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SUMMARY 

An ultraviolet spectrophotometric method was developed for the simulta­
neous determination of alkylbenzenes, alkylnaphthalenes, alkylanthracenes/ 
phenanthrenes and total aromatics in mid-distillate fuels. Matrix equations 
were established from ultraviolet spectra of aromatic hydrocarbons, then 
applied to the analysis of aromatics in jet fuels. To determine the accu­
racy and precision of the analytical method, fuels with known compositions 
were prepared by blending aromatic hydrocarbons. Analyses of these standard 
fuels for total aromatics resulted in an accuracy of 14 percent for a Jet A 
type fuel and 19 percent for a broadened-properties jet turbine fuel. With 
matrix equations based on known aromatic components in the standard fuels, 
the accuracy improved to 5 percent for the Jet A and 0.6 percent for the 
broadened-properties jet turbine fuels. Precision, expressed as relative 
standard deviations, ranged from 2.9 percent for the alkylanthracenes/ 
phenanthrenes to 15.3 percent for the alkylbenzenes. In addition, the ASTM 
D-1840 method for naphthalenes by ultraviolet spectroscopy was evaluated. 
Results indicated that the ASTM 0-1840 method may be applicable for fuels 
containing more than 5 percent naphthalenes and having end points above 315 0 

C if some decrease in accuracy and precision is acceptable. 

INTRODUCTION 

While the availability of high quality petroleum crudes for fuel pro­
duction has declined, the demand for jet fuel has increased, causing severe 
competition for the available mid-distillates. Changes in property specifi­
cations for future fuels could minimize potential curtailments in supplies 
and might also minimize costs. Of particular interests are those changes 
which may occur in the aromatics fraction of future fuels. A recent Depart­
ment of Energy study has indicated a trend toward higher concentrations of 
aromatics in jet fuels (Ref. 1). In addition to a higher aromatic content, 
changes in the distribution of mono- and polynuclear aromatics may be found 
in future fuels. Both of these variations in fuel composition might become 
important as a result of an increase in the final boiling points of jet 
fuels, an increase in the amounts of cracked stock streams employed to pro­
duce jet fuels, or with the introduction of syncrudes into the refineries. 
Fuels with high concentrations of aromatics or higher proportions of poly­
nuclear aromatics in the aromatic fraction produce more soot in the combus­
tion process causing increased flame radiation and smoke in the engine 
exhaust (Ref. 2). These two effects decrease combustor liner life and tur­
bine life (Ref. 3). Aromatics are also known to be detrimental to the jet 



turbine fuel system through seal destruction and reduced fuel thermal sta­
bility. Thus, while the use of highly aromatic fuel may reduce fuel proc­
essing requirements and cost, turbine engine fuel efficiency may decrease 
and maintenance costs may increase. It is important, then, to determine the 
aromatic content of jet turbine fuels, particularly in the research investi­
gations into the effects of fuel property variations on the performance of 
combustion and fuel systems. 

Currently there is no reliable method for simple and rapid determina­
tion of alkylbenienes, akylnaphthalenes, and alkylanthracenes/phenanthrenes 
in mid-distal late fuels. Because of the wide range of aromatics present in 
jet turbine fuels and the overall complexity of fuels, analytical methods 
for aromatics generally suffer numerous interferences. 

Gas chromatography (GC) has been applied to the determination of aro­
matics in gasoline, but this analytical method is limited to compounds with 
boiling points lower than 250 0 C (Ref. 4). Generally, gas chromatography is 
limited in its capability to determine the complex variety of the components 
in mid-distillate fuels. Although not fully developed, fused silica capil­
lary column gas chromatography with a modified ultraviolet detector shows 
promise in determining individual aromatic components (Ref. 5). Alkylben­
zenes at levels down to 0.1 percent and alkylnaphthalenes down to 0.02 per­
cent were separated and identified using a modified ultraviolet detector at 
208 nm. 

Other methods such as mass and nuclear magnetic resonance spectroscopy 
(MS and NMR) are capable of measuring the aromatic ring structures and the 
amount of hydrogen bound to the aromatic rings. However, the instruments 
are expensive and the analytical techniques require specially trained 
analysts to interpret the data. High performance liquid chromatography 
(HPLC) has been applied to group analysis of saturates, olefins and aro­
matics (Ref. 6). This technique accurately determines the total aromatic 
content of a fuel. In an HPLC method using an ultraviolet and fluorescence 
detector, a chemically-bonded aminosilane liquid chromatographic packing 
material was used to isolate polynuclear aromatic compounds according to the 
number of condensed rings (Ref. 7). Another HPLC method showing promise and 
currently in publication uses the amino column and refractive index detector 
to separate aromatic compounds (Ref. 8). 

The most widely used method for aromatics is the fluorescent indicator 
adsorption (FIA) method (Ref. 9). This method is specific for fuels dis­
tilling below 315 0 C, and thus erroneous results may be obtained for higher 
distilling and dark fuels (Ref. 10). This method does not differentiate 
alkylbenzenes, alkylnaphthalenes, or alkylanthracenes and phenanthrenes. 
Another analytical technique widely used for aromatics is the ultraviolet 
(UV) method, but, generally, UV methods such as the ASTM Method 0-1840 are 
not applicable to all classes of aromatics (Ref. 11). Recently a UV spectro­
photometric method was developed for determining all classes of aromatics, 
but specific wavelengths and absorptivities were not reported in the litera­
ture and this method was applied only to lubricating oils (Ref. 12). 

This report describes a UV spectrophotometric method for determining 
aromatics in mid-distillate fuels. The method was evaluated for use with 
specification jet turbine fuels, broadened-properties jet fuels, diesel 
fuels, and shale derived jet fuels. From the average absorption wavelengths 
of substituted benzenes, naphthalenes, anthracenes and phenanthrenes, sets 
of matrix equations were established to simultaneously determine the concen­
trations of alkyl benzenes, alkylnaphthalenes, alky1anthracenes/ 
phenanthrenes, and total aromatics in "middle distillate fuels. For conven-
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ience, these three classes of aromatics are referred to in this paper simply 
as benzenes, naphthalenes, and anthracenes. The results are compared to 
results obtained from MS, NMR, FIA, and HPLC methods. The procedure, 
results, and evaluation of the UV spectrophotometric method are discussed in 
this paper. 

EXPERIMENTAL 

Ultraviolet Spectroscopy of Aromatic Molecules 
Saturated hydrocarbons do not absorb ordinary UV radiation in the 

region between 180 and 320 nm, and therefore do not interfere with aromatic 
hydrocarbon absorption. On the other hand, olefins may absorb near below 
210 nm, but the intensities are much weaker than those of the substituted 
benzenes. Furthermore, the olefin content is generally very low so the 
interference is inconsequential. Aromatic molecules show a low-intensity 
band, or a fine-structure band, at about 254 nm. Thus, this wavelength is 
often used in qualitative analysis to detect the presence of aromatics in a 
sample. As functional groups are substituted on the aromatic nucleus, 
bathochromic or red shift occurs with greater intensity. But, unlike the 
dienes and unsaturated ketones in which the shift can be calculated by 
adding the contributions of the substituents, the effects of various sub­
stituents on the aromatic nucleus cannot be predicted. For aromatics, each 
compound must be scanned in the UV region to obtain the maximum absorption 
wavelengths. The absorbance of UV radiation is then related to the con­
centration of aromatics by the Beer-Lambert Law. 

Instrument 
A Cary 210 ultraviolet-visible recording spectrophotometer was used. 

The source of the UV radiation was a deuterium discharge lamp, and the mono­
chromator was of a grating type. The detector was a photomultiplier tube, 
and the absorbance was recorded on a potentiometric servo-recorder, as well 
as displayed on a digital readout. The instrument had the capability of 
blank correction by storing the solvent spectrum, and subtracting it from 
the sample spectrum. 

Obtaining the Spectrum 
The UV spectrophotometer was used in the double beam mode with the 

reference cell containing a high purity solvent, either isooctane or 
cyclohexane. Other solvents such as pentane and hexane have lower cutoff 
wavelengths but were not used because of their higher volatility. The blank 
solvent spectrum was scanned and simultaneously stored for later retrieval 
to be subtracted from the sample spectrum. Sample solutions were diluted 
with solvent to keep the concentration in the range of 0.2 to 0.9 absorbance 
units. The spectrum was scanned from 300 nm to 194 nm. 

Average Maximum Absorption Wavelengths 
The first step towards the development of a matrix equation for aro­

matics was obtaining the average maximum absorption wavelengths of benzenes, 
naphthalenes, and anthracenes. The primary absorption band for benzene 
occurs at 184 nm, naphthalene at 220 nm, and anthracene at 252 nm. These 
absorption wavelengths are shifted upward with each substitution. Since jet 
fuels contain a variety of substituted aromatics, averages of the maximum 
absorption wavelengths were obtained from individual UV spectra of pure com-
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pounds. When available in the literature such as the API Research Project 
44 , maximum absorption wavelengths were obtained directly from the pub­
lished data (Ref. 13). Where inadequate or no data was available, the 
reference spectra were obtained by scanning the pure aromatic compounds from 
300 nm to 194 nm. A total of 34 spectra were obtained: 13 substituted ben­
zenes, 11 naphthalenes, and 10 anthracenes. Each of these UV spectra are 
presented in the Appendix. Combining the spectra obtained in the laboratory 
and the spectra reported in the literature, a total of 90 spectra were 
obtained: 31 benzenes, 43 naphthalenes and 16 anthracenes. The list of 
aromatic compounds used in the calculation is presented in Table I. Based 
on these spectra, the average of the maximum absorption wavelengths were 
determined to be 198.1 nm for benzenes, 226.7 nm for naphthalenes, and 254.5 
nm for anthracenes. 

General Matrix Equation 
The absorptivities at the three average maximum absorption wavelengths 

presented previously were calculated from the spectrum of each compound, and 
for each aromatics class the average absorptivities were determined. For 
example, at 198.1 nm, the average absorptivity was 298.22 1/g-cm for ben­
zenes, 90.26 1/g-cm for naphthalenes, and 80.82 1/g-cm for anthracenes. 
Thus, the absorbance reading at 198.1 nm was expressed as: 

where 

A198.1 = 298.22 [B] + 90.26 [N] + 80.82 [A] 

A = absorbance 
[B] 
[N] = 
[A] = 

concentration of benzenes, Wt percent 
concentration of naphthalenes, Wt percent 
concentration of anthracenes, Wt percent 

Similarly, by calculating the average absorptivities at 226.7 nm and 
254.5 nm, the absorbance reading at these wavelengths were expressed as: 

and 
A226.7 = 10.71 [B] + 420.87 [N] + 57.29 [A] 

A254.5 = 2.14 [B] + 18.86 [N] + 507.31 [A] 

In these linear equations, the path length was disregarded since the con­
stant is 1 cm. From the above equations a matrix equation was established 
such that simultaneous solution of the equations would provide the concen­
trations of benzenes, naphthalenes, and anthracenes. Thus, the set of three 
linear equations was described in the matrix equation format as follows: 

[

298.22 
10.71 
2.14 

90.26 
420.87 
18.86 

80.82] 
57.29 

507.31 

[B] 
[N] 
[A] 

= [~198.1] A226 •7 
254.5 

(1) 

Sample fuels were diluted in isooctane to bring the concentration levels in 
the range of 0.2 to 0.9 absorbance units. Following the dilutions, the 
sample fuels were scanned from 300 nm to 194 nm, and the absorbances were 
measured at 198.1, 226.7, and 254.5 nm. These absorbance readings were sub­
stituted into equation 1, and the concentrations were determined by solving 
the matrix using the Gauss elimination technique. 
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Fuels 
The experimental fuels are generally classified into two types 

according to their distillation ranges. These two types are the aviation 
turbine fuels such as commercial Jet A or Navy JP-5, and the higher-boiling 
intermediate fuels which range between aviation turbine fuels and common 
diesel fuels. The following fuels were employed in the study (Refs, 14-16). 

ERBS-3: 

ERBS-3-11.8%H: 

ERBS-3-12. 3~~H: 

ERBS-3S: 

ERBS-2: 
Jet A: 
JP-5 Paraho Shale: 

IRS: 

Experimental Referee Broadened Specification (ERBS) 
aviation turbine fuel, lot -3, 657~ kerosene by volume 
and 35% hydrotreated catalytic gas oil. 
ERBS/Blending stock (60/40 vol %) blend, 11.8% 
hydrogen. 
ERBS/Blending stock (79/21 vol %) blend, 12.3% 
hydrogen. 
ERBS blending stock, 45% xylene bottoms by volume, and 
55% hydrotreated catalytic gas oil. 
ERBS, lot -2. 
Commercial Jet A, paraffinic stock. 
Shale oil derived fuel, distilled to the nominal range 
of a military aviation turbine fuel, JP-5. 
Intermediate Refinery Stream, paraffinic stock. 

The Experimental Referee Broadened Specification (ERBS) fuel is a blend 
of kerosene and hydrotreated catalytic gas oil and is a representation of a 
kerojet fuel with broadened properties. The ERBS fuel is intended to serve 
as a'reference fuel in research investigations into the effects of fuel 
property variations on the performance and durability of jet aircraft com­
ponents, including combustors and fuel systems. 

RESULTS AND DISCUSSION 

Ultraviolet Spectra of Mid-Distillate Fuels 
Typical UV spectra of Jet A and ERBS type fuels are presented in 

Figures 1 through 8. As shown in these figures, there is a distinct differ­
ence in the UV spectra between the Jet A and ERBS type of fuels. The 
difference is particularly noticeable in the 254 nm area where anthracenes 
have an average maximum absorption. For naphthalenes, the absorption wave­
length experiences a slight bathochromic shift with the ERBS fuels which 
indicates a higher concentration of substituted naphthalenes. 

In the analysis of jet fuels, the repeatability of spectra near 200 nm 
may be influenced by factors such as oxygen absorption and stability of the 
dilute fuels. The optical system of the UV spectrophotometer was purged 
with nitrogen gas to minimize the effects of oxygen absorption around the 
200 nm region, but nitrogen purges did not produce any improvement in the 
spectra of the fuels. The effect of oxygen in the determination of the ben­
zenes is more pronounced when oxygen is present in the fuel and solvent 
rather than within the overall optical path of the instrument. With sample 
manipulation and a series of dilutions, more oxygen is introduced into the 
sample solution than the blank solvent and this affects the spectra below 
200 nm. This situation is particularly observed when the spectra of a 
freshly opened bottle of solvent is compared with the spectra of the same 
solvent after exposure to air. The absorbance in the region below 200 nm 
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sharply increases as more oxygen dissolves in the solvent. However, this 
effect is minimized by frequently checking and compensating for the blank 
solvent during a series of analyses. 

In addition to dissolution of oxygen in the solvent, the stability of 
the diluted sample can affect the analyses. Within an hour, sample solu­
tions showed decreases in absorbance readings by about 0.5 percent for ben­
zenes, and 0.05 percent for naphthalenes. No changes were observed for 
anthracenes during this period. In two hours the absorbance loss was about 
7 percent for benzenes, 1 percent for naphthalenes, and 0.5 percent for 
anthracenes; in 24 hours, 30 percent, 19 percent, and 8 percent, 
respectively. 

Equations Based on the Jet Fuels 
Based on the differences observed between the jet fuels and ERBS fuels 

at 254 nm, and since the calculated absorption wavelengths of pure compounds 
did not exactly coincide with the actual fuels, average absorption wave­
lengths were obtained from the spectra of actual jet fuels. Absorptivities 
were calculated from observed spectra of fuels to establish Jet A type and 
ERBS type equations in an attempt to represent the matrix equation as close 
to the actual fuels as possible. The matrix equation for the Jet A type 
fuel was determinned to be: 

A196.5 = 349.60 [B] + 94.13 [N] + 149.52 [A] 
A221 •5 = 36.65 [B] + 397.36 [N] + 78.13 [AJ (2) 
A254.5 = 2.14 [B] + 18.86 [N] + 507.31 [A] 

and similarly the equation for ERBS type was established as follows: 

A196.5 = 349.60 [B] + 94.13 [N] + 249.52 [A] 
A224.6 = 19.65 [B] + 438.73 [N] + 63.81 [A] (3) 
A253 .6 = 1.68 [B] + 18.31 [N] + 494.47 [A] 

With these equations available, fuel samples were reanalyzed using either 
the Jet A or ERBS equation depending on the fuel spectra. Results using the 
general matrix equation were compared against those obtained using the Jet A 
or ERBS equations. All UV results were compared against other results ob­
tained using different analytical techniques such as FIA, HPLC, and MS. 

Results for Jet Turbine Fuels 
The analytical results obtained by the calculated general and fuel 

derived equations are presented in Table II. Results are grouped into ben­
zenes, naphthalenes, anthracenes, and total aromatics. The units are weight 
percent and standard deviations are reported for six separate measurements. 
After determining the individual concentrations of benzenes, naphthalenes, 
and anthracenes, these results are combined to get the total concentrations 
of aromatics. 

The difference in the results determined using the calculated general 
equation and those determined using the fuel derived equation is about 6 
percent for the ERBS-3, ERBS-3-11.8% H, ERBS-3-12.3% H, ERBS-3S, and ERBS-2 
fuels. But, for the Jet A, JP-5, and IRS fuels, the difference increases to 
about 11 percent. This is simply due to a larger variation in the absorp­
tivities of the general and Jet A type equations. 

In Table III the results obtained by the UV method are compared to 
those obtained using other analytical methods. In the FIA/MS technique, the 
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aromatics fraction is separated by the fluorescent indicator adsorption 
method, then analyzed by the ASTM mass spectrometric method D-2425. The UV 
(0-1840) denotes the ASTM 0-1840 method for naphthalenes, and the HPLC 
method designates the group analysis of saturates, olefins, and aromatics. 
The HPLC results were obtained using the method described in Reference 6. 
For those results designa~ed MS, separation is done by elution chroma­
tography using the ASTM 0-2549 method, then the aromatics are analyzed by 
mass spectrometric method ASTM 0-2425. These MS results (Jet A and IRS 
fuels) were abstracted from a NASA publication (Ref. 17). The FIA method is 
the fluorescent indicator adsorption method, ASTM 0-1319. 

For tabulating the mass spectrometric results, alkylbenzenes, indans, 
tetralins, and indenes were grouped into the benzenes. For the naphthalenes 
class, acenaphthenes, acenaphthylenes and fluorenes were combined with the 
naphthalenes. Unfortunately, with the relatively poor precision (six trials 
per result) obtained using the UV method, it is somewhat difficult to iden­
tify trends. For actual jet fuels, as is the case here, comparisons are 
further complicated by errors in the results of the baseline method (i.e., 
MS, FIA, etc.), or due to the fact that completely corresponding data is 
unavailable. For example, in the mass spectrometric data, the combined 
acenaphthylenes/fluorenes (C n H2n-16) results have been categorized as 
naphthalenes. Nevertheless, several general comments are possible regarding 
the UV method results. 

In comparing the results for the ERBS fuels using the UV ERBS equations 
to that obtained from the mass spectrometric method, one finds that the UV 
results for benzenes are generally high, while the naphthalenes and 
anthracenes are generally low. On the other hand, for the Jet A type fuels 
using the UV Jet A equation, the benzenes are low, and the naphthalenes and 
anthracenes are high. With the limited data available, it appears as if the 
general equation yields better results for all classes of aromatics than 
does the Jet A equation. Generally, for the total aromatics the difference 
between the UV and FIA/MS method is greater as the fuel contains more aro­
matics. The difference of about 5 percent in the concentration of total 
aromatics for ERBS-3 fuel increases to about 10 percent for ERBS-3-12.3% H, 
12 percent for ERBS-3-11.8% H, and about 31 percent for ERBS-3S fuel. That 
is, the UV result for ERBS-3 fuel is 82.4 percent of the FIA result (note 
that this is a modified FIA which yields a weight percent result). With a 
higher aromatics content such as in the ERBS-3S fuel, the UV method results 
in 62.3 percent of the FIA result. For comparing the HPLC results, note 
that these results are in volume percent of total aromatics which is 
slightly higher than the corresponding value expressed as a weight percent. 
In any event, the HPLC results are between the UV and FIA/MS methods, and 
the difference between the HPLC and FIA/MS methods is less than that between 
the UV and FIA/MS methods. 

Simulated Standard Fuels 
Mixtures of simulated standard fuels were prepared to determine the 

accuracy and precision of the UV method for the analysis of a fuel with a 
known composition. Using a number of representative hydrocarbon compounds, 
simulated fuels with concentrations similar to Jet A type and ERBS type 
fuels were prepared to be used as standard fuels. The aromatic hydrocarbon 
compounds and concentrations are listed in Table IV. Of the total of 19 
aromatic compounds, 7 were benzenes, 7 naphthalenes, and 5 anthracenes. 
These aromatic compounds were blended into the matrix of saturated hydro­
carbons also presented in Table IV. These simulated fuels were analyzed by 
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the UV method in the same manner as the actual jet fuels. These results are 
shown in Table V, and their spectra are shown in Figures 9 and 10. 

For the total aromatics in the simulated Jet A fuel, the result is 80.0 
percent of the true value using the general equation, and 85.5 percent using 
the Jet A equation. As is the case with the actual jet fuels, lower results 
are obtained for the benzenes, but higher results are found for the 
naphthalenes and anthracenes. In spite of the lower total aromatics result, 
the general equation again appears to give slightly better results for each 
individual aromatics class. For the total aromatics in the simulated ERBS 
fuel, the result is 123.6 percent of the true value using the general equa­
tion, and 119.1 percent using the ERBS equation. For this fuel, the higher 
total result is due to the relatively higher concentrations of naphthalenes 
and anthracenes. These results indicate, as expected, that the selection of 
compounds used in the development of the equations have a significant 
influence on the analytical results. Depending on the aromatic compounds 
present in the fuels, the average absorption wavelengths would vary and the 
average absorptivities at these wavelengths would also vary. 

Equation Based on the Known Components 
To determine the inherent accuracy and precision of the UV method, new 

equations were developed based on the UV spectra of the simulated fuels pre­
pared with the compounds shown in Table IV. As before, absorptivities at 
the maximum absorption wavelengths were calculated and new equations were 
established for recalculation of the results. However, in these equations, 
the weighted average of the absorptivity for each individual simulated fuel 
component was employed to determine the final values derived. 

Equation based on the simulated Jet A fuel: 

A197.6 = 324.31 [B] + 84.40 [N] + 73.44 [A] 
A220.0 = 50.01 [B] + 500.67 [N] + 103.07 [A] 
A255.1 = 1.43 [B] + 18.53 [N] + 480.56 [A] 

Equation based on the simulated ERBS fuel: 

A195.0 = 442.02 [B] + 85.58 [N] + 141.72 [A] 
A220 0 = 50.01 [B] + 500.67 [N] + 103.07 [A] 
A251:7 = 1.11 [B] + 15.05 [N] + 485.11 [A] 

(4) 

(5) 

The results of simulated standard fuels recalculated using the above 
equations are presented in Table VI. As expected, far better accuracies are 
obtained for the benzenes, naphthalenes, and anthracenes. For the total 
aromatics in simulated Jet A fuel, the result is 105.0 percent of the true 
value, whereas the result is 100.6 percent for the simulated ERBS fuel. 
However, this improvement in the accuracy for the total aromatics concentra­
tion is not observed in the standard deviation of the results. As shown in 
Table VI, the UV results based on known components compare well with refer­
ence values and other analytical methods such as the FIA and HPLC. 

Analysis of Naphthalenes by the ASTM 0-1840 Method 
While scanning the UV region for aromatics, absorbances were measured 

at 285 nm for naphthalenes determination by the ASTM 0-1840 method. This 
method is intended for the analysis of naphthalenes in straight-run jet 
fuels containing not more than 5 percent of these components and having end 
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points below 315 0 C. The concentration of naphthalenes in the simulated 
fuels determined by the ASTM 0-1840 method was compared to the matrix equa­
tion method using the equations based on the known components. As shown in 
the Table VI, the ASTM 0-1840 method gave results similar to the actual 
amount of naphthalenes blended into the fuels: 89.1 percent for the simu­
lated Jet A type and 97.9 percent for the simulated ERBS type fuel. This is 
due to the choice of wavelength employed in the method. At this wavelength 
the interference from benzenes and anthracenes is small, as is observed in 
the spectra of the pure compounds. However, when the UV spectra of jet 
fuels are examined near 285 nm, this wavelength, used for naphthalene 
measurements, is on the shoulder of a rising broad peak. It appears to be a 
poor choice for analytical measurements, but the results of the simulated 
fuels correlate well with the true values. These results indicate that the 
ASTM 0-1840 method may be applicable for more of a variety of fuels than 
specified by the method, if slightly less precision and accuracy is accept­
able. For example, the total naphthalenes concentration in simulated Jet A 
fuel was 4.11 percent, and 13.28 percent for simulated ERBS fuel, whereas 
the ASTM 0-1840 medthod specified less than 5 percent. Thus, it suggests 
that the ASTM 0-1840 method may be applicable to fuels containing 13.3 per­
cent or possibly more naphthalenes and having end points of 328 0 C or 
higher. However, when different analytical methods for naphthalenes are 
compared using actual fuels, as shown in Table III, there is a considerable 
difference between the results. Thus, although the ASTM 0-1840 method 
appears to be reasonably accurate based on the simulated fuel mixtures with 
arbitrary components and concentrations, for actual fuels the accuracy is 
only slightly better than that obtained using the matrix equations. 

CONCLUSIONS 

A rapid ultraviolet spectrophotometric method for the simultaneous 
determination of aromatics in mid-distillate fuels was developed. In this 
method, alkylbenzenes, alkylnaphthalenes, alkylanthracenes/phenanthrenes, 
and total aromatics were determined from the ultraviolet spectra of the 
fuels. Absorbances were measured at selected wavelengths, then used in the 
established matrix equations to determine the aromatics concentrations. 

The matrix equations were derived from a total of 90 ultraviolet 
spectra of aromatic hydrocarbons: 31 benzenes, 43 naphthalenes, and 16 
anthracenes/phenanthrenes. From these reference spectra, the average maxi­
mum absorption wavelength was determined for each group of aromatics, then, 
the average absorptivities at the three absorption wavelengths were calcula­
ted and used to establish the matrix equations. From this work, 37 UV 
spectra of aromatic hydrocarbons are made available by scanning pure com­
pounds between 300 and 194 nm region. These spectra can be used to comple­
ment reference spectra files such as those of API Research Project 44. 

Generally, for the total aromatics, the difference in the results 
between the UV and FIA/MS method increases as the fuel contains more aro­
matics. For the ERBS-3 fuel the UV result is 82.4 percent of the modified 
FIA result. With more aromatics content such as in the ERBS-3S fuel, the UV 
method yields 63.0 percent of the FIA result. For the total aromatics in 
the simulated Jet A type fuel, the UV result is 85.5 percent of the true 
value. For the simulated ERBS type fuel, the UV result is 119.1 percent of 
the true value. When the UV results are recalculated with the equations 
derived from known compositions, the simulated Jet A type fuel yields in 
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105.0 percent of the true value, whereas the result is 100.6 percent for the 
simulated ERBS type fuel. However, definite conclusions are difficult to 
reach for actual jet fuels since they are based on one FIA/MS result. 

In the analyses, a nitrogen purge of optical system of the instrument 
has no effect in the spectra, but the dissolved oxygen in the fuel and sol­
vent causes higher absorbances in the 200 to 194 nm region. This oxygen 
effect is minimized by frequently checking the blank solvent between the 
analyses. Dilute fuel solutions show an unidentified instability with 
respect to time, but this problem is also avoided by analyzing the sample 
fuels immediately after the dilutions. 

The ASTM 0-1840 analysis of the simulated fuels with known naphthalenes 
concentrations indicates that the results for naphthalenes in the Jet A type 
fuel is 89.1 percent of the true value, and 97.9 percent for ERBS type fuel. 
These results indicate that, instead of being limited to 5 percent 
naphthalenes, the ASTM 0-1840 method may be applicable for fuels containing 
13.3 percent or more naphthalenes and having end point of 328 0 C or higher. 
However, since these results were obtained from simulated fuel mixtures with 
arbitrary components and concentrations, the accuracy and precision of the 
ASTM 0-1840 method should be further investigated by using reference fuels 
with known compositions. 

Although the UV method did not demonstrate the precision and accuracy 
sought, it might be further improved by rough weighting of standards based 
on the boiling range, or by using a UV spectrophotometer that is capable of 
scanning below 190 nm. Further work on wavelength selection may provide 
additional improvements in this UV method if improved wavelengths for the 
naphthalenes and anthracenes can be found where interferences are further 
minimized. In this analytical scheme, naphthalenes and anthracenes can be 
determined, and subtracted from the total aromatics obtained by another more 
reliable method such as HPLC, to yield concentration of benzenes. In any 
case, more MS, HPLC, and modified FIA analyses of actual jet fuels and simu­
lated fuels are needed for further evaluation and comparison with the UV 
method. Other analytical methods besides MS that show promise in determin­
ing alkylbenzenes, alkylnaphthalenes, and alkylanthracenes/phenanthrenes are 
capillary GC with a UV detector, and HPLC using an amino column and a 
refractive index detector. 
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APPENDIX. ULTRAVIOLET SPECTRA OF PURE COMPOUNDS. 

This appendix contains the ultraviolet spectra of the following compounds: 

n - Butylbenzene Naphthalene 

sec - Butylbenzene 1 - Phenylnaphthalene 

tert - Butylbenzene 

Cyclohexylbenzene 

p - Diethylbenzene 

Diethylbenzene, mixture 

Indan 

Tetralin 

1,2,3,4 - Tetramethylbenzene 

1,2,3,5 - Tetramethylbenzene 

Toluene 

1,2,4 - Trimethylbenzene 

Xylene 

1,3 - Dimethylnaphthalene 

1,4 - Dimethylnaphthalene 

2,3 - Dimethylnaphthalene 

2,6 - Dimethylnaphthalene 

2 - Ethylnaphthalene 

1 - Methylnaphthalene 

2 - Methylnaphthalene 

2,3,5-Trimethylnaphthalene 

2 - Vinylnaphthalene 

Anthracene 

2 - tert - Butylanthracene 

9, 10 - Dimethylanthracene 

2 - Ethylanthracene 

2 - Methylanthracene 

9 - Methylanthracene 

1 - Methylphenanthrene 

Phenanthrene 

9 - Phenyl anthracene 

9 - Vinyl anthracene 

Decalin 

Fluoranthene 

Pyrene 
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TABLE I. - LIST OF AROMATIC COMPOUNDS INCLUDED IN THE MATRIX EQUATION 

Benzene 

n - Butylbenzene 

sec - Butylbenzene 

t - Butylbenzene 

5-n-Butyl[1,2,3,4-tetrahydronaphthalene] 

Cyclohexylbenzene 

Diethylbenzene, mixture 

p - Diethylbenzene 

1,2-Dimethyl-4-ethylbenzene 

1,4-Di-tert-butylbenzene 

2-Ethyl[1,2,3,4-tetrahydronaphthalene] 

5-Ethyl[1,2,3,4-tetrahydronaphthalene] 

6-Ethyl[1,2,3,4-tetrahydronaphthalene] 

5-Isobutyl[1,2,3,4-tetrahydronaphthalene] 

I-Methyl-2-n-propylbenzene 

I-Methyl-3-n-propylbenzene 

I-Methyl-4-n-propylbenzene 

2-Methyl[1,2,3,4-tetrahydronaphthalene] 

5-Methyl[1,2,3,4-tetrahydronaphthalene] 

6-Methyl[1,2,3,4-tetrahydronaphthalene] 

Tetralin 

1,2,3,4-Tetramethylbenzene 

1,2,3,5-Tetramethylbenzene 

Toluene 

1,2,4-Trimethylbenzene 
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TABLE I. - (Continued) 

1,3,5-Trimethylbenzene 

Xylene, mixture 

o - Xylene 

m - Xylene 

p - Xylene 

Acenaphthene 

2-n-Butyl-3-n-hexylnaphthalene 

7_n_Butyl_1_n_hexylnaphthalene 

1-n-Butylnaphthalene 

2-n-Butylnaphthalene 

1-(l-Cyclohexen-1-yl)naphthalene 

1-Cyclohexylnaphthalene 

1,2-Dimethylnaphthalene 

1,3-Dimethylnaphthalene 

1,4-Dimethylnaphthalene 

1,5-Dimethylnaphthalene 

1,6-Dimethylnaphthalene 

1,7-Dimethylnaphthalene 

1,B-Dimethylnaphthalene 

2,3-Dimethylnaphthalene 

2,6-Dimethylnaphthalene 

2,7-Dimethylnaphthalene 

2,6-Dimethyl-3-n-octylnaphthalene 

1,10-Di-1 1-naphthyldecane 

1,1-Di-(a-naphthyl)-1-hendecene 
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TABLE I. - (Continued) 

I-Ethylnaphthalene 

2-Ethylnaphthalene 

1,2,3,4,6,7-Hexamethylnaphthalene 

I-Isopropylnaphthalene 

I-Methylnaphthalene 

2-Methylnaphthalene 

1-(2-Methylphenyl)naphthalene 

2-(2-Methylphenyl)naphthalene 

Naphthalene 

I-n-Naphthylhendecane 

Il-n-Naphthyl-I0-heneicosene 

I-n-Naphthylpentadecane 

5-n-Pentadecylacenaphthene 

I-n-Pentylnaphthalene 

I-Phenyl naphthalene 

2-Phenylnaphthalene 

I-n-Propylnaphthalene 

1,2,4,8-Tetramethylnaphthalene 

1,2,3-Trimethylnaphthalene 

1,3,5-Trimethylnaphthalene 

1,4,6-Trimethylnaphthalene 

2,3,5-Trimethylnaphthalene 

2,3,6-Trimethylnaphthalene 

Anthracene 

2,3-Benzofluorene 
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9-{n-Butyl)anthracene 

2-{tert-Butyl)anthracene 

9,lO-Dimethylanthracene 

4,5-Dimethylphenanthrene 

9-n-Dodecylanthracene 

9-n-Dodecylphenanthrene 

2-Ethylanthracene 

2-Methylanthracene 

9-Methylanthracene 

I-Methyl phenanthrene 

3-Methylphenanthrene 

Phenanthrene 

9-Phenylanthracene 

9-Vinylanthracene 

TABLE I. - (Concluded) 
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TABLE II. - DETERMINATION OF ALKYLBENZENES, ALKYLNAPHTHALENES, 
ALKYLANTHRACENES/PHENATHRENES, AND TOTAL AROMATICS IN JET FUELS 

Benzenes Naphthalenes Anthracenes 1 ota 1 Aromatics 

Average St. Average St. Average St. Average ~t. 

Sample Equation"" Wt % Dev. Wt % Dev. wt % Dev. Wt % Dev. 

:RBS-3 General 11. 7 3.B 11 .B O.B 1.3 0.0 24.8 4.4 

ERBS 1O.B 2.2 11.6 0.7 1.4 0.0 (3.8 2.8 

:RBS-3- General lB.l 2.5 13.1 1.2 1.5 0.0 32.7 3.5 

12.3%H ERBS 17.5 2.2 12.5 1.3 1.6 0.0 30. 1 3 'J . .) 

:RBS-3- General 21.6 3.7 14.0 O.B 1.7 O. 1 37.3 4.:5 

11.B%H ERBS 22.3 2.4 13 .5 O.B 1.7 O. 1 37.5 3.3 

:RBS-3S General 29.9 6. 1 1B.2 2.B 2.3 O. 1 50.4 8.2 

ERBS 30.8 6.0 1B.2 1.4 2.3 0.0 51.3 7.2 

::RBS-2 General 15.B 0.9 9.5 0.5 1.7 0.0 27.0 1.2 

ERBS 12.4 O.B 9. 1 0.4 1.7 0.0 23.2 loCi 

Jet A General 15.9 O.B 1.5 O. 1 O. 1 0.0 17.5 O.b 

Jet A 12.7 0.7 2.B O. 1 o. 1 CI.O 15.6 0.7 

JP-5 General 22.0 0.3 1.4 o. 1 O. 1 0.0 23.5 0.4 

Jet A 17.3 0.3 3.0 O. 1 O. 1 0.0 20.4 0.4 

IRS General 7.7 0.6 5.6 0.4 0.4 0.0 13.7 0.9 

Jet A 6.9 0.5 5.6 0.3 0.4 CI.O 12.9 0.7 

General Equation - Measurements at 19B.1, 226.7, ana 254.5 nm. 
ERBS Equation - Measurements at 196.5, 224.6, and 253.6 nm. 
Jet A Equation - Measurements at 196.5, 221. 5, and 254.5 nm. 

17 



TABLE III. - COMPARISON OF ULTRAVIOLET SPECTROPHOTOMETRIC 
METHOD RESULTS WITH RESUL1S FROM OTHER ~EThOUS 

Benzenes Naphthalenes Anthracenes Total 
Sample Technique Wt % Wt % Wt % Aromatics 

ERBS-3 UV 10.8 11.6 1.4 23.8 Wt 70 
F IA/t-'lS 9.0 16.5 3.4 28.9 wt % 
UV (0-1840) 14.0 
HPLC 26.3 Vol % 

ERBS-3 UV 17.5 12.5 1.6 30. 1 wt % 
-12.3%H FIA/MS 11.4 24.0 5.2 40.6 Wt 70 

UV (0-1840) 15.7 
HPLC 37.7 Vol % 

ERBS-3 UV 22.3 13 .5 1.7 37.5 Wt % 
-11.8%H FIA/MS 14.6 30.0 5.3 49.9 wt % 

UV (0-1840) 17. 1 
HPLC 47.8 Vol % 

ERBS-3S UV 30.8 18.2 2.3 51.3 Wt % 
FIA/t-'iS 33.7 42.5 6.3 82.3 Wt % 
UV (0-1840) 22.9 
HPLC 78.2 Vol % 

ERBS-2 UV 12.4 9. 1 1.7 23.2 Wt % 
FIS/MS 17.2 10.0 2.0 29.3 Wt % 
UV (0- 1840) 14.2 
HPLC 26.5 Vo 1 ~o 

Jet A UV 12.7 2.8 O. 1 15.6 Wt % 
~lS 19.5 O. 1 0.0 19.6 Wt 70 
UV (0-1840) 0.97 
FIA 17.9 Vo 1 0 1 

70 

HPLC 17.6 Vol % 

,lP-5 UV 17.3 3.0 O. 1 20.4 Wt % 
UV (0-1840) 0.83 
FIA 22.2 Vo 1 70 
HPLC 20.2 Vol % 

IRS UV 6.9 5.6 0.4 12.9 Wt % 
MS 12.02 5.0 0.2 17.4 Wt % 
UV (0-1840) 5.5 
FIA 16.7 Vol % 
HPLC 16.9 Vol % 
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TABLE IV. - COMPOSITION OF SIMULATED FUELS 

(a) Aromatic Hydrocarbon Fractions, Wt ,~ 

Jet J\ Type Ekl3S Type 
Compound Fuel Fuel 

Tetralin 2.94 2.66 
1,2,3,5-Tetramethylbenzene 2.68 2.43 
Xylene 2.59 2.35 
1,2,4-Trimethylbenzene 2.67 2.42 
n-Butylbenzene 2.68 2.35 
Diethylbenzene 2.62 4.74 
1,2,4,5-Tetramethylbenzene 1.98 1.84 
Naphthalene 0.S7 2.02 
2-Methylnaphthalene 0.68 2.01 
Acenaphthene 0.48 1.77 
2,6-Dimethylnaphthalene 0.54 2. 15 
2,3-Dimethylnaphthalene 0.64 2.06 
2-Ethylnaphthalene 0.60 1.08 
l-Methylnaphthalene 0.60 2. 18 
Phenanthrene 0.021 0.41 
Anthracene 0.025 0.37 
9-Methylanthracene 0.023 0.37 
9,10-Dimethylanthracene 0.022 0.13 
l-Methylphenanthrene 0.020 0.28 

Total benzenes 18. 16 18.79 
Total naphthalenes 4. 11 13.27 
Total anthracenes/phenanthrenes O. 11 1.56 
Total aromatics 22.38 33.62 

(b) Saturated Hydrocarbon Fraction, Wt % 

Jet A Type ERBS Type 
Compound Fuel Fuel 

Isooctane 10.09 8.63 
Cyclooctane 17.85 15.27 
Decalin 13.20 11.28 
Dodecane 36.48 31.20 
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TABLE V. - RESULTS FOR SIMULATED FUELS 

Benzenes Naphthalenes Anthracenes lotal Aromatics 

Average St. Average St. Average St. Average 
Fuel Equation Wt % Oev. Wt % Oev. wt % Dev. Wt % 

Simulated General 12.26 1.07 5.34 0.02 0.31 0.01 17.91 

Jet A Jet A 12.23 0.40 6.58 0.10 0.32 0.01 19.13 

True Value 18. 16 4.11 0.11 22.38 

0-1840 3.66 0.15 

Simulatea General 21.77 4.60 17.72 1.29 2.07 0.64 41.56 

ERBS ERBS 18.27 3.78 19.85 0.79 2. 19 0.00 40.31 

True Value 18.78 13.28 1.56 33.62 

0-1840 13.00 0.45 
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Fuel Technique 

imulated UV 

Jet A FIA 

HPLC 

True Value 

0-1840 

imulated UV 

ERBS FIA 

HPLC 

True Value 

0-1840 

TABLE VI. - RESULTS FOk SIMULA1ED FUELS 

USING EQUATIONS BASED ON KNOWN COMPONENTS 

Benzenes Naphthalenes Anthracenes 

Wt % St. Oev. wt % St. Oev. Wt 7,; St. Oev. 

19.27 1.26 3.89 0.32 0.35 0.01 

18. 16 4.11 0.11 

3.66 o. 15 

17. 14 2.63 15. 15 0.97 1.53 0.06 

18.78 13.28 1.56 

13.00 0.45 
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Total AroITlat i cs 

wt % St. lJev. 

23.51 i.32 

23.80 

22.17 

22.38 

33.82 3.14 

33.96 

33.b6 

33.62 
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