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Melvin S. Anderson 

SUMMARY 

A curved member under a x i a l  l oad  i s  analyzed using beam column theory t o  

determine nonl i near response and t h e  tangent s t i f f n e s s  associated w i t h  small 

displacements from the nonl inear  s ta te .  Such a r e s u l t  i s  s u i t a b l e  f o r  i nco r -  

porat  i on i n t o  a  general nonl i near ana lys is  us ing a c o r o t a t i  onal coord inate 

system t o  descr ibe t he  r i g i d  body type  motion o f  i nd i v i dua l  members. Appl ica- 

t i o n  o f  the method t o  buck l ing  problems i s  a l so  shown. Several examples are 

given t o  show the  accuracy o f  t he  method. 

INTRODUCTION 

The nonl i near analys is  o f  frame or  l a t t i c e  s t ruc tu res  can be accompl ished 

w i t h  3 v a r i e t y  o f  approaches w i t h  vary ing degrees o f  success depending on  he 

problem. I n  t he  present paper, a t t e n t i o n  i s  given t o  frame s t ruc tu res  t h a t  may 

undergo la rge  displacements but  small ; ra in  which i s  o f t en  c h a r x t e r i z e d  as a 

very f l e x i b l e  o r  l i g h t l y  loaded s t ruc tu re .  The approach taken i s  t o  use a 

moving o r  co ro ta t iona l  coordinate system t h a t  fo l lows  each member so t he re  i s  

no l i m i t  on displacement and r o t a t i o n .  Exact so lu t ions  o f  t he  beam column 

equations are used f o r  t o t a l  and incremental forces so t h a t  accuracy i s  

achieved w i t h  few or  no member i n t e r i o r  nodes. Such a theory has been 

developed : n reference 1 f o r  s t r a i g h t  members. For very f l e x i b l e  s t ructures,  

member imperrect ions may be a s i g n i f i c a n t  f a c t o r  i n  r on l i nea r  response o r  a  

member may he +signed t o  have a small curvature. I n  t he  present paper, t he  

method o f  r e fe reme  1 i s  extended t o  inc lude  curved members. The app l i ca t i on  



of t he  tangent s t i f f ness  ma t r i x  associated w i t h  t he  incremental forces t o  

buck l ing  problems i s  a l s o  i l l u s t r a t e d .  Resul ts o f  non l inear  ana lys is  o f  a 

simple arch and imper fect  columns a re  compared w i t h  prev iocs work t o  i n d i c a t e  

t he  accuracy of the  apprcach. 

SYMBOLS 

constants of i n t e g r a t i o n  i n  equat ion (A4) 

t ransformat ion m a t r i x  between re1 a t i  ve d i  splacernents ( o r  

associated forces) and incremental d i  splacements ( o r  associated 

fo rces )  i n  l oca l  coordinates 

ma t r i x  def ined by equat ion (A21) 

bowing funct ions def ined by equations (A9) through (A12) 

s t ab i  1 i t y  func t ions  def ined by equations (A6) 

shortening due t o  bending 

global  and l o c a l  displacement vectors r espec t i ve l y  

1 ocal re1 a t i  ve displacement vector  

a x i a l  s t i f f n e s s  o f  member 

bending s t i f f n e s s  o f  member 

ampl i tude of member imper fec t ion  

g lobal  and l o c a l  force vectors respec t i ve ly  

f o r ce  vec to r  associated w i t h  r e l a t i v e  displacements 

ma t r i x  g i v i n g  c o n t r i b u t i o n  of t o t a l  member loads t o  incremental 

l o c a l  f o r ce  vector 

bending extension coup1 i n g  terms de f ined  by equat ion (A18) 

extensional  s t i f f n e s s  term def ined by equat ion (A18) 

g lobal  and l oca l  s t i f f n e s s  matr ices r espec t i ve l y  



L member length 

L * member length a f t e r  deformation 

m 1 , q  bending moments a t  ends o f  member 
I 

: 1 P external load on s t ruc ture  i n  X d i rec t i on  
i 
t + ,  

, . PE eu ler  load o f  column 

P19P2 ax ia l  loads a t  ends o f  member 

Q - (mi + q ) / L *  

9 r a t i o  o f  ax ia l  load t o  Euler load 

9 1 4 2  shear loads a t  ends o f  member 

R,S s t i  ffness matrices from reference 

transformation matr ix  from loca l  coordinates of displaced 

member t o  global coordinates 

global and loca l  displacements i n  X(x) d i  rec t i on  

global and 1 ocal d i  spl acements i n  Y (y ) d i  rec t  i on 

component of T matr ix  

de f lec t ion  o f  member 

global coordinate system 

local  coordinate system 

imperfect ion parameter defined by equati on ( A 5 )  

angle between X ax is  and l i n e  passing through member ends 

angle between a x i a l  and diagonal member 

r e l a t i v e  ro ta t ions  a t  ends of member 

ro ta t i on  a t  a node 

stabi  l i t y  func t ion  parameters def ined i n  equation (A6) 

s tabi  1 i t y  funct ion parameters defined i n  equation (A6 )  



Subscripts 

a 

d 

1 ,j 

0 

Superscripts 

T 

I 

denotes ax ia l  member 

denotes d l  agonal member 

denote nodes i and j 

i n1  t i  a1 value corresponding t o  zero d l  spl acement 

denotes mat r i  x transpose 

denotes de r i va t i ve  w i  t h  respect t o  q 

A 6 preceding a var iable ind icates incremental value 

ANALYSIS APPROACH 

The equations developed are fo r  p;ane frames but extension t o  space frames 

as was done i n  reference 2 i s  straightforward. Consider a member i n  a plane 

frame connecting node i t o  j. Af te r  displacement, i t s  pos i t i on  i s  ind icated 

i n  f i gu re  1. The analysis problem, i l l u s t r a t e d  i n  f i gu re  2, i s  t o  determine 

the forces p l ,  m l ,  m2, when the member has undergone the r e l a t i v e  deformation 

o f  0 ,  02 and u2. Note tha t  p2, 91, 92 are determined by equ i l ib r ium 

from p l ,  m l ,  m2. I n  addit ion, the tangent s t i f f n e s s  r e l a t i n g  incremental d i s -  

placements t o  incremental forces must be determined. 

where 
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The mat r ix  k can be assembled i n t o  a global s t i f f n e s s  by the  transformation 

where 

where y i s  defined by 

W = 

s i n  r 0- 

cos y 0 

0 1 - 

- 
COS y 

- s i n y  

wi th 

I, 0 

I n  assembling the global s t i f f ness  matr ix,  the forces i n  the members can be 

combined w i th  any external load t o  g ive the unbalanced force a t  each node. The 

negatives o f  these forces are appl ied t o  the st ruct twe t o  achieve a  new def lected 

pos i t i on  and the process i s  repeated u n t i l  convergence i s  achieved. A t  each 

stage o f  the i t e r a t i o n ,  the r e l a t i v e  displacements are determined as shown i n  

f igure  1 by 



where yo and L a r  the  value o f  y and L* respect ive ly  evaluated f o r  

U i  = U j  = V i  = V j  = 0. The matr ix  k and expresions f o r  m l ,  n2 and p l  were 

derived i n  reference 1 f o r  s t r a i  ght menbers. The corresponding development 

f o r  curved members i s  given i n  Appendix A. 

I f  a memher load i s  h igh  r e l a t i v e  t o  i t s  buckl ing load and/or the member 

has undergone la rge  r e l a t i v e  deformations (el, 82 large) ,  the approach 

described above may become inaccurate. One remedy i s  t o  put i n te rna l  nodes i n  

the memher. However, t h i s  can g rea t l y  increase so lu t ion  times as a r e s u l t  o f  

the  increases i n  mat r ix  s ize  hut even more s i g n i f i c a n t  !s the increase i n  band 

width. An a l t e rna t i ve  approach i s  t o  use substructures f o r  ind iv idua l  members, 

as ind icated i n  f i g u r e  3. An a r b i t r a r y  number o f  i n te rna l  nodes i s  located i n  

the member; three i n te rna l  nodes are shown i n  f i g u r e  3 f o r  an example. The 

analysis o f  the s ing le  membor i s  performed by the r~lethod described above f o r  

the displacement boundary condit ions shown i n  the f igure.  This w i l l  requi re 

several i t e r a t i o n s  t o  obtain the correct  set o f  i n te rna l  displacements. If 

the nodes are numbered s t a r t i n g  i n  the  i n t e r i o r  so tha t  the  ends are numbered 

l as t ,  the tangent s t i f f ness  matr ix  f o r  the converged displacements may be t r i  - 
angulated down t o  the l a s t  two nodes. The remaining matr ix  i s  the tangent 

s t i f f n e s s  matr ix  f o r  the e n t i r e  nember. The forces a t  the ends o f  the member 

can be determined t o  complete a l l  the in format ion required f o r  the  next 

i t e r a t i o n  i n  the  analysis o f  the complete s t ruc ture  having nodes only a t  con- 

nect i ons between members. 



RESULTS 

The present theory has heen appl ied t o  several problems t o  assess the  

accuracy of the analysis. I n  the fo l low ing sections, the e las t i ca  problem, .I 

column w i th  i n i t i a l  imperfection, the deformation o f  a shallow arch, and buckl ing 

o f  a l a t t i c e  t russ  w i th  member imperfections w i l l  be presented. 

The E las t ica  

The e l a s t i  ca problem has a known so lu t ion  v a l i d  f o r  un l im i ted  de f l ec t i on  

and so provides a good basis f o r  comparison. Results presented i n  Table 1 were 

calculated f o r  the geometry o f  f i g u r e  4 and are compared w i th  the exact solu- 

t i o n  which i s  i n  the  form of e l l i p t i c  in tegra ls  from reference 3. One h a l f  of 

a p i n  ended col umn was model l e d  w i th  a symmetry boundary condi t ion i n  the  

middle. Results are presented f o r  no i n te rna l  nodes and f o r  one i n te rna l  node 

by use o f  the substructure analysis. The comparison w i th  the exact r e s u l t  i s  

good t o  1 oad l eve l s  appreciably higher than the buckl ing load, w i t h  the  resu l t s  

far  one i n te rna l  node essent ia l l y  i den t i ca l  t o  the exact resu l t  up t o  twice the 

buckl ing load. Note the large ro ta t i ons  present t h a t  correspond t o  r e l a t i v e  

ro ta t ions  we1 1 over one radian. 

Imperfect Column 

The same model as i n  f i gu re  4 was analyzed w i th  an imperfection q u a 1  

.OIL. The resu l t s  are shown i n  f i g u r e  5 where the end load i s  p l o t t e d  as a 

funct ion o f  the l a t e r a l  def lect ion.  For loads less than the buckl ing load, 

the r e s u l t  i s  i n  close agreement w i t h  the c lass ica l  ampl i f i ca t ion  fac to r  formu 

Above 80% o f  the buckl ing load, the two resu l t s  deviate w i th  the present so lu t  

approaching the e las t i ca  f o r  higher loadings. The use o f  a substructure w i t h  

one i n te rna l  node shows a s l i g h t  d i f ference from the r e s u l t  without a 



substructure a t  loads above the  buck1 i n g  load i nd i ca t i ng  tha t  reasonable 

accuracy has been achieved without an i n te rna l  node. 

Shal low Arch 

A clamped shallow arch w i t h  a  cent ra l  load has been analyzed and compared 

w i th  f i n i t e  element resu l t s  from reference 4. I n  f igure  6, the load P i s  

p l o t t e d  as a  funct ion o f  the centra l  de f lec t ion  U. One node a t  the po in t  o f  

load app l ica t ion  was used. Results without substructur ing and w i th  a  sub- 

s t ruc ture  having one in te rna l  node are i n  close agreement i nd i ca t i ng  convergence 

has heen achieved. This i s  confirmed by the close agreement w i t h  the f i n i t e  

element resu l t s  o f  reference 4. Note tha t  32 curved elements w i th  three 

degrees o f  freedom per node were required for  convergence. A t  the higher 

loadings where the arch has become inverted, the present resu l t s  ind icate the 

f i n i t e  element so lu t ion  may not be completely converged. 

Buckling of a L a t t i c e  Truss w i t h  Imperfect Diagonal Members 

I n  reference 5 an analysis was made o f  tne buckl ing of a  fami ly  of l a t t i c e  

conf igurat ions w i th  r e p e t i t i v e  geometry. A feature o f  the method i s  t ha t  the 

s i x  degrees o f  freedom of  one node are a1 1  tha t  i s  involved i n  the solut ion.  

Figure 7 i s  an i l l u s t r a t i o n  o f  two o f  the conf igurat ions analyzed. The present 

t heo r j  a1 lows the treatment o f  conf igurat ions w i t h  i l lper fect  members. The 

d e t a i l s  o f  how the analysis o f  reference 5 i s  extended t o  include imperfect 

members i s  given i n  Appendix 0. 

An example of the app l ica t ion  of the theory i s  given i n  f i g u r e  8. A 

three element t russ,  three bays long and simply supported a t  the ends has been 

analyzed. Note tha t  a  t russ  w i th  a  length tha t  i s  a  m u l t i p l e  o f  three bays 

would a lso buckle a t  the same load unless the column mode was lower. The 

buckl ing load fo r  a  perfect t russ  i s  presented as a  funct ion o f  length i n  

8 



reference 5. The dlagonal members were assumed t o  have an imperfect ion as 

, 
shown on the f lgure. The buckl ing load, normallzed by the load t h a t  would be 

achieved i f  the diagonals provided slmple support i s  p l o t t e d  as a funct ion o f  

the  amplitude of the lmperfection. The symbols are from a complete analysls uf 

the  s t ruc ture  by the computer program o f  reference 6 which i s  a general space 

frame buckl ing and v ib ra t i on  program based an exact member theory fo r  s t r a i g h t  

members. The Imperfect ion was modelled by two s t ra igh t  segments w i th  a maxi- 

mum dev ia t lon  from a s t r a l g h t  l i n e  equal t o  the  amplitude o f  the  imperfection. 

Such a model i s  somewhat s t l f f e r  than the  curved shape used i n  the present 

analysis which accounts f o r  the s l i g h t l y  higher resul t .  However, the c lose 

agreement throughout the la rge  range o f  imperfect ion ind fca tes  the accuracy 

o f  the present approach. For t h i s  problem, the  imperfection has a very la rge  

e f f e c t  on the buckl ing load. 

CONCLUO ING REMARKS 

The tangent s t i f f ness  matr ix  for  a curved member based on the exact r o l u -  

t i o n  o f  the beam column equation has been developed. The matr ix  would be s u l t -  

able f o r  incorporat ion i n t o  a nonlinear analysis t ha t  uses a corotat ional  

coordinate system. The accuracy o f  the method as shown by several numerical 

examples i s  such tha t  no i n te rna l  nodes would be requi red i n  any member f o r  

many appl icat ions. I n  cases where the r e l a t i v e  r o t a t i o n  i s  l a rge  o r  the  ax ia l  

load I s  approaching o r  exceeding the  i nd i v idua l  member buckl ing load a substruc- 

t u r i n g  method i s  presented which a1 lows the  complete analys is  t o  be accompl ished 

w i t h  nodes only a t  points  o f  load app l lca t ion  or a t  connections t o  other  members. 

The only l i m i t  t o  such an approach i s  the  excedence o f  the e l a s t i c  l i m i t .  

The tangent s t i f f n e s s  matr ix  can a lso be used f o r  ca l cu la t i ng  buck1 i ng  loads 
2: 

f o r  ce r ta ln  configurations having imperfect members. 
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Appllcations of the method are shown fo r  several problems t o  lad lcr te  the 

accuracy of the approach. The problem treated are (1) the elastlca, (2) ar 
1 

Imperfect column, (3) central ly loaded shallow arch, and (4)  buckling of a 

l a t t i c e  truss wlth imperfect members. The benefit of using exact nember equa- 

t lons compared t o  the usual f l n l t e  element approximation functions was demon- 

strated clearly with the arch problem. The present method wlth only one 

node a t  the point of load application achieved results comparable t o  a solutlon 

us4ng 32 curved f l n l t e  elements I n  conjunction wlth a corotational coordlnate 

system. 



APPEND1 X A 

NONLINEAR STIFFNESS OF A CURVED MEMBER 

The expressions fo r  member s t i f f n e s s  are based on an exact so lu t ion  o f  the 

beam column equation fo r  a member w i th  a slnusoidal devlatfon from a s t ra igh t  

1 lne. The ax la l  force I n  the  member i s  calculated accounting for  shortening 

due t o  member curvature. The d i f f e r e n t i a l  equation for l a t e r a l  def lect ion i s  

w l  t h  boundary condi t i ons  

and 

wo = s i n  nx/L 

I h e  solut ion f o r  w i s  

w A1 + A2 x/L + A j  cos 4x/L + Aq s in  +x/L + =sin nx/L 
1 -q 

where q i s  the r a t i o  o f  the appl ied compressive load t o  the Euler load 

2 2 q = PIL /(a E I )  

a d  

o 1 . 8 6  

The bending moments a t  each end are found by the usual process t o  be 
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where 

and c l ,  c2 are the s t a b i l l t y  functions defined as 

c l  = A (s in  + - cos 9) c2 A (1-cos 4 )  
4  

where 

(i 

A = 2(1  - cos 4 )  - ~W, 
0 

Note that  cos 4  and - s ln  4  are rea l  for + imaginary so the above exprcrslons are 
4  

va l id  for  negatlve q. The compressive force p l  I s  given by 

where 



ORIGINAL 13 
OF POOR QUALITY 

The b l  and b2 are bowlng funct lons derived by Onan I n  reference 2 who 
& 

showd the fo l lowing relations w l th  tho s t a b l l l t y  functlons 

where a prlme donotes der lva t lve  w l t h  respect t o  q. 

The h 3  m d  h4 are new bowlng funct lons dub t o  the I n f t l a l  deflection and 

l k f  lne  a loadlny vector 

f rT  ' [ P ~ .  '1 

and 8 displacement vector dr as 

d r l  1uZ - U1. 0,. o Z l  

lncramental values o f  fr  and dr may ba re la ted  by 

a t r  - t adr 

The components o f  the mtrlx t dre ohtalned as 



Symmetric 

- 

where 

The parameter H represents a reduced extensional s t i f fness and G 1  ,G2 

account f o r  bending-extension coupling. The two def in i t ions o f  G 1  and G2 can 

be shown t o  be i d e ~ t i t i e s  by equations (A9) and (A10) and must be t rue i n  order 

f o r  the m a t r i ~  t t o  be symnetric. Equations (A9) and (A10) can also be used t o  

calculate a l l  derivat ives with respect t o  q that  are required. 

A t  t h i s  polnt the form o f  the t matrix i s  ident ical  t o  that  of  reference ;. 
The only difference i s  that  the de f i n i t i on  o f  H and Gi contain extra terms as a 

resu l t  of  the member curvature. The transformations necessary t o  obtain the 

tangent s t i f fness matrix are based on the geometry and eqq i l i b r i um  o f  the member 

under incremental displacement. The f i n a l  equations are ident ical  t o  those f n 

reference 1 but are developed i n  a s l i g h t l y  d i f fe rent  manner. The forces on 

the member i n  global coordinates are given by 



where 
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The incremental forces due t o  a small change I n  the displacement vector are 

given by 

6F = TTBT6fr + C6D 

where 

Using equation (A15), equation (A21) can be w r i t t e n  as 

The incremental r e l a t i v e  displacements are re la ted  t o  the incremental loca l  

displacements by 

which can be wr i t t en  i n  terms o f  global displacements as 

Performing the d l  f f e r e n t i a t i o n  indicated I n  equation (A21) and using equation 

A(24). equation (A22) can be w r i t t e n  as 



where 

0 Q 0 
symmetric 

-P 0 

and 

Thus the g l  

t ransformat 

The mat r i x  

ORIGINAL 1 ; ;  
OF POOR @.!A, I '  : 

obal tangent s t i f f n e s s  can be obtained from the conventional coordinate 

i on  oerat ing on a mat r i x  k def ined as 

k i s  symnetric w i t h  the  independent elements given as fo l lows 

kZ2 Z k55 E - k 2 ~  z 1 [2(cl+c2) z + EAL ( G ~ + G ~ ) ~ ]  - P m - 
L H i* 

k23 = k35 ' 1 [(c1+c2) E I  + EAL G1(G1+G2)] F* I- H 

k33 = c 1  E I  + EAL 62 r 7 - 1  
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The sequence of so lu t ion  steps when 81, 82 and u2 - u l  are known i s  t o  solve 

equations (A7) and (A8) f o r  p l  which can be done i t e r a t i v e l y .  Then m l  and m2 

can be determined f o r  equation (AS) and the  s t i f f n e s s  matr ix  k  from equation 

(A24). I f  the i n t e r i o r  de f l ec t i on  o f  the member i s  desired, it can now be 

determined rather  eas i l y  from equation (A4) using the  f o l l  owl ng expressions 

fo r  the  constants o f  in tegrat ion.  

APPENDIX B 

BUCKLING OF LATTICE STRUCTURES WITH IMPERFECT MEMBERS 

For ce r ta in  s t ruc tu ra l  conf igurat ions having the proper symmetry, the 

i n i t i a l  r ari l inear s ta te  may be rather  simple consis t ing o f  shortening o f  i n d i -  

v idlmi members due t o  mutual r e s t r a i n t  o f  ad jo in ing  members no end r o t a t i o n  

,ccurs. Examples o f  such st ructures are shown i n  f i gu re  7  which was taken from 

r e f e r x c e  5 where the buckl ing o f  these conf igurat ions was studied. The c y l i n -  

d r i c a l  conf igurat ions when compressed a x i a l l y ,  shorten without bending even i f  

i nd iq f i dua l  members are not  s t r a i g h t  provided a l l  s im i l a r  members have the same 

imperfection. O f  i n te res t  may be the  load l eve l  a t  which such a  s t ruc ture  

b i fu rca tes  from t h i s  i n i t i a l  state. The tangent s t i f f n e s s  matr ix  f o r  the 

imperfect member w i th  0 1  = 02 = 0 could be used i n  a  conventional buckl ing 

analys is  t o  determine t h i s  b i f u r c a t i o n  point .  Considerzble s i m p l i f i c a t i o n  f o r  

17 



t h i s  case i s  possible which w i l l  be i l l u s t r a t e d  by giv ing the changes t o  the 

analyst s . . e f  reference 5 which are requi red t o  t rea t  imperfect members. 

The analysis o f  reference 5 applies t o  a repe t i t i ve  structure so that  any 

imperfection must be ident ica l  f o r  each group of  members. For t h i s  analysis 

one imperfection, a displacement normal t o  a cyl inder containing the nodes, i s  

assumed t o  ex is t  i n  the diagonal members and another i n  the r i n g  members. 

Only the upper hal f  of  the 12 x 12 three dimensional s t l f fness  matrix i s  

required i n  the analysis so the s t i f fness  terms associated wi th  deflect ions 

are taken i n  the plane of  the imperfection from the present planar analysis. 

In reference 5 the upper ha l f  o f  the complete member s t i f fness matr ix i s  

part i t ioned i n t o  two 6 x 6 matrices R and S. The fo l lowing are the changes 

required from the usual representation i n  order t o  account f o r  the imperfection 

I f  there were no imperfection H = l  and Gl=O and equations (81) t o  (84) 

are ident ical  t o  the standard expression f o r  s t ra ight  members used i n  reference 

5. The global s t i f fness matrix K which y le lds  the buckling eigenvalue given 

i n  reference 5 i n  terms of the elements of  R and S i s  s t i l l  applicable f o r  

the modified terms given i n  equations (81) t o  (83). However, i n  reference 5, 

R15, S15, S51 which are defined by equation (84). were a l l  zero so that  additions 

t o  the global st l f fness matrix K must be made as follows 



where A K i j  i s  the  add i t ion  tha t  must be made t o  K i j  w i t h  the no ta t ion  the  same 

as reference 5. 
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Table 1. The Elastica Problem of Figure 4. 

1 Reference 3 
2 N o  interior node 

3 1 interior node 
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Figure 1. - Typical member before and after displacement. 

Fi~ure 2. - Forces on member and relative displacements. 1 
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Figure 3.  - Member substructure analysis for three internal nodes. 

Figure 4.  - The elastica problem. 
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