to stress multiple dimensions in a way that the application may cease to meet its
specifications. A summary of suggested exberiments and subporﬁng references follow,

e Baseline non fault tolerant systam reliability

Purpose: To derive a basgline of non-redundant hardware and/or software
system reliability.

Description: . it is assumed that a file has been created with information on system
’ trash behavior and/or errors detected from execution of diagnostics.
This file will be analyzed to determine Mean Time To Failure and

-

Mean Time To Error, If data is sufficiently detaliled, it may be possible
to develop a mathematical model that fits the data.

e Detarmination of execution speed of hardware

Purpose: To determine the variation in execution speed between ditferent
procassors and to produce a tabie for normalizing the measurements
done on different processors, Speed ditferential Is a bound on the
accuracy of perlormance related experiments,

Description: Each processor performs an identical task over a sulficiently long
period so that the results are repeatable,

e Tolling time in a multiprocessor

Purpose: As time is essential in monitoring and measuring an experiment, the
overhead to tell time and limits of accuracy of teiling time must be
documented,

Description: Both single and multiple clocks will be used. The use of a single

clock Insures uniformity of absolute and relative (differential) time
throughout the multiprocessor provided the clock reading software
adds only a small, constant delay. I time is required frequently or if
reliability is a consideration, multiple clocks can be used. This
experiment will measure variability and contention for reading a single
clock as well as measuring the differences in multiple clocks to
determine clock drift,

e Communication mechanisms

Purpose: ~ To determine the maximum information transmission rate of a
hardware/operating system combination, This is an upper bound on
information flow within the multiprocessor.

Description: This experiment will determine the execution time for sending
messages as a function of the number of bytes transferred. Various
forms of message sending will be measured, These will include
mechanisms provided by the executive software as well as
mechanisms that can be programmed by a user,

¢ Operating system calls

Purpose: Each operating system service (or call) adds overhead to an

. .

application,

Description; This experiment will measure the overhead as a function of call type,
call frequency, contention, and relative positioning of code. In SIFT,
particular attention will be paid to the software voting mechanism,

e Impact of time skew

Purpose: Due to the delays and overheads measured in the above
experiments, it will not be possible to keep the multiple, asynchronous
copies of application code in identical lock step.

Description: This experiment will introduce variable time skews into redundant
code to determine if or when the multiple coples of the application get
out of logical sequence and causes the system to cease functioning.

e Validation of instruction set 'architectu re

Purpose: To determine whether automatically generated diagnostic programs
have sufficient fault detection coverage to be run periodically and
alleviate the problem of fault latency.

Description: Software developed in [7] takes a formal cescription of a computer
instruction set and then generates a program which tests that
instruction set. This methodology outperforined manufacturer
supplied diagnostics for faults that were inserted at the instruction set
level. These automatically generated programs contained a factor of
20 fewer instructions than the manufacturers' diagnostics while
achieving better coverage (i.e., 98.5% vs, 95.5%).

The appendices contain details of all but the first and last experiment as they were conducted on
Cm*. Results of the first experiment can be found in [5] while results of the last experiment were
reported in [7).

4. References

[1] Research Triangle Institute, Systems and Measurements Division,
"Validdtion Methods Research for Fault-Tolerant Computer Systems,"
Preliminary Working Group II Report for Langley Research Center,
National Aeronautics and Space Administration, September 7-8, 1979,

[2] Wensley, J. H., L. Lamport, J. Goldberg, M. W. Green, K. N,
Levitt, P. M. Melliar-Smith, R. E. Shostak and C. B. Weinstock. "SIFT:

- e . e . o am e wé . oma s w s v + - [T ST WG B ARE W meem w AT
.

Design and Analysis of a Fault-Tolerant Computer for Aircraft Control,"
Proc. IEEE, vol, 66, no. 10, October 1978, 1240-1255.

[3] Hopkins, A, L., Jdr., T. B, Smith, III and J. H, Lala, "FTMP--A
Highly Reliable Fault-Tolerant Multiprocessor for Aircraft," Proc.
IEEE, vol. 66, no. 10, October 1978, 1221-1239,

[4] Bell, C. G. and A. Newell, Computer Structures: Readings
and Examples, McGraw-Hil11 Book Co., New York, NY, 1971,

[6] Siewiorek, D. P., V., Kini, H. Mashburn, S. McConnel and M. Tsao,
"A Case Study of C.mmp, Cm*, and C.vmp: Part I--Experiences with
Fault Tolerance in Multiprocessor Systems," Proc. /EEE, vol. 66,

no. 10, October 1978, 1178-1199,

[6] Siewiorek, D. P., C., G. Bell and A. Newell, Computer Structures:
Principles and Examples, McGraw-Hi11 Book Ce., New York, NY, 1982,

[7] Lai, K. W., "Functional Testing of Digital Systems," Ph.D. Thesis,
Department of Computer Science, Carnegie-Mellon University, Pittsburgh,
PA, December 1681,

1199,

g v

-t e ok a S

¢ £ .
LI S ER T

ORIGINAL m@r_)
AF POOR QUA

Measuring Time in
Multiprocessor Systems

by | S
ThomasH Kong, Alfsed Z. Spector, DamelP Siewiorek

29 November 1982

Abstract

A system clock is often used as a time-keeping device for measuring software performance.
However, in a distributed system where there is only one system clock, it may be difficult to obtain
accurate clock readings. This is because of communication delays and clock contentions. Thrs
report investigated the problems associated with a single time base in multiprocessor systems. The
multiprocessor Cm* was used as the research vehicle. First, the accuracy of the clock was found to
be greatly affected by the number of simultaneous. clock reads as well as the overall system

~ workload. Second, methods were developed to compensate the clock readings by monitoring the
- system load during the time measurements, The accuracy of these methods was better than 7pS.

Finaily, an experiment was performed to measure the latency of messages and the execution time of

. message-based remote procedure calls,

This project wes supported by NASA Langley Research Center under contract number
NAG-1-190, by NSF under contract number MCS-8120270, and by the Department of the Army
under contract number DASG-60-80-C-0057. '

The views and conclusions contained in this document are those of the authors and should not

" be interpreted as répresenting the official policies, either expressed or implicd, of NASA, NSF, the |

Demrtmcnt of the Army, or the U.S. Government.

~

—— et w o miak e

Table of Contents

1 Introduction

"2 Background

2.1 Previous Work
2.2 Research 'Vehicle
- 2,21 Cm* Hardware Structure
2.2.2 StarOS ‘,/
2.2.3 Medusa '
3 Clocks in a multiprocessor -
3.1 Cm* clocks ‘
- 3.2 Clock reading routines and their performance
" 3.2.1 StarOS results
3.2.2 Medusa results
.3.3 Conclusion
4 Methodologles for measuring time.
4,1 Methodology of performance evaluation
4.2 IMethodologies for measuring elapsed time (Clock oompensatxon)
4.3 Execution speed of computer modules

4.4 Evaluation of clock reading compensation techniques (Method I) "

4.5 Evaluation of clock readmg compensation techmques (Metirod II)
4.6 Discussion of yesults
4.7 Conclusion

' S ‘An example experiment

5.1 Organization of experiment
© 52 Experiments
5.3 Results _
5.3.1 Latency measurements
5.3.2 Execution time of RPC
5.4 Conclusion '

. 6 Conclusion

ORIGINAL PAGE 143
OF POOR QUALITY

i
w W W W WWwWwWwWNN

Dol lNaoauvsswwwmmwe-

L
(> -]

List of Figures

Ligure 12
" Figure 2:
Figure 3:
Figure 4:
Figure S:
Figure 6:
Figure 7:
Figure 8:
Figure 9:
. Figure 10:
. Figure 11
Figure 12;
Figure 13;
Figure 14:
Figure 15:
. Figure 16:

Figure 17:.

/ ¥ . .
ORIGINAL PAGSE 4
OF PCOR QUALITY

Pertormance of Medusa Varying-Read clock routine
Performance of 4-Read clock routine running under Medusa .
Performance of Medusa 1-Read clock routine ' '
Performance of StarOS 4-Read clock routine
Performance of StarOS 1-Read clock routine
Performance of Medusa 4-Read clock routine
Performance of Medusa 1-Read clock routine
Short term averaging algorithm
Short term averaging, Method I
Short term algorithm, Method II .
Histogram of execution time of 34 Cm's
Measuring zero elapsed time using Method I with 4-Read routine
Measuring zero elapsed time using Method I with Medusa 4-Read routine

Measuring zero elapsed time using Method Il with StarOS 4-Read routine |

Measuring zero elapsed time using Method II with Medusa 4-Read routine
Latency of StarOS messages in the experiment
RPC execution time versus the total number of words accessed

11
13

‘14

15

16

20
2%
2%

27
28
30
31
36
37

1 Introduction

ORIGINAL PAGE 15
OF POOR QUALITY

\While performance evaluation of computer hardware is commonly done with special hardware

such as oscilloscopes and logic analyzers, performance evaluation of computer software such as -

operatmg systems can be done with software methods, The software method has the following
advantages:

o It can be completely automated from data collection to data reduction,
o It can be performed remotely without accessing the internals of the machine.

o It requires only a system clock of good resolution,

Hardware methods can also bé completely automated, but the measuring hardware may be rather
complex. ‘The disadvantage of software methods is that-they are less accurate than hardware
methods because of the possible mteractron between the measunng soﬂware and the measured

“software,

To measure the performance of software, the system clock is often used to measure elapsed

- times. However, it is often difficult to obtain accurate clock readings from a system clock, This is

because the amount of time required to read the systern clock is variable due to system load, page

' trafﬁc, etc. Thercfzré when a result is returned to the calling program, it may be maecurate or
) outdated. Ina drstnbuted system where communication delay is dependent on system actmty. and’

where a large number of subsystems attempting to read the clock causes contention, the result
returned to the calling program may be even less accurate.

This problem.is serious in the case of the Cm* [3] clock. A prehrmnary study showed that the

" result of a clock read can be erroneous by as much as 2mS, depending on the system load and the

amount of contention for the clock. A goal of this project is to develop methods to read the clock
more accurately so that software methods can be more widely used to measure system performance.

The purpose of this project is to investigate the feasibility of measuring the performance of
multiprocessor operating systems 'using software met]rods.

The following section p: ssents the background information for this project. Previous work

u;

By

* * .
.
/ 2
7 ’
» v

¢

related to this pro;ect is surveyed and the research vehlcle Cm?*, is briefly described, ‘Section 3

+ discusses the: problcm with global clocks. The clocks in Cm* are described, and mechanisms for

accessing them under diiterent operating systems are presented, The clock reading software is
examined and its performance as a function of load is studied.

Section 4 discusses elapsed time measurements on Cm*, Based upon the experience developed
in using the Cm* clocks, methods are designed to yield more accurate results for elapsed time
measurements, The accuracy of these methods is illustrated through tests.

[

An example of the usage of one of the methods developed in Sectior 4 is presented in Section 5.
The example measurement is concerned with the latency of message mechanism and the execution

. time of message-based remote procedure calls, Finally, Section 6 presents the general conclusions. '

2 Background

2.1 Previous Work

There has been a significant amount of work on’ performance evaluation of multiprocessors.

Most of this work relied upon hardware devices for’ measuring time, When Raskin performed\ '
measurements on Cri* [10), he used the Cm* Map-Bus Monitor, logic analyzers and hafﬁware

counters. Marathe suggested that measurement tools should match the level of the measurement

. [6]. When he was measu*mg the operatmg system kemel performance of C.mmp/Hydra, he used

both hardware and software methods, Snodgrass has also studied the problem of monitoring
distributed systems [12] {13).

~ While all these works required the use of special system dependent hardware, this p'rbject aims
. at providing software methods for performance evaluation that require no special hardware other -

than high resolution system clocks. To utilize the system clocks for perfomiance evaluation, the
concept of time in a distributed system must be understood. Studies concerned with the

understanding of time in a distribute system and the dissemination of system time have been made

by Lamport [5] and Ellingson [1].

ORIG!NAL PAGE IS
OF POOR QUALITY

FERIIRN B P
e

ORIGINAL PAGE IS

2. 2 Reeearch Vehicle’ OF POOR QUALITY
The rese'rrch vehicle used in this project is Cm* and its two on-rating systems - Stz\rOS and
Medusa, In this subsection, a brief overvicw of the research vehicle is presented, More detailed *
descriptions can be found in the research review edited by Jones and Gehringer (3},

2.2.1 Cm* Hardware Structure,

Cm* is a multiprocessor consisting of fifty processor-memory pairs made up of DEC LSI-11's,
Each processor-memory pair is called a computer module. These computer modules are grouped
into five clusters, forming a hierarchical switching structure. The lowest level of the switching

hierarchy consists of the Slocals, which are switches placed between each processor and its local

memory. Their function i is to’ determme if references generated by the processor can be directed to
the local memory. If the references cannot be directed to local memory, the Slocal will forward the
address through the Map Bus to the Kmap of that cluster for further address translatlon. The Kmap
is a high speed microprogrammable comimunication controller. It provndes the mechamsm for the
computer modules (Cm's) of its own cluster to communicate with each other, and it oooperates wnh
other Kmaps to service the communication requests made to Cm’s of other clusters. All
communications between the Kmaps are lmplemented via packet-switching rather than by circuit- ,
switching to avoid the possrble deadlock over dedicated circuit-switching paths. In addition, since

.- the Kmap is much faster than the main memory of the LSI-11, the Kmap is active only for a small

fraction of the time of a memory reference. Therefore, packet-switching allowsmthe, Kmap to service
more than one request concurrently, Because of their microprogrammability, the Kmaps are also
used extensively to implement key operating system functions of StarOS and Medusa.

2.2.2 StarOS |

'StarOS is a message based, object oriented operating system for Cm®*. Its rietailed description
can be found in a technical report by Gehringer and Chansler [2]. Briefly, all StarOS inforrnation,

*including code and data, ‘are contained in objects, Each object has an object type and a special set
" of operations defined for that object type. Users can also define their own abstract object types.” A

StarOS object is made accessible via the possessron of a capability which contains the name, of the
object and z list of rights for that named object. Capabilities themselves do not contain the address
information of the objects they name. Rather, they contain pointers to the descriptors which contain

 the physical localiens of the objects. This way, if an object named by a number of capabilities is to .

~—

—

P . ORIGINAL PAGE 1S
OF POOR QUALITY

_ be relocated physically, only its descriptor needs to be updated while all the capabilities remain .,
unchanged, The StarOS message facility supports the transmission of messages containing one

caoubility or one data word, This implies-that messages of size larger than one word are passed by
reference. This pass by refercnce semantic is possible because names of objects are known system
‘wide and a capability is sufficient to access an object anywhere in the system,

-

2.2.3 Medusa 4

Medusa is another message based op rating system for Cm*, Its details were presented by

Ousterhout ef al. in [8] and in Ousterhout's thesis [9]. All Medusa information are stored in objects °

that are addressed through descriptors. The descriptors contain the type, the location, and the size
of the objects, Descriptors are kept in protected objects known as descriptor lists. Each Medusa
i)rocess. known as an aclivity, has 'two descriptor lists. The private descriptor list keeps the
descriptors to objects that are private to the process, whfle the shared descriptor list keeps the
.descriptors to objects that are shared by all processes within the task force. A task force is defined
as a collection of cooperating processes that perform a given computatxon In Medusa, all objects
are defined by the system and users are not allowed to define abstract object types. The message
facility of Medusa supports messages of variable size. Messages are transmitted by value through
special objccts ml!ed pipes that are similar to the; pipes of UNIX [11] in that they hold umnterpreted
byte streams. The major dnfference from UNIX is that, in Medusa, only complete messages can be

sent or received from the pipes, and that both the 1denuty of the sender and the size of the message
_are available to the recewer.

3 Clocks in a multiprocessor

It was mentioned that due to corhxpunication delays, a clock read request is not received until
sometime after the request has been made, and that the originator of the request does not receive
the result until sometime after it Has been transmitted. Therefore, the result of a clock read is often
inaccurate, In -this section, 'this problem will be examined in detail, and its gffect on the
performance of the clock on Cm* will be studied. Schemes designed to yield more accurate clock
-readings will be proposed.

A desirable solution to the probleni of reéding the clock is to have a globally readable clock with

a communication delay that is small (compared to the clock resolutioh) and fixed regardless of

.- oo - ' - -

~ -~

”,

’ B ORIGINAL PAGE 18
' ' ' OF POOR QUALITY

system load. Such a clock requires a special bus allqwing multiple simultancous read accessés for

the broadeasting of the clock value, An example of such a bus structure is the interprocessor bus of
. Cmmp (15} In the C.mmp implementation, there is a 56-bit global clock of 4 mncroscconds
resolutaou The value of this clock is cont.nually broadcasted on the interprocessor bus,

However, in a more loosely coupled system, it is not feasible to devote a special purpose bus to
the global clock because of the amount of cabling involved as well as the problems associated with
bus arbitration over long lengths of wire. Also, broadcusting the clock value on the general purpose
bus requires a large portion of the cycles available on the bus, thus sngmﬁcantly reduces the
effective throughput of the bus for non-clock usage. For these two reasons, broadcashng the clock
'Yalue is generally not done, Rather, the subsystem which needs to know the system time has to
establish a connection with the clock and then to read its value. This way, communication occurs

only when necessary. However, because the time required to establish a connecuon depends on bus

, activity and the transmlssron delay depends on the physical location of the subsystem. the total

delay is unpredictable. ‘When multiple requests for the system time arrive simultaneously, bus

contention résults and a queue is formed., The wait time in this queue adds further uncertainty to
the total communicétion delay. '

‘The conclusion is that global clocks require a special purpose bus which may not be feasible ina
loosely coupled system Without a special purpose bus, the accuracy of clock readings is sacrificed
because of communication delays and contention, - . :

3.1 Cm* clocks

Cm* currently, provides three 32-bit real time clocks for time measurements, These clocks have *

a quartz crystal time-base with, an adjustable resolution. The maximum resolution is 0.
microseconds. The clocks can be zeroed. under program control for interval measurements.

- Currently, all the clocks are hard-wired to give a resolution of 2 microseconds. This yields'a

maximum range of 232 * 2S = 2.386 hours. The clocks are connected as peripherals to Cm3 on
cluster 1, Cm4 on cluster 2, and Cm14 on cluster S, |

Since the LSI-ll uses memory mapped 1/0, readmg the clock is a simple read to a specific

" jocation in the 1/0 Ppage (page fiftcen) of the LSI-11 address space. For both StarOS and Medusa

opcratmg systems, rcadmg the system clock is implemented via remote memory refercnccs.

~
-

8 RSN

Mu et i
XA e

ORIGINAL PAGE IS
' OF POOR QUALITY

+

3.2 Clock reading routines and their performance

In both StarOS and Medusa, clock reading is performed using procedure calls rather than by a

LSI-11 "MOV" instruction. This is because the clock is 32 bits while the data bus is only 16 bits
wide Thus, to read the full clock requires at least two memory references. Since the clock is always
running, there is no guarantee that the high and low order words read correspond to the same 32-bit
clock word, This is because after reading the first word, the low order word may overﬂow and wrap
around at a clock tick, invalidating the first word read.

When this project began, both Star()S and Medusa provided a r»tandard routine for reading the
clock. For future reference, this algorithm is named "Varying-Read" algorithm because the clock
register is read either three or four times depending on the value of the clock, Below is the pseudo-

" cade for this routine;

Verying-Read:

FirstHi = Read high order word of clock;
FirstLow = Read low order word of clock:
SecondHi = Read high order word of clock;
‘ it SecondHi > FirstHi then bagin '
) SecondLow = Read 1éw order word of clock;
return SecondHi and SecondLow as the clock rasu1t-

end =~
else begin '

. return FirstHi and F'IrstLow as the c'lock result; .
end;

When SecondHi is greater than Frrstl-h the low order word must have wrapped around between
the first and second read of the hlgp order word. Since it is not known whether the reading of
FirstLow occurred before or after the wrap around, a second reading of the low order word must be
taken,

A preliminar_y expeﬁinent was set up to evaluate the performance of the Varying-Read clock
routine of Medb,sa. The objectives were to determine the average execution time of th'e routine and
td see how the accuracy was affected by the system load. The experiment measured the elapsed
time between two successwe clock read procedure calls, - This elapsed time was identical to the .
execution time of the Toutine mcludmg all the remote memory refercnces,

»

VRIS LI L e e el TR

B2

E T A o D D > e

. . ORIGINAL PAGE I3
’ 5‘7, OF POOR QUALITY

The experiment was performed with eight Cms distributed beeen clusters 2 through §.

reading the clock in cluster 1. The experiment was then repeated with thirty Cm's, also distributed
between clusters 2 through 5. The resulis are summarized in Figure 1, which plots the clapsed time
between two clock reads against the time elapsed since the beginning of the experiment, A siinple
calculation yields an intercluster memory reference rate of around 90 thousand refcrences per
" second for the 30 Cm’s case, and 53 thousand references per second for the 8 Cm's case, . .
Figure 1 reveals periodic peaks and troughs in the 30 Cm's curve. The-peaks occurred when the
low order word of the clock wrapped around during the execution of the second clock read routine,
causing the second clock reading routine to read the low order word a second time. The troughs
' occurred when the low order word wrapped around during the execution of the first clock read
routme, causing the low order word to be read again. For d detailed explanation of the reason for
the peaks and troughs, refer to Kong's report [4]. Note that in the 8 Cm's case, there were fewer
_Cm's reading the clock‘ and the probzhility of reading the clock while its low nrder word wraps
around was much lower, hence the peaks and troughs did not appear regularly.

Figure 1 aiso shows that in the 30 Cm’s case, the elapsed time rose from approximately 300uS to'

over 800uS and then fell from SOOp.S 'to approximately 300pS. This was because not all the Cm's

- started and ﬁhished simultaneously. Hence, there was less system load and contention at both the

beginning and the end of the experiment, resulting in lower elapsed times. ln the 8 Cm's case in
Figure 1; the average value was approximately 366pS and no rise or fall was seen; This was because
8 Cm’s reading the clock did not create sufficient traffic to slow down the clock read routines.

Because of the Varying-Read clock routine’s erratic behavior when the low order word of the

clock flips, two new clock reading roqﬁnds were written, The first one was a modification to the
original Varying-Read routine. It reads both the high order and the low order word twice, and has
the property that it always returns the first low order word read as the low order word of the clock.

Its execution time is essemially independent of the value of the clock readings, as shown in the

performance diagram of Flgure 2. In Flgure 2 the rate of remote memory réferences for the 30
Cm's case was 96 thousand per second, while for the 8 Cm’s case was 64 thousand per second.
Below is the pseudo-code for the routire, which is referred to as the 4-Read clock routine because it

" alw'lys reads the clock regnster four times.

i,

Time between two clock reads (uS)

ORIGINAL PAGE g
OF POOR QUALITY

2009

1800}

1600}

1400} 30Cm's

1200}
1000} , e
ool P it pspartmf i
600| B
“400 . - 8Cm's o

mfﬁwwww
200f .
o T .50E6 . ~10E7 15E7 20E7
) Time (uS)
‘Results of clock reads show effects of contention
Figure 1: Performance of Medusa Varying-Read clock routine
£ o

¢

i
o
i
;

J
A .‘

Time between wo clock reads (uS)

ORIGINAL PAGE 3
OF POOR QUALITY

2000,
1800}
1600}

1400 < ¢ 30Cm's

g LT TR R
1000 | . | . o

800

600 -

0 "50E6 10E7 T 15E7 20E7 2567 .30E7

. Time (uS)
Results of clock rgads show effects of contention

Figure 2: Performance of 4-Read clock routine running under Meduéa

et L

T

/ 10 AGE 18
RIGINAL P
) : 8; POOR QUALITY

4-Read:.
: FirstHigh = read high word of clock;
, FirstLow = read low word of clock;
SecondHigh = read high word of clock;
SecondLow = read low word of clock;

IF SecondHigh > FirstHigh THEN /* clock flipped */
IF Secondlow.> FirstLow THEN /* t1ip was before FirstLow */
return FirstLow and SecondHigh as result
ELSE /* flip was, after FirstLow read */
return Fir/ tLow and FirstHigh as result
ELSE /* no flip occurred between FirstHigh and SecondHigh */
return FirstLow and FirstHigh as result;

. The second routine reads only the low order word of the clock and computés the value of the
high order word. The routine makes.use of two static variables $OldLow and $Hi. During a clock
reset, these variables are zeroed. Every time the routine is called, the low order word of the clock is
1ead and is compared with the value of $OIdLow. Assuming the routine gets called at least once
during the interval between two low order word flips, then if the value of $OldLow is higher than

~ the current value of the low word, a flip must have occurred. The variable $Hi is then incremented,

If the value of $OldLow is lower than that of the low word of the clock, no flip has occurred and the
value of $Hi remains ,unchanged‘. - This routine is called the 1-Read clock routine because it only

reads the clock register once. Below is the pseudb-oode'for.the routine: G

. ' 1-<Read:

: STATIC $01dLow;
STATIC $Hi; -

Low = Read Yow word of clock:
IF $01dLow >= Low THEN
) $H1 = $H1 + 1;
$01dLow = Low;
return Low and $H1 as the result;

This routine has an execution time that does not vary in time. The performance of this 1-Read
clock ro,uiine is shmmagized in Figure 3. Here the remote memory reference rate was 76 thousand
per second for the 28 Cm’s case, and 23 thousand per second for the 8 Cm’s case. The low rate of

remote memory reference makes the routme executlon time quite insensitive to the increasing

number of Cm's readmg the clock. Therefore, the dxfferences between the 28 Cm’s curve and the 8

Cm’s curve were so small that the two curves overlap enough to be visually indistinguishable.

.
e Mo T e

L e i e

ORIGINAL PAGE 12

& 10000 o OF POOR QUALITY . | :
2 ‘
2 '
g 900} ::
¥ ' ;
K] ;
Q
e soop
F
§ 700}
Q
E . .
* 600}
\ soo}
[. . . , X |
!) 28Cm's | .) | . ’
300} S C \
ittt
ool M, S N
| 8Cm's
100} '

o 70E6 20EG 30E6 .40E6 .50E5 .GOE6 .70E6 .BOE6 .90E6 .10E7

. Time (uS)
Only read low-order word of clock register '
Figure 3: Performance of Medusa 1-Read clock routine
PR Note that _t}iis routine assumes the clock is read at l'eést once in every interval Tp where T is the

time between twa low word flips and is equal to 216 * R, where R is the number of seconds between

- -

, 2 ORIGINAL PAGE i€
OF POOR QUALITY

a clock tick, Wlth the present R of 215, T equals 0.131 seconds. To use this routine, each Cm must |
have its own loc‘al copy of $Hi and $OldLow, and that each Cm must read the clock at least once in °

every Ty seconds.

Since the 1-Read and lhe 4-Read routines were to be used, a new set of experiments were set up

to test the performance of both routines as a function of load under both StarOS and Medusa. The

experiments involved the measurement of elapsed time between two clock reads as a function of the
number of Cm’s réading the clock.

3.2.1 StarOS results

- The average execution time of the 4-Read clock routine increases with the increasing number of
participating Cm’s, and the standard deviation of the result also increases with increasing number of

Cm’s. Figure 4 is the summary of all the histograms normalized to give the same area under the

curve. - The distributions of all the curves appear to be Rayleigh with a lower bound of 310uS,
which is the minimum time required to execute the 4-Read clock routine, A careful study of Figure

4 shows that beside the main peak, there is a small peak around 630puS to 760p,S This is dueto * -

mtermpts1 occurring between the two clock reads.

.

The average execution time of the 1-Read routine is quite insensitive to the increasing number

" of Cm s reading the clock. This is because the load generated by this clock routme is ow enough

t.hat the Kmap can handle without saturating. Figure 5 is the summary of all the hlstograms

‘ normahzed to give the same area under ‘he curve, Since the average execution time varies very

little and the standard deviation of the results remains almost constant, all the curves are similar and

overlapping. A careful study of Flgure 5 shows a small secondary peak around '470pS to 350pS.
This is also due to interrupts by the lme-nme clocks. :

3.2.2 Medusa resul;s

The minimum time required to execute the 4-Read Medusa clock routine is approximately
320uS. The average time increases as the number of Cm’s reading the clock increases. Figure 6 is

. 'the normalized plot of all the histograms. An interesting observation is that while the standard
deviation of the result increases as the number.of Cm’s increases for small number of Cm’s, it starts

' 1'l'he line-time clock interrupts the processor sixty times per second.

123

T actC e

/ ' . 13 ¢
cmm. \PM oy
a .5or
la . "‘
[~)
Q.
Q
[~
‘9 - 3
3
Q9
& -40 o A
Q)
30}
- o R 020 " ' 'l
A
.10} —— 1Cm’
—— 2Cm's
== 4Cm's
—- 8Cm's
---------- 12Cm's
w—n 16 Cm's
. - 20Cm's
. & ‘v g : i ":"---'-'. Ceoioiaial L o oo lord - PP OGP, . N . . .
() 200 400 .600 800 1 OOO 1200 . 1400 ., 1600

Time between two clock reads (p,S)
Reading StarOS system clock from remote clusters

-

Figure 4: Performance of $tarOS 4-Read clock routine

to fall at some-point between 16 Cm’s and 20 Cm’s. This phenomenon is believed to be due to
some complicated queuing mechanisms at the Kmap.

T S T

4
i
7
pé}
[

v * ORIGINAL P&,
OF POOR QUALMY

> 60 .
F
[~
(1]
Q ’
: .
9
3
'.‘:‘ 050 be
2
Q 3
l4b o 4
.30}
-20 o -
. 10 o m—— 1 Cm
---------- 2Cm's
; —— 4Cm's
~ —w— 8Cm's
r=== 12Cm's
reme— 16 Cm's
0 : N ! X N < N N
100 200 300 * 400 500 600 700
. . Time between two clock reads (;S)
Reading low word of StarOS system clock from remote clusters
Figure 5: Performance of StarOS 1-Read clock routine
et Figure 7 is th¢ normalize distribution that 'summa_n'zes the results of the Medusa 1-Read clock

routine. The interesting point about this clock routine is that the standard deviation of the result is

-—

Py,

/ ' . 15

extremely small, and that the average result does not change significantly with increasing number of
] Cm's reading the clock. This is because the load presented by this routine is so small ‘that all clock

.

read requests Lo the Kmap are processed immediately witl

wout having to wait inn the Kmap queue,

’
L

AGE 13
ORIGINAL ¥ ~
> 100, . OF POOR QUALITY -
3
£
[
Q -
c .90} -
9 '
S '
2.
- ,
» .80}
Q
.70} ‘
.60- '!)
|
----- - 1Cm
——— 2Cm's
--=- 4Cm's
~—-= 8Cm's .h\
vmrem 12Cm's i)
.......... ‘18Cm's i “
R I T L . 20Cm's HE! '
| [
Py
i
¢ ooy
N
. ooy
N /‘ \
..'\"'x. et ", t‘i \.\- s .
40 500 " 600 700 800 900 1000

et

Time between two clock reads (uS)

o B .’l'?"eading Medusa Clock from remote clusters

Figure 6: l_’erformancg of 'Medusa 4-Réad clock routine

e i it e . e S e -

-

DA v

R T A R

Distribution Density

/ 16)
P;‘G;‘z %3 R "
ORIGINAL.
OF POOR QUALITY ‘
1,00,
.90}
A l
080' "\ ’I 4
{
.70} !!
1 .
. f '
.60' !*‘
I
' o
.50} . I ’
. “
I
040'

:] . “ ‘
.30} - \
'.20.‘

.10}
L N, ® \.
O 2 1 Y P .l"” o i%.:’*-\"--~ a 5 o g
100 120 140 160 . 180 200 220 240 260 280 300

.) Time between two clock reads (,S)
Reading low word of Medusa Clock from remote clusters

Figure 7: Performance of Medusa 1-Read clock routine

’) . 17
K ' ' - ORIGINAL PAGE 13
3.7% Conclusion . ' OF POOR QUALMTY

Comparinig Figure 4 with Figure 6, one sees that even though the ave.ragc execution tirncs are
roughly the sameat light load, the execution time increases faster as a function of load under
StarOS than under Medusa. The difference in the shape of the curves.in Fiéure 4 and Figure
6 shows that the two opcrating systems have very differcnt stratcgies for handling memory
contention, Even when the effects of mterrupts are ignored, the StarOS results show a larger
standard deviation.

Although the Cm* gloi:al clock is capable of 0.5uS resolution, such resolution is not usable for
accurate measurement of time intervals because of the uncertainty in delay mvolved in an
mtercluster reference in the presence of load, The results of the clock experiments show that short

time mtervals (500uS or less) cannot be accurately measured using any of the clock reading routines .

described.

One way to alleviaté the problem is to read only iie low order word of the clr>ck. This way, only
one LSI-11 ih§truction is needed to access ,thé clock and the results should be much improved. The
problem assogiated with just reading the low order word is the loss in clock range. With the clock
tick set at 2y.S the range provrded by the low order word is only about 0.131 second. Larger clock

range can be obtained by increasing the clock tick value without sacrificing clock resoluuon because
' the usable clock resolution is limited by the uncertainty in communication delay. Therefore, a
reasonable value for the clock tick should be commensurate with the uncenamty in communication
delay. For example, under-very lrght system load, reading a Medusa clock word has a standard
deviation of 2.3uS, and reading a StarOS clock word has a standard deviation of 71382
Therefore, the 2uS resolution of the present clock is useful. However, under _heavy léads. the. &
standard deviation of reading a clock word can be very high. Under such loads, the clock tick can
be léngthened suBstantially to increase the range of the clock without losing accuracy. '

For any clock that cannot be completely read in one memory cycle3. a clor:k read operation
should be provided to 'l.atch the clock value ;md to allow all the clock words fo be read indivisibly

2Assuming NO processor interrupts,

=~

JBemusc the clock register is wider than the data bus. =

e =

- experiment then consists of a Cm executing R, while a number of other Cim's executing R constitute .

- e Sy ey s be o

4 Methodologies for measuring time

/ 18 ORIGINAL PAGE 18
. OF POOR QUALITY

bcfore another clock read operation is accepted, For Cm*, such a feature can he provided by using .

a hardware Iatch and some Kmap microprogramming. The clock read operation will latch the clock
value, this value will then be moved indivisibly into a user specified location,

Comparison of StarOS and Medusa results reveals that the accuracy of time measurements is
operating systém dependent. The wider spread of the StarOS clock reading results even when

"ignoring interrupts suggests that it is more difficult to get accurate time measurements from StarOS

and that any StarOS expcriments using Kmap operations probably have higher variability in
execution times, -) '

A lesson learned from this study of the clock measurements is that performance measurements

must be done very carefully since even the most obvious items such as the clocks can fail to perform
as expected. '

.3

Since the inaccuracy of the clock routines for Cm* is mainly due to Kmap load and clock

contention, corrective measures can compensate the incorrect clock readings by accounting for the .

Kmap load and clock contention during a wmeasurement. Based on this premise, this section
&

dnscusses methods that can be used to obtain more accurate time measurements for performance

evaluation. More specifically, this section proposes a way to generate a repeatable workload for the

system on which performance evaluation is done, develops methods for organizing performance

evaluation experiments, presents algorithms to compute the net elapsed time given inaccurate clock
readings, and tests these methodologies for validity.

4.1 Methodo]ogy of performance evaluation

In this project, workloads are synthesized by replicating the measured experiment. For
example, to measure the performance of the message facility, the synthetic load will be the number
of pairs of processes communicating with each other through messages.

The generation of a synthetic workload can be best illustrated by an example..- Assume the -

execution timeé of a software routine, R, is to be measured under different system loads. ‘The

- tmimn = . - 1. - N —
-

/ : 19 ORIGINAL PAGE IS .
" : . OF POOR QUALITY

the synthetic load. The result is the execution time of R as.a function of the number of Cm's
execuling R simultancously. ' '

' A basic approach for measuring performance is to have N identical experimerits runiing in the
system, The system workload is parametrized by the value of N and by i;ov;' the experiments are
distributed within the system. A simple way to measure performance is to have only one
experiment per cluster that reads the clock. This means of all the experiments running in a cluster,
6nly one experiment actually reads the clock to measure performance, Tl}is reduces the nu;nber of
clock reads generated, produces less system load due to fewer clock reads, and results in the
improved performance of both the clock reading software and the measured expefiménts. The
'dec:sxon to measure only one experiment per cluster is based on the assumption that all the Cm’s
have identical execution speed, and the symmetry of the Cm* architecture makes Cm's from the

same cluster virtually mdlstmgqnshable from each other®. The validity of the assumption that all '

. Cm's have the same execution speed will be shown in a later subsection,

Also, the timed expenment does not exec cute contmucusly ‘Rather, it is "injected” into the
system at ﬁxed intervals, This further redum the amount of data generated. By injecting the timed
experiment after the start up tr;nsnents have decayed and the system workload has stabilized, more
acchrate results can be obtained. In the real situation, the user is often interested in finding out the
' execuﬁon time of‘a piece of software if he were to insert it in a system of a given workload, This
situation is quite accurately modelled by the injectign approach. Note that the effects of the
transients caused by injecting an experiment have not been studied and may be a subject
worthwhile for future research.

4.2 Methodoloéies for measuring elépsed time (Clock compensation)

Given methods to organize performance evz.ﬂuation experiments, thé next step is to develop
algorithms for accurately measunng elapsed time. Early in this section, it was postulated that one
* can monitor the Kmap work}oad to 1mprove the accuracy of elapsed time measurements. Below are
two such algorithms.

4Aclu:dly; some Cm's are connected to 1/0 devices which may affect their performance. In all experiments, Cm’s with

170 devices such as serial lines or Ethernet interfaces must not be used

R e ey

[P

! 20 ORIGINAL PAGE IS
OF POOR QUALITY

' »

Since reading the clock twice successively yields a result with a mean and variance that are both ,

functions of the system load, the net elapsed time of any experiment can be computed by
subtracting the average value of the clapsed time between two clock reads from the measured result,
Using this algorithm, the expected value of the computed result equals to the true elapsed time,

while the distribution of the computed result is identical to the distribution of the measured result. *

We shall refer to this algorithm as the Jong term averaging techn‘ique.

-

Since the load on the system is a time varying function, and since tasks performed by the system
take time to complete, it is reasonable to assume that the system load at times separated by 'small
intervals should be highly correlated. Because the time elapsed between two clock reads is a
function of load, the autocorrelation of this elapsed time for short time intervals should also be
high. Based on this assumption, the short term averaging technique approximates the time required
to read the clock during an experiment by using the elapsed time between two successive clc;ck

reads that occur closely in time, Below is a mathematical analysis of the short term averaging
technique, "

T: T
, 2 experiment 3 . P
clockread I- < tn > J <—clock read
H ¢ T >
m

t,z ' t 3
. C'Ock reads > \j clock rewﬂ

T T T,

h 4

Time

"~ Figure 8. Short term averaging algorithm

Assume we are measuring the execution time of an experiment as illustrated in Figure 8. Then -

the variables afe defined as follows>:

)) . ' >
sCupilal letters denote random variables

.

/ . 21
. " ORIGINAL PAGE 19

ot be the true'elapsed time of the experiment. . . OF POOR QUAL'W.' .

«T A Is the computed clapsed time. (T, approximates t,.)
o T be the measured elapsed time, i

o T, be the time interval between the moment the clock is read and the moment the |,
experiment begins. / :

o T, be the time interval between the moment the experiment ends'and the moment the
clock is read again,

' e T, and Ty be the elapsed .times between two pairs of clock reads.
Ty,=T,- (T, +T)/2. o _ - _ §))
‘But ' '
therefore
TA—t +T2+T3 (TI+T)/Z
If the expected values ' ' o A
E(T) = E(T)) = E(T, + Ty = §,
then
ET)=t+8-(6+8)/2=t,
Therefore, the expected value of the computed result equals the true result.

. The variance of the computed re;ull is':
VT =Vt + Ty + Ty=(Ty + T2 S

Let U -
V(Tl) = a2 V(T4) = ol
V(T) = 0,2, and V(T = o2,

then®

(N

6if X = Eav then V(X) = n2V(Y)+222 ap o0
TR , 1<

L
-t

L A e A -

/ 2 GRIGINAL PAGE 1S
. : OF POOR QUALITY

V(T)= ol+ol+a4 +ol4 | 0
+2pr,7.0203" b1, 71,0197 P 7,010
! " Pr,T,%% P T, 0403t Pryr, 1%/ %

where pT T is the correlatlon wefﬂclent of the random vanables T, and T

To simplify Equation (2), the following assumptions are made:

E(T,) = E(T,) / 2, E(T;) = E(T,) / 2, ((Ty) = W(T,) = ¢ €)
Now, -

V(T.) = ol +05pr = -0.5pr — ~0.5pr < -0.5 ' 4

(T, [1+0 !’Tz.'r3 l"l'l.T2 Pr3.11 pTz-T . 4

-05py g, +05pp 1]

If all correlation coefficients are unity, then

V(T =20
In the worst case when pT T, = pT = P'r T, = pT T, =0, ande 3‘— PT1T4= 1,
V(T,) = Xy

for all non-negative ‘correlation coefficients.

For very short interval me'asurements the time-stamps t, and t, are very close together and the
random variables 'I‘2 and Ta can be replaced by a new 'l'3 equalstothe old T, + T;. Then "z = 0
and o‘3 = ¢2. We now have’ .

V(TA)— 150> p”.ol pTTaz+05pTT02 3 ©)
If all correlation coefficients are umty. then

V(T =0.
If all correlation coefTicients are zcro, then

V(T,) = 150% °

' Intheworstcasewhein T ‘P'r T —0 ande T =1,

3
()2::2

. for all non-negative correlation coefficients.

Even though Equation (2) expresses the value of the variance of the result, it cannot be solved
unless the variances of T) and T, are kncwn. In our case, this information is not available from the

~—.

£

x

. . ORIGINAL PAGE I3
/ ‘ 23 OF POOR QUALITY

e\perlmcnt To simplify the problem, the time clapsed between the i lssumg of a clock read: to the
actual reading of the clock and the time clapsed between the reading of lhe clock to the returning of

the result Lo the reader are assumed (o be have the same mean and variance. Equation (4) then

expresses the variance of the result. Equation (5) applies when the duration of the experiment to be
measured is extremely short and close to zero,

This algorithm shows. that for any method used to select the two pairs of clock reads, the 'woist
case will yield a result with a variance twice the variance of the elapsed time between two clock
reads. In the best case, the variance of the result is zero. In cases where assumptions of Equation
(3) apply, zero variance in the result is obtained when the correlation coefficients between T, and

' .Tz (pr T) and between T3 and T, (pp T) are both unity,

A way to evaluate the methods used to select the clock read pairs is to compute the
unprovement factor k. In any experiment that measures a fixed time mterval Tet V(T A) be the
variance of the corrected result and let o? be the variance of the: uncorrected result. Then kis
defined such that

.+ k=d?/ V(T

The larger the value of k is, the better the unprovement. The range of k is between 0.5 and infinity.

; When k is unity, the variance of the corrected result is unohanged. Note that the Long Term

Averaging algorithm always yields a k of unity.

1
‘'

The objective for selectihg the two pairs of clock reads for compensation is to maximize the
correlation coefficients p and p,. . . Though there are many ways this can be done, only two
T .'l'2 T3.T

methods will be presented. The reader is encouraged to design his own implementation, bearing in -

mind that the objective is to maximize the correlation coefficients stated above." -

The first method presented, hereafter referred as Method I, is illustrated in‘Figur‘e 9. If the
processor that starts the measurement reads the clock twice at the beginning of the experiment and
the'processor that terminates the measurernent reads the clock twice after the experiment, then Ty
should highly correlate with T while T3 should hrghly correlate with T, Thrs is because thése
clock re'lds occur very closely i m time,

This method has the advantage that no clock rcad occurs during the expcriment and therefore -

SR T per fonmnce of the cxpenment unocr mcasurement is not affected. <

! 24

g1
ORIGINAL PAG
OF POOR QUAUTY

T T : clock reads '
o, clock reads «— »> <« experiment TE,

r——l
A
5
\ 4
F 3
l:LA -
PN

A
A4

v

. ' Time

" Figure 9: Short term averaging, Method I '

The second method presented is referred as Method II, as illustrated in Figure 10, If a‘clock
process runs concurrently with the experiment and periodically samples the load by reading the
clock twice in succession, the elapsed time can be used for compensation. One approach is to select
the clock read pair of the clock process that is closest in tlme to the clock read that starts the

.measurement togive T, and to select the clock read pair of the clock process that is closest in time

it " to the clock read that stops the measurement to give T,
ALY 64:
] .
!
i T -\
<—2> experiment <T—§b
clockread » J; 'n_- :J <—clock read * Cm X-Y -
: ; . tz . . Tm '3 ' .
} clock reads . clock reads — r . .
| | :]'<|j .‘ ‘\]\:H Cm X-Z
| —» «—»>
Ty Te
Time
Figure 10: Short term algorithm, Method II
v This method is less desirable than the previous.method because of its added complexity and

because of its interference with the performance of the experiment by the presence of a clock

; L ORIGINAL PAGE I
. , , _OF POOR QUALITY

£

reading process. However, subsequent sections will show that this method yiclds quife accurate
results, '

.
4

4.3 Execution speed of computer modules

The method for generating workload assumes that all the computer modules in Cm* execute at’

the same speed. To verify this assumption, an experiment was set up to measure the execution
speed of the computer modules in Cm®*, This experiment involved timing the execution of a piece

of code stored in the local memory of each Cm. Once the program execution begins, the Kmaps are
not involved. ’ ‘

N
0

N
O

Mean = 1501SmS, Standard Deviatioh = 147.3

NumberofCm'’s
~h
¢

-
o

ol ,)
14.5 146 147 14.8 149 150 151 15.2 153 154 155
. Time (Seconds)

Figure 11: Histogfam of exécution time of 34 Cm’s

The results show that all of the thirty-four computer modules tested had executiori speeds
within 4.6% of each other, A histogram of the execution speed of the computer modules is shown in
Figure 11. The conclusion for this experiment is that every computer module can be considered to

have essentially 1denncal execution speed,’ therefore experiments performed on any computer
module should.-be equally valid.

VPR T

R e |

o i o Sl
'

. H ¥ o=
Ta i it s B

»
i oy s+ ¢ W L

/ 20

4.4 Evaluation of clock réading compensation techniques (Method 1)

The methods to compensate the clock readings cannot be rigorously proved to produce correct

result because they employ only heuristic approaches, 'icrefore, to validate our methods, an
attempt is made only to show that an accurate result for a iixed interval measurement (e.g., 0
“seconds) is obtained under some reasonable system load.

The experiment to validate Method 1 consists of a process reading the clock four times in
succession. The ﬁrst two clock reads are used to compute T,, the second and third clock reads
measure a null expenment which has zero execution time. The third and fourth clock reads are
used to compute T, The synthetic workload is generated by replicating a large number of
pfocesses distributed evenly among the clusters reading the system clock. The experiment was

 performed for both StarOS and Medusa. ’

Figure 12 illustrates the resuit of the experimcnp using the StarOS 4-Read clock routine to
measure time. The solid curve is the distribution density of the compensated result, while the
dashed curve is the distribution density of the result before correction is applied. The ideal result'is

an unpulse of unit magnitude at OuS. The mean compensated result was -1.90uS, and the

unprovement factor, k, was 0.8. Recall that for k <1, the variance of the result is increased. The

* same experiment using the 1-Read clock routme gave an unprovement factor of 0.81. =

' ORIGINAL PAGE IS
OF POOR QUALITY

I T gy

-
Agiec]

/ ' : 2 !
. ' ORIGINAL PAGE I3
OF POOR QUALITY
b 030 P '
la , ‘t;
: El
Q
Q
[
le -
5.25
‘ Q
. 's ,»!’I
8 5
Q) »
.20} —— Compensated result
===, Uncorrected result
.15 -
. 10 o ' }
‘ !
+ "
. :!t..
' s, . \
" T
N %
' [}
: .
o .I
(] L
o' ey o
L . ‘.l\j&,o.‘,; -

L) L n ‘. Al VPN .
-400 -200 o - 200 400 600 ' 870 1000 1200
. : Elapse Time (4 S)
Reading StarOS clock , ,

.

Figure 12 Measuring zero elapsed time using Method I with 4-Read routine

— s
.

28

" ORIGINAL PAGE 13
OF POOR QUALITY

.30
0
[
[
Q
e
2
3.25
9
b
L)
2
Q .
-20 ~— Compensated resuit
- === Uncorrected result
[
.15} o
ti
[}
N
i1
(I]
[]
. t
. [|
r
'
19
[|
[.)
t
[I }
]]
]]
[} 1\
} []
[} [} '
[} [}
, ' '
.] []
] [}
[]]
]]
[] (Y,
'.I‘ ' [)
A A N 1’- 41‘ / :\ A

-400 -200 O

200 4"0 600 800 1000 1200 1400 1600 1800 2000

Elapse Time (p,S)

Figure 13: Measuring ;erd elapsed time dsing Method I with Medusa 4-Read routine

Figure 13 iilustrates the result under Medusa using the 4-Read clock routine to measure time,
The mean compensated result was 6.69uS, and the improvement factor k was 3.57. This represents

a great improvement in the variance of the résults. The 1-Read clock routine gave an 1mprovement '

factor of 0.68.

T
A d

>¢-
X

g
LN

.
¥
T

\. \t

/ * . 29

4.5 Evaluation of clock reading compensation techniques (Method 1)

The expcrin%ent that validates Method 11 ‘consists of a clock process executing in a computer

module from the cluster where the experiment is performed, a process that does two successive -

clock reads to measure the elapsed time (which should ideally be zero if reading the clock does not
take any time), and a number of pairs of communicating processes that send each other messages to
create a synthetic system workload. Each pair of thpse communicating processes is independerit of
the other processes in the system, and their sole purpose is to generate load to the Kmaps through
which clock read requests are routed. The experiment process measuring zero elapsed time is
synchronized with the clock process. It signals the clock process to start reading the clock, reads the

. clock twice successively, and then sends the results of the two clock reads to the clock process which
“computes the net elapsed tinie according to Equation (1).

Figure 14 shows the distribution density of the results of the StarOS experiment. The dashed
curve is the result of the measured reading (T, in Equation (1) and Figure 10).. The solid curve 1s

the result after Method II has been applied (T A in Equauon (1)) The results were taken from 1000 .

repetitions of the experiment. The mean value was -5, 24pS, while the unprovement factor k was
1.14. The improvement, factor for the, 1-Read clock. rounne was 1.98,

omG\NAL PAGE ts
OF POOR QUALITY

zh\;‘{'

[

. ORIGINAL PAGE 1S

. >0 OF POOR QUALITY
8
Q
Q
e
-9 L
g 125 o
Q
IQ .‘\ ¢
Q -
-20r —— Compensated result
« = =+ Uncorrected result
. 1; o
'e-
L]
"
:]
. : 1 .
¢°5 [] :
]
' HIES
»)
(1]
o L]
' L
v
-400 =200 0O - 200 400 600 800 1000
o . Elapse Time (4 S)
Reading StarOS clock .

Figure 14: Measuring zero elapsed time using Method II with StarOS 4-Read routine

i

; : 31

" ORIGINAL PAGE 15
OF POOR QUALITY

-8
-0

,Distribution Density
. * i\)
o

" .
-20 ' ' — Compensated result
"o - == Uncorrected result
. 1

el il R R L vy i g S DU S Y

-400 ~200 o 200 200 600 800 7000
. : . Elapse Time (S)

Figure 15: Measuring zero 'elapsed time' using Method II with Medusa 4-Read routine

When executing under Medusa, the experiment yields different results, Figure 15 shows the
distribution density of the Medusa expenment. The mean value of the compensated result was

6.69uS and the improvement factor was 1I1. The improvement factor was 0 81 for the 1-Read
clock routine. .

——

T

ORIGINAL PAGE IS

o, ‘ ' OF POOR QUALITY
4.6 Discussion of results ’ :

As shown by the result of the above eight experiments, the mean corrected value was Jess than
6.7uS. This provides an upper bound to the accuracy of measurement obiainable. It is concluded
that these measurement methods are not suitable for measuring elapsed: times that are less than fifty
microseconds because the relative error for small interval measurements is high.

L]

Of the eight experiments performed, four showed improvement in the variance of the corrected
result (with the improvemept factor k ranging from 1.11 to 3.57). The other four cases showed ak

“less than 1 but greater than 0.67, Recall in Equation (4), it was shown that the worst case k would

be 0.5, while if the clock reads used for compensation were totally uncorrelated to the clock reads
that they were supposed to compensate, the value of k£ would be 0.67, In the Medusa experiment
using Method I with the 1-Read clock routine, the value of k was 0.68. This shows that during that
experiment. the system load was changing so rapidly that the execntion time of any clock read was
essentiaily uncorrelated to the execution time of any previous clock reads or subsequent clock reads.

It is interesting to note that three out of the four experiments using Method 11 resulted in
mlproved variance, while only one out of the four experiments using Method I resulted in the

unproved variance, This phenomenon is mostly due to the difference in the type of system load. In
_ all the experiments using Methcd I1, the system workload was the load created by a large number of

processes sending and receiving messages, Since sending and receiving of messages are lengthy
p}'rocesses (on the order of a millisecond), the ioad of the system is trackable by' the clock reads.‘
Whenthe granularity of the system load decreases to a duration comparable or shorter than the
time required to execute a clock read, the tracking of the system load using clock reads fails, This
was the case for the experiments to validate Method I, The synthetic workload was a large number
of processes reading the clock. Because the load on the system had the same duration as the clock
reads used to sample the load on the system, the tracking of the system load failed,

A problem wnth Method I is that it does not track system Toad correctly when-an interrupt
occurs, This is because an interru;it-during an experiment will either affect the clock read used to

‘ obtam the measurement or the clock read used to obtain the compensator, but not both. This _

explains why Method I did not work very well under StarOS since the StarOS processes were

“interrupted sixty times per second. Method II tracks well even with interrupts. This is because

P R

.+ . ORIGINAL PAGE IS
3" oF POOR QUALITY

_interrupts by the line time clocks are system-wide, thercfore an interrupt affecting the clock read -

used to obtain the measurement is likely to occur in the clock process as well. This means that the
extra tinte required to handle an interrupt during a clock read is likely to be compensated for.
4.7 Conclusion

In this section, methods have beén deveIOped to measure the performance of Cm* software

under system load. Two algorithms h; ./ve been developed to yield more accurate elapsed time
measurcments than the clock routines can provide,

* Experiments were performed to validate the measurement methodologies. The variation of

execution speed among different Cm’s was found to be around 4,6%. The long term algorithm
developed to compensate “for clock readings has a very predrctable behavior and no experiment was

perfornied to test its vahdrty The short term algorithm was implemented with two variations -

- Method 1 and Method II. Experiments were set up to evaluate both methods, The base line
accuracy of these methods was around 6.7pS. Therefore these methods are not suitable for
measuring short duration events (S0uS or less), but are perfectly suxtable for measuring longer
duration events such as operating system eaJJs.

It was noted in Section 3 that the 2uS resolution of the clock was not usable under heav& system
loads because of the uncertainty in communication delay, and that higher values of clock tick could
be used. In this section, it is shown that the accuracy of the clock readiné results are so improved
that the 2uS resolution is usable. ‘ '

Because Method 1 was theoretrca]ly superior to Method II, it was grven the tough task of
executmg under system load of very small granularity. Results showed that Me! hod I was unable to

- perform properly in small granular system loads. Method II was tested with a2 more reasona_ble load

and was found to perform quite well, The short term algorithm using Method II performed better
than the ‘long term algorithm' would have performed in three of the four experiments tested.

.Because Method I is more desirable than Method II in that it does not affect the experiment under

measurement, it is believed that Method I should perform at least as well as Method II under a
reasonable system load provided that there are no mterrupts. When there are interrupts, Method 11
is the preferred method. ‘ |

ORIGINAL PAGE I3
’ 3 OF ‘POOR QUALITY ~

An important conclusion is that it is not possible to present a clock compensation scheme that |
works under arbitrary system load because the clock readings can only sample the system load ata

, ﬁnue vate, T hc reader is encouraged to develop his own clock compensation technigue, However,
he should test his scheme to ensure that it tracks the system load rcasonably well, The zero elapsed
‘time measuring experiment is recommended for such testing, Below is the procedure for testing a
clock compensation method. '
Do
Pick a c1ock compensation method;
DO
Try it out in experiment and measure zero elapsed time;
IF results not satisfactory THEN
Fine tune the method;

UNTIL method is optimal or results satisfactory;
UNTIL exhausted all methods or results satisfactory;

.

* 5 An example experiment

This experiment evalﬁates two performance measures of a message-based operating system. The
first measure is the latency of the message'mechanisr_n, Latency is defined as the time elapsed from
the moment a sender begins to send a message to the moment the receiver receives the message,
The second measure is the execution time of a message-based remote procedure call (R:'PC). -

While a message mechanism is often provided by an operatmg system as a pnmmve for’

mterprocess communication (IPC) remote procedure: calls are often provided at the language level
| 7 [14] The two are related in that RPC's are often built on the message mechanism. The remote

procedure call of this expenment consists of a client who sends a message containing the arguments
for the call, and a server who receives the message, performs the specified function, and returns a -
message containing the result. Thé time elapsed from the moment the client begins to send a

message to the moment it finishes accessmg the returned result constitutes the execution time of the
RPC. While this simple RPC does not perform any iype checking, error recovery, etc., it is a
simplified model of the RPC’s of real systems and can help indicate the RPC perfonnance of a
system,

-

A B e e e e

- S T TSR e T T A e e

ORIGINAL PAGE IS

. , . " OF POOR QUALITY
5.1 Organizatlon of experiment .

The experiment consists of N clicnt/server pairs for N is greater than or equal to one. Below is
the pseudo-code of such # itent/server pair:

M [}
.

client:
prepare argument
T1 server:
send the arguments ---~-=c-occemcnmnan- > wait for a messago
: ' T2
access purameters
o perform computation
wait for the results <----~-=--cmnccnn- send results
access results

T3 ’ .

The latency of a message is T2 - T1, while the execution time of the RPC is T3 - T1, For the
latency measurement to be meaningful, the server must be blocked before the client sends a
message. .

The expenment is :mplemented under StarOS and consists of a master process which spawns
chent/server pairs in lacations specnﬁed by the user. Since both processes of a client/server pair
reside in the same cluster all communications within a chcnt/server pair are intracluster, Of all the

. client/server pairs spawned only one pair reads the clock to nieasure performance. Th\s pair is

%

responsible for sendmg all its results to the master process. The master process ships the results toa
\t/AX/UNIX system via thelEthemet for ‘storage and analysis. The clock compensation technique
used is Method II of the short term averaging algorithm as presented in Section 4.

5.2 Experiments

"

The experiment was performed with different levels of load ranging from one client/server pair
per cluster to three client/server pairs per clusters, The total number of words accessed varied from
0 to 200'in increments of 50, All measurements were repeated 512 times,

LS

. The mnasurement of zero elapsed time was performed during each repetition of the experiment
asarun- tnme check ta sez how well the clock compensation scheme was tracking the system load, It
was found that the mean error was no worse than 4. 9uS, while the improvement factor was between

0.74 'and 0.78. Thls low improvement factor was due to interrupts that were not trackable by

v tems wmm pee
0 -~ -

3T e S

“
il

'5.3.1 Latency measurements

’ 36

~ Method 1. By simulating the situation that there are no interrupts, the improvement factor was -

between 1,01 and 1,22,

5.3 Results

’ ORIGINAL PAGE 1S
OF POOR QUALITY

* 10000 o
0
=2,
-E] I,
, § LY LY Oy e .
8 “~"s"
a 9000¢ S,
- ekl TYPEGY -

.-.-....--‘l(:

aooo‘,,__.__.__'_+. . + ’ .
. . o . ,' j...."".{. i
7000%- 4 —— -4 4 L

" o——e 1Palr
0= « « 2Pairs

6000 ! e . B v a_PaIrs)
0 50 - 100 150 200 250
Total number of words accqssed

" Figure 16: I.aténqy of StarOS méssages in the eiperiment

~ Figure 16 illustrates the latency of the StarOS messages in our experiment, The solid curve
shows that latency is constant at approximately 7050uS and is independent of the total number of
message words pécegseﬁ. The dashed curve shows that when two client/server pairs are executing

in the same cluster, the latency rises to 7960pS because of increased Kmap load. As the total
number of message words accessed increases, more time is spent accessing remote memory, .

resulting in fewer RPC executions per unit time, . This causes a decrease in the rate of message

operati,o'r{s, resulting in a decreased latency. The broken curve shows that latengy is 9615uS when

:
i
i

B : I
‘ ’ : 37 . |

three client/server pairs are executing in the same clustcr. The vestical bars at each pomt of the
curves show the magnitude of the standard deviation at that pomt. '

£.3.2 Execution time of RPC

ORIGINAL PAGE IS
OF POOR QUALITY

W
(=]
8
C‘; -

28000} .

Execution time in ,,s.

o : ' . ‘o——o 1Palr
14000} . - 0= = =0 2Pairs
wowssex 3 Pairs

-l

2
O .

. Q,
L

50 . 100 150 200 250
. ., Total number of words accessed
s ;

Figure 17: RPC execution time versus the total number of words accessed

Figure 17 shows the execution time of the remote procedure call as a funcﬁon of the toia!
number of words accessed by the client ahd the server. The execution time of the call is a linear
function of the number of words accessed. The solid curve shows the mean execution time of the
RPC with the numoer of message words accesed rangmg from 0 to 200, The slope of the solld

ad

e B
e R

RYR
B

ws . Inke X s

. .
PO I

' ' umumF\L PAGE 'S
’ 38 OF POOR QUALITY

curve is 49.9uS per word’. The dashed curve shows the result.of t':z s me experiment with two
client/scrver pairs executing in a cluster. The broken curve shows the resulis for three client/server -

gairs.

5.4 Conclueion

In this secticn, an example of measuring StarOS message latency and message-based RPC
execution time was presented. This example experiment implemented two ideas developed in
Section 4. First, it gen'erated system workload by replicating the experiment in different parts of the
system. The numi:er of replicas and how they were distributed in the system wzre both controlled
by the experimenter at program run time, Second, the experiment employed one of the clock
compensation techniques developed in Section 4. The addition of the clock compensation

technique into the basic experiment required only the addition of a subroutine which computed net

elapsed times given four time-stamps,

6Concluslon ' : o e

This pro;ect dlscovered the erratic behavwr of the Cm* clock reading soﬂware and presented an

alternate set of clock readmg soﬁware. Addmonally, it recommended that the length of a clock tick -
should be set to be commensurate with the variation in communication delays. It proposed-that a

Kmap operation be provided o latch the clock valie and to read the cloclg register indivisibly,

| Most important of all, 1t provided a clock compensation scheme for measuring elapéed time with an
" accuracy much greater than that provided by the clock reading software.

However. in developing the mathemancal model of the clock compensation techmques it was
assumed that the correlation between the time elapsed for two successive clock reads and the system

load was non-negative, and that the autocorrelation of system loads separated by.short time

intervals was non-negative. The \ialidity of these assumptions should be investigated. Also, the

'

.
-

7'I‘l'ns value must not be interpreted as the intracluster memory access time for StaxOS Rather, it is the time requlred
~ Toran iteration through the following Bliss-11 program loop: '

L3

INCRk FROMO 7O .1reused- 1 DO
* temp = ,ResultPage[.k];

This loop compiles inio six LSI-11 instructions, with one of th.em performing a remote memory reference.

-~ -

e

/ ' .39 QRIGINAL PAGE 3
OF POOR QUALITY

- clock compensation technique fails when the granularity of system load is too small. At present,-

little is known about the granularity and the time profile of system load. Further study is required
to gain this knowledge.

Of more general concern, this prdject stressed the importance of re'al-time clock designs in
multiprocessors since they greatly affect the clock’s usability. Future multiprocessor designs should
include a globally readable clock that is",ac_,cessed through a special bus unaffected by system load
and contention. An example of such a clock is the system clock of C.mlpp multiprocessor: When
such a design is not feasible, the clock should be of the same width as the data bus so that the entire
clock word can be read in one access. If this is not practicable, there should be an instruction that
" latches the clock value and reads it indivisibly. The implementation of such an instruction should

iae straight forward when the clock régister size is compatible with one of the machine supported ,
data types, since multiproces§or should allow indivisible read/write accesses to all machine
_supported data types to guarantee data consistency. Thus the instruction in e_ssencé is simply a latch
_operation followed by 'a‘read operation, . .

For multiprocessor systems using a single global clock and experiencing the same problems
experienced by Cm*, this project provided a general scheme for measuring elapsed time accurately,
The study of Cm* clock performance shows that system 1ad can be gauged by reading the system
clock. ‘This is because reading the clock exercises many of the system resources (Map-bus,
intercluster bus, Kmaps, etc.). This idea of exercising system resources to measure their load is
worth exploring. ' | ‘

o -

ARSe MBS SRR a8 abE

- 1]

2]

3]

[4]

(5]

[6l-

[7]

]

[9]

" ORIGINAL PAGE IS

OF, POOR QUALITY
References QUALITY

+

C. Ellingson & R. J, Kulpinski.
Dissemination of System Time,
IEEE Trans, Comm. Com. 23(5):605-624, May, 1973.

E. F. Gehringer and R. J. Chansler, Jr.
StarOS User and System Structure Manual,
Technical Report, Carnegie-Mellon University, Computer Science Department, June, 1981,

A. K. Jones and E. F. Gehringer, editors.
The Cm* Multiprocessor Project: A Research Review.

‘Technical Report, Carnegie-Mellon University, Computer Science Department, July, 1980,

Thomas H. Kong. .

Measuring Time for Performance Evaluation of Multlprocessor Systems.

Master’s thesns. Camegle-Mellon Umversny Department of Electrical Engineering,
November, 1982

Leslie Lamport. .
Time, Clocks, and the Ordenng of Events in a Distributed System.
Communications of the ACM 21(7):558-565, July, 1978.

Madhav V. Marathe, ' -

Performance Evaluation at the Hardware Archltecture Level and the Operating System Kernel

Design Level, .
PhD thesis, Camegle-Mellon Umversxty Computer Science Departmerit, December, 1977.

Bruce Jay Nelson.
Remote Procedure Call, . C
PhD thesis, Carnegie-Mellon University Computer Science Department, May, 1981

J. K. Ousterhout, D, A. Scélza and P. S. Sindhu.
Medusa: An Experiment in Distributed Operating System Structure.
Communications of the ACM 23(2), February, 1980.

John K. Ousterhiout. .
Partitioning and Cooperation in a Distributed Multiprocessor Operating System: Medusa.
PhD thesis, Carncgie-Mellon University, Computer Science Department, April, 1980, .

R vl s

[10i

1]

(12]

[13]

(14]

5]

y - . ORIGINAL PAGE IS
OF POOR QUALITY

Levy Raskin,

Performance Evaluation of Multiple Processor S ystems,

PhD thesis, Carnegic-Mellon University Department of Electrical Engineering, August,

1978.

D. M. Ritchie and K. Thompson.
The UNIX Time-Sharing System,

- Communications of the ACM 17(7):365-375, July, 1974,

Richard Snodgrass.
SIMON - A Simple Monitor for StarOS.

Carnegie-Mellon University Computer Science Department, Intemal report, 16 February
1981,

Richard Snodgrass.
Monitoring Distributed Systems - Thesis Proposal
Camegre-Mellon University Computer Science Department, 10 November 1980.

Alfred Z Spector.
Performing Remote Operations Efficiently on a Local Computer Network.
Commumcatrons of the ACM 25(4), April, 1982,

William A. Wulf Roy Levin, and Samuel P. Harbnson.
Hydra/C.mmp: An Experimental Computer System.
McGraw-Hill, 1981.

2

ORIGINAL PAGE (3
* OF POOR QUALITY

Software Voting in NMR
Computer Structures

Gary York

Department of Electrical Engineering
Carnegie-Mellon University

17 December 1982

- e

st b e

av e - - v e e ey e >) i we e e e ee skat deme s D il T el R S e « e eesr mew s

.
» *

ORIGINAL PAGE IS
OF POOR QUALITY

Table of Contents

1. Voter Queue Length Experiments

"1.1. Introduction
1.1.1. Background
1.1,2, Objectives
1.2, Experiment Dcs&ription
1.3, Subtask Description
1.4, Voter Description
1.5, Experiment One
1.6, Experiment Two
1.7. Experiment Three
1.8. Experimental Analysis
1.9. Conclusions

00 O\ I W W bt bt s =

bt o gt
N D

Figure 1-1:
Figure 1-2:
Figure 1-3:
Figure 1-4:
Figure 1-5:
Figure 1-6:
Figure 1-7:
Figure 1-8:
Figure 1-9:

Figure 1-10:
Figure 1-11:

Figure 1-12:

Figure 1-13:
Figure 1-14:

8
ORIGINAL PAGE
OF POOR QUALITY

List of Figures

Expcriment Task Partitioning

TMR Queue Length Experiment Structure

Voter Structure with Three Separate Input Buffers

Granularity equal to 256, one subtask always slower

Granularity equal to 1024, onc subtask always slower

Granularity equal to 4K, one subtask always slower

Granularity equal to 16K, one subtask always slower

Granularity equal to 256, one subtask slower half the time, faster half the time

Granularity equat to 1024, one subtask slower half the time, faster half the time
Granularity equal to 4K, one subtask slower half the time, faster half the time
Granularity equal to 16K, one subtask slower half the time, faster half the

' time . s ' . ,

Granularity cqual, to 1024, one subtask slower hdlf the time, same half the

time ' .

Granularity equal to 4K, one subtask slower half the time, same half the time

Granularity equal to 16K, one subtask slower half the time, same half the time -

O WO 00 W AW

10

o

12
13
13

14

15

—

	GeneralDisclaimer.pdf
	0001A01.pdf
	0001A02.pdf
	0001A03.pdf
	0001A04.pdf
	0001A05.pdf
	0001A06.pdf
	0001A07.pdf
	0001A08.pdf
	0001A09.pdf
	0001A10.pdf
	0001A11.pdf
	0001A12.pdf
	0001A13.pdf
	0001B01.pdf
	0001B02.pdf
	0001B03.pdf
	0001B04.pdf
	0001B05.pdf
	0001B06.pdf
	0001B07.pdf
	0001B08.pdf
	0001B09.pdf
	0001B10.pdf
	0001B11.pdf
	0001B12.pdf
	0001B13.pdf
	0001B14.pdf
	0001C01.pdf
	0001C02.pdf
	0001C03.pdf
	0001C04.pdf
	0001C05.pdf
	0001C06.pdf
	0001C07.pdf
	0001C08.pdf
	0001C09.pdf
	0001C10.pdf
	0001C11.pdf
	0001C12.pdf
	0001C13.pdf
	0001C14.pdf
	0001D01.pdf
	0001D02.pdf
	0001D03.pdf
	0001D04.pdf
	0001D05.pdf
	0001D06.pdf
	0001D07.pdf
	0001D08.pdf
	0001D09.pdf
	0001D10.pdf
	0001D11.pdf
	0001D12.pdf
	0001D13.pdf
	0001D14.pdf
	0001E01.pdf
	0001E02.pdf
	0001E03.pdf
	0001E04.pdf
	0001E05.pdf
	0001E06.pdf
	0001E07.pdf
	0001E08.pdf
	0001E09.pdf
	0001E10.pdf
	0001E11.pdf
	0001E12.pdf
	0001E13.pdf
	0001E14.pdf
	0001F01.pdf
	0001F02.pdf
	0001F03.pdf
	0001F04.pdf
	0001F05.pdf
	0001F06.pdf
	0001F07.pdf
	0001F08.pdf
	0001F09.pdf

