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ABSTRACT

This report is a critical review of the existing inter-
pretations of the trailing-edge condition, addressing both
theoretical and experimental works in steady, as well as un-
steady flows. The work of Kutta and Joukowski on the
trailing-edge condition in steady flow is reviewed. It is
shown that for most practical airfoils and blades (as in the
case of most turbo-machine blades), this condition is
violated due to rounded trailing-edges and high frequency
effects, the flow dynamics in the trailing-edge region being
dominated by viscous forces; therefore, any meaningful
nodelling must include viscous effects. The question of to
what extent the trailing-edge condition affects acoustic
radiation from the edge is raised; it is found that violation
of the trailing-edge condition leads to significant sound
diffraction at the trailing-edge, which is related to the
problem of noise generation. Finally, various trailing-edge
conditions in unsteady flow are discussed, with emphasis on

high reduced frequencies.



I. INTRODUCTION

Early progress in predicting aerodynamic forces on bodies
in incompressible flow involved potential flow analysis. In
such analyses, the Kutta-Joukowski condition [1902, 1906] is
used to give the unique solution for both isolated airfoil and
airfoils in cascade. This mathematical condition requires
that the flow velocity at a sharp traiiing-edge be finite.

The resultant flow pattern and the predicted lift agree well
with that observed at low angles of attack. Howeve., many
interpretations have been used instead of this condition, whicn
can lead to widespread discrepancies in predicting the aern-
dynamics forces and moments. A critical review of these inter-
pretations is presented.

However, this condition is violated when the trailing
ecge is not sharp, even though the flow is steady. In this
case, the trailing-edge is dominated by viscous effects. For
this class of trailing edges, the Taylor-Howarth criterion of
"zero total flux of vorticity into the wake" is found to be
the appropriate edge condition for steady flow, that es-
;ablishes the circulation and the aerodynamic forces. Details
are given on the nature of the trailing-edge flow structure,
emphasizing the role of viscosity in smoothing the flow field

in laminar non-separated flow, using multistructure boundary
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layer theory of Stewarston.

The complexity of the problem increases when airfoils
with rounded trailing-edges operate under unsteady conditions,
as in turbomachinery applications. In such cases, there are
all the previous theoretical difficulties encountered in
steady flow and, in addition, the unsteady effects on the
boundary layer and the vorticity eventually shed from the
trailing-edge. These effects give rise to significant
trailing-edge loading, as well as strong acoustic radiation
from the trailing edge, especially when flow separation oc-
curs, which is related to the problem of noise generation in
turbomachines. In prac.ice, the discrepancies in modelling
. this condition may lead to shortfalls of many tens of mega-
watts of generating capacity when they occur in the design
of turbine nozzle blading for power plant stations. So, the
correct theoretical modelling of the generalized trailing-
edge condition is important in determining the acoustic
radiation from trailing-edges of wings and blades in turbo-
machines, in understanding the mechanisms involved in certain
classes of bird and insect flight, and as a prelude to
analyzing trailing-edge stall on oscillating a:rfoils. A
critical review and a clear picture about this complicated

problem, especially unsteady aspects, seems essential; this



is the main purpose of this work. First, we start with

various iaterpretations Kutta-Joukowski condition.



II. KUTTA-JOUKOWSKI CONDITION

The Kutta-Joukowski theorem [1902, 1906, does not ex-
plicitly provide a means of calculating the circulation (r)
around the airfoil in two-dimensional steady incompressible
potential flow, hoﬁever, it provides the foundation for
predicting the 1ift (L):

L= pUaI‘E

where

p = the density of the fluid

U, = the undisturbed velocity at infinity

I = the value of circulation around the airfoil

3 = unit vector perpendicular to the free stream
direction
From early experimental work (Prandtl [1934]), it had been
known that only airfoils with sharp trailing edges appear to
have well-defined values of 1ift. The theoretical streamlines
for flow without and with circulation past an airfoil are
shown in Figure 1, and in general, for arbitrary values of the
circulation (zero, or too large values) there will be flow
around the trailing edge from one side to the other with an
infinite velocity in the vicinity of the trailing edge, which
appears as a sharp corner with angle greater than = as shown in

Figure 2. But for a particular value of the circulation, given



the incidence a, the rear stagnation point is i1ocated at the
trailing edge and the flow leaves the trailing edge smoothly,
-as in Figure 1(c), e.g., see Goldstein [1965].

So, for a given incidence a of the free stream past an
airfoil with a sharp trailing edge, the actual flow has a
defined circulation. That is, there is a definite relation
between the condition at the trailing edge and the develop-
ment of the circulation. In fact, the assumption of inviscid
flow really represents the limiting case of a fluid whose vis-
cosity is vanishina small at high Reynolds number. hen
the flow is attached, the effects of viscosity are confined to
thin boundary layers on the surfaces of the airfoil and to the
- downstream wake formed by the merging of the upper and lower
surface boundary layers at the airfoil tfa11ing edge. As
a first approxima;inn, it is reasonable to assume that the flow
can be regarded as inviscid as long as the flow in the region
of the trailing edge remains attached. Given free stream
velocity, the flow depends on a local Reyaolds number, based
on a length associated with the geometry of the trailing edge.
Such a length is the radius of curvature of the trailing edge,
r. Thus, an appropriate Reynolds number, Re is:

r U

Re = —
)Y

Now, assuming that v can be varied at will, let it tend to zero.

—B -
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In order to maintain similarity, Re must be kept crnstant at
the same time and this implies that the radius of curvature of
the trailing edge also tends to zero. In other words, the

trailing edge must be assumed sharp. At the same time, the

velocity near the trailing edge must be bounded in the actual

physical case.
Kelvin's theorem, dealing with the rate of change of the
circulation about a closed path surrounding the same fluid

elements (Lamb [1945]) states that:

or . _ [ 4P
bt 3

vihere the circulation I' is defined by: -

refa-ds
c
For an incromprssible or barotropic flow,
=0

which is known as the law of conservation of circulation; in
esuance, this means that when vorticity is shed, tno rii-
culation of the vorticity round the airfoil is always equal and
opposite to the shed verticity at the trailirj edge.

In summary, an airfoil with a sharp trailing edge (i.e.

nonzero trailing edge angle), which is moving through a steady
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inviscid incompressible fluid at small angle of incidence, will
create ahout itself a circulation of strength just sufficient
to hold the rear stagnation point at the trailing edge and the
dividing streamline from the trailing edge bisects the tan-
gents from the ‘ipper and lower surfaces at the trailing edge.
For zero-trailing ados angle (cusped edge), the vé]ocity
remains at the cusp (Batchelor [1970]).

This condition was put forth by Kutta [1902] and inde-
pendently by Joukowski [1906], and is known as the Kutta-
Joukowski condition. This theoretical condition has been
found to agree well with experimental predictions as long as
the flow remains attached. If we examine the sequence of
events observed experimentally when an airfoil with a rounded
leading edge and a sharp trailing edge is set into uniform
motion from rest through a real fluid such as air or water of
low viscosity, we can see, immediately after the start of the
motion, that the flow is irrotational everywhere, since the
transport of vorticity away from the airfoil surface by vis-
cous diffusion and convection takes place at a finite rate.
For this initial irrotational flow, the circulation is zero and
the rear stagnation point is on the upper surface of the air-
foil. The fluid particles tend to flow around the trailing

edge with very large velocity, and then rapidly decelerate to



to the stagnation point, leadinc to development of back flow
in tiie boundary layer there and to separation of the boundary
layer at the sharp trailing edge. Equivalently, no matter hcy
small the viscosity, there will be a viscous force at the edge
begause of the largc velocity gradient there. The effect of
the vorticity generated at the trailing edge is to create a
circulatory flow of fluid around the airfoii; this circulation
continously modities the flow pattern so that the velocity peak
is reduced. This vortex is known as the starting vortex. As
the airfoil proceeds, the strength of the starting vortex and
that of the circulation around the airfoil grow simulianeously
until the flow field around the airfoil is such that the fluid
flows off smoothly from the trailing edge as shown in Figures
3,4,5. It has then oractically no influence on the flow
around the airfoil. Whenever the condition of the smooth

flow at the trailing edge is disturbed, say byachange in the
speed of the airfoil or in its argle of attack, a new starting
vortex is formed, and a2 new value of the circulation is
established such as to restore smooth flow at the trailing edge
as shown in Figure 5. This explains the initial role ¢~
viscosity in the boundary layer in generating the well-defined
circulation; once it is establiched, the effects of

viscosity may be ignored in the subsequent steady motion since
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no :eparation of the boundary layer occurs. From this, we can
elate the hypothesis of Kutta-Joukowski: ..."Th2 flow past an
airfoil with a sharp trailing edge, in steady potential fluids,
leaves the trailing edce smoothly with finite velocit; .." to

these experimental observations.

=10 =



II1. TRAILING-EDGE CONDITION IN STEADY FLOW

(A) Inviscid Analysis

The pioneering work of Kutta and Joukouski provided a
mathematical constraint for the trailing edge region, invoiving
a unique value for the 1ift on the airfoil using potential
analysis. It is very important, at this point, to define
exactly the limitations of the Kutta-Joukowski condition to
preclude confusion. Both Kutta and Joukowski considered two-
dimensional airfoils with a cusped trailing edge in steady,
incompressible potential flow. So, the term "Kutta-Joukowski
condition" should not be used indiscriminately to denote some
kind of trailing edge condition, and any application calling
for greater generality might refer to a "trailing edge
condition". Gostelow [1975] pointed out that:

The Kutta-Joukowski condition only pertains

to the steady, incompressible potential flow
around a two-dimensional airfoil having ¢
cusped trailing edge. In such a case, the
circuiation is determined, for small angles of
attack, by placing the rear stagnation point
at the trailing edge, thus removing the
singularity and a finite velocity is preserved
at the cusp. The rear stagnation streamline,
under these circumstances, will be tangential
to the airfoil surface at the trailing edge,
and the resulting flow predicted well the 1ift
well and its chordwise pressure at low angles
of attack.

In fact, we can generalize the Kutta-condition in steady

incompressible potential flow around bodies with sharp trailing
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edges as the flow velocity at the trailing edge nust be fjgjgg
for cusped trailing edges and be zero for trailing edges with
finite angle; otherwise a surface of discontinuity (i.e. a
vortex sheet) will emanate from the trailing edge, which cannot
be permitted in steady flow whether the trailing edge is finite
or zero. Consequently, the pressure difference between the top
and bottom surface tends to zero at the trai]fng edée. see
Robinson and Laurmann [1956], Tsien [1943] and Krishnamurtyk
[1966].

Analytic solution of this class of problems, by con-
formal transformation techniques, has been carried out by a
number of investigators, including Glauert [1947], using the
Kutta-condition to obtain a unique solution., In this discus-
sion, attention will be given to the validity and inter-
pretation of the Kutta-cundition, including its limitations.

Basu and Bancock [1978] point out that, although the
velocities and pressures in their analytic solution remain
finite at the tr«.iling edge, the flow itself in this region is
singular in the sense that the rates of change of the surface
velocities are infinite in the vicinity of the trailing edge.

Considering another interpretation of the trailing edge
cond’tion in steady flow, Giesing [1969] puts forth a simple

statement of the Kutta-conditiun applied to bodies with finite
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trailing edge angles and to bodies with cusped trailing edges:
..."the velocities on the upper and lower surfaces at the
trailing edge must be equal in magnitude, but opposite in
tangential direction." In an equivalent interpretation, White-
head [1973] states that one can choose between either the
velocity difference or the pressure difference tending to zero.
For the inviscid flow past a steady airfoil where sep-
aration does not occur at the trailing edge, the analytic
solutions give rise to singularities in the velocity and the
pressure at the trailing edge, and the loading is also infinite
at the trailing edge. Hess and Smith [1967] give a numerical
procedure for this case. In their method, the profile is
divided into several straight line elements. Sources of un-
known strengths, each constant over a given element, are dis-
tributed arbitrarily. An unknown constant circulation is
superimposed on the profile. The boundary condition is satis-
fied by equating the normal velocity component to zero, as
shown in Figure 7. The Kutta-condition is interpreted by
equating the tangential velocities on the two elements on

either side of the trailing edge region, i.e.
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In fact, the flow characteristics are essentially
averaged cver the length of an element; thus the singular
behavior in the neignborhood of the rear stagnation point at
the trailing edge is averaged over the trailing-edge elements.
This condition used in this procedure, is equivalent to stating

that 'no vorticity' can be shed, i.e.

and

where YT.E. is the instantaneous strength of the vortex shed
from the trailing edge. This condition is consistent with the
circulation around the airfoil remaining constant. It can
also be interpreted as zero loading in the vicinity of the
trailing edge, which is physically realistic. In fact, the
actual trailing edge in their model is not a stagnation point;
it is found that the velocities at the midpoints of the
trailing-edge elements differ significantly from stagnation
values. Thwaites [1960] also quotes zero loading as the
trailing edge condition for steady flow. In addition, he has
an original statement of the condition, "...the rear dividing
streamline leaves the airfoil at the trailing edge"..., and

another interpretation states as "...the tangent to the rear
-14-



dividing streamline passes through the interior of the air-
foil, and the dividing streamline turns through an angle
approximately equal to the incidence." Basu and Hancock [1978]
tried to argue that there is no definite statement of the
Kutta condition for a steady airfoil, ‘they say:

...Analytical and numerical results for

most aerofoils are virtualiy identical

except in the -egion very close to the

trailing edge, inspite of the alternative

forms of the Kutta condition, ...each

mathematical model requiring its own

consistent 'Kutta' condition to ensure

a unique solution, the relevant and

appropriate Kutta condition needs tc be

formulated separately for each mathe-

matical model.

In fact, this argument is similar to what Gostelow [1975]
has mentioned about the difference between the original Kutta-
condition and trailing edge condition. However, we can con-
clude that, for steady potential flow past an airfoil with
sharp trailing edges of small incidences, there is really no
contention. The statements of *zero loading" or "zero vorticity
flux" shed from the trailing edge are equivalent, and they are
consistent with the classical Kutta-Joukowski condition. We
see later, through viscous analysis, how the steady trailing
condition stated above is the correct viscous uniqueness
criteria to apoly to inviscid analysis in the limit that the

Reynolds number tends to infinity. However, this condition is
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violated when the extent of the region of separated flow is

appreciable, as in the cases of high incidence or loading.

(B) Viscous Analysis and Real Airfoils

Most practical airfoils and blades have rounded trailing
edges. Manufacturing considerations indicate that a true cusp
cannot be produced, so, in practice, any airfoil will have finite
curvature at the trailing-edge. Consequently, the Kutta-condition
should, strictly speaking, not be applied to the manufactured pro-
file of such an airfoil. Thwaites [1960] observes: "...if the
rear of a body has no sharp trailing-edge, the Kutta-condition
cannot be applied nor has any other criterion yet been generally
accepted which renders unique the distribution of concentrated
vorticity in the otherwise inviscid flow..." Gostelow [1976])
shows that even an airfoil having a truly cusped trailing-edge
could not operate in a purely potential flow and viscosity effects
would be present. For example, the Kutta-Joukowski condition
gives a finite nonzero velocity at the trailing-edge of a cusped
airfoil, whereas any attempt io consider the effect of viscosity
will give zero velocity on the airfoil surface. In the case
where the airfoils have rounded trailing edges, the position
of the rear stagnation point is indeterminate as there is no ve-

locity sinqularity to be avoided; therefore the circulation must be
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defermined by accounting for the effects of viscosity in the
region of the tfai11ng edge. As a matter of fact, some inves-
tigators have attempted to solve this case by use of potential
flow theory, but failed to obtain a unique or satisfactory
solution. Schlichting [1955] replaces the actual trailing edge
geoﬁetry by a substitute cusped edge, where the Kutta-Joukowsky
condition may be applied at the expense of neglecting the
original blade geometry. }Methods such as of Martensen [1971]
and Gostelow [1964a,b] treat the true trailing edge geometry.
But, for a rounded trailing edge, their methods provide non-
unique solutions.

In Gostelow's analysis [1964], he showed that for the
case of two-dimensional potential flow through a cascade of
blades having rounded trailing edges, the cascade outiet angle
is extremely sensitive to small changes in rear stagnation
point locations. Also, the pressure distribution was found to
be sensitive to this change, especially as the trailing edge
is approached, as shown in Figures 8,9. It was shown that a
small movement of the rear stagnation point, over a distance of
about 0.3% of the chord, resulted in a 10 degrees increase in
the flow deflection imported by the cascade. Also, the surface
velocity in the region of the trailing edge reaches high values

when the rear stagnation point is moved to the upper or the
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lower surface a small distance, as in cases a, ¢ in Figures 8,
9 This emphasizes the fact that the potential flow around an
airfoil with a blunt trailing edge in cascade is not completely
determined by specification of the cascade configuration and
the inlet angle. Indeed, the consensus of experimental evidence
from low speed cascade testing is: fo~ given inlet conditions,
the downstream flow angle and a atterdant blade pressure dis-
tributions are unique and repeatable Gostelow [1975]. Before
making any conclusion here, it is appropriate to examine the
work of Baskaran and Holla [1981] on the effect of rear stag-
nation point position and trailing edge bluntness on airfoil
characteristics. They calculated the pressure distribution on
the basic RAE 101 profile with a blunt trailing edge using the
method of Hess and Smith, and the flow is steady, incom-
pressible and two dimensional. The basic RAE 101 profile was
divided into 104 straight 1ine elements, and the rear stag-
nation point was moved on either side of the {-ailing edge up
to 0.02 C in steps of 0.01 C. Thea blunt trailing edge is

taken from the basic profile by flattening it at 0.94 C and
rounding the trailing edye at 0.095 C. This blunt trailing
edge is divided into 118 elements. The rear stagnation point
is moved on either side of the trailing up to 0.003 C in steps

of 0.0005 C, and the value of the angle of attack used was
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4.09 degrees. Results are obtained for different stagnation
point locations near the trailing edge satisfying the Kutta-
Joukowsky condition. They found thzt the rear stagnation point
position and bluntness of the separation edge have a strong effect
on the pressure coefficient, 1ift coefficient, quarter chord
moment coefficient, and the front stagnation point, as shown
in Figure 10; a,b, and c. As shown in Figure 10b, the change
in the value of 1ift coefficient for a given stagnation point
Tocation is relatively greater for the blunt trailing-edge
profile than for the sharp trailing-edge profile. The same
trend is observed with the moment coefficient behavior. They
conclude that this behavior is attributed to the bluntness in
“comparison with the sharp trailing-edge profile due to a
drastic change in local slope. From this analysis, we can
conclude that it is the role of viscosity which exerts a dom-
inant influence in determining the unique flow pattern in the
case of cascade blades or airfoils with blunt trailing-edges
since the potential analysis of both Gostelow and Baskaran

are inviscid and the experimental obsérved flows are viscid.
So, we can see that the processes of generation of circulation
by viscosity are accounted for the trailing-edge condition.
That is, we only know, up to now, the consequence of these

viscous processes: removing any singularities in both velocity
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and pressure at the trailing-edge. But, what exactly are these
processes? Sears [1956] says:

...In fact, the recognition of this

essentially viscous origin of cir-

culation, 1ift, and induced drag

might be said the emergence of aero-

dynamics as a science and to distinguish

it from the purely mathematical fluid

mechanics.

Howarth [1935] was the first who explained, by means of
boundary layer concepts, the circulation and 1ift of an
infinite cylinder of elliptic cross section for a range of
incidence angles. His criterion for determining the cir-
culation is that "...the total flux of vorticity into the wake
must be zero for steady flow ..." in other words, "...equal amounts
of vorticity, of opposite signs, must be shed into the wake
from the upper and lower boundary layers at their separation
points ... - " a theorem due to G.I. Taylor [1925]. The rate of
vorticity shedding at a separation point where the free

stream velocity is U is:

o 3
W41 2
fo u 3 dy 2 us

He reduces this criterion, by means of boundary-layer

approximations, to the condition:
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2

2
q =
$) qsz

on the velocities at the separation points s;, s,. Figure 11
shows the points of separation on both the upper and lower
surfaces. For the case of fully-laminar flow, it gives a rough
idea of the size of the wake. His procedure is one of suc-
cessive iteration. A value of the circulation is assumed and
from the external potential flow analysis, the velocity at the
surface of the cylinder is determined. Using this velocity as
the mainstream velocity in the boundary layer calculation, the
points of separation on the upper and lower surfaces can be
determined, (The circulation has to be varied until the
velocities at these points are the same.) Taylor first
assumed laminar boundary layers and laminar separation, then
made the analogous calculation with turbulent separation. In
fact, the counterpart of the trailing edge in his analysis, for
steady flow, is that "...the total flux of vorticity shed from
both the upper and the lower surface into the wake must be
zero ..."

Sears [1956] revised Howarth's criterion for the curved-

surface boundary layer considered by Preston add Spence and
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showed that Howarth's criterion of vanishing total vorticity

flux becomes
3 a; - ) 2o, = ) a0 - ) o,

where

8Py = Py = Pog

A = -
P, * Py pTP
P, and p, ave static pressures at points 1 anad 2

st = pressure at T.E. from suction side

pr = pressure at T.E. from pressure side
q, and q, are the free stream velocities at voth
edges of the layer.
These parameters, 2nd the boundary layer configuration

at the trailing edge, are shown in Figure 12. Piercy, Preston,
and Whitehead [1938] made an empirical allowance by empha-
sizing downstream sources for the wake region in Howarth's
method. Hancock [1976], reviewed Basu's method [1973], where
the boundary layer on the airfoil and wake displacement effects
arz considered. First, assuming inviscid flow, the pressure
distribution is calculated using the Smith-Hess method, then
the boundary layer calculation is performed along the upper and
lower surface of the airfoil. Thwaites method [1949] is used

for the initial laminar boundary layer and then either the
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Horton [1969], or Green [1972] or the Bradshow [1966] method
can be used for the turbulent boundary layers. Once the dis-
placement thickiiasses of the boundary layers over the airfoil
are known, the displacement thickness of the downstream wake
can either be simply assumed or calculated. Then, Smith's
method is é¢pplied on the new profile plus the wake. The nathe-
matical model used is siiuwn in Figure 13. The predicted
pressure distribution, compared with experiment on an RAE 101
airfoil, agrees well, as shown in Figure 14,

A’ the investigations mentioned abose 1ie in the broad.
category of those stemming from the work of Howarth. These
estimate the boundary-layer growth on ajrfoi]s and account for
its effects on the circulation and pressure distribution.

Preston [1943, 1945, 1949] was the first to successfully
employ detailed boundary layer and wake calculations to pre-
dict the circulation of airfoils. He modified the airfoil
shape by tha addition of the displacement thicknes: &* on the
surface and along a 1ine extending to infinity downstream, and
attempted to calculate the potential flow about the new body by
breaking the displacement thickness &* into symmetric and

antisymmetric parts:

] * *
6% = (6" + 6
) 'z'(u L)
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5: represents a cambered displacement of the airfoil center-
Tine, equilvalent to a reduction of incidence, and Gs can be
represented by a symmetrical source distribution. This
approach requires some empiricism in determining the final
circulation so as to satisfy the vorticity condition. Another
investigation along the same line was carried cut by Spence
[1954], who achieved some simplication of Preston's technique.
His procedure, 1ike Howarth's, is one of successive approx-
imations. First of all, assuming that the boundary laye:
thickness is known, the potential flow outside the boundary
layer is corrected for the displacement thickress of the
boundary layer and the viscous wake by distribution of sources
of proper strength along the airfoil contour and along the
approximate position of the wake. Their criterion for cir-
culation is: "...essentially, that the pressure at the‘trailing
edge shall have the same value when determined from the
potential flow values above and below the airfoil..." In fact,
they pointed out that the piessure variation across the
boundary layer is not negligible in such a singular reqion as

that of the trailing edge. Thus, they estimated the pressure
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at the trailing edge shall have the same value when determined
from the potential flow values above and below the airfoil. In
fact, they pointed out that the pressure variition across the
boundary layer i{s not negligible in such a singular region as
that of the trailing edge. Thus, they estimated the pressure

increments, say Ap1 and ap,» such that:
P1 - AP1 - 02 - 4p

where X and p, are static pressure at the edge of the upper
and lower boundary layer on normals from the trailing edge.

But outside the viscous layers, we have:
A+ () ead = p + (D) e
" 2 1 2 2 2

Thus, their criterion becomes;

1 - W,

[““‘] “ a] + AW

where

ow = wl - V‘V‘z
- ]
wl - Ap‘/(z) (4Y

) .

Nn

s —

W2 = ap, /(.
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Sperice finds that aw is small of the order of 0.01. This
theory gives the pressure increments, but states that they are
of such order as to be neglected in the momentum equation for

the velocity component along the surface. So, we get

which provides an alternative interpretation of Howarth's
vorticity condition.

In fact, Spence's criterion is exactly the same as
Howarth's vorticity condition, "... zero total flux of vor-
ticity must be shed into the wake..." . It can be demonstrated,
from the linearized form of Kelvin's theorem, as given by

Lamb [1932]:

Consequently, for the steady case, there is no net flux of
vorticity out of a fixed closed circuit enclosing the airfoil

and cutting the wake at a downstream location. Preston [1949]

has pointed out that such a circuit must cut the wake stream-

line at right angles. Spen-e [1954], also represents pressure dis-

tributicn on a Joukowsky airfoil at several Reynolds numbers
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at an incidence angles of 6°. It is interesting that the dis-
tribution deviates from the inviscid fluid distribution fcr the
same value of the circulation only near the trailing edge, as
shown in Figure 15. Spence's conclusion, based on comparison
with experiment, is that his method is accurate when the
boundary-layer thickness can be accurately predicted, i.e. the
limitations of the theory are the limitations of knowledge of
the boundary-layer.

Their extension to subsonic compressible flows is straight-
forward. Spence [1970] has carried out additional modi-
fications to his procedure, especially about the problem of
the singularity in curvature of the streamline springing from
. the trailing edge in inviscid flow, which implies that the
initial curvature of the wake in the real flow will be large
enough to cause a modification to the potential flow. Using
a viscous analysis, similar to the work of Brown and Stewartson
[1970], he balanced the inner and outer flows so that the
pressure rise across the wake is consistent with the streamline
curvature which it induces. He found that the reduction in
circulation below the Kutta-Joukowsky value is proportional to
the curvature at the trailing edge; for laminar flow, this is
of order R og(1/Re), and his solution contains an arbitrary -

constant which could be fitted only by examining the near wake.
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v Extending Spence's method [1954] to separated flow

is not accurate, especially when the region of separated flow
becomes large enough to aftect the potential flow field
appreciably. In this case, the separation point will be un-
known as the calculation begins, and w111 have to be deter-
mined by successive trials, as in Howarth's method.

Sears [1976] has considered all of these features in his
prediction of unsteady motion of airfoils with boundary layer
separation. He has shown that the condition that determines;
circulation about an airfoil with a boundary layer is identical
with the usual inviscid flow condition based on the conser-
vation of total circulation and the Kutta-Joukowski condition
of zero static pressure difference in the region of the
trailing edge, in both steady and unsteady flow.

Gostelow [1975] also showed that the condition which
gives a unique flow solution is not only the condition of "zero
static pressure difference as the trailing edge is approached
from either side" but also the "first viscous approximation”,
which is simply fairing in the pressure distributions to avoid
severe velocity peaks near the trailing edge, as shown in
Figure 16. In fact, he arrived at this conclusion from a study
of measured pressure distributions on compressor blades, where

almost all pressure distributions indicated a linear change in
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pressure over the last 15 percent of chord. As noted by
Gostelow [1975], this conclusion agrees with the work of Spence
and Beasley [1960].

This "fairing in" process is achieved in a real flow by
means of the displacement effects of the boundary layer near
the trailing edge; it results in modifications to the stream-
line curvature and less severe gradients in the measured
pressure distribution. Miller [1973] has recommended
Gostelow's method, in comparison with other methods, because
it gives greater accuracy for most compressor blading or
isolated airfoils, but not for turbine blading.

Yates [1978] pointed out, through steady viscous analysis
of thin airfoil theory, that the steady trailing edge condition
of "zero loading at the trailing edge" is the correct viscous
uniqueness criteria to apply to inviscid thin airfoil theory
in the limiting case as the Reynolds number tends to infinity.
So, the inviscid solution is obtained from the viscous solution
by invoking the steady trailing edge condition as the Reynolds
number tends to infinity. The most interesting point he
mentioned, is that the Reynolds number correction to the in-
viscid 1ift curve slope is found to be of 0(1/£nRe);
this correction is much greater than boundary layer thickness

effects calculated with the inviscid parallel shear flow
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boundary layer model, and is numerically of order 10 to 20 per-
cent for Re between one and ten million. These results agree
well with the experimental results for a variety of thin air-
foils.

However, Wu [1981] represents a new and general theory for
aerodynamics forces and moments, developed through a rigorous
analysis of the viscous flow equations. He says:

...the circulation theory is known to
predict the 1ift force accurately for
certain types of solid; e.g., thin air-
foil, under certain flow environment,
e.g., small angle of attack. The scope
of applicability of the circulation
theory and its extensions has not been
established precisely. Considerable
uncertainties exist regarding the appli-.
cation of the theory in cases where the
solid does not possess a sharp trailing
edge, where the massive separation occurs,
and where the solid is three dimensional
and its motion is time dependent. These
uncertainties arise mainly because of
the perfect-fluid assumption used in the
mathematical development of the theory.

Nevertheless, it is often difficult to
interpret the application of the circulation
theory as an approximation of the viscous
flow phenomena.
The distinquishing feature of this theory is that the con-
cept of bound vortex, or that of singularity elements, is
not embodied in the ceneral formulatina of the theory. Ilather,

the actual vorticity distribution of the flow region
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enter these formulas. For example, it permits a precise de-
finition of the circulation about a two-dimensional solid boundary
not only for an unseparated flow, but also for a flow containing
an appreciable region of separation. More details will be
presented in the next sections.

(C) Multistructured Boundary Layer Theory and Trailing-
Edge Flow Structure

Gostelow [1975], through a potential analysis, has shown
that for a cusped trailing-edge the trailing-edge velocity is
finite while the velocity gradient is infinite, and for the
rounded trailing-edge, eT =7 , the velocity is zero and the
velocity gradient is finite. Also, he pointed out the dis-
continuity in slope and curvature of the downstream stagnation
streamline, associated with this singularity. But in real
flows the effect of increasing displacement thickness over the
trailing-edge region reduces the slope of tne surface pressure
distribution, reducing the degree of discontinuity. Gostelow
reached the same result for the rounded trailing edge, i.e.,
the role of viscosity is to reduce the pressure gradient at the
trailing-edge. He called this viscous process a "second
viscous approximation", which can be accounted for by compu-
tation of a revised potential flow using the displacement

surface as a boundary condition; this displacement surface
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requires detailed descriptions of séparation beh;vior and wake
curvature, especially when the trailing-edge region is loaded.

Gostelow [1975] also pointed out the role of viscosity in
making the downstream partition streamiine more stable. He
has shown by potential flow analyasis for a flat plate at zero
incidence, that violation of the Kutta-Joukowski condition at
the trailing-edge results ina partition streamline leaving the
body orthogonally, its shape demonstrated to be hyperbolic.
But the partition streamline will be a straight line when the
Kutta-Joukowski condition is satisfied, and i< unstable to small
disturbances; a small change in incidence results in a change to
a hyperbolic separation line, while the experiment of Fujita and
Kovasnay [1971], howevir, saows that the location of the experi-
mental partition streamline is more stable. So, in further
analysis, we must look more closely at the role of viscosity as
a stabilizing influence, for both steady and unsteady flows. In
doing so, consideration should be given to recent advances,
especially those of Stewartson [1969] and Messiter [1970].

In fact, the nature of the flow near the trailing-edge of
an airfoil has been a subject of both theoretical and practical
interest. The problem exhibits a singularity intriguing to

the theoretician; the question of finite Reynolds
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number effects on aerodynamics forces is of considerable
{mportance.

Goldstein [1930] first treated this problem within the
framework of laminar boundary layer. He showed that the
continuation of the flat plate solution beyond the trailing-
edge required introduction of a thin sublayer along the wake
centerline with thickness of order O(xgé) » where x is-the
streanwise distance from the trailing-edge. But, as Goldstein
showed, the change of boundary conditions at the trailing-edge
results in a singularity of the velocity component normal to
the plate, being finite on the upstream side and inf;nite on
the downstream side. As a consequence, the streamline, in the
boundary layer experiences a sharp turn at the trailing-edge,
which physically means a rapid acceleration of the fluid at the
bottom of the boundary layer due to the termination of the
plate; this effect abruptly draws fluid in towards tﬁe center
from the edges of the boundary layer. Many authors have re-
cognized that classical boundary layer theory fails near the
trailing-erige, and that the flow field in that region cannot
be constructed as single layer matched with both Blasius and
Goldstein wake layers. However, an understanding of this
problem was attained by the simultaneous revolutionary dis-

coveries of Stewartcnn "j969] and Messiter [1970]: at high
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Reynold numbers, the flow near the trailing-edge has a compound
structure that Stewartson calls a "triple deck structure". It

is of length €3L in x-direction, where L is the nondimensional

length of tihe plate, and t is defined by;

Re = Q’;L = e-8 ’ e<<]

In fact, Stewartson has shown that there exists a very small
region enclosing the edge where the derivatives of the flow
variables are of the same order in both directions, and the
displacement effect of the boundary layer i. not negligible,
especially in a region like the trailing-edge, where the
boundary conditions change from the condition of zero tan-
gential velocity on the plate to zero stress on the center
line of the wake. This region in the vicinity of the trailing-
edge of order 0(c3)L intervenes between the region of validity
of the Blasius solution [1908] and that of Goldstein's [1930]
wake solution. Normal to the plate, this region has three
layers; lower deck of thickness 0(¢3), main deck of thickness
0(e*), and upper deck of thickness 0(¢3), as shown in Figure
17. The main deck corresponds to Goldstein's outer wake,

which to first order is the inviscid continuation of the Blasius
boundary layer solution; the pressure variation across the

deck is small, and it plays a relatively passive role in the
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mechanism. The lower deck corresponds to Goldstein's inner
viscous wake which is produced by the altered boundary con-
dition at the trai'ing edge, and is controlled by the con-
ventional boundary-layer equations. Broadly, the upper deck
provides a pressure gradient which helps drive the lower deck.
In turn, the lower deck produces changes in the displacement
thickness of the boundary layer, and these generate the
pressure gradient in the upper deck. The effect of this
triple deck structure is to induce a favorable pressure
gradient upstream of the trailing-edge, which tends to smooth
out the discontinuity in transverse velocity, as well as
displacement thickness, at the trailing edge.

Both Messiter and Stewartson presented uniformly valid
asymptotic solutions, but the resulting pressure gradient has
a discontinuity at the trailing edge region; this can be re-
solved by a finer substructure, ultimately of the 0( %) scale
of Hakkinen and O'Meil [1967]. Dennis . .d Chang [1969], and
Dennis and Dunwoody [1966] find a trailing-edge region of
influence that scales with (¢3), in agreement with Stewartson
[1969] and Messiter [1970]. As mentioned by Van Dyke [1975],
this structure contributes a correction to Blasius drag which
is of order 0(c?), and hence slightly more important than the
displacement effects of ordar 0(e®) calculated by Kuo [1953]
and Imai [1957].



The application of multi-structural boundary layers
has been successful in providing insight into many problems.
These include plates at incidence, bodies of nonzero thickness
in steady and unsteady flows, noise generation and sound
diffraction, separation, and others, As mentioned b&
Stewartson [1974], the essential requirement is that
catastrophic separation does not occur, and in turn, this
means that there must be a Reynolds-number dependent parameter
defining the departure of the problem from that of the basic
finite flat plate at zero incidence. Riley and Stewartson
[1969] extend this theory to the flow in the trailing-edge
region of airfoils with a finite-trailing edge angle at zero
fncidence. when there is pressure gradient imposed on the
becundary layer. They establish a criterion for separation to
occur, and make an estimate of the distance from the trailing-
edge at which separation takes place; for the trailing-edge
of the form of a wedge of small angle 2ma, flow separation
occurs within a distance of order 0(0%4) if ae2<<1, and the
largest trailing-edge angle for which the flow will not
separate is 0(e?) i.e., O(Re'H‘). it is beiieved tnis is the
criterion for inhibition of separation. In aenaral, separation
can either be catastrophic or regular, but when the pressure
gradient is prescribed =xtzrnally it always appears to be

catastrophic.
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In addition, the theory of the triple-deck has been
applied to study the viscous correction to the 1ifting forces
on aerodynamics shapes at high Reynolds numbers, and to show
that the trailing-edge condition, which determines the cir-
culation and the 1ift for inviscid steady flow, can be embedded
in a formal asymptotic expansion of the flow field in powers
of €. Brown and Stewartson [1970] extend the triple-deck ,
structure to the case of a flat plate at incidence. Upstream
of the trailing-edge, the boundary layer remains close to the
Blasius profile over the majority of the plate, but then
changes rapidly in the neighborhood of the trailing edge, in
a similar way as before, then subboundary layers develop and
are the geneses of the lower decks of the trailing-edge. The
interaction between the adverse pressure gradient due to finitzs
incidence angle, which threatens separation near the trailing-
cdge and induces a favorable pressure gradient on the lower
side of the plate, is the main factor in flow separation on
the upper side of the plate. If the angle of incidence (a*)
is large, i.e., u*>>0(e&) » the flow separates before it is
influenced by the triple deck, then it provokes the phenomenon
of trailing-edge stall. If the incidence angle is too small,
i.e., u*<<0(ek) , the effect of the triple deck cutweighs

that of incidence and the boundary layer remains attached
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until the trailing-edge. However, if the angle of incicdence

is of order O(ek) the two effects are ~omparable and
trailing-edge stall is 1iable to occur. Brown and Stewartson
estimated this critical angle of incidence as-0.4 which
leads to rather low stalling angles (=2°) 1in realizable
situations. These results emphasize the 1mportancé of viscous
effects in this phenomenon. They also have shown that the
critical ang1e.of incidence for subsonic flow is a* = o(e*)
and for supersonic a* = 0(e¢2) . The asymptotic form of the

pressure at the trailing-edge is

p, (x) =& (-x)%s ubl/(-x',-‘= ..
as X + -o
where, x is the streamwise coordinate inside the main de:k of

the triple deck structure at the trailing-edge, and is related

to the outer flow coordinate x* by:
.5
x* = kL, x = 0(1)

Y # 0,332
and b, is determined from over-all properties of the triple

deck. For an approximate solution, b;%0.79 , the

corrected viscous 1ift coefficiant on the plate is given by
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C 2ra” (1 - 1.58A‘§L ed)

Stewartson [1974] has shown that the wake curvature just out-
side the triple deck is not important for the determination
of the viscous correction tn the 1ift, as formerly believed.
The contribution of the wake curvature to CL is of order

0(e* log €) , which is weaker than that of order 0(e3)
due to the triple deck. It should be noted that Stewartson
(1974] has reviewed this problem and others and extends his
muitis*ructurad boundary layer theory to analysis of com-
pressible situations, which are beyund the scope of this
review.

It is worthwhile to present some results of the work of
Daniels [1977] on the viscous mixing layers at the trailing-
edge. he considered the probiem of the laminar viscous mixing
of two parallel strecams of strength U; and U; (U;2U;) in the
trailing-edge ragion of a flat plate at high Reynolds number, and
found the structure cf the trailing-edge is a generalization
of the triple-deck thecry of Stewartson [1969] and Messiter
[1970], which is recovered in the 1imit as U+ U . The
major influence of the trailing-edge extends to a distance of
order 0(ed) i.e., O(Réaﬁ) as Re + = | but in the
limit as U, ~ 0 (which corresponds to stagnant filuid beiow
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the plate), for an incompressible fluid, this influence is much
weaker and the trailing-edge effect is confined to a smail
region of order 0(e®) in the vicinity of the trailing-edge.
For this case (U, = 0) , he argued that the mainstream
above the plate induces a velocity in the stagnant flow, the
action of which is to draw fluid from below the plate, where
a backward-facing boundary layer of thickness 0(e2) is

set up along tne plate in the stagnant fluid. This fluid is
then drawn into the mixing layer at the trailing-edge, where
it supports an upward curvature of the streamline from the
trailing; that is, the streamline from the trailing-edge bends
upwards and away from the stagnant fluid. This leads to the
unique determination of the location of the dividing stream-
line in the wake. So the singularity in the displacement of
the velocity profile is removed. This probiem was originally
investigated by Ting [1959] who showed that the solution
obtained by requiring a continuity of the pressure

across the mixing layer is not unique. But Daniels [1977]
has shown that the nonuniqueness is removed when the outer
inviscid and the boundary-layers flows are matcned with a
consistent solution in the vicinity cf the trailing-edge;

such a solution has no singularity in pressure at the trailing-

edge and may be likened to the validity of the trailing-edge
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condition for the inviscid solution.

It is also shown that similar theory is applicable to
the flow of a uniform stream over a backward-facing step, and
to the steady laminar flow at the nozzle of a jet. Figure 18

demonstrates this argument..
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IV. TRAILING-EDGE CONDITION IN UNSTEADY FLOW

(A) Unsteac: Flow Generation

In consideration of the unsteady trailing edge condition,
attention must be given to all the previous theoretical dif-
ficulties encounterad in steady flow, as well as those asso-
ciated with the unsteady effect on the bourdary layer and the
eventual sheddina of vorticity from the trailing edge.

In genarai, unsteadiness generated upstream of the lead-
ing edae ~. an airfoil in a turbomachine provides an addition-
al dimension of complication. Such incident unsteadiness
m2kes the airfoils response a function of the history of the
vorticity field along the airfoil. As discussed by Horlock
[1968], flow in axial turbomachines can give rise to upstream
unsteadiness, i.e. disturbances, due to wakes shed by one
stator impinging on a following stator, or to those entering
the machine and impinging on the first row of rotating blades,
and due to the relative movement of rotors and stators. Also,
the blade flutter gives rise to unsteadiness to the flow in
turbomachines as well as to the flow around wings and airfoils.
Flutter, which is an aeroelastic instability, involves a
transfer of excess energy from unsteady aerodynamics forces to

a single or cascaded airfoil(s). The mechanism of flutter is
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a net (kinetic) energy transfer, from the surrounding flow to
the airfoil, that exceeds the amount of available mechanical
damping generated either internally (material hysteresis) or
by friction at the blade foundation. This mechanism may be
understood by visualizing a spring-mass-dashpot system with
excessive excitation energy. A survey article by Sabatiuk
and Sisto [1956] , defines two forms of flutter: self-excit-
ed and forced.

Self-excited flutter resuits when the unsteady forces

acting on the blade are functions of the displacement, velocity
or acceleration ot the blade. From a small initial deflection
or perturbation of the blade surface in a uniform incident
flow, the unsteady forces feed energy into the system, yield-
ing self-induced osciliations. '

Forced flutter, on the other hand, is driven by a non-

uniform incident flow. Therefore it is externally-excited.

The nature of the forces acting on the airfoil are essentially
independent of the blade displacement, velocity or acceleration.
The operation schedule of an axial compressor is illustrated

in Figure 19. Shown are four distinct flutter regions,
determined from elastic rather than fluid dynamic measurements.
More details on associated theoretical and experimental as-

pects can be founded in articles by Pratt and Whitney Aircraft
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[1976], Jeffers and Meece [1979], Kerrebrock [1974], and Jones
[1977]. In fact, the need to understand flutter has increas-
ed in the last twenty years. Active in this area is the NASA-
Lewis Research Center. A program for full scale engine test-
ing in June 1977 was carried out at NASA-Lewis (see .Figure
20). Figure 21 shows visualization of blade displacement
during flutter of the first fan stage of the F 100 using a
fiber optic technique (PES System) at NASA-LERC (see Nieberding
and Pollach [1977]).

Even for a stationary blade, the periodic vortex shedding
and oscillating wake behind the trailing edge, which has been
observed over a wide range of laminar and turbulent flows,
.give rise to unsteadiness in the flows around bodies especial-
ly when the trailing edge has a large thickness or wedge angle.
These effects in the trailing edge region are very important
in prediction of the turning angle and loss coefficients of
turbine blades, and unsteady jet flow at the trailing-edge of
a nozzle which is closely connected with the problem of noise
generation.

An extensive review of many unsteady fluid dynamics pro-
blems is found in the review article of McCrosky [1977], and
in the short review article of Hancock [1976].

To simplify matters as much as possible, the situation of
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a disturbance-free incident free stream will be considered
herein.

When an airfoil performs harmonic motion about its mean
position at a relatively high frequency, the circulation, and
Lence the forces and moments acting on the airfoil, are also
time-dependent. As a consequence of this motion, an unsteady
wake is produced, which, in turn, influences the response of
+he airfoil. Since, according to Helmholtz's theorem,"... the
total circulation round a closed contour enclosing the air-
foil and the wake must be zero...", then each time-dependent
change in circulation around the airfoil must be compensated
by the shedding of vorticity from the trailing edge. This
vorticity, which has the same strength as the change in the
circulation but is of opposite sign, is convected downstream
by the flow as shown in Figure 22. A measure of the flow un-

steadiness is the reduced frequency k (or v), defined eas:

- WC

U

®

where w is the vibrational frequency of the blade, ¢ is the
blade semi-chord, U_ is the free stream velocity, and the

wavelength X;

A= 2n

Elsc

Unsteady effects are important when some time scale of the
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physical motion is comparable to the basic fluid-dynamic time
scale, i.e. whenwl/Ux or L/Ut are of order 1 or greater. In
general, the most important direct effects of unsteadiness are:
1) a phase difference between the aerodynamics forces and the
motion producing them, and 2) an attenuation of the 1ift
vector.

Figure 23 shows the time historie; of the lccal pressures,
as well as the resultant 1ift and moment on an airfoil perform-
ing oscillations in pitch in a subsonic flow. Both the pres-
sures and the overall loads show sinusoidal variations about
their mean values. For moderately subsonic and supersonic un-
steady flows, a linear relationship exists between the dis-

- placement of the airfoil and the unsteady pressures at least

as long as the flow remains attached. However, for transonic
flow, particularly in the region of a shock wave, this is no

longer true, the fﬁow is nonlinear.

Generally speaking, unsteady flow problems can be linear
or nonlinear in their behavior. In the former, the governing
equations and the boundary conditions can usually be linear-
ized, i.e. the fluid dynamic aspects can normally be ap-
proximated by small departures from steady behavior as in
moderatelv subsonic and supersonic unsteady flows. In the

latter case, either the equations of motion or the boundary
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conditions, or both, contribute strong nonlinearities. This
implies that the unsteady flow field can no longer be treated
independently - as a steady flow field, regardless of fre-
quency. Also, the fluctuations are not always small in am-
plitude, and the unsteady airloads are no longer linear
functions of the amplitude of motion. Most viscous flows as
well as many inviscid transonic flows are nonlinear. Al-
though the major share of problems that can be handled by
linear theory are now fairly well understood , nonlinear as-
pects deserve further experimental and theoretical investiga-

tion.

(B) inviscid Analysis

The first vivid demonstration of the importance of the
trailing edge-and wake flow for unsteady aerodynamic theory
associated with the flutter problem was carried out by
Theodorsen [1935]. He separated the unsteady 1ift(l.) and
moment(M) of an oscillating airfoil in both pitchirg and
plunging into: 1) noncirculatery components (LNC’ MNC)’
where the influence of wake vortices on the flow is neglected
and 2) circulatory components (Lc, MC) accounting for the
downstream wake. The importance of the circulatory components

lies in restoration of a finite velocity at the trailing edge.
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The circulatory components are generated by a continuous dis-
tributicn of wake vortices, from the trailing edge to infinity,
and are expressible as:

geometric and
fluid properties) ¢(K)

L.orM = (
where C(k) is the so-called Theodorsen function. . In
Theodorsen's analysis, the wake is modelled as a continuous
distribution of harmonically-oscillating free vortices shed
downstream along the chord-line from the trailing edge to
infinity. The model includes the assumptions that: a) the
wake streamline coincides with the steady state streamline,
i.e. the dividing streamline leaves the airfoil at the trail-
ing edge and b) the pressure is continuous across the wake and
at the trailing edge. Each element of the shed vortex in the
wake may be traced back both spatially and temporally to its
origin as a free vortex released from the trailing edge. The

simple harmonic wake resulting from harmonic motion of the

airfoil is expressed by:

where ;& is the complex amplitude of the wake vorticity, w is

the vibration frequency. k the reduced frequency, and x* is the
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dimensionless distance downstream of the trailing edge, see
Figure 24.

In fact, the trailing edge condition (zero pressure jump
across the airfoil at the trailing edge), which had been used
by Theodorsen, is typic~1ly embodied in unsteady potential
fléw predictions (e.g., Whitehead [1960]; Naumann and H. Yeh
[1972]); hancock [1972]; and Ni aud Sisto [1976]. Although
this view is satisfactory from a computational standpoirt,
it is an idealization of the rcal situation at large Reynolds,
as shown in Figure 25.

In g2neral, when the airfoil undergoes unsteady motion at
moderate reduced frequency, and the flow near the trai]ing
edge is assumed to be attached, then the viscous (actual)
trailing edge flow can be effectively modelled as in Figure
25(a). In this interpretation, the effect of viscosity is
taken to be confined to a thin boundary layer on the airfoil
surface, and to the downstream wake formed by merging of the
upper and lower surface boundary layers at the trailing edge
(i.e. shed vorticity following Helmholtz's law); moreover the
trailing edge is assumed to be sharp, as discussed by Prandtl
[1961]. He suggeststhat the scale of the residual viscous
effects, in the 1imit as the Reynolds number becomes large,

would be of the order of the trailing edge radius, i.e. O(r),
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so that it would vanish in the 1imit of a sharp trailing edge
(i.e. r+0) and the flow at that point would tend to the ideal
one of Figure 25(a). In the following, we shall discuss the
trailing edge condition only in the 1imit of large Reyno:ds
number, for completely attached flow approaching the trailing
edge.

Several works have been somewhat successful in matching
various geometric or dynamic conditions at the trailing edge
with their mathematical formulation to obtain a compatible
explanation of the flow dynamics in that region. Karman and
Sears [1938] have shown, for a flat plate in unsteady motion,
that ", . .the velocity difference across the. trailing-edge is

equal to the instantaneously shed vortex strength...", i.e.

&V = yr g,

In fact, this statement is eéuivalent to the statement that
"...the bound vorticity around the airfoil must be equal to

the shed vorticity at ‘the trailing-edge for thin airfoil
theory..." which is based on conservation of the total circulation.

Van der Vooren and Van der Vel [1964], in their elegant

analytic solution for an oscillating airfoil using a conformal
mapping technique, imposed a stagnation point at the trailing
edge, (i.e. VT.E. = 0 as trailing edge condition). In this

case, tiue zero pressure difference across the trailing edge
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is acceptable only if the trailing edge is cusped. However,
for a non-zero trailing edge angle, a singularity in the form
of an infinite velocity difference appears in their solution;
the removal of this singularity results in a pressure dis-
continuity across the trailing edge region, as well as across
the downstream wake. In essence, one must choose between zero
loading across the trailing edge region or zero velocity dif-
ference at that point; both conditions cannot be satisfied
simultaneously as noted by Whitehead [1973], in his discussion
of the trailing edge condition in unsteady flow.

Giesing [1968] has proposed that the velocity difference
at the trailing edge be zero, i.e. AV =0 . In 1969, he show-
ed that the velocity distributions with the condition av =
YT.E. and with AV = 0 are almost the same except at the trail-
ing edge. Also, he posed the dynamical conditiors for vortex
shedding in unsteady flows, involving shed vorticity composed
of an unsteady part Yi» which is proportional to the time rate
of change of circuiation, and a steady part Ys which is pro-

portional to the total head across the vortex sheet, i.e.:

ngi YS
VYS'Ah
V= - &
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where V is the vortex-shedding velocity and ah the totai head
across the vortex sheet. The vortex sheet is sned parallel
to one side of the trailing edge or to the other, depending
on the sense of the shed vorticity, and the shedding velocity
V is equs! to one half the strength of the vorticity at the

trailing edge, except 7or zero trailing-edge angles. That fs,

0 6§>0
V'%Y"'
c §=0
where § = trailing edye angle

¢ = constant
It should be noted that this solution of Giesing
gives a finite velocity at the trailing edge, with a finite
pressure loading across the trailing edge and across the
downstream wake as well, which is not acceptable on physical
grounds, especially at low and moderate reduced frequencies,
see Fleeter ['980]. More specifi:ally, the rate of change of

the circulation around airfoil is;



So, for the flow leaving the trailing edge bisecting
t the edge angle (stagnation trailing-edge), we have a
pressure discontinuity associated with the rate of change of

the circulation around the airfoil, i.e.

which is unacceptable as mentioned before.. Also, for the
imposition of the trailing-edge condition in the form of zero

pressure difference at the trailing edge, we have;

q+q
dar . _(u_2) .
at 7 (9;9,)

which requires that either the average velocity or the velocity
difference at the trailing edge should not be zero.

For general unsteady flow, it is argued that the appro-

priate solution should satisfy both conditions of zero pres-
sure loading across the trailing edg? and finite velocities at
the trailing edge. The condition of zero instantaneous trail-
ing edge loading seems to be physically realistic and ensures
consistency of the flow mechanics downstream of the trailing
edge. However, some experimental measurements indicate
deviations, especially for high frequency unsteadiness, as
well as for blunt trailing edge airfoils. As previously
mentionad, for the unsteady motion of an airfoil, there is a

balance between the instantaneous rate of change of bound
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vorticity about the airfoil and the rate of shedding of
vorticity into the downstream wake, which implies zero pres-
sure loading at the trailing edge. But when there is not a
match between these rates, there may be shedding of vorticity
arising from the low wavelength pressure fluctuations, and an
instantaneous pressure loading appears across the trailing
edge (Gostelow [1975]). This seems to be suggested by the re-
sults of Kadlec and Davis [1979]. As shown in Figure 40, for
nigh reduced frequency, the wake is entirely distorted and
vortex shedding results behind the trailing edge.
ifaskell [1973] has argued, that in order to satisfy both the

condition of zero pressure loading and finice velocity at the
trailing edge, the flow must leave the trailing-edge

parallel either to the upper surface or to the lower surface,
depending on the sign of the instantaneously shed vorticity,
-provided that the pressure loading across the trailing edge
and across the wake are zero and the velocities at the trail-
ing edge remain finite; thus, separation occurs at the trail-
ing edga. As shown in Figure 26d, when the shed vorticity is
counter clockwise, the flow leaves the trailing edge parallel
to the lower surface. In this case, the upper surface vel-
ocity tends to zero at the trailing edge (qu = 0), while the

lower velocity, Qps remains finite. So, from the previous
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form of the rate of change of the circulation, we get:

Forzed
here, %qz is the average velocity across the shed vortex sheet,
which is the same result of Giesing [1969].

However, Gostelow [1975], in a discussion of the stability
of vortex shedding Tiom the trailing edge in steady flow and
of the relation between the vortex street configuration and
the trailing edge angle, has shown that the partition stream-
line in Maskell's model is unstable, and it is inappropriate
in predicting the drag coefficient. Basu and Hancock [1978],
have prasented a numerical solution for an airfoil undergoing
an arbitrary motion, using a procedure similar to A.M.0.
Smith's [1967] method. They postulate that the flow
separates at the trailing edge with zero loading across the
shed vorticity just downstream of the trailing edge and zero
load on the computatioral elements on the upper and the lower
surfaces at the trailing edge. For an airfoil oscillating in
pitch at high frequency (k=20), thc resultant wake pattern in-
volves vortices of opposite sign and it closely follows the
one observed experimentally. Also, the trailing edge wake
elements lie parallel to one surface or thz 2ther, depending

on the direction of the shed vorticity. Moreover, it is
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interesting to point out that the wake element follows
Maskell's postulate as discussed above, as shown in Figures
27 and 28. Sears [1976], presented a generalized criterion
for unsteady airfoils with boundary layer separation and has
shown that, for a“‘rfoils with sharp trailing edge and which
can be approximated by thin-airfoil (i.e. linear airfoil
theory), that the flow is attached until the trailing edge

and the condition there is:

4L = -y, ¥; ¢ (to order ¢)

He also has shown that the condition that determines circula-
tion about an airfoil with boundary layers is identical with
the usual inviscid-flow condition based on conservation of
total circulation and with the trailing edge condition in the
form of zero pressure ¢ “ference at the trailing edge. He
says:

A11 of this serves to remind us that the inviscid
fluid model must represent the limiting case of
vanishingly small viscosity and not the flow of a
truly inviscid fluid. Thus, the viscous (boundary-
layer) and inviscid models of an unsteady airfoil
are identical; in both there is a continuous flux
of vorticity from the trailing edge into the wake,
and there is no discontinuity in vortex strength

at the trailing edge. The trailing edge is just
the chordwise station where the vortex distribution
becomes "free" insteady of "bound", because there
is no force on the wake.

With regard to experimental verification of the unsteady
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trailing edge condition, most works have been directed towards
corroboration of the assumption of zero unsteady piessure
loading in the trailing edge region. In fact, proper theoret-
ical modelling of the generalized trailing-edge condition is
important in evaluating the unsteady 1ift and moment, espe-
cially for isolated airfoils and cascade blades. Although

the unsteady loading variations in the trailing-edge region
may not significantly affect the magnitude of the unsteady
1ift, it may affect the unsteady moment; also, aerodynamic
phase lag variations in this region have an influence on

noise generation. Some experimental studies with oscillating
airfoils have revealed that as the reduced frequency increases,
the validity of zero unsteady loading, in both magnitude and
phase, breaks down. Greidanus, Van der Vouren, and Bergh
[1952], working on an airfoil mechanically oscillated
separately in heaving and pitching modes up to a value of re-
iuced frequency parameter k=2.0, have reported on the non-
validity of the kutta condition. The experimental disagree-
ment with the Theodorsen potential theory [1975], was ascribed
to the lack of validity of the trailing edge condition of

zefb pressure loading. Also, Satyanaravana [1977], through
experimental investigation of an isolated airfoil, and air-

foils in cascade subjected to a sinusoidally varying gust,
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has concluded that the instantaneous pressure differential at
the trailing edge region approaches zero at low reduced fre-

quency, k<0.1. But deviations from the linear potential theory

(as mentioned above, the fluid dynamics aspects can be ap-
proximated by small departures from steady behavior) are re-
ported in the phase angle, as shown in Figure 29. The basic
airfoil employed in these experiments was an uncambered NGTE-
10C4 section of 6 in. chord and 18 in. s»han, the maximum thick-
ness-to-chord ratio was 10%, the Reynolds number based on the
chord C was 160,000, and the mean incidence was o=0. In a
later work, involving an isolated cambered airfoil (NACA
G4A010 airfoil with a 15-cm chord, an 25-cm span with sharp

trailing edge) oscillating up tuv 2l-deg. incidence at a mean

angle of attack of zero deg., over reduced frequencies ranging

R

from 0.05 to 1.2, at Mach number M = 0.168 and a chord-
Reynolds number of 560,000, Satyanarayana and David [1978],
have reported that the zero pressure loading condition is
valid with reduced frequency values less than 0.6; for re-
duced frequency values greater than 0.8, the measured loading
in the trailing edge region deviates from that predicted by
linear theory, and the pressure trace in the trailing edge
region exhibits frequency doubling. There is a similar

deviation for phase angle of the loading at the trailing edge,

e el
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as shown in Ficure 30. The authors point out that this
deviation is due to boundary layer displacement effects near
the trailing edge. In fact, while the instantaneous pressure
difference is large at the trailing edge, the amplitude of the
time-ave:-aged pressure fluctuation is quite small. It is |
felt that the discrepancies in phase lag of “he absolute pre-
ssure are more significant than those of pressure dif-
ference near the trailing edge. This is due to periodic
separation in this region, which would change the shape of the
pressure distribution. Similar results for the case of an
isolated airfoil subjected to a sinuseidal transverse gust at 9
deg. or incidence have been reported by Holmes [1972], as shown
in Figure 31. In still another related investigation,

Fujita and Kovasznay [1974] reported on the response of a
stationary instrumented airfoil to the wake of an upstream
rotating rod. The measured chordwise response was in good
agreement with the linear theory over most of the chord ex-
cept for the last 10%. In this region, theoretical agreement
was poor, associated with finite loading at the trailing-edge.
In fact, the trailing edge of the test airfoil in their ex-
periment was clearly quite rounded; this results in significant
viscous effects, and consequently loading at the trailing-edge.

Ostiek [1975] also has reported that the measured pressure
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distribution on airfoils in cascade at lower reduced frequencies
up to 0.08 agrees well with the predicted one except in the
trailing edge region. The unsteady flow field was created by
oscillating the inlet section, the mean angle of attack bLeing
varied between 6-deg. to 12-deg. On the other hand, at high
values of the reduced frequency parameter, k>5, Archibald
[1975] measured the pressure differential near the trailing edge
of a flat plate and an airfoil and concluded that the zero pres-
sure loading at the trailing edge does not hold. In this case
the unsteady flow was created by exciting two 1oudspeaker§
connected in antiphase. He pointed out the disagreement from
the theoretically predicted zero trailing edge loading caused
by viscous instabilities is found to be acaustically correct-
ed vortex shedding, natural vortex shedding, Tollmien-
Schlichting waves, and, by implication turbulent boundary-
layer eddies. Also, another failure of the condition of

zero trailing edge loading at high reduc2d frequencies (kz5),
in connection with measurements of the noise generation, was
reported by Davis [1976]. But Commerford and Carta in

1974, have reported, from experiments on a circular arc air-
foil, where the periodic fluctuating flow field was produced

by the natural shedding of vortices from a transverse

cylinder to yield a reduced frequency parameter k=3.9, that
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the individual pressure distributions at each angle of attack
tended to zero at the traiiing edge, indicating the validity
of Kutta-condition of zero loading, even at this high reduced
frequency.

The recent experimental investigation of Fleeter [1980],
involves generation of an unsteady flow field by a rotor wake,
characterized by a high reduced frequency, k = 8.0. The
trailing-edge data, involving unsteady differential pressure,
was correlated with predictions for a zero incidence flat
plate cascade and an isolated flat plate airfoil; the theory
employed was the compressible transverse gust analysis of
Fleeter [1973] . For both experimental cases, the zero
pressure difference at the trailing edge was found to be valid
up to a reduced frequency of 8.0 for a wide range of in-
cidence angles. However, for the case of a cambered airfoil
cascade, it breaks down at higher reduced frequencies. His
results show that the difference between the pressure-and the
suction-side aerodynamic phase angle lag either remains con-
stant or decreases as the trailing edge is approached for the
isolated flat plate and the flat plate cascade, but increases
or remains constant for the cambered airfoil cascade, as shown
in Figure 32.

Obviously, from the above discussion, one cannot conclude
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that the condition of zero loading holds for all values of

the reduced frequency. However, the results of Fleeter [1980].
seem to indicate that the zero loading assumption is reasonably
acceptable, especially for the flat plate and the flat plate
cascade, at high values of reduced frequency up to 10.

Further theoretical and experimental investigations should

be carried out, especially for the cambered airfoil cascade,

where the trailing edge is rounded rather than sharp.

The inter&ction between the instability wave in a free

shear layer and the surface from which the shear layer is
.shed gives rise to the problem of noise generation; it has

been found that the proper theoretical modelling of the edge
condition plays a crucial role in understanding acoustic
radiation from the trailing-edges of wings and rotating blades,
and from flow nozzies. With regard to the stability of the vor-
"t. % sheet emanating from a trailing-edge, the pioneering

work of Helmholtz [1968] shows that the flow of two parallel
uniform streams of different strengtns is subjected to an
instability in the form of a spatially growing time-harmonic
oscillation of the vortex sheet which divides the streams.
Orszag and Crow [1970] extended the work of Helmholtz by
considering the effect of the semi-infinite plate which

divides the flow upstream. They restricted their attention
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to tie case in which the fluid is at rest below the plate,

and have introduced three alternative conditions at the
trailing-edge to render a unique flow solution. The nature

of their solution strongly depends on whether a Kutta condition
is enforced at the trailing-edge. The first, or 'no' Kutta
condition solution, predicts that the vortex sheet leaves the
trailing-edge in the shape of a parabola which oscillates
symmetrically above and below the line of the plate as time
progresses; it involves a singularity in the pressure at the
trailing-edge.

Secondly, based on physical arguments, they suggested
that the vortex sheet should never leave the trailing-edge in
such a way that an angle greater than = is turned. Movement
of the vortex sheet between this limit and that of the
"flapping parabola" constitutes what they term a "rectified
Kutta condition". The pressure jump across the vortex sheet
is zero and this solution was regarded physically as the most
likely to occur, but again there is an inverse singularity in
the pressure on the plate at the trailing-edge. In fact,
viscous effects prevent such a turn in real fluid, vorticity
being shed from the trailing-edge as shown in Figure 33(d),
and the induced flow bending the vartex sheet up at the traiiing-

edge. More vorticity of the same sign will be shed, until
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eventually a first-order mean circulation change will nhave
been irduced cn the plate and a final state is asymptotically
reached. The sheet never leaves the plate with a dowrward
slope.

Finally, they showed that a 'full' Kutta condition is
such that the vortex sheet leaves the trailing-edge smoothly.
In this case, there is a singularity in the pressure at the
trailing-edge and a reduction in the decay rate of the solution
at int nity. Daniels [1978] supports this interpretation and
was found that the pressuregrows in the upstream direction at
large distance from the trailing-edge.

Whern near the trailing-edge of an airfoil, in the pres-
ence of flow, sound may be generated either by turbulent eddies
or by an external source. The sound mav induce vorticity
shedding which dominates, or at least provides a local
ordering of the turbulent eddies. Ffowcs diliiams and Hall
[1970], and Crighton and Leppington [1970] have <hown that
the intensity of aerodynamic noise is greatly enhanced when
the sound-producing turbulent quad-upoles are located near the
sharp trailing-edge i.e., the edge acts as a scattering center
in the absence of mean flow. They also argued that at suf-
ficiently high frequencies, the cdge flow will be dominated

only by the diffracted field, while for low frequencies the
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edge flow is determined by viscous effects. In the presence
of mean flows there is also the possibility that velocity
fluctuations induced by convected turbulence wili result in
the generation of additional noise-producing vorticity shed
‘from trailing-edge and subsequently swept downstream. Works
have been carried out in a related area, noise aeneration by a
jet due to turbulent eddies, by many investigators .clu’ .g
Crighton [1972], Morgan [1975], Munt [1977], and Rienstra
[1979]. Rienstra considered the problem of the interaction
between subsonic jet flow issuing from a semi-infinite
circular pipe, anrd a harmonic plane wave with small strouhal
number. He showed that the Kutta condition plays a significant
role; it appears to affect the magnitude of the reflection
coefficient, but not the end correction. Besides diffraction
and vortex shedding, reflection at the open pipe is present as
well. Also, he concluded that, in the case of 'no Kutta
condition', the induced energy is reflected at the pipe exit,
while, in the case of a full Kutta condition, an amount of
acoustic energy of order M (Mach number) is transmitted and is
trarsformed into hydrodynamics energy (vortices), and thcre-
fore hardly feit in the far field. This conclusion has also
been arrived at ty Howe [1978], who studied i-e interaction of

sound with different jet flows from various types of nozzles,
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to explain the attenuation of the radiated sound power
observed in practice for low strouhal number.

Crighton (1972, a-b] has extended the work of Orszag
and Crow to compressible flow, and suggests that vortex sheet
leaves the trailing-edge with zero gradient veiocity at all
times (i.e., the full Kutta condition is satisfiad); he
studied the edge diffraction radiation induced by the un-
stable oscillations of a vertex wake, and concluded that,
at low mean-flow Mach number M, the application of a Kutta
condition at the edge resulted in an increase in the acoustic
intensity. A similar dependence on the mean-flow Mach
number has been predicted by Davies [1975]. This may be
contrasted with the conclusion of Jones [1972]; he has ex-
amined a model problem involving the generatio~ * sound by
a stationary line source located in the vicinivy 9 the
trailing-edge of a large airfoil, and reports no significant
acoustic response arising from the imposition of the Kut+a
condition. Jones and Morgan [1974] presented a linear model
of the interaction of sound with tne vortex sheet, which
physically limits its amplitude. In essence, the idea used is
simply that once the instability waves on the vortex sheet
are large enough for the nonlinear effects tc be signigicant,

they break, i.e., downstream of this point the two regions of
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flow are separated by a region of turbulence which has a
significant width compared with the wavelength of the triggering
sound.

In fact, instabilities have particular tneoretical
significance for diffraction problems involving a surface edge
shedding an unstable shear layer. This has been demonstrated
by Crighton and Leppington [1974], and Morgan [1974]. They
studied the problem of interaction of an acoustic source with
a semi-infinite vortex sheet and reported no app:eciable
influence on the intensity of the radiated sound when the
'full Kutta condition' was imposed. Morgan found that there
* is no solution which satisfies the "full" Kutta condition for
supersonic flows; an alternative "modiffed” Kutta condftion is
proposed to overcome this difficulty which is roughly that
the solution must be as smooth as possible near the edge. The
unique solution defined by this condition satisfies the full
Kutta condition for subsonic flows, while for supersonic flows,
the vortex sheet leaves the edge at an angle of less than 90°.

However, Howe [1976] has pointed out the reasons for
these conflicting conclusions are the inadequacies in the
mathematical modelling of the interaction of a real aero-
dynamic source with a trailing-edge. He examined a sequence

of mathematical problems intended to model the mechanism by
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which sound is generated as a turbulent eddy is convected in
a mean flow past an airfoil, and has reported that the
application of the 'full' Kutta condition leads to a complete
cancellation of the sound generated when frozen turbulence
convects past a semi-infinite plate, and to the cancellation
of the diffraction field due to the trailing-edge in the case
of an airfoil of compact chord. The canceliation is brought
about by the shed vorticity, which smoothes cut the flow in
the vicinity of the trailing-edge. He claims that a 'full'
Kutta condition of the type considered by Orszag and Crow is
not relevant if there is no external flow.

Rienstra [1979] has studied th o models concerning the
interaction of a flow with diffra 1ng sound waves at the
trailing-edge. A uniform subsonic inviscid compressible flow
on either, or only one, side of a semi-infinite thin plate
flat plate; and in a semi-infinite thin-walled open tube. All
cases are perturbed by a sound wave, as shown in Figure 34. He
reports for the case of a flow on both siies of the plate
that the application of a 'full' Kutta condition leads to an

increase of the diffracted wave in a downstream arc and a

decrease elsewhere; this effect is dependent upon the Mach

number. Also he found that the effect of application of



the Kutta condition leads to a decrease of the diffracted
outer field for the case of flow on one side of the plate.
These agree well with the results of Howe [1976] and the ex-
perimental results of Heavens [1978]. The latter concluded
that the diffracted wave is very weak when the flow at the
trailing-edge is smooth i.e., where the Kutta condition is
satisfied, as shown in Figure 35. On the other hand, the
diffracted field is strongly visible when the Kutta condition
is violated either by boundary layer separation or by un-
steadiness in the flow; see for instance Figure 3 , and
Heaven's Figures 3-5 and 7(a).

With regard to the experimental investigations of the
trailing-edge condition of a nozzle in unsteady flow, Bechert
and Pfizenmaier [1971] have pointed out that the 'full' Kutta
condition is satisfied at low magnitudes of the fluctuating
flow. Their experiments showed that no velocity singularity
occurs at the trailing-edge of the nozzle at low reduced
frequencies. In 1974, they pointed out the effect of the
boundary-layer thickness at tne nozzle discharge edge; at
very low strouhal numbers S9 (basec on the momentum thickness
of the boundary layer) the flow in the vicinity of the edge
behaves like a siv.»dy flow, i.e., the 'full' Kutta condition
is satisfiad. While at high strouhal numbers Se 'no Kutta
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condition' is to be expected. Moreover, they found, through
experiments on the unsteady flow at a nozzle discharge edge,
that the jet deflexion envelope has a nearly. parabolic shape
near the nozzle edge, i.e., the full Kutta condition is not
satisfied, and the size of the 'parabolic' region decreased
with decreasing strouhal number. But they mentioned that at
Tow Strouhal number, the unsteady motion in the vicinity of
the trailing-edge behaves linearly. Also they poirted out
that a transition may occur from the 'full Kutta condition'
to the 'no-Kutta condition' with increasing strouhal number.
They proposed a 'mixed Kutta condition' obtained by a linear
combination of both conditions for a sufficiently low strouhal
number.

So, we can conclude that the trailing-edge condition of
zero gradient or zero pressure difference at the trailing-
edge is satisfied at low reduced frequency, where the acoustid
field is very weak. As the reduced frequency increases, the
smooth flow at the trailing-edge is disturbed, and the full
Kutta condition is no longer satisfied. In this case, the
trailing-edge vortex sheet has a parabolic shape, and the

acoustic radiation field is strong.

-70~



C. Viscous Analysis With Attached Flow

A1l the previous investigations are an approximation to
the real situation, especially when the flow remains attached
until the trailing edge is reached. In this case, the viscous
effects are confined to the laminar boundary layer on the air-
foil surface and to the thin downstream wake. In fact, the
inviscid problem is only the outer solution of a singular
perturbation problem in which the Reynolds number tends to
infinity. So, it is the consistency of the inner regions of
the flow where viscosity has a significant effect, which may
lead to unique determination of the inviscid solution.
Gostelow [1975], in a discussion of the stability of the vor-
tex shed from the trailing edge and the relation between the
vortex street configuration and the trailing edge wedge angle,
has shown that the partition streamliine in Maskell's model is
unstable if the Kutta condition (i.e. tangency of the stream-
line to the airfoil surface at the trailing edge) is violated.
Consequently, the drag coefficient may be severely mispredict-
ed, especially for blade cascades or airfoils with blunt trail-
ing edges. He also proposed that the potential flow partition
streamline should leave close to the trailing edge and normal
to the orientation of the edge surface, and considered it as
more meaningful than criterion of Maskell. The vortex street
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drig in this case shows a strong dependence on the trailing
edge, it tends to zero for a cusped trailing edge, as shown
in Figure 37. In fact, it is the role of viscosity which
makes Maskell's model inappropriate in predicting the drag
coefficient. Also, it has been found that viscosity plays a
central role in acoustic problems; it smooths the singularity
in the flow field at the trailing edge by means of shedding
of vorticity from the edge. These shed vortices change the
total sound field because concentrations of vorticity moving
near a solid edge generate sound (Crighton [1972-b]. This
smoothing process is essentially a viscous effect, so we have
to seek viscous models if we want a better understanding of
this problem, which is related directly to noise generation
problem. As mentioned before, in Chapter III, (Section C),
for laminar flow at high Reynold number, the boundary layers
are attached until the trailing edge is reached, but due to
the change in boundary conditions there, the flow in the
boundary layer accelerates when it passes the edge. This gives
rise to a singularity in the flow field of the inviscid outer
flow, which is smoothed out by the process in the inner viscous
region. An understanding of the mechanisms of smoothing pro-
cesses has been considerably deepened by the discovery of multi-
boundary layer theory by Stewartson [1969] and Messiter [1970].
-72-



So, we review relevant works employing this pfocedure for un-
steady flow around airfoils and aeroacoustics problems. In
fact, this analysis gives some additional details about the
condition at the trailing edge when a ﬁon-separating 1amihar
boundary layer is considered 1in unsteady f]ows: Brown and
Daniels [1975] extend the same theory discusse& by Brown and
Stewartson [1970] to the case of a flat plate oscillating in
pitching or in plunging motion of small amplitude (a*z) or
{h*z) and of high frequency (w*) in a uniform incompressible
flow, and in the limit as the Reynolds number tends to in-
finity. The same restrictions on the thickness of the airfoil
imposed by Brown and Stewartson [1970], to ensure that the
flow remains attached, were employed. Browr and Stewartson
showed that, for oscillations of non-dimensional frequency

(S = %EL =0 (e'z)) and amplitude (o* = 0(59/2)) , the
flow in the vicinity of the trailing edge on the upper side of
the plate has a structure involving five distinct regions, as
shown in Figure 38. Two additional layers called "the fore
deck" of order 0 (52). which do not occur in steady flow, lie
between the perturbed Blasius flow region and the triple deck.
The full Kutta condition (i.e. zero pr.ssure difference) leads
to a consistent viscous flow field. In other words, it leads to

an inner viscous flow region which matches uniformly to the

-73—=



outer inviscid flow region without any singularities in the
flow field. No complete solutions were obtained, but an es-
timate for the time-dependent viscosity correction to the
circulation was made; the overall viscous effect correction

to C, was found to be of order 0 (e4), and the contribution

of the triple deck to the 1ift and pitching moment was of
order 0 (e5). Also, the viscous corrections to the 1ift and
moment were found to lag the inviscid solutions (the leading-
order terms) by an angle %} It emerges that there is a
stagnation point of the outer flow at a distance of order 0 (e?)
from the trailing edge which moves from one side of the plate
to the other with a phase lag of %-relative to the oscillation
of the airfoil. In their analysis, in order to Qti]ize the
triple-deck structure for the trailing edges, they were obliged
to scale the amplitude and reduced frequency to the order of

9/2) and $ =0 (e'z), in such way that the

magnitudes o* = 0 (e
viscous effects due to the triple-deck at the trailing edge are
bclanced by the effects due to rapid oscillation of the airfoil.
Shen and Crimi [1965] have pointed out the validity of the
trailing edge condition of "zero pressure loading" at the
trailing edge of an oscillating plate at high Reynold number.

It holds as Tong as the flow is attached and flow separation

is confined to the immediate vicinity of the trailing edge, i.e.,

-
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the inviscid solution is really the limiting case as Reynold
number tends to infinity (linear problem). This is still
valid if the boundary layer flow is turbulent. However if ex-
tensive separation occurs, the unsteady trailing edge condition
of zero pressure loading has w0 significance, because the
boundary conditions change completely. That is, for the oscil-
lating airfoils, involving problems of vortex shedding and
acoustic radiation from the trailing edges, the failure of the
inviscid analysis to give a unique solution and the singular
behavior of the problem as Reynolds number tends to infinity
suggests that the role of viscosity in the inner region

. renders the uniqueness. Daniels [1978] extended the
works of Orszag and Crow [1970], taking viscous effects into
account. A consistent viscous flow structure was established
at the trailing edge, and the matching between the inviscid
outer region of Orszag and Crow and the viscous inner region
at the trailing edge led to uniqueness of the problem. For
amplitudes of vscillation of order 0(57/2) and frequencies
of order O(ez) at large Reynolds number, it was found that
application of the full Kutta condition of smooth flow at the
trailing edge in the inviszid problem of Orszag and Crow leads
to a consistent viscous flow field and predicts occurrence of

flow separation for large amplitude oscillations. His results
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also showed the inadequateness of the inviscid theory to
determine the shape of the dividing streamline sufficiently
close to the trailing edge. While the theory of Orszag and
Crow suggests that, for the full Kutta condition, the dividing
streamline leaves the trailing edge tangentially, the viscous
flow structure, valid in the vicinity of the trailing edge,
reveals oscillations having a parabolic amplitude envelope
consistent with the experimental results of Bechert and
Pfizenmaier [1975],who examined the exit condition of a weak-
ly unsteady flow issuing from a circular nozzle. Also, the
rectified or no Kutta conditions characterized by a parabolic
oscillation of the vortex sheet at the trailing edge are found
to be inconsistent for amplitudes of oscillation of the same
order (i.e. 0(e7/2)); since they lead to solutions involving
singularities of pressure within the triple-deck region. But

e]3/2) their consistency appear to

for smaller amplitudes 0O
depend upon the exictence of a solution of the full Navier-
Stokes equations in a region of dimension 0(56) at the
trailing edge (Daniels [1978]). The resulting viscous flow
structure at the trailing edge is not similar to the structure
on an oscillating plate determined by Brown and Daniels [1975],

but more complicated, as shown in Figure 39. As previously

shown in Section (B), the trailing edge condition has an
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important effect on the noise generation. In these .~oblems,
the role of viscosity is accounted for in application of this
condition. The effect of viscosity takes the form of vortex
shedding from the trailing cdge, which smooths the singular-
ities in the acoustic flow field. It was shown before that
the Kutta condition problem can be identified with the balance
between that flow-induced pressure and the externally generated
pressure perturbations (i.e. diffracting sound waves). When
the pressure of the full Kutta condition solution is of :

same order of magnitude near the edge as the flow-induced
pressure, the viscous smoothing forces, prepared for the flow-
induced pressure singularity, takes care of both and the

Kutta condition is valid. Also, this is the case when the
externally generated pressure is much lower (Daniels, [1978]).
However, when the external pressure dominates the flow-induced
pressure, separation is likely to occur and the Kutta condition
is violated. The sound pressure singularity may be helped to
overcome the smoothing forces (effect of viscosity) by another
external effect (e.g. a plate at incidence, or a wedge-shaped
edge) capable of generating a singularity at the edge. The
two singularities cause violation of the Kutta condition
earlier than if only one external singularity-inducing process

were in action.
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Rienstra [1979] has extended his analysis of the trailing
edge influence on the interaction oFf a flow with diffracting
sound waves to include viscous effects. Making use of the
work of Brown [1975] and Daniels [1Y78], he derived an outer
field correction, due to the viscous interaction at the trail-
ing edge, for high Reynolds numbers; this viscous correction
was small. This leads to the conclusion that the assumption
of the Kutta condition is consistent with triple deck structure.
It appears that an incident pressure wave with a dimensionless
amplitude of order O e}’) and frequency of order 0( e'z) almost
satisfies the Kutta condition; a multiple of the singular

eigensolution with an amplitude of order 0(53) is to be
added. It is conjectured that when a pressure wave satisfies
the Kutta condition, it behaves near the edge according to

P = const. + A(w,M)/r exp(iuwt), where A = O(Ek).

(DY Viscous Analysis Associated With Boundary Layer
Separation

A1l of the above analysis deal with flow that separates at
the trailing-edge, which is an idealization of the actual flow dy-
namics, especially when the trailing-edge is not sharp and operat-
ing at high frequency. In this situation, the trailing-edge is,

of course, buried in a turbulent flow which is often separated as
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well, with a significant trailing edge loading and highly deformed
wake. Figure 25 contrasts the actual flow dynamics with the ideal-
ized one. In fact, this situation is of special interest because
it relates to the prcblem of noise generation from the edge; as
mentioned before, the flow unsteadiness and boundary—layer'separa-
tion at the trailing edge give rise to a strong diffracted wave
e.g., figures (7a, 10b) of Heavens [1978]. This implies that the
flow field in this situation is nonlinear; deviations from the
linearized airfoil tneory, especially at high reduced frequency,
have been reported by many investigators as mentioned before,
including Archibald [1975], Davis [1976], Satyanarayana [1977,
1978], Fleeter [1979], and Kadlec and Davis [1979]. The latter
examined the structure of the near wake behind a pitching air-
foil at amplitude ratios 0.02 and 0.4 of the airfoil chord, at a
reduced frequency range of 1 to 10, and in the Reynolds number
range 0..4 x 105 to 1.66 x 105. As shown in Figure 40, at a

small value of reduced frequency (k=1) the wake distortion is
small and the assumption of small disturbance theory (linear air-
foil theory) that the wake elements coincide with airfoil chord
line is valid, as in Figure 40a. But, as the reduced frequency
increases, the wake distortion is greater (Figure 40b) and the
larger trailing-edge velocity ratios indicate that the limits of
the linear theory have already been exceeded. Figure 40c shows

the case at very high redu.ed frequency; the wake becomes unstable
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and highly deformed into a vortex-lika disturbance, linear theory
failing to match it.

Sears [1976] has pointed out the condition which determines
the circulation in the case of flow with boundary layer separation
is ruch that "the net rate of vorticity transport at separation
into the wake should be equal to the rate of change of the cir-
culation around the airfoil“, which is a generalization of the

Howarth criterion, i.e.

s

which can te written in the form

A
[;’Uf - Uggplyl = - di/dt
B

A
where Ure] denotes the difference (U-Usep) and [ ]B denotes the

difference between values at pcints A and B of the expression in
the brackets (see Figure 41), and denotes vorticity, positive
clockwise. For the case of an airfoil with a rounded trailing
edge, he proposed dual models for calculating the flow field,
forces, and moments without developing actual solutions. A
vortex-sheet model in the spirit of thin airfoil theory suffices
for the calculation of pressure, lift, moment, etc. (Figure 42a).

The circulation of thi. model has to be determined from a second
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model; in boundary-layer calculations, more details about the
actual contour of the a‘rfoil and its stagnation points are re-
quired (Figure 42b). In fact, as he mentioned, the flow field
of each model depends upon the other; the flow field disturbances
_calculated in the first model are carried over into the second
model and the circulation is determined by the generalized
Howarth criterion, i.e., the two flows would have to be cal-
culated iteratively. The 1ift is not equal to U, but is equal

to

T.E.

L) = oUr(t) - 0 S| v (08) o
L.E.

and the pitching moment about the trailing edge is

T.E
r .
y(x,t) xdx - %—p %E-J v(x,t) xzdx

‘L.E. L.E.

[T.E.

Mp. -, = ol

where x is measured (positive downstreem) from the trailing edge.
Figure 42b shows a comparison between linear airfoil theory and
this dual model.

We canrot make any conclusion about the accuracy of this dual
model since it has not bzen tested yet. Further works using this

model are needed.
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Wu [1981] has developed a general theory for the aerodynamic

force anc moment through a rigorous analysis of the incompressible
viscous equations. The main feature of this theory is the gener-
alization of the formulas which relate aerodynamic force and
moment acting on one or more solid bodies to rates of change of
vorticit: moments in the fluid and the solid regions; e.g., the

aerodynamic force F, exerted by the fluid on N-solid bodies is:

_ d
F=F ‘&‘EJ pVR + I g—f ovdR

J=1 ,
RL R;

where v is the velocity vector cn the boundary BL, FL is the
force acting on the boundary BL’ and RL is the control volume
bounded externaily by BL‘ For two-dimensional steady viscous
flow about an airfoil, the lift is obtained from this general

equation which can be simplified to:

L"pg—-[ Ix(udxdy
t Rf

where Rf is the fluid region in the control volume RL’ and

is the vorticity vector, which is identical to the well-known
Kutta-Joukowski theory. It seems that this new approach will
give a new dimension in understanding and interpreting complex
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aerodynamic phenomena and in computational fluid dynamics. With
regard to this analysis of the trailing-edge flow separation,

this author feels that this new procedure is fruitful, since it
gives a precise definition of the circulation about two-dimension-
al solid boundaries for both unseparated flow and a flow contain-
ing an appreciable region of separation; also, there are not
simplifying assumptions or approximations in deriving the general
formulas of the theory. This would appear to make it more accu-

ate than the Sears dual model.
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V. CONCLUSION AND RECOMMENDATIONS

This review is a critical assessment of the existing works
on the trailing-edge condition.

The works of Kutta and Joukowski and the other related
interpretations have been reviewed. For cases where the air-
foil has a sharp trailing-edge, there is no contention that the
Kutta-Joukowski condition is satisfied. A1l interpretations
di=cussed herein, in fact, are essentially identical and give
s00d agreement with the experimental results.

It appears that for most blade cascades or isolated air-
foils having a blunt traiiing-edge, the Kutta-Joukowski con-
dition has no relevance. For this class of trailing-edges,
the Taylor-Howarth criterion of "zero total-flﬁx vorticity
into the wake" is found to be the appropriate trailing-edge
condition, and gives a unique flow solution. Also, details
are presented on the role of viscosity i: smoothing the fiow
field at trailing-edge via multistructure boundary layer
theory.

For unsteady flow analysis, the situation is more com-
plicated. However, it has been shown that the trailing-edge
condition of "zero pressure loading at the trailing-edge" is
the appropriate condition as long as the flow remains at-
tached until the trailing-edge, provided the reduced frequency

is 'ow. In this case, the acoustic raaiation field is very
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weak. However, violation of this condition is pointed out by
many investigators for cases where the flow separates and the
unsteadiness is high, accompanied by strong acoustic radiation
from the trailing-edge.

It seems that further efforts in this area are called

for; the following possibilities are recommended:

(a) Further experimental studies covering a range of
reduced frequencies and angles of attacks are needed
to guide new theoretical analyses.

(b) The multistructuce boundary layer theory should be
extended as tc¢ gain an understanding of the trailing
edge flow structure, especially when flow separates.

(c) Criticai testing of these new approaches is needed,

in order to define limits of their applicability.
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Figure 1: Theoretical flow pattern of a flat plate in steady
incompressitle potential flow. :
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Figure 2: The flow around the trailing-edge which can be
interpreted as a sharp corner v th o>w
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Figure 3: Sketch showing the development of the ci rculatorv flow
around airfoil up to Kutta-condition flow.
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Figure 5: Flow past an airfoil as viewed from a space-fixed
reference frame: (a) the starting vortex and the
formation of the circulatory flow over the airfoil
immediately after starting the airfoil; (b) t"e
decay of the circulatory flow when the airfoil
stopped (Prandtl and Tietjens [1934]).
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Figure 6: Trailing-edge condition for steady inviscid potential
flow around irfoil with trailing-edge‘ (a) trailing-edge
with a finite ang’e; (b) cusped trailing-edge.
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Figure 7: Hess and Smith's interpretation of the trailing-edge
condition (Hess and Smith [1967]).
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Figure 8: Trailing-edge detail for bl.. having a rounded trailing-
edge (Gostelow [1964]).
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Profile Pressure distribution

Figure 9: Effect of variation of rear stagnation point on pressure
distribution calculated by exact potential theory
(Gostelow [1964]).
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21044 0 ecmmeee Lower surtoce

( a ) Elfect on pressure distribution.
- x/c +

Figure 10: trfect of the rear stagnation point position
and trailing-edge bluntness on airfoil characteristics
( Baskaran and Holla [1981] )
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angle of incidence 5
2’ 1

Figure 11: Separation points in fully laminar flow ( Howarth
[1938] ).
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Figure 12: Boundary layer configuration at tue trailing-edge
in laminar flow.
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displ.aced surface

zero normal
velocity

uniform source
distribution
uniform vorticity
distribution

I~ upper trailing
I~~~ edge velocity

lower trailing
edge velocity assumed wake source
distributions

Figure 13: Mathematical model allowing for the boundar layer
and wake displacement effects ( Basu [1973{ )
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——-———Potential flow theory

\ Viscous flow theory
\ ° Experiment

X/C

+1.

Figure 14:

Comparison between viscous flow solution of Basu
and the experimental results.
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Figure 15: Predicted pressure distribution by Spence's method

( Spence [1954] ).
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Figure 16: First viscous approxmation ( Gostelow [1975] ).
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(a)

(a)

Figure 18: The trailing-edge flow st ucture for mixing shear
layer for: ?a) stagnant flow below the plate,i.e.
- - - U, = 0 ; (b) the case for the Ffiow over a back=
wgrd-facing step ( Daniels, [1977] ).
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Figure 19: Compressor map showing flutter boundaries of four types

of flutter ( Pratt and Whitney Aircraft [19%] ).
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PES display during quiet running condition (bottom) and during flutter

(top) (Nieberding and Pollack [1977] ).
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Figure 23: Unsteady pressure signals and overall loads on an
oscillating airfoil: (a) subsonic flow( linear flow)
; (b) Transonic flow (nonlinear flow),( Tijdeman
[1980] ).
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Figure 24: Wake patterns for harmonically oscillating airfoil
model ( Theodorsen [1935] ).
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( a ) Ideal case

8Pr = 0

[<] S A S |
at ~*tz(af-ap)

( b ) Real case

Figure 25: Erai13n§-edge condition for unsteady flow ( McCroskey
1977] ).
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.
_.—f""!;.E.

q!.

( a ) Flow stagnates at trailing-edge , .leads to pressure
discontinuity (Van der Vooren and Vander Vel [1964]).

( b ) Flat plate - velocity difference equal to the instant-

aneously shed vortex strength (Von Karman and Sears
[1938]).

(e) %ero 5§loc1ty difference at the trailing-edge (Giesing
1968]).

Figure 26: Various interpretations of the unsteady trailing-edge
condition. .
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( d ) Sense of shed vortex determines direction of instant-
aneous streamline - Zero pressure loading at trailing
-edge ( Maskell [1973], Giesing [1969] ).

qn
Q) .=
() ("n)g= 0
3t
P= P
9
(N)
qﬂ

( e ) Zero pressure loading at the trailing-edge elements-
Zero normal velocity at each computational element
( Basu and Hancock [1978] ).
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C_/W

Vortex position at tU_= 1.85 of 8.4 symmerical Von
Miss aerofoil in pitching oscallation; v=20.(Basu and-
Hancock [1978]).

OS]

m
FIRALISG (0SS

N

Flow near the trailing-edge of an aerofoil oscillating
at high frequency; pitch axis at x/c = 0.30 and v=8.0

(Kadlec and Davis [1979]).

Figure 27: Comparison between the computed wake pattern for an
oscillating airfoil at high frequency and the exper-
imentally observed wake pattern.
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Figure 28:

=0 9

The theoretical characteristics of the wake
element from the trailing-edge for a 8.4% .
thick symmetrical Von Mises airfoil oscillating
about the leading-edge ( Basu and Hancock [1978] ).
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Figure 31: Instantaneous pressure traces from isolated airfoil
exposed to a sinusoidal transverse gust due Holmes

( Gostelow [1975] ).
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Trailing edge region unsteady syrface

pressure variations for the {solated

flat plate.
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(a)
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(b)

(<)

Figure 33: Trafling-edge condition for a semi-infinite p.ate
according to Orszag and Crow (1970]: (a) 'No Kutta
condition; (b) "Rectified Kutta condition; (c) "Full
Kutta condition®
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Figure 34: The interaction of suund with a trailing-edge flow
in three different problems: (¢! a semi-infinite
flat plate in an inviscid compressiv.e fluid flowing
cn both sides; (b) as in case (a), but , the fluid
flows on ore side ; (c) compressible inviscid jet flow
emanating from a semi-infinite pipe (Rienstra [1979]).
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Further intensification of the diffracted wave at Mach 0-33.
Angle of incidence = —3-7°; knife edge horizontal, opaque side uppermost.

Appearance of the strong diffracted woewve (arrowed) us 1t emerwes from the turbulent
boundnry layer nt 11-3” incidence, Mach 0-22. Knife edge horizontal, transparent side upper-

most.

Figure 36: The "no Kutta condition flow," where the interaction
between the diffracted wave and trailing-edge flow
is strong (Heavers [1978]).
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Figure 37: Vortex shedding models and drag coefficient for
wedge-shaped airfoils (Gostelow [1975]).
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I- potential flow

II- perturbed Blasius flow and
inner Stokes layer

III- the fore deck

IV- the triple deck

V- modified Goldstein wake

Figure 38: Trailing-edge flow structure on the upper sice of
a rapidly oscillating plate (Brown and Daniels
[1975]).
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OQuter inviscid flow
Blasius boundary layer
Stokes layers

Fore deck (main deck)

Fore deck( lower deck )
Triple deck ( upper deck )
Triple deck ( main deck )

Triple deck (lower deck )
Inner region ( main deck )
Inner region ( sublayer )
Full Navier-Stokes region
Mixing layer

Displacement boundary layer

Figure 39: Trailing-edge flow structure in unsteady flow past
a plate (Daniels [1978]).
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Visualization of the near wake behind a pitching
airfoil: Re =.34,300; v=8.0

WARE CLASSIIICATION
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Characterization of near-wake flow patterns
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Figure 41: Airfoil in unsteady motion with vortical wake produced
at boundary-layer separation points A and B (Sears

r9zel).
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( a ) —— }c%y}ﬂ..c.e.o.g..
Linearized airfoil th.

Dual model

(c) \
c l

Figure 42: Dual method for predicting the unsteady aerodynamic
forces on airfoils with rounded trailing-edges (Sears
[1976]): (a) bound and free vortex; (b) model for
boundary layer calculations; (c) velocity component u
at upper and lower surface of vortex sheets, and corr-
esponding vortex strength vy.

-144 -



VITA

The author was . He

spent most of his life in Alexandria, where he vas educated.

The author graduated with honors from Alexandria University
in 1975, receiving the degree of Bachelor of Science in Mechanical
Engineering. In 1979 he also received the Bachelor of Scien.e
in Mathematics from the same University. The author received
a National Aeronautics and Space Administration assistantship
for the period September 1979 through December 1980 under the
auspices of the Mechanical Engineering and Mechanics Department
of Lehigh University in BethTehem. Pennsylvania. He is presently
attending this institution, where he expects to receive the
Master of Science in Mechanical Engineering degree in October
1981. The author will continue his graduate study at Georgia

Institute of Technology in the summer of 1981.

- 145



	GeneralDisclaimer.pdf
	0018A02.pdf
	0018A03.pdf
	0018A04.pdf
	0018A05.pdf
	0018A06.pdf
	0018A07.pdf
	0018A08.pdf
	0018A09.pdf
	0018A10.pdf
	0018A11.pdf
	0018A12.pdf
	0018A13.pdf
	0018A14.pdf
	0018B01.pdf
	0018B02.pdf
	0018B03.pdf
	0018B04.pdf
	0018B05.pdf
	0018B06.pdf
	0018B07.pdf
	0018B08.pdf
	0018B09.pdf
	0018B10.pdf
	0018B11.pdf
	0018B12.pdf
	0018B13.pdf
	0018B14.pdf
	0018C01.pdf
	0018C02.pdf
	0018C03.pdf
	0018C04.pdf
	0018C05.pdf
	0018C06.pdf
	0018C07.pdf
	0018C08.pdf
	0018C09.pdf
	0018C10.pdf
	0018C11.pdf
	0018C12.pdf
	0018C13.pdf
	0018C14.pdf
	0018D01.pdf
	0018D02.pdf
	0018D03.pdf
	0018D04.pdf
	0018D05.pdf
	0018D06.pdf
	0018D07.pdf
	0018D08.pdf
	0018D09.pdf
	0018D10.pdf
	0018D11.pdf
	0018D12.pdf
	0018D13.pdf
	0018D14.pdf
	0018E01.pdf
	0018E02.pdf
	0018E03.pdf
	0018E04.pdf
	0018E05.pdf
	0018E06.pdf
	0018E07.pdf
	0018E08.pdf
	0018E09.pdf
	0018E10.pdf
	0018E11.pdf
	0018E12.pdf
	0018E13.pdf
	0018E14.pdf
	0018F01.pdf
	0018F02.pdf
	0018F03.pdf
	0018F04.pdf
	0018F05.pdf
	0018F06.pdf
	0018F07.pdf
	0018F08.pdf
	0018F09.pdf
	0018F10.pdf
	0018F11.pdf
	0018F12.pdf
	0018F13.pdf
	0018F14.pdf
	0018G01.pdf
	0018G02.pdf
	0018G03.pdf
	0018G04.pdf
	0018G05.pdf
	0018G06.pdf
	0018G07.pdf
	0018G08.pdf
	0018G09.pdf
	0018G10.pdf
	0018G11.pdf
	0018G12.pdf
	0018G13.pdf
	0018G14.pdf
	0019A02.pdf
	0019A03.pdf
	0019A04.pdf
	0019A05.pdf
	0019A06.pdf
	0019A07.pdf
	0019A08.pdf
	0019A09.pdf
	0019A10.pdf
	0019A11.pdf
	0019A12.pdf
	0019A13.pdf
	0019A14.pdf
	0019B01.pdf
	0019B02.pdf
	0019B03.pdf
	0019B04.pdf
	0019B05.pdf
	0019B06.pdf
	0019B07.pdf
	0019B08.pdf
	0019B09.pdf
	0019B10.pdf
	0019B11.pdf
	0019B12.pdf
	0019B13.pdf
	0019B14.pdf
	0019C01.pdf
	0019C02.pdf
	0019C03.pdf
	0019C04.pdf
	0019C05.pdf
	0019C06.pdf
	0019C07.pdf
	0019C08.pdf
	0019C09.pdf
	0019C10.pdf
	0019C11.pdf
	0019C12.pdf
	0019C13.pdf
	0019C14.pdf
	0019D01.pdf
	0019D02.pdf
	0019D03.pdf
	0019D04.pdf
	0019D06.pdf
	0019D07.pdf
	0019D08.pdf
	0019D09.pdf
	0019D10.pdf



