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SUMMARY

A general treatment of parameter identification and stochastic control for
use on ! xlicopter dynamic systems is presented. The emphasis of the work
reported herein is on rotor dynami. models, including specific applications to
rotor blade flapping and the helicopter ground resonance problem., Dynamic
systems which are governed by periodic coefficients as well as constant coeffi-
cient models are addressed. The dynamic systems are modeled by linear state
variable equations which are used in the identification aad stochastic centrol
formulation. The research presented addresses the pure identification problem
as well as the stochastic ccntrol problem which includes combined identification
and control for dynamic systems. The stochastic control problem includes the
effect of parameter uncertainty on the solution and the concept of learning and
how this is affected by the control's dual effect. The identification formula-
tion requires algorithms suitable for on-line use and thus recursive identifi-
cation algorithms are considered. The applications presented use the recursive
extended Kalmanr [iiter for parameter identification which has excellent con-
vergence for systems without process noise. Adaptive control results based
upon the certaintv equivalence principle are also presented for the rotor blade

flap model.

INTRODUCTION

The concept of using active control for helicopter dynamic modes offers
the potential for improved helicopter rotor operation. The alleviation of retreating
blade stall, improvement in dymamic stability and reduction of vibration through
active control are some of the potential improvements to be gained through
active control. The current trend toward fly-by-wire computer systems and high
frequency rotor control make the concept of active rotor control feasible.
Higher harmonic swashplate control and individual blade control permit the use
of active control techniques for stochastic control of dynamic modes. Active
control of helicopter rotor systems requires the use of parameter identifica-
tion of dvnamic models and either fixed gain or adaptive control laws. The
focus of this reasarch is on both pure identification of dynamic models and

stochastic control as applied to helicopter dynamic systems.
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Until recently most of the research activity in parameter identification
has focused on the problem of aerodynamic stability derivative extraction for
handling qualities models [1,2,3,4]. The identification of stability and
control derivatives for handling quality models is well understood, however
by no means completely solved. Rotor blade .deniification has also been done
[5,6] with emphasis on wind tunnel applications. These rotor studies which
address the pure identification problem have 1ocused mainly on the physical
model requirements and have used off-line type algorithms which do not formally
account for random process noise excitation. Thue, applicability to general
wind tunnel or flight test useage is limited. An on-line identification pro-
cedure was presented in reference 7 for rotor blade mode identification from
random wind tunnel turbulence excitation. A recursive maximum likelihood (RML)
procedure was u..ed which is unbiased in the presence of both randnm measurement
and process noise. Although the RML procedure was an on~line algorithm and
suitable for random turbulence, ic is limited to single input-single output
systems or autoregressive moving average (ARMA) models.

The general state space identification problem is presented for helicopter
rote: dynamic systems. Identification algorithms suitable for both random
measurement and process noise are discussed for off-line and on-line use with

emphasis on application to helicopter rotor dynamic models.

The studies on control of helicopter systems have primarily focused on handling

qualities autopilot design [8] with some research on the gust alleviation
problem [9,10,11]. Recently, fully adaptive higher harmonic control (HHC)
algorithms which include on-line identification and control have been developed
and tested on simulations and in the wind tunnel [12,13,14,15]. These applica-
tions are designed to minimize steady helicopter vibratica which originate in
the rotor. The acceptance and development by the rotorcraft community of high
frequency rotor multicyclic hardware have made HHC suitable for flight vehicles.
In addition, the present interest in helicopter individual blade control (IBC)
[16,17,18] will furrher open up new areas of application for stochastic control
and identification of rotor dynamic systems. Applications to rotor stall
alleviation, improved rotor stability and gust alleviation are potential areas

of application.
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This report presents the general state gpace formulatioa for helicopter

rotor dynamic systems for parameter identification. The stochastic control

formulation is presented which leads to fixed gain feedback controllers as well

as adaptive control solutions. The stochastic control approach follows that

presented in ref. 19 and 20 which includes the adaptive control properties: (1)

caution, (2) probing, and (3) deterministic control.

The theoretical background for identification and stochastic control is

presented in Section II. The rotor blade flapping results which include

periodic coefficients and reverse flow effects are presented in Section III.

Parameter identification resulcs for the helicopter ground resonance model is

presented in Section IV.
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SYMBOLS
Continuous time matrix used for ground resonance model defined
in Eq. (3.24)
time~varying matrix as a function of parameters ©

scalar parameter and its mean value, respectively, used in
Eq. (2.30)

flapping model periodic coefficients defined in Eq. (3.6) -
Eq. (3.8)

value of flapping mocdel periodic coefficients at u = 0
time-varying control matrix as a function of parameters O

continuous time matrix used for ground resonance model defined
in Eq. (3.25)

measurement matrix (periodic) used for ground resonance model
defined in Eq. (3.26) aund Eq. (3.27)

N-step cost function defined in Eq. (2.28)

cost function evaluated at time step k

denotes expected value

denotes conditional expected value

discrete transition matrix, approximated as in Eq. (2.6)
general vector nonlinear function

partial derivative of f w.r.t. z. (Jacobian matrix)
nonlinear function associated with the state equation
nonlinear function associated with the parameters, O

value of state transition matrix at time step k, (Eq. 2.58)
longitudinal force excitation of support degrees of freedom,

F
X

2 9 R = 20 ft
mxQ R 0~ 'NAL 2™ 1
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lateral force excitation of support degrees of freedom,
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discrete control matrix approximated as in Eq. (2.7)

value of state transition matrix at time step k, (Eq. 2.58)
measurement matrix

measurement matrix associated with system state vector
general nonlinear measurement function

information set at time step k+1, defined in Eq. (2.38)

time step number

objective function (cost)

optimal cost-to-go from time k to the end defined in Eq. (2.43)
caution component of the total cost

deterministic component of the total cost -
probing component of the total cost

backward solution of the matrix Riccatti equation computed by
Eq. (2.59)

time step'number
optimal CE control feedback gain computed by Eq. (z.57b)
control gain for the deterministic one step example Eq. (2.34)

stochastic control gain which includes caution given by Eq. (2.35)
or Eq. (2.36)

periodic coefficient associated with B of blade f.apping given by
Eq. (3.2), 1/sec?

periodic coefficient associated with é of blade flapping given by
Eq. (3.3), 1/sec

periodic coefficient associated with blade angle OR of blade
flapping given by Eq. (3.4)

mass of the longitudinal support degree of freedom, (m, = 2767 slugs)
mass of the lateral support degree of freedom (my = 2457 slugs)

final time step

number of state variables

number of state variables plus parameters (n, = ny + ng)

number of parameters

covariance matrix

conditional probability density function

cost function weighting matrix on the state

process noise covariance on the state equations

process noise covariance on the parameters
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R cost function weighting matrix on the control (also used as noise
covariance on the measurement)

S innovations covariance defined in Eq. (2.21)

S(Y) on-off switch to activate reverse flow terms in flapping equation

t continuous time index, sec

At integration time step, sec

u control vection

uD,u§ deterministic and stochastic control solution defined in Eq. (2.50)
through Eq. (2.52)

v(t) continuous time random white process noise

vk discrete time random white process noise sequence

vx.vo discrete time random white process noise sequence of x and 8 egs

v mean value of v

W Kalman filter gain defined in Eq. (2.24)

w discrete time vandom white measurement noise

X state vector

x8 augmented state vector (x2 = Q)

i(klk) updated state estimate at time k given measuremen%s up to time k

y measurement vector

z state vector of states and parameters

2(k|k) updated state estimate (states and parameters) at time k given

measurements up to time k

e

state error defined in Eq. (2.16)

B flapping angle of blade, deg

A time step size

y Lock number, (y = 5)

g blade lag angle, deg

Cle cosing Fourier component of blade lag, deg

C1s sine Fourier component of blade lag, deg.

Nxe Ny longitudinal and lateral support damping ratio, respectively,
% critical

n- blade inplane damping ratio, % critical

U rotor advance ratio, V/QR

innovation sequence defined in Eq. (2.20)
) parameter vector

9r rotor blade pitch angle, deg

ORIGINAL FAGE I3
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standard deviation

standard deviation of a and b, respectively

square root of the covariance between a and b
covariance of X defined in Eq. (2.48)

Jacobian matrix (Eq. (2.19))

general form of optimal control solution (Eq. (2.51))
azimuth angle of rotor bhlade, deg

general form of control solution undar the separation property
(Eq. (2.52))

angular velocity of rotor, rad/sec (or RPM)
blade inplane natural frequency (: Q)

longitudinal and lateral support natural frequency (i )

denotes transpose

denotes time derivat've

C o e oo R
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THEORETICAL BACKGROUND

This section presents the basic theoretical background for identification
and stochastic control of dynamic systems. A brief description of the identi-
fication and stochastic control formulation is presented. This is followed by
a more detailed treatment of the identification problem. Finally, the funda-

mental ideas of stochastic control theory are presented.
Problem Description and Overall Approach

The state variable representation is used to model helicopter rotor rotating
coordinates and fixed axis coordinates. Retating coordinates for either artic-
ulated or hingeless rotors include blade flap, lag and torsion, which can also
include rotor harmonic inflow coordinates., Tixed axis coordinates include
vehicle body motion and landing support degrees of freedom for the ground
resonance problem. A discussion of state variable models for articulated and
hingeless rotors coupled to fixed axis degrees of freedom is given in ref. 1.
The linearized state equations include periodic coefficients and can be repre-
sented in either the rotating system or {ixed axis system using the multiblade
coordinate transftormation. The linearized state equations will be used for the
parameter identification problem and the stochastic control problem.

The dynawic identification problem is based upon the linear state equations

Xiel " Fi(oi) Xy + Gi(Qi) uy + v?

) (2.1)
Oi+l = @i + v&
where xi+1 is a nxl state vector
uy is a mxl control vector
Oi is a pxl vector of unknown parameters to be identified
including periodic coefficients
Fi'Gi are matrices as a function of the unknown parameter vector Oi

X
v’j‘_,ui are zero mean random white noise guassian sequences

The measurement equation is

= g + 2.2
A Hi(\i) X v, (2.2
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where ¥y is a rxl measurement vector

Hi is a rxn matrix of unknown parameters @i

vy is a zero mean white noisa gauss. an sequence

The identification objective is to determine estimates of the unknown para-

meter vector O; and state x; from the measurements y,; given control excitation

ui.

The stochastic control objective is to minimize with respect to the control

a quadratic function of the state and control

J=minr:“lf:1 NN S I P (2.3)

; R N TR T ST A T I )
uy i=1

where E{ } denotes expected value and

Qi’Ri are weighting matrices on the state and control, respectively

The pure identification problem is concerned with Eq. (2.1) and (2.2). The
pure control problem assumes the parameters are known ia Eq. (2.1) and (2.2)
and the optimal control uy which minimizes Eq. (2.3) is to be designed. The
stochastic control problem [19] simultaneously considers Eq. (2.1) and (2.3)
and two such adaptive control designs are shown in block diagram form in ¥ig. 1.
Details of the parameter identification solution and stochastic control solu-

tion are presented in the following sec“ions.
Parameter Identification Methods

Parameter identification methods can be categorized as either an off-
line or on-line method. Off-line methods usually require a number of passes
or iterations over the data set being identified. On-line methods are often
recursive and updated estimates are generated based upon past data and current
measurements., Table 1 shows off-~line and on-line identification methods which
are asymptotically wunbiased for systems contaminated by process noise, measure-
ment noise, and both process and measurement noise. For systemswith only process
noise, the least square (LS) method yields identical results for either the off-
line or recursive formulation. For systems with measurement noise only, the

output errur maximum likelihood method is suitable for off-line useage. The

o o e Boliinekati
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recursive maximum likelihood (RML) method [20] and extended Kaiwan Filter (EKF)
are both suitable for systems with measurement noise contamination. The RML
method in [20] is based on single input-single output autoregressive meving
average (ARMA) models while the EKF is formulated for state space models. For
systems which include both process and measurement noise, the RML method or the
"corrected" extended Kalman Filter [21] results in asymptntically unbiased para-
meter estimates.

Since the state space formulation is uged throughout this analysis, the
extended Kalman filter is used for parameter identification. Since the EKF
results in biased parameter estimates in the presence of process noise, all
simulation runs were contaminated with random measurement noise only. A brief
description of the convergence characteristics of the EKF used for parameter
identification is described below.

The Extended Kalman Filter as an Identification Method and Its Convergence

Properties. - The extended Kalwan filter (EKF) is a well known method used for
egtimation of the state and parameters of a dynamic system. The popularity of
the EKF as a parameter identification algorithm is due to the fact that the
solution is recursive, is relatively simple to implement, and closely resembles
the linear Kalman filter solution. It is known that the EKF often fails to
converge to the correct parameter values under certain conditions. The first
najor proof of convergence of the EKF is as presented in Ref. 21 where modifi-
cations to the EKF were presented which guarantees convergence to the true para-
meter values. It was also established that the asymptotic convergence of this
modified algorithm is as good as the off-line maximum likelihood (ML) algorithm.
Since the off-line ML method is generally accepted as the ''standard" for para-
meter ldentification, (specially in aircraft applications), this result of Ref.
21 is a significant justification for use of a "modified" extended Kalman
filter.

The algorithm being used for this research 1s the extended Kalman filter
(without the modification of Ref. 21}, since this algorithm was readily
available and was previously implemented in the stochastic control algorithm
uged in this study. This algorithm provides the state and parameter estima-
tion in the dual control algorithm intended for use in this research. The
following summary 1s presented outlining the convergence properties of this
algorithm.

Case 1 - No process noise on the state model (e.g. no wind tunnel

turbulence)

P
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a) The EKF yields asymptotically biased estimates of the parameters
if the parameter estimate is not close to the true value.

bd) The EKI yields asymptotically unbiased estimates of the parameters
if the process noise covariance on the parametars is artificially
set to a non-zero value,

c) The covariance of the parameter estimate yields an accurate
estimate of uncertainty of the parameter estimate for case lb.
This estimate is a close approximation to the Cramer-Rao Error
lower bound (rof. 34).

Cagse 2 - with process roise on the state model

a) The EKF yields asymptotically biased estimates, even when a non-
zero value for the parameter process noise covariance 1is used.

b) The modified EKF of ref. 21 yields asymptotically unbiased
estimates of the parameters and convergence is as good as off-
line uaximum likelihood -dentification.

The simulations performed in this research are done without »rocess noise
and thus the conclusions of case 1 aoove are applicable. The applications of
the EKF algorithm to the flapping model and ground resonance model for the no
process noise case is in agreement with the conclusions above for case 1.

The identification application results have been excellent and the
detail. ar: presented in subsequent ractions. The EXF algorithm without the
modification of ref. 21 as used in this effort is presented. A brief descrip-
tion of the steps lezding to the EKF and resulting equations are given irn the
next sect.ion.

The Extended Kalman Filte: Identification Method. - The use of the Extended

Kalman Filter for the simultaneous state estimation and parameter ‘dentification
for a linear system with unknown parameters based on noisy output observations
is presented. While this is not an optimal algorithm, its recursive nature and
eage of implementation, especially in view of the procedure presented here, make
it appealing. Other aigorithms, like the Maximum Likelihood (ref 22 and ref. :3)
are known to be superior and since they are off-line algorithms ar= not

investigated here.

10
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Consider the linear system described in continuous time by the equation

for the n dimensional state vector
x(t) = AO(L))x(t) + BO(t)u(t) + v(t) (2.4)

where u 1is the n, diemsnional control, v the process noise and @ represents the
ng-vector of unknown parameters. The discretized state equation with sampling
interval A, sufficiently small, i.e., an order of magi.tude below the smallest

time constant or natural period (inverse of natural frequency). is
x(k+l) = F(O(K))x (k) + G(O(K)Iu(k) + v (k) (2.5)
where O(k) is the value of tha parameter vector during period k,
F(O(k)) = I + A(O(k))A (2.6)
G(O(k)) = B(O(k))A (2.7)

and the control u is assumed to have the constant value u (k) during the k-th
sampling interval. The discrete-time process noise v¥(k) 1s assumed to be a
zero-mean uncorrelated sequence with known variance matrix Qx.

Let the measurement equation be
y(k) = B (K)x(k) + w(k) (2.8)

where H*(k) is the, possibly time-varying, measurement matrix and w(k) the
measurement noise. The measurement noise is assumed to be a zero~mean uncorre-
lated sequence with known covarlance matrix R.

The problem is to estimate simultaneously the ccate x and the parameter
vector ©. If the parameters were known the problem would be a linear one and the
Kalman Filter provides the linear minimum mean square error estimate. However,
when O 1is not perf-ctly known a conmon approach is to use the "Extended Kalman

Filter" which estimates the "augmented' state

x (k)
z(k) = (2.9)
LO(k)

11
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n =n +n (2.10)

Since elements of the augmented state vector z, namely the components of
the proper state x and components of the parameter vector multiply each other
in Eq. \2.5) it is otvious that one faces a nonlinear problem. The approach

via linearization is described in the next section.

The evolution of the augmented state can be written as

x(k+1) F(O(K)) 6‘] X (K) G(O(K)) v (K)
z{k+l) = = + u(k) + 0 (2.11)
O(k+l)| 10 1] o) 0 v (k)

where the parameter vector is modelled as a Wiener process driven by the zero-
mean uncorrelated noise sequence vO(k) with an assumed covariance matrix Qe.
If the parameters are assumed coustant then Qe = 0.

Eq. (2.11) can be written as
z(k+l) = flz(k), u(k)] + v(k) (2.12)
and the measurement equatinn (2.8) becomes, in terms ot the augmented state 2z
y(k) = H(k)z(k}) + w(k) (2.13)

The Extended Kalman Filter equations are obtained as follows. Assume at

time k one has the estimate Z(k|k) and the associated covariance matrix P(k|k).

Then the predicted statr= is obtained by the following first order expansion
z(k+1* = £[2(k|k),u(k)] + fz[ﬁ(klk),u(k)][z(k) - 2(k|K)] + v(k) (2.14)

where fz is the Jacob:ian of the function f wirh respect to z, evaluated at the

latest estimate Z(k|k). The evaluation of the Jacobian and an automated computer

implementation of it are discussed in the Appendix.
The predicted state z(k+1|k) is obtained by taking the expected value of
(2.14) conditiuvned on the observations up to and including time k, yielding

Z2(k+1lk) = £[2(k|k),u(k)] (2.15)

where the error

-
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z(k|k) = z(k) - 2(k|k) (2.1€)

1s assumed zero-mean and thus does not appear in (2.15).

Subtracting (2.15) from (2.14) yields
F(kt1]k) @ 2(ktl) - 2(k+1|k) = £ 1EK[I0, w0 ]1200 = 2(k[D] + v (217
The covariance of the pred’cced state is thus
P(k+1|k) = E[Z(k+l|k) Z'(k+l]|k)] = ®(k)P(k|k)®'(k) + Q (2.18)
where
ok) & £ [z(k|l), u(©)] (2.19)

The covariance propagation equation (2.18) is the same as for linear systems
with the Jacobian taking the place of the transition matrix.

The covariance of the innovation
V(kt1) & y(k+1) - H(k+1)2(k+1]k) (2.70)
is
S(k+1) = H(k+1)P(k+1|Kk)H' (k+1) + R (2.21)

as in the linear case.

The state and covariance update are given by the ...andard equations
Z(k+l[k+1) = Z(k+1|K) + W(k+l)vex+l) (2.22)
P(k+]|[k+l) = {I - W(k+1)H(s+1)]P(k+1|k) (2.23)
where the filter gain is
W(k+l) = P(k+l|k)H'(k+l¥;—l(k+l) = P(k+1|k+1)u'(k+1)n'1 (2.24)
The alternate expression for the updated covariance {s numerically more stable
P(k+l|k+l) = P(k+l|k) - P(k+1Ik)H'(k+l)S—l(k+1)H(k+l)P(k+llk) (2.25)

than (2.23).
A similar linearization can be carried out for the measurement cquation

when {t {s nonlinear.

13
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Stochastic Control Theory

The problem of stochastic concrol -~ control of uncertain systems where the
uncertaintv is modeled im probabilistic terms - consists, at first sight, of
the foll_wing subproblems

(1) extraction of information from the system (estimation/identification)

(ii) control of the system based on this information

The topic of this section is the intimate connection between the above two
funcvions, which, in general, cannot be separated.

The next section introduces the assumptions of the Bayesian Stochastic
Control framework. The effect of parameter uncertainty on the solution of a
simple stochastic control problem, which usually leads to "caution' on the part
of the controller, is shown to be not necessarily intuitively predictable. This
section also introduces the concept of learning and how this is affected by the
control's dual effect. The Principle of Optimality for stochastic systems
together with the resulting stochastic dynamic programming equation are presented.
As a consequence of the Principle of Optimality for stochastic systems the
optimal controller has to anticipate (causally) the future system uncertainties.
Specifically, the availability of future observations and the accuracy of future
state/parameter estimates enter into the controller's decision about the current
control value. This opens the way for actively adaptive controllers that can
reduce system uncertainties via the dual effect and then enhance state/parameter
estimation to ultimately improve control performance. Finally, the intimate
connection between the control's dual effect and Certainty Equivalence property
of the optimal stochastic control for a class of systems is given.

The Basic Modeling Assumptions in Stochastic Control - The Bayesian

Approach. - In the Bayesian approach for the control of uncertain systems the
uncertainties are modeled in probabilistic form. Imperfectiy known initial
states and system parameters are modeled as random variables while input and
output disturbances are modeled as white noise sequences. The distinction
between states and parameters is somewhat fuzzy - the latter are varying much
slower than the former. In view of this they are sometimes lumped together
in what is called augmented state.

The general model of a discrete-:ime system with unknown (and possibly

time-verying) parameters can be written as

14
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x(k+1) = 5[k, x(k), O(k), u(k), v (k)] (2.26a)
O(k+l) = fe[k, O(k), ve(k)] (2.26h)
y(k) = h [k, x(k), w(k)] (2.26¢)

wh re x 1s the (proper) state vector, @ the parameter vector, u the control, vt
]

¢ e state process noise, v the parameter process noise, y the measurement (out-

pt.t) and w the measurement noise. With the augmented state x% = [x' o'}, (2.26)

27 be written as
x2(k+1) = £ [k, x2(k), u(k), v(k)] (2.27a)
yk) = g [k, x¥(k), w(k)] (2.27b)

The reason for the noises being modeled as white 1s to have x> a Markov process

and then (and only then) its pdf (probability density function) p[xa(k)lYk,Uk_1

]
conditioned on the available measurements Y< = {y(3),i=0,...,k} and past con-
trols Uk-1 = {n(j),j=0,...,k-1} summarizes the past and constitutes the "infor-
mation state'" [or the stochastic problem (see Ref. 24).

The Bayesian approach consists of minimizing the expected value of a cost
function (or maximizing a utility function). While other approaches like minimax
or worst distribution have been also considered, they are less tractable for
closcd form solution. Consider, for system (2.26), a fixed end-time problem of

N steps witl. (he usual cost
N N-1 s
CO, X', U7 ) = c[N, x(] + 2, clk, x(k), u(k)] (2.28)
k=0

where XN = {x(k), k=0,...,N-1}. The stochast!. control problem is then

min E[C] (2.29)
UN—l

T order for the above expectation to exist it is necessary that every
variable entering directly or indirectly into (2.28) be either deterministic
‘i.e., perfectly known) or random with a suitable pdf attached to them. Thus
"unknown constaut parameters' are modeled as a realization of random variables
according tou their pdf.

vy ‘thermore the implications of the expectation in (2.29) are that we want
ro find the optimal control policy over the ensemble of all possible initial
states parameters and disturbances. The fact that the optimum is sought for

the ensemble of possible parameters (i.e. different realizations of the plant)

1K€



is an important point. This has an implication on the control's "adaptation" as

will be discussed later.

Parameter Uncertainty and Learning.- Representation (2.26) of a system is

more convenient than the augmented system (2.27) when (2.26a) is linear in x,
u and vx, i.e., with known parameters the system would be linear. Consider such

a system (scalar for the purpose of this discussion)
x(k+1) = a x(k) + b u(k) + v(k)
O(k+1) = [a b]' = O(k) (2.30)
y(0) = x(0)

where v(k) is a zero-mean white noise.

First let N = 1, i.e., a single step problem with cost
c = x3(1) (2.31)

The optimal stochastic control for this (static) problem is

W$(0) = -5 x(0) (2.32)

where the control gain for the stochastic situation is

L (2.33)
E[bZ] 52 + 0
b
If Gy = Oy = 0 the control gain for the corresponding deterministic situation is
P -2 (2.34)
b

The effect of uncertainty can be a decrease or an increase in the control
gain:
(1) 1f g, = 0

L = ——5 <L (2.35)

i.e., "caution" will be exercised by the controller because of narameter

uncertainty.

(1) IfZ=B=1,o§-1
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s ; L =1 (2.36)

LS -

and clearly one can have LS > LD

Thus the effect of the parameter uncertainty has to be analyzed individually
for each problem - even in a simple static case the results are not necessarily
intuitively predictable.

In multistage control problems for systems with unknown constant parameters
the initial parameter uncertainty is modeled by a prior pdf p[OlIO] where IO is
the initial information. The initial control u(0) will (among other things)
account for the fact that it is applied to a system with parameter @ "drawn"
from the prior pdf. Having assumed the parameter as time-invariant one can
expect that the initial uncertainty about the parameter's true value will be
reduced in the course of the control process - the controller can "learn" it.
Thus, as new information is gathered from measurements, the controller can adapt
itself to the particular system it is controlling.

Consider again system (2.30) in the multistage situation with known a and
unknown b. Assume the pdf of b to be Gaussian with mean SO and variance Ug
and the variance of v to be 02. Due to the linearity of the estimation problem

for b, one obtains the recursion for its variance

k+1 2 2. -1

g, 9 (2.37)

° K

2 o var[b|1¥*) = 2l + o

k+1
where

Kl gkl kg

I , U (2.38)

is the information set at k+l.

Thus the prior uncertainty is reduced but it also depends on the control -
the control has a dual effect (Ref, 25):
(1) has an effect on the state
(i1) affects subsequent information accuracy - paramater identification in

this case,

This suggests that the control could be used to enhance the identification
process while controjling the system by "probing" it (Ref. 25) in order
to increase the accuracy of subsequent control actions. Such a controller is

called dual or activelv adaptive.

17
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The Principle of Optimality for Stochastic Systems. -~ The Principle of

Optimality (Ref. 26) for the control of a stochastic system can be stated
as follows: at any time, whatever the present information and past decisions,
the remaining decisicns must constitute an optimal policy with regard to the
current information set.

Since the principle of optimality states that every end part of the decision
precess must be optimal, the multistage optimization has to be started from the
last stage. The last decision, u(N-1l), must be optimal with regard to the in‘ .r-
mation set available when it has to he computed, i.e., it will be obtained from
the functional minimization

oin ECC)TV D) (2.39)
u(N-1)

where C is the cost for the entire problem.
The next to the last decision, u(N-2)
1) must be optimal with respect to (w.r.t.) IN'-2 and
2) 1is to be made knowning that the remaining decision u(N-1) will be
optimal w.r.t. IN-lDIN-z.
Thus, the (functional) minimization that yields the decision function at

N-2 is

win E |min E(C|TV 1) [IV2 (2.40)

u(n-2) u(N-1)

and it uses the result of the functional minimization (2.39).
Note that the outside averaging in (2.40) is over y(N-1) using the condi-
tional density

ply®-1) |12, u-2)] (2.41)

parameterized by the control at N-2. Since this meazurement is not yet
available when u(N-2) is to be computed but it will be available for u(N-1)
it 1is "averaged out" in (2.40).

The above-described last two steps are entirely similar to the 'preposterior
analysis'" technique from the operations research literature discussed, e.g., in
reference 27. . This technique is usually formulated in the
following context. The first decision (here u(N-2)] is for information gathering

by an experiment from which a posterior information will result [here y(N-1)]

18
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that will be used to make the last decision [here u(N-1)]. The prior (to the
experiment) probability density of the (posterior) result of the experiment is
called the "preposterior density" and in the present problem this is (2.41).
Thus, one can say that preposterior analysis, which is "anticipation" (in a
statistical sense, i.e., causal) of future information is a consequence of the
principle of optimality.
This "causal anticipation” of future information is the key issue in
obtaining a dual controller.
The extension of (2.41) to the full N-stage process yields the optimal
expected cost starting from the initial time as

IN-Z 0

* -
3%¢0,1% = ain el atn £ min eccit™ 1|

oI
u(0) l u(N-2) u(N-1)

(2.42)

where I0 is the initial information., Note that this equation does not assume
any particular form for the cost functi.. 7.

For the additive cost given by (2 28) one obtains from (2.42), after some
manipulations (see, e.g., Ref. 24), the backward recursion known as

Bellman's equation or stochastic dynamic programming

7,15 = min E {c[k,x(k),u(k)]
u(k)

*
+ J (k+l, I k=N-1,...,0 (2.43)

*
where J (k,Ik) is the optimal cost-to-go from time k to the end and its
dependence on the availlable information set at k is explicitly pointed out.

The terminal condition for (2.43) is
*
7w, = E e, ]| TN (2.44)

where the last measurement is irrelevant since it is averaged out immediately.
The deterministic dynamic programming equation - similar to (2.43) except
without the expectation and with Ik replaced by x(k) - can be solved only when
an explicit expression of the optimal cost-to-go can be obtained recursively.
Otherwise numerical techniques have to be used, but they are of limited use-
fulness due to the "curse of dimensionality" - the number of required quantiza-
tion points in the state space increases exponentially with the dimension of

the probiem.
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The stochastic dynamic programming equation (2.43) has the additional E

[ENF TN

problem of averaging over the next measurement [as indicated in (2.41)] and

over the state conditioned on the current information set. All this causes

ERY R

the practical usefulness of (2.43) to be of limited value and indicates the
need to find suboptimal controllers by suitable approximation of (2.43). The
discussion from the last section indicated the two features that a stochastic \
controller should have
(i) caution
(i1) probing via the dual effect
The approximations of the stochastic dynamic programming fall in the

following two classes.
1) Feedback Type ALgorithms: 1In this case the control depends only on

the current information
k
u(k) = u(k, I) (2.45)

but does not use the prior statistical description of the future

posterior information
ply(+D (T3], 3> k. (2.46)

2) Closed-Loop Type Afgorithms: Such a controller utilizes feedback
(2.45) and anticipates future feedback via (2.46), i.e., that the
loop will stay closed.
It is clear that an approximation of (2.43) that has both the features of
caution and probing will have to be of the closed~loop type.
The Control's Dual Effect and Certainty Equivalence. - Based on the discussion

of the previous sections, the control is said to have a dual effect 1f the
uncertainty about the stochastic system's state (augmented to include the unknown
system parameters; superscript a is deleted for simplicity) depends on past

control values. This can be formalized as follows. Let

2(k]K) = E[x(k)|1¥] (2.47)
T(k|lO = E{x(K) - RO [x(k) - R(Kk[K)]" |1} (2.48)
k-1

Then, if the covariance (2.48) of the augmented state does not depend on U

the control has no dual effect (or second order) - the control is neutral.

20
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Otherwise it has the dual effect since it affects the uncertainty about the
augmented state x(k).

It should be pointed out that the dual effect of the control is not limited
to systems with unknown parameters but occurs in general in nonlinear systems.

The dual effect of the control and the Certainty Equivalence (CE) property
of the optimal stochastic control have been shown to be inter-related for a
class of problems (Ref. 28).

The CE property is defined as follows. Consider the stochastic problem
(2.2%) with an arbitrary cost for system (2.27). Let the corresponding deter-
ministic problem be

min C (2.48)

UN-l
for system

x(k+1) = f[k, x(k), u(k), v(k)]
(2.49)
y(k) = x(k)

where the noise has been replaced by its mean v. The solution to this deter-

ministic problem in feedback form can be written as
D
u (k) = o[k, x(k)] (2.50)
If the optimal solution to the stochastic problem (2.4), (2.2) is
W) = ok, R(k[W)] (2.51)

i.e., it is the same as the deterministic one except that the state is replaced
by its conditional mean, then the stochastic controller has the CE property.
In other words the "control law" ¢ is the same, only the state estimate replaces
the state. As will be indicated later the CE property holds under rather
restrictive conditions.

If the control law is different, but still uses as input only the state

estimate
WSk = vk, Rkl] (2.52)

one has the weaker property of separation - there is an estimator cascaded with
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a controller. A problem where separation holds but not CE is the so-called
Linear-Exponential-Quadratic-Gaussian (LEQG) problem (Ref. 29).
The following result (Ref. 28) connects the control's dual effect to the

~ CE property.
Theorem. For the linear system with additive zero-mean white noise

x(k+l) = F(k) x(k) + G(k) u(k) + v(k) (2.53a)

with observation of the general form

y(k) = hik, x(k), w(k)] (2.53b)
and quadratic cost
N-1
C = x"(N)Q(N)x(N) 4—:2:: x'(k)Q(k)x(k) + u'(k)R(k)u(k) (2.54)
k=0

the optimal stochastic controller that minimizes the expected value of (2.54)
has the CE property if and only if the control has no dual effect (of second

order). Then
WSK) = LK) R(Kk[K) (2.55)

where L(k) is the same feedback gain as in the corresponding deterministic
problem.

Note that, in general, when there are nonlinear observations the estimation
accuracy Z(klk) is control-dependent. In the case of linear observations, how-
ever, there is no dual effect and (2.55) holds. This is the reason for the
popularity of the LQG problem whose solution is the cascaded linear deterministic
feedback with the Kalman filter that yields R(k|k).

The CE result has been used in the context of adaptive control as follows.

For the system with unkncwn parameters

x(k+l) = F{k,0) x(k) + G(k,0) u(k) + v(k)
(2.56)
y(k) = H(k) x(k) + w(k)

with quadratic cost (2.54) one can break down the problem into two parts
(1) estimation/identification

(11) control (using latest estimates)
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The controller can be taken as
u(k) = L(k,0(k)] £(k|k) (2.57a)

where O(k) is the estimate of O at time k and it is used in the feedback gain L
as if it were the true value. This control, can be called as Heuristic Certainty
Equivalence (HCE) because the CE property does not hold in this problem. Note
that this controller dues not account for the uncertainty in & (no caution) nor
does it account for the opportunity of probing the system. Nevertheless, con-
trollers of this type, which include the Self-Tuning Regulator have been used
very successfully (Ref. 30).

The optimal feedback gain for the HCE controller is

L = (R + Gl Ky 67 G Ky Fy (2.57b)
vhere
L, = Lk, 0(k))
F = Flk, 0(Kk)) (2.58)
G, = Glk, O(K))

The matrix Kk is given by the backwards iteration solution of the Riccatti
equation

1] R ] [ ‘l
Ke = P Ky ~ K S (R 2 G Ky 6 6 Kyl P+ Q
Ky = Q (2.59)

The optimal feedback gain given by Eq. (2.57) and (2.59) is the same as in the
deterministic problem.

The structure of the solution for the optimal control u(k) of Eq. (2.57)
is the same as the LQG solution (Ref. 31).

The HCE type controller is of the feedback or passively adaptive type. A
closed-loop type 'dual" controller. which is actively adaptive, was developed
in Tse and Par-Shalom (Ref. 32, 33, and 19). 7For further discussion on the

quantification of the caution and probing concepts see reference 24.
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ROTOR BLADE FLAP IDENTIFICATION AND CONTROL

1-i8 section summarizes the results of application of the EKF identification
method and the stochastic control solutions as discussed in the previous section.

The methods are applied to a single flapping rotor blade modeled by both
constant and periodic coefficients.

Rotor Blade Flap Model

The rotor blade flap model used in the simulation d4nalysis includes periodic
coefficients and the effects of reverse flow for rotor azimutlt Y greater than 1€0°
and less than 360°. The equations are linear in the state and m.deled explicitly
as a function of advance ratio in order to investigate the incre. ~2d effects of
periodicity and reverse flow as advance ratio is increased.

e rotor blade flap model equations were taken from ref. 38 and are shown

ir Eq. (3.1) through Eq. (3.4).

§+928-y[M8+M8+MOR (3.1)
3
My = -l cosW(L/6 + 1/4 u sinb ~s(¥) & siny) 02 (3.2)
4
My = (- 1/8 - 1/6 y siny - s(¥) b sin'y) 0 (3.3)
2 2 b 42
Mg = (1/8 + 1/3 u siny + 1/4 u° sin’y - s(y) % sin’y) Q (3.4)
R

The reverse flow terms are effective for 180° < { < 360° using the on-off

switch

‘o , 0 <y < 180°
s(y) =
ll » 180° < y < 3600

The blade flap model was simulated at ) = 320 RPM with a Lock number y = 5.
Advance ratios of y = 0 to u = .8 are investigated.
The discrete state space representation of Eq. (3.1) through Eq. (3.4) is
x) (k+1]| “1 TR kY 0
+ u(k) (3.5)
22| [%2®| 521

41 2

.fz(k+ll

24
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and b, are obtaincd using the first

2" %22 21
ovrder continuous to discrete approximation of Eq. (2.6) and (2.7).

where the discrete coefficlents a

The A and B matrix vlements are

ay, = ;21 - O1 cosy = G3 sind cosy + O6 s(y) aian cosy (3.6)
- 4

8y, % 8y Oz giny - 05 a(y) sin y (3.7
= . 2 4

b21 - b21 + @6 sing + 07 sin“y - a(y) 08 sin'y (3.8)

where the reverse flow switch s(P) 1s defined as before.

The paramuvter vector for i{dentification is

T - - - ; .
-~ f 3 8 3
0 (321 859 b21 Ol 02 (3 Oa 05 Ob Jy 08] (3.9)
where p. rameters Ol through 08 are coefficients of neriodic terms.

In order to assess the importance of the individual periodic terms the
magnitude of the parameter vector (O is tabulated {n Table 2 for increasing
advance ratio from 0 < u < .8. For p = 0 there is no periodicity, u = .2 shows
weak periodiciiy and negligible reverse flow,it = .5 shows strong periodicity
and some veverse (low, a~d u = .8 shows strong periodicity and reverse flow.

The aext section summar{zes the results obtained for purc identification
over an advance ratio range of u » 0 to L = .8, Stochastic control applications

are then prusented.
Parameter Identification Results

The parameter identification formulation was discussed fn section IT which
presented the state variable descripticn (Eq. (2.1) and Eq. (2.2)) for use with
the EKF. The state variable flapping model] used in the identification is given
by Eq. (3.5) with coefficients defired in Eq. (3.6) to Eq. (3.8).

All pure identification resnlis assume a pulse input excitation OR for a
duratlon of one sample period (At = .0C5), The magnitude of the input is such
as to vield an inftial condition on § = 35 g&% for adequate system excitation,

This corresponds to an input amplitude of U = 10 deg. 'lhe time history response

R
for ¢ and B {s shown {in figure 2. The single blade measurement 8 is used in all
runs. The damping ratfio is ¢ = ,3i6 (Yy/16) and for Q = 33,51 rad/sec (320 REM),

the damping factor Cwn is 10,47, The flapping time constant 1s .0955 seconds.
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Identification results at hover, U = 0. ~ Since there is no periodicity

for u = 0, only two parameters are identified from the initial cordition response

of figure 2. The parameter vector is

T a1 (3.10)

© 821 %22

= [

Two noise levels were used in the simulation, a high noise case 20v = .08 deg

and a low noise case ZOV = .008 deg. The high noise case is approximately a

20% noise-to-signal ratio and the low noise case is approximately 2% noise on the
flapping signal R.

Identified parameter convergence is shown in figure 3 for the high noise
case (20% noise) and in figure &4 for the low noise case (2% noise). 1In both
cases convergence to the simulation value occurs in less than 1/2 of a rotor
revolution. Parameter convergence occurs in a 1/4 of a ruvolution for the low
noise cas2. Initial starting values for the parameters 521 and 822 and standard
deviations are also shown. The standard deviations are computed from the Cramer-
Rao lower bound, which for no process noise is accurately represented by the
covariance equation of the Kalman Filter (ref. 34).

Identification results at u = .2. - The flapping model of Eq. (3.6) through

Eq. (3.8) shows analytic expressions for the state variable A-matrix elements a,,

and a These elements are plotted in fig. 5 for advance ratio y = .2. Small

22°
periodicity is shown vs rotor revolution which also show negligible reverse flow
effects. Since, the reverse flow effects are negligible for this case, only the
parameter associated with siny cosy 1is identified. The parameter vector for

identification is

o' =9, ©, ©

1 (3.11)

3l
The constant terms 321 and 522 in Eq. (3.9) are assumed known, being identified
previously at u = Q otherwise a longer data record would be required.

Figure 6 shows the identified parameter convergence for 4 = .2 and locw noise s
for the periodic coefficients Ol’ 62 and 93. Excellent identification is shown J
with convergence occurring less than 1 rotor revolution. The computed standard
deviation bands are also shown in fig. 6 which indicate excellent accuracy.

Identification results at u = .5, -~ Fig. 7 shows the A-matrix elements asy

and 3,, for u = .5, The periodicity is considerably greater than for u = .2 and
a finite but still very small reverse flow effect is present but not very :

noticeable in fig. 7. The reverse flow is in effect for ¥ > 180° (1/2 rotor rev)
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and results in approximately 10T change in magnitude of the a,, coetfficient at
3/4 of a rotor revolution. This influence {s still too samall to be {dentified
accurately over 1 or 2 rotor revolutiona in the presence of measurement noiase.

As u result the reverse tlow coettffceients 05 and QO

identification and only 01. Q, and 03 are {dentiffed.

Figure 8 shows the identified parameter convergence for the periodic

o Wove frnored {in the

coefficients 01. 02. and 03. Identification accuracy {8 excellent and convergence
to simulation values vccurs within 1 rotor revolution for the low measurement
noise case, Initial parameter esatimates are sot to zero with large fnitial
covariance. Convergence is rapid and excellent for all three parameter valuces.

Identification Results at p= .8, including reverse flow. - The coefficients

of the A-matrix Ay and 2y, are plotted in figure @ for advance rat{o p = 8. At
this condition very sirong periodicity exists {ucluding reverse flow effects.
Figure 9 shows the reglon of roverse {low and {ts effect {2 to {latten the sine
wave response for 180% <« ¢ ~ 360° (1/2 rev. to 1 rev. of the rotor).

The parameter vector used fn the {dentification focludes all the perlodic

and reverse flow coefficients of the A-matrix cloments “*1 and a of Eq. (L.0)

3y
-~

and Fq. (3.7). The parameter vector s

R (N U (3.12)

where the constant terms an) and a,, are assumed known from the hover ident{t{ca-

tion results. The tdentified parametoer convergence {s shown in tigure 10 for the
stny, cosy terms, figure Il for the sing cosy term and tigure 12 tor the reverse

The perfodic coefticients O, O, and O shown {n

5° 1 2 3
tigure 10 and figure 11 show excellent couvergence as noted by the standard

flov coefficients 04 and Q

deviation band + lo.  The reverse flow terms 05 and Uh ghown {n figure 12 show
»'ow convergence as noted by the + 10 bands.,  The slow couvergence {s due to the
low information content of the reversce flow coefficients which ix {n eftect over
only 1/2 of a rotor revolution. Improved accuracy can bhe obtained by cither
increasing the signal to noise ratio or averaging over manv revolutions,

Figure 13} shows the parameter convergence for 6& and 55 for an increase
{n the signal level by a factor of 3. Couvergence s better than in figure 12
as shown by the smaller + 10 bands. Parameter convergence is further shown in
figure 14 for the fncreased signal level (x3) for a second rotor revolution
using the estimated parameters and covarfance at the end of the first revolution
as {nficial estimates. Couvergence (s excellent atfter 2 votor revolutions as shown

fa figure 14,

[ 393
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The results at advance ratio u = .8 have accurately identified the periodic
coefficient model of Eq. (3.1) through Eq. (3.3), including the revetrse flow
terms. Since the identification is from an initial condition respcnse the control
coefficients of MGR shown in Eq. (3.4) are not identified. The next section
discusses the results of the stochastic control application which identifies both

the A-matrix elements and control matrix elements while exercising coutrol.
Stochastic Control Results

The stochastic control formulation was briefly outlined in section II which
showed the objective function for minimization (Eq. (2.3)) and the dynamic model
state space description in Eq. (2.1) ard Eq. (2.2). The detailed discussion of
the control of systems under uncertainty, the certainty equivalence (CE) property,
the caution property, and the probing property was also presented. Based upon
these concepts, two cases are considered. First, the CE control is used at
u = 0 and the parameter identification convergence and control performance is
discussed. Second, the periodic A~matrix elements are treated as a random walk

model and an assessment of the caution and probing significance is addressed.

Stochastic Control results at 4 = 0 using the CE controller. The CE control

algorithm is shown in Eq. (2.57) through Eq. (2.59) where the parameters O(k) are
identified on-line with the EKF. Since accurate parameter convergence requires
1/4 to 1/2 of a rotor revolution in time (.2 seconds), the control solution (Eq.
(2.57)) is expected to perform less satisfactorily in the beginning and then
improve as time goes cn. The simulation model is shown in Eq. (3.5) where the

parameter vector for identification is

T

= Tz .
S (82 8y, b21] (3.13)
and an initial condition B = 35 deg/sec is used on the system.
The control objective is to minimize the criterion
N
= E‘z (q x2(K) +q, x2(k) + 1, w2(0)) +q. x>(N) +q, x>0  (3.14)
) ¢ 11 272 171 Nl 1 N2 2

k=1

where, N = 41, q = 0, qy = 0, r, = .2, qu = 1.0, and qNZ = ,01.

The weighting terms in the performance criterion were determined by trial and

error such that the feedback was not so large as to prohibit accurate parameter

28
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identification. The state weightings 9, and q, were set to zero to permit state
iesponse of large enough magnitude for accura e parameter identification. The
optimization was performed over N = 41 time steps which corresponds to 1/2 rotor
revolution. The control weighting r, was selected to keep the control magnitude
reasonably small.

Figure 15 shows the identified parameter convergence during the CE feedback
contrvl operation. The parameters are identified on-line and the controlled
state response is shown in figure 16. The uncontrolled response (IC response)
and the controlled response are compared in figure 16. The stability of the
controlled system is increased as shown by the faster decay rate. This increased
stability is further shown in figure 17, vt 'ch slows the equivalent closed loop
system damping parameter aZZCL (a22CL = a5, - b21 L2). The time varying feedback

gain L, Inrreases significantly near the final time causing {1creased stability

2
as time approachs N = 41. Note that this was dictated by selecting zero weights
(q1 = 0, q, = 0) on the state and nonzero weights (qu =1., qu = ,)1) at the
terminal time. This selection permits better parameter identification to occur
since the feedback is small initially and the state response is nearly that of the

uncontrolled system. A time response of the control u, is shown in figure 18

1
which shows increasing control magnitude near the terminal time.

In summary, the CE control was found to accurately identify the parameters
a5 and 8,5, while providing increased stability over the uncontrolled system.

The parameter b,. requires further data length to improve upon accuracy. The

feedback controilgains were computed based upon current identified parameter
estimates. The CE control was found to perform in a satisfactory manner, that
is it provided increased stability for an uncertain system. The parameters of
the system were identified while being controlled. Passively adaptive control
proved successful for the constant coefficient system at hover.

To examine the contribution of the deterministic, caution and probing
control, the performance criterion is decomposed as corputed using the concepts
presented in section II and ref. 26. The cost decomposition for the hover case

when the model is assumed to have constant parameters is

J (3.15)

J=1 proB + Jcaur

per +J

where, JDET = 796

PROB™ .012

JCAUT= .181

J = ,989
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As shown from the cost decomposition the probing component is negligible and
caution accounts for less than 20% to the total cost J. Therefore, the control
solution is dominated by the deterministic aspects of the problem and this
explains the excellent performance of the CE control (probing and caution aspects
are not included in the CE control design).

Stochastic control results for u > 0. - The dual control solution was

investigated for this case by examination of the cost decomposition as was done
at 4 = 0. A random walk model was assumed for the parameters to account for the

periodic variation of the coefficients 321, 322 and b21. The results of the

cost decompositior for the case u = .8 are shown in Eq. (3.16)

J=J J

pET t Jprop ¥ Jrautr (3.16)

where,

(=
)

DET 1.92

JPROB = ,.582

JCAUT = 3.28

J = 5.79

The caution component dominates the performance and is approximacely 607 of

the total cost. The deterministic component is nearly 30% and probing accounts

for 10% of the total. These results imply that the control solution should include

the caution property (the probing property can .oduce the cost further, but not
more than 10%).

Comparing the cost decomposition of W = 0 with yu > 0 indicates that the
time variation of parameters requires caution and probing properties, The
larger the variation in the parameters the more dominate would be the caution

and probing properties for successful identification and control.
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GROUND RESONANCE PARAMETER IDENTIFICATION

The results of application of parameter identification to helicopter ground
resonance is presented in this section. The EKF is used as the parameter identi-
fication method and results of a multiblade coordinate measurement model is
assumed as well as a single hlade measurement. The single blade measurement

results in periodic coefficients in the measurement equations.
Ground Resonance Model Description

The parameter identification objective 1is to identify the rotor blade damping
and thus,using a linearized multiblade coordinate model, the system modal damping
(eigenvalues) can be determined. This differs from the modal damping determination
technique of ref. 35 which determines the modal damping directly using the moving-
block Fast Fourier Transform (FFT) approach. In ref. 7 modal damping is deter-
nined from random responses. The advantage of the state space approach is that
the blade damping, nc can be identified at a lower RPM condition (i.e. before
coalescence with support frequency). Then, stability (eigenvalues) can be pre-
dicted at all RPM conditions before testing at these conditions. This capability
permits considerable safety in testing new rotor designs. The modal damping
identification techniques of ref. 35 and ref. 7 can only be applied at the RPM
condition under test (i.e, prediction capability is not possible).

The second order equations of motion for the ground resonance description

include multiblade rotor coordinates Clc and Cls for rotor lag degree of freedom

and the support x and y degrees of freedom. The model is shown in Eq. (3.17)

and is representativc of a full scale rotor system being tested on a wind tunnel

support system.

{1 0 0 1.5 [23 ]
{glc anC 2 0 0 Clc]
0 1 -1.5 0 z -2 "
‘:ls . chnc 0 0 tlS
0 -.001 1 0 X 0 0 26 N 0 'x
X X
001 0 0 1 y 0 0 0 20
i I A vyl [V
P-Z _ - - - _ _T
Q-1 +2
(w;=1) ‘;’c”c o 90 %1e 0
-20 W -
N an (wc 1) 0 0 Zls _ 0 .19
0 0 52 0 x F )
X X
-2 -
0 0 0 w F
- y—l ..y - -y.J
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These equations result from the original derivation by Coleman [36] and are also
developed in ref, 37. Ground resonance is of concern when the rotor RPM, Q is
such that the inplane regressing frequency coalesces with the support degrees of
freedom. This can result in an instability and is thus a concern during heli-
copter wind tunnel tests of new rotor designs. -

Two measurement systems are addressed. The multiblade measurement model
assumes measurement of Clc’ ;ls’ X, y (i.e. each degree of freedom). The single

blade measurement model is
;= Clc cosy + 2R siny (3.18)

and also includes the support positions x and y.

The nominal parameter -—ralues for support and rotor degrees of freedom are

11.6 rad/sec W, = .3

w, = r
w = 14.6 rad/sec nc = ,03
Y (3.19)
n = .04
x
= .04
ny

The continuous in time state variable description of the ground resonance

model is shown in Eq. (3.20) and Eq. (3.21).

X = Ax + Bu (3.20)

y = CX (3.21)

The state, control and nonrotating measurements are Jefined as

— -

Clc
Cls
i C1c
y F r,
X = . ’ u = , y = —ls (3.22)
Clc th :
Cls L 7
X
7 ORIGINAL PAGEL %
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The rotating measurements and support coordinates uare

L

pu s

ORIGINAL PAGE [3
OF POOR QuaLITY

(3.23)

The A and B matrices can be expressed in terms of RPM () and inplane

damping ng as follows.
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The nonrotating measurement matrix is

C= (3.26)

The single blade rotating measurement and support measurement matrix is

fecos¢y siny 0 0O O O O O
C= 0 0 1 0 0 0 0 O (3.27)
0 0 0 1 0 0 0 O

The state equations defined in Eq. (3.20) through (3.27) are used in discrete form
in the identification.

The eigenvalues for four selected conditions are obtained from the A matrix
of Eq. (3.24). The four conditions vield either a stable or unstable condition
depending on the value of rotor rotational speed (1) and blade inplane damping

(n.). The four conditions selected arce;
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CASE Q(RPM) ng COMMENTS ORIQINAL PAGE I3
1 150 .03 Stable OF POOR quaiTy
2 150 .02 Stable

3 160 .03 Stable

4 160 .02 Unstable

The complete eigenvalues are shown in Table 3.

For ground rescnance detection, it is desirable to identify and monitor
continuously the stubility as RPM is increased. Cases 1 and 3 represents a stable
situation and cases 2 and 4 represents a change from a stable to an unstable
situation. The stable-to-unstable situation could be predicted without testing
at the unstable condition if blade damping was identified at case 2 (Q = 150 RPM)
and then eigenvalues obtained from the A-matrix (Eq. 3.24) for Q = 160 RPM. This
prediction capability is a primary advantage of the state space approach over the
modal approach of ref. 7 and ref. 35.

Use of Free Response Data for ldentification of Damping for Ground Resonance.-

The original goal of this research activity was to utilize the dual property of
stochastic control to enhance identification of parameters. The emphasis of :he
ground resonance study was toward the identification aspects. Simulations were
performed using the dual control solution and it was concluded that the dual
control solution required excessive control magnitudes for the system modeled by
Eq. (3.17) and Ey. (3.19). The magnitude of the avaiiable control is found to be
too constrained in magnitude so that the dual control cannot be effective in ~ro-
ducing a significant response over small time intervals.

Since, the main emphasis of the ground resonance study is on the parameter
identification aspects, it was decided that identification from free response data
or open loop forced response data would be a more effective solution for the ground
resonance problem. Thus, all results presented are from free response data for the
ground resonance problem.

Numerous simulations were performed using the ground resonance math model.

A sample time of At = .005 was found to yleld accurate results and thus all simula-
tions were performed with this sample time. 1In addition, all simulation runs were
performed at a RPM of (0 = 150 and blade in-plane damping of n; = ,03. This
represents a lightly damped case and is representative nf a typical condition for

which parameter identification is important.
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All identification vuns were performed from simulated {nitial condition free
response data. Five different initial condition sets were investigated shown in
Table 4.

Initfal condition set 1 was an arbitrary guess, whereas initial condition set
2 through set 4 was obtained by simulation of the ground resonance model with sine
input forcing on Fx. Initial condition set 2 through set 4 was obtained from the
forced state response at different time points. This procedure closely resembles
that used to generate free response data using stick stirring for flight and wind
tunnel testing. Initial condition set 5 was obta.ned by applying an imnulse to the
Fo control input and computing the state variable response at t = 0+. Figure 19
through figure 24 shows the state response L1e? S1g® ¥ and y and measurements [ for
IC set 2, 3 and 5. All figures show 150 time steps (.75 secs).

Random measurement noise was added to all measurements and three different
noise sequence sets were investigated. The noise levels for the constant and

periodic model are as follows.

Standard Deviation Standard Deviation

of Measurement Noise of Measurement Noise

(constant Coeff. Model) (periodic Coeff. Model)

5, rad 5.3x10 " ¢ rad 5.3x10°°
-4 -5

cls rad 5.3x10 X - % 3.9x10

X - % 3.9x107° y -* 3.9x10 ~

y ~ % 3.9x10.5

* Nondimensional (s R)

The noise levels were selected such that 30 was approximately 107 of the
signal level. For example, for an assumed blade lag response of 1 cegzee
(.017 rad.), 30C = 15.9x10_4 is approximstely 10% of lag response.

Two different initial starting estimates for the blade lag damping were used.
A 1initial estimate ﬁC = ,04 was selected to be close to the true parameter used
in the simulation (nTrue = .03). An initial damping estimate of N, = .1 was used
to repr~sent an initial guess far removed from the simulation value.

Parametric studies were performed using the conditions outlined above to

study parameter identification convergence for blade damping.
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Parameter Identification Results

This section shows the results of parameter identificatior from the ground
resonance simulation model which was outlined in the last gection. All computer
runs were performed at 150 RPM and blade inplane darping Ng = .03. The ident” “i-
cation runs were performed using up to a maximum of .75 seconds of data (approxi-
mately 2 rotor revolutions) at a sample interval of At = .005 sec. The lightly
damped mode has a frequency of 11.07 rad/sec (.707Q) and thus .75 seconds of data
is approxinately 1 1/2 cycles of this mode.

The results are presented in Figure 25 through Figure 33. Table 5 is presented

for convenience which summarizes the conditiors used for each run presented in the
figures. Each figure will be discussed separately with reference to Tatle 5.

Figure 25 shows identified damping convergence for three diifer..at rancom
measurement noise sequerces. Initial condition set 1 (the arbit.ary guess) ic
used and the parameter process noise covariance QO = 0, Tue top figure shows the
results for the three noise sequances for only 40 samples (.2 secs). ’he bottom
figure is a continuation for noise sequence st 3 and is shown for 80 samples
(.4 sec). The initial parameter starting value is ﬁ; = .04 snd is close to *he
true value of nc = ,03. Convergence is good tor all three noise sets and renuires
80 samples or more for convergeuce as shown by the bottom figure.

Figure 26 shows identified damping for three different juitlal condition
sets (QG = 0). Initial c-ndition set 5 has more information content for improved
identifibility whereas IC set 2 has less information content thus convergence 1is
slcwver. The rate of convergence is reflected in the covariance of the es*imate
(+ 10 is shown in the figure). The convergence of IC set 4 (denotcd by the circle)
has falsely converged to .042 because the estimate of the dauping has deviated far
from the true value resulting in violation of linearizations in the E.. I1C set 4
is an example of poor convergence as discussed in section 2.0 because the prrcess
noise :covariance Q@ = 0. IC set 2 and IC set 5 show acceptable convergence.

Figure 27 shows identified parameter convergence comparing the constaant and
the periodic coefficient measurement model. Again the initial damping ﬁg - .04
and QG = 0. Convergence is good in both cases with the constant coefficient

model showing fater convergence. A longer data record is required for the

periodic model.
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Figure 28 through Figure 33 wuse an initial parameter estimate of ﬁC = .1

which is far removed from the simulation value of ng = .03. The constant

coefficient model results are shown in Figure 28 (QO = 0) and Figure 29 (OG $ 0).

False convergence is shown in Figure 28 with Qe = (0, whereas good convergence is
shown in Figure 29 with Q9 # 0. The + 20 uncertainty bands in the figures reflect

convergence.

Figure 30 and Figure 31 show results for the periodic coefficient model for

QO = ( and QG ¥ 0, respectively. The results are similar to the constant coefficient
case of Figures 28 and 29. Excellent convergence is shown in Figure 31 which uses
Q@ # 0. IC set 5 is used with .75 seconds (150 samples of data).

Figure 32 shows results for the periodic measurement model with initial condi-~
tion set 2 obtained from stick stirring. Convergence is acceptable as determined
by the + 20 band shown in the figure with Qe # 0. Convergence to the true parameter
value requires a longer data record.

Figure 33 shows results for the periodic measurement model with IC set 3
also obtained from stick stirring. IC set 3 was selected after allowing a further
increase in the time over IC set 2 before setting the control input to zero. The
initial conditions thus obtained yield better information for the resulting free
response data. Therafore, identified parameter convergence is faster for IC set
3 over IC set 2. This is reflected in the + 20 band shown in the figures. Con-
vergence is excellent as shown in Figure 33.

Figure 33 demonstrates that parameter identification of inplane blade damping
is possibl using less than 1 second of data (approximately 2 rotor revolutions)
using a single blade measurement of blade angle in the rotating system (periodic
measurement model) and x and y support position measurements.

A summary of main conclusions for the ground resonance study is as follows;

. The use of free response data for identification of the in-plane damping
param.ter has been shown to yileld excellent convergence using stick
stirring to obtain initial conditionms.

.  Excellent parameter identification of damping was shown for both the
constant and periodic measurement model.

. The extended Kalman filter (for the no process noise case) has shown
excellent identified parameter convergence (providing the process noise
covariance on the parameter, Qe, is set to a nonzero val.e).

. The state variable multiblade model A-matrix can be used to predict the
3tability for RPM conditions befnre they are tested. This feature makes
this approach to identification very competative with the modal approach
of ref. 35 and ref. 7.
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CONCLUSIONS

A general procedure for parameter identification and stochastic control of
helicopter rotor dynamic systems has been presented. The formulation is based
upon a state variable representation described by constant and periodic coeffi-
cients. The extended Kalman filter was shown to yield unbiased parameter estimates
for all case studies for both periodic and constant coefficient models. This was
found to be true for systems without process noise.

The pure identification results of the rotor flap model were succassful over
an advance ratio of u = 0 tou = .8, This included constant and periodic coeffi-
cients and the effects of reverse flow. Typically less than 1 rotor revolution
was required where there was sufficient signal to noise ratio. Stochastic control
of the rotor flap model was successful in that stability was improved while para-
meters were accurately identified. The CE control was found to be successful at
4 = 0. For systems with time varing coefficients, the caution property was
found to dominate, with the probing pruperty contributing 10% to the total cost
function.

Pure identification was successful for the ground resonance problem for
either the multiblade coordinate rotor inplane measurement model or for a single
rotating blade measrement. Typically 2 rotor revolutions are required in 10%
measurement noise where free-response data is used (generated from a stick
stirring control input). The state variable identification approach has the
advantage over modal methods (e.g. the moving-block FFT method) in that stability
prediction over the complete RPM range is possible from test data obtained at one
test RPM condition.

The EKF identification method is an efficient identification approach for
systems without process noise. The "corrected" EKF (Ljung 1379) should be
investigated for systems with both measurement and process noise. The corrected
EKF method could ve assessed via simulation and test data applications.

The rotor flap model investigated iu this study could be extended to include
blade inflow models and higher degrees of blade flexibility. Identification of
periodic coefficient models should include a hypothesis testing procedure (e.g.
stepwise multiple regression) for automatic determination of the required periodic
terms in the model. This is important since, ir general, it is not known which

periodic terms would be required, particularly in the reverse flow region. The



identification and stochastic control methods v 1 in this research should be
investigated as to more efficient computational algorithms, which is of particular

importance for real time or near real time applications.
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APPENDIX A
AUTOMATIC CALCULATION OF THE JACOBIAN

The Extended Kalman Filter is quite similar to the standard Kalman Filter
with the exception of the need to evaluate the Jacobiau (2.19) at every step.

In practice the unknown parameters apperr in several elements of the contin-
ucus time system matrices A(Q) and B(O) from (2.4). Furthermore, a particular
parameter usually appears in several elements of the system matrices.

The following procedure, applicable for a wide class of problems, can be
used to automate the calculation of the Jacobian.

It is assumed that the system matrices A and B from (2.4) have elements aij
and bij that are either known or given by the product of a known constant with an
unknown parameter. To indicate which parameters enter where in A and B define

the matrices

P_ (,P
A" = [aij] (A.1)
p_ P

of dimensions n xn_ and n xn , respectively, where

0if a,, = a_,
a? y i34 (A.3)
3 lm if aij = aijem
where 1 < m < nj and
A= [Eij] (A.4)
is a known matrix and similarly for sz.
Thus
a 1f  aP, =0
s H (A.5)
a,, = .
o 2,0 it wmZ2af 40
1 m 13

Propagation of the state (2.15) requires the evaluaticn of
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F(O(k|k))&(k|k) g QUi ) u (1)

£[2(k|k), ulk)] = (A.6)
B(k|k)

which, in turn, requires the evaluation of F(é(klk)). The latter can be then
easily obtained based on (A.5) as

FO(k|K)) = T + a(B(k|K))A (A.7)
with
= P _
) aij if aij =0
aij(@(klk)) = (A.8)
Eijém(klk) if n% azj £0

The covariance propagation equation (2.18) requires the evaluation of the
Jacobian (2.19) which is an n_xn, matrix. Based on (A.1)-(A.4) the expressions

of the elements of the Jacobian matrix

o(k) = [9, (K] (A.9)
i]
are
Qij(k) = Fij(e(k k)) i=l,...,nx : j=1,...,nx (A.10)
®ij(k) = 1 i=j=nx +m ; m=1,...,nO (A.11)
¢, (k) =/ Z a,, R, (k|lk) + Z b, u (k))A
in +m \R,ELa(i,m) 12 *i R,ELb(i,m) i Y2
is= l,...,nx ; mo= 1,...,nG (A.12)
¢ij(k) =0 otherwise (A.13)
where
L2d,m = (2 : a§2 = m} (A.14)
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is the set of state components that multiply qm in the i~th row of (2.12) and

Pm = b2, = m) (A.15)

is the set of control components that multiply Gm in the i-th row of (2.12).

In a similar manner one can compute the Hessian of f£,, the &-th component

L
of the vector valued function f from (2.12), denoted as
2
3£
'} L 14 L
L li}ij]- fR,,zz = Bzi dz:l (A.16)

The expression of the elements of this symmetric matrix .s

Aif aP, =nm for 1 = i,...,n_ 3 m=1,...,n
i X

21 €]

(A.17)

3

, 2
Yo tm,i = Vin 4w "
X X

0 Otherwise
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ORIGINAL FAGE IS

u - DYNAMIC X MEASUREMENT Y__QF POOR QUALITY
u SYSTEM 1 seste
CE
r
STATE/ |
. | CONTROLLER | PARAMETER |
X8 ESTIMATOR |
N cov(X) e
B cov(8)
)
i u DY;{::IC X MEASUREMENT Y
| Upya, L_SYSTEM SYSTEM
4
|
: CONTROLLER/
' ESTIMATOR

Figure 1. - Stochastic Controllers Based upon the Certainty Equivelance
Property and the Dual Property of Stochastic Control Theory.
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Figure 2. - Rotor Flap M del State Time History Response Obtained From
Free Response Portion of Pulse Input. (B(0) = 35 deg/sec).
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OF POOR QUALITY MULATION VALUE
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Figure 3. - Rotor Flap Model Identified Parameter Convergence, u = 0

(No Periodicity, High Noise).

- -~ - - SIMULATION VALUE

Figure 4. - Rotor Flap Model Identified Parameter Convergence, u = 0
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(No Periodicity, Low Noise).
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o ORIGINAL PAGE IS
OF POOK QUALITY
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Figute 5. - Rotor Flap Model Periodic Coefticient Variaticn of A-Matrix
(M = .2, Small Periodicity, Negligible Reverse Flow),
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Figure o, - Rotor Flap Mode] Identified Parameter Convergence, 1 = 2
(Reverse Flow Coeff. Not Ildent{ticd).

33



T e i

ORIGINAL PASE 1S
OF POOR QUALITY

TIME, SECS

Figure 7. - Rotor Flap Model Periodic Coefficient Variation of A-Matrix
(u = .5, Moderate Periodicity, Small Reverse Flow).
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(024

0 .1 .2 .3 oh
TIME, SECS

Figure 8. - Rotor Flap Model Identified Parameter Convergence, g = .5
(Reverse Flow Coeff. Not Identified).
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ORIGINAL ~---u=0
0"‘1)6;:‘;EMME'N’
0. ALITy REGION OF ..l

REVERSE FLOW

/

b = e e - cr ke fm e - e, s e - m————— -

.60 L 1/2 Rev 1 Rev
0 .1 .2 .3 A
TIME, SECS

Figure 9. - Rotor Flap Model Periodic Coefficient Variation of A-Matrix
(u = .8, Strong Periodicity, Reverse Flow).
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Figure 10. ~ Rotor Flap Model Identified Parameter Convergence, y = .8
(cos Y, sin § Coefficients, lst Revolution).
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Figure 11. - Rotor Flap Model Identified Parameter Convergence, U = .8
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Figure 12. - Rotor Flap Model Identified Parameter Convergence, U = .8
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(Reverse Flow Coefficients).
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Figure 13. - Kotor Flap Model Identified Parameter Convergence, U = .8
(Reverse Flow Coeff., Signal x 3).
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Figure l4. - Rotor Flap Model Identified Parameter Convergence, U = .8
(Reverse Flow Coeff., Signal x 3).
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Figure 15. - Rotor Flap Model Identified Parameter Convergence for the
CE Stochastic Controller, u = 0.
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Figure 16. - Rotor Flap Model State Time History Response Comparing
Open Loop Free Response with CE Controlled Pesponse.
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22CL - DAMPING,
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Figure 17. - Rotor Flap Model Equivalent Closed Loop System Damping, CE

Control, i = 0 (Time Varying, ACL = A-BK).
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rad 0 . - .
.l 02
—01 -
-.2

TIME, SECS

Figure 18. - Rotor Flap Model Feedback Control Time History Response,
CE Control, L = 0.
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Figure 19. - Ground Resonance Rotor Model State Response, IC Set 2, 2 = 150 RPM,
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Figure 20. - Ground Resonance Model Measurement Response, IC set 2, 0 = 150 RPM
(Rotating Rotor Measurement).
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Figure 21. - Ground Resonmance Rotor Model State Response, IC Set 3, } = 150 RPM.
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Figure 22. - Ground Resonance Model Measurement Response, IC Set 3, Q@ = 150 RPM
(Rotating Rotor Measurement).
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Figure 23. - Ground Resonance Rotor Model State Regponse, IC Sec 5, Q = 150 RPM,
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Figure 24, - Ground Resonance Model Measurement Response, IC Set 5, {1 = 15C RPM
(Rotating Rotor Measurement),
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Figure 25, - Ground Resonance Model Identifigd Parameter Convergence Compari--
Three Random Noise Sequences (Q° = 0, IC set 1, 2 = 150 RPM)
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Figure 26. - Ground Resonance Model Identified Parameter Convergence Comparing
Different Initisl Condition Sets (Nof e Set 3, Q° = 0, { = 150 RPM).
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Figure 27. - Ground Resonance Model Identified Parameter Convergence Comparinp,
Periodic and Constant Coefficient Model (IC Set 5, Qe- 5, QO = 15 RPM).
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Figure 28. = Ground Resonance Model Identified Damping Parameter Convergence
Using Multiblade Lag Mesasurement (Constant Coefficient Measurement
Model, Pr¢ s Noise Covariance of Parameter QY = ().
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Figure 29. - Ground Resonance Model Identified Damping Parameter Convergence Using
Multiblade Lag Measurement (Constant Coefficient Measurement Model)
Process Noise Covariance of Parameter Qe = 4x106).
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Figure 30. - Ground Resonance Model Identified Damping Parameter Convergence Using
Blade Lag Measurement (Periodic Measurement Model) Showing False
Convergence when Qe = 0.
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Figure 31. - Ground Resonanze Model Ide:tified Damping Parameter Couvergence Using
Blade Lag Measurement (Periodic Measurement Model) (Process Noise
Covariance of Yarameter Qe = 4x10'6).
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Figure 32. - Ground Resonance Model Idengif ied Damping Parameter Convergence
; (Periodic Model, Q¥ = 4x1n~

;: { 68

» IC Set 2 from Stick Stirring, Q = 150 RPM).
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Figure 33. - Ground Resonance Model Identified Damping Parameter Convergence
(Periodi~ Model. Q@ = lsx10-6, IC Set 3 from Stick Stirring, 2 = 150 RPM).
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