
General Disclaimer 

One or more of the Following Statements may affect this Document 

 

 This document has been reproduced from the best copy furnished by the 

organizational source. It is being released in the interest of making available as 

much information as possible. 

 

 This document may contain data, which exceeds the sheet parameters. It was 

furnished in this condition by the organizational source and is the best copy 

available. 

 

 This document may contain tone-on-tone or color graphs, charts and/or pictures, 

which have been reproduced in black and white. 

 

 This document is paginated as submitted by the original source. 

 

 Portions of this document are not fully legible due to the historical nature of some 

of the material. However, it is the best reproduction available from the original 

submission. 

 

 

 

 

 

 

 

Produced by the NASA Center for Aerospace Information (CASI) 



t	 ,

Robert E. Kielb 	 li^"	 off
Lewis Rfsmarrh Center 1U1^1 	 ii	 WT, ;.Cleveland, Ohio 	 .-

and

Krishna Rao V. Kaza
The University of Toledo.
Toledo, Ohio

Prepared for the
Twenty-eighth Annual International Gjas Turbine Conference
sponsored by the American Society of Mechanical Engineers
Phoenix, Arizona, March 27-31, 1983



EFFECTS OF STRUCTURAL COUPLING ON MISTUNED CASCADE FLUTTER AND R1

Robert E. Kielb*

National Aeronautics and Space Administration

Lewis Research Center
Cleveland, Ohio 44135

and

Krishna Rao V. Kaza'^

The University of Toledo

Toledo, Ohio 43606 and

National Aeronautics and Space Administration

Lewis Research Center
Cleveland, Ohio 44135

matrices

defined i

bending deflection of blade in rth
node of tuned cascade

hs bending deflection of s th blade

I a m ss "'lent of inertia of s th blade
aut elastic axis	 unit spans per

i square root of minus one, also a
summation index

Khsr+Kasr bending and torsional stiffness of

sth blade in rth mode, respectively

k reduced frequency based on. semichord

LS lift due to motion of sth blade
per unit span, positive up

LS lift due to wakes of sth blade per
unit span, positive up

lhhr+lhar nondimensional	 lift coefficients due
to bending and torsional motions,

respectively,	 in the rth mode

lahr,laar
nondimensional moment coefficients
due to bending and torsional motion,

respectively, in the rth mode

lwhrolwar
nondimensional lift and moment coef-
f'ciants	 respectively, due to wakes

in the r(h mode

M Mach number

MS moment about thghelastic axis due to
motion of the s	 blade per unit

span, positive nose up

MS moment of s th blade per unit span
about the elastic axis due to wake,
positive nose up
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II<'	 ABSTRACT

The effects of structural coupling on mistuned

cascade flutter and response are analytically investi-
gated using an extended typical section model. Previ-
ous work using two degree of freedom per blade typical
section models has included only aerodynamic coupling.
The present work extends this model to include both
structural and aerodynamic coupling between the blades.
The model assumes that the structurally coupled system
natural modes have been determined and can be repre-
sented in the form of N bending and N torsional un-
coupled modes for each blade, where N is the number of
blades and, hence, is only valid for blade dominated
motion. The aerodynamic loads are calculated by using
two-dimensional unsteady cascade theories in the sub-
sonic and supersonic flow regimes. The results show
that the addition of structural coupling can affect
both the aeroelastic stability and frequency. The
stability is significantly affected only when the
system is mistuned. The resonant frequencies can be
significantly changed by structural coupling in both
tuned and mistuned systems, however, the peak response
is significantly affected only in the latter.

NOMENCLATURE

[A]	 aerodynamic matrix due to motion

(AD)	 aerodynamic matrix due to wake in-

duced flow

a	 elastic axis position

b	 semichord

c	 chord

^0],[Dsl	 matrices defined in Eq. (6)

[E)	 transformation matrix

e	 base for natural logarithm

erospace ngineer, Structures Branch; Member ASME.
"Adjunct Professor, Mechanical Engineering Department.
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ms mass per unit span of the s th blade

N number of blades

[P] matrix defined in Eq. (10)

[Q] matrix defined in Eq. (7)

r integer specifying the nodal diame-
ter or interblade phase angle mode
of the tuned rotor

r radius of gyration of S th blade,
°s nondimensionalized with respect to 	 b

S integer specifying blade number,
also blade . ^.)

S static mass moment o` the sth blade
°s per unit span about elastic axis,

positive when center of gravity is

aft of the elastic axis

t time

V freestream velocity relative to the
blade

(X1 physical blade displacements

X,Z rectangular coodinate axes

xa nondimensional static unbalance of
s s	 Made

(Y) di	 ..acements in nodal diameter modes

as a	 litude of torsional motion of

st	 blade, positive clockwise

°s,id torsional amplitude of each blade of
the tuned rotor

°ar amplitude of torsional deflection of
a blade in the r t ' mode of a tuned
cascade

Or interblade phase angle, 2xr/N

Y nondimensional eigenvalue, (wo/W)2

Yhr•Yar defined in Eq.	 (14)

Yhsr.Yasr defined in Eq.	 (4)

Chsr.casr damping ratios of the s th blade in
bending and torsion in r th mode,
respectively

NS mass ratio of the s th blase

u real part of eigenvalue, defined in
Eq.	 (12)

V imaginary part of eigenvalue, de-
fined	 in Eq.	 (12)

[ stagger angle

W frequency

W 
reference frequency

1°hs	 Khs mS

was	 VT.sM.s

Whsr	 bending natural frequency, dependent
on r

wasr	 torsional natural frequency, depen-
dent on r

rhr	 tuned bending frequency, dependent

on r

mar	
tuned torsional frequency, dependent

on r

[ r1	 inverse of a matrix

I. INTRODUCTION

In Refs. (1) and (2) the authors have investigated

the effects of mistuning on cascade flutter and re-
sponse by assuming that the individual blades in the
cascade are coupled only aerodynamically. A typical
section model, in which each blade has two degrees of
freedom, one bending and one torsional, was used. In
all bladed-disc assemblies the blades are structurally
coupled through the disc and often through a variety
of other connecting parts such as shrouds, dampers,
and lacing wires. In the case where there is only weak
structural coupling between the blades (e.g., a rela-
tively stiff disc and flexible blades), the effect of
the structural coupling on individual blade frequencies
is negligible and the method of analysis used in the
previous publications is adequate. To handle cases
where there is significant structural coupling, the
typical section model must be refined. The purposes
of this paper are to present such a refined model to
account for structural coupling and to study its ef-
fects on cascade flutter and aeroelastic response of a
mistuned bladed-disc. The work presented is limited

to bladed-discs in which the motions are dominated by
the blades and is based on a portion of the research
described in Ref. (3).

The only known published work on mistuning in-
cluding both aerodynamic and structural coupling is
given in Ref. (4), in which each blade is allowed a
single torsionaT degree of freedom and a subsonic aero-
dynamic theory is used to investigate flutter. In the
present paper the model is capable of considering cou-
pled bending and torsional motion and both subsonic
(Ref. (5)) and supersonic (Ref. (6)) two dimensional
unsteady cascade aerodynamic theories are used to in-
vestigate flutter and aeroelastic response. Since the
effects of bending-torsion coupling were examined in
Refs. (1) and (2), the parametric studies are limited
to predominantly torsional motion with structural cou-
pling. In addition to the references ment'oned above,
some other publications dealing with mistuning are (1)
structural coupling without aerodynamics (Refs. (7) to
(10)) and (2) flutter and response using single degree
o-Ffreedom blade models with aerodynamic coupling only
(Refs. (11) to (14)). Tuned systems with two degrees
of freedom per blade have been considered in Refs. ( 15)
to (20). In Ref. (21) the authors have considered a
more complex beam model which is capable of repre-
senting a twisted nonuniform blade.

II. THEORY

It is well known that the natural frequencies of

annular plates depend upon the number of nodal diame-

2
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ters. In many publications (e.g., Refs. (7) to (10))
this behavior has also been shown to be true for —
bladed-disc assemblies. For tuned systems each single-
blade node, such as the first bending mode, becomes a
family of modes, one for each nodal diameter pattern.
In general, the frequencies for the first bending fam-
ily of modes can vary considerably and depend monoton-
ically on the number of nodal diameters. However, for
torsional motion the frequencies are relatively insen-
sitive to nodal diameter and do not increase monoton-
ically. For a more detailed discussion of this behav-
ior see Ref. (3).

In general, a complete bladed-disc model must in-
clude blade models, a disc model, and the appropriate
continuity conditions. Simpler approaches can be used
for the two limiting conditions of blade and disc dom-
inated motipn. For disc dominated motion, the blades
can be considered to be lumped masses with no effect
on the system stiffness. For blade dominated motion,
the disc can be considered to be a spring support with
no effect on the system mass. This latter approach is
used herein and, hence, is only valid for blade domi-
nated motion. The authors are developing a complete

bladed-disc model which wi •11 be described in a future
publication.

The approach used in formulating the mathematical
model is to assume that the structurally coupled sys-
tem modes (in a vacuum) have been determined and can
be represented in the form of N bending and N tor-
sional uncoupled modes for each blade. That is, each
blade will appear to have 2N natural frequencies:
one bending and one torsion for each nodal diameter
pattern. This description r ,quires that the disc (and/
or shroud ring) be a perfect-body of revolution with
all of the mistuning effects lumped in the individual
blades. Since the number of nodal diameters, r, is
directly related to the interblade phase angle by

O
r
 - 21rr/N	 (1)

each interblade phase angle mode is associated with a
given nodal diameter. The parameter, or, is used in
the "traveling wave approach" of describing blade mo-
tion. In this approach the motion of the airfoils in
each mode of the tuned cascade is assumed to be simple
harmonic with a constant phase angle between adjacent
blades. This approach is entirely equivalent to the
"standing wave approach" in which the motion is char-
acterized by modes with nodal diameters fixed in the
disc. For further discussion of the standing and
traveling wave approaches see Ref. (20). To include
struc`ural coupling, the equations oT-motion given in
Ref. (2; have to be modified to reflect the fact that
the blade °requencies in a vacuum depend on the number
of nodal dia,:aters. This is accomplished by assuming
that only the stiffness terms are functions of the
number of nodal diameters. Hence, the natural fre-
quencies in a vacuum are given an additional subscript
to reflect this dependency. Also, the force (or mo-
ment) associated with the stiffness in the equations
of motion is assum€q to be proportional to the dis-
placement in the r 	 nodal diameter mode, and not to
the physical blade deflection. As a result, the
stiffness terms must be multiplied by the modal dis-
placement and not the blade physical displacement.
The term "modal displacement" is used since the physi-
cal displacements are expanded in terms of the nodal
diameter modes. Also, the structural damping associa-
ted with the bending and co-sional motions is also
allowed to be a function of the number of nodal
diameters.

As in Refs. (1) and (2), each blade is modeled as
a two degree of freedom oscillator in which the plung-
ing and pitching motions are inertially coupled (see

Fig. 1). Including the nodal diameter dependen^ de-
scribed above, the equations of motion of the s
blade are

m	 S	
fdt7

d2 (h i.t

5 	
a5	 -	

5	
+

S	 I
Q	d (osei't)J

°s	 s	 dt

	

N-1	
2

(1 + 2ichsr)ms^'hsr	 0

+

2
E0	 (1 2iCosr)'asWasr
r-0

	

M	 w

	

ha r	 i(wt*ors)	 -Ls - Ls

e	 ^	 (2)

	

M	 w

	

a ar	 MS + MS
i.

These are identical to Eq. (4) of Ref. (2) with the
following exceptions: the stiffness terns, are now ex-
panded to include the stiffness associated with each
nodal diameter mode and the physical displacement terms
are reFlaced with the modal displacements. Note that
the real parts of the modal stiffnesses, Kh	 and
Kasr, are expressed in the form of the mass Umes
square of the frequency. The aerodynamic forces are

the same as those given in Ref. (2) and are also de-
pendent on the nodal diameter. liondimensionallzing
Eq. (2) results in

NS	 xastis 

t's's"),2x aSN S	 rasp s	 -a

	

N-1 
(1 + 21chsr)usYhsrY	

0

0	
(1 + 21chsr)usrasyasry

r.0

N-1

t

'ar /b 	2,rirs	 ['hhr 'hr toarar/bems_

°ar	 r.0 'ahr 'aar 

N-1
2,ri rs	 'whrl 20 rs

ems- +	 e^-

lwarr.0

where

-(3)



yhsr ' "hsr /"o

(4) 

"y asr '	 asr/wo

y - ("0/")2

The other nondimensional variables are defined in the
nomenclature and described in Ref. (1).	 Writing these
equations for all blades and arranging then in matrix
form results in

[D](X) * y[Q](Y) - [G][E][A](Y) + [G][E](AD-) (5)

where

[DD]

[D1 ]
[D] -

[DN-11-

1/G
KhsO	 xas/GKhsO

(0s] ` p s

xas/a50	 r
Z

aS/GKasO

GKhsr
2

' °syhsr(1 + 2ichsr)
(6)

GKasr
2	 2

' u 5ra5yasr(1	2iGasr)

(Go]

[ Gil
[G]

[GN-1]

I/GKhsO	 0

[ G5 ] -

0	 1/GKa50

and
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to] -
0 • Vs J)"	 0 • 21ch02)T2

1 0	 " V,1  1(0,1)	 0	 --	 1(0,2)

(1 • t1cp0r6 	(I • lic")r_

2

0 1	 0	 0. 21^ E(0,1)	 0
0 • 21c.')romp

0 • 21ch11)rh11	
0 • 2ich12)r2

1 0 -- :^ f(1,1)	 0	 ---T- E(1,2) . .

0 • 21chlo)rhl0	
(l • i l chlpl rh10

.	 2
.11 •11

0 1	 0	 r̂^ E(i,l)	 0	 . .

c1 • tf^.m)*.m

The complex stiffness and mass matrices are repre-
sented by [G] and [D], respectively. The (X) and
(Y) vectors represent the physical blade displace-
ments and the modal displacements, respectively. The
[(E , [A], and (AD) matrices are defined in Ref
2 and are not repeated here for brevity. Using the

relationship

(X) - [E](Y)	 (8)

to remove the physical blade displacements from the
system of equations results in

	

[P](Y) - y[Q](Y) - [G][E](AD) 	 (9)

where

	

[P] - [G][E][A] + [D][E]	 (10)

The aeroelastic stability of the system, can be deter-
mined from the eigenvalues, y's, of the generalized
problem

[[P] - y[Q7 m - 0	 ,11)

The relation between the eigenvalue, y, and the com-
plex frequency is

it . i	
. u • iv	 (12)

"0

Therefore, u is a measure of the damping or stability

of the mode and v is a measure of the frequency. For

the discussion of results to follow, a mode is consi-
dered to be stabilized when y becomes more negative
and destabilized when it becomes more positive. The
aeroelastic response can be derived from Eq. (9) and is

(Y) - [y[Q] - [P]]-1[G][E][AD]	 (13)

II. RESULTS AND DISCUSSION

A computer program was written to calculate the
stability and response of a mistuned bladed-disc in-
cluding both aerodynamic and structural coupling of
she blades using the formulation presented in the last
section. In this program it is possible to consider
arbitrary mistuning of the blade uncoupled bending and
torsional frequencies and damping coefficients. The
quantities Yhsr and Yasr, see Eq.(4), must be
supplied as input to this formulation. The approach

used herein is to calculate the frequencies of the
tuned rotor for each nodal diameter up to N/2 (N/2-1
for an odd number of blades).

4
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Y hr ' "hr
/W0

 ' YhN-r
(14)

Y ar ' War/wo ' YaN-r

For example, for a 24 bladed rotor in vacuum the fre-
quency of the r - 5 mode is the same as that of the
r - 19 mode since the structural properties cannot
distinguish between a forward and backward traveling
wave of the same nodal diameter. There are a number
of methods available to calculate the quantities

Y sr and Yasr* the most general being he finite
element methoK However, it is sufficient for the

purposes of this paper to assume that the mistuned
system frequencies are given by

Y hsr ' Yhr(-hs /Wo)
(15)

Y asr ' Yar(Was /WO)

in which W	 and Was are the blade alone fre-
quencies. 4is has been shown in Ref. (22) to be a
valid assumption for small deviations in Whs and
Was when the bladed-disc motion is blade dominated.

in the following sections two different rotors are

analyzed: (1) a twelve bladed rotor representative of
a set of blades connected by midspan shrouds (consi-
dered in Ref. (4)) and (2) a more realistic unshrouded
bladed disk representative of an advanced fan stage.
Both alternating and random torsional frequency mis-
tuning are considered. Since the effects of bending-
torsion coupling were examined in Refs. (1) and (2),
the emphasis in this paper is on the torsional mo=
tion. As a result the predominantly bending modes are
not shown in the results to follow.

A. Flutter

To provide a check for a special case of the pres-

ent formulation and computer code, an aeroelastic sta-
bility analysis is conducted for a tuned rotor with 12
blades which was considered in Ref. (4). The blades
have significant structural coupling -due to the pres-
ence of midspan shrouds. In addition to providing a
check, the results give an example of the effect of
structural coupling due to midspan shrouds on the sys-
tem eigenvalues. The formulation in Ref. (4) includes
only single degree-of-freedom torsional blade motion.
As a result, the bending frequencies in the present
formulation are set to 10 times the torsional fre-
quencies. This minimizes the inertial coupling be-
tween the bending and torsional motions and provides a
direct comparison with Ref. (4) results. The para-

meters of interest for this rotor are given in Table I.
The dependency of blade torsional frequencies on nodal
diameter as taken from Ref. (4) is given in Table II
for the reader's convenience. Figure 2 presents the
eigenvalues for two cases of the tuned system; (1) no
structural coupling and where the uncoupled blade tor-
sional frequencies are equal to Wo and (2) a flex-
ible shroud ring in which the the frequency dependence
is given in Table II.	 In this figure the plus symbol
represents the eigenvalue for the case in which there
is no structural coupling. The number adjacent to the
symbol gives the predominant interblade angle for that
eigenvalue. The arrow represents the location to which
the eigenvalue moves (the end of the arrowhead) when
the effects of structural coupling are considered.
Note that for some modes the movement is so small that
the arrows are not drawn. Within plotting accuracy,
the results obtained using the present formulation are
identical to those of Fi g . 6 in Ref. (4). Note that
there are different eigenvalue definitions between this

paper and the reference. Since 4 only changes
slightly, the addition of structural coupling has lit-
tle effect on the stability of the individual modes.
As expected, for certain modes the frequency is sig-
nificantly affected. As was stated in Ref. (4), it is
believed that this behavior is representative of
shrouded blades when the shroud ring is relatively
stiff compared to the blades.

To determine the effects of structural coupling on
the coupling between the interblade phase angle modes
in the presence of mistuning, this rotor was analyzed
with 5 percent alternating mistuning. With this type
of mistuning the torsional frequency alternates from
blade to blade as you proceed around the disk. All
odd numbered blades would have the identical frequency
and all even numbered blades have the sane frequency.
The percent mistuning being defined as the difference
in these two frequencies divided by the average. The
resulting eigenvalues both with and without structural
coupling are given in Fig. 3. The structural coupling
generally only affects the frequency of the modes.
However, it is interesting to note that the predomi-
nantly 60 degree interblade phase angle mode (2 nodal
diameter) is somewhat destabilized.

To determine the effects of structural coupling on
a more realistic rotor, an advanced fan stage called
Rotor I is now analyzed. The parameters of this rotor
are given in Table I. The assumed dependency of the
tuned torsional frequencies (in vacuum) versus the no-
dal diameter is shown in Fig. 4. This assumption-is
based on previous experience using finite element
techniques to predict the natural frequencies of simi-
lar bladed-discs. Figure 5 shows the effect of the
structural coupling on the tuned system. As in the
previous case, the effect is to significantly change
the frequency of certain modes with little effect on
the stability. This behavior is to be expected since
each of the nodal diameter modes is uncoupled from the
others. Note that there are still a number of un-
stable modes.

Rotor l ' ts now analyzed with the assumption of al-
ternate mistuning. As seen in Fig. 6, all of the
modes of Rotor I are stable in the presence of 10 per-
cent alternating mistuning without structural coupling.
However, certain modes are significantly destabilized
by the inclusion of structural coupling. Although all
of the modes are stable, this behavior could result in
a significant increase in aeroelastic response since
the effective damping is decreased.

Random mistuning is now considered. Using the
blade frequency distribution shown in Fig. 7 (mean of
1.001 and standard deviation of 0.034, a typical pro-
duction distribution) the eigenvectors of Rotor I with-
out structural coupling were calculated and are dis-
played in Fig. 8. The analysis was repeated including
the effects of structural coupling and the correspond-
ing results are shown in Fig. 9. Comparing Figs. 8
and 9, it is seen that both the frequency and stabil-
ity of the modes is significantly affected. It is
important to note that the predominantly 45 degree in-
terblade phase angle mode is moved into the unstable
region. Although not shown, the blade amplitude dis-
tributions for most of the modes are drastically dif-
ferent when comparing the results with and without
structural coupling.

B. Aeroelastic Response

In the present formulation it is possible to con-

sider an excitation from symmetrically spaced obstruc-
tions located upstream from the blades. The number of
obstructions is known as the engine order of the exci-
tation and is usually represented by an integer fol-
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lowed by "E". For example, 5E would represent a per-
fectly sinusoidal excitation resulting from 5 upstream
obstructions. For a more detailed description of the
formulation of the aeroelastic response problem see
Refs. (1) and (2).

To 311ustra'fe the affect of structural coupling on
response, Rotor I is again analyzed with the torsional
frequency dependency shown in Fig. 4. The 5E resonance
is investigated for the tuned, 10 percent alternating
mistuned, and randomly mistuned conditions. The Mach
number is 0.8 and the reduced frequency is 0.6. All
other parameters are the same as those given in
Table I. These parameters were chosen so that all
modes of the rotor are stable in the tuned condition.

The eigenvalues for the tuned condition including
structural coupling are shown in Fig. 10. The move-
ment of the eigenvalue of interest (-56 degrees tnter-
blade phase angle or 5 nodal diameter backward travel-
ing wave) is represented by the arrow in Fig. 10. That,
is, the tail of the vector represents the position of
the eigenvalue without structural coupling. The reso-
nance peaks both with and without structural coupling
are shown in Fig. 11. As expected, the frequency at
which the rotor has maximum amplitude is approximately
4 percent lower with structural coupling. In addition,
the maximum amplitudes are apWoximately equal.

The eigenvalues for the s,,stem with 10 percent al-
ternating mistuning are shown ;n Fig. 12. For this
type of mistuning the 5E forcing function can excite
only the -56 and 123 degree interblaou phase angle
modes. The movement of these modes, depicted by the
arrows in Fig. 12, represents primarily a change in
frequency. As is the case for alternate mistuning, the
single resonance peak is replaced by twin peaks which
are shown in Fig. 13. Although not shown, the curves
without structural coupling have the same general
shapes and amplitudes with only shifts in frequency.

The final case to De investigated is that of random

mistuning. The in vacuum frequency distribution of
Fig. 7 is again used. The system eigenvalues are shown
in Fig. 14. Comparing these eigenvalues with those
without structural coupling (not shown), it is found
that both the frequency and stability of certain modes
was significantly affected. However, since the 5E
forcing function excites all of the interbiade phase
angle modes in this case, it is difficult to predict
whether the amplitude of response will be larger or
smaller than those of the rotor with no structural
coupling. The response curve with multiple resonance
peaks is shown Fig. 15. As expected, blade 2 has the
maximum response at low forcing frequencies and blade
17 has the maximum response at high forcing frequen-
cies. Comparing this curve with that for no structural
coupling (not shown), it was found that the inclusion
of structural coupling had not significantly changed
the overall response amplitudes. However, the blade-
to-blade amplitude distributions have changed somewhat.
For example, blades 10 and 14 have the highest ampli-
tudes when the forcing frequency is approximately in
the range 1 to 1.05. when there was no structural
coupling, blades 3 and 13 were found to have the maxi-
mum amplitude in this forcing frequency range.

III. CONCLUSIONS

The analyses of the effects of mistuning on coupled

bending torsion flutter and response which were deve-
loped in Refs. (1) and (2) have been extended to in-

clude the effects of structural coupling between the
blades. The following conclusions are reached based
on the parametric studies presented herein for bladed-
jiscs in which the motion is dominated by the blades.

:. The addition of structural coupling can affect
both the frequency and aeroelastic stability.

2. The stability is significantly affected only
when the system is mistuned. The affect can be either
beneficial or detrimental depending on the type of
mistuning, the type of structural coupling, and the
cascade parameters.

3. The resonant frequencies can be significantly
affected by structural coupling in both tuned and mis-
tuned systems, however, the peak response is signifi-
cantly affected only for the latter.
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TABLE I. - ROTOR PARAMETERS

Parameter Symbol Ref.	 (4) rotor Rotor I

Reduced frequency k 0.75 0.441

Number of blades N 12 32

Stagger angle E 60. 62*

Elastic axis a 0.2 0
position

Gap-to-chord ratio s/c 0.8 0.777

Mass ratio us 73.9 141

Radius of gyration
re

0.611 0.47
s

Elastic axis-C.G. x -0.2 0
offset as

Mach number M 0.84 1.18

Bending to torsion whs/ as 10 0.3
frequency ratio

tuned

TABLE II. - FREOUENCY

DISTRIBUTION

(IN VACUUM)

r Ya r

U 1.0000

1 and 11 .99928
2 and 10 .99724
3 and 9 .98396
4 and 8 1.0027
5 and 7 1.0004

6 1.0000

7
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