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CHAPTER 3

SPACE EXPLORATION: THE INTERSTELLAR GOAL AND TITAN

DEMONSTRATION

3.1 Introduction

The small Pioneer 10 spacecraft, launched from Earth

on March 2, 1972, represents mankind's first physical

extension into interstellar space. Having traversed the

Asteroid Belt and given scientists their first good look at

Jupiter and its satellites, the vehicle now rushes toward the

edge of the Solar System at a speed of about 3 AU/yr. The

exact moment of penetration into extrasolar space is unpre-

dictable because the boundary of our System is not pre-

cisely known, and because the spacecraft's ability to

transmit useful data will likely degrade by the time of

passage (circa 1986) that it will be unable to report transit

of the heliosphere when this occurs.

Several other unmanned vehicles will also eventually exit

the Solar System. However, as Pioneer 10 none of these

were designed specifically as interstellar probes, and com-

paratively little work has yet been accomplished with the

aim of developing such craft. Still less effort has been

directed toward the ultimate goal of manned interstellar

exploration.

3.1.1 Automated Interstellar Space Exploration

The most extensive study of interstellar space explora-

tion to date has been Project Daedalus, an analysis con-

ducted by a team of 13 people working in their spare time

under the auspices of the British Interplanetary Society

from 1973 to 1978 (Martin, 1978). The focus was a feasi-

bility study of a simple interstellar mission using only

present technology and reasonable extrapolation of fore-

seeable near-future capabilities.

The proposed Daedalus starship structure, communica-

tions systems, and much of the payload were designed

entirely within today's capabilities. Other components,

including the machine intelligence controller and adaptive

repair systems, require a technology which Project mem-

bers expected would become available within the next

several decades. For example, the propulsion system was

designed as a nuclear-powered, pulse-fusion rocket engine

burning an exotic deuterium/helium-3 fuel mixture, able to

propel the vessel to velocities in excess of 12% of the speed

of light. Planetary exploration and nonterrestrial materials

utilization were viewed as prerequisites to the Daedalus

mission, to acquire useful experience and because

the best source of helium-3 propellant is the atmosphere of

the gas giant Jupiter (to be mined using floating balloon

"aerostat" extraction facilities). This ambitious interstellar

flyby was thought possible by the end of the next century,

when a solar-system-wide human culture might be wealthy

enough to afford such an undertaking. The target selected

for the first flight was Barnard's star, a red dwarf (M5) sun

5.9 light years away in the constellation Ophiuchus.

The central conclusions of the Project Daedalus study

may be summarized roughly as follows: (1) Exploration

missions to other stars are technologically feasible: (2) a

great deal could be learned about the origin, extent, and

physics of the Galaxy, as well as the formation and evolu-

tion of stellar and planetary systems, by missions of this

kind; (3) the necessary prerequisite achievements in inter-

planetary exploration and the accomplishments of the first

interstellar missions would contribute significantly to the

search for extraterrestrial intelligence (SET1); (4) a funding

commitment over 75-80 years is required, including

20 years for vehicle design, manufacture and checkout,

30 years of flight time, and 6-9 years for transmitting use-

ful information back to Earth; and (5) the prospects for

manned interstellar flight are not very promising using cur-

rent or immediately foreseeable human technology.

A more recent study (Cassenti, 1980) concludes on a

more optimistic note: "We are like 19th Century individ-

uals trying to imagine how to get to the Moon. Travel to

the stars is extremely difficult and definitely expensive, but

we did get to the Moon and we can get to the stars."

Cassenti supports the Project Daedalus judgment that only

vehicles capable of achieving nrore than 10% of the speed

of light should be examined and that the preferred propul-

sion system now is "a version of the nuclear pulse rocket

for unmanned exploration and combinations of the nuclear

pulse rocket and the laser-powered ramjet for propelling

manned interstellar vehicles."

Even more imaginative and longer-range interstellar

missions of galactic exploration have been considered by

Robert A. Freitas Jr., a participant in the present study

(Freitas, 1980a, 1980b; Valdes and Freitas, 1980). lte

concludes that self-reproducing interstellar probes are the

preferred method of exploration, even given assumptions of

a generation time of about 1000 years and a 10-fold

improvement in current human space manufacturing tech-

nology. He envisions "active programs lasting about
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10,000 years and involving searches of 1,000,000 target

stars to distances of about 1000 light years in the Galactic
Disk ..." and states that interstellar probes will be superior

to beacon signals in the search for extraterrestrial
intelligence.

The Space Exploration Team was charged with defining

a challenging mission for the next century which could be a

technology driver in the development of machine intelli-

gence and robotics. Interstellar exploration was early identi-

tied as the ultimate goal, where this would focus on an

investigation of planetary systems in the solar neighbor-

hood discovered through SET! operations or by searches

with large apodized visual telescopes (Black, 1980) in

Earth orbit. Though previous studies of interstellar explora-

tion missions are few, even these clearly suggest the need

for high levels of automation.
The Team defined a general concept of space explora-

tion centered on the notion of an autonomous extrasolar

exploratory machine system. This system incorporates

advanced machine intelligence and robotics techniques and

combines the heretofore separate and manpower-intensive

phases of reconnaissance, exploration, and intensive study
into a single, integrated mission. Such an automatic scien-

tific investigation system should be useful in the explora-
tion of distant bodies in the Solar System, such as Jupiter

and its satellites; Saturn and its rings; Uranus, Neptune,

Pluto and their moons; and perhaps comets and asteroids

as well. It may provide tremendous economies in time,

manpower, and resources. Interstellar exploration seems

virtually impossible without this system, which is itself a

magnificent technology driver because the level of machine
intelligence required far outstrips the state of the art (see

section 3.3).

This report cannot review the entire gamut of reasons

for human interest in the physical exploration of the Solar

System and the Universe. Recent space research programs

have stimulated large numbers of people from various scien-

tific disciplines to join in the challenge of interplanetary

exploration. Astronomers and geologists have participated

since they represent the sciences traditionally most

involved in the observation and classification of planetologi-
cal and celestial phenomena. During the last two decades

researchers from other physical sciences and the biological

sciences have become interested in investigating how the

laws of nature operate in the cosmos, using the techniques

of radio astronomy and space exploration including direct

biological samplings of other planets. Interest in the outer

Solar System and deep space will likely remain high among
natural scientists.

It is assumed that these reasons, coupled with the seem-

ingly basic need of human beings to satisfy their inherent
curiosity when confronted by new environments, are suffi-

cient to motivate the economical exploration programs that
advanced machine intelligence systems will make possible.

Appendix 3A includes a summary of the ideas of the team's

student member, Timothy Seaman, whose feelings may be

representative of those of the generation of young Ameri-
cans most likely to receive the first major benefits from

mankind's more ambitious future ventures into space.

Although interstellar exploration was identified as the

ultimate goal, detailed mission analyses are not provided.

The determination of technological, economic and political
feasibility for such complex, expensive, and extraordinarily

long-duration undertakings must wait until advanced

machine-intelligence capabilities of the type required for an

extrasolar voyage have been successfully demonstrated in

planetary missions conducted entirely within the Solar

System. Accordingly, the major emphasis of the present
study is a Titan Demonstration Mission (fig. 3.1) concep-

tualized to require the evolution of equipment and machine

intelligence capabilities which subsequently may be applied

to autonomous interstellar operations.

3.1.2 The Titan Demonstration Mission

The demonstration mission concept leads ultimately to

development of a deep space- system incorporating

advanced machine intelligence technology capable of

condensing NASA's current three investigatory phases--

reconnaissance, exploration, and intensive study - into a

single, integrated, autonomous exploratory system. This

should yield significant economies in time and resources

over present methods (table 3.1).

TABLE 3.1. SPACE EXPLORATION: THE INTER-

STELLAR GOAL AND TITAN DEMONSTRATION

Goal: Evolution of capability for autonomous investigation
of unknown domain.

Approach: Integrate previously separate investigation steps

into single mission.

• Advanced propulsion capability

• Global scale investigation by remote sensing
• Advanced sensors

• Machine intelligence for information extraction
and plan follow-up

• Limited number of in situ exploration vehicles

• Autonomous hypothesis formation to classify

information and develop new theories

The Space Exploration Team proposes a general-purpose

robot explorer craft that could be sent to Titan, largest of

Saturn's moons, as a technology demonstration experiment

and major planetary mission able to utilize the knowledge
and experience gained from previous NASA efforts. Titan

was chosen in part because it lies far enough from Earth to

preclude direct intensive study of the planet from terrestrial

4O



o ,

Figure 3.1.- Titan Demonstration Mission.

observation facilities or easy teleoperator control, yet is

near enough for system monitoring and human intervention

as part of a developmental process in the demonstration of

a fully autonomous exploration technology. Such capabil-

ity must include independent operation from launch in

Low Earth Orbit (LEO); spiral Earth escape; navigation;

propulsion system control: interplanetary flight to Saturn

followed by rendezvous with Titan; orbit establishment;

deployment of components for investigation and communi-

cation; lander site determinations; and subsequent monitor-

ing and control of atmospheric and surface exploration and

intensive study. The target launch date for the Titan
Demonstration Mission was taken as 2000 AD with 5 years

on-site. Knowledge gained from the Titan exercise could

then be applied to the design of follow-on exploration

missions to other planetary systems.

A number of specific criteria were decisive in the selec-

tion of Titan as a premier demonstration site for the

autonomous exploration system concept:

(1) Titan is one of the few bodies in the Solar System
where the physical and atmospheric conditions are partially

unknown and interesting, but also still lie within acceptable

tolerance ranges for equipment survivability.

(2) Titan, 9.54 AU distant from the Sun, is far enough
from Earth to preclude intensive study using terrestrially

based, scientific, experimental, and observational equipment,

to deny easy teleoperator operations, and to require fully

autonomous systems functioning while still being close

enough for monitoring and intervention by humans as the

demonstration experiment evolves.

(3) The existence of a heavy atmosphere provides a

good test for system flexibility since atmospheric modeling
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is crucial in understanding surface conditions and evaluating

the possibility of life. Thus, smart multispectral correlation

systems development is essential.

(4) The shrouded surface provides an unknown environ-

ment in which to test imaging systems without bias.

(5) Titan is better capable of capturing and holding the

public interest than other bodies for some of the same rea-

sons that it has received increasing scientific attention; for

instance, the fact that it holds a faint hope for lifeforms

(past, present, or future) and requires the full NASA array

of equipment including the manned Shuttle. The Saturnian

moon already has been popularized by Carl Sagan in his

PBS television series "Cosmos" with a visually striking

simulated Saturn ring penetration and Titan landing, and

Voyager 1 vastly increased our scientific knowledge of Titan

during its encounter with the planet in November 1980.

(6) Precursor missions will provide enough knowledge

of Titan and the Saturn environment to allow verification

by Earth-based scientists of the atmospheric and surface

models sent back by hypothesis-formation modules operat-

ing aboard the Titan spacecraft.

(7) A partial knowledge of the Titan environment per-

mits equipment and experiment economies over later

missions wherein many more contingencies and hypotheses

must be anticipated.

A Titan Demonstration Mission in the year 2000 AD

would benefit from two types of heritage (fig. 3.2). The

first, knowledge heritage, allows the use of spacecraft com-
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ponents which need not be designed to cope with wholly

unknown alien environments. The experience gained during

the Pioneer ! 1 and Voyager encounters with Saturn and its

moons has provided essential prior scientific and engineer-

ing data on Titan and its surroundings. The second, equip-

ment heritage, permits investigative techniques developed

for earlier missions to be adapted in modified form for the

Demonstration. Many pre-Titan spacecraft operations

address the same basic objectives in planetary exploration

and provide a useful remote-sensing technology base to

carry them out. For example, the Viking, Pioneer Venus,

and Galileo missions furnish techniques for in situ atmo-

spheric analysis, and valuable experience with surface

analyses searching for microbial life was gained during the

Viking mission to Mars.

A number of planned or opportunity missions currently

under consideration by NASA offer further possibilities

for technology development in directions useful for the

Titan Demonstration such as the proposed lunar and

Mars missions employing autonomous surface roving

vehicles and advanced methods for sample selection, collec-

tion and analysis, and the VOIR (Venus Orbiting Imaging

Radar) system for the development of a planetary radar

mapping capability. Since the global characteristics of

Titan are included within the scope of the Demonstration,

opportunities for knowledge and for equipment heritage

exist with respect to the proposed Saturn Orbiter Dual

Probe (SOP :) spacecraft.

In summary, the proposed Titan technology demonstra-

tion experiment and major space exploration mission uti-

lizes the knowledge and experience gained in previous

NASA operations. In turn, the Demonstation itself serves

as the verifying mission for an autonomous space explora-

tion capability which is tile ultimate goal.

Figure 3.3 shows tile relationships between the research

areas of the four Study Teams and tile Titan and interstellar
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Figure 3.3.- Relationships between space exploration and other 1980 study areas.
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mission concepts addressed in this chapter. Of particular
interest is the question, "How soon after the Titan mission
will extraterrestrial materials be utilized to facilitate inter-

stellar exploration missions?" A Delphi poll was conducted

using all Study participants (considered the best sample of

experts immediately available to consider the question) and
the results were: Median year 2028 AD, with the 14 esti-

mates ranging from 1995 AD through 2100 AD.

3.2 Titan Demonstration Mission Definition

The Titan Demonstration Mission as envisaged by the

Space Exploration Team encompasses a continuum of

scientific investigative activities culminating in a fully

autonomous extrasolar exploratory capability. The primary
focus is on condensing into a single extended mission

NASA's present sequential approach of reconnaissance,

exploration and intensive study. In the past, interplanetary

discovery has required Earth-launch of consecutive explora-

tory devices designed on the basis of data gathered by pre-

cursor craft. This approach assumes a broad range of sophis-
ticated sensing equipment but little capability for onboard

processing. Analysis of acquired data typically has been

relegated to earthbound scientists who make judgments to
determine the best next course of action, a procedure

which incurs considerable time delays in return transmis-

sion of data as well as in ground-based control of distant

spacecraft. An even more dramatic delay problem emerges
with respect to the deployment of subsequent exploratory

devices. In the case of Mars, for example, an initial recon-
naissance vehicle (Mariner 4)was dispatched in 1964 but it

was more than 10 years later (in 1975) before Viking 1
could be launched to attempt a Martian landing and a more

intensive planetary investigation.

Mars, of course, is one of Earth's closest neighbors. Time
delays in data transmission and control functions reach a

maximum of 21 min in each direction, and travel time from

Earth to Mars is approximately 1 year. In the outer Solar

System the delay for one-way data transmission and control

is measured in hours or days, while at interstellar distances,
delay is measured in years with travel times of decades or

more. As exploration goals are extended into the farthest

reaches of space, development of nontraditional techniques
and systems requiring a lesser dependency on Earth-based

operations and possessing far greater autonomy become
increasingly desirable and necessary. It is in this spirit that

the Titan Demonstration Mission is proposed - anticipation

of the potential for advanced machine intelligence eventu-
ally to permit fully autonomous exploration of the inter-
stellar domain, a capability born of earlier demonstrations

within the closer context of the Solar System.

In order to maintain linkages with current and future

NASA activities (e.g., Voyager, Saturn Orbiter Dual Probe)
and between short- and long-term objectives, the initial

Titan demonstration relies upon extensions of current arti-

ficial intelligence (AI) techniques where these are appro-

priate. For example, by the year 2000 a considerable

amount of information about Titan's characteristics,

including a basic atmospheric model, already may have

been compiled. Assuming research and development pro-
gresses in both interacting simulation models and rule-based

automated decisionmaking, then extensions of current AI

knowledge-based systems will have the potential to con-

tribute to the automatic maintenance of mission integrity
to insure the survival of mission functions and

components.

To the extent that new developments in machine intelli-

gence technology move in the appropriate directions, the
Titan mission might include demonstrations of autonomous

onboard processing of mechanically acquired data in at
least one sample of scientific investigation. This results in

great compression of return information because only the

"important" or "interesting" hypotheses about the target

planet are transmitted back to Earth. Such a function pre-
supposes a machine capacity both for hypothesis formation

and for learning, neither of which is inherent in state-of-

the-art AI technology (see section 3.3). Significant new

research in machine intelligence is a clear prerequisite to
successful completion of the proposed Titan Demonstra-

tion Mission (see table 3.2).

TABLE 3.2. TITAN EXPLORATION MISSION

DRIVERS

Technology

A coordinated surrogate scientific community on and
around Titan

-- Long system life 10 years or more reliable/redundant
propulsion/energy

- Distributed decision and expert systems
- Self-monitor and repair ability

- Semi-autonomous subsystems

Probes, Landers, Rovers, Satellites

- Data storage and reduction; information communication
to Earth

- Integrated multisensor capability

Intelligence

Overcome the intelligence barrier. Current AI capabili-
ties and research will not achieve autonomous MI

needs for space exploration

- MI for space exploration must be able to learn from and

adapt to environment. To be able to formulate and

verify hypotheses is essential, but may not be
sufficient.

Goal: Full autonomic exploration system with human inter-
vention option.
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WhileTitanis toodistantto exploreefficientlyusing
traditionalmethodsit isstill nearenoughto monitorthe
performanceof automatedfimctionsandto takeinterven-
ingactionshouldtheneedarise.Asexplorationdistances
extendfartheroutintotheSolarSystem,suchintervention
becomesincreasinglydifficultsothedemandfor greater
missionautonomyandhigher-levelmachineintelligence
rapidlyintensifies.Anoutlineofoperationalmissionstages
integralto thefull rangeofexploratoryactivity,fromthe
Titandemonstrationto interstellarexploration,is pre-
sentedbelow.Eachphaseunderscoresavarietyofmachine
capabilities,someuniqueandsomeoverlapping,required
if full autonomyis to beachieved.Thesecapabilities
representthe primarytechnologydriversfor machine
intelligencein futurespaceexploration.

3.2.1 Titan Mission Operational Stages

A fully automated mission to Titan (and beyond)

requires a very advanced machine intelligence as well as a

system which is highly adaptive in its interactions with its

surroundings. This latter aspect is even more significant in

extrasolar missions because a sufficient operational knowl-

edge base might not be available prior to an encounter with

new planetary environments. The explorer must generate

and use its own information regarding initially unspecified
terrain, and this knowledge must ew_lve through the updat-

ing of databases and by the continual construction and

revision of models. Such a machine system should be

capable of considerably higher-order intelligent activities

than can be implemented with state-of-the-art techniques in

artificial intelligence and robotics.

The short-term mission objective is to encompass the

tripartite staging of NASA missions within a single, fully
automatic system capable of performing scientific investiga-

tion and analysis, the immediate objective being a complete

and methodical account of Titan. Later, and as a longer-

term goal, given the successful achievement of the short-
term objective, a similar exploration of the outermost

planets and bodies of the Solar System could be conducted

with improved equipment, building on the systems opera-

tions knowledge gained at Titar_.

The proposed exploration system must be capable of the

following basic functions:

(1) Select interesting problems and sites.

(2) Plan and sequence mission stages, including deploy-

ment strategies for landers and probes.

(3) Navigate in space and on the ground by planning

trajectories and categorizing regions of traversibility.

(4) Autonomously maintain precision pointing, thermal
control, and communications links.

(5) Budget the energy requirements of onboard
instrumentation.

(6) Diagnose malfunctions, correct detected faults, and
service and maintain all systems.

(7) Determine data-taking tasks, set priorities, and

sequence and coordinate sensor tasks.
(8) Control sensor deployment at all times.

(9) Handle and analyze all physical samples.

(10) Selectively organize and reduce data, correlate
results from different sensors, and extract useful
information.

(11) Generate and test scientific and operational

hypotheses.

(12) Use, and possibly generate, criteria for discarding

or adopting hypotheses with confidence.

One way to formalize the precise characteristics of a pro-

posed mission is in terms of a series of prerequisite steps or

stages which, in aggregate, capture the nature of the mission

as a whole. The operational mission stages selected for the

Titan demonstration analysis are: configuration, launch,

interplanetary flight, search, encounter, orbit, site selection,
descent, surface, and build. Each is discussed briefly below.

Configuration. This initial phase addresses considerations

of size, weight, instrument specifications and other launch

vehicle parameters, and usually depends on the equipment

and tasks required for a specific mission. Questions con-
cerning the precise nature of the investigation and experi-

mentation traditionally are taken up at this point.

For deep-space exploration, spacecraft configurations

must be general and flexible enough to handle a wide range

of environments. Hardware and software impervious to
extreme pressure, temperature, and chemical conditions

and with long lifespans are required. Also, a diverse assort-

ment of onboard sensors with broad capabilities is neces-

sary to produce basic information via complementary and

selective sensing to be used in scientific investigation and

planning.

Launch. The focus of this stage depends to some extent

on the perceived configuration of the mission vehicle. Issues

related to propulsion and energy needs and appropriate
launch sites (e.g., Low Earth Orbit vs vicinity of extraterres-

trial resources utilized for the mission) are decided. The

launch phase is conducted largely by Earth-based humans,

but cozald benefit from machine inteJligence capabilities

(e.g., CAD/CAM/CAT) for testing, checkout, flight prepara-

tion, and launch support.

Interplanetary flight. Prior to Viking and Voyager,

unmanned flyby and orbiter spacecraft were totally depen-

dent upon Earth-based remote observation and direct

human intervention to accomplish accurate navigation,

stationkeeping, and rendezvous and docking maneuvers

(Schappel[, I979L This underscores the control and com-

munication time delay problem that limits efficient investi-

gation of distant bodies such as Titan and even more

dramatically constrains exploration of the interstellar

realm. Some ground-based support for the initial Titan
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Demonstration Mission may be appropriate in computing

navigational corrections, but subsequent deep-space

exploration requires a fully autonomous navigation system.

Such systems also improve cost-effectiveness by reducing

the amount of ground support necessary to accomplish the

missions. Potential savings in equipment complexity,

operational costs, and processing time will motivate the

development of autonomous systems for near-Earth and

deep-space vehicles.

Consider, for instance, the Viking mission, one of the

most complex interplanetary operations attempted to date.

The Mars landers were remotely operated robot laboratories

equipped with comparatively highly automated instrumen-

tation. Many spacecraft functions could be perR)rmed

adaptively, accommodating to changing necessities during

the mission. Even so, the operational system required major

navigational changes to be specified 16 days before the indi-

cated flight action. Several hundred people on Earth were

involved in science data analysis, mission planning, space-

craft monitoring, data archiving, data distribution,

command-sequence generation, and system simulation. An

infusion of advanced machine intelligence could signifi-

cantly reduce this major mission cost.

In addition to navigation, the spacecraft also must main-

tain attitude and configuration control, thermal control,

and comnmnications links. These functions involve the use

of feedback loops and built-in test routines. One way to

visualize a greatly improved system is It) conceptualize a

machine intelligence capable of sequentially modifying its

activity as a result of experience in the environment, with

an additional capability of internalizing or "qearning" the

relationship between enviromnental states and corrections

to guide future modifications and coordinate them with

anticipated states. Such goal-directed intelligent functioning

is not possible with state-of-the-art A1 technology, tlow-

ever, it is conceivable that a machine system could be pro-

vided with a capacity to represent its present state, some

goal-state of equilibrium or stability and a means of noting

and measuring any discrepancy betweeu the two, and,

finally, effectors or actuators for modifying the present

state in accordance with the programmed goals.

Search. During the Search ptlase the system performs

preliminary analyses while approaching the target body.

The information acquired is integral in making decisions

about subsequent activities as well as the point at which to

begin preliminary analysis. The spacecraft must be able to

employ appropriate sensing equipment to c_dlect raw data

and to modify sensor utilization as a result of feedback

inforlnation. Inherent in this formulatitm is the capacity of

the system to perform some analysis using the raw data it

has collected and to make decisions abot.t mission sequenc-

ing based on analysis results.

Complementary and concurrent sensing tasks are sched-

uled according to the time required for their completion,

the point at which their output becomes important to

ongoing model construction, and the relative importance of

the results. Another significant factor is spacecraft-

instrumentation power scheduling, assuming that the

supply of energy is insufficient to allow all subsystems to

operate sinmltaneously. Scientific tasks must be scheduled

to take into account possible mission-control functions that

might override them. Collection tasks producing data hav-

ing multiple uses or particular utility in mission integrity

operations (self-maintenance, survival, and optimization)

have high priority. All operations are to be accomplished

without benefit of direct human intervention.

For the initial Titan mission, one might attempt to auto-

mate all search functions by means of an onboard expert

system that utilizes known information about the condi-

tions on Titan and that is capable of examining and choos-

ing from among preselected resident hypotheses (leading

finally to some judgment as to what action to take based on

probability calculations), tlowever, such a system could be

highly fallible because information gaps and inaccuracies in

its available range of hypotheses might lead to serious mis-

judgments. In the case of the long-term objective inter-

stellar navigation the consequences of an incomplete

knowledge base are even more dramatic. The team con-

cludes that expert systems of the current AI variety cannot

satisfactorily perform the Search task.

One possible solution, and a potentially valuable tech-

nology driver, is an advanced type of expert system able to

update and modify its own knowledge base as a result of

experience that is, as a result of the analytical actions

which it performs on its own environment. On Earth the

advent of such an advanced system would eliminate time-

consuming and costly human analysis and reprogramming

typical of state-of-the-art expert systems (which would be

particularly inefficient in space applications where huge

time delays often must be accommodated). Self-

modification of advanced expert systems also prepares the

exploration system to make autonomous decisions and

corrections regarding its relationship with the environment.

An additional essential task en route to an unknown

planetary system around another star is the determination

of gross parameters such as sizes, masses, densities, orbital

periods, rotational periods, axial tilts, and solar distances

for each membe_ planet and moon. A fully autonomous

spacecraft would ulilize these characteristics, determined

by early data collection, in making onboard selections of

appropriate bodies to explore.

(,iven the existence of specific atmospheric conditions

determined, by long-range remote sensing, logical hypothe-

ses may be generated to predict the surface ctmditions of

the chosen celestial body in terms of the possibility of life

and the compatibility of the planet with spacecraft hard-

ware and engineering. Decisions must then be made on the

basis of preliminary analyses whether to proceed and

establish orbit around the planet for further exploration, or
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to choose another target. An intriguing alternative would be

a system capable of redesigning or adapting its equipment
to accommodate the relevant alien environmental

conditions.

Encounter. The processing of image data is probably one

of the most computationally demanding tasks performed

during planetary exploration missions. In the Encounter

phase, when the spacecraft controller must make a quick

go/no-go decision on the question of orbital insertion, the

data processing challenge includes speed as well as volume.

The problems of distance and communications delays,

coupled with the necessity of making rapid local decisions,

virtually demand that image analysis during Encounter be

accomplished by fully autonomous onboard processing

systems.

One possibility is an imaging system capable of describ-

ing a planetary body much as an astronaut would. For

example: "The surface is bluish with some brownish areas

near the equator. There appear to be thin wispy clouds

covering a 100 X 200 km area centered about 75 ° N and
30 ° W." The observation of "bluish" and "brownish"

indicates the processor's ability to match raw data inputs

to color concepts understood by humans. The identifica-

tion of "wispy clouds" suggests the capability of matching

data in a sequential region of the image to the known con-

cept of "wispy." The ability to match regions, spectral

data, and other features in an image to stored concepts in

memory requires a reasonably high level of machine

intelligence.

Another part of the description of the image observed

by spacecraft sensors locates the "wispy" area at a given
latitude and longitude. To do this, the processor must be

able to establish the geometrical shape of the body encoun-

tered and to apply a coordinate system to it. Once this

coordinate system is computed it forms the cartographic

grid to which all surface features are mapped. While this is

a well-understood mathematical procedure, the "nunrber

crunching" load is significant and must be executed very

rapidly during the Encounter phase.

Orbit. When preliminary analysis suggests a reasonably

benign environment warranting further investigation, orbit

is established to conduct a more detailed study. The estab-
lishment and maintenance of orbital position, like most of

the functions already mentioned, should be a fully auton-

omous process with characteristics similar to the autono-

mous interplanetary flight navigation system. Onboard
automated decisionmakers determine an optimal orbit using

information gathered during preliminary analyses, and
orbital insertion is achieved.

Multisensor analysis is implemented concurrently with
the establishment of orbital position, permitting a more

comprehensive investigation of planetary characteristics

than during Encounter. During Orbit phase a variety of

sensors and sophisticated image processing techniques are

employed to examine atmospheric and surface conditions.
Analyses should be conducted both in the context of

(1) pragmatic decisionmaking, including assessments of
atmospheric pressure, density, and identifications of surface

conditions to be utilized in judging which equipment to
deploy, and of (2) scientific investigation, such as infor-

mation acquisition for hypothesis generation.

For the Titan mission an advanced expert system may be

used to fl)rm judgments about appropriate exploratory

equipment for specific environmental conditions. For

instance, when deploying probes or landers smart sensors

might first assimilate data regarding atnrospheric density

and pressure. The advanced expert system could then make

probability judgments as to how fast probes should fall and

how nruch retrorocket energy is required for landing. Addi-
tional assessments could be made of surface conditions,

such as whether the surface is composed of a solid, liquid,

or gaseous base. This information supports subsequent deci-

sions about necessary configurational requirements of land-

ing craft (e.g., should it be a wheeled, walking, hovering, or

floating vehicle?). The above machine intelligence applica-

tions could probably be developed on a relatively short-

term basis, utilizing minimal extensions of state-of-the-art

AI techniques.

In the deployment of such exploratory mechanisms as

atn;ospheric and surface probes, balloons, and landers,

intelligent coordination of autonomous orbit maintenance
and control is crucial. Since deployment of onboard equip-
ment alters the total mass and mass distribution of the

orbiter, some simultaneous revision of the altitude control

function, ideally based on "anticipatory information," is

required. That is, the spacecraft must anticipate changes in
its state prior to component deployment and be prepared

to adapt to concomitant variations in its physical state (a

specific example of the type of feedback system required

to maintain mission integrity).
A much more serious problem for development in the

area of machine intelligence is the scientific analysis of data
and the autonomous formulation of hypotheses and

theories. Current expert systems technology cannot gener-

ate and test unique hypotheses that have not been prepro-

grammed by a human operator. This limitation restricts an

exploratory device based on state-of-the-art A1 to data

analysis, categorization, and classification in terms of

existing structures of thought or taxonomies of knowledge.

However, in alien environments, particularly those accessi-

ble in an interstellar mission, pre-formed scientific notions

may not reasonably be applicable; on the contrary, they

may serve only to distort higher-order understanding of

incoming data. Thus, a major technology driver is the

development of an advanced machine intelligence system

capable of reorganizing rejected hypotheses, integrating

that information with data acquired through sensory

apparatus, generating new hypotheses which coordinate all
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existinginformation,and,finally,testingthesehypotheses
in somesystematicfashion.(Seeappendix3Bfor ahypo-
theticalillustrationofthispoint.)

Lander site selection. During this phase some form of

mobile surface device compatible with local environmental

conditions is deployed according to planetary orbiter

directives. This device performs in situ surface and geologic
data acquisition, imaging, and representative physical

sample collections. Its deployment requires the selection of

appropriate landing sites, a major task for the autonomous
exploration system controller.

Processed image data of planetary surface conditions

permits a mapping of topographic surface characteristics

with respect to terrain configuration - a cataloguing of

mountains, craters, canyons, seas, rivers, and other features

to be correlated with maps of temperature, moisture, cloud

cover, and related observables. These maps become the
basis for a determination of optimal landing locations. Site

selection analysis also must include some judgments regard-

ing areas of greatest "interest" for investigation, necessitat-
hag some means of detecting regions of the environment

which are anomalous with respect to expectations based on
prior preliminary analyses of the locale. Criteria for site

selection, as for example geological significance or the pos-

sibility of lifeforms, are stored in memory. Imagery to be
compared to this set of criteria could be obtained from a

world model (see chapter 2) developed during the orbital

phase, an application ripe for machine intelligence tech-
nology development.

Hazard avoidance at the landing site and terrain traversi-
bility for mobile landers are additional considerations in the

site-selection process. Some mechanism for self-preservation

should be included so that an assessment of potential land-

ing sites is made according to whether they pose a danger or
are benign. Only then can adaptive action patterns be

undertaken with some reasonable expectation of success.

Descent to surface. The descent to surface should be

fully automated even in relatively near-future explorations

of the Solar System. Autonomous feature-guided landing

poses a unique challenge to image-processing technology.

For instance, during a parachute descent the target landing

site must be located and tracked by an image processor. As

the assigned target is tracked, the lander parachute must be

manipulated to steer toward the target much like a sports

parachute. While the tracking task is not conceptually
difficult, the processing speeds required do not exist in

present-day computer hardware. As the surface draws

closer, the potential landing site must be reexamined for

obstacles hazardous to the craft. This presupposes some

stored knowledge of precisely what could pose a hazard, as
well as the ability to act upon that information. In the

Descent phase, machine intelligence integral to the surface

exploration system will require high-accuracy processing
and ultra-high speed hardware.

On the surface. Once surface contact is achieved the

most interesting and probably the most difficult image

processing begins. Self-inspection for damage comes first,

followed by verification of the lander's position. This may
involve comparing the surrounding scene with possible

projected scenes assembled from the world model, or the

analysis could be based on tracking by the main orbiting
spacecraft. Next is the planning, scheduling, and com-

mencement of experinaents. All conflicts must be compre-
hended and resolved. If one experiment calls for rock
density measurements and no rocks are within reach of the

lander's end-effectors, a decision must be made to schedule

another experiment or to move the lander. Such opera-

tional decisions require intelligent scene analysis and

concept/theory matching.

If preliminary analyses suggest that further investigation

is warranted and safe, the lander system for image process-

ing of the surrounding area is deployed. This accompanies

the collection of local temperatures, pressures, and general

ambient conditions data, as well as sample collection and

analysis. To provide these functions the lander (an intelli-

gent robotic device) is equipped with a wide variety of sen-

sor and end-effector apparatus. Vision is especially impor-

tant for obstacle avoidance and mobility. Stereo vision may

prove an invaluable aid in successfully traversing three-

dimensional spaces, and also an important safety feature
for avoiding depth hazards.

Mobile lander data collection responsibilities require
several specific machine intelligence capabilities including

(1) pattern recognition to correlate visual images and to

detect similarities and differences among data alternatives
and (2) decisionmaking to determine whether a particular

datum is worth collecting. While it is conceivable that

minimal extensions of state-of-the-art expert systems might
prove adequate to address the problem of datum "worth,"

still there remains a sizable gap between current capabilities

in computer perception (pattern recognition) and capabili-

ties needed for tasks integral to the proposed mission -
another crucial technology driver.

While some Gf the Titan mission performance demands

on robot manipulators are not as critical as on industrial

assembly lines, still there are definite constraints. Space-

craft effectors must operate in completely unstructured
environments unlike state-of-the-art factory robots which

move only in small, comparatively well-defined work areas.

Precision requirements are fairly modest for explorer

manipulators when they are handling physical samples, but

placement accuracy must be considerably improved when-

ever the system is responsible for joining closely fabricated

pieces during instrument repair, component reconfiguration

or construction. Manipulator supervision is supported

primarily by visual sensing, though a wide variety of other

sensor inputs may supplement optical techniques.
A potentially difficult image processing task is the coor-

dination of manipulator movements with those of the
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targetobject,betterknownas"hand-eyecoordination."
Imageprocessingmaybeusedaccuratelyto findtheposi-
tion(in three-dimensionalspace)oftheobjecttobemanip-
ulatedaswellasthegraspingsurfacesof themanipulator
itself.Locatingthesesurfacesmightinvolvematchingthe
receivedimageswithmemorizedmodels(or concepts)of
theobjectandtheend-effector,a tremendouschallengeto
present-daymachineintelligencetechnology.Analternative
methodrequiresusingpressure-andforce-feedback,aswell
asproprioceptiveinformation(sensoryinputdesignating
bodyor effectororientation)to reduceimageprocessing
requirements.

Movementof thelanderdemandsthatasafe,obstacle-
freepathbefoundacrossthelandscape.Thismayentail
generatingacontourmapof thesurfacesurroundingthe
lander(perhapsusinghigh-resolutionsatellite/orbiterdata)
andderivationof aclearpathfromthismap.State-of-the-
artlaserscanningtechniquesalreadyhaveprovenadequate
to handlethetaskof topographicanalysisfor purposesof
localwild-terrainlocomotion.Hazardshiddenfromview
alongtheintendeditinerarymustbeidentifieden route,

and the path ahead continually re-scanned and updated as

in the case of a human walking through a rocky area.

An alternative (and more difficult) approach places

greater reliance on autonomous lander processing systems.

A planet model provides an apparently traversible path

from the landing site to another location observable from

the landing site (based on low-resolution data). This

"fuzzy" trail is given to the lander controller which then

must negotiate its own path from the first position to the
second, must identify and work its way around such

obstacles as gulleys, creeks, or rubble invisible in the low-

resolution model. In addition, during each traverse the

lander analyzes the surrounding scenery and searches for
significant or unusual objects while also keeping track of

its location. Thus, a great deal of image processing and map

updating must be done that requires formidable onboard

computing power, as well as advanced machine intelligence
techniques.

Build. The Build phase actually lies in the domains of

space manufacturing (chapter 4) and machine replication

(chapter 5), but nevertheless, is worth mentioning here as

an important prerequisite for extending the proposed

mission to intensive Solar System and interstellar explora-

tion. At some (yet undefined) point it becomes necessary

to provide machines with mining, materials processing,

construction, repair, and perhaps, even replicative capabili-

ties in order to escape the enormous cost of building and

launching burgeoning masses of exploration equipment

from Earth (Freitas, 1980b). With respect to the Titan
Demonstration Mission, a first step toward the ultimate

goal of machine self-sufficiency would be an onboard

provision for machine hardware components with the

ability to make adaptive modifications to the system as a

result of preliminary analyses of probe and landing craft
needs.

3.2.2 Scientific Investigation: Remote Sensing and Auto-
mated Modeling

The concept of space exploration presented above

suggests the potential capability of an interstellar spacecraft

to develop complete detailed models of planets and moons

in other solar systems and to return these to Earth as major
scientific discoveries about the Galaxy. These models would

include information about the planets' atmospheres,

surfaces, subsurfaces, electromagnetic and gravitational

fields, and any evidence of lifeforms.

Having first characterized the operational mission stages

and identified the important machine intelligence require-

ments of each, the Space Exploration Team chose to con-

sider at greater length one aspect of the Titan Demonstra-

tion system capacity to conduct useful scientific

investigations: automated modeling of an unknown celes-

tial body. This particular aspect of the scientific investiga-

tion capability was selected because it involves the full

range of high-level machine intelligence required for

autonomous space exploration, while simultaneously relat-

ing to the orbit-based world model deployment scheme

contemplated by the Terrestrial Applications Team (see
chapter 2).

In terms of the preceding discussion of the operational

phases of space exploration missions, the task of creating
such models is the first and foremost task of the Orbit

stage. Detailed remote sensing is undertaken in the mission
orbital phase to complete atmospheric modeling and to

map various physical parameters of the surface. Perhaps as
much as 90% of the total information gathered in the

exploration of an unknown body can be collected by the
orbiter.

A complete world model describes atmospheric and sur-

face physical features and characterizes the processes which
govern the dynamic states of the planet and its atmosphere.

The job of constructing a world model may be broken

down into two separate categories: building an atmospheric

model and examining processes in the surface environment,

described below. Since a great deal of work is under way at
NASA and at various universities in the analysis of Landsat

and weather satellite information, it can be anticipated that

much of the groundwork in the techniques for assembling a

planetary model will have been laid long before deployment
of the Titan mission. Not only is the development of a ter-

restrial world model an essential precursor research program
in pursuit of interstellar mission technical requirements,

but it also provides valuable Earth resource information in

the more immediate future. Creating and automatically

modifying world models based on inputs from a variety of

sensors is a machine intelligence technology in which

research should be encouraged.
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Atmospheric modeling. An accurate atmospheric model

is essential to successful landing, scientific analysis, and the

prediction of the possibility of indigenous life. The con-

struction of an atmospheric model for Earth (including

composition, structure and dynamics) has taken many

years, an iterative process dictated by evolving technology

plus the developing knowledge and expertise of investi-

gators in a young field. To a large extent this emerging

methodology has been driven by the measurability of

accessible variables, which may or may not be optimal from

a systems theoretical point of view. But given higher

technology, observational freedom from Earth's atmo-

sphere, and fresh unknown territory to explore, many more

options become available with respect to what should be

measured and in what order to define an atmosphere most

efficiently and unambiguously. The process has not yet

been adequately systematized to permit clear-cut rational

choices.

Atmospheric modeling should begin early in the

approach to an unknown planet since many mode-of-

exploration decisions require information on the nature of

the atmosphere. During the course of the mission the atmo-

spheric model accumulates greater detail with continuous

updating as higher sensor resolution is achieved and probes

are deployed for direct measurements. The investigation of

an atmosphere differs from studies of surface characteristics

in that it involves the complex integration of many inter-

related subhypotheses and measurements of" numerous

allied parameters. Studies of the surface are more a problem

of deriving hypotheses from completed maps representing

different measurements and then overlaying these maps as a

final step.

Specific initial tasks related to atmospheric modeling

include:

• Determination of the region of the spectrmn in which

most of the electromagnetic radiation is emitted.

• Determination of the sources of opacity for selection

of optimum communications link frequency (for

landers and probes) and for choosing wavelengths in

which to perform infrared and millimeter radiometry.

• Search for unbroadened spectral lines above the

atmosphere to provide information on tt_e overall

composition of the air.

• Observe where spectral lines interfere with blackbody

temperature measurements and determine the wave-

length(s) at which the atmosphere may be fully

penetrated and planetary surface temperatures accu-

rately recorded.

• Perform preliminary temperature and pressure mea-

surements, to be updated once a comprehensive

atmospheric model has been constructed.

• Begin atmospheric modeling with remote sensing at

millimeter and infrared wavelengths.

Surface modeling. The best method for planetary surface

structure hypothesis formation requires scanning of the

body with sequentially increasing resolution in at least four

distinct steps. The first step obtains global average values

for temperature, surface structure, composition, etc., and

establishes norms for keying future observations at higher

resolution. Gross features such as lunar maria and highlands

or the martian polar caps would appear in this type of

survey.

The second observational phase exposes finer detail,

identifying regions on the scale of the Tharsis Plain of Mars

or the Caloris basin of Mercury. As the explorer approaches

Titan, higher-resolution observations of the surface become

possible and morphological changes can be observed in each

succeeding frame. Recognition of features such as craters,

mountains, rivers, and canyons may be accomplished by an

advanced expert system which includes models of surface

processes in its knowledge base, although present-day pat-

tern recognition and vision systems will require significant

refinement before this capability can be realized.

The third step is the recognition of sites with high

potential for usefulness in the construction of world

models. Such sites mainly include unusual features that are

interesting because of their anomalous nature. Identifica-

tion requires a stored concept of "usual," as for instance:

"There is usually a sharp boundary between continents and

oceans" and "Craters viewed from directly above usually

are circular." An original supply of these simple concepts

are programmed into the system by ]romans before the

mission begins: however, additional and revised definitions

of normality must be developed and refined as the mission

study of a particular planetary body progresses, with self-

developed concepts _f "usualness" updated by the system

as various stages and modes of multisensor investigation are

completed. The recognition of that which is "unusual" is

discussed at greater length below.

The fourth and final step includes detailed surveys at

maximum resolution of selected sites and additional imag-

ing of various undistinguished sites spaced along a grid to

pick up interesting features missed by other searches at

lower resolution.

Automated selection of interesting sites. It is desirable to

minimize raw data storage in order to maximize the effi-

ciency of onboard concurrent mission tasks and analyses.

Some method must be found to deal with the information

overload which might result from exhaustive exploratory

surveys, particularly high-resolution topographic mapping.

Data preprocessing and compression are needed not only

because of memory limitations but also to help reduce the

complexity of information to be assimilated into world

models. Without some way of narrowing the field of inter-

est or of identifying "highlights," the task of converting

multiple correlatitms of many detailed data sets into com-

plete models is cumbersome and impractical. Simplification
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alsois neededto perform initial but fairly exhaustive

searches for sites warranting further investigation (e.g.,

potentially interesting, safe for landing, etc.). This activity

requires a high-level machine intelligence system able to

make good choices of which high-resolution data to save

and which to throw away.

One possible approach to the selection problem is for

the first mapping system to earmark data anomalies for

surveillance at higher-than-normal resolution in subsequent

surveys. Anomalies are sought by making detailed compari-

sons of successive maps of the same region. Alternatively,
scan data can be searched for locales in which the measured

parameter deviates significantly from a predetermined

norm. In practice, single-pixel measurements might be saved

if values exceed specified thresholds. Data also may be

saved in map regions where measured parameter gradients

are as steep or steeper than the slope defined as a "signifi-

cant" edge for that type of measurement. Effectiveness

using norm comparisons depends upon appropriate

thresholding, whereas the detectkm of anomalies by succes-

sive map matching may be a less subjective approach. (Mea-

sured quantities in either case might include rock types,

textures, slopes, temperatures, gas concentrations, symnle-

tries, and colors.)

Abridged maps of anomalies detected using the initial

survey maps are then compared in a search for correlations

that might identify interesting sites. Both the most com-

mon and the most unusual sites have high priority for

further examination. Areas of interest are identified and

ranked for intensive investigation according to the total

number of different types of "edges" they contain. The

degree of uniqueness of any given site is a criterion for

prioritizing follow-up studies. The occurrence of more than

one site exhibiting the same edges or of k)cations with

similar correlations indicates a need for additional study.

The distribution of correlated sites might suggest some

common factor among them; for instance, latitude or

regular temporal variations.

The above method of data analysis is one way of focus-

ing on a few features or locations most useful in construct-

ing world models. These high-value sites are identified by

their discontinuous character as compared to their sur-

roundings. The method should correctly report features

that would be included in an eyewitness description of the

celestial body given by a human observer. For example, the

crisscrossing lines of Europa might be singled out, as well as

the canyons and streambeds of Mars.

Such striking features are necessary but hardly sufficient

to specify an entire planet. A complete view also must

include: (1) Large-scale structure illuminated by lower-

resolution mapping (e.g., the overall smooth surface of

Europa), (2) the construction of models inferred froln sur-

face mapping data (e.g., that the cracks and smooth surface

of Europa indicate a young, active crust), and (3) the incor-

poration of atmospheric modeling. A machine intelligence

system which can quickly single out and characterize

important features of celestial bodies is required. This sys-

tem should first be tested with known bodies to verify its

ability to rediscover what humans would consider to be

significant.

Two approaches for mode/ formation have already been

presented. The first applies to atmospheric determination

specifically, a process of nmltiple iteration and revision

starting with a distant view of the unknown world. The

second applies to surface environment studies after the

explorer system has entered orbit. Both methods correctly

recognize that models are not effectively constructed by

trying to answer all questions for every pixel, ttypothesis

formation is followed by a process of testing and checks in

each approach.

3.2.3 Titan Miss&n Components Concepts

The comprehensive exploration and intensive study of

Titan will require an appropriate system of spacecraft

components. In this section, preliminary technical specifi-

cations are provided for each candidate spacecraft function

involved in the Titan Demonstration Mission. Of course,

final system configuration is dependent upon progress in

machine intelligence techniques and on advances in hard-

ware technology that may occur. The technical level of the

following specifications is compatible (though not pre-

sented in the same format) with the NASA Space Systems

Technology Model. In each case, criteria of maxinmm

cost-effectiveness and minimun_ equipment proliferation

are applied.

Rather than discuss every detailed hardware require-

ment, the Space Exploration Team elected to focus primar-

ily on aspects of the proposed mission which demand sig-

nificant advances in current technoh)gy. Consequently, and

also because the design is largely conceptual, the following

quantitative and qualitative information would he ranked

"level 3" (relatively low confidence) in the Space Systems

Technology Model.

The general features of the Titan Demonstration Mission

are given in table 3.3. Table 3.4 lists the candidate space-

craft system elements, including the typical number of

each type, their operational locations once deployed, and

TABLE 3.3. GENERAL FEATURES OF TIlE TITAN

DEMONSTRATION MISSION

Status: Opportunity Mission (not in current NASA plans)

Lifetime: 10 years; includes 5 years at Titan

Launch/transfer vehicle: Shuttle/400 kW Nuclear Electric

Propulsion (NEP)

Operational location: Titan, Saturn's largest satellite

Total mass: 13,000-17,000 kg

Total power: About 400 kW
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mass and power requirements. The major mission accom-

plishments expected of each system component are shown
in table 3.5.

surface mobility, and physical sample selection, collection,

and analysis. Other candidate system elements have more

specialized functions, the management of which can be

TABLE 3.4.-CANDIDATE SPACECRAFT FOR THE TITAN

DEMONSTRATION MISSION

Spacecraft Typical Operational

type number location

Nuclear electric 1 Earth to Titan

propulsion orbit

Main orbiting 1 Circular polar
spacecraft Titan orbit at

600 km altitude

Lander/Rover 2 Surface

Subsatellites ~3 One at a Lagrange

point; others on
100 km tethers

from NEP

Atmospheric probe _6 Through Titan
atmosphere to
surface

Powered air 1 Atmosphere
vehicle

Emplaced science _6 Surface

Mass, Power,

kg kW

40O

b

1

0.3

200 0.1

1,000 10

50 0.1

lO,OOOa

1200

1,800

300

aDoes not include propellant.
bUses NEP power.

The minimum duration of Titan operations is 1 year.

While this would be barely sufficient to complete a nominal

mission, it is a short time in comparison to seasonal changes

in the Saturn system. (Saturn's solar orbital period is

29 years.) The most significant seasonal effects may be

expected within about 5 years of the solar equinox of
Saturn and Titan - which occurs in 1980, 1995, and

2010 AD. Hence, the preferred arrival dates are 2005 or

2010 AD, with a nominal mission duration of 5 years.

Adding 5 more years for interplanetary flight, the preferred
Earth-launch dates are 2000 or 2005 AD.

The success of the Titan Demonstration Mission depends

on two essential elements (1) the main orbiting space-
craft and (2) the lander/rover and on the machine

intelligence which they possess. High-level AI capabilities

are needed by the main orbiter to coordinate other system

components and to conduct an ambitious program of

scientific investigation, and are required by the lander/rover

to complete its tasks including safe and accurate landing,

assumed, at least in part, by advanced sensors and machine

intelligence aboard the orbiter or landing craft.

Nuclear electtqc propulsion. The early phases of the

mission, beginning with launch from Earth and continuing

through Saturn arrival, require a high-performance propul-

sion system which can deliver the payload within a reason-

able flight time (4 to 6 years). Low-thrust Nuclear Electric

Propulsion (NEP) is the preferred technology for this

purpose. The entire NEP system can be delivered to LEO,

then be used for spiral escape from Earth, Earth-to-Saturn

transfer, for Titan-rendezvous from a circular orbit around

Saturn, and finally for spiral capture into Titan orbit and all

subsequent spacecraft orbital adjustments. The main orbiter
spacecraft and the NEP system share responsibilities for

navigation, guidance, control and sequencing, system

monitoring, and communications with Earth.
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NEPtechnology has been studied for a long time but has

no current planned application beyond possible cargo trans-

port operations from LEO to Geosynchronous Earth Orbit

(GEO). Planetary missions such as the proposed Titan

TABLE 3.5.-TITAN MISSION SPACECRAFT

ACCOMPLISHMENTS

Spacecraft type Possible accomplishments

Nuclear electric

propulsion

Main orbiting

spacecraft

Lander/Rover

Subsatellite

Atmospheric

probe

Powered air

vehicle

Emplaced science

package

Spiral escape from low Earth orbit;

interplanetary transfer to Saturn;

rendezvous with Titan; and spiral

capture into 600 km circular polar
orbit.

Automated mission operations dur-

ing interplanetary and Titan phases:

this includes interfacing with one

supporting other spacecraft before

deployments; deploying other

spacecraft; communicating with

other spacecraft and with Earth;
studying Titan's atmosphere and

surface using remote sensing tech-

niques at both global characteriza-

tion and intensive study levels; and

selecting landing sites.

Lands at preselected site, avoids

hazards; intensive study of Titan's

surface; selects, collects and ana-

lyzes samples for composition, life,

etc., explores several geologic

regions.

Lagrange point satellite monitors
environment near Titan and is

continuous communications relay;

tethered satellite measure magneto-
sphere and upper atmosphere

properties.

Determines surface engineering

properties and atmospheric struc-

ture at several locations/times.

Intensive study of Titan's atmo-

sphere; aerial surveys of surface;

transport of surface samples or sur-

face systems.

Deployed by long-range rover to

form meteorological and seismolog-
ical network. (Alternatives are

penetrators or extended lifetime

probes.)

Demonstration represent significant new possible applica-

tions. However, a NEP development program must be ini-

tiated in the 1980s to be operational in time for a Titan

mission around the turn of the century.

The only major alternative propulsion technology is a

chemical system using cryogenic liquids (the so-called

Orbit Transfer Vehicle or OTV) for Earth escape, followed

by gravity assists from Jupiter (in 1998) or from Earth and
Venus, followed by aerocapture at Titan in the 2005-
2010 time frame.

Main orbiting spacecraft. The principal vehicle for

exploration in near-Titan space is an orbiter craft which

remains with the NEP system. During the spiral capture

process, the spatial structure of fields and particles around

Titan can be measured. Following capture, the main space-
craft is parked in a circular polar orbit roughly 600 km

above the surface of the body. Such an orbit has relatively

little atmospheric drag and is highly desirable for close

measurement and deployment of subsidiary system compo-

nents into the atmosphere and to the surface of Titan.

During operations in near-Titan space, the main space-

craft must support a set of sophisticated remote-sensing

instruments needed for global characterization and inten-

sive study. In addition, it must continue to provide essential

functions initiated during the interplanetary phases and

support for deployed subcraft including navigation and
communications with Earth. The estimated data collection

volume is estimated at 101°-10 tt b/day, significantly

greater than the 10 9 b/day characteristic of previous plane-

tary missions. Most of this is accumulated from instruments
aboard the main orbiter, with perhaps 10% supplied by

subsatellites and surface vehicles. Assuming that all raw

data are returned to Earth, the required downlink commun-
ications capability is 10s-106 b/sec or 3-30 times the

Voyager mission capacity from Saturn. However, significant
amounts of data compression using advanced machine

intelligence techniques should greatly reduce the transmis-
sion burden on the terrestrial downlink and also between

elements of the Titan Mission.

The technologies developed in present and future plane-

tary missions (especially Galileo, VOIR, and Earth-orbital)

are generally applicable to this spacecraft. For instance,
while in Titan orbit, the main orbiter is nadir-pointing

much like VOIR and many Earth-sensing satellites. Major

advancements are expected in the areas of machine intelli-

gence and smart sensors, which suggests an increased capac-

ity for data handling and communications as compared to

previous planetary missions by the time of the Titan
Demonstration.

Lander/rover. A lander/rover is needed to perform

detailed surface and atmospheric measurements as well as

the intensive level of study. Deployment of this spacecraft

system is deferred until Titan's ground terrain has been

fully mapped and an appropriate target site selected.
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Atmospheric data are taken during the lander descent

phase, and this continues as long as the vehicle remains
operational on the planetary surface. Small rocket thrusters

are used to guide the craft to a safe place free of large

boulders, deep crevasses, or steep slopes. After a soft

landing, the surroundings are characterized in preparation

for site selection for sample collection. Physical samples are

then acquired using extensible manipulators (scoops, drills,
slings, etc.) and are immediately analyzed to determine

chemical composition, layering effects, evidence for

indigenous lifeforms, etc.

After this has been accomplished, the lander requires

samples taken from a wider area to complete its preliminary

investigations. The general solution to this problem is the
rover, a vehicle deployed by the lander and used to explore

the local neighborhood and to bring back samples. The

simplest rover design might operate no more than 100 m

from the lander and would remain almost totally dependent

upon it. Such a machine is useful for collecting samples
more free of contamination and more representative of the

surface than those taken nearer the landing site. ttowever,

the Space Exploration Team prefers a more ambitious

design, an autonomous rover able to operate up to 10 km

from the lander. This larger-area capability permits the

lander/rover system to return data which better contributes

to an overall understanding of the geological structures of
complex sites. Such advanced rovers already have been

considered for lunar and martian applications.

It is also necessary to provide the capability of perform-

ing intensive studies at more than one surface landing site.

This flexibility is possible by deploying multiple lander/

rover teams which may be carried from site to site using

powered air vehicles for very-long-distance transport. Physi-

cal samples could also be returned to stationary landers by

similar means. Another possibility is a highly sophisticated

long-range rover having a complete set of instruments and

sample collection and analysis equipment, and designed for
higher speeds, longer traverses (more than 100 kin), and

enhanced survivability over more difficult terrain with more

challenging obstacles. Long-range rovers could visit any

number of distinct geologic regions during their lifetimes

and might be used to deploy a network of stationary

science packages across the surface of the entire planet. The
orbit of the main spacecraft is such as to permit regular

contact with surface vehicles twice each Titan day (once
each Earth week).

The lander/rover system needs extensive machine intelli-

gence capability. Technology requirements are greatest for

a long-range rover operating independently in the absence
of continuous communications with the main orbiting

spacecraft or with Earth. This capability is highly desirable,

since without it the operational demands placed on other
mission elements -such as the subsatellites for ground-to-

orbit Titan uplink or powered air vehicles necessary for

sample and system component transport rapidly may

become unmanageable.

A significant heritage may be expected from experience

gained with the Viking landers and from any future martian

or lunar missions, several of which might be approved and

flown prior to the Titan Demonstration. One potential

major difference is the unknown character of the surface

including the possible existence of open liquids on Titan.

If fluidic features are widespread it may be necessary to

devise new methods of surface mobility and long-distance

planetary exploration. New rover concepts for the reduc-

tion of machine intelligence requirements by decreased
susceptibility to hazards should also be investigated.

Subsatellites. In addition to the main orbiter, subsatel-

lites may be needed for certain specific purposes. One

example is a free-flying spacecraft stationed at the L1

Lagrangian point between Titan and Saturn. This could be
used to monitor the particle/field environment beyond

Titan's magnetosphere, to observe the target atmosphere,
and to communicate with mission elements located on the

Saturn side of Titan. Another example is a tethered sub-

satellite system operating within 100 km of the main

orbiter - such nmltiple devices can more easily distinguish

spatial and temporal variations in particles and fields and

probe the upper atmosphere (which would cause unaccep-
table drag on the main spacecraft if it attempted these

measurements directly).

The subsatellite concept is new to planetary mission

planning, ltowever, these devices currently are projected for

use on the Space Shuttle and also are under consideration

in connection with manned and unmanned orbital plat-

forms. This technology should become available by the

time of the Titan Demonstration (e.g., the spin-stabilization

of Mission relay subsatellites). There may also exist some

commonality with previous planetary missions such as
Pioneer 10/11 and Pioneer Venus.

Atmospheric probes. Several mission components must

be sent into Titan's atmosphere at selected locations to

make in situ measurements of the air and to carry small

instrument packages to the surface. These probes are

deployed by the main orbiter from its 600-km circular

polar orbit, thus permitting considerable flexibility in

choice of geographical entry points and timing. Atmo-
spheric entry probes measure vertical profiles of the atmo-

sphere at the time of deployment, and provide sufficient

information to meet mission objectives at the "explora-
tion" level. The Pioneer Venus, Galileo, and proposed

Saturn Orbiter Dual Probe (SOP 2) missions all include

atmospheric entry probes among their equipment.

One large entry probe and at least three small probes are
necessary to fulfill the major objectives of Titan explora-

tion. As in the Pioneer Venus mission, all probes measure

atmospheric structure, pressure, tenlperature, etc., whereas
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only the large probe takes more detailed data regarding

composition, cloud structure, and planetary heat balance.

(The large probe considered for the Titan Demonstration is

roughly the same size and complexity as the device pro-

posed for the SOP 2 mission.) Both types of probes also

may serve as limited-purpose surface stations.

Powered air vehicles. Many options exist for intensive

atmospheric investigation using still more sophisticated

vehicles. A superpressure or passive hot-air (Montgolfier)

balloon can be designed to float along an isobar for

extended periods of time, providing a continuous record of

wind speeds and other atmospheric data. Tethered balloons

or kites could be used to sample the aerial environment

surrounding a surface station. Powered air vehicles such as

airplanes, helicopters, and dirigibles can study still larger

regions of the atmosphere.

Of the options considered, the powered air vehicle

especially one having an inexhaustible energy supply for

long-term operation appears preferable. Such craft could

be used to support extended surface operations, to conduct

remote-sensing observations near the base, and even to help

collect samples to be returned to the base site for detailed

analysis. Regardless of whether the vehicle is an airplane or

dirigible, it is highly unlikely that much previous experience

will have been acquired with such systems in planetary

missions. While the aerodynamic properties of fliers may

match those of some Earth-based machines, control and

propulsion requirements are likely to differ significantly.

Control problems perhaps may be solved using a combina-

tion of smart sensors and an advanced machine intelligence

capability, together with a satisfactory energy source such

as a 10 kW nuclear-power generator to drive an efficient

propeller. Titan's atmosphere possibly could be utilized fur

the production of propellants or buoyant gas.

Packaging the entire system and deploying it at Titan is

an additional concern.

Surface science network. A scientific network should be

established consisting of at least three permanent sites on

the Titanian surface. The network collects seismographic

and meteorological data needed to infer subsurface struc-

ture and global atmospheric circulation patterns. There are

several ways to establish a network, such as (1) using

long-range rovers to deploy stationary science packages,

(2) deploying surface penetrators dropped from the main

orbiter, and (3) extending the lifetime of the atmospheric

probes (also dispatched from the main orbiter).

The network concept emphasizes long-term observa-

tion as much as 5 years or more on Titan's surface.

Assuming network stations communicate directly to the

main orbiting spacecraft, data must be stored for about a

week following collection before uplinking. Each station

must be able to function in an extremely cold thermal

environment (about 100 K) with internal parts maintained

at reasonable operating temperatures not below 220 K.

Stations must be well-coupled to the planetary surface for

seismometric purposes but must not thaw crustal ices. One

solution is the radiation of excess heat up into the

atmosphere.

All of the above components are relatively simple sys-

tems, mostly achievable using current or foreseeable aero-

nautical technology.

3.2.4 Machine Intelligence and Automation

Requirements

In outlining the operational mission stages for a Titan

demonstration and for the exploration of deep space,

a number of automation technok)gy drivers were identified

in each of two general categories of system functions:

(1) Mission integrity, including self-maintenance, sur-

vival of the craft, and optimal sequencing of scientific study

tasks.

(2) Scientific investigation, including data processing

and the methodical formation of hypotheses and theories.

Both categories impose considerable strain on current AI

technology for development in several overlapping areas of

machine intelligence. These requirements represent

research needs in domains of present concern in the AI

community, as well as new research directions which have

not yet been taken.

Success in mission integrity (fig. 3.4) requires the

application of sophisticated new machine intelligence

techniques in computer perception and pattern recognition

for imaging and low-level classification of data. This also

presupposes the utilization of a variety of remote- and

near-sensing equipment. Onboard processing of collected

data serves to coordinate the distributed systems and

planning activity in terms of reasoning, action synthesis,

and manipulation. More capable remote sensing is the key

to efficient exploration, making more selective and efficient

use of highly complex equipment for atmospheric and

planetary surface monitoring.

With respect to reasoning, automated decisionmaking

emerges as an important research area. Within this field,

development might depart from current expert systems

with advancements coming in the form of interacting simu-

lation models of the processes which structure given

domains and hypothesis formulating logics. New research

directions lie in the areas of alternative computer logics,

self-constructing knowledge bases, and self-learning

systems.

A need has been identified regarding action synthesis, or

procedural sequencing, for representing the relationship

between predetined goal states and the current state, and

for reducing the discrepancy between the two through

automated implementation of subgoals and tasks. Such a

system implies the utilization of a sequential informational

feedback loop. A more difficult problem is simultaneous
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coordinationthroughanticipation,or predictionof the
mostappropriateactionpatternsfollowedbyimplementa-
tionof suchactionbeforealargediscrepancyoccurs.Com-
plementaryto theabovecapabilityisthecapacityforauto-
matedconstructionof unprogrammedgoalstatesasthe
resultof environmentalfeedback.Theselattertwotechnol-
ogydriversfall underthegeneralheadingof automated
learningandarenotpartofcurrentresearchinterestsinthe
AIcommunityatlarge.

Anotherbroadtechnologyrequirementwithinthecate-
goryof missionintegrityismanipulation.A fullyautono-
moussystemshouldbecapableof self-maintenanceand
repair,aswellassamplecollectionfordataanalysisanduti-
lizationin decisionmakingprocesses.The formertask
presupposessomeinitial ability for self-diagnosis,while
both tasksrequirea varietyof effectorcapabilitiesfor
dealingwitha widerangeof situationaldemands.Here,
advancesin roboticswithrespecttohand-eyecoordination
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and force/proprioceptivefeedbacksystemsemergeas
significant.

The technology drivers identified for the scientific inves-

tigation category of mission functions (fig. 3.5) overlap to

some degree those outlined for mission integrity. Auto-

mated intelligent planning is perceived as a general require-

ment in terms of defining scientific goals (both prepro-

grammed and self-generated) and for the definition of

appropriate subgoals. Advanced decisionmaking also is an

essential prerequisite for implementing scientific research

and for conducting experiments. Decisions such as whether

or not an experiment should be carried out, or where and

when it should be conducted, probably could be accom-

plished (as with mission integrity) through extensions of

current expert systems technology.

Reduction of collected sensory data to informational

categories is yet another significant technology driver. A

number of requirements emerge, starting with the ability

to describe data at the simplest perceptual level. A higher-

order task is the addition of data descriptions to a knowl-

edge base for purposes of classification. This classification

may be accomplished in terms of given categories of

knowledge requiring some low-level hypothesis generation

and testing. More advanced is the necessary capability for

reorganizing old categories into new schemes or structures

as a consequence of active information acquisition. Under-

lying this form of classificatory activity is again the self-

learning process of hypothesis formation and testing. Each

of the aforementioned tasks require varying levels of

research and development to transform them into fully

realized capabilities.

Finally, a requirement exists within the area of commun-

ication - transmitting acquired information back to human

users. Here the emphasis is on automated selection pro-

cesses in which an advanced decisionmaking system deter-

mines what information and which hypotheses are appro-

priate and sufficiently interesting to report. The obvious

need to communicate with human beings in this case under-

scores the need for further developments in the field of

natural language interfaces.

A scenario illustrating the great complexity of data

processing and high-level hypothesis formation capability

required for scientific investigation by an autonomous

exploration system is presented in appendix 3C.

3.3 Machine Intelligence in Space Exploration Missions

The advanced machine intelligence requirements for

general-purpose space exploration systems can be summar-

ized largely in terms of two tasks: (1) Learn new environ-

ments, and (2) formulate new hypotheses about them.
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Hypothesis formation and learning have emerged as central

problems in machine intelligence, representing perhaps the

primary technological prerequisites for automated deep

space exploration.

The Titan, outer planet, and interstellar missions dis-

cussed by the Space Exploration Team require a machine

intelligence system able to autonomously conduct intensive

studies of extraterrestrial objects. The artificial intelligence

capacity supporting these missions must be adequate to the

goal of producing scientific knowledge regarding previously

unknown objects. Since the production of scientific knowl-

edge is a high-level intelligence capability, the AI needs of
the missions may be defined as "advanced-intelligence

machine intelligence," or, more briefly, "advanced machine

intelligence ."

3.3.1 A Working Definition of Intelligence

Before an advanced machine intelligence system can be

developed and implemented, the concept must be precisely

defined and translated into operational terms. One way of

doing this is to specify the patterns of inference which

constitute the high-level intelligence - the design goal for
advanced AI systems. Optimally, designers would have at

their disposal an ideal definition of "intelligence" stating

the necessary and sufficient conditions for achieving their

goal. Such a definition, in addition to precisely stating what

intelligence is, also would provide a set of criteria with

which to decide the question: "Does entity X possess

intelligence?" Unfortunately, no generally accepted ideal

definition of intelligence is yet available.

However, a working definition sufficient for the pur-

poses of the present investigation can be formulated. This

inquiry addresses the general question of the characteristics
of an advanced machine intelligence system needed for

autonomous space exploration missions. As such, the inves-

tigation should address two questions in particular: "What

intelligence capabilities must be designed into space explor-

ation systems?" and "By what criteria will it be determined
whether or not the final system actually possesses the high-

level intelligence required for the mission?"

American Pragmatism, the major school of American

philosophy, developed an acount of intelligence that con-

tains the key to a useful working definition (Davis, 1972;
Dewey, 1929, 1938: Fann, 1970;Mead, 1934, 1938; Miller,

1973; Peirce, 1960, 1966; and Thayer, 1968). The major

figures of this school - John Dewey, William James, George
Herbert Mead, and Charles Sanders Peirce - claimed that an

entity's intelligence consists of its ability to reduce the
complexity and variety of the world to patterns of order

sufficient to support successful action by that entity. For

example, human beings have reduced their welter of sensa-

tions to patterns of order, e.g., in comparative distinctions

between nutrients and non-nutrients, chemical qualitative
analysis schemes, and abstract aesthetic concepts. These

patterns are, in turn, the bases of human actions including

(following the above examples) satisfaction of the need for

food, identification of an unknown chemical compound,
and the creation of a work of art.

The Pragmatists further claimed that these action-related

patterns of order exhaust an entity's knowledge. In other

words, all knowledge is action-related indeed, according

to Petrce, "to have a belief is to be prepared to act in a
certain way." This view is summarized in the fundamental

Pragmatist principle that intelligence is always displayed in

action and can be detected only in action. In this view

intelligence is a dynamic process, rather than a static state,

having at least two dimensions. First, unless an entity has a

continuing history of action its intelligence is not displayed,
cannot be detected, and therefore cannot be presumed to

exist. Second, since a given pattern of order is linked to a

related type of action, the success or failure of a particular

action reflects on the "correctness" of the underlying pat-

tern of order. An entity can have a continuing history of

successful activity only if it can modify or replace those

patterns of order which lead to failure. Therefore, an

entity's intelligence is far more than merely the possession

of a fixed stock of knowledge even when this knowledge

consists of action-related patterns of order. Rather, intelli-

gence is the ability to preserve a high ratio of successful to
unsuccessful outcomes.

The Pragmatists' account of intelligence can be summar-

ized by this definition: Intelligence is the ability to formu-

late and revise patterns of order, as evidenced by the even-

tual emergence of successful over unsuccessful actions.

There may well be aspects of intelligence that escape the

definition, but nevertheless it provides a useful framework
for the present investigation. This is because it focuses on

capabilities which must be designed into advanced machine

intelligence systems required for autonomous space explor-
ation, as well as on the criteria with which to test for the

presence of these capabilities.

A working definition of "advanced machine intelli-

gence" in the context of autonomous scientific investiga-

tion of extraterrestrial objects can be formulated by utiliz-

ing the above general definition. The Pragmatists held that

intelligence is a n_atter of degree and that among biological

entities the question is never intelligence versus nonintelli-

gence, but rather the level thereof. The actions by which

biological entities display intelligence range from the
anaoeba's avoidance of toxic materials to the human's

acquisition of scientific knowledge. The patterns of order

underlying this spectrum of activity are characterized by a

wide range of complexity paralleling that of the related

actions. Machine intelligence also admits of degrees. Apply-
ing the Pragmatists' general definition is primarily a matter

of specifying the level of capabilities with which the investi-

gation is concerned.

In particular, application of the general definition to AI

in space applicatic)ns requires interpreting "actions" to
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mean"scientificinvestigationandmissionsurvival"(the
two mostcomplexsetsof tasksfacinganautonomous
exploratorysystem)and"patternsof order"to mean"the
complexabstractiveandconceptualstructuresrelatedto
scientificinvestigationandmissionsurvival"(e.g.,hierarchi-
cal schemesandterrainmaps,respectively).Hencethe
workingdefinitionof advancedmachineintelligencein the
contextof the presentstudymaybe summarizedas
follows:

Advancedmachineintelligenceis the abilityof a
machinesystemto autonomouslyformulateandto
revisethepatternsoforderrequiredforit toconduct
scientificinvestigationsandto survive,asevidenced
by continuedsystemicsurvivalandinvestigatory
behaviordespiteanyenvironmentalchallengesit may
encounter.

This working definition provides ready answers to the

capabilities and criteria issues raised earlier. These responses
may be restated from the above definition as follows:

(1) An advanced machine intelligence system for autono-

mous space exploration must possess the capability to uti-

lize already formulated patterns of order and to devise new

or revise existing patterns of order; and (2) the criteria by

which to determine whether a system actually possesses

intelligence is its observed ability to self-correct unsuccess-

ful actions and eventually to act successfully in situations

novel to the system.

3.3.2 A Systems Approach to bltelligence

Systems analysis may be used to translate the above

definition into practice. Stated in general terms, the design

goal is to achieve a machine intelligence capability to

autonomously conduct scientific investigations and ensure

mission survival. "Intelligence" can be an omnibus term

which refers to a broad range of abilities including "know-

ing," "emoting," "fantasizing," etc. However, only rational

cognition such as "knowing" is immediately relevant to

machine intelligence for space exploration.

Of course, "knowing" is itself an omnibus term having a

range of usages differing somewhat in meaning. In the pres-
ent context it refers to the rational dimensions of intelli-

gence, the processes of acquiring justified, though possibly
fallible, statements about the world and its constituents.

Among those dinaensions are (1) identifying things and

processes, (2) problem-solving, and (3) planning, since the
outcomes of each of these processes are statements about

the world selected from among a number of alternatives

and justified on some basis. The essence of "knowing" in

the context of a given environment is the ability to organize

and thereby reduce the complexity and variety of perceived

events, entities, and processes in the surroundings -- a

broad general class of rational activity required for

machine-intelligent space exploration systems.
A "classification scheme" is any distinction or set of

distinctions which can be used to divide events, entities, or

processes into separate classes. By this measure taxonomies,

analytical identification procedures, scientific laws and

theories (e.g., "F = mr" names, hence, distinguishes forces

and masses), decision criteria (e.g., go/no-go configurations

in a given context), and concepts (e.g., "true" divides all

statements into two separate classes) all are examples of

classification schenres. Thus, a scheme is any statement,

theory, model, formula, taxonomy, concept, categoriza-

tion, classification, or other representational or linguistic

structure which identifies the recurring characteristics of

particular environments.
Tasks by which knowing is accomplished may be divided

into two distinct types: (1) Utilization of preformulated

fixed classification schemes, and (2) generation of new

classification schemes or revision of old ones by formulat-

ing new components for the schemes. These two task types

differ fundamentally both in the characteristics of the
tasks and in the types of inference which underlie them.

When preformulated, fixed classification schemes are

used, outcomes include identifications, classifications, and

descriptions of events, entities, and processes occurring in
the environment. These outcomes take the form of state-

ments of the following general types:

• "X is an entity of type A."

• "Y is an instance of process B."

• "Z is a class-C event."

In each case, perceived constituents of the environment are

matched with the general classes of constituents into which

the classification schemes divide the world. The pattern of

inference underlying this type of task is the analytic com-

parison of actual environmental constituents with "known"

assertions about general environmental characteristics.

Thus, an important aspect of the utilization of classification
schemes is the confrontation of these schemes with the

facts of experience. Knowing of this type cannot be suc-
cessful - indeed, cannot even continue - if the actual state

of affairs in the environment and that postulated by the

classification schemes differ significantly. So, while the

utilization of preformulated classes is an important type of

knowing activity, the actual knowing of a given environ-

ment is deficient if the schemes are incomplete or incorrect.

Knowing can be complete only when new classification
schemes can be formulated and incorrect ones revised.

The creation and revision of classification schemes is the

second major type of task involved in knowing. The out-
comes of this task are either new classification schemes or

new parts for preformulated ones. This task can. in turn, be
divided into subtasks the invention of new or revised

classification schemes and the testing of these schemes for

completeness and correctness prior to general use. Quite

different types of inference underlie these two subtasks.

Testing new or revised classification schemes requires ana-

lytic comparison of the claims made by these schemes with

the facts of the world, exactly the same kind of process
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involved in the utilization of classification schemes. How-

ever, the invention of new or revised schemes demands

completely different types of inference. Two patterns of

inference comprise this advanced activity --"induction"

(included in all standard accounts of inference) and

"abduction" (first described by Peirce, 1960, 1966; see

also Burks, 1946; Fann, 1970; and Frankfurt, 1958) -

as discussed at length below.

The systems approach leads to two important conclu-

sions about machine intelligence (MI). First, MI involves

the ability to utilize existing knowledge structures and to

invent new ones. Second, although the utilization and

invention of classification schemes require the formation of

hypotheses, the inference for formulating hypotheses which

apply existing classification schemes are logically distinct

from the inferences used in formulating hypotheses which

invent new or revised classification schemes (see fig. 3.6).

These conclusions have implications for machine intelli-

gence systems designed for autonomous deep space

exploration. If classification schemes applicable to the

Earth were complete and correct for all extraterrestrial

bodies, then an autonomous system utilizing these schemes

via analytic inferences alone could successfully complete

the knowing process. However, it is probably true that at

least some of the available classification schemes are either

incomplete or incorrect in the extraterrestrial context and,

in any case, the most prudent design philosophy for a space

exploration system would be to assume that gaps do exist.

Under the assumption that novelty will be encountered in

space, an autonomous exploratory system may successfully

complete the knowing process only if it can utilize prefor-

mulated classification schemes and also invent new or

revised ones, that is, only if it can make inferences of the

inductive and abductive types in addition to inferences of

the analytic type.

3.3.3 Patterns of Inference for Hypothesis Formation

Analytic, inductive, and abductive inferences will now

be characterized in terms of the information inputs and

outputs of each. An existence argument for abductive infer-

ence, which also establishes its centrality to scientific inves-

tigation, is offered, and the process involved in abduction is

characterized in some detail. Finally, the requisite state of

development for each of the three basic inferential types is

contrasted with AI state of the art in the context of

autonomous scientific investigation, the ultimate goal.

Analytic inferences are logical patterns by which existing

scientific classification schemes (principles, laws, theories,

and concepts) are applied to information about the events

and processes of the world for the purpose of producing

identifications and descriptions of these events and pro-

cesses as well as predictions and explanations about them

(Alexander, 1963; HarrY, 1960; Hempel, 1965, 1966;
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Popper, 1963; Wisdom, 1952). This information itself is

produced by applying current scientific classification

schemes to raw data in an attempt to structure and inter-

pret it. The reasoning is deduction, whether formal deduc-

tive logic or other deductivist analytical procedures. Models

play an important, though indirect, role in analytic infer-

ence (Hanson, 1958; Kuhn, 1970; Toulmin, 1960). The

quantitative and symbolic information and the identifica-

tions, descriptions, predictions, and explanations which are

the outputs of analytic inferences are derived from detailed

knowledge such as equations, formulas, laws, and theories.

However, standing behind this detailed knowledge is a fun-

damental model of the "deep structure" of the world

which, in effect, provides a rationale for applying that

particular kind of detailed knowledge to that specific data.

For instance, the kinetic-molecular theory of gases is one

such fundamental model whose scientific function is to

provide a rationale for searching and then applying a par-

ticular kind of detailed knowledge about gases. Figure 3.7

shows the input/output structure of analytic inference.

Inductive inferences are logical patterns for moving from

quantitative or symbolic information about a restricted por-

tion of a domain to universal statements about the entire

domain (Cohen, 1970; Good, 1977; Hilpinen, 1968;

Horton, 1973; Lehrer, 1957, 1970; Rescher, 1961; Salmon,

1967; Skyrms, 1966). There are two somewhat different

aspects of inductive inference: Inductive generalization and

abstraction. In inductive generalization, some finite set of

measurements of an independent variable and its dependent

variable are generalized into a mathematical function which

holds for all possible values of those variables. Alterna-

tively, in abstraction, some finite set of symbolic represen-

tations of just a few members of some domain is the basis

for inferring some abstractive characteristic common to all

members of the domain. Examples of abstraction include

moving from a set of white objects to the concept of

"white," and inferring from the information that all

observed ravens are black; the principle that being black is a

defining characteristic of ravens. As was the case with

analytic inferences, models play an important though

indirect role (Hanson, 1958; Kuhn, 1970; Toulmin, 1960).

These models serve to restrict the range of mathematical

functions or abstractive concepts that can characterize a

domain, hence, they focus the inductive inference from

information to generalization. For instance, we know that

Robert Boyle was guided in the processing of pressure and

volume data by a model of gases that required volume to

decrease while pressure increased (Toulmin, 1961). Fig-

ure 3.8 suggests the input/output structure of inductive

inference.

Abductive inferences are logical patterns for moving

from an input set that includes:

• some theoretical structure T consisting of models,

theories, laws, concepts, classification schemes, or

some combination of these,

• some prediction P derived from T by means of an

analytic inference, and

• some set of quantitative or symbolic data D which

contradict P (D = not-P),

F
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Figure 3. 7. - Analytic inference.
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to an output set that includes:

• a new or revised theoretical structure T*,

• a prediction P* derived from T*, and

• a set of quantitative or symbolic data D* which both

agrees with P* and is the representation of D in T*;

that is, D* = P* and D* is the mapping of D onto T*

(Burks, 1946; Davis, 1972; Dewey, 1929, 1938; Fann,

1970; Frankfurt, 1958; Gravander, 1975, 1978; Hanson,

1958, 1961, 1965, 1967, 1969: Kuhn, 1957, 1970, 1977;

Lakatos, 1970, 1976, 1977; Mead, 1934, 1938; Miller,

1973; Peirce, 1960, 1966; Simon, 1965; Toulmin, 1960,

1961, 1972; Van Duijn, 1961). Models play a far more

important role than in just analytic and inductive infer-

ences: In abduction, fundamental models of processes

structuring the world enter directly into the inference. Such

models sometimes are the component of a theoretical struc-

ture replaced or modified by the inference. Of course, not

every replacement or revision of the theoretical structure

involves model modification. Those abductive inferences

which revise or replace such components as laws or general-

izations take the model to be a premise of the inference.

The input/output morphology of abductive inference is

shown in figure 3.9.

Probably there exists a family of abductive inference

species. However, all members of this family must bear

many resemblances to one another. Two such family char-

acteristics are particularly important. First, the logical

impetus behind the transition from T to T* is the ability of

T* to explain data which T cannot. Second, the attainment

of explanation involves a re-representation of informa-

tion - i.e., T fails to explain D and T* explains D*, where

D* is not D but rather the representation of D in T*. As

Lakatos (1976) notes, "discovery" is a process in which a

theory stated in language L fails to explain a fact; therefore,

it cannot adequately be represented in L, so a theory stated

in L _ must be found to explain it and allow its representa-

tion in L'.

Virtually all standard accounts of scientific investigation

include analytic and inductive inferences as important com-

ponents of the logic of science. Abductive inferences are

not as widely accepted or understood. Nevertheless, numer-

ous detailed analyses of actual scientific discoveries have

demonstrated that there are inferences in these discoveries

that are neither analytic nor inductive in nature (Gravander,

1975; ttanson, 1958; Kuhn, 1957; kakatos, 1977;

McMullin, 1978). Examination of these scientific discover-

ies establishes that the researcher involved in the discovery

possessed a determinate set of initial information, including

some existing theory and data contradicting a prediction of

the theory, and that there is a detailed inference which

takes this initial information as its premise and provides the

discovery as a conclusion. Whether it is possible to prove

that the scientists in question actually followed this infer-

ence step by step is irrelevant insofar as the present investi-

gation is concerned. The analyses reported demonstrate the

existence of a family of nonanalytic and noninductive

inferences which produce new or revised theoretical struc-

tures as output. This demonstration constitutes an exis-

tence argument for abductive inference.

it cannot be emphasized too strongly that the analysis of

actual scientific discoveries is valid only as an existence

argument for abduction, not as a research program for

mechanizing it. Investigations into the logical process
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underlyingabductiveinference certainly is a first step

toward mechanizing the invention of new or revised scien-

tific laws and concepts. But these inferences cannot be

demonstrated to be the inference which the scientist fol-

lowed to the new notion, rather, only an inference having

this new notion as its conclusion. Thus, it is not at all clear

that a theory of abduction adequate for machine intelli-

gence applications must await a full understanding of

human cognition. Quite the contrary; the preferred

approach is to attempt to develop a theory of abductive

inference on the basis of a direct logical analysis, retreating

to the more fundamental problem of human cognition only

if the techniques of logical analysis fail.

To consider what might be expected from a direct attack

on the logic of abduction a brief characterization of infer-

ential steps constituting such inference is presented below.

This characterization takes the viewpoint of some unspeci-

fied knower "X," either a scientist or an abductive machine

intelligence system.

(1) X is surprised while using theoretical structure Tby

some occurrenc e , 0, because 0 is not among X's set of

expectations that are based on T.

(2) X represents 0 by a determinate set of data, D.

(3) X demonstrates that D is more than simply unex-

pected; it is anomalous in the sense that T predicts not-D.

(4) X traces not-D back to those components

[T1 ,T2,...] of its total theoretical structure which entered

directly into T's prediction of not-/).

(5) X determines which element, T/., in [T1 ,T_ .... ] is

the most likely "villain" behind X's misexpectation.

(6) X attempts to reformulate 1) in such a way that

when the new 7)* is substituted for Tj in a revised T*, 0

can be represented by D* which, in turn, is predicted by

7*. (If successful, the next step is (9) below.)

(7) If not successful, X repeats steps (5) and (6) above

with the remaining elements of [T1,7"2 .... ] in order of

decreasing likelihood until all possibilities are exhausted.

(If successful, the next step is (9) below.)

(8) If still not successful, X repeats steps (5) and (6)

with the remaining elements of T, in order of increasing

theoretical content and scope, the last component tried

being the fundamental "deep structure" model itself.

(9) X makes all adjustments in T* necessitated by the

adoption of T].*, including generating a new set of expecta-
tions 0".

(10) X uses T* until tile next "surprising" occurrence.

This characterization of abduction, though not as

detailed and precise as that which would result from further

investigation, is precise enough to suggest three key prob-

lems standing in the way of mechanized abductive infer-

ence. First, how should 0 best be represented as data so

that later re-representation is facilitated, and how should

these re-representations be performed? Second, is the initial

selection of "villains" best achieved by parallel search, hier-

archical serial search, or some other technique? Third, can

the formulation of the T].* replacement of TI be captured in
a stepwise inference in which preceding steps uniquely con-

strain the selection of the next succeeding step, or must

some other technique be used? Note that all of these may

be addressed on logical grounds, independent of the

broader questions of human cognition.

THEORETICAL STRUCTURE, T
(MODELS, THEORIES,

LAWS, CONCEPTS,
AND/OR CLASSIFICATIONS)

PREDICTION, P,
DERIVED FROM T

DATA, D,
WHERE D = NOT P

=--I ABDUCTIVEPROCESSOR

I NEW OR REVISED
THEORETICAL STRUCTURE,

T*

:_] PREDICTION, P*,
DERIVED FROM T*

._ DATA, D*,

WHERE D* = P* AND
D* ISTHE REPRESENTATION

OF D IN T*

A FAMILY OFABDUCTIVEPROCESSOR = ABDUCTIVE INFERENCES

Figure 3.9.- A bductive inference.

63



Finally, it is instructive to contrast state-of-the-art AI

treatments of analytic, inductive and abductive inference

with the optimal treatment required to achieve working
machine intelligence systems with highly advanced capabil-

ities. (See also chapter 6.) First, with respect,to analytic

inference, current AI research is not addressing the central

problem of supporting the detailed knowledge in the classi-
fication schemes with fundamental models. Second,

although some preliminary work has been done in mecha-

nizing inductive inference (Hajek and Havranek, 1978), this

work also has not adequately addressed the basic problem
of connecting fundamental models to the generalizing pro-

cess. Third, only tentative steps have been taken in the

development of mechanized abductive inference (Hayes-

Roth, 1980), and even these efforts are not grounded on a

mature theory of abduction for machine intelligence.

3.3.4 The Inference Needs of Autonomous Space

Exploration Systems

For an autonomous space exploration system to under-

take knowing and learning tasks, it must be capable of
mechanically formulating hypotheses using all three of the

distinct logical patterns of inference, as follows:

• Analytic inference needed by the explorer system
to process raw data and to identify, describe, predict,

and explain events and processes in terms of existing

knowledge structures.

• Inductive inference - necessary to formulate quanti-

tative generalizations and to abstract the common

features of events and processes, both of which

amount to the invention of new knowledge
structures.

• Abductive inference needed by the system to for-

mulate hypotheses about new scientific laws,

theories, models, concepts, principles, and classifica-

tions. The formulation of this type of hypothesis is

the key to the ability to invent a full range of novel

knowledge structures required for successful and
comprehensive scientific investigation.

Although the three patterns of inferences are distinct

and independent, they can be ordered by difficulty and

complexity. This ordering is the same as comparing their

ability to support the invention of new knowledge struc-
tures. Analytic inference is at the low end. An automated

system that performs only this type of inference could
probably undertake reconnaissance missions successfully.

Next is inductive inference. A machine system able to per-
form this type as well as analytic inference could success-

fully undertake missions combining reconnaissance and

exploration, provided the planet explored is represented

well enough by the fundamental models with which the

system would be preprogrammed. But if the processes

underlying the phenomena of the new world are not well-
represented by the fundamental models, automated com-

bined reconnaissance and exploration missions will require

abductive inference. Abduction is at the top of both
orderings. It is the most difficult as well as the heart of

knowledge invention. An automated system capable of

abductive reasoning could successfully undertake missions

combining reconnaissance, exploration, and intensive

study.

3.3.5 Cognitive Processes in Intelligent Activity

One significant technology driver in fully autonomous

space exploration is the capacity for learning and the need
for adaptive forms of machine intelligence in future space

missions (fig. 3.10). However, a review of the literature

(Arden, 1980: Boden, 1977; Raphael, 1976) and personal

consultations with experts in the field of AI indicate that

theoretical and technological research in this area has not

seriously been pursued for many years.

For this reason it is useful to approach the goal of adap-

tive intelligence from the perspective of a related field of
study in which it has already received considerable atten-

tion: Cognitive psychology. Clearly, descriptions of human

thought processes leading to intelligent behavior cannot

serve as a direct template for machine intelligence program-

ming it is a recognized philosophy of the AI community

that software need not exactly mimic human processes to

achieve an intelligent outcome. Rather, the objective is to

describe some aspects of human cognition in hopes of

bridging the gap between present limitations in the AI field

and the level of machine intelligence likely to be needed in
future space exploration missions.

Perception and pattern recognition. The most funda-

mental kinds of intelligence are perception and the related

activity of pattern recognition. Each has been the subject of

much study by cognitive and physiological psychologists.

For example, evidence from Sperling (1960) suggests that

perceptual input is held briefly in a sensory buffer register,
thus, permitting the activation of control processes to

encode the data in terms of meaningful categories. Stimuli
presented to the human sensorium arrive in conscious

awareness first as some perceptual-level description, then

later with some useful label attached. Exactly how these

processes work remains unknown, in part because percep-

tion occurs below the subject's level of awareness. Progress

to date provides only partially integrated theories of

perceptual data handling, yet these are sufficiently well-
developed to deserve a brief review in the context of the

present study.

A definition of perception at the descriptive level, popu-

lar in the psychological literature, holds that sensory pro-

cessing is essentially inferential or interpretive, based on
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raw sensory cues available in the environment, and pro-

duces and subsequently tests interpretations about what the

world looks like. The percept is the phenomenological

result of the interpretation. In this view, perception is a

subconscious, "hard-wired" constructive process involving

the formation of a hypothesis, a test of that hypothesis,

and a consequent decision as to whether the hypothesis

accurately encompasses the sensory information. The litera-

ture of psychology contains much evidence to support such

a description as a reasonable characterization of human

perception (Neisser, 1967; Rock, 1975), and the AI com-

munity has accepted, in principle, a similar view (Arden,

1980). However, the techniques and operations typically

employed to achieve computer pattern-sensing generally

fail to properly incorporate the notion of perception and

recognition as active constructive processes.

Cognitive psychological theory has largely emphasized

two general approaches in characterizing pattern recogni-

tion schemes template matching and feature extraction

theory. Each has a different focus of attention with respect

to the three major aspects of recognition called "descrip-

tion," "representation," and "matching" (of new images

against stored representations).

Template matching theorists propose that a literal copy

of perceived stimuli stored in memory is matched against

new incoming stimuli. Although this view has been criti-

cized as too simplistic and naive (Klatsky, 1975; Neisser,

1967), updated versions of the hypothesis still h_old sway.

For instance, one modification retains the notion that

literal copies are stored in memory but suggests that new

percepts are "normalized" before matching. In this view,

some precomparison processing takes place in which edges

are smoothed out, oriented in the appropriate plane, and

centered with respect to the surrounding field. In addition,

image context helps in the normalizing process by reducing

the number of possible patterns the stimulus might match

(Ktatsky, 1975). In the field of AI technology, the

Massively Parallel Processor or "MPP" (an imaging system

currently under development at Goddard Space Flight Cen-

ter) uses visual data-handling techniques with characteristics
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Figure 3.10.- Adaptive machine in telligence for advanced space exploration.

65



remarkablysimilarto thosedescribedin thenormalizing
andtemplatematchingtheories.Giveninformationonits
sensoryperspectiveandimagesstoredin its memory,the
MPPperformsprecomparisonprocessingtoorientincoming
imagesforcompatibilitywithstoredimages.

Anotherhypothesisof perceptionwithsimilarassump-
tionsis featuredetectionor featureextractiontheory.
Accordingto thisformulationapatternmaybecharacter-
izedasaconfigurationofelementsorfeatureswhichcanbe
brokendownintoconstituentsubcomponentsandputback
togetheragain.Recognitionis a comparisonprocess
betweenlistsof storedfeatures(whichwhencombined,
constituteapattern)andfeaturesextractedfromincoming
stinmli(Klatsky,1975).AnearlytheoreticalAI modelof
the featuredetectionhypothesiswasPandemonium
(Selfridge,1966).Thissystemperformsahierarchicalcom-
parisonof low-levelthroughhigher-orderfeaturesuntilthe
incomingpatternisrecognized.Morerecentsceneanalysis
paradigmshavegrownfromsimilarassumptionsthatthe
rawscenemustbe"segmented"intoregions,oredgesof
regions,outof whichdesiredobjectsmaybeconstructed
(Arden,1980;Barrow,privatecomnmnication,1980).
Scene-analysismodelsdevelopedon thebasisof higher-
orderfeaturesof greatercomplexitythanthoseproposed
by Selfridgehaveachievednroderatesuccessin limited
environments.Themajorproblemisthatthesystemcan
onlydealwithfamiliaror expectedinputdata.All cate-
gorieswithinwhichitemsarerecognized,mustbeexplicitly
definedby theprogrammerin termsof theirsubcompo-
nents.Thiseliminatesthepossibilityof recognitionpro-
cessesinnovelenvironments.

Reviewedtogether,templatematchingand feature
detectionreflecttheprocessesmodeledbymostAIimaging
andpatternrecognitionresearch.Itence,currentAIsystems
areincapableof handlingnewcategoryconstructionand
otheradvancedperceptualtaskswhichmightberequiredin
futurespacemissions.Thislimitationsuggeststhat an
alternativeapproachto theproblemof automatedpattern
recognitionmaybeneeded.

Despiteabundantresearchsupportingtheexistenceof
featuredetectorsin humans(HubelandWiesel,1966;
Lettvin et al., 1959), other evidence suggests that feature

and template theory do not provide a complete explanation

of recognition. The above approaches are regarded today as

unsophisticated in their conception of how events are men-

tally represented, and erroneous in ignoring the problem of

how representations are achieved. Experiments conducted

by Franks and Bransford (1971) indicate that the human

mental representation used for feature colnparison may be

prototypical and holistic rather than literal and elemental.

That is, what is actually stored in memory is the product of

an active construction, developed over time. In this view

the cognitive system extracts and stores the converging

"essences" of items to which it is exposed, and this abstrac-

tion is then utilized in the recognition process. The empha-

sis is on conceptual representational construction and

conceptually driven (top-down) processing, rather than

matching and data-driven (bottom-up) processing. The

advantage of a prototype approach to perception is that

minor distortions or transformations within a limited range

will not interfere with the recognition process.

The prototype approach may be considered in terms of

two different aspects the abstract analogical nature of

representation and category or concept construction. With

respect to machine intelligence, perhaps the closest approxi-

mation to the notion of prototypical representation is illus-

trated by Minsky's "frame" concept. A frame in Minsky's

formulation is a data structure for representing a stereo-

typed situation (Minsky, 1975) and corresponds in many

ways to the psychological notion of schema (Bartlett,

1961). Though not really analogical in nature, the frame

conception contributes to scene analysis by permitting the

system to access data in a top-down fashion and to utilize

generalized information without relying on simplistic

features. The frames, however, must be described within

the system by a programmer and are relatively static. There

is no capability for frame reorganization as a result of

experience.

Consider now the second aspect of the prototype

approach, the construction of abstract categorical represen-

tations. Category construction may be viewed as a brand of

concept formation. Experimental evidence suggests that the

formation of new conceptual categories is the result of a

hypothesis generation and testing process (Levine, 1975) in

which recursive operations are evoked which infer hypothe-

ses about how a number of particulars are related and then

test those hypotheses against feedback information from

the environment. Some additional evidence suggests that a

number of these hypotheses may be tested simultaneously

(Bruner et al., 1956). The result is considered an abstract

analogical representation capturing an essence which sub-

sumes all the particulars. Since the hypothesis theory of

concept formation typically has been considered in the con-

text of conscious processes, it may seem somewhat far

afield of perceptual processing. However, since perception

itself has been described as an unconscious inferential

process, it may be the case that similar underlying logical

operations are at work in the formation of higher-order

concepts, prototypes, and in perceptual construction. The

precise nature of acquisition, how an "elegant" hypothesis

is formed, is not dearly specified in any of these theories.

(See section 3.3.3.t

Only a minimal amount of work has been done on AI

approaches to the formation of new conceptual structures.

A classic attempt was Winston's concept formation program

in which a machine was taught through example to acquire

new concepts (e.g., the architectural concept of "arch").

Using informational feedback from the programmer as to

whether a particular example illustrated the concept or not,

and by assessing the essential similarities and differences
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among the examples it was shown, Winston's software

created structural descriptions of the essentials of the con-

cept in the form of a semantic network.

The function of such a program may appropriately be

defined as concept learning. However, the programming

techniques appear more closely wedded to the notion of

concepts as feature lists rather than as prototypical, analogi-
cal structures. This "feature view" has theoretical limits in

the domains of human and artificial intelligence since a

number of abstract categories can be identified in which
constituent members have a few or no structural features in

common but whose relationship is either more functional

in nature or salient "in more broadly specifiable terms"

(Boden, 1977; Rosch and Mervis, 1975). Salience for
Winston's program relates only "to categorizations made

by its human teacher for human purposes" (Boden, 1977).

It is difficult to see how a program with a feature list

assumption could move beyond predefined categories to
handle the construction of new abstract concepts. This is a

significant constraint on state-of-the-art A1 technology in
terms of future space missions requiring autonomous

exploration in novel environments where "there is no

guarantee that categorizations previously found useful
would still be salient" (Boden, 1977).

Genetic epistemology. One final consideration with

respect to intelligent activity comes from Jean Piaget's

work on genetic epistemology. This topic is relevant to the

issues addressed in this chapter because genetic epistemol-

ogy offers one of the most comprehensive views of intelli-

gence to be found in the literature today. Piaget's concep-

tions of the underlying processes of "natural" intelligence

encompass the behavioral and cognitive activities of humans
and animals. Moreover, the processes are sufficiently

general possibly to be captured in a nonliving artifact which
would then serve as an effective realization of non-natural

intelligence (Piaget, 1970).
How can intelligence be characterized in terms of struc-

tures and processes so that it might be embodied in a com-

puter system? One important assumption of Piaget's theory

is that any account of the evolution of cognitive activity

and intelligence must include the nonteleological aspects of

adaptation and purpose. The process of equilibration, a
regulative function which propels the subject toward more
inclusive and stable interactions with its environment, is

basic to the theory. The deterministic result of equilibrium

is seen as a characteristic structuring of the relations

between subject and environment (Piaget, 1963).

There are two processes that subjects must coordinate in

order to achieve a state of equilibrium: Assimilation and

accommodation. Assimilation, exhibited by all organisms, is

the functional aspect of structure formation by which sub-

jects, acting on their enviromnent, modify it in terms of

existing structures (Piaget, 1970). Each organism possesses

a set of generalized behavior patterns, or action schemes,

which support its repetitive modification of its environment

for the purpose of producing an expanded set of interac-
tions. Accommodation is the modification of the assimila-

tory cycle itself as a result of the subject's interactions with

its surroundings (Piaget, 1963). Accommodation involves
the transformation of existing structures in response to
continuous environmental stimulation. The result is the

construction of new categories of experience which then

become part of the organism's general behavioral

repertoire.

For Piaget, these "schemes" are the basic units for struc-

turing knowledge (Rosenberg, 1980), the means by which
all overt behavioral and cognitive activity is organized. The

notion of "scheme" defined by Piaget has certain similari-

ties to Minsky's "frames" as the basic units of knowledge

representation. Both notions imply a top-down processing

schedule for intelligent activity. However, the two notions
differ dramatically in terms of their dynamics. The frame

permits a kind of assimilatory activity (organization of par-

ticulars within its structure) but the structure itself is rela-

tively static there seems to be no possibility for reorgani-

zation of the structure (the frames) in response to

experience. Alternatively, the scheme emphasizes both
assimilative and accommodative processes. Accommodation

in this case is the restructuring of available schemes into

new higher-order schemes which subsume all previous par-
ticulars while simultaneously permitting the inclusion of

new ones. Again the primary gap between the level of intel-

ligence available with current AI approaches and that which

characterizes more advanced intelligent activity appears in

the domain of emergent change. Transforming present

knowledge structures into new higher-order schemes is a

prerequisite for fully intelligent activity, and this capability

is absent from state-of-the-art AI techniques.

While the utilization of a genetic epistemological frame-

work has not yet received much study by researchers in the
AI field, it has attracted some recent attention in other

quarters. For instance, Rosenberg (1980) suggests a number

of ways to blend Piaget's theory and current AI methodol-

ogy to their mutual benefit. Perhaps this represents the

beginning of a recognition of the need for comprehensive
formulations of natural intelligence to be incorporated into

the development of a theory of intelligence in nonhuman
artifacts.

3.4 Technology Drivers for Automated Space Exploration

The most important single technology driver for auto-

mated space-exploration missions of the future is advanced

machine intelligence, especially a sophisticated M! system
able to learn new environments and to generate scientific

hypotheses using analytic, inductive, and abductive reason-

ing. Within the AI field the most powerful technology
driver is the demonstrable need for an abductive inferential

capability useful for inferring new successful knowledge
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structuresfromfailedones.Requiredmachineintelligence
technologiesinclude:

• Autonomousprocessing(essentiallynoprogramming)

• Autonomous"dynamic"memory

• Autonomouserror-correction

• Inherentlyparallelprocessing

• Abductive/dialecticlogicalcapabilities

• Generalcapacityfor acquisitionandrecognitionof
patterns

• Universal"TuringMachine"computability.
Numerousothersupportingtechnologiesalsoareessen-

tial for thestagingof autonomousspaceexplorationmis-
sions,includinglow-thrustpropulsionsystems;general-
purposesurfaceexplorationvehiclesableto functionon
bothsolidandfluidsurfaces;reconfigurablesensornetsand
smartsensors;flexible,adaptivegeneral-purposerobot
manipulators;anddistributedintelligence/databasesystems.
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APPENDIX 3A

WHY INTERSTELLAR SPACE EXPLORATION?

The first question a skeptic today might ask is: "Why an

interstellar mission?" (fig. 3-11). Twenty years ago many

people similarly inquired "Why go to the Moon?" Besides
political reasons, there were other goals when the Apollo

Program began. For instance, scientists had high hopes for

a better understanding of the Earth, the Moon, and the
Universe. Yet, although the Solar System is many worlds

with countless strange phenomena, still its scientific trea-

sures are miniscule in comparison to those of the Galaxy.

Interplanetary space travel is no longer a dream, but a

reality - the new dream is interstellar space travel.
Mankind cannot survive forever tied to the cradle of

the Earth. In perhaps six billion years our Sun will burn

itself out, exhausted of its thermonuclear fuel. But Earth

should become uninhabitable long before that. Nuclear

war, asteroid collisions, or innumerable other planet-scale

disasters could wipe out much of terrestrial life including

mankind. The human species remains at risk until

humanity extends itself beyond its homeworld. As a young

person eventually must leave his parents' home to seek his

own path, so must mankind extend its grasp far beyond its

ancestral birthplace. Interstellar travel offers the hope of

ultimate long-term oeroetuation of human life.

We, as a species, possess a deep instinct to survive.
Adventure and risk attract many people. It is possible to

imagine a manned interstellar mission with all of the above

in mind and more, and to dream of life afresh on an alien

world with room to grow and a chance for countless new

beginnings. Is this really so different from the early settlers
who crossed the Atlantic in search of a "New World?"

4"

+

+

_ j_. T , , --

+

Figure 3.11.- A spacecraft sent out to the stars to discover and explore new worlds.
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APPENDIX 3B

EXCERPT FROM HYPOTHETICAL TITAN MISSION LOG

1. Central Spacecraft Computer.

a. Monitors progress of all operations.
b. Initializes all tasks.

c. Keeps log and communicates to Earth.

d. Makes and tests hypotheses when anomalies from
predefined "Planet Model" are found.

2. Spacecraft Imager.

a. Records images in "snapshot" fashion (on retina-like
array of detectors).

b. Finds features asked for by central spacecraft
computer.

c. Notes anomalies in images from predefined "Planet
Model."

d. Is capable of describing images in terms of predeter-

mined concepts.
e. Updates "Planet Model'; with new information based

on image input.

3. Spacecraft Control Image Processor.

a. Processes data scanned by visible, IR, microwave, and

other image sensors. Puts data into "Planet Model."

b. Performs tests asked for by Central Spacecraft Com-
puter on this data.

c. Identifies surface features and matches features to

concepts stored in "Planet Model."

d. Updates "Planet Model" based on new information.

4. Lander Central Image Processor.

a. Main lander vision processor capable of looking in
any direction.

b. Performs scene analysis to locate objects of interest

on surface and to locate position of lander.

c. Retinal-type sensor input.
d. Adds surface data to "Planet Model."

5. Lander Guidance Image Processor.

a. Processes image data to determine safe path from

present location to assigned destination.

b. Updates "Planetary Model" contour map.

c. Finds obstacles on ground during descent.

6. Central Lander Computer.

a. Handles requests from central spacecraft computer.

b. Plans lander actions based on these requests.

c. Assigns tasks to Lander Central Image Processor and
Lander Guidance Image Processor.

HYPOTHETICAL SHIP'S LOG- SPACESHIP TITAN

July 4, 2010

REPORT: CENTRAL SPACECRAFT COMPUTER

(CSCC)

9:00 am GMT Have Titan in view on spacecraft imager.

Based on size of disk at 300 mm focal length, we are
504300 km from satellite. This agrees -+100 km with
microwave (5680 GHz) ranging system.

9:10amGMT Zoomed to 3000 mm focal length.
Approximately 5:30 am local zero meridian time.

OBSERVATIONS - SPACECRAFT IMAGER.

1. Satellite generally dark in appearance with some light
blotches. Surface appears smoother than Earth's
moon.

2. No polar caps observed.

3. Terminator sharp.

4. Limb at equator bright at surface.

HYPOTHESIS: CSCC This indicates high-density model
of atmosphere to be correct.

QUERY: CSCC High-density atmosphere does not agree
with sharp terminator observed.

CSCC TO SPACECRAFT 1MAGER:

Task 1: When at range 20000 km, observe limb using
spectral analysis procedure.

Task 2: Measure spectral reflectance over 200 km ×

500 km area centered on terminator at equator.

OBSERVATIONS SPACECRAFT IMAGER (cont.).
5. Several dark areas on surface near limb at 40 ° north

latitude. Perpendicular projection would show these

to be roughly circular. Areas very dark in center but

lightens (like an inverse conic function) toward edges.
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CSCCTOSPACECRAFTIMAGEPROCESSOR:
Task3: Whenin orbit,correlatecontourmap,spectral

data,andgeologicalanalysisoverthisareato
testforpossiblevolcanicactivity.

July10,2010

REPORT:CSCC

1:30pmGMT - Disk size at 300 mm focal length indicates

range 20100 km from satellite. Agrees -+100 km with

microwave ranging system.

1:35 pm GMT - Terminator observed through 560 nm,

630 nm, and 1080 nm spectral bands. Relative average

reflectance 0.2, 1.5, 0.1, respectively, indicating dense

atmosphere refraction properties.

QUERY: CSCC - Since dense atmosphere hypothesis was

reinforced, Why sharp terminator?

CSCC TO SPACECRAFT IMAGER:

Task 4: Cancel Task 1.

Task 5: Measure geological activity in this area during
orbit.

July 20, 2010

REPORT: CSCC

7:55 am GMT - Orbit insert completed at 6:00 am. Begin-

ning Titan resource survey for Planet Model. Visible, IR,
and microwave scanners operating. Data being processed

and stored. Contour map being generated. Gravity

anomaly experiment initialized.
8:00 am GMT OBSERVATION - SPACECRAFT

IMAGER

1. White haze in image slightly obscuring surface. Cloud-

like rather than bright surface.

CSCC TO

Task 6:

Task 7:

SPACECRAFT IMAGE PROCESSOR:

Check Planet Model stereo imagery to verify
haze above surface.

Response: Spacecraft Central Image Processor.
I. Verifies, white haze is above surface.

Check stored spectral data to estimate spectral
characteristics of haze.

Response: Spacecraft Central Image Processor.

1. Spectrum of samples areas matches methane.

OBSERVATION - SPACECRAFT IMAGER

1. Presently over black blotches noted

approach.

on Titan

CSCC TO SPACECRAFT CENTRAL IMAGE

PROCESSOR:

Task 8: Initiate Task 3 Examine topography data

over black areas.

Response: Spacecraft Central Image Processor.
1. Contour map shows 3 circular black areas to

be conic depressions 10 kin, 5 km, and 6 km,

respectively, in depth.
2. Spectral data indicates third IR band reflec-

tance to be 1.6 times surrounding average in

these areas.
3. Thermal IR indicates 100 ° K at centers of

cones decreasing to 50 ° K at edges.

HYPOTHESIS: CSCC - Assume black areas to be craters.

CSCC TO SPACECRAFT CENTRAL IMAGE

PROCESSOR:

Task 9: a. Analyze area surrounding black regions for

height.
b. Examine geological data for lineaments in

surrounding area.
Response: Spacecraft Central Image Processor.

1. Inannuli(Rl<r<l.lRl;R2<R<l.2R2;

and R3 < r < 1.15 R3) surrounding each

black area (B l, B2, and B3); depth decreases

from inside edge to outside edge by 1 km,

0.5 km, and 2 km, respectively.
2. Radial lineaments exist inside annuli. None

outside.

COMMENT: CSCC - Crater hypothesis reinforced, since

very warm in center, assume to be volcanic in origin.

CSCC TO SPACECRAFT IMAGER AND CENTRAL

IMAGE PROCESSOR:

Task 10: Initiate Task 5 - Analyze geological activity

at terminator.

Response: Spacecraft lmager.

1. Texture in grey levels along terminator
indicate mountain size shadowing.

Respond: Spacecraft Central Image
Processor.

1. Contour map indicates mountain range
i

generally parallel to terminator from 70 °
south latitude.

REPORT: CSCC Present knowledge indicates mountains

can cause sharp cutoff of light. Unless contradictory evi-

dence, assume mountain range at terminator causes

observed sharp cutoff of light at terminator.
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July 29, 2010 July 31, 2010

REPORT: CSCC

8:25 am GMT - Initial Planet Model completed. Atmo-

spheric sounder indicates planned descent to surface

procedure possible. Beginning procedure for finding
highest priority landing target.

CSCC TO SPACECRAFT CENTRAL IMAGE
PROCESSOR:

Task 51: Correlate parameters for most desirable land-

ing site with surface model.

Response: Spacecraft Central Image
Processor.

1. Highest priority areas - Those indicating
possible carbon-based life or structures

made by intelligent beings. None indi-
cated by Planet Model.

2. Next highest priority - Areas indicating

possible H20. No indication of present
H20 by surface model. Possible ancient
riverbed 25°-27°N. latitude and 34 °-

38 ° W. longitude. Topology map indicates

possible target 25.1 ° N. latitude and

36.8 ° W. longitude. Target is within lander
range of stratified river bank-like
structures.

July 30, 2010

REPORT: CSCC

9:45 pm GMT - Have loaded site model into Lander

Central Image Processor. Task sequences programmed
to deploy parachute at 100 km, begin wind deter-

mination and parachute descent path modification at

45 km. Parachute to be ejected at 2 km. Landing

rockets and obstacle avoidance imaging system to be
initiated at 1500 m.

10:31 pm GMT - Initiating Lander Descent.

Response: Lander Central Image Processor.

1. Have locked onto target area.

2. Estimated ground drift and surface wind indicates
parachute descent direction modification of 265 °

and 3.1 km necessary to hit target.
3. Obstacle avoidance system activated.

Response: Lander Guidance Image Processor.
1. Obstacle at site. Shift 30 °, 0.16 km.

2. Site clean under lander, okay for vertical descent
to surface.

REPORT: CENTRAL LANDER COMPUTER (CLC)

1:38 am GMT - Lander site assessment procedure ini-

tiated. Lander Guidance Imaging System turned on.

Response: Lander Central Image Processor.

1. Surface immediately surrounding lander mostly
small rocks on relatively fiat surface. Hill

(slope < 30 °) blocking view beginning I00 m

away 248 ° to 0°. Surface of hill easily navigable.

Stratified rock wall beyond 1 km 0° to 20 °. Hill

obscures wall beyond 0 °.

CLC TO LANDER GUIDANCE IMAGE PROCESSOR.

Task 1: Initiate analysis to find safe path to climb to

apex.

Response: Lander Guidance Image Processor.
1. Stereo depth and contour data added to site

model.

2. Safe path calculated.

3. Initiating journey.

4. Apex of hill reached. Stereo depth and contour

data being added to site model.

5. Safe path possible in forward direction.

OBSERVATION--LANDER CENTRAL IMAGE

PROCESSOR.

1. Rock formation indicating upheaval at 240 °.
2. No major obstacles indicated on Planet Model.

3. No major obstacles indicated in image pointed at
240 °

CLC TO LANDER GUIDANCE IMAGE PROCESSOR.

Task 2: Initiate analysis to find safe path to formation.
Response: Lander Guidance Image Processor.

1. Safe path calculated for initial 100 m.

2. Beginning journey.

3. Dead reckoning from surface model and relative
size indicates 0.5 of total distance covered.

4. Dead reckoning and size of upheaval in image indi-
cates 300 m from upheaval.

5. Slowing down.

6. At base of upheaval. Rubble makes further pro-
gress in this path impossible.
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CLCTO LANDERGUIDANCEIMAGEPROCESSOR.
Task3: InitiateexperimentNo.4379 Rockspecific

density.
Response:LanderGuidanceImageProcessor.
1.Reconfiguringtomanipulatorvisionconfiguration.
2. Located oval shaped rock 3 cm X 8 cm, not

imbedded, within reach of manipulators.
3. Surface model for 0.5 of rock recorded.

4. Initiating manipulator to lift and weigh rock.

5. Rock weighs 15 N, Mass= lOkg.

6. Initiating rotation of rock 180 ° with respect to

initial position.

7. Surface model for remaining 0.5 of rock recorded.
8. Volume of rock is 0.010 ma. Density is

1000 kg/m 3 .
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APPENDIX 3C

ILLUSTRATIVE HYPOTHESIS FORMATION SCENARIO

The scenario presented in table 3.6 suggests the great

complexity of data processing and hypothesis generation

involved in solving problems in a planetary investigation
conducted by a fully-autonomous spacecraft. Table 3.6

shows a simulated report based on studies of the Martian

oases following the Viking mission to the Red Planet in

1976 (Huguenin, 1978). Without delineating all logical

TABLE 3.6.-HYPOTHESIS FORMATION: AN

ILLUSTRATIVE SCENARIO

"Condensates appear suddenly at dawn in two differ-
ent locations: (-25 °, 85 °) and (-30 °, 3150)."

"Condensates act to flatten the reflectance spectra

and appear as highly reflecting at blue wavelengths."
"Blue cloud activity occurs during southern fall and

winter, and mixed blue and yellow cloud activity occurs

during spring and summer. Yellow clouds are indicative

of dust. (This information will turn out not to be

included in final hypothesis.)"

"In these two locations, condensates arc brightest at

dawn, indicating low-level hazes or frosts. If the bright-
ening of the condensates occurred in the afternoon,

convective cloud activity would be indicated."

"Both areas are also major centers of dust storms, the

clouds typically appearing suddenly at dawn and fading
from white to yellow by noon."

"Local winds are not sufficient to make airborne

particles of the size observed at these sites."

"There appears to be a correlation between the time

and the location of appearance of both the condensate
hazes and the dust storms."

"Since winds cannot produce the dust storms, the

hypothesis is that rapid evaporation just after sunrise of

any water present in the soil is explosively ejecting dust

particles into the surface atmosphere. The explosive

action is the result of low ambient surface pressures and
atmospheric densities."

functions required to arrive at the final suggested hypothe-

sis, the series gives the reader a feel for the many steps

involved in full-fledged scientific analysis of a new situa-

tion. It is presented in the format of a condensed message
sent to Earth via statements which indicate what measure-

ments were made and confirmed, and what reasoning was
used to draw specific conclusions.
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