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Abstract

A theory of deep point defects imbedded in otherwise perfect semiconductor

crystals is developed with the aid of pseudopotentials. The dominant short-

range forces engendered by the impurity will be sufficiently weakened in all

cases where the cancellation theorem of the pseudopotential formalism is oper-

ative. Thus, effective-mass-like equations exhibiting local effective potentials

derived from nonlocal pseudopotentials are shown to be valid for a large class

of defects. A two-band secular determinant for the energy eigen-values of deep

defects will also be derived from the set of integral equations which corresponds

t,j the set of differential equations of the effective-mass type. Subsequently,

the theory in its simplest forti, will be applied to the system AlxGal-xAs:Se.

It is shown that the one-electron donor level of Se within the forbidden gap

of AlxGal-xAs as a function of the AlAs mole fraction x reaches its maximum of

about 300 meV (as measured from the conduction band edge) at the cross-over

from the direct to the indirect band-gap at x = 0.44 in agreement with recent

experiments.

11 1
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L.	 Introduction. One of the outstanding problems in modern dray solid state

physics continues to be the determination of the properties of "deep„

impurities in otherwise perfect semiconductor crystals. By "beep" point

impurities we mean either substitutional, or interstitial foreign atoms

embedded in the host lattice or just the absence of u Lattice atom, a

vacancy, with the proviso that the defect is capable of binding either one

or more electrons or one or more holes in various energy states which

are lying deep inside the band-gap. This distinguishes deep impurities

from donors and acceptors, also known as shallow impurities, their energy

levels being situated very close to a band edge. Whereas for some time now,

the theoretical understanding of shallow levels has reached a quite satisfac-

tory state based on the hydrogen mode, the difficulties encountered in

the study of deep impurities Largely stem from the existence of a relatively

strong and rather short-range potential which valence electrons experience

in the vicinity of the impurity. This is particularly true for isoelec--

troni.c impurities since there exists no Coulomb tail in this case, the

potential being entirely confined to the centrtal. cell. The major difficulty

presents itself in the fact that the extremely short-range nature of the

interaction potential with its concomitant abundance of high Fourier com-

ponents in wave vector or crystal momentum space prevents the applicability

of effective-mass theory used so successfully in dealing with shallow levels

(donors and acceptors). Much progress has been achieved however during

the Last decade concerning the deep-impurity problem. Here is not the

place to review past achievements in the theoretical understanding of deep

impurities nor do we want to discuss in any detail the importance of deep

impurities as recombination centers governing the lifetime of electron-

jA
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hole pairs, a quantity so important for semiconductor device technology.

Suffice it to cite recent review articles on the subject of both the

theoretical understanding, or lack thereof, and the importance for device

technology. l ) The reader will also find a plethora of references on the

subject in the literature cited.l)

As we have mentioned earlier, it is the strong, short-range potential

engendered by an impurity which constitutes one of the main difficulties

in solving successfully the impurity problem. This situation may be

ameliorated by the use of a pseudopotential formalism, and the aim of this

report is to give an account of a theory of deep impurities encompassing

such a formalism. To be sure, there have appeared in the literature a

number of accounts on the application of pseudopotentials to the impurity

probleni. 3 ) 22 ) 34) The reason for the idea to employ pseudopotentials in

the kind of problems we are discussing here lies in their very nature.4)

Pseudopotentiale and pseudo wave functions define a mathematical transfor-

mation of the original Scbrodinger equation which, while leaving invariant

the eigen-values of the energy, modify the wave function and the potential

in a certain desirable manner. By orthogonalizing wave functions belonging

to higher quantum states (valence bands) to the tightly bound inner electron

shells (core states), this transformation achieves a weakening of the

original potential in the inner core, precisely where the original

potential, as seen by an outer electron, is strongest. This so-called

cancellation, theorem has, as a consequence, the agreeable feature to

concomitantly weaken the high Fourier components in a crystal momentum

expansion of the perturbed impurity wave function, thus making it possible

to use effective-mass theory in cases where hitherto it was thought to 	 E'
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be inapplicable. The ; ;.oneering work of Pantelides3)22) bears ample witness	 f

to the truth of this conjecture.

In this report, we again tackle the problem of deep impurities with the aid

of the pseudopotential formalism. In contradistinction to previous work3)22),
f

we stay in the Wannier representation throughout. The advantages are twofold.
i

Firstly, it is easier to ascertain thz validity of - always inevitable -
	 i

approximations made during the course of the derivation, and secondly, it will

turn out that the equations governing the envelope functions peculiar to the

impurity problem become local partial differential equations in contrast to

the nonlocal equations derived previously.3)

Section 2 of this report concerns itself with pseudo-Wannier functions of

the perfect crystal which form the basis for an expansion of the impurity wave

function. Although pseudo wave functions and poeudopotentials are not unique

generally, we confine ourselves to the use of the Austin form of the pseudo-

potential 6 ), in which case there exists a unique one-to-one correspondence

between ordinary (true) wave functions and pseudo wave functions. The pseudo-

Wannier functions will turn out L: be less localized than the ordinary Wannier

functions, and to what degree this might be detrimental will be discussed.

In section 3, effective-mass type equations for the motion of electrons in

the presence of a point impurity will be derived. The role of screening of

the bare electron-ion potential mediated by electron-electron interactions

will also be discussed. The main part of section 4 dealo with the derivation

of a secular determinant for the energy eigen-values from the set of integral

equations, corresponding to the differential equations found in section 3,

by a method first introduced by Bassani et al. 39) Because of the use of

pseudo-potentials, the number of bands to be considered in setting up the

3
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secular determinant may be limited to but a few. In section 5 finally, the

theory developed in section 4 will be applied to the system AtxCal-xAs:Se.

Since selenium is a donor substituting for arsenic, an occupied level fairly

close to the conduction band will be present so that the theory in its simplest

form, taking into account only the conduction band with its various equivalent

and non-equivalent minima without intervalley mixing,seems to be adequate to

compute the donor energy level as a function of x,the mole fraction of AlAs

in the compound under consideration. It is found, in agreement with experiment,

that the magnitude of the energy level exhibits a maximum of '000 meV at

x = 0.44, i.e. at the cross-over from the direct to the indirect band edge.

The calculations reported here, have been performed by means of a variational

principle and constitute one of the few cases in which computational labor

could be held to a minimum.

a
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2.	 Preliminaries

Before we embark on the general theory of imperfections, let us review

briefly the Pseudo-potential formalism as ..i re, applies to a perfect crystal.

Let the Hamiltonian of the perfect crystal be

H= T + V	 ,	 (1)

where T signifies the kinetic energy and V the periodic potential energy with

the property

V(r + Ra ) = V(r)	 (2)

Here Ra= 	 nJ`x) ai , a Bravais lattice vector, is defined by the arbitrary

J

integers J_") and the primitive vectors a. of the unit cell. For crystals con-

sisLing of a single kind of atom, for instance silicon, we have

V =	 v(r - Re )	 ,	 (3)

a

where the sum runs over all sites R a within the periodicity volume V, and v(r)

signifies the potential energy of an individual ion located at the site R u . For

crystals containing more than one kind of ion within the unit cell, for instance

GaAs, we may write

V=
	 vi (r

-v)	 (4)Yu
E E

i (

'r

i
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In this case, the additional sum runs over the various ions 3 located at positions

b i within the unit cell defined by the lattice vector Ru , with the definition

v(r-R_	 tt	 vi	 -ltu -Ui )
	

(5)

eqs. (3) and (G) become identical, and no mention need be made of the complica-

tion arising from having more than one species of ions within the unit cell, at

least as far as the development of the general theory is concerned.

Schrodinger's equation now reads

(T + V) V,nlc = E  (k) q'nk

The Bloch funct-.ons,

_
^'nlc - e 

ik • r
wunlc r

therefore possess the energy eigen-values En (k),with k the crystal wave vector

and n the band index in customary fashion. The quantity u nk is periodic in R(X and

therefore satisfies an equation identical to eq. (2). It is co be stressed that

we imply the Hartree-rock one-electron approximation when writing eq. (6) 2) . The

potential V is therefore by necessity non-local. 2) But then( complications do

not concern us here, since we assume that the unperturbed crystal eigen-values,

Rn (1c), are given, known functions of their parameters.

For reasons which will become apparent later, we will transcribe eq. (6) into

the pseudo-potential formalism in the Wannier representation (similar calculations

6
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have been performed by Pant^.-Lldes 3) ). The reason for "pseudizing" the potential

(8) are amply described in ref. 4. Here we can only give a very brief outline.

Suppose we separate the eigen-functions,^ nk,into those belonging to the core

states,^ck,and those belonging to the valence and conduction bands ,^vk5) . The

inner core electrons are usually strongly localized at the atomic sites whereas

the outer valence electrons form broad bands and are therefore delocalized to a

greater or lesser extent. To each wave function,^ vk,satisfying eq. (6), we now

associate uniqueZy a pseudo wave function. ¢vk satisfying

(T + v) ^- 7 ^'ck
q l V I $vk> - I.; W ^vk	 (8)

c

The eigen-value,Ev(k),of eq. (8) is identieab with the corresponding one for ^vk

corresponding to eq. (6). Furthermore, the connection between ^
v 

and 
qtv 

is given by

^vk	 vk + 1 acv(k)^ck	 (9)

c

where the coefficients,R
ctv 

(k), satisfy

EC 
(k)- E

v (k))c v (k)	 ^^^^ck lvl ^c^k>ac^v (k)	^^ck l ^ I vk>	
(10)ry

c

We have used the familiar Dirac notation throughout. As can be seen from

eq. (8), we have used the Austin form for the pseudo potential. 
6) 

From eq. (9),

it follows that

Scv(k) - <' ck1^vk>
	

(11)

I

M,

m e

t Y

M' E

„*1

7



G

A

Cl'r p C)R Q
UALITYor^

because 
Eck 

and 
*vk 

are orthogonal. Sometimes the argument is turned around by

writing

^vk - $vk -	 gckI ^vk>*ck
	

(12)

C

iihich shows that with any choice of ^vk,the wave function 
^vk 

is made orthogonal

to the core states 
Eck 

by construction. This is important for practical calcula-

tions where convergence of a secular determinant toward a valence band energy

eigen-value rather than toward a core state is desired or where a variational

principle is desired to "home in" on a valence band energy rather than on a core

state energy, the latter being several keV below the valence-band energies. As

an added bonus, the convergence of the secular determinant in a plane-wave expan-

sion, s,'Iog simple plane waves to represent the wave functions 
yvk, 

becomes much

more, rapid when using the device of eq. (12). Known by the name of the orthogonal-

ized plane-wave method (OPW method) in this case, it had been proposed by Herring

long before pseudopotentials became fashionable. 7)8)

As seen from eq. (8), the pseudopotential is nonlocal 9), but we will see

later that, nevertheless, the impurity problem formulated here within the

pseudopotential approach will give rise to a ZocaZ effective potential. The true

advantage of the Austin pseudopotential employed here consists of the validity of

the cancellation theorem. 
3) This theorem states that the pseudopotential of

11)
eq. (8), which we may rewrite concisely as

VA = V -	
^ ck' < ^ ck' I V

	
(13)

c,k^

8
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Is oon,idc'nibly wealcor in Lho cof'e regions Lhan Ole original potonLial. V which

it; raLhtV r sLrong there.. 12 	`this is of para mkiliL importance. for the impurity

problem,as Otnirly real.izvd some time ago. 3)14)34) But before going into this

maLtrr, IoL lla	 e(ig. (8) and (10) into the Wonnier rep r( % sell WLion.

The WanntOr l`u110,001IS arc, defined by

x

—ile• R
{M ,\J11 (tX)	 N	 c'	 wlilt

It

wJtll tilt , J,nvt,l•„t, LI • ,lnsCormiltiun heing

—1 /'^ `^"'^ ' :1 It, • i^

n It,	 N	 c	 lvlx 0)
tX

(Ilia)

(1.41))

T110 lu0l•nrll i.,;ltion adopL(id hort, is Lilt, following: 	 ^v^ nit n'Ic	 on k I It
I It • I^

,x
	It • I•k'x

d	 ^ ^y,1 x t)

	

^^ 	 N

E^^1 1\	
whore N is Lho number of 11lift

it	 x 	 •`	 It

t:oIIS, In Lilt, qunnLls;ILloll volutut, V, h t^ is a recc i.procal l.aLLivo vt,cLor and

stems oxit,7 • it	 oxkilid ovt,r Lilt, Ill—SL Brillollin Zone. 
10) 

Al, so, for ti poLen—

L IM .1:; j;i'erlt ]IN t,q. (4) , 4ht, t,xprossion (Ilib), i'017 iViSLance, becomes

—i/^a	 1It•i:tx ^ W (:I) 0 - I: x — la j ), For si,mpliefty of notation, we

wriLO W (,x)	 W n ^r — iZx)	 wn^) (r •. 
ĥKX	 bJ)

:i

9
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x
Analt)I,ons	 to etlti.	 04), the W-11111tOr 11MY he 11It-rU(int`ed via

)	 ^l^Ztli,	 ,r
N-1
	 tt

14v (,1)
fvk

(15a)

It

and

1
1 / «

1. • It^llqN"
vk

t	

)

rY

Nt)te	 that	 tho halal	 1ndt, x n	 t)1	 etl;l, (lei)	 ono o wpa;lae;l	 ,111

ii

lu)ssIbII I I v (rare and

v010110e atate;l)	 wht`reas the hound Index v	 in eqs.	 (AS)	 in reserved to valt+ono

States only.

lntrndl ► t" hip, now	 tilt' Ft)t riol' tl'.1118[orill t)l	 the	 00 t'1 1 it`It`nLs, Il OS) a	 dof Ined	 In

eq.	 (10)

4 t.

'^1	 ^` .I lc ` It

Vv
	 t) 00', (IC) e

It

,Y

^^ AAA

(16,1)

with tht` Inmrsv

l l; ` 12

(h) "E 1 1
000t, 	1	 (16h)

1

wo t,htaIn .Grain etp,. (9) and (1 `a) thr t't)nnert ton ho Won (ho pSVU6t)-h'alnl I or .1 unt't tans

Cpl ,lnd tilts roî 111,117 Wain l t`r I` uur t l t)ns w 1 C ' ) , nalnt, 1 V t he re'I at i t)nsal 11)

W 
V 
0) -, \4 

v 
(a) + E 11 OV0 - 0WkI(j)

rat	
,

1. t)

it

y.
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all M1. 100 an the num coat' 1 In eq. t1:) Umpaln. However, thin to ae=oomplitxhod

with mring ,zuveons depending on the magnitude  eat the voel l le" tent s tin e V k" =- 1 I av

a funellean e,t a tor 11hod o, In evader to transerthe eqn, tttl and tltal Into the
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t ill V in prrlodle teel, till, we have in general that

	

►`n V IV140 — 010nJ " Inte"	
kid)

This t o the Volvo" WhY, In eq, rttl, the n"m over the e"ea'e states Onl y entencl; ► over

the hand tncle y e,tceepIng 1, 11wd	 ic'e now a °e tas t111; ► roquIre ►uen t ,	 Vquat I e env (ai)

lud l cll t 1 a1;aa ,;ci 0V10 V I.nt e

(T t V)	 ^'	 \"^,^	 l' tl.lyn 	tl^ll
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Equations (19) and (21) are, of course, equivalent to eqs. (8) to (10.1 provided

that eq. (18) is used. 19) Now the transformation into the Wannier representation

with the aid of eqs. (14) and (15) becomes easy. But first let us define the

Fourier transforms of the band energies,En (k) 17)18) as

-3,1t • R

	

8,n (a) = N
-1 	

E11(k)e	
_a	

(22a)

k

concomitantly with

ilc•R
)a 11 (lt) _	 c^l (t^)e	

°tx	 (221))

tY

Introducing the Fourier coefficient,

-ik•R +ik' • R	 (23)

cv
t^	 ((x ,Y) = N- ^' 

2--j
	 ev (k,l;')e	

^ wtx ,.	 vy	 ^

k, k'

we obtain from eq. (21.), after some algebra,

(6 - Y)G	 (a, 5 ) - (? ( (x - ^) i^	 (^>^)	 -	 <w (^) Iv w .(IS)	 ^^	 (^r,,^)
C CV	 v	 e v	 t;	 C	 C v

tS	 C

.:wCo) lvlwv(,x),

('; G )

12
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If we now restrict ourselves to the symmetry of eq. (18), ( cv (oc,o) becomes only a

function of the difference (a - R). In this case, eq. (23) goes over into eq. (16a),

and equation (24) becomes

(ecV(6)) kv (a - y - ^S) -	 <wc(1) VIwe ,(6) >^3IV (a

C'6  .

<wcM IV( wv (a)>

(25)

It is eq. (25) which is the couns-erpart of eq. (10) in the Wannier representation.

A direct transformation of eq. (10) with the aid of ens. (14) would have met with

difficulties. This is why we first relaxed the symmetry condition of eq. (18) and

imposed it after the transformation had been performed.

The transformation of eq. (19) into the Wannier representation follows along

the same lines and is given by

(T + V ) Wv ( tx )	 weM.,urcM 1V1Wv((x)> _	 5(^ - a)Wv M	 (26)
C) y	y

Before we go to the heart of the matter, the impurity problem, let us 	 i

investigate the meaning of eq. (17). The pseudo-Wannier function, eq. (17),

evidently is localized about all sites,as already mentioned. The coefficients,

0 CV' which determine the localization about centers other than the main site (x,obey

eq. (25). Now, in order to deal with impurities, particularly deep centers with

their strong localized potentials,one wishes to employ wave functions which are

themselves localized so that a perturbation scheme of one type or another may

converge rapidly (it is hoped). At the same time "pseudizing" the potential	 stn

weakens its central core, so that high Fourier components in k-space become small,

13
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and approximations patterned after the effective-mass approximation may become

acceptable even for deep centers (bound energy states deep in the forbidden gap

between valence and conduction bands). But at the same time,the pseudo wave func-

tion of eq. (17) becomes somewhat delocalized. How much delocalization takes place

is governed by the coefficients a cv . Because of the strong localization of the

core Wannier functions wc (Y), we have

<wc (Y)IVlwc .(a) > ~ V cc' 6ya	 (27)

to a very good approximation. Putting a - Y = X20) and

<wc (Y)1 V l wv (a ) > = VcvW 	 (22)

as well as

(9c (Y) - .0v (Y) _ Acv 8 (Y)	 ,	 (29)

equation (25) goes over into

Acv e m acv ( - Y) -	 Vcc,ac.vW = VcvW 	 (30)

Y	
c.

Although it is difficult to solve eq. (30) exactly, it is quite easy to see, at

least qualitatively, that the dependence of acv() 
on C, the distance between any

two lattice sites, is governed by V cv (^). For if we put the RHS of eq. (30)

equal to zero, the only solutions for the coefficients a are acv (C) 
= 0, since the

determinant of the coefficients of the ensuing linear equation for the quantities

s cv W does not vanish in general. 
21)

Introducing the potential matrix element

Vcv (^), we see that ;3cv (C) will become proportional to V cv (^) and in higher order,

14
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will become a function of 
VcvVc'V, 

etc. But from the definition V v Q) of eq. (28),

we note that,  due to the strong localization of the core state w c (Y), the matrix

element Vev (r,) will exponentially decay with increasing r. Therefore, the

delocalization inherent in eq. (17) is rather weals and may be ignored in many

applications.

3.	 The Pont Irm unity  Problem

Suppose now that the perfect crystal contemplated in the previous section

contains an isolated impurity. This impurity may be a substitutional or

interstitial atom or it may be a vacancy. Whatever it is, it will gives, rise to

an additional potential energy which we denote by U. Rather detailed analyses

of the structure of U have been presented by several authors, particularly for

Si. 3)22)23) It is fairly straightforward to generalize this analysis to other

semiconductors. But we will treat U for the. time being as a given function of

all its relevant parameters, in particular its spatial coordinates. In order that

no confusion arises, let us introduce the following notation. All unperturbed

quantities (U ° 0) will be annotated with a superscript zero. Therefore the

periodic potential V of the previous section now becomes V 0 , the Wannier function

w11 (a) becomes w (a), the new quantities remain unprimed, etc. Also, since the

implantation of a foreign atom (or removal of a lattice atom) will alter the

equilibrium positions of at least the adjacent atoms from R 	 R say, we

denote this fart by a primed Greek letter. A core function w 0 (a) of the
c

unperturbed lattice now becomes w o (a'), for instance. We assume that the imper-

fection is located at a = 0 (P.a = 0) or,for an interstitial atom,in the immediate

neighborhood of roc = 0. Incidentally, the collection of quantum numbers c for the

core states differs in general for ;foreign. atoms from those of the host atom

except of course for isocoric atoms. This fact must be duly taken into account,

but we will not mention it explicitly in the ensuing formalism. 24)

15
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With H0 = T + V0 , Schrodinger's equation in the "pseudized" version for the

system-perfect :lattice-plus-impurity - reads now, in analogy to eq. (26),

(H0 + U)^-	 wc(Y,)<wc(Y') 1 V0 + UI,P> = F'11 	(31)

c,Y'

where the sum runs over all core states and all sites Y'. We propose to solve

eq. (31) with the following ansatz:

= L Fv(a)W'(a)
	

(32)

v,a

We note that the sum extends only over valence (and conduction) bands, and the

positions a are taken as those of the unperturbed crystal. This latter fact

does not constitute an approximation, since the envelope functions F v will depend

parametrically on the a'. The pseudo-Wannier functions W0 do not form a complete

set unlike the ordinary Wannier functions, w n . Had we expanded 0 into the com-

plete set w0n , we would have had to include core states n = c in the expansion

even in the Zimit U = 0, since for U = 0, eq. (31) goes over into eq. (8)

(or eq. (19)). In this case, any of the [J 0 themselves become solutions of eq. (31),

and according to eq. (17), even then core states are present. In other words, there

would be no hope to confine an expansion of ip into regular Wannier functions w0

to include only a few valence bands, since even in 0 th order, ^ would already con-

tain a sizable 2.'0.outit of ^ore levels. The ansatz (32) truly represents an approxi-

mation in anticipation of ..he need for only a few terms in the sum over the bands.

From the orthonormality of the Wannier functions 17) , we have

<w n0 	 11"n )> = 6nnAaB	 (33)

d:

1.

16
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and from eq. (17), it follows that

.:wp {(x) W0,0)"	 'fivv' `fi 4x	 (34)

Multiplying eq. (31) by ;w0 (a) ^> using eqs. (22) and the well-k=,nt relation 18)

<w0(a)^II01wQ.(^)' ^ ^^	 , c" (^3 - ^x)	 a	 (35)
v	 v	 vv v

wo obtain a set of equations for the envelope functions Fv(a):

(^' - ,X)Fv 0) +	 -w0((x) ^t1^WQ v' 0) - ^ <w00) 1wc(1

IN	 v;0	 v;c';111'

•wr o') IV  + U1140 ,0)'^Fv -(l3) - EFv (a)	 (36)

Since L110 rare states are well localized, we make the further approximaLions

., w0 0)Iw (r')> -	 .w0(a) Iw ((x')^	 (37a)
v	 r	 ^xy" v	 0

and

^V + UI^,(t^)` 	 ^^^ , WC(v) NoW 	 + U114 	 )^	 (37b)

The meaning of these approxi.maLions is given in the following. The equilibrium

posiLioiis R of the host lattice are, slightly displaced to R ` = R + ASR due to the
" kY	 `(I	 ~ (Y,	 I (Y

perturbaLion U. Owing to the strong localization of the core states about their

respective sites and also to a lesser degree the localization of the Wannier func-

tions for valence hands around their own sites, the matrix elements (37) are

expected to be largest when the sites almost coincide. We presuppose that

,S R /R	 1, so that there is no intermixing of sites.
^x	 ,x

17
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Next we consider the matrix element, k

l

M 	 IUIW0 ,M> (38)
t
r

Away from the impurity (we remember that the impurity is located at a = 0
.,

(Ra 	0)) the potential U is smooth, so we may approximate 18) we have -	
r

Maa ;zz^
	 6aRU(a) (39)

f

In the vicinity of the impurity where U varies rather strongly, this approximation

is not allowed and the matrix element must remain as it is.	 Equation (39) tells us

that the second sum over s on the LHS of eq. (36) reduces to a single term if a is

sufficiently far away from 0 (the position of the impurity).

Finally, with the well-known expression

(R - a) Fv (R) = Ev (-iVa )Fv (a) (40)

a

17)7.8)(which follows from ec;s. 	 (22)	 together with	 ,
i

R •V
e-y	

aF (y ) = F (y + a ) (41) 1

where Va signifies the gradient with respect to a (or R a )) we obtain the follow-

ing set of equations for the envelope functions F 	 from eq.	 (36):

Ev (-iva )Fv (a) +^ <w0( a) I 1J - L, I WC W)><WC W) IV0 + U IW0,(a)>Fv.(a) EFv(a)

V,
	 c

(42)

18
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'3efore eq. (42) can be put to use, the potential U must be specified. But first,	
iG

some general properties of eqs. (42) which are independent of the precise form

of U may be pointed out. If a (or [t a) is considered a continuous variable, as 	 t

is customary, 
17)18) 

eqs. (42) constitute a set of Itoal partial differential

equations, although the • underlying theory is essentially nonlocal,. For an iso-

conic impurity, we have

we (a')	 w0 (a)	 (43)

r

for all a, even in the neighborhood of the impurity call, and eqs. (42) go over

into

Fv(-i4a)V (a) +	 .:wp(a) I U 1 IJ0 .( x)" 1'v ,(a) = r.Fv (a )	 (44)

v

owing to the orthogonality of the valence functions w  with the core states wc.

Furthermore, far enough from the impurity when a becomes equal to a', the cord

states we also become equal to w c,and again eqs. (44) become valid. This is true

whether the impurity core states are isocoric with the host core states or not:.

Therefore, the pseudopotential of the interaction matrix element in eq. (42)

becomes effective only within the central cell of the impurity center and will

effectively considerably weaken the interaction potential U precisely there

where it is strongest. This is another manifestation of the cancellation

theorem.	 Similar findings have also been reported by Pantelides.

The interaction potential energy U consists of a number of terms. Signify-

ing the interaction of the valence electrons with the rest of the system and with

each other,it consists of the bare interaction with the nuclei and all the core

19
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states Ub , together with the actf-cony .atent electron-electron interaction. 25) In

the one-electron approximation in which an electron satisfies the SchrUdinger

equation, the analog of the "pseudized" version of eq. (31) is

(H0 + U)	 E" , U	 U  + U y	 (45)

in which the potential U is given by the sum of the bare (or external) potential

U  and a polarization or screening potential U s . This latter potential can be

thought of as being due to the readjustment of the electron configuration which

existed prior to the application of the external potential U  into a new configura-

tion. In the simplest case, the Hartree approximation, U s , is given by

U = e2 (d 3r'jr - r'J-1(JV(r-)J' - 1^ 0 (r")J'	 (46)

J
where t[' is the solution of coq. (45) and yi 0 signifies the solution of eq. (45) with

U  = 0. The solution of the non-linear system of eqs. (45), (46) constitutes what

is generally known as the self-consistent solution and the potential U=U b+U s as the

self-consistent , ,;Lentia1. The derivation just sketched, when followed through in

detail, taking due account of the occupancy of all quantum states 2G) , results for

each Fourier component of the bare potential Ub , in a correspondingly screened

potential

U ( q ) = U  (q) /c ( q )	 (47)

20
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Tile Fourier transform of Ub (r) is defined by Ub()	 V-1 d3vUb(r)e 
iq,r 

with

the inverse Ub (r)	 Ub(q)eiq^ where the sum over q extends over all of q„	 „

q
Space, not just the 1st Brilloui.n zone. The choice of discrete values for q

is consistent witl, tiie normalization imposed by tile. use of a periodic quanti-

nation volume V throughout this work.

A particularly simple expression for the dielectric constant e is obtained if

a) eqs. (45) and (46) are solved in 1st order perturbation theory (linearization),

and b) if Umklapp processes are neglected. 27) It is given by

r	 2v(k + q) - Fv,(k)
<	 -`^	 >	 4e(n) - 1 -	 V^v. ^e 

•rl ,iw^q i E lk + q) - E ,(k)	 (8)
Vq kv,	 t v	 „	 v

In eq. (48), the quantities F v (k) are the occupation numbers (1 or 0) of the

unperturbed quantum states v, k and the Ev (k) are the usual valence and conduc-

tion bend energies. The neglect of G.aklapp or central field corrections seems to

be ;justified if the bands involved are sufficiently broa6 Explicit calcula-

tions 
28) 

have shown that Umklapp contributions are indeed small in most cases of

interest. 
29) 

Underlying expression (48) for the dielectric constant is yet

another approximation to all those already made. It is the assumption that

the p olnrizabil.ity of the core states may also be neglected. This is expressed

by the fact that the summations in eq. (48) extend over valence bands only. But

this neglect is justified since the core states are tightly bound and therefore

much less susceptible to the influence from the outer electrons. To summarize, the 	 M

dielectric constant given by eq. (48) has been obtained under the stated

21
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approximations by solving the self-consistent eqs. (45) and (46). Equations (48),
i

being based on the Hartree approximation, by necessity ignores exchange and corre-

c
lation contributions 25) , but these contributions give rise to small effects 30

which wo ignore.

One more remark is in order. The analysis for the screening of the bare

potential U  outlined above is based on eq. (45) which is the analog of eq. (31)

but does not contain the pseudopotential included in eq. (31). The pseudo-

part of the potential becomes significant only within the central cell at the

locations of the lattice and impurity sites owing to the presence of the core

states w  W). It is precisely in these regions near the ionic sites where

Unklapp, as far as the dielectric constant is concerned, becomes important.

But we have seen that Unklapp is negligible for the broad valence bands we are

considering here. Therefore, as long as we are justified in using expression (48)

for the dielectric constant, we do not have to screen the bare potential U  at

all as far as its appearance inside the nonlocal pseudo-part of the total

potential is concerned. We may therefore write for the total potential

Vim . (a') _ <w0(a) U -	 we (a')> <wc (a') VO + Ub W^, (a)>	 , (49)

C	 {

where

U (q)
U =	 e ( q) e1 r	 (50)

q

f.

22
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is the servotied bare poonLial, with v k;ivc"n by eq. (4$). EquaLl.ons (42) for trite
,

envelopo funcLions Vv (a) now become

,,

, at

;i

	

l.v(—i.V(%)vv(t%) •+• E Vvv . (ix') p .v . (tt)	 H v (lx)	 (al )

V,

Equations (49) Lo m) form Lhe basks of our further invest:igaLiotis. Inasmuch

Fla l i dielectric tacreening, eq. (413), follo.a y trotat litt^^cz 1 re.ipoaisQ 01001-y, the

poLvIlLia1 V must be considered Lo be weals. BuL Llls '18 LY 1.10 for moat: aplilicationS,

The potenLinl within the inner core Is weals because of Ole cancellation Lheorom,

and far away from L11e lmpuriLy V, become, ,just

2

1i.111 V	
`1 (0) R `Svv,	

(5;?)

triLli Llle neL atomic number, I, and Lhe sLattV (11VIVeLric cotisLanL, 1 (0). +'h0 1

for small, enough 'h, the L001 pot.c.,Lla`1 V as indeed weak.'Th)

4.	 Methods of SoluLlon

Thero ex^isL essOnLiall.y two meLliods Lo solve eqs. (51) for Lhe envelope

funcLien Fv (a) and Lhe associaLed onergy eihenval,t.lea. The first mcLhod coiis;l.sLs

of considering eds. (51) as differential oq- ila,ons in the now mitinuous variable

cx (or it^^	 11) and expanding Lhe operaLor of Llie band energy H (-iv ix )in, a powor

series an -aVlx abouL can energy cxLremum sand breaking off this so^rto.S tusually

afLer Liu, qundraLJ.c Lerm. This is cal cid, Llic^ OffVCHVe muss approxi^ma.Li.olx (1?,t^ic^)

and in excelloaL review of :1L Is given by SLonelicnla. 3 " ) tlompl'i.c.a.Lioas arise whoa

Lhe Bands are dvgonorato, which is usual:l.y Lxue for Lhe vale two bands JusL below

Ole conduction band in semiconductors of group IN and 111:-V compounds.^^ ) ^^ ) The.

ENA is valid only for shallow sLiLes (donors or acceptors) when a one-band

23
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approximation suffices. However, it is also valid for many deep levels provided

that the band gap is indirect, as shown in ref. 2 and 13. For semiconductors with

a direct band gap, the one-band approximation is almost certainly incorrect for

deep levels even though the effective interaction (49) has been considerably dimin-

ished in the central impurity cell by the pseudopotential device. An attempt along

these lines taking several bands into account has been made some time ago. 
34) 

But in

this work, the Kleinman-Phillips version of the pseudopotential 6) was used and the

sum over the core states, the analog of our eq. (31), included also valence states,

and no screening was taken into consideration. That theory is therefore dif-

ficult to compare with eqs. (51). Before we leave a discussion of the EMA, we

like to point out one simple approach which is applicable to eqs. (51) when they

collapse into a single equation (one-band approximation). We have seen in the

last section, that the potential V 
vv' 

(R) becomes a slowly varying function of R

(see for instance eq. (52)) for large distances from the impurity, whereas near

the impurity the pseudopart of the potential avoids much of the variation

of the original potential. For a single donor-like impurity, as an example,

we may therefore approximate the potential for the ground state (S-state) by

-e2 /e(0)R	 for R > R0

V(R) _	 (53)

- Id	 for R < R0

where ,f is a suitably adjusted constant. 
35) 

The equation for the envelope func-

tion Fc (r) (the subscript c indicates that the level to be determined

.	 7

24	 ^`!
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a

.:p ► tt,l kill tile ondurtlon laltnda, l;:iln►l,tn, Fl a4laltl effective mass n1 1̂  for

nimplty l,Ly, becomes

	

1h S'^ 1 .	V(R)	 p  (R) r-'	 (l; - l; c,) Fc,(lo
In

1 11 0 11, tile` energy of the edge of the vonduv t toll hand and V (R) In h,ivyell, by eq . (91)

The boundar y vond i t tonal, t. e. , F c, goes to zero at ln1lnlLV and V. stays HOWW at

avro tot;Aho r with the continuit y of the logarithmiv darivaLtvv ac R - R,, deter-

mine the vigvn-va11uo !or E In ce M and R0 are known. The potential (91) wont

tntva. a model poLont lal, and an such has been ;►n rodne.ed, all vIL In a Htnll WhaL

	

fib)	 t,,	 t	 It and	 'ww arc determine d 

	

tl l l li`1't`nt t'tantt`xt, loll!, ago. 
1b)

	 t ►11,' !`(11'15 llltti 	 a

!gom expvrl ►llmal data. 11 we van adopt a Vaffin-Lan" model, tbvn thO Choice of R

In somewhat arbitrary 11) 
and ma y be fixed mace and for all. I!td Is dollermined

lasing the experimentall
y
 known ground 8 aLe energy, all excited aitt.es

and their cnorglvn can he computed using tbv a.ldw U41wanc w% Thin follows from

vq. k4Q) and In quito a JISLinction (roll! the Usual moavl, potcnt,lal for Unplr-

tuvbvl crvntaln where for on0h angular 111tn1MLUM ^,il now collagtant ,W
1' has LO he

dvtcvmt nvd.
 1t1)

For deep I VVV I S In Gt t OCL®Hanel-goo som tconduc Lors, 010 ono-hand l.l`1A cunst i-,

tutus at host a poor approximation. We are looking. therefore, for an altcruaLive

wa y of solving oqs. (41). Now, It the vnvrgy vigenr'values of Lhh ImpurtLy area

expected to Ito to mid-band-gap, than not only do the conduction and valence

hands contrihntr, but also cousidorahiv parts, in k—spar y of the hand energies

(54
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;F

lev (it) are involved. To take fun advantage of the situation, a Fourier trans-

forwatlon of ecls. (51) is indicated. Therefore, defining

ik.It
F  (a) 
	 Fv (1ld - 

N-1/2 E fv (lt) e as	 ,	 (55a)

It
t

^./2	
-ilt • Itlx

fv(k)	 N-	 E i^v (Y.
(X

)e	 (55b)

R
4
i

:1S	 aswl'lI. 	38)

-i1t • l^
vv\ , (k) - N-1	

vVV' 
(}tlx)1^ 

ro Ct	

,	 (56)r

ix

WO ObUlhl From eqs. (51),

l.v (k)1.fV (k) ^^	vv (k - k')fv ,(k')
J

(57)

V, k'

TI1e 511111111atid1lS QVer k or k'	 In the above equatl.ons only extoad Owl' L110 JsL

Brillmvhi zone.	 The intogral oq uilL lons (57) art' equivalent to egs.	 (51).

llofore going, any further, we allow the quantization V01LI1110 V to become infiniLo.

111 this ci1Se, we a.ry dealing with continuous Variables, 	 both in It as well. as in R

space,	 The transcxlpcion follows Lhc usual rules:

v3
	

d 
3 

k	 r V-1 d 
3 

R (58a)
l	 y	 ^.

(211)

,
k	

Ct

26
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where

V = a 
* 

(a x a	 (58b)
1 1.	 2	 3

is the volume of a unit cell with 
the primitive lattice vectors a 	

and
- 

1.1 -^2	 a3'

We also have V = Nv. The Kronecker 6 symbols go over into 
their 

respective

Dirac 6-functions

6
1c	

(2V) 3 6 
( 11,	 6cxQ = v 6(R - R')

Equation (56) now becomes

vv, (k)	 v
- 1 

	 d 
3 R Vvv ,(R) Cl— 

ik-R	 (59)

The integral equations (57) are solved readily if the kernel VQ^ - LC) may be

written as a product V 
1 
00 v 

2 
(k.') . This can be achieved by using a complete set

of normalized functions such that 39)

6(R - R-)	 9
III

* 
(R) g M

(R')	 (60)

ttt

lie now define the now quantities

	

.f

3	 1/2 -ik-R
d R gm (R)  V ^ (R)	 J7 

vv•	
(01a)

and

	

3	 1/2 ik•R	 M
d R	 (R) 1\1vv, 

(R)	 e	 'T VV• 
(k)	 (61b)

27
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It is to be noted that 9 is not the complex conjugate to 5" because the

potential V may become negative or positive as a function of R depending on

position. This is so because, for instance,. a totally attractive true potential

(negative for all R) will acquire positive parts for small R due to "pseudizing."4)

We also have assumed the interaction potential V vv ,(R) to be centrally symmetric.

From eqs. (57), (59), (60) and (61), it follows that

f3FVMV(k
CE -

Ev(k) 
fv(k)19	 (2,(k),') fv'W) d

3k'	 (62)

v,m
^r)	

a

Introducing the quantities

QmG	 = (2^r)-3 ( 
d3 	 v	 m	 -1

k ^ . (k) ^,	 (k) L - E (k)	 (63a)
v1Vlvv'	 l	 vlv -	 w	 I	 v

and

Am= (27r)
-3
	d 

3 
k ^ m ,(k)f ,(k)	 (63b)

vv'	 vv - v

we obtain the linear set of equations

Av v E Gvmlvv A
te ,	 (64)

1	 1
v,m

We now consider only two bands, assuming that the energy eigen-values within the

band gap between the conduction band and the valence band are mainly determined

by these two bands. We ignore the complications introduced by degeneracy of sev-

eral valence bands. Designating the conduction band by v = 1 and the valence

s

I'
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Mn-A' by v	 2, we obtain four equations

s

(they are still matrix equations in

the space gonerated by the g r ^r) which may be written in matrix notation

A 11	 6 11111 A '11 + ^'11112 Al2 '	 Al2 w 6 12121 A21 + G12122 A22

-(65)

A '21	 c2 	 A11 + G21112 Al2 '	 A22	 G22121 A21 + G 22122 A22

The deLerminant of the coefficients of this linear system must vanish, and it is

this condition which determines the possible energy values within the band gap.

VLLh they help of the defining equations (59) and	 (63a), we also have:

\ (1\ 1n =	 G 1111	 MIA
1j /J 1 (y^111]:1	 L.1/j i 	l/ 1k

m

1 (ic) .1-1  (IC ')	 1n_^	 d ^kd!31c' ^._ -
- i;^_^ ___

(i lc- I: ^(l ')} V 
I (k' - k)	 9 i 

j /11c

(66)

After some manipulations, eqs. (65) may now be reduced to (again in matrix

notation)
j,.

( G '11(11 + G11(12 69 ..1 1 ``9'12111   - 1 A ll + G 11I 12 81111. 
G l.2I 22 A22 _ °l

and	 (67a)

G.22 1 21 <13 21 6 211 11 A 11 + ( G 22122 + G 221 21 d3 21 `211 22 -1)A
22 = 0

(67b)

t	 ^.

29



i

7

4 a.

ORIGINAL PAA1,
OF POOR 0 

Here we have introduced the inverse matrices ^W and X3 2 defined by:

	

69 1 = 1 - W12 12	 (68a)

and

``'

	

^2 1 - J21121	
(68b)

Eliminating A11 from eq. (67b) gives

A11 - G 21111 x`'21122   +	 2 x'2 21 21   G	 (69)22) 22-- 1	 A22C
1

so that inserting this into eq. (67a), it is seen that the energy eigen-

values of the impurities are determined from the condition

DET) G 11 ].1 - 1 + G 11 12	 1 1 `^12 1.1 G 21111( 21 22 + a2 G 22121 (G22 22 -1)l
^	 /	 d

+ G11112 c
g
 

1

1 G12122	 0.

(70)

Here the symbol DET signifies a determinant in the matrix space generated by

the functions g introduced via eq. (60). Since the functions g
m 
(R) are largely

m 

arbitrary, a judicious choice may reduce the dimension of the (infinite) deter-

minant of eq. (70) to a manageable size. In principle then, it is possible to com-

pute the energy eigen-values of a point impurity, be it a substitutional or inter-

stitial impurity or even a vacancy, with the aid of eq. (70) provided that the

underlying band structure of the host crystal and the potential energy of the

defect are known and provided that a number of approximations made in the course

of this analysis are justified. It is perhaps worthwhile in concluding this work

to point out the various approximations which led to the basic equations (49)
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through (51) and also to the determinantal eq. (70). The underlying, unperturbed

crystal structure has been :formulated in the one-electron approximation. This

in itself does not constitute a limitation, since it is not necessarily predi-

cated on the use of a single Slater determinant as it is in the Hartree->!ock

approximation. Correlations may well have been taken into account. We left

this question largely open, assuming that the unperturbed crystal properties

(its wave functions and energy bands) are sufficiently well known in order to

attack successfully the point impurity problem. The approximations made during

the course of this work may be discussed in their order of appearance. First., we

expanded the wave function V of the system - crystal + impurity - in pseudowave

functions ^v belonging only to valence and conduction bands, ignoring the core

states. But the pseudo-functions contain an admixture of core states in a natural

way. As far as only valence states are concerned, they form a complete,

albeit non-orthogonal set since there is a one-to-one correspondence., barring,

accidental degeneracy, between 4
0

and 4)0h. Furthermore, the pseudopotentialVk

weakens the strength of the true potential, as we have seen, so that high Fourier

components and therefore admixtures of core states in the expansion (32) tend to be

de-emphasized. Next, the approximations eqs. (37a) and (37b) diagonalize the cor-

responding matrix elements. While this constitutes an excellent approximation

as far as eq. (37a) is concerned, it is less so for eq. (37b). The culprit here

appears to be the pseudo-Wanner function, 14 V , which is less localized than its

counterpart, wV. But we have seen from eq. 30 and the discussion following it,

that the deloealization is not severe, and so the approximation of eq. (37b) is still

quite Justified. Another approximation which has not really been used, however,

at least as far as the general formulation culminating in eqs. (49) to (51) is

concerned, appears via eq. (39). it is self-evider;t, and it is certainly true
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far away from the impurity. The last covey of approximations to be discussed here

briefly (since it has been done extensively in section 2) concerns itself with

the screening of the bare potential or the influence of many-body electron-
..	 ..^

electron interactions on the one-electron Hamiltonian. The most severe limita-

tion in this case consisted in using linear response theory, the bare potential

being screened by means of a dielectric constant as in eq. (47). But this implies

that the potential Ub (R) is to be considered weals in the sense of first order

perturbation theory. While this is justified in most cases of interest for

large R, first-order perturbation theory will. simply not do for small R, How-

ever by means of "pseudizing", the true potential had been weakened for small R

to such an extent that first-order theory became viable throughout the whole

range of R. The neglect of Umklapp (central field corrections), core polariza-

tions, exchange and correlation corrections to the dielectric constant and the

neglect of the screening of the pseudo-part (tile nonloc.al part) of the pseudo-

potential constitute additional approximations. They have been discussed in

section 2 and their effects found to be small in many cases of interest.

Finally, turning to the derivation of eq. (70), two additional approxima-

tions have been introduced. Confining the expansion (eq. 32) to two bands only,

constitutes one, and to assume the potential V to be centrally symmetric constitutes

the other approximation. While the first approximation is certainly valid if the

bands considered are broad, so that there exists a large energy separation between

the valence bands and all the lower bands, the second approximation implies an

averaging over angular variables, a procedure often used in the literature.

Y 1^
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5. Donor Energy Level for Se in AtxGa1-xAs.

In this section we like to apply some of the theory developed in the previous

sections to a simple system. Selenium with the electronic structure [A] 3d104s24p4,

when substituted for arsenic with the electronic structure [A] 3d 104s 24p 3 in the	
<

crystalline compound AtxGal-xAs will evidently behave as a donor since it contri-

butes one more 4p electron to the lattice. It is known experimentally that in

pure GaAs (x= 0),Se does indeed exhibit a donor level at 6 meV below the conduc-

tion band edge. 
40) 

Recently, the position of this donor level within the band

gap of the compound At XGa l-xAs as a function of x has been determined experi-

mentally. 41) With the aid of eq. (57) we shall now try to determine this donor

level theoretically. In order to be able to do so, we must know the underlying

band structure, Ev (k), and the interaction potential, Vvv	 Since we are dealing

with donor states, the drastic simplification of ignoring all valence bands may

be made. Furthermore, the conduction band of At xGaI-xAs possesses one minimum

at the P point (k= 0) and six equivalent minima at X ((100), (100) ... (001)).

Tile relative position of these minima with respect to each other as well as their

effective masses are a function of x, the mole fraction of AQAs in GaAs. Before

we go into the details of the calculations, let us write eq. (57) again for the

convenience of the reader, dropping the band index now that we are dealing only

with the conduction band:

(E (k) - E) f (k) + 57, V (k - k-) f (k-) = 0	 (71)

k'

Let us assume with Twose42) that we may write for f(k),

f. 4.

f (k) _^ (k - k^)	 (72)	 #.YM
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which is large only in the vicinity of a band extremum, such that

	

E(k)f(k)= E(k
j
) + (n2 /2)	 m-0(k - k^) a (k - kj ) s	(k - k^)	 (73)

a,R

with sufficient accuracy. Here we have assumed a number of minima located at

the positions k. and have performed a Taylor series expansion about k = k
j
 retain-

ing only the first two terms. Evidently

a2E(Ic)	 h2	 (74)
A a A 0	 - 2mja3

Ic=k^

defines the effective mass tensor, ma,, in the usual way (a,R indicate Cartesian

components). In the neighborhood of k = kV eq. (71) now becomes

	

E(k) - E + (1-1 2 /2) )	 m^a a (lc - k	 lc^) (ic - ^) c j (k - kj

	

b	
a	

3

	

+

L 
V(k - lc') ^,(lc' - k,) = 0	 (75)

k'X

Multiplying e	
Pik- i

	

 q. (75) by c,' 	 and summing over all 1: yields

ik r ( rr	 i (k-k ) • r
e 

_Q•	
E(k^)	 (h /2) 

E 
miaa 8 /ax aaxa c 91 (k - k,)e	 k

Z,k 	 a,(^

i (k—lc') •r
1(k' — icy ) •r

+E V(k - k')e	 cQ(lc' - k.)e	 = 0	 (76)

k'

It

^e

1r
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(77a)

(77b)

If we also define

HQ = E(kQ ) - (t2/2)^ m^a a a 2 /ax aaxa + V(r)	 (78)

a,s

we may write eq. (76) in the cuigpact form

ik .•r
e	 (H^ - E)Fj (r) = 0	 (79)

J

The physical significance of the functions F  may be seen if we retrace the steps

which lead from eq. (32) to eq. (77a). Since ^^ is large only in the vicinity of

kj , we may write

F (k) _ ) ^^ (k - k^ )
	

(80)

J

:r
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By anal.oBY to eqs. (55a) and (56), we define

i(k-k )•r
FQ (r> = N-1/

2 

E 
^ x (k - k,)e

k

and

V = 1: V(k)e

k

35



t

ORIGINAL PAG
OF POOR QUALITY

Then using eqs. (80), (77a) and (32) we find

_	 F,(r)^0k	 (81)

R.	 . R

where 
^0 

are the pseudo Bloch functions associated with the conduction band
aQ

minima located at k= kQ , and the wave function y of eq. (81) is an approximate

solution of eq. (31). It follows now from both eqs. (79) and (81) that the

energy can be expressed by

E<Fj^e	

"3	
H^ Fk>

F _ j lR	 (82)

7 <F	 (1,. 9. _^j r 
IF >

an expression which lends itself nicely to a variational calculation. But before

we go ahead and do this, we must delve into the significance of eq. (79).

Equation (79) constitutes one equation for apparently many functions F a . Now,

if we are dealing with a crystal like Si for instance, where only equivalent

minima (6 in this case) exist, then all functions F  are equal by symmetry except

for certain coefficients depending on the particular point group symmetry

involved. But these factors are known from group theory,and therefore eq. (79)

is sufficient for a solution of t1, eigen-value problem. However in eases of

non-equivalent minima,the argument fails and eq. (79) is not sufficient for find-

ing a unique solution. Equation (79) has been derived from eq. (75) essentially

by summing over aZZ k. But if the summation over k is restricted to a subzone

centered about each minimum at kj , we obtain a set of equations, one for each l "j.

I

0
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This device has been used by Bassani et a1, 23) But this method lends also to

non-local potentials in configuration space and gives significant simplifications

only for potentials which are very strongly localized in momentum space. It

would be therefore best to work with eq. (75), which is really a set of equa-

tions, one for each ^V rather than with eq. (79) , which constitutes only

one equation for all F 3 . However we can avoid this complication if we use

eq. (82) as a variational principle in which the function V i belonging to non-

equivalent minima are varied independently. Consequently,we set

_1/ 2
F = (lra3 )	 e-r/`^	 (83a)

and for ;j	 = l to G

-r/b (83b)l	 = cx^ (lrb3) e

reprusviiting the envelope functions belonging to the minimum at F (83a) and the
l

six egUiva;ient minima at X (83I))	 of the conduction band of the AtxCal-xAs.

a and b eonstitute two independent variational parameters. The coefficient s

are aSS ign0d 01e Value 1/v16 for the ground state	 (the A^ representation of

the group T d43) ).	 As model for file band structure,we take a simplified version y

of eq.	 (78) .	 For the sole minimum at P, we put

2 3

0 2m
0

r ,	 1.5 `: r, dtlF
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and for the six equivalent minima at (k,0,0) (-k,0,0) (O,k,O) (0,-k,0) (0,0,k)

and (0,0,-k) we put

2
H. = 1.11
	 2ml
= 1i V2	

c
+ e + V(r)	 (84b)

J	
^..

The zero of energy is measured from the position of the P minimum. For the

potential V,we use the semi-empirical expression (53). All quantitates, the

cz.ffective masses m0 and ml, ell , the energy difference between direct and

indirect- band minima, k, the magnitude of the wave vector connecting the direct

with any of the indirect minima, c/, the strength of the attractive effective

potential well and finally the static dielectric constant e(0) are functions

of x. Values for the effective masses m 0 and ml and for the static dielectric

constant E:(0) have been used as reported by Hauser et al. 44) . Values for 6 c	 -'

have been computed using band gap versus composition expressions culled from the

same report. Continuing with the calculations, we insert eqs. (83) into

eq. (82) and perform the indicated integrations. After some tedious but straight-

forward algebra we obtain for F:

E = DI N1 + N2 + N3 + N4 + N5 + N6 + N+	 (85)

where with

c = ab/(a + b),

-2	 -2	 -2

	

D = 2 + 16F6 fc/(a + b)J 3/2 (1 + .k2 c 2 )	 + (1 + k2b 2 )	 + 16(2 + k2b2)

(86a)
w
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N	 14T

"	 4

2

N .)	 2/6' ^ -
^', . >	 ^..,	 I	 1.	 _. __F	

b
^mO`i 

< <  -.-9:-,	 a	 r	 ,i,	 .

•'

l	 . ^.

h"1 + kc` (i	 + It cm
0

a	 nil

i+I.	 i	 2 
jt j^

`
	 '16 Ic` I)

2
_—

2mlk' (1	 + It	 1) 	 (`2	 + k21)

+	 c c	 (1	 1	 kt) }	 +16(2+k-b )	 +8 W+h)1 01k v )

(860)

N 3 — —^n/n1 	 a 0—

1
'21

J

2
_	 ^'.,.	 k	 +	 ^	 i^

r 	 ^ (86(l)
a

a
e.l	 a

1

N
4

	 8(ab) —	r	 ('1 + lc	 c	 ) C'^lcc =	
+ coski^)	 r

+ r/ c :3 (1 + lc? c ` )	 2 —
/
(°^	 —	 lcc}

—'/sinlcl\ +	 coslcit^ ^'	
i^ c

\ lc c

2	 t^	
k:/c	 sinlcR

^kc	
+ c oskl.^" WRc l 3 r8(ic,)—	 ° —	 °, 2

t + lc ` c t

N^ — -^h/ t	 L + 2 1 + ? R
2	 —2R/U

v2)
—eta'	

1	 +	 ''	 l
ca—°?R/lay ( 60

M

A

t

. 3i
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N
6
	- Z''2 (1 + Ic2b2)-i \s lcbcR + coslcit) - . / (1 + k 2b 2 )

-2 
1 + 2 cog2k1:

1	 1.	 -2R/b	 2 2	 11: (i	 1 sinlcb+	 - kb) sill2kR	 +API®	 + lc b )-	 + (,o.1;21"(,o.1;21"2(,o.1;21"e -2R/ ,

	

^kb	 ]	 b	 y10)

(86g)

N	 - 8c2 (2 + k2 b 2 )
-L 

sin^klt + c.os 32k1: L^ -2R/b
7	 c"? b	 { kb	 }

-2
2 2	 2	 -2p./1

- 4.rd(2 + It l) )	 !+ - ,^2 4ex1sf2ki^ +kb- 
lcb^ Sill VQ9 d L

	l: 	 2 2 -'1'. fi^ Sin^kP.	 !^	 ,-2R/b	 (11611)+ 8,4/ b (.. + k b )	 ,'« __ -1cU,aE + cos, lcl. L

The Lask n ow boc l)mes fo mid,blo. Given tho (Itia1titivs 1:, , ) k, o 2 (010 S(Ill,il'^'

of the L'100LrO11IC cllill'go) and e ll/, One I1111SL deLC'rmino 010 Vilrii1LIO11,11 11a1i11116'Lors ^l

a11d b vial Lhe equaLions

	

11,	 ? 10, 	
(87)

using; of caurse, 211.1 e\preSSions (86) in Lhe defining O(111,1Lion (85) for 1.. A ftc,r

having, sotved tho transcondental eqs. (37) for a and h, Ow l OnOrg;V F fIM111 t Is

completed via eq. (85) . however, a and b signify 01e extent of 01e e1eL:tron doled

for an eloo ttron bound to L110 illptlriLy and, for 511,111ow SLaLes, LMS e\LenL is Ialre'L',

covering; many IatLice slLes. The magniLude of k is of 01e order of a reciprocal

lattice vector. 'Therefore iL iS eXpectcd LhaL Lhe product ka or kb is largo

L:onlpared Lo unite.	 if this is true, a drastic simplification arises 4111ce

most of the terms of eqs. (86) becomo ooglipbly small. Tho nel,lecL of Lliv
x ,,
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Lorms containing; Ica or kb is tantamount to the ner,lect of itlLerval.ley mixing;.

Neg 10vLfill, 01e11 'inLty rv1110y nlixing;, the equatlon for the energy becomes

2	 2

tl m tl ,i 2 	^mlh2	
2	 3	 5

where N 3 and N5 are given by oqs. (86d) and (86f), rc:ipe ct'.IvciY. if wo uwasurc

ai ^l iC^11$tlls ;lll llllit5 of the Bohr radius a 1	 0.529A and energies ill mliL`i of Lhe

Rydbcrg; R 	 eV, and if we introduce the quant;ILtcs

hrYit 11 ,	 m(?	 ^ I^nlca ,	 n> l w y,l mca ,	 v = `.Rbi, Y, m 2R/b	 (89)

whore In is LhV mass of a free electron, Lhc vai-Intiona'1 eels. (87) become simply
c

^ 	 ca^•1 -	 ae`(^l/R11)y^ + (2ax/F) 
,l 1

' ^', 	
y^)	

0 or l	 (4)t))

The onergy 1, beconlcs, with t'he .lid of ca lls. (90)

c
	 ,	 1 + ^' ;l	 " 

v 
1	 4 l',9	

e

JW0

l
(l'^i/"F')	

yi + y i + 
` ;i	 `a	

S -
	

(^l)

.1=0

1'l)r any given v:llllla S of the paraillel:'Ca rS ^' y +^, F ill lcl t`?f y eqs. ( q0) possess a unique

tint al' SO111ti011S y I .	 Once these' SolkiLlons are ftllllld, the onorgy Itivei E, call be

e
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computed via eq. (91). It is interesting to note that if e is made formally

infinite, eqs. (90) become

eye _ (yja'a,/R.) y j	 (92)

Letting c >- is tantamount to setting the Coulomb tail of the potential (53) equal

to zero, and such a potential is representative of an isoelectronic impurity. But

eqs. (92) only permit a solution (a bound state) if

y
i
a2a /RH ' e = 2.7183 ,	 (93)

and this inequality is almost identical to the well-known criterion for the

onset of bound states derived from the one-band, one-site model for impurity energy

levels by Koster and Slater. 
45) 

That theory leads to the expression

1	
N-1 

57, (E - E  (k)) -1
	

(94)

k

for the energy level of an isoelectronic impurity. If we now replace Ec(k),

rather boldly, by the expression h 2k2 /2yme and replace the 1 st Brillouin zone by

a sphere of radius R = aa H , it can be shown that eq. (94) allows for a solution

or energy level below the edge of the conduction band if the strength of the

potential well ,r/ satisfies the following inequality:

ya2a/RH - r = 3.1416
	

(95)

However eqs. (90), valid for donor-like impurities with Z = 1 always possess

a solution, or in other words, a bound state within the energy gap always exists.

42



Returning to the calculation of the energy eigen-value based on eqs. (90) and

(91), it is necessary to obtain values for a and V. Remembering that a = R/aH

and choosing for the cut-off radius R of the Coulomb potential (53) the

covalent radius of Se, we find that a = 2.19. The last parameter to be deter-

mined is the strength of the attractive potential well W. of eq. (53). A first-

principle calculation via the defining eqs. (49) and (50) for the potential being

a rather complicated undertaking,we choose to adopt a semi-empirical approach.

Consequently,we put

^,Z = x`^AQAs + (1 - x).sflGaAs	 (96)

and determined the values of the effective pot:^.ntial for pure ARAs, P'AtAs'

and for pure Ga A s, `
pl,	 , 

by means of the knotdn energy values E 6 meV in

these two cases. In other words, taking the values for all relevant parameters

like effective masses, etc., corresponding to either GaAs or AQAs, we determined

a by means of eqs. (90) and (91) in such a manner that the energy E came out to

have the experimentally determined value of 6 meV. In this manner we obtained

`^"ZAtAs = 0.91 RH, ` GaAs = 1.05 RH	 (97)

Using these values and eq. (96) as well as the values of all the other param-

eters as culled from ref. 44, we computed the energy eigen-value as a function of

x. The results are plotted in fig. 1. Also plotted (as a dashed curve) is an

average over experimentally determined values of the same quantity. 
41) 

Consider-

ing the enormous simplicity of our theory, the overall agreement is rather good.

The sharp maximum at the cross-over between direct and indirect band gap, experi-

mentally 321 meV, is calculated as 316 meV. On the other hand the agreement is

1

1'

y;
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rather poor in the "wings", that is to say for either small values of

x (x < 0.25) or for large values of x (x ? 0.8), Here deviations of the com-

puted values for the energy from the actual values are pronounced. One reason

for this is due to the neglect of intervalley mixing. Another reason is due to

the neglect of higher order terms in the expansion (eq. 73) of the energy E (k).

This becomes clear when we look at the magnitude of the variational parameters

a and b. It turns out that a varies betwen 207 (at x = 0) and 83 (at x = 1)

Bohr radii and is thus comfortably large. This implies that the Fourier trans-

form (eq. 72) is sufficiently peaked at k 7 = 0 so that higher order terms ill a

Taylor series expansion about 0 may be neglected and eq. (73) is justified and

at the same time, a mixing of this valley at k = 0 with the other six valleys at

kj 0 = 1 ••• 6) contribute negligibly to the energy. However b turned out to

be much smaller than a. In fact, b varies between 2.68 (for x = 0) and

2.35 (for x = 1) Bohr radii. In this case, the Fourier transform (72) becomes

fairly delocalized, and eq. (73) constitutes a poor approximation. Also the

product kb, where k is the magnitude of the distance (in k-space) between the

central valley at the t' point and any of the six equivalent minima at X, now

becomes small enough, so that intervalley mixing cannot he neglected. These

shortcomings must be eliminated before an adequate theoretical understanding of

the donor level of Se in A? xGa 1-xAs becomes possible.

For the sequel to this report, it is planned to investigate these topics

further.
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i -
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