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Abstract

A theory of deep point defects imbedded in otherwise perfect semiconductor
crystals is developed with the aid of pseudopotentials., The dominant short-
range forces engendered by the impurity will be sufficiently weakened in all
cases where the cancellation theorem of the pseudopotential formalism is oper-
ative., Thus, effective-mass-like equations exhibiting local effective potentials
derived from nonlocal pseudopotentials are shown to be valid for a large class
of defects. A two-band secular determinant for the energy eigen-values of deep
defects will also be derived from the set of integral equations which corresponds
t.o the set of differential equations of the effective-mass type. Subsequently,
the theory in its simplest forwn, will be applied to the system Al,Gaj_xAs:Se.
It is shown that the one~electron donor level of Se within the forbidden gap
of Al,Gaj_yAs as a function of the AlAs mole fraction x reaches its maximum of
about 300 meV (as measured from the conduction band edge) at the cross—over
from the direct to the indirect band-gap at x = 0.44 in agreement with recent

experiments.
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1.

Introduction. One of the ocutstanding problems in modern day solid state

physics countinues to be the determination of the properties of "deep"
impurities in otherwise perfect semiconductor crystals., By "deep" point
impurities we mean either substitutional or interstitial foreign atoms
embedded in the host lattice or just the absence of a lattice atom, a
vacancy, with the proviso that the defect is capable of binding either one
or more ele¢trons or one or more holes in various energy states which

are lying deep inside the band-gap. This distinguishes deep impurities
from donors and acceptors, also known as shallow impurities, their energy
levels being situated very close to a band edge. Whereas for some time now,
the theorotical understanding of shallow levels has reached a quite satisfac-
tory state based on the hydrogen wmode, the difficulties encountered in

the study of deep impurities largely stem from the existence of a relatively
strong and vather short-range potential which valence electrons experience
in the vicinity of the dwmpurity. This is particularly true for isoelec—
tronlc impurities since there exists no Coulomb tail in this case, the
potential being entirely confined to the central cell. The major difficulty
presents Ltself in the facht that the extremely short-range nature of the
interaction potential with its councomitant abundance of high Fourier cow-
ponents In wave véctor or crystal wmomentum space prevents the applicability
of cffectilve~-mass theory usad so successfully in dealing with shallow levels
(donors and acceptors). Much progress has been achieved however during

the last decade concerning the deep-impurity problem. Here is not the

place to review past achievements in the theoretical understanding of deep
impurities nor do we want to discuss in any detall ‘the importance of deep

impurities as recombination centers governing the lifetime of electron-



hole pairs, a quantity so important for semiconductor device technology.
Suffice it to cite recent review articles on the subject of both the
theoretical understanding, or lack thereof, and the importance for device
technology.1> The reader will also find a plethora of references on the
subject in the literature cited.l)

As we have mentioned earlier, it is the strong, short-range potential
engendered by an impurity which constitutes one of the main difficulties
in solving successfully the impurity preblem. This situation may be
ameliorated by the use of a pseudopotential formalism, and the aim of this
report is to gilve an account of a theory of deep impurities encompassing
such a formalism. To be sure, there have appeared in the literature a
number of accounts on the application of pseudopotentials to the impurity
problem.3)22)34) The reason for the idea to employ pseudopotentials in
the kind of problems we are discussing here lies in their very nature.4)
Pseudopotentials and pseudo wave functions define a mathematical transfor-
mation of the original Schrodinger equation which, while leaving invariant
the eigen-values of the energy, modify the wave function and the potential
in a certain desirable manner. By orthogonalizing wave functions belonging
to higher quantum states (valence bands) to the tightly bound inner electron
shells (core states), this transformation achieves a weakening of the
original potential iun the inner core, preclsely where the original
potential, as seen by an outer electron, is strongest. This so-called
cancellation theorem has, as a consequence, the agreeable feature to
conconitantly weaken the high Fourier components in a crystal momentum
expansion of the perturbed impurity wave function, thus making it possible

to use effective-mass theory in cases where hitherto it was thought to



be inapplicable. The ; “oneering work of Pantelides3)22) bears ample witness
to the truth of this conjecture. i

In this report, we again tackle the problem of deep impurities with the aid

of the pseudopotential formalism. In contradistinction to previous work3)22),
we stay in the Wannier representation throughout. The advantages are twofold. i
Firstly, it 1s easier to ascertain thc validity of -~ always inevitable ~
approximations made during the course of the derivation, and secondly, it will
turn out that the equations governing the envelope functions peculiar to the |
impurity problem become local partial differential equations in contrast to
the nonlocal equations derived previously.3)

Section 2 of this report concerns itself with pseudo~Wannier functions of
the perfect crystal which form the basis for an expansion of the impurity wave
function., Although pseudo wave functions and pseudopotentials are not unique
generally, we confine ourselves to the use of the Austin form of the pseudo-~
potential6), in which case there exists a unique one~to-one correspondence
between ordinary (true) wave functions and pseudo wave functions. The pseudo-
Wannier functions will turn out ts be less localized than the ordinary Wannier
functions, and to what degree this might be detrimental will be discussed.

In section 3, effective-mass type equations for the motion of electromns in
the presence of a point impurity will be derived. The role of screening of
the bare electron-ion potential mediated by electron—electron interactions
will also be discussed. The main part of section 4 deals with the derivation
of a secular determinant for the energy eigen-values from the set of integral
equations, corresponding to the differential equations found in section 3,

by a method first introduced by Bassani et al.39) Because of the use of

pseudo-potentials, the number of bands to be considered in setting up the



secular determinant may be limited to but a few. In section 5 finally, the
theory developed in section 4 will be applied to the system Aleal_xAs:Se.
Since selenium is a donor substituting for arsenic, an occupied level fairly
close to the conduction band will be present so that the theory in its simplest
form, taking into account only the conduction band with its various equivalent
and non-equivalent minima without intervalley mixing, seems to be adequate to
compute the donor energy level as a function of x,the mole fraction of AlAs

in the compound under consideration. It is found, in agreement with experiment,
that the magnitude of the energy level exhibits a maximum of ~300 meV at

x = 0.44, 1.e. at the cross-over from the direct to the indirect band edge.

The calculations reported here, have been performed by means of a variational
principle and constitute one of the few cases in which computational labor

could be held to a minimum.

e
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2. Preliminaries

Before we embark on the general theory of imperfections, let us review
briefly the pscudo-potential formalism as i. applies to a perfect crystal.

Let the Hamiltonian of the perfect crystal be

H=T+V R L)

where T signifies the kinetic energy and V the periodic potential energy with

the property

v(r + Ba) = V(r) . (2)
Here Ba = nga) gj, a Bravais lattice vector, is defined by the arbitrary
J
integers ngu) and the primitive vectors Qj of the unit cell. For crystals con-

sisting of a single kind of atom, for instance silicon, we have

DRCEE S , (3)

o

where the sum runs over all sites ga within the periodicity volume V, and v(g)
signifies the potential energy of an individual ion located at the site Ba' For
crystals containing more than one kind of ion within the unit cell, for instance

GaAs, we may write

Vszz:vj(y— Boz —bj) . (4)

Swmmane o
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In this case, the additional sum runs over the various fons j located at positions

91 within the unit cell defined by the lattice vector R, With the definition

e By Z"j (f " By ” ‘~’J> ’ 3)

3

eqs. (3) and (4) become identical, and no mention need be made of the complica-
tion arising from having more than one species of ifons within the unit cell, at
least as far as the development of the general theory is concerned.

Schrodinger's equation now reads

(T + v)q;nk = En(l“s)q’nlg . (6)
The Bloch functions,
BTSSR
wnls = e u“}S(E) > (7)

therefore possess the energy eigen-valucs En(g),with Ik the crystal wave vector

and n the band index in customary fashion. The quantity Uy is periodic in Bu and
therefore satisfies an equation identical to eq. (2). It is to be stressed that
we imply the Hartree-Tock one-electron approximation when writing eq. (6)2). The

)

9
potential V is therefore by necessity non-local.“’ But thesc complications do
not concern us here, since we assume that the unperturbed crystal eigen-values,
En(k), are given, known functions of their parameters.

For reasons which will become apparent later, we will transcribe eq. (6) into

the pseudo-potential formalism in the Wannier representation (similar calculations
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3)

have been performed by Pant:tides™ ). The reason for "pseudizing" the potential
(3) are amply described in ref, 4. Here we can only give a very brief outline,
Suppose we separate the eigen—functions,wnk,into those belonging to the core
states,wck,and those belonging to the valence and conduction bands:kas). The
inner core electrons are usually strengly localized at the atomic sit;s whereas
the outer valence electrons form broad bands and are therefore delocalized to a

greater or lesser extent. To each wave function,ka,satisfying eq. (6), we now

associate uniquely a pseudo wave function ¢vk satisfying

~

(T + V)¢ vk ,g.‘ wck ckl = Ev(g)¢vk . (8)

The eigen—value,Ev(g),of eq. (8) is identical with the corresponding one for ka

corresponding to eq. (6). Furthermore, the connection between ¢v and wv is given by

DRI 9)
c

where the coefficients,scv(g),satisfy

<Ec<15) - Ev<15))scv<15) - Z“”cg“’“’c'gﬁc'v(‘f) = <"’c15“’!“’v1; . (10)

c

We have used the familiar Dirac notation throughout. As can be seen from

6)

eq. (8), we have used the Austin form for the pseudo potential. From eq. (9),

it follows that

Boy(K) = ’ (11)

AL

s
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because wck and ka are orthogonal., Sometimes the argument is turned around by

writing

o = ™ D el b Ve (12
c

which shows that with any choice of ¢Vk,the wave function ka is made orthogonal
to the core states wck by construction. This is important for practical calcula-
tions where convergence of a secular determinant toward a vclence band energy
eigen-value rather than toward a core state is desired or where a variational
principle is desired to "home in'" on a valence band energy rather than on a core
state energy, the latter being several keV below the valence-band energies. As
an added bonus, the convergence of the secular determinant in a plane-wave expan-

sion, . &'~g simple plane waves to represent the wave functions ¢vk’ becomes much

more rapid when using the device of eq. (12). Known by the name of the orthogonal-

ized plane-wave method (OPW method) in this case, it had bLeen proposed by Herring

long before pseudopotentials became fashionable.7)8)

9)

As seen from eq. (8), the pseudopotential is nonlocal”’, but we will see

later that, nevertheless, the impurity problem formulated here within the

pseudopotential approach will give rise to a local effective potential. The true

advantage of the Austin pseudopotential employed here consists of the validity of

3)

This theorem states that the pseudopotential of

11
eq. (8), which we may rewrite concisely as )

the cancellation theorem.

ELED SRR )

c,k

~

vt e T N
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i considerably weaker In the core regions than the original potential V which

12)
Ls rather strong there. 2) Ihis 1s of parvamount importance for the impurity

. \ 3)14) 34
problem,as c¢learly reallzed some time ago.‘”hnu But before going into this
matter, lTet us transeribe eqs. (8) and (10) into the Wannier yepresentation.

The Wamnier functions are deflined by

-1/2 RRLY
wn(u) o N Q w“K ) (L4a)
Kk

with the faverse transtormation being

. kR
: AR
e © N RN (O R (1L4b)

84

The normalization adopted hore {s the Tollowing: 4 U B .
‘ l B gty “an kK

N N
E :Ulk Ry - thlo’ N ujk % = N E Sk[V , whore N Is the number of unit
¢ L—‘ A \n

k N n

cells in the quantisation valume V, Kn fs a reciproeal lattice vector and
. . : . 10) © o not
sums over koondyoextend over the Tiest Brillouin zone. Alsa, for a poten-

tial as plven by eq. (4), the expression (14b), for imstance, becomes

_.'/;) ik'l{! (}) ‘
T N T E 0 ' E W (v - R‘ - hl)' For simplicity of notation, we
\ 4 B

34 _’

).

Uy
write w () = w (1 = R ) = w(‘j (r =R =-1b
n n w n : AU

J

9
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Analogous to egs. (14), the Waanter paseudofunet long may be {ntroduced via

. =1k R
L 51/312 : . v
wv(«) w N I\ ‘¢vk (1ha)
k
and i
. ke R
3 2 \ ) i
*vk a N L2 E © ‘Wv(ﬁ) , {1%h) f
[\ ¢

Note that the band index n of eqs, (14) encompasses all posstbititiva (core and
valonee states) wheveas the band dndex v fn equ, (15) 18 reserved to valenco
states only,

Introdue Ing now the Fourler transtorm o the vnvfflvlﬂutﬁ,ﬁvv(k), defined In

e, (10) as

-l mlk-R‘
ﬁvv(u) = N E ﬁvv(k)" . (16a)
k
with the faverse
1k‘R\ i
ﬁOV(k) @ E : “vv(‘)“ : (161
\

we obtain From eqas (9 and (15 the connection between the pseudo-Wannior funct fons

. 16) ,
W oand the regular Wannier functlons w y namely the relal Tonship

Nv(a) 2 wv(w) + E Hcv(“ o \)wv(\) . oy

Gy

10
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Sinve the Wannder funet bons, wv(“)‘ are Toaealtsed about theiv respect tve atomie
ultvu,\)) we not fee that the prewda Wannfer tu“c(iunn,wv(w).urv Lovalfsed aboat
Al sltes an the sam over y o o (8D reveats, Rowever, thia (s acvcompl ishad
with varving sunevess depemding on the magnitude of the coetd fetoats ﬁvv(w <y ) an
a bunet fon ol oy tor Pised oy T onder to transeribe equa, (B and (1) into the
Wannder vepreaentat ton,we will emplov the tollowiog device,  Bevause the potoan-

tial Voda peviodie g, (), we have (o peneval that

‘“‘\\“\~“'\”“"\\\\' - \\"\’ikw‘"n «‘\l\'hm\‘ . ()

This fa the veason whv, noogy (B, the aum vver the cote atitor only extaada aver
the hand fades o keeptag K Phede We now velas this veguivement s Pquat foan (1)

and (M) then go over Ingo

) Z AN ) 1)
0 vy . . N i FE PO 1 B
ey \‘\"‘\ v who \‘\“\ "\ ! vk l\‘u \’\‘l\» {

and

A - ] N Ok Y . . "x 1)
vl §“\"l\ ‘ E : '\‘\'u\"‘\ )\‘\‘}\ A
\‘1} ’

Pquat fon (10) bhocomes analoponaly

..‘ * = \\ W 8 \“- e ke Y ARt % u ooV !"g': »
(‘P(k ) lv“‘)’vv(“‘ ) E ,; ‘vk'i\!“c‘k“ Hnp A VgV vy '

v

1"
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Equations (19) and (21) are, of course, equivalent to eqs. (8) to (10} provided
that eq. (18) is used.lg) Now the transformation into the Wannier representation

with the aid of eqs. (l4) and (15) becomes easy. But first let us define the

Fourier transforms of the band energies,En(})l7)18), as
Y R
é%(m) = N En(g)e (22a)
k
concomitantly with
ik*R
EC) =Y &e %, (22b)
n'~ [ 4 0
o
Introducing the Fourier coefficient,
-ik*R +ik“+R (23)
" S p SRR Y
BCV((!,Y) =N 2 B(‘.VO’S’l"\ Je ’

Kk

we obtain from eq. (21), after some algebra,

E [@;(a = VB @8 - & (e - ) i%w(s:,w)] - E <o D V] L8 B LG, 8) =

8 ¢,

“WC(\)‘VIWV(“)>'

(24)

12
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If we now restrict ourselves to the symmetry of eq. (18), ECV(Q’B) becomes only a

function of the difference (@-B8). In this case, eq. (23) goes over into eq. (l6a),

and equation (24) becomes

> (gcm - é°v<a>>éw<a R I AL I OE R

N '8’

<WG(Y)iVlwv(a)> .

(25)

It is eq. (25) whieh is the counuerpart of eq. (L0) in the Wannier representntion.
A direct transformation of eq. (10) with the aid of eqs. (l4) would have met with
difficulties. This is why we first relaxed the symmetry condition of eq. (18) a~d
imposed it after the transformation had been performed.

The transformation of eq. (19) into the Wannier representation follows along

the same lines and is given by

(T + V)wv(a) -—Z wc(v)‘:wc('y)iV[wv((x)> =Z é’v(y - a)wv(y) . (26)
Y

e,y

Before we go to the heart of the matter, the impurity problem, let us
investigate the meaning of eq. (17). The pscudo-Wannier function, eq. (17),
evidently is localized about all sites, as already mentioned. The coefficients,
ﬁcv,which determine the localization about centers other than the main site «,obey
eq. (25). Now, in order to deal with impurities, particularly deep centers with
their strong localized potentials, one wishes to employ wave functions which are
themselves localized so that a perturbation scheme of one type or another may
converge rapidly (it is hoped). At the same time "pseudizing' the potential

weakens its central core, so that high Fourier components in k-space become small,

13
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and approximations patterned after the effective-mass approximation may become
acceptable even for deep centers (bound energy states deep in the forbidden gap
between valence and conduction bands). But at the same time, the pseudo wave func-
tion of eq. (17) becomes somewhat delocalized. How much delocalization takes place
is governed by the coefficients écv' Because of the strong localization of the

core Wannier functions wc(y),we have

w NVl .(@)>~ v .6 (27)
- ) 20)
to a very good approximation. Putting a - vy =1 and
<w (M ]V]w,@)> = v (@) (22)
as well as
&) - &,(0) =8, 60 (29)

equation (25) goes over into

ZACV c‘o‘”(Y)Bcv(c -Y) -z VCC,BC,V(C) = VCV(?;) . (30)

»

Y c

Although it is difficult to solve eq. (30) exactly, it is quite easy to see, at
least qualitatively, that the dependence of écv(c) on Z, the distance between any
two lattice sites, is governed by ch(g). For if we put the RHS of eq. (30)
equal to zero, the only solutions for the coefficients E are écv(c) = 0, since the
determinant of the coefficients of the ensuing linear equation for the quantities

Ecv(c) does not vanish in general.Zl) Introducing the potential matrix element

VCV(E), we see that écv(c) will become proportional to VCV(C) and in higher order,

14



will become a function of chvc,v, etc. But from the definition ch(;) of eq. (28),
we note that, due to the strong localization of the corec state wc(y), the matrix
element ch(c) will exponentially decay with increasing ;. Therefore, the
delocalization inherent in eq. (17) is rather weak and may be ignored in many

applications.

3. The Point Imnurity Problem

Suppose now that the perfect crystal contemplated in the previous section
contains an isolated impurity. This impurity may be a substitutional or
interstitial atom or it may be a vacancy. Whatever it is, it will give rise to
an additional potential energy which we denote by U. Rather detailed analyses
of the structure of U have been presented by several authors, particularly for
81.3)22)23) It is falrly straightforward to generalize this analysis to other
semiconductors. But we will treat U for the time being as a given function of
all its relevant parameters, in particular its spatial coordinates. In order that
no confusion arises, let us introduce the following notation. All unperturbed
quantities (U = 0) will be annotated with a superscript zero. Therefore the
periodic potential V of the previous section now becomes VO, the Wannier function
wn(u) becomes wg(a), the new quantities remain unprimed, etc. Also, since the
implantation of a foreign atom (or removal of a lattice atom) will alter the
equilibrium positions of at least the adjacent atoms from Ba to g& say, we
denote this fact by a primed Greek letter. A core function wg(a) of the
unperturbed lattice now becomes wg(m’L for instance. We assume thal the imper-
fection is located at o = 0 (Ba = 0) or, for an interstitial atom,in the immediate
neighborhood of & = 0. Incidentally, the collection of quantum numbers c for the
core states differs in general for foreign atoms from those of the host atom
except of course for isccoric atoms. This fact must be duly taken into account,

but we will not mention it explicitly in the ensuing formalism.24)

15
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With HO =T + VO, Schrodinger's equation in the "pseudized" version for the

-

system-perfect lattice-plus-impurity - reads now, in analogy to eq. (26),

1+ 0 - Y v e e e = E (31)

v
e,Y

where the sum runs over all core states and all sites y”. We propose to solve

eq. (31) with the following ansatz:

! =Z Pl . (32)
v,a

We note that the sum extends only over valence (and conduction) bands, and the
positions a are taken as those of the unperturbed crystal. This latter fact

does not constitute an approximation, since the envelope functions Fv will depend
parametrically on the a”. The pseudo-Wannier functions wg do not form a complete
set unlike the ordinary Wannier functions, wg. Had we expanded ¢ into the com-

plete set wg, we would have had to include core states n = ¢ in the expansion

even in the limit U = 0, since for U = 0, eq. (31) goes over into eq. (8)

(or eq. (19)). 1In this case, any of the WS themselves become solutions of eq. (31),
and according to eq. (1l7), even then core states are present. In other words, there
would be no hope to confine an expansion of Y into regular Wannier functions w

to include only a few valence bands, since even in Oth order, ¥ would already con-
tain a sizable amounut of ~ore levels. The ansatz (32) truly represents an approxi-
mation in anticipation of ..he need for only a few terms in the sum over the bands.

From the orthonormality of the Wannier functionsl7), we have

0 0 _ o
<wn(a)[wn,(ﬁ)r = Gnn’oaﬁ (33)

16
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and from eq. (17), it follows that
0 0
“ = . ’[
wv(u)lwv,(ﬁ)” Sov-San (34)

Multiplying eq. (31) by ‘:wg(d)‘, using eqs. (22) and the well-known relationm)

@ Ol =8 L E B -w (35)

we obtain a set of equations for the envelope functions Fv(a):

E é%(ﬁ - a)FV(H) + E fwg(u)lulwg(ﬁ)ﬁFv.(ﬂ) - 2 <w3(u)|wc(\‘)5
P?

v, R vyt Ry
Noww (\')lvO + UIWO,(B)‘*F S(B) = BF (o) . (36)
e \Y v v
Since the core states are well localized, we make the further approximations
Gwo(a),w (v )>= & ,ﬁwo(u)lw (")~ (37a)
v ¢ WYy Y o
and

. o\ [0 0 ve m s A 1y0 0 ,ore
sw_(y Yv© o+ ujw, - (R) O NG NINASE: ulwv,(s) : (37b)

The meaning of these approximations is given in the following. The equilibrium
positions Bd of the host lattice are slightly displaced to g& = Bu + 68& due to the
perturbation U. Owing to the strong localization of the core states about their
respective sites and also to a lesser degree the localization of the Wannier func-
tions for valence bands around their own sites, the matrix elements (37) are

expected to be largest when the sites almost coincide. We presuppose that

SRX/R <+ 1, so that there is no intermixing of sites,
U W

17
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Next we consider the matrix element,

Mg = <w3(a)|UlW3,(B)> . (38)

Away from the impurity (we remember that the impurity is located at o« = 0

18)

(R, = 0)) the potential U is smooth, so we may approximate we have
o Y

MaB ~ GaBU(a) . (39)

In the vicinity of the impurity where U varies rather strongly, this approximation
is not allowed and the matrix element must remain as it is. Equation (39) tells us
that the second sum over B on the LHS of eq. (36) reduces to a single term if « is
sufficiently far away from 0 (the position of the impurity).

Finally, with the well-known expression

E (?V(B - OL)FV(B) = Ev(-—iVa)Fv(oL) , (40)
g
(which follows from e¢s. (22) together withl7)l8)
13Y'Va
e F(y) = F(y + o) , (41)

whare Voa signifies the gradient with respect to o (or 130‘)) we obtain the follow-

ing set of equations for the envelope functions Fv from eq. (36):

Ev(—iVa)Fv(a) +2 <w3(oc)l{U —Z |wc(on‘)><wc(a‘)|,VO +U lwg,(a)>Fv,(oc) = EFV(OL)
. c

v

(42)

18
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Before eq. (4%) can be put to use, the potential U must be specified. But first,

some general properties of eqs. (42) which are independent of the precise form
of U may be pointed out. If o (or gu) is considered a continuous variable, as

is customary,17)18) eqs. (42) constitute a set of local partial differential

equations, although the :inderlying theory is essentially nonlocal. For an iso-

coric dmpurity, we have

,“ ,.v,..u,,h
<

v, (") = wg(u) (43)

for all o, even in the neighborhood of the impurity cell, and eqs. (42) go over

into ;E

i o S 0 0 ) f = LI E
E (-1V )T (a) + s -wv(u)|U‘Wv..(J) F.@) = BF (@) (44) |
v’ 3

owing to the orthogonality of the valence [unctions v, with the core states W,
Furthermore, far enough from the impurity when o becomes equal to o”, the core
states w_ also become equal to wg,and again eqs. (44) become valid. This is true
whether the impurity core states are isocoric with the host core states or not.
Therefore, the pseudopotential of the interaction matrix element in eq. (42)
becomes effective only within the central cell of the impurity center and will
effectively considerably weaken the interaction potential U precisely there
where it is strongest. This is another manifestation of the cancellation

) Similar findings have also been reported by Pantelides.3>l&)

theo‘:em.4
The interaction potential energy U consists of a number of terms. Signify-

ing the interaction of the valence electrons with the rest of the system and with

T ST

each other, it consists of the bare interaction with the nuclei and all the core

19
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states Ub’ together with the self-consistent electron-electron 1nteraction.25) In
the one-electron approximation in which an electron satisfies the Schrédinger
equation, the analog of the "pseudized" version of eq. (31) is
0
H +UVy=Ey , U= Ub + Ug (45)

in which the potential U is given by the sum of the bare (or external) potential
Ub and a polarization or screening potential Us' This latter potential can be
thought of as being due to the readjustment of the electron configuration which

existed prior to the application of the external potential U_ into a new configura-

b
tion, In the simplest case, the Hartree approximation, Us’ is given by

(46)

U, = e? (‘dBr’Ig - g’l‘l(lw(g')lz - Iwo(g')‘z)

where ¢ is the solution of eq. (45) and wo signifies the solution of eq. (45) with
Ub = 0, The solution of the non-linear system of eqs. (45), (46) constitutes what

is generally known as the self-consistent solution and the potential U=U +Uq as the

b

self-consistent ;otentilal. The derivation just sketched, when followed through in

9
detail, taking due account of the occupancy of all quantum states“ﬁ), results for
each Fourier component of the bare potential Ub’ in a correspondingly screened

potential

U(q) = U (q)/e(q) . (47)
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The Fourier transform of Ub (r) is defined by Ub(g) ] V"l d3vUb(5)e-19'f with
the inverse Ub(g) = E Ub(q)eis'f where the sum over q extends over all of q

q
space, not just the 18t Brillouin zone. The choice of discrete values for q

1s consistent witl, the normalization imposed by the use of a periodic quanti-
zation volume V throughout this work.

A particularly simple expression for the dielectric constant ¢ is obtained iIf
a) eqs. (45) and (46) are solved in 18t order perturbation theory (linearization),

27)

and b) if Umklapp processes are neglected. It is given by

2 N P
‘:(Q) =1 -~ 9 Z <¢’v41‘:\|e S S""vl}-}oq>| Ev(
kv,v” N M

In eq. (48), the quantities Fv(k) are the occupation numbers (1L oxr 0) of the
unperturbed quantum states v, k and the EV(E) are the usual valence and conduc-
tion band energies. The neglect of Uanklapp or central field corrections seems to
be justified if the bands involved are sufficiently broad. Explicit calcula-

28)

tions” have shown that Umklapp contributions are indeed small in most cases of

')9)

interest.” Underlying expression (48) for the dielectric constant is yet
another approximation te all those already made. It is the assumption that
the polarizability of the core states may also be neglected. This is expressed
by the faet that the summations in eq. (48) extend over valence bands only. But
this neglect is justified since the core states are tightly bound and therefore

much less susceptible to the influence from the outer electrons. To summarize, the

dielectric constant given by eq. (48) has been obtained under the stated

21
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approximations by solving the self-consistent eqs. (45) and (46). Equations (48),
being based on the Hartree approximatien, by necessity ignores exchange and corre-

25) 30)

lation contributions , but thesc contributions give rise to small effects

which we ignore,

One more remark is in order. The analysis for the screening of the bare

putential U, outlined above is based on eq. (45) which is the analog of eq. (31)

b
but does not contain the pseudopotential included in eq. (31). The pseudo-

part of the potential becomes significant only within the central cell at the
locations of the lattice and impurity sites owing to the presence of the core
states wc(a‘). It is precisely in these regions near the ionic sites where
Unklapp, as far as the dielectric constant is concerned, becomes important.

But we have seen that Umklapp is negligible for the broad valence bands we are
considering here. Therefore, as long as we are justified in using expression (48)
for the dielectric constant, we do not have to screen the bare potential Ub at

all as far as its appearance inside the nonlocal pseudo-part of the total

potential is concerned. We may therefore write for the total potential

c

V(@) = <w‘v’<a>l[ﬁ =D @) @)V @> o)

where

U (q) .
~_§ _b=7 igrr
U= (@) e (50)
” k

22
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is the sereenced bare potentlal with ¢ given by eq. (48). Equations (42) for the

envelope funetlons Fv(u) now become

Ev(_iva)pv(“) + E Vvv.(u')Fv,(u) B EFV(H) . (51)

.

v

tquations (49) to (51) form the basis of our further fnvestigations. Inasmuch
as the diclectrle sereenlng, cq. (48), follows from /{ncar response theory, the
potential v must be considered to be weak. But this is true For most applications.
The potentlal within the ifnner core is weak because of the cancellatlon theorem,
and far away from the lmpurlty V,hvvumos Just

2,

Tim V l’%of*“” va . (52)

Rew

with the net atomle number, Z, and the statlc dielectrie constant, + (0). Then
for small enough %, the total potcutial V {s indeed weak.jL)

4. Merhods of Solution

There exist essentially two methods to solve eqs. (51) for the envelope
function Fv(n) and the assoclated encrgy efgenvalues, The first method consists
of ronsidering eqs, (51) as differential eq:.tions in the now contlnuous variable
a (or R, R) and expanding the operator of the band energy uv(-iv“) in a power
series In --:LVu about an energy coxtremum and breaking off this serles usually
aftor the quadratle term. This 1s called the effective mass approximation (EMA)
and an excellent review of it is glven by Stonoham.Sz) omplications avdse when
the bands are degenerate, which is usually true for the valenge bands Just below
the conduction band in semiconductors of group IV and TII-V compounds.Bz)BB) The

EMA is valid only for shallow states (donors ov acceptors) when a one-band

23



approximation suffices. However, it is also valid for many deep levels provided
that the band gap is indirect, as shown in ref. 2 and 13. For semiconductors with
a direct band gap, the one-band approximation is almost certainly incorrect for
deep levels even though the effective interaction (49) has been considerably dimin-
ished in the central impurity cell by the pseudopotential device. An attempt along

34)

these lines taking several bands into account has been made some time ago. But in
this work, the Kleinman-Phillips version of the pseudopotentiale) was used and the
sum over the core states, the analog of our eq. (31), included also valence states,
and no screening was taken into consideration. That theory is therefore dif-
ficult to compare with eqs. (51). Before we leave a discussion of the EMA, we

like to point out one simple approach which is applicable to eqs. (51) when they
collapse into a single equation (one-~band approximation). We have seen in the

last section, that the potential va,(R) becomes a slowly varying function of R

(see for instance eq. (52)) for large distances from the impurity, whereas near

the impurity the pseudopart of the potential avoids much of the variation

of the original potential. For a single donor-like impurity, as an example,

we may therefore approximate the potential for the ground state (S-state) by

—ez/c(O)R for R » RO
V(R) = (53)
4 for R < R,

35)

where 7 is a suitably adjusted constant. The equation for the envelope func-

tion Fc(r) (the subscript ¢ indicates that the level to be determined
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by
splits ottt the conduction band), assuming a scalar effective mass m for
slmplicity, bhecomes

)
s
- hw VR VRY ) P RY @ (R B F (R (54)

. ¢
2

)

BLoEs the energe ol the wdpe of the conduct fon band and VR) 1s glven by eq. (53),
The boundary candft fons, t.e., Fv goes to sera at Iatfotey and Fv stavs finfte at
sorv topether with the cantdaubty of the logaritimic devivative at R = RO’ dotoys
mine the eipensvalue tor Foonce oo and RO ave known.  The potential (53) consti-
tutoes o madel potential, and as such has been introduced, albeit in a somewhat
dittorent context, lony ngn.xb) Usually, the constants R and o are determined
Fram experimental datae 10 we can adopt a "waffin-tin" model, then the cholee of R
Ia snmowhat»nﬂﬂtrnrv};) and may be fixed onee and For all, 10/ Is determined
using the experimentally known ground state energy, all excited states

and thete enerptes can be computed ustng the aaee constant /. This tollows from
e G and Bs quite o dist fnetton from the usual woael patenttal Yor unper-
turhbed crvatals where tor cach angular nomentum ¢, a new coustant “Jv has to be
dotermined, )

For deep Tevels in dirvect=bhand=gap semiconductors, the one-band EMA consti-
tutes at best a poor approximation.  We are looking, therefore, for an alternative
way ol solving ogqas (D Now, 3 the enevgy efgen=values of the tmpurity ave
expectad to Tie [fn mid=band=gap, then net only do the conduction and valence

bands cantribate, but also considerable parts in kespace of the band energies

ro
wn
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Ev(k) are involved. To take full advantage of the situation, a TFourier trans-

formation of eqs. (51) is indicated. Therefore, defining

1/2 E : By
Fo(a) = F (R) = N £, (ke , (55a)
k
-1kR
-1/2 C N~
£,(k) = N E ro(R e (55b)
1
as well nsjs)
¥ -1 5 -tkeR [\
Vo (K) = N E Vou- (Be ) (56)
84

we obtaln from eqs. (51),

[ - v, 00] r 0 = > 0 - ), () . (57)

v,k

The summations over k or k™ in the above equations only extend over Lhe 1st
Brillouin zone. The integral cquations (57) are equivalent to eqs. (51).

Before going any further, we allow the quantization volume V to become infinite.
Tn this case, we are dealing with continuous variables, both in k as well as in R

space  The transeription follows the usual rules:

E ces > m"¥~§ d3k cee E S v—-l d3R cen s (58a)
(2r)

Q
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where

v=a, e (a, x a (58b)

2,)
is the volume of a unit cell with the primitive lattice vectors ap 8y and g

We also have V = Nv. The Kronecker § symbols go over into their respective

Dirac §-functions

3
= (23) 8k ~ k*) § o=V SR =R . (58¢)

"l a8

Equation (56) now becomes

1 3

VoK) = v y —ikeR
V- =V dRV_L(R) e

(59)

The integral equations (57) are solved readily if the kernel G(g - k") may be

written as a product vl(g)vz(g‘). This can be achieved by using a complete set

of normalized functions such that39)
S (R . % . 60
§(R - R%) = Z g, (R) g (R") : (60)
m
We now define the new quantities
3 ~ A11/2 -ik*R _ -m
&R g (R) ["W*“‘)] e =T ) (bla)

and

R gy w|v,,,-®]

1/2 ik'R _=m

=7 VV,.(15) . (61b)
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It is to be noted that & is uot the coinplex conjugate to &# because the
potential v may become negative or positive as a function of R depending on

position. This is so because, for instance, a totally attractive true potential

(negative Ffor all R)
We also have assumed

From eqs.

will acquire positive parts for small R due to ”pseudizing."a)

the interaction potential GVV,(R) to be centrally symmetric.

(57), (59), (60) and (61), it follows that

[= - 7,00 £,00 =Z F" .

Introducing the quantities

Lm
v, V{vV

and

we obtain the linear

We now consider only
band gap between the
by these two bands.

eral valence bands.

1 s |70 ) £ L) a3k (62)
v ~ v ~
(2m)
v,m
_ -3 3, 0 _m RN -1
= (21) j a°k ,,,Vlv(g) Ty () [L Ev(g)] (63a)
- on 3] &k = - GO L (k) (63b)
v’ </ ~ ’
set of equations
N E oA, (64)
V1V - VllVV vV

two bands, assuming that the energy eigen-values within the
conduction band and the valence band are mainly determined
We ignore the complications introduced by degeneracy of sev-

Designating the conduction band by v = 1 and the valence
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bars by v = 2, we obtain four cquations (they are still matrix equations in

the space generated by the gm) which may be written in matrix notation

e , A + G,

117 G111 A 11]12 A2 12 = S1a]21 A1+ Cua22 Aoa )
. (65)
Apr % Cap 1n Mt CGonja2 Mo 0 Aap = Caalan Aoy T Caa)an oo

The determinant of the coefficients of this linear system must vanish, and it is
this condition which determines the possible energy values within the band gap.

With the help of the defining equations (59) and (63a), we also have:

\ . In _ ,lm Jnn
(Gij/jl “jl/lk) = E S VATRAL VALY

m
1 ,
v 3, 3 Fyy W () - oln
" an® R T TGOV (R - B Vi TR T Gy
| )
(66)

After some manipulations, eqs. (65) may now be reduced to (again in matrix

notation)

-1
3 ((#] - J, e =
(“11|11 t G110 By “12!11 1) App *F Gy000 #y Gpg)an 89 = O
and (67a)
G B +({c + G A1 g ~1\A 0 .
aal21# 2 o111 M 2222 7 T22{21 72 Y21)22 ) 22
i (67b)
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Here we have introduced the inverse matrices 381 and 382 defined by:

=1- @
By =1- Y12 (68a)
and
B =1- G .
2 =17 1101 (68b)
Eliminating A11 from eq. (67b) gives
A =Gt © + B ok G -1 )t\ (69)
11 T P21]11 ) Y2122 T 2 V22|21 |T2z2]22- L 22 0

so that inserting this into eq. (67a), it is seen that the energy eigen-

values of the impurities are determined from the condition

—

D g 3 - > «; -1 -1 -
DET J ((’11[11 L4612 %, "12|1¢1\ o111 ((‘(”21|22 * By 6320210222 1))
( / \ /

N\

-1

G112 P 1 G122

(70)

Here the symbol DET signifies a determinant in the matrix space generated by

the functions 8 introduced via eq. (60). Since the functions gm(B) are largely
arbitrary, a judicious choice may reduce the dimension of the (infinite) deter-
minant of eq. (70) to a manageable size. In principle then, it is possible to com-
pute the energy eigen-values of a point impurity, be it a substitutional or inter-
stitial impurity or even a vacancy, with the aid of eq. (70) provided that the
underlying band structure of the host crystal and the potential energy of the
defect are known and provided that a number of approximations made in the course
of this analysis are justified. It is perhaps worthwhile in concluding this work

to point out the various approximations which led to the basic equations (49)
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through (51) and also to the determinantal eq. (70). The underlying, unperturbed
crystal structure has been formulated in the one-electron approximation. This

in itself does not constitute a limitation, since it is not necessarily predi-
cated on the use of a single Slater determinant as it is in the Hartree-Fock
approximation. Correlations may well have been taken into account. We left

this question largely open, assuming that the unperturbed crystal properties

(its wave functions and energy bands) are sufficiently well known in order to
attack successfully the point impurity problem. The approximations made during
the course of this work may be discussed in their order of appearvance., First, we
expanded the wave function § of the system - crystal + impurity - in psceudowave
functions ¢v belonging only to valence and conduction bands, ignoring the core
states. But the pseudo-functions contain an admixture of core states in a natural
way. As far as only valence states are concerned,; they form a complete,

albeit non-orthogonal set since there is a one-to-one correspondence, barring
accidental degeneracy, between wsk and ¢8k. Turthermore, the pseudopotential
weakens the strength of the true potential, as we have seen, so that high Fourier
components and therefore admixtures of core states in the expansion (32) tend to be
de-emphasized. Next, the approximations eqs. (37a) and (37b) diagonalize the cor-
responding matrix elements. While this constitutes an excellent approximation

as far as eq. (37a) is concerned, it is less so for eq. (37b). The culprit here
appears to be the pseudo~Wann:.er funection, NS, which is less localized than its
counterpart, wg. But we have seen from eq. 30 and the discussion following it,
that the delocalization is not severe, and so the approximation of eq. (37b) is still
quite justified. Another approximation which has not really been used, however,
at least as far as the general formulation culminating in eqs. (49) to (51) is

concerned, appears via eq. (39). It is self-evidert, and it is certainly true
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far away from the impurity. The last covey of approximations to be discussed here
briefly (since it has been done extensively in section 2) concerns itself with
the screening of the bare potential or the influence of many-body electron-
electron interactions on the one-electron Hamiltonian. The most severe limita-
tion in this case consisted in using linear response theory, the bare potential
being screcned by means of a dielectric constant as in eq. (47). But this implies
that the potential Ub(R) is to be considered weak in the sense of first order
perturbation theory. While this is justified in most cases of interest for
large R, first-order perturbation theory will simply not do for small R, How-
ever by means of '"pseudizing", the true potential had been weakened for small R
to such an extent that first-order theory became viable throughout the whole
range of R. The neglect of Umklapp (central field corrections), core polariza-
tions, exchange and correlation corrections to the dielectric constant and the
neglect of the screening of the pseudo-part (the nonlocal part) of the pseudo-
potential constitute additional approximations. They have been discussed in
section 2 and their effects found to be small in many cases of interest.

Finally, turning to the derivation of eq. (70), two additional approxima-
tions have been introduced. Confining the expansion (eq. 32) to two bands only,
constitutes one, and to assume the potential V to be centrally symmetric constitutes
the other approximation. While the first approximation is certainly valid if the
bands considered are broad, so that there exists a large energy separation between
the valence bands and all the lower bands, the second approximation implies an

averaging over angular variables, a procedure often used in the literature.
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5.  Donor Lnergy Level for Se in AS?,XGa As,

1-x

In this section we like to apply some of the theory developed in the previous

sections to a simple system. Selenium with the electronic structure [A] 3d104524p4,

when substituted for arsenic with the electronic structure [A] 3d104524p3 in the

crystalline compound AQXGa xAs will evidently behave as a donor since it contri-

1~
butes one more 4p electron to the lattice. It is known experimentally that in
pure GaAs (x=0), Se does indeed exhibit a donor level at 6 meV below the conduc-

40)

tion band edge. Recently, the position of this donor level within the band

gap of the compound AQxGal_xAs as a function of x has been determined experi-

mentally.Al)

With the aid of eq. (57) we shall now try to determine this donor
level theoretically. In order to be able to do so, we must know the underlying
band structure, Ev(g), and the interaction potential, va,. Since we are dealing
with donor states, the drastic simplification of ignoring all valence bands may
be made. Furthermore, the conduction band of AZxGal_xAs possesses one minimum

at the I' point (k=0) and six equivalent minima at X ((100), (100) ... (001)).
The relative position of these minima with respect to each other as well as their
effective masses are a function of x, the mole fraction of A%As in GaAs. Before
we go into the details of the calculations, let us write eq. (57) again for the

convenience of the reader, dropping the band iadex now that we are dealing only

with the conduction band:

(£ - E)£00) 4—22:: V(k - kKDIEKD) = 0 . (71)

k”’

42)

Let us assume with Twose that we may write for f(k),

JORENCES D) (72)
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which is large only in the vicinity of a band extremum, such that

4 > 2 —l - - -
BAOECK) = [n<5j> b)Y ko) - kgle G- k) 0)
a,B

with sufficient accuracy. Here we have assumed a number of minima located at
the positions Bj and have performed a Taylor seriles expansion about k = Ej retain-

ing only the first two terms. Evidently

2
3%E (k) 17 -
akaakB 2mj03

k=k

-

defines the effective mass tensor, maB’ in the usual way (o,B indicate Cartesian

components). In the neighborhood of k = gj, eq. (71) now becomes

- ‘-2 —‘l — -~ -
Bk, - B+ (7 /2) E mjaB(g kj)a(k Ej)s by - k)
a, R

+ z V(k - k) g, (k" - k) =0 (75)
kL

~

Multiplying eq. (75) by elk‘y and summing over all k yields

ik, r _
2 !{w - DY vy onan] e - es
( a,B

2,k

i (15"152) 'E

16" - k) e |
¥ E v - ket BT e g ye g =0 (76)

-

k
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By analogy to eqs. (55a) and (56), we define

1(k-k,) |
= -1/2§ : _ ~ s
k

(77a)
and f
i
- 1(k-k") "z
V= E V(g)e . (77b)
k
If we also define
B o= E(k) - (12/2) Y mor 0%/ax ax, + V(r) (78)
% ~2 jaB o B ’
0, R
we may write eq. (76) in the cumpact form
ik, r
E e 4 (H, - E)F,(z) =0 . (79)

3

The physical significance of the functions Fj may be seen if we retrace the steps

which lead from eq. (32) to eq. (77a). Since ¢j is large only in the vicinity of
Kj’ we may write

F (k) =Z¢j<g— k) (80)
J
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Then using eqs. (80), (77a) and (32) we find

0
P o= Z FQCEW% (81)
L

where ¢2k are the pseudo Bloch functions associated with the conduction band
g 'A

minima located at §t=§2, and the wave function ¥ of eq. (81) is an approximate

solution of eq. (31). It follows now from both eqs. (79) and (81) that the

energy can be expressed by

2 Ll k)
<Fjle H [P, >

g =d2? (82)
S ‘ 1(k,=k)er
,<Fj lo F,>

3t

an expression which lends itself nicely to a variational calculation. But before
we go ahead and do this, we must delve into the significance of eq. (79).
Equation (79) constitutes one equation for apparently many functions Fj' Now,

if we are dealing with a crystal like Si for instance, where only equivalent
minima (6 in this case) exist, then all functions Fj are equal by symmetry except
for certain coefficients depending on the particular point group symmetry
involved. But these factors are known from group theory, and therefore eq. (79)
is sufficient for a solution of tha eigen-value problem. However in cases of
non-equivalent minima, the argument fails and eq. (79) is not sufficient for find-
ing a unique solution. Equation (79) has been derived from eq. (75) essentially
by summing over all k. But if the summation over k is restricted to a subzone

centered about each minimum at Bj’ we obtain a set of equations, one for each Fj.

36



ORIGINAL PAGE 13
OF POOR QUALITY

23)

This device has beeun used by Bassani et al. "/ But this method leads also to

non-local potentials in configuration space and gives significant simplifications
only for potentials which are very strongly localized in momentum space. It
would be therefore best to work with eq. (75), which is really a set of equa-

tions, one for each ¢,, rather than with eq. (79), which constitutes only

3

one equatlon for all Fj. However we can avoild this complication if we use

cq. (82) as a variational principle in which the function F, belonging to non-

J
equlvalent minima are varied independently. Consequently,we set
-1/2 .
FO = (uag) e v/a (83a)
and for j =1 to 6
-1/2 i
Fj = uj(an) e r/b (83b)

representing the envelope functions belonging to the minimum at T (83a) and the
six equivalent minima at X (83b) of the conduction band of the AQxGal_XAs.

a and b constitute two independent varlational parameters. The coefficients

y are assigned the value 1/v6 for the ground state (the A1 representation of

4
the group Td’B)). As model for the band structure,we take a simplified version

of eq. (78). TFor the sole minimum at I',we put

2
R | I P .
Hy = - 2 Ve 4+ v(r) (84a)
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and for the six equivalent minima at (k,0,0) (-k,0,0) (0,k,0) (0,-k,0) (0,0,k)
and (0,0,-k) we put
2

=y =
Hy o=y - v

SRS (84b)

The zero of energy is measured from the position of the I minimum. For the
potential Q,wc use the semi-cmpirical expression (53). All quantities, the
effective masses my and m 6h, the energy difference between direct and
indirect band minima, k, the magnitude of the wave vector connecting the direct
with any of the indirect minima, 7, the strength of the attractive effective
potential well and finally the static dielectric constant €(0) are functions

of x. Values for the effective masses m, and m, and for the static dielectric

0 1
constant «(0) have been used as reported by Hauser et al.44).

Values for éz

have been computed using band gap versus composition expressions culled from the
same report. Continuing with the rzlculations, we insert eqs. (83) into

eq. (82) and perform the indicated integrations. After some tedious but straight-
forward algebra we obtain for E:

]
E =D {Nl F Ny ok Ny b N,k N+ N N7}, (85)

where with

c = ab/(a + b),

-2 -2 -2
D=2+ 1678 ]3/2 22 2,2 2.2

(L+k"c™) + 1+ kDY) + 16(2 + kb7)

c/(a + b)

’

(86a)
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2 1_2
T R N (86h)
o = " b
2mya A,m,lh
22| e Lo - 1 |
: «l | . ¢
Ny = 206 G| e (e w) 7 S e
= 1 4+ k"¢ 0 1 (1 + k"c¢™) My mlh
2 a2y 1+ ko
o ,Fu.,ﬁ) o - -.m“..(; .),-\x‘-, R 16 . .“S ?,”..
2m, b 2.2 2 2,2 2
=M (1 + k"b7) (2 + k"b™)

-2 -2 -2
y “ 29 : 379 R
v & [(1 P20 162 Y+ 8 [/ M1 P ] ,

(86¢)
i 3 s?' 9 \/ | 2 R ')p/.
N, = —m(ll {1 r 2 Bya Ry R “J I I >> TR (gea)
3 a 0" £ a
- -3/2 ‘ 02 2 22 -1 sinkR -R/e
N, = - Vo 8(ab) “rems o (L kTeT) ‘me=nt b coskRY o
4 l £ ke
: 9 9 72 1 R/
+ u‘/c‘}(l + ke < - [(i\-t - lw) sinkR + voskl{] o M
, . ~R/c i l
- f Rcz m&’""*-,t;'":z (-&?-%-}]-;1-\!}' + ouskR) s (8060)
L+ k"¢ ¢ ’
1 2 2rR/b 2 R 2R/N
e oo 1o (142 Bgo R} 2R . g N} G TeRD 86 f
N5 = e/ 1 ([ + 2 s + 2 b2> @ N <l + 2 b> 6 , (86f)
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2 -1 -2
e 2.2 sinkR s 2.2 eon
Ng = =gy 1+ kD) ( e coskn) - (L + KDY (1% [2 cos?kR

N ot N =9
+ % («L - kb) sinZkR] om2R/D Fof T (1w k2b%) (5"@-‘33»5 + L‘uSZkR) o oR/D

Kb kb
(8o6g)
2 -1 |
B @+ h? sin/2kR Jsiw) om2R/D
N'i &b (2 + k7b7) ( kb + cos/ﬂll\l\) e
2 2. 7% | ) -
= hee/ (2 + KTD7) 4 - V2 |bcos/2KkR + (ﬁt "1ﬂ§ sinv2kb v—“R/)
-1 .
. D Nt Y AN -t i Con
* Sld’% (2 + k"b7) V2 RA%&?KP + cosV2kR) e ZR/b (86N1)

9

The task now becomes formidable. Given the quantities R, v, k, e {the square
of the electronic charge) and o/, one must determine the variational parameters a
and b via the equations

ar 0K

R Il 0 8

da db (87)
using of course, all expressions (86) in the defining equation (85%) for B. After
having solved the transcendental eqs. (87) for a and b, the encrgy E finally is

computed via eq. (8%5). bhowever, a and b signify the extent of the clectron cloud

for an electron bound to the impurity and, for shallow states, this extent is large,

covering many lattice sites. The magnitude of k is of the order of a reciprocal
lattice vector. Therefore it is expected that the product ka or kb is large
compared to unity. If this is true, a drastic simplification arises since

most of the terms of egqs. (86) become negligibly small.,  The negleet of the
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terms containing ka or kb {s tantamount to the negleet of intervalley mixing.

Neglecting then intervalley mixing, the equation for the energy becomes

2 2
L=y 8 4 e P L (Ny + ) (88)
“ AmOa &mlbk © ‘

where N3 and NS are given by ecqs. (86d) and (86f), vespectively. 1 we measure
all lengths In units of the Bohr radius au = 0.529R and energies in unlts of the

Rydberg R“ = 13,6054 eV, and if we introduce the quantities

R = a

o Mg TN My F VM Vg = 2R/a, vy ® AR/D (89)

where m, {s the mass of a free electron, the varlational eqs. (87) become simply

y

P ) 9 2
Yy, © - '\i \1“(:“//“11)\"}. + (2(!/t)<l -+ yi - y})J y j= O or 1l . (()())

The enerpy B becomes, with the aid of egs. (90),

1
, N -y
1-:=~% <F:L‘~m!+;],:-wu/ E Ly, 4-,‘,:\,‘1‘ +%~ \? o
=0
l U
2,3\ (91)
. 3 8y + » 'R &) - . o I
(Ryy /4 Z yp vy tyy)e
j=0

For anv given values of the parvameters \j’ a, v and 7, eqs. (90) possess a unique

sot of solutions v.. Once these solutions arve found, the energy level E can be
.j W
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computed via eq., (91). It is interesting to note that if ¢ is made formally

infinite, eqs. (90) become
Y. _ 2
ol = (Yja df/RH> Y (92)

Letting ¢ »» is tantamount to setting the Coulomb tail of the potential (53) equal
to zero, and such a potential is representative of an isoelectronic impurity. But

eqs. (92) only permit a solution (a bound state) if
2 > :
Yja Jﬁ/RH Ze=2,7183, (93)

and this inequality is almost identical to the well-known criterion for the
onset of bound states derived from the one-band, one-site model for impurity energy

45)

levels by Koster and Slater. That theory leads to the expression

1=~ N Z (1: - Ec(‘f)) - (94)

for the energy level of an isoelectronic impurity. If we now replace Ec(k),
rather boldly, by the expression h2k2/2yme and replace the lSt Brillouin zone by

a sphere of radius R = aa it can be shown that eq. (94) allows for a solution

H’

or energy level below the edge of the conduction band if the strength of the
potential well .o/ satisfies the following inequality:

ya?w/nﬂ 2 op = 3.1416 (95)

However eqs. (90), valid for donor-like impurities with Z = 1 always possess

a solution, or in other words, a bound state within the energy gap always exists.

42



Returning to the calculation of the energy eigen-value based on eqs. (90) and

(91), it is necessary to obtain values for o and . Remembering that o = R/aH
and choosing for the cut-off radius R of the Coulomb potential (53) the ;
covalent radius of Se, we find that a = 2.19. The last parameter to be deter-

mined i1s the strength of the attractive potential well . of eq. (53). A first-

principle calculation via the defining eqs. (49) and (50) for the potential being

a rather complicated undertaking,we choose to adopt a semi-empirical approach. l

Consequently, we put

o = xallygqo t A= XAy (96)

and determined the values of the effective pot~ontial for pure ARAs, JJAQAS,
and for pure GaAAs,JJCaAS, by means of the known energy values E =~ 6 meV in

these two cases. In other words, taking the values for all relevant parameters
like effective masses, etc., corresponding to either GaAs or ARlAs, we determined

& by means of eqs. (90) and (91) in such a manner that the energy E came out to

have the experimentally determined value of 6 meV. In this manner we obtained

A pgrs = 0.91 RH: dgbaAs = 1.05 RH (97)

Using these values and eq. (96) as well as the values of all the other param-
eters as culled from ref. 44, we computed the energy eigen-value as a function of
X. The results are plotted in fig. 1. Also plotted (as a dashed curve) is an

41) Consider-

average over experimentally determined values of the same quantity.
ing the enormous simplicity of our theory, the overall agreement is rather good.

The sharp maximum at the cross-over between direct and indirect band gap, experi-

mentally 321 meV, is calculated as 316 meV. On the other hand the agreement is :
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rather poor in the "wings", that is to say for either small values of

x (x < 0.25) or for large values of x (x > 0.8), Here deviations of the com-
puted values for the energy from the actual vatues are pronounced. One reason
for this is due to the neglect of intervalley mixing. Another reason is due to
the neglect of higher order terms in the expansion (eq. 73) of the energy Ec(k).
This becomes clear when we look at the magnitude of the variational parameters
a and b. It turns out that a varies betwen 207 (at x = 0) and 83 (at x = 1)
Bohr radii and is thus comfortably large. This implies that the Fourier trans-
form (eq. 72) is sufficiently peaked at §i= 0 so that higher order terms in a
Taylor series expansion about O may be neglected and eq. (73) is justified and
at the same time, a mixing of this valley at k = O with the other six valleys at
Bj (j =1 -+ 6) contribute negligibly to the energy. However b turned out to
be much smaller than a. In fact, b varies between 2.68 (for x = 0) and

2.35 (for x = 1) Bohr radii. In this case, the Fourier transform (72) becomes
fairly delocalized, and eq. (73) constitutes a poor approximation. Also the
product kb, where k is the magnitude of the distance (in k-space) between the
central valley at the I' point and any of the six equivalent minima at X, now
becomes small enough, so that intervalley mixing cannot be neglected. These
shortcomings must be eliminated before an adequate theoretical understanding of

xAs becomes possible.

the donor level of Se in AQXGal

For the sequel to this report, it is planned to investigate these topics

further.
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