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FOREWORD

This quarterly report summarizes the work done during
1 October to 31 December 1980 on NASA Project, 'Creep-Rupture
Behavizsc of Iron Superalloys in High-Pressure Hydrogen.'
The report is given the IITRI designation, IITRI-M6061-15.

During this quarter additional air-creep rupture tests
were completed bringing the total to 143 tests. In additionm,
22 tests are under way. It is expected that all air-creep
tests will be completed during the next quarter. In this
report, an extensive analysis of existing data is summarized.

The high-pressure H, creep-rupture facility was assembled
during this period. All NASA test specimens were H, charged
and sent to NASA immediately. During December, various
calibration tests were corducted using high pressure H2.

It is expected that after doing some more trial tests during
January 1981, initial rupture tests will be initiated in
late February 1981.

Air-creep tests were conducted by H. Nichols. Many
people contributed to the H, test equipment development, and
of them the following have made significant contributions:
J. Lamoureux, C. Hales, J. Mok, R. Katos, E. Vesely, and
W. Peterman.

The report was edited by V. Johnson and typed by

e

S. Bhattacharyya

. CiJL‘\l ned . Senifor Engineer

Maurice A. H:. Howes, Director
Materials & Manufacturing Technology

P, Sullivan.
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CREEP-RUPTURE BEHAVIOR OF IRON SUPERALLOYS
IN HIGH-PRESSURE HYDROGEN

1. INTRODUCTION

The objective of this program is to evaluate the creep-
rupture properties of six candidate iron-base high-temperature
alloys for use as constructional materials in the Stirling
engine. The creep-rupturr behavior of these alloys at temper-
atures of 650° to 925°C (1200° to 1700°F) will be determined in
air for 10 to 3000 hr, and in 20,7 MPa (3000 psi) Hz for 10 to
300 hr. The resulting data will be analyzed to determine the
effect of high-pressure H, on the properties and microstructures
of these alloys.

2. TECHNICAL PROGRAM

The project was initiated on 27 September 1979, and con-
sists of the following five tasks:

Task T - Materials Procurement, Preparation,
and Air Testing

Task I1 - High-Pressure Hydrogen Testing
Task III - Data Analysis

Task IV - Hydrogen Charging

Task V - Reporting Requirements.

During the period 1 October to 31 December 1980, the
following activities were performed:

2.1 Task I - Material Procurement,
Preparation, and Air Testing

2.1.1 Specimen Preparation

Six iron-base alloys--A-286, Incoloy 800H, N-155, 19-9DL,
CRM-6D, and XF-818--are under evaluation. Of these six, CRM-6D
and XF-818 are cast alloys and the other four are sheet alloys
in the thickness range of 0.79 to 0.99 mm (0.031 to 0.039 in.).
The cast alloy specimens were cast by Climax Molybdenum Company
of Ann Arbor, and a copy of Climax Report CP-211 entitled

JIT RESEARCH INSTITUTE



"Preparation of CRM-6D and XF-818 Threaded Test Bars by Invest-
ment Casting," hasbeen sent to NASA separately,

In Fig. 1, typical as-cast and machined specimens as well
as investment molds are shown. The nominal chemical analyses
of the six alloys and the heat analyses of the two cast alloys
are given in Table 1. The cast specimens have a gage diameter
of 6.35 mm (0.250 in.) for air testing and 3.96 mm (0.156 in.)
for H2 testing. All the cast specimens were radiographed,
and those with no flaws are being tested.

The sheet alloy specimens for H, testing were reinforced
at the pin-loading holes by iaser welding pieces of the same
material across it. Typical specimens are shown in Fig. 2.
Figure 2b shows the weld bead on A-286 formed at 25.4 mm/s
(60 ipm) with a 2.5 kJ/s power and a spot size of 1 mm. All
the materials were given the heat treatment as outlined in
Table 2 after all machining and welding were completed.

2.1.2 Air Creep-Tupture Testing

A total of 143 tests have been completed and 22 more are
under testing. The stress level and temperature of the tests-
in-progress are summarized in Table 3. All the completed test
data are given in Section 2.3.

2.2 Task II - High-pressure Hydrogen Testing

2.2.1 General Description

A detailed description of the high-pressure hydrogen
testing equipment was given in the last quarterly report
(IITRI-M6061~12). This special test facility has been developed
for the creep-rupture evaluation of materials in up to 20.7 MPa
hydrogen at up to 925°C. 8ix specimens can be tested simul-
taneously within a single vessel. A central support column
holds the specimens along with extensometers, thermocouples,
and strain gages (Fig.3). The entire assembly is lowered into
the pressure vessel, which is mounted on a vibration damping
frame to avoid specimen interactions (Fig.4).

IIT RESEARCH INSTITUTE
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Table 2

ALLQOY SPECIFICATION5S AND HEAT TREATMENT CONDITION
FOR. TEST SPECIMENS

Heat Treatment

Alloy Specification {in wacuum)
A-286 5525D3 Solution 2100°F°:C
Age 1325°F-16 hr/AC
Incoloy 800H 5871p% Solution 2100°FPC
N-155 553208 Solution 2150°FP:C
or 5585B
19-9DL 5526E8 Solution 2200°F-10 min®
CRM-6D (None Age 1200°F-100 hr
available)
XF-818 (None None specified
available)

8AMS 5525D revised 10/13/79 supersedes AMS 5525C.
bSolution annealing time of 1 hr/in. thickness minimum,
CRapid cool or quench from solution temperature,

daMS 5871D issued 5/15/72.

€AMS 5532C revised 7/15/77 supersedes AMS 5532B,

£AMS 5585B revised 1/15/78 supersedes AMS 5585A,

BAMS 5526E revised 1/15/78 supersedes AMS 5526D.
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Table 3

AIR CREEP-RUPTURE TESTS IN PROGRESS

Alloy

A-286

Incoloy 800H

N-155

19-9DL

CRM-6D

XF-818

Test
Temp. ,

760
870

815
870
870

705
760
870

650
870

650
705
815
870
870
870
925

650
705
815
815
925

Stress,

MPa

207
31

52
26
34

159
97

47

310
29

393
255
131

97
138
172
103

393
283
103
117

55
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Figure 4

Pressure Vessel with Support Column and Specimens Mounted Inside



The complex apparatus may be grouped into three sections
for discussion of the current status, These are:

- Structural and building modification
- Creep vessel system
- Control system

2.2.2 Structural and Building Modificatiors

The testing facility is located in the northeast corner
of the Materials Technology Building on the first floor (Fig. 5).
All building modifications have been completed. These include
installation of a 2~-ton crane, a steel enclosure, a blow-out
window, and an explosion-proof ventilation fan,

2.2.3 Creep Vessel System

The pressure vessel has been checked out at temperature
and pressure. Some leaks were encountered in start-up, and
there were initial difficulties in maintaining a small enough
differential pressure between the reactor (Hz) and the jacket
(NZ)‘ These problems were resolved, and the system now operates
satisfactorily. Hydrogen charging of NASA specimens was
completed during the last quarter.

Assembly of the central support column has been completed,
and six specimens with thermocouples have been mounted on the
column. It will be installed, and the vessel will be brought up
to temperature and pressure, in order that a temperature profile
for the entire reactor can be plotted. After sufficient
temperature stability has been ensured, preparations will be
made for preliminary high-pressure creep tests in hydrogen,

using dummy specimens.

2.2.4 Control System

The control system was checked out, and a few minor
problems were encountered and corrected. The system worked
well during the hydrogen charging experiments, and no future
problems are foreseen.

T RESEARCH INSTITUTE
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The data acquisition system has been logging data from
the air creep experiments conducted in the basement floor, and
has had no problems. The data logger has been programmed to
accept data from the high-pressure tests and is ready to scan
these channels. Data will be recorded both by a printer for
hard copies, and by a floppy disk unit for computer analysis.

2.3 Task III - Data Analysis

All the basic creep-rupture data are summarized in
Appendix A for the six different alloys. 1In additinn to the
basic data, detailed information on time to reach elongation
levels of 0.1, 1.0, and 5.07% and the tertiary creep stage are
also summarized in Appendix A.

for a clear understanding of the analysis that follows,
certain terminologies used in the analysis are identified with
the help of a schematic of a creep elongation vs. time curve,
shown in Fig. 6. On loading, there is an extension at essentially
zero time, the extent of which depends on load and temperature.
Creep elongation of the specimen continues with time usually
divided into three stages, as shown in Fig. 6. In the secondary
stage, the creep rate usually reaches a minimum value called
the minimum creep rate (ém). The duration of the secondary

stage gets smaller with increasing load and/or temperature.

At the end of the secondary stage, the creep rate starts
to increase and the time at which this occurs 1is called the

time to tertiary creep (t ). At some time beyond t

ter ter’
rupture takes place and the total time is called rupture
life (tr). The difference between t. and teor is called the

residual tertiary stage life (t,.-t,..), where the specimen may
elongate significantly depending on its property and environment.

While a few of the air-creep tests are still in progress,
there are sufficient data for a meaningful graphical and
statistical analysis. The analyses performed during this
quarter are summarized in Table 4.

IIT RESEARCH INSTITUTE
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Table 4
ANALYSIS OF AIR CREEP-RUPTURE DATA

Statistical Analysis of 19-9DL Data

Fig. 4 Stress (o) vs. Time to Rupture (tr)

Fig. 5 Stress (o) vs. Time to 1% Creep Elongation (t; 47)

Fig. 6 Stress (o) vs. Time to Tertiary Creep (tter)

Fig. 7 Stress (o) vs. Residual Tertiary Stage Life (tr - tter)
Fig. 8 Stress (o) vs, Total Elongation (st)

Fig. 9 Stress (o) vs. Minimum Creep Rate (ém)

Fig. 10 Rupture Life vs. Time to 1% Creep Elongation (t0 Ol>
Fig. 11 Min. Creep Rate vs. Time to 1% Creep Elongation (t0 Ol)

Fig. 12 Residual Tertiary
Stage Life vs. Total Elongation (st)

g?glelg Temperature-Compensated Rupture Life vs. Stress
Table 6 Temperature-Compensated Analysis of Minimum Creep

Rate Data
Statistical Analysis of Rupture Life Data for Different Alloys

Fig. 14 Stress vs. Rupture Life (tr), A-2846

Fig. 15 Stress vs. Rupture Lifz (tr)’ IN 800H

Fig. 16 Stress vs. Rupture Lire (tr)’ N-155

Fig. 17 Stress vs. Rupture Life (tr), CRM-6D

Fig. 18 Stress vs. Rupture Life (trj, XF-818

Variation of Stress-Life Exponent with Temperature in Six
Different Alloys

Fig. 19

Table 7

Temperature-Compensated Statistical Analysis of Rupture Life

Table 8 Alloy N-155
Table 9 Alloy XF-818

- IITRI-M6061-15



2.3.1 Statistical Analysis of 19-9DL Data

The rupture life data given in Table A-4 are plotted vs.
stress in Fig. 7. Statistically fitted lines were drawn at
each temperature except for 650°C where only 2 data were
available. The lines were not all parsllel indicating an effect
of temperature on the simple relationship as shown below:

n
= ag
tr

or

fnmt. = fna+ning (L

where n is the¢ stress exponent or line slope and a is a constant.

2

The correlation coefficients (R®) for these lines ranged from

0.96 to >0.99.

For comparison, NASA data(l) were plotted on Fig. 4 and
indicated a good fit with the IITRI data.

In Fig. 8, time to 1% creep elongation (tO Ol) was plotted
against stress and showed a relationship similar to that
observed for t. vs. o.

The relationship between stress and t shown in Fig. 9,

)
indicated a trend similar to that in Figs.tgrand 8, but with
slightly more scatter. These lines were given an estimated fit
and were not fitted statistically to the data points. 1In
particular, one 815°C and another 870°C data showed more
deviation at relatively high stress levels where low rupture
lives were observed. Exclusion of high stress test and low
rupture life data were studied in detail and are reported

later in this section.

Finally, in Fig. 10, stress was correlated with residual
tertiary stage life (tr-tter)-Again, these lines were given

(l)Walter R. Witske and Joseph R. Stephens, ''Creep Rupture
Behavior of Seven Iron-Base Alloys After Long Term Aging

at 760°C in Low Pressure Hydrogen,'" NASA TM-81534, August 1980,

NASA-Lewis Research Center, Cleveland, Ohio.
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an estimated fit to the data point and when all the data
become available, statistically fitted lines will be drawn.
However, it appeared that single lines at each temperature
might not give the best fit and two lines with different slopes
were drawn. In other words, at certain stress levels (which
is a function of temperature) the stress exponent changes in
magnitude. Above the transition zone, an increase in stress
decreases residual life at a slower rate than an equivalent
stress increase below the transition zone. With more data,

a more precise location of the transition zone can be obtained
and its meaning in terms of tertiary residual life established.

Total elongation after rupture is plotted vs. stress for
each temperature in Fig, 1l1. Estimated lines were fitted to the
data. The data show considerably more scatter than rupture life.
Specimen elongation is a more sensitive property than rupture
life, and the scatter represents that phenomenon. All these data
were for single tests. Duplicate tests will significantly
increase confidence levels, and a few replicate tests at two
selected temperatures will not only be helpful but also
desirable.

Minimum creep rate (ém) data for each temperature were
plotted vs. stress in Fig. 12. Statistically fitted lines were
drawn with R2 values between 0.97 and >0.99. The slope at
815°C (n = §.85) is higher than the slopes at other temperatures,
and the reason for this variation is not clear. At high stresses
and temperatures, the time range for secondary creep stage
decreases very fast (see Fig. 6), and the high minimum creep
rates obtained under such conditions had some degree of

uncertainty associates with them.

A creep elongation of 5% in 3500 hr, wholly under a
secondary creep condition, is equivalent to 4 E-09 s"l
Figure 12 projects the following stress levels for the different
temperatures which will cause such a creep rate: 705°4-145 MPa
(21 ksi), 760°C-79 MPa (11.5 ksi), 815°C-47 MPa (8.2 kai),

11T RESEARCH INSTITUTE
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870°C-27 MPa (3.9 ksi), and 925°C-22 MPa (3.2 ksi)., 1If one
considers MOD 1 Stirling engine operation parameters of a
58.5 MPa(l) stress for 4000 hr rupture life at 770°C, then
19-9DL alloy will give the requisite 3500 hr operation life
with no greater than 5% elongation at temperatures of about
800°C and below. The very significant difference between the
815° and 870°C €, Vs- © relationship requires more testing

at these two temperatures.

In the earlier analyses, stress was correlated with various

Erer’ Br = Tier o

and ém. However, these parameters are also interrelated and

observed parameters such as t. t0'01,

knowledge of these relationships is of importance to a proper
understanding of the creep process.

In Fig. 13, ty 4 was correlated with t.. A single line

appeared to fit the data point with R2 = 0.89. The relation-

ship is given by the follcwing equation:

_ 1.26
€y g1 = 0-02 t_ (2)

Equation 2 implies that a tenfold increase in rupture life
will increase t0.0l 18-fold, Thus, if a certain minimum t0.0l
had to be met, the stress/temperature levels could be selected
to obtain the desired rupture life.

Parameter to. 01 is also correlated with ém, the minimum
creep rate, in Fig. 14. Also, in this plot, a single relation-
ship with an excellent RZ = 0.99 is obtained with one data point

excluded from the analysis. The fitted equation is:

ty oy = 3-21 E-06 & -0.97 (3)
If the exponent -0.97 in Equation 3 is approximated
to -1, then Equation 3 can be rearranged thus:
ty.01 ¥ ¢ = constant (4)

and the dimensionless constant for 19-9DL is 3.21 E-06, where

IIT RESEARCH INSTITUTE
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to.01 is in hr and e, is expressed in s_l. If, however,

ty.01 is expressed in seconds, then the constant will be 1.16 E-02.

A rearrangement of Equations 2 and 3 can also be made to
obtain the following:

. 1.26 _
€, X t. = constant (5)

under the assumption that the exponent -0.97 is considered

equal to -1.0. Thus, a knowledge of either ém or t_ permits one
to obtain the other. However, more data are needed for this
analysis.

Finally, Fig. 15 shows the correlation between the residual

tertiary stage life (t_ - ) and the total elongation, €
g T g

t .

All the different temperat&?ig (with the exclusion of twot650°C
data) appeared to fit a single line which had two different
slopes. Approxiﬁaﬁely at 100 hr, there appeared to be a change
:n the slope. For shorter (tr-tter)lives, the rate of increase
in total elongation with life is less. For example, between
1000 and 100 hr, the total elongation increased from 10 to 30%.
But between 100 and 10 hr, €y

of the high elongation data belonged to the high temperature

increased from 30 to 38%. Most

tests. This change in slope for the low temperature data may
be associated with a change in the deformation mechanism. In

a recent analysis, Pizzo(2> had analyzed 304 SS data using
nine different models and none of them were found to be satis-
factory. A fitted model was found to be the best. A very much
larger data base than that presently available will be needed
for this form of analysis for 19-9DL,

(Z)P. P. Pizzo, '"Rate Equations for Elevated Temperature Creep,"
Trans. ASME, Vol. 101, No. 4, Oct. 1979, pp. 396-402.
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2.3.2 Statistical Analysis of Temperature-
Compensated Rupture Life Data

Temperature-compensated rupture life analysis in its simple
form utilizes a relationship

t = constant-(stress)n-eQ/RT (6)

where n is the stress exponent, Q is the activation energy con-
trolling the process, and t is time to rupture or to a specific
creep elongation. Details of this relationship are given in
Appendix B.

All twenty-five 19-DL t. data and the twenty-four ty 01
data were analyzed according to Equation 6, and the results are
summarized in Table 5. The data were also analyzed with differ-
ent restrictions on stress levels, rupture life, or both.

Table 5 shows that the best R2 of 0.96 was obtained for t.
when data for stress levels of 276 MPa and above were excluded.
Restriction of data to tr > 10 hr improved R2 to 0.91 from 0.87
of total data analysis. Combined restrictions of both stress
and rupture life shown under item 4 of Table 5 did not improve
correlation over the item 2 value with stress restriction only.

Under the best correlation, stress exponent n, was -5.70
for . and -7.15 for ty o1 The activation energy associated
with t. was 438 kJ/°K-mole and for tgy g9, @ higher value of
558 kJ/°K-mole.

As shown in Appendix B, the rearrangement of Equation 6
will results in the following:

1 2
n o = ﬁ; (2n t,. - ET) - constant N
and when (&n t. - Qz/RT), the temperature-compensated rupture

life is plotted against &n o, a linear relationship is obtained,
as shown in Fig. 16.

In Fig. 16, the 22 data (item 2, Table 5) were plotted and
the slope of the line is n,, the stress expoment. The R2 value
for the fitted line is 0.98. This value may be considered very
good for the wide stress range of 35 to 276 MPa and temperature

HT RESEARCH INSTITUTE
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range of 705°-925°C. For comparison, NASA data were also
plotted showing that the stress exponent n, is very similar to
that of IITRI data. The lower Q2 value of NASA data had
shifted the line to the right but kept it parallel to the IITRI
data. The essential similarity between IITRI and NASA data

is very significant.

A similar analysis (see Appendix B) of ém data was conducted

and the results are given in Table 6. Figure 12 showed

earlier that ém vs. ¢ at each temperatgre had more variability,
the temperature-compensated analysis R“® values were lower than
that for rupture life data. Elimination of stress levels above
276 MPa improved R2 from 0.76 to 0.80, but still it was below

the observed R2 = 0.95 of NASA data. However, the Q, value of
-408 kJ/°K-molewas close to the NASA value of -417 kj/°K-mole.

2.3.3 Statistical Analysis of Rupture Life Data for
" Alloys  A-286, IN 800H, N-155, CRM-6D, and XF-818

Rupture life data from Appendix A were plotted in Figs. 17
to 21 for five different alloys. Regression lines were fitted
to the data points.

In Fig. 17, four lines were fitted to the A-286 data at
705° to 870°C. Sufficient data were not yet available to fit the
650° and 925°C temperatures. The R% values for the fitted lines
were between 0.93 and 0.99. It may be seen that several tests
in A-286 were terminated earlier, and these data were not useu
in fitting the lines. However, information contained in these
tests in the form of time to various creep elongation levels,
minimum creep rates, and other parameters were available and
will be used in the final analysis. The stress exponents
varied between -4.46 (815°C) and -7.65 (705°C). All the stress

exponents at each temperature are summarized in Table 7.

The IN 800H data are shown in Fig. 18. The R2 values for
the six fitted lines ranged from 0.93 to 0.99. The significant
change in slope at the higher temperature is reflected in the

stress-life exponent values given in Table 7.
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Stress vs. Rupture Life, IN 800H,Unaged (G.S. 64 um)
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STRESS EXPONENTS AT DIFFERENT TEMPERATURES

ORIGINAL PRCE 16
OF POOR QUALITY

Table

7

FOR THE SIX ALLOYS

Stress Exponent at Given Temperatures

a

650°C 705°C 760°C 815°C 870°% 925°C

Alloy (1.083) (1.022) (0.968) (0.919) (0.875) (0.835)
A-286 ND -7.65 -5.20 ~4.46 -6.18 ND
IN 800H -6.03 -6.74 -8.04 -6.82 -4.,65 -3.79
N-155 -14.2 ND -6.29 -6.02 -6.45 -4.73
19-9DL ND -6.49 -6.55 -6.53 -5.26 -5.51
CRM-6D ND -12.7 ~-12.5 -10.3 -10.1 ND
YF-818 ND -15.3 -8.48 -7.01 -6.25 ND

ND - no data.

aFigures in Earentheses are reciprocals of temperature:
?

1000/T, °K-

where T is in

35

°K.

IITRI-M6061-15



The N-155 data are shown in Fig. 19. The NASA data are
also shown in Fig. 19 and indicate the good agreement between
the IITRI and NASA data. The Rz values for IITRI lines were
between 0.98 to >0.99. The stress exponents had varied, and
these data are given in Table 7.

The limited CRM-6D data are shown in Fig. 20. The four
fitted lines had very high R2 values of 0.99 and higher. More
data will be needed to correlate 925° and 650°C rupture lives.
The stress-life exponents were much higher than the wrought
alloys and are summarized in Table 7.

The four fitted lines for XF-818 are shown in Fig. 21.
The R? values ranged from 0.97 to >0.99. The stress exponent
increased with increasing temperature and was higher than CRM-6D;
the values are summarized in Table 7.

All the rupture life-stress exponents for each alloy and
temperature given in Table 7 are plotted in Fig. 22 as a function
of 1/T. There is significant scatter in the data with CRM-6D
forming a separate set. For temperatures in the range of 760°
to 925°C, a broad trend may be seen. A statistically fitted
line could be drawn when more data become available. An
estimated envelope drawn over the data indicated an activation
energy of about 40-50 kJ/°K-mole. Thus, the activation energy,
or in other words, the effect of temperature on stress-life
exponent, was much smaller than the effect of temperature on
rupture life where the activation energy was observed to be
about 10 times larger, i.e., about 400-500 kJ/°K-mole.

2.3.4 Statistical Analys:s of Temperature-Compensated
Rupture Life Data for Alloys N-155 and XF-818

Similar to the analysis for 19-9DL, the data for N-155
and XF-818 were analyzed according to the equation given in
Appendix C.

The N-155 analysis is summarized in Table 8 and XF-818
in Table 9. 1In Table 8, an analysis of NASA data is also

included to compare the grain size effect.
1T RESEARCH INSTITUTE
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Data in Table 8 show that when the stress level of N-155
was restricted below 355 MPa, the R2 value increased from 0.83
for all 23 data to 0.98 for 21 data., Hardly any improvement
was observed when rupture life restriction was included.

A comparison with NASA data shows that the smaller grain
size resulted in a somewhat lower rupture life, The activation
energy was not affected by the grain size change though the
stress-life exponent slightly decreased. Combined NASA and
IITRI data (37 tests) resulted in G = 402 kJ/°K-mole, n = -6.02,

2
and R™ = 0.97.

The XF-813 data analysis showed that when the stress level
was restricted below 414 MPa, the R2 value improved from 0.90
to 0.96. Restriction on ruprure life instead of improving
correlation actually resulted in a decrease in R% value.
Additional data will improve the overall correlation,

2.3.5 Predicted Rupture Stress for 3500 hr
Rupture Life in Different Alloys

The stress-life data shown in Figs. 7, and 17 to 21 were
extrapolated at four different temperatures to obtain the stress
levels for 3500 hr rupture lives. These values are summarized
in Table 10.

The results show that at 760°C, all the alloys have rupture
stresses higher than 60 MPa. It has been mentioned earlier(1>
that the MOD 1 Stirling engine is designed for 770°C/4000 hr/58.5
MPa operation, and the six alloys all appear to be very close
to this value. However, at a higher temperature of 815°C,
only three alloys meet the 58.5 MPa requirement and these are
N-155, XF-818, and CRM-6D. Alloy 19-9DL had a predicted rupture
stress of 52 MPa which could possibly be adequate. At the high
temperature of 815°C, only the two cast alloys retained
significant strength, while A-286, IN 800H, and 19-9DL
decreased in strength very significantly, and N-155 somewhat
more slowly.

IIT RESEARCH INSTITUTE



Table 10

PREDICTED RUPTURE STRESS FCR 3500-HOUR RUPTURE LIFE
IN THE SIX ALLOYS

Stress at Given Temperatures, MPa

705°C 760°C 815°C 870°C

Alloy (1300°F) (1400°F) (1500°F) (1600°F)
A-286 210 110 43 22
IN 800H 100 66 46 24
N-155 140 93 59 46
19-9DL 150 79 52 27
CRM-6D 240 190 130 98

XF-818 230 150 94 59




2.3.6 Fractographic Analysis of
Creep-Rupture Specimens

Fracture analysis was performed on a selected number of
creep-rupture specimens of various alloys tested in air. The
purpose of this examination was to study the modes and mechanisms
of failure in each case and their dependence on alloy composi-
tion, fabrication (wrought or cast), stress, and test temperatures.
Typical fracture failures from alloy 19-9DL and XF-818 are
presented and discussed in this section.

Figure 23 presents typical fractographs of the 19-9DL
alloy specimen creep rupture tested at 760°C and 86.2 MPa.
This specimen failed in 1687 hr and exhibited an elongation of
10.9%., Figure 23a shows the two mating fractured surfaces of
the above specimen. Macro examination at lower magnifications
showed a rough and granular fracture which was dark gray. This
fracture seemed to have originated at multiple locations near
the specimen surface. Small and relatively smoother areas
were observed near various origins such as that shown in
Fig. 23b, the origin area at the top right-hand corner of
Fig. 23a (B). At this point, the fracture appears to have
originated at a large inclusion contained inside a pore.
Dimple rupture was the dominant fracture mode over the entire
fracture surface. In most areas the fractured surfaces had
developed significant amounts of oxides subsequent to failure
that masked the finer fracture features. Figure 23c shows a
typical microfractograph from the center of the specimen
surface shown in Fig. 23a (B). Mainly granular oxides and
some fine dimples are clearly visible,

Typical fracture features of 19-9DL alloy specimen creep
rupture tested at 815°C and 124 MPa are shown in Fig. 24.
Figure 24a (A and B) shows low-magnification macrofractographs
of the two mating surfaces. This fracture also seemed to have
originated at multiple locations (surface cracks) near the outer
edges of the specimen cross-section. Rough topography of the

1T RESEARCH INSTITUTE
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SEM No. 6474, 6475 ~15X

SEM No. 6476 150X SEM No. 6478 500X
(b) (¢)

Figure 23

Typical Macro- and Microfractographs of the 19-9DL Specimen
Creep Rupture Tested at 760°C and 86 MPa. (a) Macrofractographs
showing mating fracture surfaces; (b) microfractograph from top

right-*and corner of Fig. 23a (B); and (c) microfractograph
from the center of Fig. 23a (B).
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SEM No. 6479, 6480 15X
(a)

SEM No. 6485 15X SFM No. 6484 500X
(b) (e)

Figure 24

Typical Macro- and Microfractographs of the 19-9DL Specimen
Creep Rupture Tested at 815°C and 124 MPa. (a) Macrofractographs
of the mating surfaces; (b) side view of the fracture surface shown
in Fig. 24a (B); and microfractographs of areas in Fig. 24a (B);
(¢) central region of the specimen surface, (d,e) area at upper
left corner, and (f) region near right end.
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Figure 24 (cont.)
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fracture and abundance of surface cracks are clearly seen in
Fig. 24b, which gives a side view of the fracture shown in

Fig. 24a (B). 1In the central region of the fracture surface
(Fig. 24a, B), the fracture occurred primarily by dimple rupture
mechanism as illustrated in Fig, 24c. Both clusters of small
equiaxed dimples separated by larger elongated dimples con-
taining precipitate particles and inclusions cover the entire
area. The area in Fig. 24c¢ also shows some surface oxides that
were formed subsequent to fracture. Near the left edge of the
specimen (Fig. 24c,B), the fracture appeared very rough and
heavily oxidized (Figs. 24d and e), but the main fracture mode
was dimple rupture. Formation of heavy surface oxides indicates
that the separation of fracture surfaces started in the region
shown in Fig. 24d and e. At the right end of the fracture
surface in Fig. 24a (B), the main fracture features observed
were small elongated dimples with very little surface oxide
(Fig. 24f), indicating that the final separation of fracture
surfaces occurred near the right end. Gradual decrease in
oxidation from the left end to the right end of the fracture
surfaces reveals the path followed by fracture. Absence of
surface oxides in the final separation zone on the right side
(Fig. 24a, B) may be due to the fact that after the separation
of fracture surfaces this area was exposed to air at high
temperature for a relatively shorter time period.

Figure 25 gives typical macro- and microfractographs from
19-9DL alloy creep-rupture specimen exposed at 870°C and 41 MPa
stress level. Figure 25a (A and B) shows macrofractographic
views of the mating fractured surfaces. In general, the
fracture surfaces appeared very rough and heavily oxidized
due to exposure to air at a higher tsmperature (870°C).

Figure 25b shows the side view of the fracture surface in

Fig. 25a (B). Many surface cracks are visible. This fracture
also started at multiple locations at the outer surfaces. The
separation of the fractured surfaces seemed to have progressed
from the left end of the specimen to the right, because the

JIT RESEARCH INSTITUTE
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SEM No. 6486, 6487 ~15X
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SEM No. 6492 ~15X
(b) (c)

Figure 25

Typical Macro- and Microfractographs of the 19-9DL Specimen
Creep Rupture Tested at 870°C and 41 MPa. (a) Macrofracto-
graphs of the mating fracture surfaces; (b) side view of
fracture surface in Fig. 25a (B); and (c) microfractograph
from the center of fracture surface in Fig. 25a (B).
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fracture appeared increasingly rougher toward the right due to

overload. Figure 25c shows a typical microfractograph from the
center of the specimen on surface B (Fig. 25a). Again, dimple

rupture is the main mode of fracture. Figure 25c also shows

a thick granular oxide layer covering mearly the entire area.

In the case of cast alloy XF-~818, fracture analysis was
performed on two creep rupture tested specimens: (1) 815°C,
138 MPa, and (2) 870°C, 97 MPa. 1In both cases, fractures were
found t® have very rough and jagged texture.

Figures 26a and b show low-magnification SEM macrofracto-
graphs of the mating fracture surfaces from XF-818 alloy
specimen tested at 815°C and 138 MPa. This fracture apparently
initiated at the edge of the specimen, areas a and b of Fig. 26a,
where the fracture was relatively smoother and fine textured.
The entire fracture displayed a jagged topography, and the areas
¢ and d (Fig. 26a) were rough in appearance. The final separa-
tion occurred near the center of the specimen. Figure 26c
shows a side view of the fracture surface shown in-Fig. 26a.
Many surface cracks which couw’d act as initiation sites are
clearly visible. In the initiation regions (areas a and b,

Fig. 26a), the primary mode of fracture was dimple rupture
(Fig. 26d). Figure 26d shows an area exhibiting a layer of
fractured dendrites. The entire fracture surface was oxidized,
especially areas ¢ and d (Fig. 26a) where oxidation masked the
entire fracture area. Figure 26e shows a microfractograph
from the heavily uxidized area at the center of the specimen
where the final separation seemed to have occurred,

In the XF~818 specimen that was creep rupture tested at
870°C and. 97 MPa, the general appearance of the fracture was
very similar to that of the 815°C specimen described above.
Figures 27a and b show the overall macrofractographic views of
the mating fracture surfaces from the 870°C specimen. The
entire fracture consisted of jagged faces of which areas a, c,

1'T RESEARCH INSTITUTE
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SEM No. 6494 ~20X

SEM No. 6493 ~20X
(b)

Figure 26

Typical Macro- and Microfractographs of XF-818 Specimen Creep
Rupture Tested at 815°C and 138 MPa. (a,b) Macrofractographs
showing correspcnding areas of mating fracture surfaces;
(c) side view of fracture surface in (a); microfractographs
from (a): (d) area a and (e) overload region in center.
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Figure 26 (cont.)
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SFM No. 6501 ~20X
(a)

(b)
Figure 27

Typical Macro- and Microfractographs of XF-818 Specimen Creep
Rupture Tested at 870°C and 124 MPa. (a,b) Macrofractographs
of mating fracture surfaces showing corresponding areas;
and microfractographs from areas in (a): (c) area a,

(d) area b, and (e) over'’oad zone, area f.
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Figure 27 (cont.)
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and appeared relatively smoother than areas b, e, and £.

The fracture initiation zomne could not be clearly identified,
but it seemed that this fracture may have initiated at multiple
locations near the edge of the specimen and progressed along
smoother areas. The rougher areas indicate the regions which
separated later under overload. Figures 27c and d show typical
microfractographs from areas a and b, respectively (Fig. 27a).
Area a (Fig. 27c) fracture has a smoother appearance, but the
finer fracture features are masked by surface oxides. Area b
(Fig. 27d) clearly shows evidence of fracture by dimple rupture
mode. The fracture appearance in areas c¢ and d (Fig. 27a) was
similar to that shown in Fig., 27c¢, Fracture features observed
in area e were very similar to those of area b (Fig. 27d).

In area f, which represented final separation under overload,
fracture occurred mainly by dimple rupture mode (Fig. 27e).

In general, the 870°C specimen showed more surface oxidation
that the 815°C specimen of the same alloy.

2.4 Task IV - Hydrogen Charging

All the NASA specimens were hydrogen-charged at 760°C,
100 hr at 20.7 MPa pressure, These specimens were immediately
sent to NASA.

2.5 Task V - Reporting Requirements

The monthly reports for October (IITRI-M6061-13) and
November (IITRI-M6061-14) were sent on time.

A project review meeting is plamned for January 12, 1981
at 1ITRI where the current status of the program will be
reviewed.

3. FUTURE WORK

During the next quarter, all air tests are expected to be
completed.

The high-pressure creep-rupture facility will under go a
thorough shakedown trial, temperature profile calibration,
and extensometer evaluation. On completion of successful

trials, short-term tests will be initiated during the quarter.
IIT RESEARCH INSTITUTE
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Table A-1l

BASIC CREEP-RUPTURE DATA FOR A286 TESTED IN AIR

Test Temp. Stress
CF °C ksi MP=2
1200 650 70 483
60 414

45}& 310

90 620

1300 705 55 379
40 276

34 234

26}a 179

75 517

1400 760 50 345
40 276

26 179

18 124

12,8 83

60 414

1500 815 20 138
16 110

12 83

9.0 62

8.0 55

6.0 41

40 12276

1600 870 12 83
8.0 55

6.0 41

3.0°, 21

1700 925 4.0 28

3. 21

Z.gg 17
1.3 9.0

. Total
Rupture Min. Creegl Elong.,
Life, hr Rate, sec %
36.2 5.56 E-07 11.4
568,1 3.03 E-09 8.4
1047+ 9.72 E-11 0.38+
1048 - 9.8
35.0 1.25 E-07 13.8
706.6 1.89 E-09 21.0
1222 1.22 E-10 3.4
923.3+ 1.53 E-10 0.27%
924.1 - 19.8
5.4 5.56 E-06 26.3
27.2 2.06 E-07 25.9
254.8 5.56 E-09 18.0
1181 1.21 E-10 8.7
923,3% 2.39 E-10 0.27+
924,1 - 18.5
9.9 3.47 E-08 W4.6
89.7 3.45 E-08 25,4
206.4 1.11 E-08 16.0
439.5 6.42 E-09 11.8
1030 2,29 E-08 10.7
867.1% 2.2 E-09 2.7
868.4 - 24,2
0.8 - 80.5
15.0 1.06 E-05 59,2
59.8 1.85 E-06 87.2
6222+ 1,72 E<Q7 29,8+
53.0 2.33 E-06 58.4
171.9 6.28 E-07 42.9
2214F 6.95 E-09 38.7%F
552.47F 4,17 E-08 6.6

#Uploaded to fracture

Discontinued without failure
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Table A-2

BASIC CREEP-RUPTURE DATA FOR INCOLOY 800H TESTED IN AIR

Test Temg.

1200

1300

1400

1500

1600

1700

650

705

760

815

870

925

. Total
Stress Rupture Min. Creep Elong.,
"ksi MPa Life, hr Rate, sec” %
40 276 54.8 2.64 E-07 32,2
36 248 101.4 - 26.3
303. 207 30.9+ 6.9“ E~08 15.0+
27 186 2078 4.59 E-~09 7.6
27 186 46,2 6.25 E-07 26.8
18 124 848.1 3.61 E-08 36.8
16 110 1475 2.28 E-08 19.6
22 152 4,7 4.72 E-06 46,8
18 124 28.9 1.71 E-06 53.0
15 103 132.2 5.47 E-07 43.7
11 76 1265 2.78 E-08 28.1
16 110 14.6 4,44 E-06 59.6
12,5 86 37.5 1.03 E-06 22.3
12 83 72.6 - 32.1
11 76 83.2 4.89 E-07 23.3
9.0 62 780.6 1.74 E-08 18.1
6.of> 41 854,3% 1.36 E-09 0.70%
15 103 858.3 - 26.0
11 76 19.3 1.39 E-06 32.2
9.0 62 39.3 4,81 E-07 15.9
7.0 48 161.0 1.50 E-07 18.1
4.54b 31 868,47+ 1,31 E-09 1.0
11 76 873.8 - 32.3
7.0 48 53,0 1.75 E-07 24,0
6.0 41 130.5 5.50 E-08 23,2
4,5 31 292.2 5.56 E-08 19.7
. 3’Oib 21+ 710.3F 1.39 E-09 1.19%
7.0° 48 726.4 - 21.6

8piscontinued without failure

b

Uploaded to fracture

. 1
o
AT
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BASIC CREEP-RUPTURE DATA FOR N-155 TESTED IN AIR

Table A~3

Total

Test Temp. Stress Rupture Min. Cree? Elong.,
°F °C ksi MPa Life, hr Rate, sec %
1200 650 60 414 2.7 4,63 E-06 23.6

55 379 14.8 7.45 E-07 19.9
40 276 968.7 2.78 E-08 26.2
1300 705 40 276 42,5 6.72 E~07 28.4
28 193 527.8 6.11 E-08 46.0
1400 760 35 241 9.0 1.85 E-06  42.7
28 193 36.8 1.25 E-06 44,0
24 165 7.58 - -
24 165 115.3 4,14 E-07 51.5
18 124 573.6 5.00 E-08 30.1
1500 815 24 165 7.5 4,44 E-06 58.3
18 124 42.5 1.50 E-06 53,2
16 110 128.8 2.92 E-07 46,8
12, 83 457.3 5.28 E-08 25.9
11 76 931.3 2,94 E-08 34.7
9.1 63 2536 7.51 E-09 12.1
1600 870 16 110 8.9 6.67 E-06 65.0
13.5 93 55.6 1.94 E~-07 59.6
12 83 58.0 9.92 E-07 46.9
10 69 212.2 2,11 E-07 35.9
8.5 59 636.7 5.56 E-08 26.7
1700 925 10 69 32,7 4.86 E-07 38.8
8.5 59 49,2 1.07 E-06 43.3
6.0 41 354.2 9.17 E-08 27.7
aDafa rejected. Most likely a faulty specimen. Duplicate

tested,

ORIGINAL PAGE 13
OF POOR QUALITY
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Table A-l4
BASIC CREEP-RUPTURE DATA FOR 19~9DL TESTED IN AiR

. Total
Test Temp. Stress Rupture Min. Creepl Elong.,
°F “% ksi MPa Life, hr Rate, sec” %
1200 650 60 414 1.1 4.72 E-06 18.8
40 276 135.9 3.58 E-08 11.9
1300 705 40 276 10.9 5.97 E-07 16.9
25 172 268.5 5.69 E-08 24,2
19 131 1342 1.14 E-08 12.1
1400 760 28 193 8.5 1.35 E-06 30.0
25 172 20.2 6.95 E-07 31.0
20 138 101.0 3.22 E-07 37.4
14.5 100 739.1 1.86 E-08 18.8
12.5 86 1687 5.77 E-09 12.1
1500 815 20 138 2.8 2.22 E-05 44.8
18 124 14.2 3.33 E-06 33.4
15 103 66.4 4.33 E-07 29.2
12 83 173.1 1.44 E-07 32.3
10.5 72 3241 6.03 E-08 25.0
8.6 59 1118 5.72 E-02 10.1
1600 870 15 103 1.8 1.89 E-05 61.6
12 83 10.2 5.00 E-06 42,4
10 69 38.0 1.60 E-06 36.4
8.0 55 107.9 .47 E-07 34,3
6.0 41 406.3 3.19 E-08 20.8
h.8 33 799.0 2.00 E-08 -
1700 925 10 69 4,1 1.58 E-05 47.6
8.0 55 16.3 3.06 E-06 37.1
5.0 35 177.2 1.25 E-07 27.5
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Table A-5
BASIC CREEP-RUPTURE DATA FOR CRM~-6D TESTED IN AiR

. Total
Test Temp, Stress Rupture Min. Creegl Elong.,
| ksi MFa Life, hr Rate, sec %
1200 650 65 448 0.1 - 1.3
60 414 0.1 - 2.1
55 379 305.0 1.82 E-08 4.2
1300 705 50 345 49,1 1.59 E-08 7.8
45 310 147 .4 1.06 E-07 5.6
40 276 827.4 1.37 E-08 8.2
1400 760 42 290 11.5 1.01 E-06 7.9
40 276 23.6 6.28 E-07 10.7
35 241 140.2 8.61 E-08 9.9
32 221 354.4 3.28 E-08 10.3
30a 207 796+7 9.03 E-09 8.7+
28 193 470 <3.91 E-~09 1.9
1500 815 35 241 7.1 1.16 E-06 13.9
28 193 78.6 1,49 E-07 11.8
25 172 281.9 2.86 E-08 10.6
22 152 768.0 6.11 E-09 7.6
1600 870 22 152 29.7 2.94 E-07 11.7
17b 117 430.5 7.64 E-~09 5.6
17 117 401.9 9.81 E-09 6.6
1700 925 17 117 28.4 1.79 E-07 12.5
13 90 237.3 1.13 E-08 5.5
8Test terminated due to grip failure.
b

Repeat test to check reproducibility.
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Table A-6
BASIC CREEP-RUPTURE DATA FOR XF-818 TESTED IN AIR

Min. Creep  iot2l
Test Temp. Stress Rupture : 1 Elong.,
F °C ksi MPa Life, hr Rate, sec %
1200 650 76 524 0.1 6.2
72 496 0.1 - . 5.4
50 414 143.2 6.72 E-08 7.5
1300 705 60 414 3.1 1.60 E~-06 6.7
55 379 20.9 3.97 E-07 7.2
48 33% 103.0 9.42 E-08 10.1
1400 760 50 345 2.3 4.12 E-06 8.2
38 262 38.4 3.50 E-07 12.7
32 221 132.3 1.16 E-07 13.6
30 207 261.7 5.67 E-08 12.
22 152 2497 L,58 E«~09 11,
1500 815 35 241 4,2 2.77 E-06 13.1.
25 172 62.5 3.50 E-07 22.3
20 138 199.5 8.33 E-08 14,1
1600 870 25 172 4,1 5.15 E-06 16.9
17 117 58.5 3.64 E-Q7 20.6
14 97 194.0 9,00 E~08 19.0
9.2 63 2198 6.78 E~09  12.9
1700 925 15 103 11.8 2.11 E-Q6 25.2
10 69 128.5 l1.46 E-07 23.1

ORIGINAL PACE I8
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Table A-7

HIGH-TEMPERATURE CREEP-RUPTURE DATA ON A-286 TESTED IN AIR

Time, hr
Test Time to Total To Reach Different To Onset
Temp., Stress, Rupture, Elong., Creep Elongations (%) of Tertiary
°C MPa hr YA 0.1 1.0 5.0 Creep
(L (2) (3) 4 (5) (6) (7) (8)
650 483 36.2 11.4 - 0.2 16,4 22.0
414 568.1 8.4 93.0 380.0 530.0 260
705 379 35.0 13.8 0.7 13.0 26.2 7.0
276 706.6 21.8 220.0 542.0 648.0 460
234 1222.0 3.3 770.0 1095 - 600
760 345 5.4 26.3 — 0.3 2.3 —
276 27.2 25.9 0.2 10.5 21.3 7.0
179 254.8 18.0 60.0 156 208.0 110
124 1181.0 7.2 240 500 §50.0 250
815 138 9.9 44,6 1.8 8.1 - 6.0
110 89.7 25.4 6.0 27.5 48.0 20.0
83 206.4 16.0 32.0 70.0 135.0 40.0
62 439.5 11.8 62.0 162.0 338.0 90.0
55 1030 10,7 83.0 234.0 - —-—
870 83 0.8 80.5 - - 0.3 -
55 15.0 59.2 - 0.3 1.3 5.0
41 5%.8 87.2 0.3 1.5 7.2 30.0
21 6222+ 29.8 1.2 19.5 80,0 4500
925 28 53.0 58.4 0.1 1.0 5.0 30.0
21 171.9 42.9 0.4 3.5 17.5 140.0
17 2214 38.7 0.7 7.0 34.0 —
9.0 552.4 - 1.5 70.0 336 -
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Table A-8

HIGH-TEMPERATURE CREEP-RUPTURE DATA ON INCOLOY 800H TESTED IN AIR

Lo
Sy

-

L)
[

-
W

o

Y

Time, hr
Test Time to Total To Reach Different To Onset
Temp., Stress, Rupture, Elong., Creep Elongations (%) of Tertiary
°c MPa hr % 0.1 1.0 5.0 Creep
(1) (2) (3) (4) (5) (6) @) (8)
650 276 54.8 32.2 0.1 3.0 31.0 19.0
248 101.4 26.3
207 309 15.0 0.1 8.7 150.0 120
186 2078 7.6 0.6 63.0 1730 1100
705 186 46.2 26.8 - 1.0 17.5 16.0
124 848.1 36.8 0.7 50.0 335 275
110 1475 15.5 0.2 25.0 450 400
760 152 4.7 46.8 - 0.4 2.5 2.0
124 28.9 53.0 - 0.5 6.7 6.0
103 132.2 43.7 0.2 3.0 20.0 70.0
76 1265 28.1 0.7 68.0 466.0 475.0
815 110 14.6 59.6 —— 0.2 2.0 4.0
86 37.5 22.3 0.1 1.8 12.8 13.5
83 72.6 32,1
76 83.2 23.3 0.1 4.5 27.5 40.0
62 780.6 18.1 - 78.0 437.0 250.0
870 76 19,3 32.2 0.1 2.1 8.1 4.5
62 39.3 15.9 0.3 5.5 23,4 12.0
48 161.0 18.1 0.8 19.0 78.0 44.0
925 48 53.0 24.0 1.0 14.0 31.0 11.0
41 131.0 23.2 4.0 38.5 75.0 22.0
31 292.2 19.7 3.0 48.0 149 62.0
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Table A-9

HIGH-TEMPERATURE CREEP-RUPTURE DATA ON N-155 TESTED IN AIR

Time, hr
Test Time to Total To Reach Different To Onset
Temp., Stress, Rupture, Elong., Creep Elongations (%) of Tertiary
°C MPa hr % 0.1 1.0 5.0 Creep
(1) (2) (3) (4) (5) (6) (7N (8)
650 414 2.7 23.6 - 0.5 —_— 0.75
379 15.0 19.9 - 1.7 - 13.0
276 968.7 26.2 0.4 20.0 315 475
705 276 42.5 28.4 - 0.8 15.0 20.0
193 527.8 46.0 0.8 16.0 185 200
760 241 9.0 42.7 - 0.2 1.8 —
193 36.8 44.0 - 1.0 9.8 12.0
165 115.3 51.5 0.5 4.0 31.0 50.0
124 573.6 30.1 0.8 16.0 213 290
815 165 7.5 58.3 - 0.2 1.4 -
124 42.5 53.2 0.2 1.3 8.8 20.0
110 129.0 46.8 0.2 3.0 38.0 50.0
83 457.3 25.0 0.7 19.0 200 180
76 931.3 34.7 1.5 30.0 370 325
63 2536 - 1.6 170 1440 1800
870 110 8.9 65.0 —— 0.2 1.9 2.1
93 56.0 59.6 0.3 12.0 28.0 11.0
83 58.0 46.9 0.1 2.5 14.0 24.0
69 212.2 35.9 0.3 7.0 60.0 83.0
59 636.7 26.7 0.4 29.0 226 220
925 69 33.0 38.8 0.2 5.0 17.5 8.5
59 49.2 43.3 0.1 2.0 12.0 16.0
41 354.2 27.7 1.0 29.0 143 120
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Table A-10

HIGH-TEMPERATURE CREEP-RUPTURE DATA on 19-9DL TESTED IN AIR

Time, hr
Test Time to Total To Reach Different To Onset
Temp., Stress, Rupture, Elong., Creep Elongations (%) of Tertiary
°C MPa hr % 0.1 1.0 5.0 Creep
(1) (2) (3) (4) (5) 6) (7 (8)
650 414 1.1 18.8 - 0.6 - 0.6
276 135.9 11.9 - 32.0 133.0 55.0
705 276 10.9 16.9 - 0.7 - -
172 268.5 24,2 2.0 50.0 158.0 65.0
131 1342 12.1 10.0 152.0 950 650.0
760 193 8.5 30.0 - 0.2 - -
172 20.2 31.0 - 2.5 15.5 14.5
138 101.0 37.4 0.1 9.0 41.5 34.0
100 739.1 18.8 2.0 89.0  497.0 280.0
86 1687.0 10.9 5.0 300 1250 425
815 138 2.8 44 .8 - 0.1 0.6 1.9
124 14.2 33.4 — 0.4 3.2 11.0
103 66.4 29.2 0.1 4.0 27.5 22.0
83 173.1 32.3 - 11.0 8§2.0 62.0
72 324.1 25.0 0.4 40.0 190.0 105.0
59 1118.0 9.4 1.7 30.0 900 350
870 103 1.8 61.6 - - 0.6 0.5
83 10.2 42.4 - 0.4 2.5 3.2
69 38.0 36.4 - 1.2 8.2 17.0
55 107.9 34.3 0.1 8.0 39.5 45.0
41 406.3 20.8 2.0 82.0 260.0 130.0
33 799.0 —_— 1.5 89.0 440.0 290.0
925 69 4.1 47.6 - 0.2 0.9 1.8
55 16.3 37.1 - 0.7 4.2 4.5
35 177.2 27.5 0.1 10.5 81.0 55.0
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Table A-ll

HIGH-TEMPERATURE CREEP-RUPTURE DATA ON CiM-6D TESTED IN AIR

Time, hr
Test Tiwe to Total To Reach Different To Onset
Temp.,  SLYCSS, Rupture, Elong., Creep Elongations (%) of Tertiary
°c MPa hr % 0.1 1.0 5.0 Creep
(1) (2) (3) (4) (5) (6) (N (8)
414 0.1 2.1 - - - -
379 305.0 4.2 0.1 36.0 —— 180.0
705 345 49.1 7.8 —— 6.0 44.5 20.0
310 147 .4 8.6 - 12.0 108.0 70.0
276 827.4 8.2 0.2 53.0 700.0 475.0
760 290 11.5 7.9 - 1.6 - 6.5
276 23.6 10.7 - 2.9 18.4 14.0
241 140.2 9.9 0.2 12.0 115.0 80.0
221 354.4 10.3 0.2 20.0 298.0 240.0
207 796.7 8.7 0.5 59.0 770.0 610.0
815 241 7.1 13.9 - 0.6 6.3 4.2
193 78.6 11.8 - 6.5 63.5 40.0
172 281.9 10.6 0.2 19.0 252.0 175.0
152 768.0 7.6 0.3 58.0 760.0 £,40.0
870 152 29.7 11.7 0.3 6.0 28.0 17.0
117 430.5 5.6 0.3 80.0 - 230.0
117 401.9 6.6 0.4 125.0 401.0 215.0
925 117 28.4 12.5 0.2 8.5 26.3 12.0
90 237.3 5.5 0.4 146.0 — 130.0
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Table A-12

HIGH-TEMPERATURE CREEP-RUPTURE DATA ON XF-818 TESTED IN AIR

Time, hr
Test Time to Total To Reach Different To Onset
Temp., Stress, Rupture, Elong., Creep Elongations (%) of Tertiary
°c MPa nr % 0.1 1.0 5.0 Creep
(1) (2) (3) (4) (5) (6) (7) (8)
650 524 0.1 6.2 - —— - -
496 0.1 5.4 - - —— -
414 143.2 7.5 0.1 11.0 - 100.0
705 414 3.1 6.7 - 0.3 - -
379 20.9 7.2 —— 3.5 - 11.0
331 103.0 10.1 0.1 10.5 83.5 50.0
760 345 2.3 8.2 - 0.3 - -
262 38.4 12.7 — 4.5 28.0 17.0
221 132.3 13.6 0.1 14.0 92.0 50.0
207 261.7 12.7 0.3 31.5 184.0 80.0
152 2497 11.4 2.0 300 1930 860.0
815 241 4.2 13.1 - 0.5 - 3.3
172 62.5 22.3 0.2 5.0 32.0 24.0
138 129.5 14.1 0.2 14.5 135.0 95.0
870 172 4.1 16.9 - 0.4 2.3 1.9
117 58.5 20.6 0.1 4.5 31.0 22.0
97 194.0 19.0 0.1 14.0 117.0 65.0
63 2198 12.9 3.5 205.0 1420 640.0
925 103 11.8 25.2 —— 0.8 5.8 5.0
69 128.5 23.1 0.3 15.0 71.0 42.0
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STATISTICAL ANALYSIS OF ALLOY 19-9DL DATA
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