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Chapter 1
Voter Queue Length Experiments

1.1. Introduction

1.1.1. Background

In N-modular-redundancy (NMR) computer systems, the redundant modules are often computer-

memory pairs. The computers communicate information to be voted on either by hardware voters

[26], or by software voters running on the processors [8] [21]. Software voting has a number of

distinct advantages over hardware voting, one of which is the flexibility of the voter. A software voter

routine can change its expectations as the system changes, thereby improving the system reliability.

Feature's such as dynamic reconfiguration have been shown to improve system reliability [32] [14]. 	 i

Most of the research on NMR redundancy has made the assumption that the modules are

synchronized [4]. This assumption does not hold for a large class of systems, and often it is very

difficult to force processors to be tightly synchronized. Some people are beginning to realize that

asynchronous systems offer distinct advantages in reliability [21], and simplicity. The problem

remains though of how to design an asynchronous system that meets the reliability objectives.

1.1.2. Objectives

In an asynchronous NMR computer system, the processors will each have their own clock, and will

make little or no effort to ,synchronize the clocks with each other. The random variation in clock

speed, and the difference in process execution patterns will cause differences in the arrival times of

the data to be voted on by the voters. The voters should be able to receive data asynchronously, so
.	 M.
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that they can vote on the data when a majority of the processes have sent it. The voters must be able

to-store message valutrs, so that one processor can be calculating die 10 th step in a procedure, while

another processor car be working on the 12 th step. Eventually both processors should finish the

procedure, but as long as no data dependencies exist one processor should not be forced to wait for

another to finish a calculation. Even yvhen data dependencies do exist, when a majority of the

processor agree on the value of a step, there is no reason to wait for the rest of the processors to finish

before continuing with the next step. In fact, waiting can reduce reliability if a processor is faulty,

since it may never respond to the voter. There should, however, be a limit to the amount a processor

should be allowed to get behind before it is considered faulty. The random variation may cause

problems if one processor becomes hopelessly behind due to the varation. Experiments have been

performed to discover the nature of how variations in process execution speed affect the amount a

process gets behind the others. The effects of variation in process execution speed, as well as

variation of the number of instructions exdcuted between votes have been examined.

Three experiments have been performed. Each is designed to explore a different area of the

syn!.;hronization problem. Experiment 1 has one process execute more instructions for every step in

the experiment. This process is continuously slower. This experiment shows that the voter overhead

increases as the slow process falls behind. Experiment 2 has one process slower for a period, followed

by being faster for a period. These oscillations in process execution speed are realistic for some

systems. Experiment 3 has one process slower for a period, followed by a period of normal speed.

This experiment is most realistic, since processes are likely to fall behind in a system, but are not

likely to speed up.
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1.2. Experiment Description t

A task to be performed is broken into equal subtasks. Each sub 	 is	 executed in order, with data

being passed from one subtask to the next. It is assumed that each subtask has the exact same

execution speed, and that only one word of data is passed from one part to the next.

i

Subtask 1

Subtask 2
,E

i
TASK	 ®	 Subtask f

Subtask n

	Figure t-1: Experiment Task Partitioning 	 -

Since the subtasks all have the same execution speed, the task can be simulated by a loop that

executes n times with a synthetic workload that takes subtask i time inside the loop. Figure 1-1 shows

the partitioning. Each subtask is triplicated, and a vote occurs on the data passed between subtasks,
a

yielding the structure Ln Figure 1-2.

1.3. Subtask Description

The triplicated subtasks , all do the same function. They will calculate the iu' data value, send a

copy of the data to each voter, and receive the voted value of the data from the associated voter. The

r,-
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Figure 1.2: TMR Queue Length Experiment Structure

new data value is then used in calculating the (i+ 1P drta,value.l The time each subtask takes to

calculate the ith data value is an experimental variable. Each of the triplicated subtasks could have a

different calculation time for iteration i, allowing the simulation of variation in process execution

speed. By varying the subtask speeds independently, synchronization issues can be explored 	 _	 t

1.4. Voter Description

The voter is also triplicated. Each voter accepts three words of data, one from each subtask; and

votes on the data from the ith iteration as soon as a majority (two for triplication') of the data values

for iteration i are received by the voter. There are three input buffers (see Figum 1-3), one for each

subtask, in which a voter can receive the data.The voter constantly looks for data from each subtask

by examining the input buffers. A round-robin scheme is used to allow each subtask to have a "fair"

opportunity to have its new data received by the voter,

f	 ')One can imagine wanting to pass more than one data value from one subtask to the next. 'this cgn be done with a more
`	 complicated voter. The entire state of'a processor (or selected parts) could be passed as data, allowing a faulty processor to

recover from a transient by accepting the voted state as its new state.
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VOTER	 VOTER	 VOTER
A	 B	 C

Figure 1.3: Voter Structure with Three Separate Input Buffers

As long as the subtasks have similar execution speeds, the voter should receive the i u' data value at	 -

approximately the same time for each subtask. However, if one subtask is slower than the other two,

then the voter may receive the (i +1)'t data value from a fast subtask before the slow subtask sends

the it' data value. (Remember that the voter will vote and send the voted data value as soon as a

majority -two- of the values agree.) Since the voter now has data from two different iterations, it

must be able to distinguish which data is associated with which iteration, and from which subtask. A

voter queue is used to maintain this database. Each row in the queue contains information about:

y	 1. which iteration this row represents.

2. whether data has arrived from each subtask.

3. what tihe data value is from a source subtask (if it has arrived).

The column the data is stored in implicitly identifies the associated destination subtask,

Each subtask-must send the vci er not only the data value, but also the iteration number. The voter

,	 r
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can then search for an iteration -number in the voter queue to find the row where the data foi • this

subtask belongs. If the iteration number is not Found in the queue, then a row for this iteration is

placed in the queue, and the data is placed in the row. When all of the data values for a particular

row have arrived, the voter repails any _,ors found while voting and then removes the row from the

queue.

^i
P

x

The voter queue has a finite maximum length. If one subtask has not sent any data to the voter in

the same period in which the other two subtasks have sent many data messages, then the voter queue

could conceivably become full. The voter handles a full queue by removing the oldest row

(associated with an iteration for which all the data has not arrived) from the queue, and then adding a

row associated with the new iteration number. Errors are, reported on the row .removed from the

queue. The maximum length of the queue can be large, so that the queue will never become full in

experiment€.

Since each subtask sends the iteration number, the messages need not arrive at the voter in order.

On Cm* [12], the messages will always arrive in order, but some networks do not guarantee *ordered

arrival. The iteration number also is useful in identifying missing messages. A voter could miss a

message entirely and still be able to associate later messages with the proper iteration. A reliability

model of the voter, though, must take into account the probability of the iteration number being

faulty.

1.5. Experiment One

The first experiment performed with the above subtask-voter paradigm was designed to measure

the ability of the voter to synchronize the subtasks, when one subtask is continuously slower than the

other subtasks. The frequency of voting (or granularity of the subtasks) was varied, and the execution

speed of one subtask was varied. The queue lengths of the voters were recorded, as a measure of how

far the slow subtask fell behind the two faster subtasks. The granularity of a subtask is defined as

{
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how many operations must be performed to calculate a data value for, a subtask iteration. The slower

subtask performed 1090 to 150% more operations in calculating the next value. The slower subtask

represents a process that requires more execution time due (o an instruction retry, or due to an

interrupt that it must handle. In these situations, one subtask will be temporarily slower; but as these

experiments show, it would be ill-advised to design a system where one subtask was continuously

slower (this experiment shows d,;sign contraints for systems that have one continuously slower

subtask). Each voter recorded die length of the voter queue every time a new iteration was received.

The queue length information was sent as a message to a process that stored the data in a file. The

recording of the queue length added some overhead to the voter, but each voter paid the same

overhead cost.

The queue length is plotted versus the iteration number for various granularities, and various

subtask degradation.. The graphs are shown in Figures 1-4 to 1-7. For small granularity, one subtask

can be up to 50% slower, and the queue length stays at one. This implies that the voter overhead is

great enough so that the differences in speed is masked. For larger differences in speed, the queue

length grows to a value, and then levels off. The queue length is bounded due to an increase in voter

execution time as the queue length increases. The voter must search for the iteration number in the

queue, and the search proceeds linearly. The subtask that is slower, will not pay this overhead cost

since it has n messages waiting for processing, where n is the queue length.

As the granularity' increases, the queue length grows more rapidly. Granularity is defined as the

number of operations the norrnal subtasksmust perform to prepare a data value. The slower subtask

will perform 10% to 150% more operations in data value preparation. With granularity equal to 1024

(Figure 1.5), the 10% to 40% additional operations curves appear to be bounded, but the 50

additional operations curve is not bounded. The curves for granularity equal to 4K (Figure 1 .6) and

granularity equal to 16K (Figure 1 .7) do not appear to have a bounded queue length. This in due to

the'fact that the voter overhead takes a smaller percentage o the total execution time for the larger

.granularity cases. The voter overhead is a fixed value for a specific queue length. When the slower
m,
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subtask takes approximately the 'same amount of time as the voter, then the voter overhead is

significant in comparison to the subtask execution time. While the normal subtasks are waiting on

the voter to generate a voted data value, the slower subtask can be calculating a data value for one of

the old messages (when the queue length is greater thial in one, the subtask will have data values to

calculate for all the messages in the queue).

M 30
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Figure 1 .4: Granularity equal to 256, one subtask always slower

1.6. Experiment Two

The second experiment is a variation on the first experiment and was designed to explore the

synchronizing nature of voters more fully. In this experiment, one subtask is slower than the other

two subtasks by 'a percentage for a period.of time, then the same subtask is faster than the other

subtasks for the same period. The period was chosen to be 20 iterations. For example, subtask A will

perform 10% more operations in caleulatirig the first 20 data values, followed by performing 1090

fewer operations for the next 20 iterations.

While the subtask is operating slower, the queue length should behave i,. ^c ly the same as in

IL
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Figure 1.5:	 Granularity equal to 1024, one subtask always slower
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Figure 1 .6: Granularity equal to 4K, one subtask always slower

experiment one. Once the subtask is faster than the others, then this subtask should quickly catch up,

resulting in a decline in the queue length. The rate of decline in queue length should be greater than

r
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Figure 1.7: Granularity equal to 16K, one subtask always slower

the rate of increase, since when the queue has length greater than one; the subtask being varied does

not have to wait for the voter to finish before beginning the next data value calculation.

This experiment is somewhat realistic, since random variation in processor speed is expected in any

non-synchronous computer network. Non-uniform variations in process execution rate, such as local

error correction procedures, may cause a temporary variation in subtask execution speed. The

variation in these experiments, 10% to 100%, is realistic for a random variation in execution rate due

to software error recovery, and the data yields some interesting insights into the nature of voting

synchronization.

The first plot of queue length versus iteration number with granularity equal to 256, (Figure 1-8)

shows the expected result. The queue length increases when subtask A is slower, and the rate of

increase is the same as that form experiment one. As soon as subtask A begins executing fewer

	

operations per iteration, the queue length declines rapidly, reaching queue length equal to one. 	 r

When granularity equals 1024•(Figure 1-9), the same result is evident. The rate of queue length
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decrease is greater than the rate' of queue length increase. Figure 1-10 shows similar results.

However, when subtask A is 50% faster, the queue length does go back to one, but the subtask barely

gets to one before it begins to execute the greater number of operations. The rate of decline of queue

length is greater than die rate of rise, but the rise continues for a much longer time,

If subtask A is executing 10% more operations for 20 iterations, then the fallowing calculations

should hold; ..

• time spent executing 1090 more operations = 20*(1103'0 of operation speed)

e time spent executing 10% fewer operations = 20*(90% of operation speed)

e percentage of time spent executing more operations = 55%

• percentage of time spent executing fewer operations 45%

The subtask is spending 10% more time executing the long calculations. When the overhead of the
o

voter is approximately equal to the additional time spent executing the longer Calculations, then the

queue ltmg,1 will become one just in time to begin executing the longer calculation iterations. It

appears as if this balance is met when granularity equal to 4K, and the subtask executes 50% more

operations followed by 50% fewer operations. If the granularity is increased to 16K (Figure 1-11)

then the queue length is not restored to one, and there is a net increase in the queue length over time.

Upo,.l careful ev^luation, this result is expected, however it is disheartening to see a net increase in

queue length when intuition would indicate a bounded queue length.

1.7. Experiment Three

The third experiment is similar to experiment two, except it represents a more realistic class of

synchronization problems.. A subtask that is performing a calculation, may experience a temporary

slowdown, followed by a period of normal behavior such as a subtask which -has to perform a

recovery routine because of a bus error, or has to perform a one time operating system task. Is the

processor running the subtask doomed to stay behind, or will it eventually catch up even though it
a
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Figure 1-9: Granularity equal to 1024, one subtask slower half the time, faster hat ''"die time

always takes as long to calculate a new data value as the others? As soon as a subtask falls behind, it

no longer pays the overhead cost, since it has messages queued up waiting for processing, This fact
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Figure 1.11: Granularity equal to 16K, one subtask slower half the time, faster • half the time
a

would imply that a subtask can catch up, and the rate ac which it catches up is the voter overhead cost

per iteration.	 N _
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i The experiment-can be described as follows: one subtask will do additional operations (10% to

50%) for 20 iterations followed by a period of nu;mal behavior (performing the same number of

operations as tYhe other subtasks). The results of the a.-xperiment are shown in Figures 1-12 to 1 .14. It

can be seen that during the periods of normal operation for all three subtasks, the queue length

declines, and given a long enough period of normal behavior would reach one. The rate of decline of

queue length during normal subtask behavior indicates the effect of voter ovcibead on the subtasks.

w
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Figure 1.12: Granularity equal to 1024, one subtask slower half the time, same half the time

1.8. Experimental Analysis

The three experiments performed give a clear picture of a synchronization model for the equal

subtasks paradigm. There appear to be two factors involved ir. the model. The factors are:

1. There is a minimum voter overhead that is due to the time required by the. voter to .
receive a message, handle the data, and vote on the data. The subtasks that have a queue

• length of one must pay this overhead cost every iteration of the experiment. One might
be encouraged to design a voter with very high overhead, in order to allow greater process
speed variation.

f
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2. The overhead cost increases as the voter queue length increases due to an increase in the

data handling cost. This factor would indicate that for a long enough queue, the voter
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could mask any difference in process speed, For practical queue lengths, though, ihe' 	 °af

increase in voter overhead masks only some of the'subtask speed variation.

1.9. Conclusions

The synchronization experiments can give some design principles for TMR asynchronous voting

systems. These principles can be applied to optimize the voter queue length, to choose a subtask

granularity, and to determine the amount of process speed variation allowed in a design, Proper

application of the principles will lead to a design that will have a bounded queue length for all

possible variations in process execution rate. The principles can be summarized as follows:

1.Smaller granularity subtasks have a higher probability of having a bounded queue length.

2. As subtask granularity increases, the random variation in process speed becomes
increasingly important in ensuring a bounded queue length.

3. A system that spends an equal amount of time being faster, and slower will have a
bounded queue length.

4. Greater votec overhead allows a greater variation in process execution rate. This yiolds an
interesting trade-off in voter design, since a faster voter process will increase system
throughput, but will decrease the amount of variation permitted in process execution rate,

These results can be generalized for synchronous voting, as well as asynchronous voting. If the

maximum voter length is fixed at one, then the system is synchronous like SIFT [9] [8] [6] and C.vmp

[26] [19]. Both of these MIR systems use a synchronous voter with queue length of one. C.vmp has

a hardware voter with a built in wait feature. The length of the wait corresponds to the voter -

overhead in these experiments. SIFT uses fixed scheduling, so a vote proceeds when the next time

slot begins. The voter overhead'corresponds to the design margin in the fixed schedule (the time	 -

between the end of the process execution, and the end of the time slot).
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ABSTRACT

The trend towards integration of avionics in flight controls in future aerospace systems requires an

ever increasing complexity in the on- board computing systems. NASA LangleiResearch Center has

created an Avionics Integrated Research Laboratory (AIRLAB) as a facility for developing the

methodology for integrating avionics in flight controls. Due to the complexity of these systems,

extensive testing will be required to validate that the system hardware and software function

according to specification, Engineering prototypes for two fault tolerant multiprocessors--SIFT

(Software Implemented Fbult Tolerance) and FTMP (Fault Tolerant Multiprocessor) --have been

delivered to AIRLAB.

The goal of this research was to define experiments that can be used to validate fault free

performance of multiprocessor systems. These experiments were refined through implementation on

the Cm' multiprocessor testbed at Carnegie-Mellon University. Future research will adapt and modify

these experiments for FTMP and/or SIFT.
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1. Objectives
The National Aeronautics and Space Administration (NASA) has ongoing research into the

Integration of avionic and control functions for aircraf t, In the 1990-and-beyond time frame, As a focus

for this technology, NASA Langley Research Center (LARC) has established an Avionics Integrated

Research Laboratory (AIRLAB). The goals of AIRLAB are to [t]:

1. develop the technology and methodology required to integrate avionic and uontroi
functions for aircraft

2, evaluate and study candidate system architectures

3. validate implementation technologies

4. establish a data bass of performance, reliability, and experimental statistics,

The benefits to be derived from AIRLAB include:

1,definition and assessment of advance avionic system concepts including high reliability,
fault tolerance, and effective maintenance

2, development of a credible data base for industry including systematic definition of system
concepts, a catalogue of alternative features, and a methodology for design evaluation
and design trade-offs

3. demonstration of experimental systems.

Computers onboard current jet transports perform isolated functions, are usually of simple

architectures, and are not flight critical. If a computer fails, the flight crew can assume the function

formerly done by the computer. In the Aircraft Energy Efficiency (ACES) Program, NASA studied the

design of innovative aircraft which reduce fuel consumption. Operating with reduced stability

margins, these aircraft require active computer control. These computers must have a reliability

comparable to other aircraft subsystems. A goal of 10' 10 failures per hour has been set.

In order to meet the active flight control and reliability requirements, complex computer structures

have evolved. NASA Langley Research Center has contracted engineering prototypes of two

multiprocessor architectures: SIFT (Software Implemented Fault Tolerance) [2] conceived by SRI

International andfabricated by Bendix. Corpoi ration; and FTMP (Fault Tolerant Multiprocessor) [3]

conceived by MIT,s Charles Stark Draper Laboratory, Inc. and fabricated by Collins. The engineering

4•
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prototypes for both SIFT and FTMP have been delivered to the AIRLAB facility,

The goal of the research is to define a set of tasks that can be used to provide a demonstration of

the fault free performance of SIFT and/or FTMP. Here we take the meaning of performance in Its

broadest sfnse to Include functionality and speed.

2. Background
Digital computer systems are enormously complex, In order to make them easier to comprehend, it

Is necessary to divide the system into several levels [6], One can then proceed from the most

primitive level upwards to the highest conceptual level by introducing a series of abstractions. Each

abstraction contains only information important to Its particular level, and suppresses unnecessary

information about lower levels, The levels in a digital system frequently coincide with the system's

physical boundaries since the concept of levels was utilized by the system's designers to manage

complexity. Once details at one level are comprehended, only the functionality provided for the next

higher level need be considered. f=igure 1 depicts one possible set of levels r;,f abstractions.

Level	 Sublevel	 Ivoical Components

Multiprocessor	 Processor, memory, switches

Program

Hardware

Application Software

Executive Software

Display, navigation, flight control

Message system, task scheduler,
memory allocator

Instruction Set 	 Memory state, processor
state, effective address
calculation, instruction execution

Logic	 Gates, flip-flops, registers,
sequential machines

Figure 1. Levels of Abstraction in Multiprocessor Systems

AIRLAB is a facility for testing and measuring fault tolerant architectures. Our experience at CMU

indicates multiprocessors go through an evolution of,stages. A stage is defined by the amount of

functionality available to the user. This functionality, in turn, determines the complexity and

sophistication of experiments that can be run.
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There are several activities in the life of an experiment. First, the code has to be designed and

written, Next, it must be compiled, followed by loading, debugging, measurement, and analysis.

Another view of the stages of a system's life is the number of these activities that are directly

supported by the system for the user.

The following are three representative stages in the evolution of a system.

2.1. Stage 1 • Standalone

The system Is completed through the Instruction set level of abstraction. That Is, the instruction set

has been defined and the hardware has been implemented. There is virtually no software to support

user applications. The only software utility would be a loader whereby programs compiled on another

machine can be loaded into the system under test, Experiments are limited to simple, regular,

compute bound algorithms. Only a limited number of parameters may be varied, and this variation

requires rewriting of the source code of the experiment. There are several attributes to Stage 1

experiments, The programmer must be a hardware expert since there is little software to provide a

higher level virtual (abstract) machine. Hence the program is tied closely to the hardware. The user

must specify where code is placed, define the memory map, and write code to initialize the vnemory,

create processes, manage resources, and collect data.

Typical experiments in Stage 1 include:

• Hardware Saturation. Programs consist of two or three instruction loops with variation
In placement of code and data. The capacity of various system hardware resources is
determined as well as the impact of contention for those resources.

• Speedup due to Algorithm/Data Variation. Experiments seek the impact of
synchronization for data, as well as variation due to data dependencies and size of data.

Errors. Diagnostic programs can be continuously f.an and monitored on the system.
Distribution of diagnostic detected errors can be studied.

2.2. Stage 2 . Operating System

The user is presented the abstraction provided by the executive software. This software provides

basic functions such as resource management and scheduling. In programming experiments, the

user is employing operating system primitives. Hence, the user needs a substantial operating system

expertise. Also, characteristic for this phase is the discrete incremental nature of the experimentation

process; each experiment represents one point in the design space.

4.



a

0

A

The attributes of Stage 2 applications can be stated as follows:

• very regular, date bound with limited variation of parameters

• the general program organization has a Master process controlling a collection of Slavo
processes doing the actual computation

• code is replicated

+ heavy use of OS mechanisms

Typical experiments are:

• Measurements of the cost-per-feature of the operating system's functions.
Experiments exercise statically each OS function on a one by one basis, Examples
Include: memory management, communication primitives, synchronization, scheduling
and exception handling.

• Measurements of different implementation of parallel algorithms. The impact of
using various strategies in parallel program organization, data structure and resource
allocation is studied.

2.3. Stage 3 Integrated Instrumentation Environment

At this stage hardware and software have been provided for generating experimental stimulus,

dynamically observing hardware and software activities, and analyzing results. With this enhanced

support, the user can experiment at the application tel of abstraction with full variation of

parameters. A major characteristic of this stage is the provision of stimulus generation, monitoring,

data collection and analysis grouped under a unique user interface. Also the OS, the support

software and the user application are uniformly instrumented enabling improved behavior visibility.

Only with this capability, the interaction between OS, support software and user application became

measurable with acceptable effort. Hence, the programmer could be a relative system novice.

Experiments at this stage have the following attributes:

• Measurements of dynamic behavior of OS and applications.

• Measurements are continuous. Program could be monitored on-line and sometimes in
real-time.

• Studies of different virtual machines.

d
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• Studies of different logic intercommunication structures.

• Scaling application performance with respect to different virtual machines.

Examples of experiments at this stage include.

• Comparison of various OS policies as reflected by classes of applications, ..

• Tuning a virtual machine for a specific application.

• Designing application oriented architechires.

• Study of multiprocessor intercommunication strategies,

• Validation of fault-free performance of an emul=' zd system.

3. Proposed Experiments
For purposes of experimental transfer, the target AIRLAB system will be assumed to be equipped

with Stage 2 software (i.e., software through the executive level of abstraction with the ability to load a

program and for the program to write a file of experimental data). All these experiments were
conducted on Cm', CMU's 60 processor multiprocessor system, Thus, experiments have been
attempted and scientific questions formulated prior to implementation at AIRLAB, These experiments
were up to and including executive software level of abstraction, No assumptions were made about
constraints at the application level of abstraction which would limit the utilization profile of the lower
levels. Performance and logical limits of individual executive and hardware functions were explored.
Points where the system saturated or ceased to perform to specification were sought and
documented. Each of these individual dimensions are dynamically stressed by an application, With
the limits of performance documented, we can Intelligently select application level experiments that
are more likely to stress multiple dimensions In a way that the application may cease to meet its
specifications. A summary of suggested experiments and supporting references follow.

• Baseline non fault tolerant system reliability

Purpose:	 To derive a basoline of non-redundant hardware and /or software
system reliability.

Description: it is assumed that a file has been created with information on system
crash behavior and/or errors detected from execution of diagnostics.
This file will be analyzed to determine Mean Time To Failure and

,
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Mean Time To Error, It data Is sufficiently detailed, it may be possible
to develop a mathematical model that fits the data,

• Determination of execution speed of hardware

Purpose: To determine the variation in execution speed between different
processors and to produce a table for normalizing the measurements
done on different processors. Speed differential is a bound on the
accuracy of performance related experiments,

Description;	 Each processor performs an Identical task over a sufficiently long
period so that the results are repeatable,

• Tolling time in a multiprocossor

Purpose: As time Is essential in monitoring and measuring an experiment, the
overhead to tell time and limits of accuracy of telling time must be
documented,

Description: Both single and mWtiple clocks will be used. The use of a single
clock insures uniformity of absolute and relative (differential) time
throughout the multiprocessor provided the clock reading software
adds only a small, constant delay. It time is required frequently or If
reliability is a consideration, multiple clocks can be used. This
experiment will measure variability and contention for reading a single
clock as well as measuring the differences in multiple clocks to
determine clock drift.

e Communication mechanisms

Purpose: To determine the maximum information transmission rate of a
hardware/operating system combination, This is an upper bound on
Information flow within the multiprocessor.

Description: This experiment will determine the execution time for sending
messages as a function of the nunriber of byte;, transferred. Various
forms of message sending will be measured. These will include
mechanisms provided by the executive software as well as
mechanisms that can be programmed by a user.

• Operating system calls

Purpose	 Each operating system service (or call) adds overhead to an a.
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application.

Description; This experiment will measure the overhead as a function of call type,
call frequency, contention, and relative positioning of code. In SIFT,

particular attention will be paid to the software voting mechanism.

• Impact of time skew

'	 Purpose:	 Due to the delays and overheads measured In the above

experiments, it will not be possible to keep the multiple, asynchronous
copies of application code in identical lack step.

Description; This experiment will introduce variable time skews into redundant
cede to determine if or when the multiple copies of the application get
out of logical sequence and causes the system to cease functioning.

• Validation of instruction set architecture

Purpose; To determine whether automatically generated diagnostic programs
have sufficient fault detection coverage to be run periodically and
alleviate the problem of fault latency.

Description, Software developed in [7] takes a formal description of a computer
instruction set and then generates a program which tests that

instruction set. This methodology outperformed manufacturer
supplied diagnostics for faults that were inserted at the instruction set
level, These automatically generated programs contained a factor of
20 fewer instructions than the manufacturers' diagnostics white

achieving better coverage (i.e., 98.5% vs, 95.596).

The appendices contain details of all but the first and last experiment as they were conducted on

Cm'. Results of the first experiment can be found in [5] while results of the last experiment were

reported in [7].
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Abstract

A system clock is often used as a time-keeping device for measuring software performance.

However, in a distributed system where there is only one system clock, it may be difficult to obtain
i;accurate clock readings. This is because of communication delays and clock contentions. This

report investigated the problems associated with a single time base in multiprocessor systems. The
multiprocessor Cm* was used as the research vehicle. First, the accuracy of the clock was found to
be greatly affected by the number of simultaneous, clock reads as well as the overall system
workload. Second, methods • were developed to compensate the clock readings by monitoring the
system load during the time measurements. The accuracy of these methods was better than 7µS.
Firmly, an experiment was performed to measure the latency of messages and the execution time of
message-based remote procedure calls.,

This project was supported by NASA Langley Research Center under contract number
NAG-1-190, by NSF under contract number MCS-8120270, and by the Department of the Army
under contract number DASG-60-80-C-0057.

The views and conclusions contained in this document are those of the authors and should not
be interpreted as representing the official policies, either expressed or implied, of NASA, NSF, the
Department of the Army, or the U.S. Government.

^^1



ORIGINAL PAGE W
OF POOR QUALITY

Table of Contents

1 Ultroduction 1
2 Background

,a
2

2,1 Previous Work 2
2.2 Research'Vehicle 3

2.2.1 Cm* Hardwares Structure 3
•	 2.2.2 StarOS 3

2.2,3 Medusa 4
3 Clocks in a multiprocessor 4-

3.1  Cm* clocks 5
3.2 Clock reading rwitines and their performance 6

3.2,1 StarOS results 12
3.2,2 Medusa results 12

. 3.3 Conclusion 17
4 Methodologies for measuring time. 18

4.1 Methodology of performance evaluation 18
► 	 4.2 fvfethodologies 'for measuring elapsed time (Clock compensation) 19

4.3 Execution speed of computer modules 25
'	 4.4 Evaluation of clock reading compensation techniques (Method I){ 26

4.5 Evalua+.ion of clock reading eompen$ation techniques (Meth od IQ 29
4.6 Discussion of results =	 32	 c
,4.7 Conclusion 33

5 An example experiment 34
5.1 Organization of experiment 35
5.2 Experiments 35
5,3 Results 36

5.3.1 Latency measurements 36
5.3.2 Execution time of kPC 37

5.4 Conclusion 38
6 Conclusion 38



ORIGINAL PAG2. kR
' OF POOR QUALITY

List of Figures

'	 F iguire I: Nerlbrmance of Medusa Varying-Read clock routine 8
Figure 2: Performance of 4-Read clock routine running under Medusa e 9
Figure 3: Performance of Medusa 1-Read clock routine 11
Figure 4: Performance of StarOS 4-Read clock routine 13
Figure 5: Performance of StarOS 1-Read clock routine ' 14
Figure 6: Performance of Medusa 4-Read clock routine 15
Figure 7: Performance of Medusa 1-Read clock routine 16
Figure 8: Short term averaging algorithm 20
Figure 9: Short term averaging, Method'I 24
Figure 10: Short term algorithm, Method II 24
Figure 11: Histogram of execution time of 34 Cm's 25
Figure 12: Measuring zero elapsed time using Method I with 4-Read routine 27
Figure 13: Measuring zero elapsed time using Method I with Medusa 4-Read routine 28
Figure 14: Measuring zero elapsed time using Method II with StarOS 4-Read 'routine , 30
Figure 15: Measuring zero elapsed time using Method 11 with Medusa 4-Mead routine 31.
Figure 16: Latency of StarOS messages in the experiment 36
Figure 17:. RPC execution time versus the total number of words accessed 37	 w

•

1

•
{if

i



OR1C;Jt JAL PAM

R f POOR QUALITYO1 Introduction	 .

While performance evaluation of computer hardware is commonly done with special hardware

such as oscilloscopes and logic analyzers, performance evaluation of computer software such as

operating systems can be done with software methods, The software method has the following

advantages:

• It can be completely automated fror^n data collection to data reduction.

• It can be performed remotely without accessing the internals of the machine.

. It requires only a system clock of good resolution.

Hardware methods can also be completely automated, but the measuring hardware may be rather

complex. The disadvan 'lage of software methods is that - they are less accurate than hardware

methods because of the possible interaction between the measuring software and the measured

software.

To measure the performance of software, the system clock is often used to measure elapsed

times. However,. it is often difficult to obtain accurate clock readings from a system clock. This is
t	 because the amount of time required to read the system clock is variable due to system load, page

traffic, etc. Therdere when a result is returned to the calling program, it may ,be inaecurat6 or

art , outdated. In a distributed system where communication delay is dependent on system activity, and •

where a large number of subsystems attempting to read the clock causes contention, the result

returned to the calling program may be even less accurate.

This problem.is. serious in the case of the Cm* [3] clock. A preliminary study showed that the

result of a clock read can be erroneous by as much as 2inS, depending on the system load and the

amount of contention for the clock. A goal'of this project is to develop methods to read the clock

more accurately so that software methods can be more widely used to measure system performance.

The purpdse of this project is to investigate the feasibility of measuring the performance of

p	 multiprocessor operating systems using software methods.

The following section p^ esents the background information for this project. Previous work 	 4;
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related to this project is surveyed and the 'research vehicle, Cm*, is briefly described. Section 3 ,

discusses the- problem with global clocks. The clocks in Cm* ara, described, and mechanisms for

accessing them under different operating systems are presented. The clock reading software is

examined and its performance as a function of load is studied.

Section 4 discusses elapsed time measurements on Cm*. Based upon the experience developed

in using the Cm* clocks, methods are designed to yield more accurate results for elapsed time

measurements. The accuracy of these methods is illustrated through tests.

♦
An example of the usage of one of the methods developed in Section 4 is presented in •Section S.

The example measurement is concerned with the latency of' message mechanism and the execution

time of message-based remote procedure calls. Finally, Section 6 presents the general conclusions.

2 Background

• 2.1 Previous Work

There has. been a significant amount of work on' performance evaluation of multiprocessors,

Most of this work relied upon hardware devices for ♦ measuring time. When Raskin performed

measurements on Cm* [10], he used the Cm* Map-Bus Monitor, logic analyzers and hardware

counters. Marathe suggested that measurement tools should match the level of the measurement

[6]. When he was measuring the operating system kernel performance of C.mmp/Hydra, he used

both hardware and software methods. Snodgrass has also studied the problem of monitoring

distributed systems [12] ,[13].

f
While all these works required the use of special system dependent hardware, this project aims

at providing software methods for performance evaluation that require no special hardware other

than high resolution system clocks. To utilize the system clocks for performance evaluation, the

concept of time in a distributed system must be understood. Studies concerned with the

understanding of time in a distribute system and the dissemination of system time have been made

by Lamport [S] and Ellingson* [1].
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. *	 2.2 Research Vehicle '	OF POOR QUAL17Y

The research vehicle used in this project is Cm* and its two or7^rating systems - StarOS and

Medusa, In this subsection, a brief overview of the research vehicle is presented, More detailed

descriptions can be found in the research review edited by Jones and Gehringer [3j.

2.2.1 Cm' Hardware Structure,

Cm* is a multiprocessor consisting of fifty processor-memory pairs made up of DEC LSI41's.

Each processor-memory pair is called a computer module. These computer modules are grouped

into five clusters, forming a hierarchical switching structure. The lowest level of the switching

.hierarchy consists of the Slocals, which are switches placed between each processor and its local

memory, Their function is to • detormine if references generated by the processor can be directed to

the'local memory. If the references cannot be directed to local memory, the Slocal will forward the

address through the Map Bus to -the Kmap of that cluster for further address translation; The Kmap

is a high speed microprogrammable communication controller. It provides the mechanism for the

computer modules (Cm's) of its own cluster to communicate with each other, and it cooperates with

other Kmaps to service the communication requests made to Cm's of other clusters. All

bom,munications between the Kmaps are "implemented via packet-switching rather than by circuit-

switching to avoid the possible'deadlock over dedicated circuit-switching paths. In addition, since

the Kinap is much faster than the main memory of the LSI-11's, the Kmap is active only fora small

fraction of the time of a memory reference. Therefore, packet-switching allows the, Kmap to service
r

more than one request concurrently. Because of their microprogram mabi lity, the Kmaps are also

used extensively to implement key operating system functions of StarOS and Medusa.

2.2.2 StarOS

. StarOS is a message based, object oriented operating system for Cm*. Its detailed description

can be found in a technical report by Gehringer and Chansler [2]. Briefly, all StarOS information,

including code and data. are contained in objects. Each object has an object type and a special set

of operations defined for 'that object type. , Users can also define their own abstract object types.' A

StarOS object is made accessible via the possession of'a capability which contains the name, of the

object and a list of rights for that named object. 'Capabilities themselves do not contain the address

information of the objects they name. Rather, they contain pointers to the descriptors which contain

the pltysical locations of the objects. This way, if an object named by a number of capabilities is to 	 '



4	 ORIGINAL PAGE iS	 •»
Of POOR QUALITY

be relocated physically, only its descriptor needs to be updated while all the capabilities remain.,

unchanged, The StarOS message facility supports the transmission of messages containing one

co^,I.,tbility or one data word, This implies ghat messages of size larger than one word are passed by

reference. This pass by reference semantic is possible because names ,of objects are known system

Yide and a capability is sufficient to access an object anywhere in the system,	 »

2.2.3 Medusa

Medusa is another message based operating. system for Cm*. Its details were presented by

Ousterhout et al. in [8] and in OusterhouCs thesis [9]. All Medusa information are stored in objects

that are addressed through descriptors. The descriptors contain the type, the location, and the size

of the objects. Descriptors are kept in protected objects known as descriptor lists Each Medusa

process, known as an activity, has two descriptor lists. The private descriptor list keeps the

descriptors to objects that are private to the process, while the shared descriptor list keeps the

descriptors to objects that are shared by all processes within the task jdree. A task force is defined

as a collection of cooperating processes that perform a given computation. In Medusa, all objects

are defined by the system and users are not allowed to define abstract object types. The message

facility of Medusa supports messages of variable size. Messages are transmitted by value through

special objects called pipes that are similar to the -pipes bf UNIX [111 in that they hold uninterpreted

byte streams. The major difference from UNIX is that in Medusa, only complete messages can be

sent or received from the pipes, and that both the identity of the sender and the size of the message

are available to the receiver.

3 Clocks in a multiprocessor

It wds mentioned that due to communication delays, a clock read request is not received until

sometime after the request has been made, and that the originator of the request does not receive

the result until sometime after it has been transmitted. Therefore, the result of a clock read is often

inaccurate. In -this section, this problem will be examined in detail, and its effect on the

performance of the clock on Cm* will be studied. Schemes designed to yield more accurate clock

-readings will be proposed.

A desirable solution to the problem of reading the clock is to have a globally readable clock with

a communication delay that is small (compared to the clock resolution) and fixed regardless of
^i

x
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system load. Such a clock requires a special bus allowing multiple simultaneous read accesses for

• the broadcasting of the clock value. An example of such a bus structure is ' the interprocessor bus of

C aump 115J. In the Cannip implementation, there is a 56-bit global clock of 4 microseconds

resolution. The value of this, clock is continually broadcasted on the interprgcessor bus.

However, in a more loosely coupled system, it is not feasible to devote a special purpose bu; to

the global clock because of the amount of cabling involved as well as the problems associated with

bus arbitration over long lengths of wire. Also, broadcasting the clock value on the general purpose

bus requires a large pord6n of the cycles available on the bus, thus significantly reduces the

effective throughput of the bus for non-clock usage. For these two reasons, broadcasting the clock

value is generally not done. Rather, the subsystem which needs to know the system time has to

establish a connection with the clock and then to read its value. This way, communication occurs

only when necessary. However, because the time required to establish a connection depends on bus

activity and the transmission delay depends on the physical -location of the subsystem, the total

delay is unpredictable. When multiple requests for the system time arrive simultaneously, bus

contention results and a queue is formed. The wait time in this queue adds further uncertainty to

the total communication delay.
•

The conclusion is that global clocks require a special purpose bus which may not be feasible in a t '

loosely coupled system. Without a special purpose bus, the accuracy of clock readings is sacrificed

because of communication delays and contention.

3.1 Cm* clocks

Cm* currently, provides three 32-bit real time clocks for time measurements. These clocks have

a quartz* crystal time-base with, an adjustable resolution. The maximum resolution is 0.5

microseconds. The clocks can be zeroed. under program control for interval measurements.
3

r
Currently, all the clocks are hard-wired to give a resolution of 2 microseconds. This yields' a

i	 maximum range of 232 * 21AS = 2.386 hours. The clocks are connected as peripherals to Cm3 on

cluster 1, Cm4 on cluster 2, and Cm14 on cluster S.

Since the LSI-11 uses memory mapped 1/0, reading the clock is a simple read to a specific

iocation in the 1/0 page (page fifteen) of the LSI-11 address space. For both StarOS and Medusa 	 ti

operating systems, reading the system clock is implemented via remote memory references. 	 n"
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3,2 Clock reading routines and their performance

In both StarOS and Medusa, clock; reading is performed using procedure calls rather than by a

LSI-11 NOV" instruction. This is because the clock is 32 bits while the data bus is only 16 bits

wide Thus, to read the full clock requires at least two memory references. Since the clock is always

running, there is no guarantee that the high and low order words read correspond to the saute 32-bit

clock word, This is because after reading the first word, the low order'word may overflow and wrap

around at a clock tick, invalidating the first word read,

When this project began, both StarOS and Medusa provided a standard routine for reading the

clock. For future reference, this algorithm is named "Varying-Read" algorithm because ,the clock

register is read either three or four times depending on the value of the clock. Below is the pseudo-

code for this routine:

F

Varying-Read:

FirstHi n Read high order word of clock;
FirstLow n Read low order word of clock;
SecondHi = Read high order word of clock;
if SecondHi >,FirstHi then begin

SecondLow n Read In order word of clock;
return SecondHi and SecondLow as the clock result;
end 
else begin

return FirstHi and FirstLow as the clock result;.
end;

When SecondHi is greater than FirstHi, the low order word must have wrapped around between

the first and second read of the high order word. Since it is not known whether the reading of

 FirstLow occurred before or after the wrap around, a second reading of the low order word must be

taken.

A preliminary experiment  was set up to evaluate the performance of the Varying-Read clock

routine of Medusa. The objectives were to determine the average execution time of the routine and

to see how the accuracy was affected by the system load The experiment measured the elapsed

time between two successive clock read procedure .calls. • This elapsed time was identical to the .

.-.-	 execution time of the routine including all the remote memory references.
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'rhe experiment i:vas performed with eight Cm's distributed bo,4veen clusters 2 through 5•

• reading the cluck in Ester 1. The experiment was then repeated with thirty Cm's, also distributed

between clusters 2 through 5. 'f he resulcsare summarized in figure 1, which plots the elapsed time

between two clock reads against the time elapsed since the beginning of the experiment. A si.nple

calculation yields an intercluster memory reference rate of around 90 thousand references per

second for the 30 Cm,s case, and 53 thousand references per second for the 8 Cm's case.

Figure 1 reveals periodic peaks and troughs in the 30 Cm's curve. The-peaks occurred when the

low order word of the clock wrapped around during the execution of the second clock read routine,

causing the second clock reading routine to read the low order word a second time. The troughs

occurred when the low order word wrapped around during the execution of the first clock read

routine, causing the low order word to be read again. For a detailed explanation of the reason for

the peaks and troughs, refer to Kong 's report [4]. Note that in the 8 Cm's case, there were fewer

Cm's reading the clock and the probability of reading the clock while its low order word wraps

around was much lower, hence the peaks and troughs did not appear- regularly.

Figure 1 also shows that in the 30 Cm's case, the elapsed time rose from approximately 300µS to•

over 800µS and then fell from 800µS 'to approximately 300µS. This was because not all the Cm's

stafted and finished simultaneously. Hence, there was lest system load and contention at both the

beginning and the end of the experiment, resulting in lower elapsed times. In the 8 Cm 's case in

Figure 1; the average value was approximately 300;LS and no rise or fall was seen.' This was because

8 Cm's reading the clock did not create sufficient traffic to slow down the clock read routines.

Because of the Varying-Read clock routine's erratic behavior when the low order word of the

clock flips, two riew clock reading routines were written. The first one was a modification to the

original Varying-head routine. It reads both the high order and the low order word twice, and has

the property that it always returns the first low order word read as the low order word of the clock.

Its execution time is essentially independent of the value of the clock readings, as shown in the

performance diagram of Figure 2. In Figure 2 the rate of remote memory references for the 30

Cm's case was 96 thousand per second, while for the 8 Cm's case was 64 thousand per second.

Below is the pseudo-code for the routine, which is referred to as the 4-Read clock routine because it

	

^, 
r	 always reads 'the clock register four times.

A

^sX

te_'
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Figure 1: Performance of Medusa Varying-Read clock routine
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4-Read:

FirstHigh - read high word of clock;
FirstLow	 - read low word of clock;
SecondHigh - read high word of clock;
SecondLow - read low word of clock;	 '#
IF SecondHigh > FirstHigh THEN	 /• clock flipped •/	 ;(

IF SecondLow.> FirstLow THEN 	 /• flip was before FirstLow •/
return FirstLow and SecondHigh as result

ELSE	 /• flip was; after FirstLow read •/
return Fir;Uow and FirstHigh as result

ELSE	 /• no flip occurred between FirstHigh and SecondHigh •/
return FirstLow and FirstHigh as result;

4

The second routine reads only the low order word of the clock and computes the value of the

high order word. The routine makes .use of two static variables $OldLow and $Hi. During a clock	 f

reset, these variables are zeroed. Every time the routine is called, the low order word of the clock is

read and is compared with the value of $OldLow. Assuming the routine gets called at least once

during the interval between two low order word flips, then if the value of $OldLow is higher than

the current value of the low word, a flip must have occurred. The variable $Hi is then incremented

If the value of $OldLow is lower than that of the low word of the clock, no flip has occurred and the

value of. $Hi remains unchanged. • This routine is, called the 1-Read clock routine because it only

reads the clock register once. Below is the pseudo-code tor,the routine:

t
I

1-Read:

STATIC $OldLow;
STATIC $H1;

Low - Read low word of clock;
IF $OldLow >- Low THEN

$H1 n $Hi + 1;
$61dLow - Low;
return Low and $Hi as the•result;

This routine has an execution time that does not vary in time. The performance of this 1-Read•

clock rouiine is summarized in Figure 3. Here the remote memory reference rate was 76 thousand

per second for the 28 Cm's case, and 23 thousand per second for 'the 8 Cm's case. The low rate of

remote memory reference makes the routine execution time quite insensitive to the increasing

number of Cm's reading the clock. Therefore, 'the differences between the 28 Cm's curve and the 8

Cm's curve• were so small that the two curves overlap enough to be visually indistinguishable.

jL

' •	 .f

^_
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c-	 Note that this routine assumes the clock is read at least once in every interval T P where Tf is the

16time between two low word flips and is equal to 2 * R. where R is the number of seconds between
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a clock tick. With the present R of 21LS, Tf equals 0,131 seconds. To use this routine, each Cm must

have its own loeal copy of $Hi and SO1dLow, and that each Cm must read the clock at least once in

every Tr seconds.	 I

Since the 1-Read and the 4-Read routines were to be used, a new set of experiments were set up

to test the performance of both routines as a function of load under both StarOS and Medusa. The

experiments involved the measurement of elapsed time between two clock reads as a function of the

number of Cm's reading the clock.

3.2.1 StarOS results

The average execution time of the 4-Read clock routine increases with the increasing number of

participating Cm's, and the standard deviation of the result also increases with increasing number of

Cm's. Figure 4 is the summary of all the histograms normalized to give the same area under the

curve. The distributions of all the curves appear to be Rayleigh with a lower bound of 310µS,

which is the minimum time required to execute the 4-Read clock routine. A careful study of Figure

4 shows that beside the main peak, there is a small peak around 6301S to 760µS. This is due to

jrtterruptsl occurring between the two clock reads.

i

The average execution time of the 1-Read routine is quite insensitive to the increasing number

of Cm's reading the clock. This is because the load generated by this clock routine is low enough

that  the Kmap can handle without saturating. Figure, 5 is the summary of all the histograms

normalized to give to same area under ',he curve. Since the average execution time varies very

little and the standard deviation of the results remains almost constant, all the curves are similar and

overlapping. A careful study of Figure 5 shows a small secondary peak around '470µS to 550µS.

This is aiso due to interrupts by the line-time clocks.

3.2.2 Medusa results

The , minimum time required to execute the 4-Read Medusa clock routine is approximately

320µS. The average time increases as the number of Cm's reading the clock increases. Figure 6 is

'the normalized plot of all the histograms. An interesting observation is that while the standard

deviation of the result increases as the number. of Cm's increases for small number of Cm's. it starts

The line-time clock interrupts the processor sixty times per second.

k
t
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Figure 4: Performance of StarOS 4 -Read clock routine

to fall at some-point between 16 Cm's and 20 Cm's. This phenomenon is believed to be due to

some complicated queuing mechanisms at the Kmap.
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Figure 7 is the nonnalize distribution thAt summa.dzes the results of tfie Medusa 1-Read clock

andard deviation of the result isroutine. The interesting point rabout this clock routine is that the sL
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extremely small, and that ilte average result does not change significantly with increasing number of

Cm's reading the clock. This is because the load presented by this routine is so small'th3t all clock

read requests to the Kmap are processed immediately without (raving to wait in the Kmap queue.
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Figure 6: Performance of Medusa 4-Read clock routine
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Comparing Figure 4 with Figure 6, one sees that even though the average execution times are

roughly the sane 'at light load, the execution time increases faster as a function of load under,•
StarOS than under Medusa. The difference in the shape of (lie curvesAn Figure 4 and Figure

	 1

6 shows that the two operating systems have very different strategies for handling memory

contention. Even when the effects of interrupts are ignored, the StarOS results show a larger

standard deviation. 	 .

Although the Cm* global clock is capable of 0.51LS resolution, such resolution is not usable for

accurate measurement of time intervals because of the uncertainty in delay involved in an

intercluster reference in the presence of load. The results of the clock experiments show that short

time intervals (500µS or less) cannot be accurately measured •using any of the,clock reading routines

described.

One way to alleviate the problem is to read, only +;ie low order word of the clock. This way, only

one LSI-11 instruction is needed to access the clock and the results should be much improved. The

problem associated with just reading the low order word is the loss in clock -range. With the clock

tick set at 2µS, the range provided by- the low order word is only about 0.131 second. Larger clock

range can be obtained by increasing the clock tick value without sacrificing clock resolution because

the usable clock resolution is limited by the uncertainty in communication delay. Therefore. a

reasonable value for the clock tick should be commensurate with the uncertainty in communication

delay. For example, under • very light system load, reading a Medusa clock word has a standard

deviation of 2.3µS, and reading a StarOS clock word has a standard deviation of 7.13µa2.

Therefore, the 2µS resolution of the present clock is useful. However, under heavy loads, the.

standard deviation of reading a clock word can be very high. Under such loads, the clock tick can

be lengthened substantially toincrease the range of the clock without losing accuracy.

For any clock that cannot be completely read in one memory
 cycle3, a clock read operation

should be provided to latch the clock value and to allow all the clock words to be read indivisibly

•	 sli
4

I

2Assuming no processor interrupts.

3Because the clock register is wider than the data bus.
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before another clock read 'operation is accepted. For Cm*, such a feature can he provided by using .

a hardware latch and some Kmap microprogramming. The clock read operation will latch the clock

value, this value will then be moved indivisibly into a user specified locatio .

Comparison of StarOS and Medusa results reveals that the accuracy of time measurements is

operating system dependent. The wider spread of the StarOS clock reading results even when

ignoring interrupts suggests that it is more difficult to get accurate time measurements from StarOS

and that any StarOS• exp &-riments using Kmap operations probably have higher variability in

execution times.

A lesson learned ,from this study of the clock measurements is that performance measurements

must be done very carefully since even the most obvious items such as the clocks can fail to perform

as expected.

4 Methodologies for measuring time

Since the inaccuracy of the clock routines for Cm* is mainly due to Kmap load and clack

. . Y.r contention, corrective measures can compensate the incorrect clock readings by accounting for the

Kmap load and clock contention during a ineasurecnent. Based on this premise, this section

discusses methods that can be used to obtain more accurate time measurements for performance

evaluation. More specifically, this section proposes a way to generate a repeatable workload for the,'

system on which performance evaluation is done, develops methods for organizing performance

evaluation experiments, presents algorithms to compute the net elapsed time given inaccurate clock

readings, and tests these methodologies for validity.

4.1 Methodology of performance evaluation

In this project, workloads are synthesized by replicating the measured experiment. For

example,. to measure the performance of the message facility, the synthetic load will be'the number

of pairs of processes communicating with each other through messages.

The generation of a synthetic workload can be best illustrated by an example.. • Assume the

execution time of a software routine, R, is to be measured under different system loads. The

experiment then consists of a Cm executing R, while a number of other Cm's executing R constitute .
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`	 the synthetic load. The result is the execution time of R as,a function of the number of Cm's

•
executing R simultaneously. 	 d

A basic approach for measuring performance is to have N identical experiments running in the

system. The system workload is parametrized by the value of N and by how the experiments are

distributed within the system. A simple way to measure performance is to have only one 	 ••

experiment per cluster that reads the clock. This means of all the experiments running in a cluster,

only one experiment actually reads the clock to °,neasuie performance, This reduces the number of,
clock reads generated, produces less system load due to fewer clock reads, and results in the

improved performance of both the clock reading software and the measured experiments. The

'decision to measure only one experiment per cluster is based on the assumption that all the Cm's

have identical execution speed, and the symmetry of the Cm* architecture makes Cm's from the

same cluster virtually indistinguishable from each other 4 The validity of the assumption that all

Cm's have the same execution speed will be shown in a later subsection.

Also, the timed experiment does not execute continuously. ! Rather, it is "injected" into the

system at fixed intervals. This further reduces the amount of data generated. By injecting the timed

experiment after the start up* transients have decayed and the system workload has stabilized, more

accurate results can be obtained. In the real situation, the user is often interested in finding out the 	 t '

execution time of a piece of software if he were to insert it in a system of a given workload This

situation is quite accurately modelled by the injection approach. Note that the effects of the

transients caused by injecting an experiment have not been studied and may be a subject

worthwhile for future research.

•	 4.2 Methodologies for measuring elapsed time (Clock compensation)'

Given methods to organize performance evaluation experiments, the next step is to develop

algorithms for accurately measuring elapsed time. Early in this section, it was postulated that one

can monitor the Kmap workload to improve the accuracy of elapsed time measurements. Below are

two*such algorithms.

4Actu,tlly; some Cm's are connected to 1/0 devices which may affect their performance. In all experiments, Cm's with
1/0 devices such as serihi lines or Ethernet interfaces must not be used 	 r .
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Since reading the clock twice successively yields a result with a mean and variance that are both 	 g

functions of the system load, the net elapsed time of any experiment can he computed by

subtracting tile; averlige value of the elapsed time between two cluck, reads from the measured result.

Using this algorithm, the expected value of the computed result equals to the true elapsed time,

while the distribution of the computed result is identical to the distribution of the measured result.

We sli all refer to this algorithm as the long term averaging technique

Since the load on the system is a time varying function, and since tasks performed by the system

take time to complete, it is reasonable to assume that the system load at times separated by small

intervals should be highly correlated. Because the time elapsed between two clock reads is a

function of load, the autocorrelation of this elapsed time for short time intervals should also be

high. Based on this assumption, the short term averaging technique approximates the time required	 .

to read the clock during an experiment by using the elaps^:rt time between two successive clock

reads that occur closely in time. Below is a mathematical analysis of the short term averaging

technique,

TZ	
T3

experiment
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'	 Figure 8: Short term averaging algorithm

Assume we are measuring the execution time of an experiment as illustrated in Figure 8. Then

the variables ate defined as followss: 	 R
LY.	 -j	 =

. •	 _	 SCani6l letters denote random variables 	 _
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'f
4 TA is the computed elapsed time, (TA approximates to-)

. Tm be the measured elapsed time..

T2 be . the time interval between the moment the clock is read and the moment the , 	 '•

experiment begins.

• T3 be the time interval between the moment the experiment ends'and the moment the
clock is read again,

• Tl and T4 be the elapsed times between two pairs of clock reads.

Then to = Tm - (T2 + T) and

	

TA = Tm - (TI ± T^ / 2.	 (1)

'But

Tm = to + T2 + T31

therefore

' TA = to + T2 + T3 ,- (TL + T4)/ 2. .
If •the expected values

E(Tj) = E(T, J E(T2 + T3) = 8,

then

E(TA) = to +'S  - (S + 8)/2 = ta.

Therefore, the expected value of the computed result equals the true result.

The variance of the computed result is:

V(TA) = V(to + T2 + T3 - Cr, + T^/2).

Let

V(T) = 012, V(Td — 0''42;

• V(T2) _ 022 , and V(T3) = 0'32,

then5

	

n	 n

6If X=2  a^Y,, then V(X) _	 aj V(Y^1 + 2	 aajPff toJ

	

1=1	 1=1.	 t<J 
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V(TA) = U22 , + Q32 + Q12/4 + c42/4	 (2)	 a

+ 2PT,,T3a3a3 - PT1 ,T2a1 0'2 * PT1.T3a1Cr3
- PT2PT4Q4a2 - PT3'T40'4a3 + PT1x4aia4 / 21

where pT ,T is the correlation coefficient of the random variables T 1 and Ti.
^j

To simplify Equation (2), the following assumptions are made: 	 w,

E(T2) = E(T) / 2, E(T) = E(T4) / 2, V(Tl) = V(T4) = v2. (3)

Now,

V(TA) = v2[1 + 0.5pT21T3 - 0.5pT1,T2 0.5pT30T 
1 

-0.5pT21T4	 (4)

-0.5pT,T +0.5pT,T I
3 4	 1 4

If all correlation coefficients are unity, then

V(TA) = 0,

In the worst case when PT ,T — pT ,T — pT ,T — pT ,T 0, and pT ,T — pT ,T = 1,1 2	 3 1	 2 4	 3 4	 2 3	 1 4
VITA) = 2o2

for all non-negative correlation coefficients.

For very short interval measurements, the time -stamps tz and t3 are very close together and the

randoin variables T2 and T3 can be replaced by a new T3 equals to the old T2 + T3. Then Q22 = 0

and a 2 = a2. we now have

V(TA) = 1.5a2 '- pTJ3a2 - PT31T4a2 + 0.5pTlT4v2.	 (5)

If all correlation coefficients are unity, then

V(TA) = 0.

If all correlation coefficients are zero, then

V(TA) = 1. A

In the worst case when pT1,T3 = pT3^T4 = 0, and PT	 11= 1,

VUd = 2a2

for all non-negative correlation coefficients.

Even though Equation (2) expresses the value of the variance of the result, it cannot be solved

unless the variances of°r2 and T3 are kncwn. In our case, this information is not available from the
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• experiment, To simplify the problem, the time elapsed between the issuing of a clock rea&to the

actual reading of the clock and the time elapsed between the reading of the clock to the returning of

the result to the reader are assumed to be have the same mean and variance. &Iuation (4) then

expresses the variance of the result. Equation (5) applies when the duratioU of the experiment to be

measured is extremely short and close to zero.

This algorithm shows. that for any method used 'to select the two pairs of clock reads, the worst

case will yield a result with a variance twice the variance of the elapsed time between two clock

reads. In the best case, the variance of the result is zero. In cases where assumptions of Equation

(3) apply, zero variance in the result is obtained when the correlation coefficients between Ti and

T2 (pT1 ,T2 ) and between T3 and T4 (pT3 ,T4
 ) are both unity.

'	 ,

A way to evaluate the methods used to select the clock read pairs is to compute the

improvement factor k. In any experiment that measures a fixed time interval, let V(TA) be the

variance of the corrected result and let a 2 be the variance of the , uncorrected result. Then k is

defined such that

•	 k = o2 / V(TA).

The larger the value of k is, the better'the improvement. The range of k is between 0.5 and infinity.

When k is unity, the variance of the corrected result is unchanged. Note that the Long Term t

Averaging algorithm always yields a k of unity.

The objective for selecting the two pairs of clock reads for compensation is to maximize the

correlation coefficients pT T2 and pT T . Though there are many ways this can be done, only two

methods will be presented. he reader is encouraged to design his own implementation, bearing in

mind that the dbjective is to maximize the correlation coefficients stated above.'

The first method presented, hereafter referred as Method I, is illustrated in. Figure 9. If the

processor that starts the measurement reads the clock twice at the beginning of the experiment and

the'processor that terminates th% measurement reads the clock twice after the experiment, then Ti

should highly correlate with TZ while T3 should highly correlate with T4. This is because these

clock reads occur very•closely in time.

r

	

	 This method has die advantage that no. clock read occurs during the experiment and therefore

-- - the performance of lie experiment under measurement is not affected.

f
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clock rends	 Tj	 T2 	clock reads	 Tg	 T4
+	

^	

--^	 experiment	 --r

tn

Tm

+f	 Time

Figure 9: Short term averaging, Method I

The second method presentee! is referred as Method II, as illustrated in Figure 10. If a clock

process runs concurrently with the experiment and periodically samples the load by reading the

clock twice in succession, the elapsed time can be used for compensation. One approach is to select

the clock read pair of the clock process that is closest in time to the clock read that starts the

measurement to give Tl, and to select the clock read pair of the clock process that is closest in time

' to the clock read that stops the measurement to give T4.

4
a

`	

T2	 T3	 ^ ^	 1 •
N	 experiment	 r —

t ^	 f—clock reed 'clock reed	 Cm X-Y•

Tt2	 m	 t3

$	 clock reads	 clock re ds
Cm X-Z

T,	
T4

Time

Figure 10: Short term algorithm, Method II

♦ 	 14{

•	 I

This method is less desirable than the previous.method because of its added complexity and

because of its interference with the performance of the experiment by the presence of a clock

I I I 11111111101 01 11, loop 

1

1401 1 011111	 ill 11 11ij

1*
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reading process.	 However, subsequent sections will show that this method yields quite accurate

• results.

4.3 Execution speed of computer modules

The method for generating workload assumes that all the computer modules in Cm* execute at'

the same speed. To verify this assumption, an experiment was set up to measure the execution

speed of the computer modules in Cm*. This experiment involved timing the execution of a piece

of code stored in the local memory of each Cm. Once the program execution begins, the Kmaps are

not involved

.y 25

020.
Mean = 15019mS, Standard Deviation	 147.3

lo.

•
5

O
14.5 14.6	 14.7. 14.8 14.9	 15.0 15.1	 15.2 15.3 15.4 15.5

Time (Seconds)

• Figure 11: Histogram of execution time of 34 Cm's

The results show that all of the thirty-four computer modules tested had execution speeds

within 4.6% of each other, A histogram of the execution speed of the computer modules is shown in

Figure 11. The conclusion for this experiment is that every computer module can be considered to

have essentially identical execution speed,' therefore experiments performed on any computer

module should . be equally valid.
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4.4 Evaluation of clock reading compensation techniques (Method 1)

The methods to compensate the clock readings cannot be rigorously proved to produce correct

rpsult because they employ only heuristic approaches. 'Therefore, to validate our methods, an
attempt is made only to show that an accurate result for a 'nixed interval measurement (e.g., 0

seconds) is obtained under some reasonable system load.

The experiment to validate Method 1 consists of a process reading the clock four times in
succession. The first-two, clock reads are used to compute Ti, the second and third clock reads

measure a null experiment which has zero execution time. The third and fourth clock reads are

used to compute •T4. The synthetic workload is generated by replicating a large number of

processes distributed evenly among the clusters reading the system clock. The experiment was

performed for both StarOS and Medusa.

Figure 12 illustrates the result of the experiment using die StarOS 4-Read clock routine to

measure time. The solid curve is the distribution density of the compensated result, while thei
-	 dashed curve is the distribution density of the result before correction is applied The ideal result'le,

t

an. impulse of unit magnitude at 0µS. The mean compensated result was -1.90µS, and the

1	 improvement factor, k, was 0.8. Recall that for k < 1, , the variance of the result is increased The

same experiment using the 1-Read clock routine gave an improvement factor of 0.8L

ORIGINAL PAGE is
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Elapse Time (µS)
Reading StarOS clock

Figure 12: Measuring zero elapsed time using Method I with 4-Read routine
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Figure 13: Measuring zero elapsed time using Method I with Medusa 4-Read routine

Figure 13 illustrates the result under Medusa using the 4-Read clock routine to measure time.

The mean compensated result was 6.69µS, and the improvement factor k was 3.57. This represents

a great improvement in the variance of the results. The 1-Read clock routine gave an improvement

factor of 0.68,
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•	 4.5 Evaluation of clock reading compensation techniques (Method II)

The experiment that validates Method 1l consists of a clock process executing in a computer

module from the cluster where the experiment is performed, a process that does two successive

clock reads to measure the elapsed time (which should ideally be zero if reading the clock does not

take any time), and a number of pairs of communicating processes that send each other messages to

create a synthetic system workload. Each pair of these communicating processes is independent of

the other processes in the system, and their sole purpose is to generate load to the Kmaps through

which clock read requests are routed. The experiment process measuring zero elapsed time is

synchronized with the clock process. It signals the clock process to start reading the clock, reads the

clock twice successively, and then sends the results of the two clock reads to the clock process which

•computes the net elapsed time according to Equation (1).

Figure 14 shows the distribution density of the results of the StarOS experiment: The dashed

curve is the result of the measured reading (Tm in Equation (1) and Figure 10).. The solid curve is

the result after Method II has been applied (TA in Equation (1)). The results were taken from 1000

repetitions of the experiment. The mean value was -5.241tS, while the improvement factor k was

1.14. Tfie improvement factor for the.1-gead clock routine was 1.98.

ORIGINAL. PAGE 13
OF POOR QUALITY
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Figure 14: Measuring zero elapsed time using Method 11 with StarOS 4-Read routine
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Figure 15: Measuring zero elapsed time using Method II with Medusa 4-Read routine

E

When executing under Medusa, the experiment yields different results. Figure 15 shows the

distribution density of'the Medusa experiment. The mean value of the compensated result was

6.69pS and the improvement factor was 1.11. The improvement factor was 0.81 for the•1-Read

clock routine. .
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4.6 Discussion of results

As shown by theresult of the above eight experiments, the mean corrected value was less than

6.7µS. This provides an upper bound to the accuracy of measurement obtainable, It is concluded

that these measurement methods are not suitable for measuring elapsed . times that are less than fifty

microseconds because the relative error for small interval measurements is high.

Of the eight experiments performed, four showed improvement in the variance of the corrected

result (with the improvement factor k ranging from 1.11 to 3.57). The other four cases showed a k

less than 1 but greater than 0.67. Recall in Equation (4), it was shown that the worst case k would

be 0.5, while if the clock reads used for compensation were totally uncorrelated to the clock reads

that they were supposed to compensate, the value of k would be 0,67. In the Medusa experiment

using Method I with the 1-Read clock routine, the value of k was 0.68. This shows that during that

experiment, the system load was changing so rapidly that the execution time of any clock read was

essentially uncorrelated to the execution time of any previous clock reads or subsequent clock reads.

It is interesting to note that three out of the four, experiments using Method II resulted in

improved variance, while only one out of the four experiments using Method I resulted in the

improved variance. This phenomenon is mostly due to the difference in the type of system load. In

all the experiments using Method II, ,the system workload was the load created by a large numlier of

processes sending and receiving messages. Since sending and receiving of messages are lengthy

processes (on the order of a millisecond), the ioad of the system is trackable by the clock reads.

When'the granularity of the system load decreases to a duration comparable or shorter than the

time required to execute a clock read, the tracking of the system load using clock reads fails. This

was the case ,for the experiments to validate Method I. The synthetic workload was a large number

of processes reading the clock. Because the load on the system had the same duration as the clock

reads used to sample the load on the system, the tracking of the system load failed

A problem with Method I is that it does not track system load correctly when-an interrupt

occurs. This is because an interru during an experiment will either affect the clock read used to

obtain the measurement or the clock read used to obtain the compensator, but not both. This

explains why Method I did not work very well under StarOS since the StarOS processes, were

interrupted sixty times per second. Method II tracks well even with interrupts. This is because
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interrupts by the line time clocks are system-wide, therefore an interrupt affecting the clock read

used to obtain the measurement is likely to occur in the clock process as well. This means that the

extra time required to handle an interrupt during a clock read is likely to be compensated for.

4.7 Conclusion

In this section, methods have been developed to measure the performance of (m $ software

under system load. Two algorithms h; we been developed to yield more accurate elapsed dme

measurements than the clock routines can provide.

Experiments were performed to validate the measurement' methodologies. The variation of

execution speed among different Cm's was found to ' be around 4.6%. The long term algorithm

developed to compensate for clock readings has a very predictable behavior and no experiment was

perforned to test its validity. - The short term algorithm was implemented wilh two variations

- Method I and Method II. Experiments were set up to evaluate both methods. The base line

accuracy of these methods was around 63µS. Therefore these methods are not suitable for

measuring short duration events (50µS or, less), tut are perfectly suitable for measuring longer

-_'	 duration events such as operating . system calls.

It was noted in Section 3 that the 21LS resolution of the clock was not usable under heavy system

loads because of the uncertainty in communication delay, and that higher values of clock tick could

'	 be used. In this section, it is shown that the accuracy of the clock reading results are so improved

that the 21AS resolution is usable.

Because Method I was theoretically superior to Method II, it, was given the , tough ' task of

executing under system load of very small granularity: Results showed that Method I was unable to

perform properly in small granular system loads. Method II was tested with a more reasonable load

4 and was found to perform quite well.' The short term algorithm using Method lI performed better

than the long term algorithm would have performed in three of • the four experiments tested

Because Method I is more desirable than Method II in that it does not affect the experiment under

measurement, it is believed that Method I should perform at least as well as Method Il under a

reasonable system load provided that there are no interrupts. When there are interrupts, Method II

is the preferred method.
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An important conclusion is that it is not possible to present a clock compensation scheme that

works under arbitrary system load because the clock readings can only sample the system load at a

finite ►•ate, The reader is encouraged to develop leis own cluck compensation technique. However,

he should test his scheme to ensure that it tracks the system load reasonably well. The zero elapsed

time measuring experiment is recommended for such testing. Below is the procedure for testing a

clock compensation method.

DO
Pick a clock compensation method;
DO 

T'ry it out in experiment and measure zero elapsed time;

IF results not satisfactory THEN
Fine tune the method;

UNTIL method is optimal or results satisfactory;
UNTIL exhausted all methods or results satisfactory;

•

5 An example experiment

This experiment evaluates two performance measures of a message-based operating system..The

first measure is the latency of the message mechanism . Latency is defined as the time elapsed from

i	 the moment a sender begins to send a message to the moment the receiver receives the message.

The second measure is the execution time of a message-based remote procedure caU (RPC).

While a message mechanism is often provided by an operating system as a primitive for'

interprocess communication (1PC), remote procedure-dalis are often provided at the language level

[7] [14]. The two are related in that RPC's are often built on the message mechanism. The remote

' procedure call of this experiment consists of a client who sends a message containing the arguments

for the call, and a server who receives the message, performs the specified function, and returns a

message containing the result. The time elapsed from the moment the client begins to send a

,message to the moment it finishes accessing the returned result constitutes the execution time of the

RPC. While this simple RPC does not perform any type checking, error recovery, etc., it is a
simplified model of the RPC's of real systems and can help indicate the RPC performance of a

system.

1
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5.1 Organization of experiment

The experiment consists of N client/server'pairs for Nis greater than or equal to one, Below is

the pseudo-code of such ik Oilent/server pair:
I

client:
prepare argument
Ti	 server:
send the arguments -------------------> wait for a message

T2
access parameters
perform computation.

wait for'the results <------- --------- send results
access results
.Y3

"t'. A

The latency of a message is 72 - T1, while the execution time of the RPC is T3 - T1. For the

latency measurement to be meaningful, the server must be blocked before the client sends a

message.

The experiment is implemented under StarOS and consists of a master process which spawns

elient/server pairs in .locations specified, by the user. Since both processes of a client/server pair

reside in the same cluster, all communications within a client/server pair are intracluster. Of all the

client/server pairs spawned, only one pair reads the clock to measure performance. This pair is

responsible for sending all its results to the master process. The master process ships the results to a

VAX /UNIX system via the Ethernet for storage and wialysis. The clock compensation technique

used is Method II of the short teen averaging algorithm as presented in Section 4.

5.2 Experiments

The experiment was performed with different levels of load ranging from one client/server pair

per cluster to three client/server pairs per clusters. The total number of words accessed varied from

0 to 200-in increments of 50. All measurements were repeated 512 times.

The incasurement of zero elapsed time was performed during each repetition of the experiment

as a run-time check to see how well the clock compensation scheme was tracking the system load. It

r	was found that the'mean error r was no worse than 4.9µS, while the improvement factor was between

0.74 'and 0.78. This low improvement factor was due to, interrupts that were not trackable by
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Method 1. By simulating the situation that there are no interrupts, the improvement factor was •,

between 1,01 and 1,22,

5.3 Results 1
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5.3.1 Latency measurements

•
1
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Figure 16: Latency of StarOS messages in the experiment,	 P

Figure ;16 illustrates the latency of the 'StarOS messages in our experiment. 	 "The solid curve

shows that latency is constant at approximately 7050µS and is independent of the total number of

message words accessed. The dashed curve shows that when two client/server pairs, are executing

in the same .cluster, the latency rises to 7960µS because of increased Kmap load. 	 As the total {

number of message words accessed increases, more time is spent accessing remote memory,,

„•„- -	 resulting in fewer RPC executions per unit Time, . This causes a decrease in tie rate of message

operations, resulting in a decreased latency. The broken curve shows that latency is 9615µS when

' r
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three client/server pairs am executing in the same cluster. The vertical bars at each point . or the

curves show the magnitude of the standard deviation at that point..

:5.3.2 Execution time of RPC f.
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OF POOR QUAUTY

y 3000v

t 28000

E26000."

24000	 ••^..^"^ ^	 , -IV

W22000	 ,^..^..^••^"	 • • 40

20000 •^	 . -'^'

18000	 •

i
16000

a---e 1 Pair
14000	 0- - -0 2 Pain

x••—••x 3Pairs	 t

1111000 .	 t

(0000	 •
O	 50	 100	 150	 200	 250

Total number of words accessedi

Figure 17: RPC execution time versus the total number of words accessed

Figure 17 shows the execution time of the remote procedure call as a function of the tow:

number of words accessed by the, client and the server. The execution time of the call is a linear

function of the number of words accessed. The solid curve shows the mean execution time of the

RPC with the number of message words accessed ranging from 0 to 200. The slope of the solid
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curve is 49.9µS per word. The dashed curve shows the result. of f 4,c. ^ me experiment with two .

client/server pairs executing in a cluster. The broken curve shows the resuiL; for three c'jient/server

pairs.

.5.4 Conclusion

In this secticn, an example of measuring StarOS message latency and message-based RPC

execution time was presented. 	 This example experiment implemented two ideas developed in

Section 4. First, it generated system workload by replicating the experiment in different parts of the

system. The number of replicas and how they were distributed in the system w,-.re both controlled

by the experimenter at program run time. Second, the experiment employed one of the clock

compensation techniques developed in Section 4. 	 The addition of the clock compensation

technique into the basic experiment required only the addition of a subroutine which computed net

elapsed times given four time-stamps.

' 6 Conclusion
'sa*y* e he's ;i ..

This project discovered the erratic behavior of the Cm* clock reading software and presented an

alternate set of clock reading software. Additionally, it recommended that the length of a clock tick

should be set to be commensurate with the variation in communication delays. It proposed- •that a

Kmap operation be provided to latch the clock valtie and to read the clock register indivisibly.

Most important of all, if provided a clock compensation scheme for measuring elapsed time with an

accuracy much greater than that provided by the clock reading software.

' ,. However, in developing the mathematical model of the clock compensation techniques, it was

assumed that the correlation between the time elapsed for two successive clock reads and the system

load was non-negative, and that, the autocorrelation of system loads separated by short time

intervals was non-negative. The validity of these: assumptions should be investigated. Also, the

This value must not be interpreted as the intracluster memory access time for StarOS. Rather, it is the time required
for an iteration- through the following Bliss-11 program loop:	 f

_ INCR k FROM 0 TO .1 reused = 1 DO
' temp- .ResultPage[.k];

This loop compiles into six al-11 instructions, with one of tl;em perforniing a remote memory reference.

L ,..

4'

i
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clock compensation technique fails when the granularity of system load is too small. At. ,ireserjt,,

little is known about the gri nularity and the time profile of system load. Further study is required

to gain this knowledge.

Of more general concern, this project stressed the importance of real-time clock designs in

multiprocessors since they greatly affect the clock's usability. Future multiprocessor designs should

include a globally readable clock that is,accessed through a special bus unaffected by system load

and contention. An example of such a "clock is the system clock of C.mmp multiprocessor. When

such a design is not feasible, the clock should be of the same width as the data bus so that the entire

clock word can be read in one access. If This is not practicable, there should be an instruction that

latches the clock value and reads it indivisibly. The implementation of such an instruction should

be straight forward when- the clock register size is compatible with one of the machine supported,

data types, since multiprocessor should allow indivisible read/write accesses to, all machine

supported.data types to guarantee data consistency. Thus the instruction in essence is simply a latch

operation followed by a read operation.

For multiprocessor systems using a single global clock and experiencing the same problems

experienced by Cm*, this project provided a general scheme for measuring elapsed time accurately.

The study of Cm* clock performance shows that system load can be gauged by reading the system t '

.'` clock. -This is because reading the clock exercises many of the system resources (Map-bus,

intercluster bus, Kmaps, etc.). This idea of exercising system resources *to measure their load is

worth exploring.

ti

k'
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