
General Disclaimer 

One or more of the Following Statements may affect this Document 

 

 This document has been reproduced from the best copy furnished by the 

organizational source. It is being released in the interest of making available as 

much information as possible. 

 

 This document may contain data, which exceeds the sheet parameters. It was 

furnished in this condition by the organizational source and is the best copy 

available. 

 

 This document may contain tone-on-tone or color graphs, charts and/or pictures, 

which have been reproduced in black and white. 

 

 This document is paginated as submitted by the original source. 

 

 Portions of this document are not fully legible due to the historical nature of some 

of the material. However, it is the best reproduction available from the original 

submission. 

 

 

 

 

 

 

 

Produced by the NASA Center for Aerospace Information (CASI) 



r r83-101 18

I o	 r

N b h 7
OQ 3 ^
3

Z cco =
a`	 ^ G ¢i
c cu L c

If _	 ^.2
w E

Nw O O E
a, C C N

cp	 C .^	 7E
c `O cM

^	 E o
^ c a 4 9

C
(E83-1U 1 18) PROC
WUHKSHUP Uh I6AGE
149 p HC A07/MF A

S.

i
I
I-
t
I

DEPART



r^I

lI

r
FeePROCEEDINGS OF THE

NASA WORKSHOP ON IMAGE ANALYSIS

^L

b
Texas A&M Univer3ity

College Station, Texas
April 28-30, 1982

T
Qr1ri nal photo,Qra; by may bo purcbasod
from EkuS D::..1 Wi:ccr
SIOUX Falls, SD 57198

f ^:z

!T

Prepared for

Earth Resources Researct- Division

NASA/Johnson Space Center
Houston, Texas 77058

by

L. F. Guseman, Jr.

Principal Investigator
Department of Mathematics

Texas A&M Univers4ty

College Station, Texas 77843

under

NASA Contract NAS 9-16447

"Studies in Mathematical Pattern Recognition

and Image Analysis"



Introduction

by

K. S. Fu

Purdue University

The NASA Workshop on Image Analysis held on April 28-30, 1982 at

Texas A&M University, College Station, Texas, provided an opportunity for

experts in the areas of pattern recognition, image processing, and remote

sensing to assess past progress and to project future development in the

area of image analysis with respect to remote sensing applications.

A block diagram of the general image analysis system is given in

Figure 1. The preprocessing stage LI SUG ".1y refers to filtering, enhance-

ment, and/or coding of raw imagery data. The segmentation stage involves

the determination of various regions of importance in the image. Features

such as shape and texture measurement are then extracted from each region;

a classification technique is often employed to recognize these regions.

Once each region has been recognized and the relations among these

regions have been identified, a complete description and possibly the

interpretation of the image can be obtained through a structural

analysis. A priori knowledge (the so-called "world model") of the

images under study plays an important role in the design of each stage.

The program of the three-day workshop was devoted to the three major

topics of image analysis: segmentation, shape and texture analysis, and

structural analysis. A survey paper and two or three special papers

were presented on each topic. Formal presentations were followed by

panel discussions which assessed past progress and identified future

research problems in each topic area.
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Image Segmentation Survey

Robet M. Haralick
Virginia Polytechnic Institute and State University

Dept. of Electrical Engineering
Dept. of Computer Science

Blacksburg, VA 24061

Image segmentation can be accomplished by a variety of

techniques which in this survey we classify as:

Single linkage schemes

Hybrid linkage schemes

Centroid linkage schemes

Histogram Mode Seeking Schemes

Spatial Clusterning schemes

Split and Merge Schemes



uI
n
n

fl

Singla Linkage Image Segmentation

8

[1

Single linkage image segmentation schemes regard each pixel

as a node in a graph.	 Neighbcring pixels whose properties are

similar enough are joined by an arc. 	 The image segments are

maximal sets of pixels all belonging to the same connected

component.	 Single	 linkaye image segmentation	 schemes are

attractive for their simplicity. They do, however, have a problem

with chaining,	 because it takes only one arc leaking from one

region to a neighboring one to cause the regions to merge.

The simplest single linkage scheme defines similar enough by

pixel difference. Two neighboring pixels are similar enough if

the absolute value of t:Ae difference between their gray tone

intensity value is small enough. For pixels having vector values,

the obvious generalization is to use a vector norm of the pixel

difference vector.	 Instead of using a Euclidean distance, Asano

and ifokoya (1981) suggest that two pixels be joined together ii

this absolute value of their difference is small enough compared

to the average absolute value of the center pixel minus neighbor

pixel for each of the neighborhoods the pixels belong to.

Haralick and Dinstein (1975), however, 	 do report some success

using the simpler Euclidean distance on LANDSAT data. The ease

with which unwanted region chaining can occur with this technique

limits its potential on complex or noisy data.

Hybrid single linkage techniques are more powerful than the

simple single linkage technique. The hybrid techniques Peek to

assjgn a property vector to each pixel where the property vector

depends on the KxK neighborhood of the pixel. 	 Pixels which are

u



It

It -

I F

I F

a I

9

similar, are similar because their neighborhoods in some special

sense are similar.	 Similarity is thus established as a function

of neighboring pixel values and this makes the technique better

behaved on noisy data.

One hybrid single linkage scheme relies on an edge operator

to establish whether two pixels are joined with an arc. 	 Here an

ed-je operator is applied to the image labeling each pixel as edge

or non-edge.	 Neighboring pixels, neither of which are edges, are

joined by an arc.	 The initial segments ire the connected

components of the non-edge labeled pixels. The edge pixels can

either be left assigned edges and be considered as background or

they can be assigned to the spatially nearest region having a

label.

The quality of this technique is highly dependent on 'Ch_ edge

operator used.	 Simple operators such as the Roberts and Sobel

operator may provide too much region linkage, for a region cannot

be declared as a segment unless it is completely surrounded by

edge pixels.	 Haralick (1982)	 reports some success with this

technique using the zero-crossing of second directional derivative

edge operator.

Another hybrid technique first used by Levine and Leemet

(1976)	 is based on the Jarvis and Patrick (1973) 	 shared nearest

nei g hbor idea.	 Using	 any kind of reasonable	 notion for

similarity, each pixel examines its KxK neighborhood and makes a

list of the N pixels in the neighborhood most similar to it. Call

this list, the similar neighbor list, where we understand neiahbor

to be any pixel in the KxK neighborhood. An arc joins any Fair of

i
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immediately neighboring pixels if there are enough pixels common

	

to their shared neighbor lists; that is, if the number of shared 	
ll

neighbors is high enough.

	

To make the shared neighbor technique work well each pixel 	 (I

can be associated with a property vector contisting of its own

gray tone intensity and a suitable average of the gray tone

intensity of pixels in its KxK neighborhood. 	 For example, ' we can	 (I

	

have (x,a) and (y,b) denote the property vectors for two pixels 	
11

	

where in the first pixel, x is its gray tone intensity value and a 	 ^I

is the average gray tone intensity value in its neighborhood.

Likewise, for the second pixel, y is its gray tone intensity value

and b	 is the average gray	 tone intensity value	 in its	 (!

neighborhood. Similarity can be established by computing

S = w 1 (x-y) 2 + w 2 (x-b) 2 + w3(y-a)2

where w l , w 2 and w 3 are non-negative weights. The pixels are

called similar enough for small enough values of s.
it

Region Growing L Centroid L1' age

in contrast to single linkage,	 in centroid linkage pairs of

neighboring pixels are not compared for similarity. 	 Rather, a

pixel's value is compared to the centroid of an already existing

but not necessarily completed segment.	 If the values are close

enough, then the pixel is added to the :segment and the segment's

centroid is updated.	 If no neighboring region has a centroid

close enough,	 aen a new segment is established having the given

pixel's value as its first member. 	 Such a region growing

y
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technique was first suggested by Brice and Finnema (1970).

Instead of using the absolute value of the difference as the

measure of dis-similarity, Gupta, Kettig, Landgrebe, and Wintz

(1973) suggest using the more appropriate t-test.

Simple single pass approaches which scan the image in a left

right top down manner are, of course, unable to make the left and

right sides of a V-shaped region belong to the same segment. To

be more effective, the single pass must be followed by some kind

of connected components algorithm in which pairs of neighboring

regions having centroids which are close enough are put into the

same segment.

one minor problem with centroid linkage schemes is their

inherent dependence on the order in which pixels are examined. A

left right top down scan does not yield the same initial regions

as a right left bottom up scan or for that matter a column major

scan.	 Usually, however,	 differences caused by scan order are

minor.

Histogram MD-cle Seeking

Histogram mode seeking is a measurement space clustering

process in which the clusters in measurement space are mapped back

to the image domain where the maximal connected components of the

clusters constitute the image segments. For images which are

single band images, calculation of this histogram in an array is

direct.	 The measurement space clustering can be accomplished by

determining the valleys in this histogram and declaring the

clusters to be the interval of values between valleys. 	 A pixel
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gram in a mu
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images such as LANDSAT,

lti-dimensional array is nd

band image where each band

the array would have to
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determining the

t feasible.	 For

has intensitites

have 100 6 = 1012
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n
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12

se value is in the i th interval is labeled with index i and the

vent it belongs to is a connected component of a?.1 pixels whose

a1 is i.	 i

estimate probabilities in a space of 10 12 values were it not for

some constraints of reality:	 (1)	 there is typically a high
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correlation between the band to band pixel values and (2) there is

a large amount of spatial redundancy in image data. 	 Both these

factors create a situation in which the 10 a pixels can be expected

to contain only between 10 4 and 10 5 distinct 6-tuples. Based on

this fact, the counting required for the histogram is easily done

by hashing the 6-tuple into an array.

Clustering using the multidimensional histogram is more

difficult than univariate histogram clustering. Goldberg and

Shlien (1977, ]978) threshold the multidimensional histogram to

select all N-tuples situated on the most prominent modes. Then

they perform a measurement space connected components on these N-

tuples to collect together all the N-tuples in the top of the most

prominent modes.	 These measurement space connected sets form the

cluster cores.	 The clusters are defined as the set of all N-

tuples closest to each cluster core.	 A variation on this idea is

discussed by Matsumoto, Naka, and Yamamoto (1981)
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An alternate possibility is to locate the highest mode and

region gr:w around it in the multi-dimensional measurement space.

The region growing includes all successive neighboring N-tuples

whose probability is no higher than the N-tuple from which it is

growing.	 This procedure identifies the most prominent mode and

its associated mountain as the first cluster core. Then the same

procedure is repeated on the remaining N-tuples until all multi-

dimensional peaks and their associated cores have been accounted

for.	 The clusters are defined as the set of all N-tuples closest

to each core.

Rather than accomplish the clustering in the ful, measurement

space, it is possible to work in multiple lower order projection

spaces and than	 reflect these clusters back 	 to the full

measurement space.	 Suppose, for example, that the clustering is

done on a four band image.	 If the clustering done in bands 1 and

2 yi.eld clusters c l , c 2 , c 3 and the clustering done in bands 3 and

4 yield clusters c 4 and c 5 than each possible 4-tuple from a pixel

can be given a cluster label from the set ((c l ,c 4 ), (c 11 c 5 ) ,

^C 2 ,c 4 ), (c 2 ,c 5 ), (c 3 ,c 4 ), (c 3 ,c 5 )).	 A 4-tuple (x l ,x 2 ,x 3 ,x 4 i gets

the cluster label (c 2 ,c 4 ) if (x l1 x 2 )	 is in cluster c 2 and (x3,x4)

is in cluster c4.

^1t 1	 I I us erina

It is possible to determine the image segments without

perA^-'orming an independent clustering in measurement space. 	 Such

techniques are called spatial clustering.	 In essence spatial

clustering schemes combine the histogram mode seeking technique

I
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with the region growing/centroid linkage technique. 	 Haralick and

Kelly ( 1969) suggested it be done by locating, in turn, all the

peaks in measurement space.	 Then determine all pixel locations

ha%ing a measurement on the peak.	 Beginning with a pixel

corresponding	 to	 the	 highest	 peak	 not , yet	 processed,

simultaneously perform a spatial and measurement space region

growing in the following manner. 	 Initially, each segment is the

pixel from which we begin.	 Consider for P	 possible inclusion into9 	_

this segment the neighbors of this pixel (in general, 	 the	
rl

neighbors of the pixel we are growing from) if the neighbor's N- 	 1

tuple value is close enough in measurement space to the pixel's	 I^

value and if its probability is not larger than the probability of

the pixel ' s value we are growing from.

Split and Merge

The split method for segmentation begins with the entire
I

image as the initial segment. Then it successively s plits each of

its current segments into quarters	 if the segment is not	 I

homogeneous enough.	 Homogeneity can be easily established by

determining if the difference between the largest and smallest

gray tone intensities is small enough. 	 Algorithms of this type	 i

were first suggested by Roberston (1973) and Klinger (1973)

Because segments are successively divided into quarters the

boundaries produced by the split technique tend to be squareish

and slightly artificial. Sometimes adjacent quarters coming from

adjacent split segments need to be joined rather than remain

separate.	 Horowitz and Pavlidis (1976) suggest a split and merge

strategy to take care of this problem Chen and Pavlidis (1980)
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suggested using statistical tests for uniformity rather than

examination of the difference between largest and smallest gray

tone intensities.

The data structures required to do a split and merge on

images larger than 512x512 are extremely large.- Execution of the

algorithm on virtual mememory computers results in so much paging

that the dominant activity is paging rather than segmentation.

Browning and Tanimoto (1982) give a description of a split and

merge scheme where the split and merge i p first accomplished on

mutually exclusive subimage blocks and the resulting segments are

then merged between adjacent blocks to take care of tue artificial

block boundaries.
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Cooperative processes in image segmentation

`	 Larry S. Davis

L	 This talk will survey recent research into the role

I
of cooperative, or relaxation, processes in image segmenta-

tion. Cooperative processes [1] can be employed at several

1	
levels of the segmentation process as a preprocessing en-

hancement step [2,3,4], during supervised or unsupervised

I pixel classification [4,5] and, finally, for the interpreta-

tion of image segments based on segment properties and rela-

tions [6] .

1. L. Davis and A. Rosenfeld,	 "Cooperative processes for
low-level vision:	 A survey," A.I.	 17,	 245-263,	 1981.

1	 2. L. Davis and A. Rosenfeld, 	 "Noise cleaning by iterated
local averaging," 	 IEEET-SMC,	 8,	 706-710,	 1978.

3. L. Davis and A. Mitiche,	 "MITES:	 A new tool for image
C. segmentation," to appear in CGIP.

4. K. Narayanan and A. Rosenfeld, "Image smoothing by local
use of global information," IEEET-SMC, December 1981.

5. L. Davis, C. Wang and H. Xie, 	 "Some experiments in multi-,.
spectral, multi-temporal crop classification using relaxa-
tion," Univ. of Maryland Computer Science TR-1131,
December 1981.

6. L. Kitchen, "Scene analysis by region based constraint
propagation," in preparation.
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COOPERATIVE PROCESSES IN IMAGE ANALYSIS

LARRY S. DAVIS

COMPUTER VISION LABORATORY

UNIVERSITY OF MARYLAND

COLLEGE PARK, MD 20742
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COOPERATIVE PROCESSES

GOAL:	 ASSIGN SYMBOLIC AND NUMERICAL LABELS TO PICTURE PARTS

ASSIGN SYMBOLIC LAND-USE CATEGORIES TO PIXELS

ASSIGN NUMERIC STEREO DISPARITY LABELS TO PIXELS

CONSTRAINT: IMAGES ARE LARGE, SO LABELING PROCESS MUST BE FAST

- SEQUENTIAL: TOO SLOW

- PARALLEL:	 TOO ERROR PRONE

ow

.

i



u
n
ri
11 ^

II

II

fl

20

SOLUTION: COOPERATIVE PROCESSES

- ASSESS EACH PART INDEPENDENTLY CPARALLEL)

- COMPARE ASSESSMENTS OF It RELEVANT 
It 

PARTS (PARALLEL)

- COMPARISONS MUST BE LOCAL

- ENTIRE PROCESS IS ITERATIVE

ORGANIZATION

A) INITIAL, INDEPENDENT PART ASSESSMENT

B) ADJUSTMENTS OF ASSESSMENTS BASED ON RELATIONSHIPS BETWEEN PARTS

C) ITERATION OF STEP (B)

L

1
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2. APPLICATION TO MOTION DETECTION

ASSUME

1) IMAGE INTENSITY IS A CONTINUOUS, DIFFERENTIABLE

FUNCTION F(X,Y,T)

2) THE INTENSITY CORRESPONDI14G TO ANY GIVEN SCENE

POINT DOES I40T CHANGE OVER TIME

3) BOTH THE NOTION (U,V) AND THE TIME INTERVAL, T,

BETWEEN FRAMES IS SMALL ENOUGH THAT A NACLAUREN

SERIES EXPAI4SION IS A GOOD LOCAL APPROXIMATION

TO THE PICTUf:t FUNCTION.

APPROXIMATE F(X+U,Y+V,T+T) BY A SERIES EXPA14SION ABOUT

(X,Y,Y)	 (WHICH CAN BE REGARDED AS (0,0,0)).

F%X+U,Y+V,T+T) = F(X,N',T)+FX U+FY'V+FT, T

+NIGHER ORDER TERMS

ARLITRARILY SET T =1 AND NOTE THAT ( 2) IMPLIES F(X+U,Y+V,T+T)

F (X, Y, T ) . ,
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- FT = F XU+F YV
	

MOTION CONiTRAINT

FT = TEMPORAL DERIVATIVE

F X ,FY = SPATIAL DERIVATIVES

V

U

NOTE;

1) IF F X ,F Y =j , -THEN MOTION INFORMATION CANNOT BE

ACCURATELY DETERMINED

1) IF F X=J, THEN -F T= F YV SO THAT V 1S DETERMINED BUT

U IS uNKNOWN

LET G ANu k DENOTE THE GRADIENT AND LEVEL DIRECTIONS

AT A PIXEL.

G = TAN -1 FY/Fx

i	 G, FR =0

THEN F T = F 6 DG/DT SO COMPONENT OF VELOCITY IN THE

GRADIEiJ DIRECTION 1S KNOWN, BUT NOT IN THE LEVEL

DIRECTI ON

l^

^l

i
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COMBINING MOTION CONSTRAINTS

ASSUME THAT U,V ARE CONSTANT OVER SMALL REGIONS OF THE

IMAGE AND OBTAIN A LOCAL LEAST SQUARE SOLUTION FOR U,V,

C. CAFFORIO AND F, ROCCA, "TRACKING MOVING OBJECTS IN

1,V, IMAGES," SIGNAL PROC,, 1, 1979, 1J-3 - 14U,

J. LIMB  AND J. MURPHY, "ESTIMATING THE VELOCITY OF MOVING

IMAGES IN T.V. SIGNALS," CGIP, 4, 1975, 3"1-327,

2, ASSUME THAT U,V VARY SMOOTHLY OVER THE IMAGE AND USE

RELAXATION TECHNIQUES TO COMPUTE "OPTIMAL It VALUES AT U,V,

b.K,P, HORN AND S. SCHUNCK, "DETERMINING OPTICAL FLOW,"

ARTIFICIAL INTELLIGENCE, 1/= 190'1, 185-203,

1 1
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r
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Supervised Relaxation

- Statistical models for various textures

M1 	M2	 all	 Mn

P 1 P2 P3

P4 X P5
N P

7
P8

1) Prob[X interior to M i l = n prob[ p j E M i l - p rob(x E Mil

i
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e
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r
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II

II
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1.

Label Set -	 {ml ,	 m2 ,	 m3 ,	 ...	 ,	 mn

1. V12'	 V23'	
,,,	 Vn - 1,n,

C.

N	 H	 }
12'	 H23'	 ^^^	 n-1,n)

C

Iterative procedure:

For ea.--h p ixel,	 X:

1) co pulem	 the most Probable label for X

2) Smooth X	 'appropriately"l•
EX:	 1)	 X interior - average with all	 neighbors

P1

M 1

P2

M1

P-^

M4

P4 X P5

M1 M1 M4

P6
P7

P8

Ml M1 M4

1 z)
1

T
1

I

f.

f

average X with

{P1,P2,P4,P6,P7)
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Figure 3. Noisy squares (a) and initial labelling (b)
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	 1 I A A A A A A A A A A A A A A A A A A A A A•
1 1 A AAA !AAA A A A A A A A A. A A A

I .
A

A.
I	 A A A A A A AA A A A: . AA . AA 

A 
:A^&:.    

.f	 I I	 A A A A ► A A A A 	 . A	 A A A 
T I J A AA A A A ♦ ► A A A n A A A A w A A A w A
11 1 ► A AAA A AA ► A A A A A A A A A A A A A
T I I . A A A A A A ^ A A A A A A A A A A A A A A

t.	 1 I I A A A A A AAA A A A AAA AAA ► A w A
11 I A A A A A A A A L A A A A A A A A A A A A

1	 J I I A A A AAA A A A ,AAA w A n A A A A,
J 1 I A A A A A AAA A A A n A A A A A A A A A
1 I 1 A A A A A A A A A A. A A A A A AAA A A

J 11 AAAAAAAA A^^'^.AAAAA AAAA
1 I J + A A AAA A . +	 - ^^ A A A A A A

^^ ► ^- • AAAAAAA J I T-+ +^^-•^^^AA
^   A A A A A A A A A J 1 1 " ^ '^ A

,-.--:A  A A A A A A A I IA	 f	 "-
	A A A A A AAA A A A A I J	 I I I

	

F«A«AAAA F A 'F. III	 yyy11l

^A
r .-.-ter• .-.-r^^	 ^ ^ tiAA

A A

^+^^AAAAAA
ti	 +.-.-AAAAA A/ A

1 f — A w, A A, A , A
TitA.A., A AAAAA

T1fAAA

A 
wA AAAAA,

1 1 1 A A. A A A A A 
A^

A
l I I A A w A A ► A A A ►
f I t,. A, A A A,. A A

Figure 32. 15th iteration smoothing (a) and

labelling ;b).	 3 x 3 simple smoothing.
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Wi^^ 1 Y 4'..i il: I:6WY: M.1 '1':/ 	 rWVA' K'Mg S
J AA AAA • AA AwAA AE IAAwAhA•

1^
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I I A A AAA +AAA •AAAA AAAA •AAA
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l .- r '.r -^ 1 AAA 1 «r	 i T l AAAA A
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J J J	 T I l A h A ► A^^• A A M A A ►
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1 l 1 A, A A A A . A A 	 h A Ai

Figure 33.	 15th iteration smoothing (a) and labelling (b) -E5.
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Figure 51	 15th iteration smoothing (a)

and labelling (b) MITES 3 x 3.
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Figure 19 (3) Concrete in Grating

(b) Grating left and Bricks right
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MULTI —TEMPOP e.L IMAGE SEGMENTATION

I	 OBJECTS — PIXELS

LABELS — REGION CLASS NAMES

RELAXATION RULES CAN BE HEURISTICALLY DERIVED FROM THE FOLLOW-

ING OBSERVATION;

FIELDS ARE, IN GE:.E"AL, MUCH BIGGER THAN A SINGLE PIXEL AND

DO NOT CHANGE LABELS DURING A SINGLE GROWING SEASON.

P
K
(I,J,T) — PROBABILITY THAT THE PIXEL AT SPATIAL LOCATION

(I,J,T) AND TIME T IS IN CLASS X AFTER K ITERA -

TIONS OF THE RELAXATION RULE

iil



0RI Gli'-^r%%L P! "% 	 15
OF POOR QUALITY

RELAXATION RULES

RULE SCHEMA

PK+l (I,J,T) _	 P K (I,J,T) x7	 PK(I,J,T')
T' #T

*F({Pxf(I',J',T):	 V E L,(I',J') A NEIGHBOR

OF (I,J)))

SPECIFIC RULES

7
Fl = MAX PK(XI,T)

I=^

X X X^

X (1,J) X

X- X X

7	 1
F 1 = MAX	 n	 Px(XI+J,T)

J=0 I=0

F , =	 E	 PK(X ,T)
J=6,2,4,6	 J

41



ORIGINAL DUALITY
OF POOR QUALITY

SCENE ANALYSIS - TANKS WORLD

Tnn:vcwnoi n

GROUND

SKY

SMOKE
LABELS

TANK

TREE

TREE FRAGMENTS

UNARY CONSTRAINTS

BINARY CONSTRAINTS

EXISTENTIAL CONSTRAINTS
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ORIGINAL PAGE 13

OF POOR QUALITY

EXAMPLES

BINARY CONSTRAINTS (ARCS)

TANK CANNOT SURROUND SMOKE

(	 IF (TANK,SMOKE) E LIXLJ AND IF N I SURROUNDS N J , THEN
I

DELETE (TANK,SMOKE) FROM LI"Li.

LXISTENTIAL CONSTRAINTS

C•	 A TREE FRAGMENT MUST BE ADJACENT TO A TREE FRAGMENT

IF TREE FRAGMENT E L  AND IF FOR NO ADJACENT L i ISf:
(TREE FRAGMENT,TREE FRAGMENT) E L I x LJ , THEN ELIMINATE

I
.	 TREE FRAGMENT FROM LI,

r

r

c

0
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OF POOR QUALITY

COOPERAIIVE FRD ESSES IN MAZE ANALYSIS

L. S. Dada

Computer Vision laboratory, Computer Science C
College Park, Maryland 20742

Abscract. This paper contains OR oveniev of
(or relaxation) processes for imam-level vision. Two 	 (one involving

pixel classification and the other motion disparity estimation) are used to
illustrate the various steps in applying s relaxation, algorithm to image

analysis prollems.

Note: This paper also appears in the Proceedings of IFAC 32.

i^

11

r

1. ISSUES

Many inset analysis problems can be regarded
as problem s of a;eigninb a label to each
element in a not of picture parts (pixels
or regions). For ex.sple, pixels can be as-
signs! eymbollic land rise category labels
based on their spectral signatures, or numarf-
cal motion disparity labels based on local
comparisons agar_ at cowlsecutive frames to a
time-varyint image. so-h of these problems
will be used as examples throughout this
paper.

The large number of pixels In a digital image
demands that such labelling processes be very
fast. One obvious solut:on to this problem
Is to make the labelling process highly
parallel. Rowaver, In a parallel process,
each picture part would be analyzed indepen-
dently of all other picture parts. Thus,
parallel processes fail to make use of coo-
textuat information (which to often avail-
able). and make many labelling errors.

In, order to overcome this problem, one can
•meets the labelling possibilities for every
part independently, and then compare each
part's asaesemeots to those of other, related
parts, in order to correct inconsistencies.
Since both the aaaeaemmt and the comparison
can be dose indepaedmtly for every part,
each stage of the process is parallel. Qt
the other hand, context is now beta used at
the comparison stage, when related parts are
able to communicate and 'cooperate'. To keep
the computational cost low, the comparisons
should be local; they should involve only
parts that are directl y related (s.I., neigh-
boring plash). This localness can be com-
peo"ted for by iterating the comparison pro-
cess, in order to allow information, to pro-
pagate.

These consideration s lead saturelly to the
design of a 'cooperative' approac'. to label-
ling picture parts which allow context to

be used in the labelling process while still
permitting fast parallel implementation and
low computational coat. such procasses are
called 'relaxation' processes, because of
their resemblance to certain Iterattive prs-
caeaas used in ammarical analysis. Very
generally, a relaxation process is organized
as follows:

(a) A list of possible labels in indepen-
dently selected for each pert, based
on its Intrinsic characteristics. A
measure of confidence can also be
associated witb each possible labsl.

(b) The possibilities (and confidences)
for math part are compared with those
for related parts, based on a model
for the relationships between the
possible labels of picture Potts.
labels are deleted or modified or con-
fidencen are adjusted, to reduce in-
consistencies.

(c) step (b) can be iterated an many times
.as required.

This approach is very general: We have not
specified how to formulate label relationship
models, choose possibilities, er, mate con-
fidences. or adjust them; our have we dis-
cussed when the process should be iterated,
and if so, how mangy times.

Theme issues are discussed is awe detail
In Ill, and, in general, are a function of
the problem at hand. For a general dlacus-
eion, the reader should consult Ill. we
will, instead, consider two 	 problems
in detail - pixel clasaificatloa and motion



45disparity estimation. The first Involve• a
symbellic label set and the second n numeric
one. The first involves confidence adjustment
and the second, additionally, involves modi-
fication of numeric labels. Sect It an 2,1,
and a will consider steps •,b, and c above
for these two problems.

2. IN1T1A1 LABEL ASSICHM fT

The first stop of a r•laxatlam process in-
volves assl&eio& initial label* to each pic-
ture part. if the given la Ml met la mym-
bolllc, then this to ordinarily done using
techniques from mtattstical pattern recogal-
teon. Yore, measurement• are computed for
each picture part •d. Wood on a priori
models of the class conditional densities of
these maamurememts a probability that each
label is the correct one for a picture part
can be computed. These probabilities serve
as the measures of comildonce referred to L
Section 1. Some aaaapleo of symbolllc label
aeta. L. and ame"Lated picture pert asa-
ourements, k, arm:

(1) In a "spring-loaded' template matching
problem (2) L would M the set of sub-
t=plate aamas mad M the cross-corre-
lation of to subtemplats at a parti-
cular Image position. Sea (1) for
details.

It one were forced to decide on • fixed
label for a pixel, a, then one would choose
the n for which p (a) in maximal. As son-
tloned earlier, such an independent claaal-
ficatlon contains many secure. figure 2a-1
Illustrates this. tm the neat section we
describe how a simple relaxation process us
improve on these results.

In many spOlcatlomo, the mmturml label not
Is a numeric property value rather than
symbolltc, and the label met at macb picture
port Is often Initially represented by the
most current •etimate of the mnnst libaly
property value at that picture part ad •
measure of confidence often related to the
variance of local property values. For
example, in relaxation algorithms for grey
level Late enhancement, the Lltial property
value at each pixel to the pixel's grey level,
and the "&we* of confidence, for piecewiea
cosecant images, would be the gfay level
variance to some neighborhood of the picture.

A n .,re complicated exomple to motion dis-
parity eattuatlos. bare, the Initial property
value Is •mot too vector which can M com-
puted •a followe. At each pixel, ens can
compute • linear comstra Lt om the x ad y
component• (u,v) of that plael's motto, based
on the equation:

-1 - I u ♦ 7 v	 (1)

rt n

r ('!a

I

(2) to dot cluster detection, L - Ilnterto,
po lnt, edge point, noise point) and M
are measurements o: local dot density.
See )I) for details.

(l) In supervised pixel classification, L
In the set of &Sven class sues, and
M ordinarily contains spectral and,
possibly, local textural features.

purouing the pixel classification in more do-
tell, figure la-g shown sin images of a LACIE
test site (1 4671). These six images are from
three time mcqutalttoss and two bends (2 and
1). Ground truth is available for this site,
and it can be used to compute the class coo-
ditional probability denelt La of mach clew
for the .-vector of measurement• at mach time
by modeling these densities as normal, we coo
adopt the following simple procedure for de-
detsrmlatmg class prohe ► llitiaa for each
pixel at each time:

(1) Compute the following distance aem-
oure of s pixel, x, from a class, d:

d I (x) - 1081I 1 1 ♦ (2 -7 ) T I 1 1 (x-f )

Hare, y t to the mean vector for class 1 and
I 1 to Its covar Luce matrix.

(2) Neat, compute the probability that
pixel a belongs to class 1 by:

P I (s ) - 11/d 1(s))/I)1/di,(a))I.

kere, I to the temporal image intensity
change ad 1 and I represent the spatial
Lye intensity arealent. We assume bore
that grey level L an invsr Lot of motion.
Assuming that the Image motion L locally a
translation, than one could combine the equa-
tions at two adjacent points to obtain e
unique velocity vector at each point, or, more
generally, one can compute the "pseudo-inter-
section" of the linear cosstra:nts in a
neighborhood of each pixel )1). In this cue,
the error of the fit can be used u a measure
of confidence at aocb pixel, although we will
ignore the confldancu in root follows.

As an "ample, Figure ) contains two from@@
to • time varying image, and Figure 4 con-
talaa the initial Vol"Ity Vector computed
by the pseudo-intersection tecbolq e.

1. sn AUTI ON

After initial labelling n (ad confidences)
are computed, one bogies a sequence of lters-
tiome where the labels and confidences at
each picture part are aodilled based me the
distributionof labels and comfldesces on
related picture parts nod apse modal of how
labelling• affect one another. Thus, the
relaxation algorithm Is based on:

a) a model for the neighborhood of a
picture part, oad

r
r
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b) amodel for the tntarsctlons between
1 belIIna9 of adjacent picture part,.

The neighborhood motel for • relax&t toopre-
come spec"_.. which pairs of picture parts
directly cammvolxat n with ema another in kje
relaxation process, and date-mines the topo-
logy of the graph on which the relaxaxatioo
process operates. Thia graph, ha, ldividuel
picture parts as modes. Its arcs conduct
those pair, of parts that communicate vitb
one smother. The neighborhood model is um-
ally demigaed to establish connections only
between 'nearby' parts.

A oelghborhr.od modal 1s specified by a net of
neighbor :slatiaa r - (r 1 r1 . a rm ). garb
r t 11 a binary Valatlos defined "a, tbe op-
pfoprlate set of picture parts. For example,
It the picture par r • are pixels, them the
neighborhood model vlght specify that a pixel
1a connected to v- dry pLsl its 1 s 3 oelghber-
hood. in this te ase, there are still several
possibilities for the relations contained is
the act r. For example, r might be the net
{directly above, directly below, etc.) which
would distinguish between pairs of points
that are borimatelly adjacent, vertically
adjacent, etc., or it could be the slmgletoe
relatiom 'L the 3 n 1 malghborhood - . In the
latter cans, the commection, between pairs
of pixels would not be recoverable from the
graph oat which the relaxation process will
operate. The choice of r vlll, In general,
be determined by the Isotropy of the universe
of labels. For example, if we are designing
•relaxation process for edge rdinforcemmt,
then the relative positions of Pinola are
crucial since edges generally 'line up',
while It we are dealgolng a relaxation pro-
cess to enhance an image's Stay levels, than
the positional information may not be to-
Qulred.

Yhm the picture parts are regions rathet
than pixels, then connections might be formed
between adjacent regions only. In some site-
ations, It might be nscesssry to distinguish,
between region• that are above, below, inside,
surrounding, etc.

The interaction model get Les how a pltture
part changes Ste label ig based on the
labelling• of its selghbors. An interact low
model Is composed of two parts'

(1) a knowledge representation for the
relationships between label.,, and

(1) a n tcheni s. or procedure, for apply-
tot the knowledge in (1) to change,
or update, labelling@.

For discrete symbolllc labelling* the n ta-
pleat knowledge ropretentatim to • set of
the pairs of labels that can slmultaneou@IF
be associated with pairs of neighboring pic-
ture parts. It cm be represented by •
binary rel*tien g defined over the universe
of label• D. Intuitively, (d a d') t 1

If a pair of neighbors can almultanaously
be labelled with d and 	 In general, there
In a binary Falsities •atoctated with each
neighbor relation.

The most obvious updating mechanism 	 did-
tests, symbollic labelling to a label dis-
cardinS process, welch look* at pairs of pic-
ture parts at a time. A Is ►al, d, can be
deleted era the labelling of s picture part
u, for some nelghborioS pietwre part, that
neighbor does not contain a label, d'. Is its
labelling wit ► (d,d') t R.

The binary relation knowledge representation
can be aenasallxed to sym ►ollic laboUlngo
with confldrmcea for each s ymbolllc label
by opecityiag • real-valued compatibility
function. C. whose domain Is D mM. As before,
In gametal, a compatl ►i11ty function Is de-
fined for each picture relation In the eat r.
A variety of applicatioms have woad compati-
bility functions whose range is (-1,l). In-
tultivslr, If C(d,d') - -1, that d and d' are
maximally incompatible, and the strong pro-
@enc@ of d' at one picture pert (i.e.. d'
has a high likelihood at that part) •bout
depress Clio likelihood of d at a nolab ►oring
picture pert. If C(d,d') - 1, them it 	 d'
are maximally compatible, ed the strong pre-
sence of d' at a picture pert should increase
the likelihood of d at s eelghbor Lug picture
part. Finally, if C(d,d') - 0, them the pro-
amen o! d' at a picture pert should have no
effect on the likelihood of it 	 a neighbor-
ina part. Intermediate values of C should
have lntermdlate effects.

Several machanlme have bem suggested for
applying this knowledge representation to
updating laballings. For example, &..enfold
at al. 161 sugge.ted the formals

pi(d) . P 1 (d)(1 ♦ Q 1 (d))/M	 (1)

where

Q1 (d) - I 
ni) 

I C(d.d')pj(d')	 (3)
j	

it

mid M Is a mormaltalog factor which guarantees
that p (d) -1. The a ll values cat be used to
give bjher tonight to soma uiabbore at part
I than others. Q (d) erasures the overall
support of the oe4h►orbood of part 1 for
label d; It takes on values to the stage
1-1,11 and cen be interpreted sLilarly to C.
The n b.ve operettas is applied is parallel
at every part and for awry label. The p'
values then replace the p values, ad the
operation cm be Iterated.

Very often, however, • Amaral updating rule
like (1) 1s SttappropI late because It fails to
take sdvantego of knovledto •bout the apecf-
tic problem at band. For •x aple, to the
crop classification problem several plauelble
relaxation rules can be derived fine
ar Sumente based on the following general o ►-
servatlon.
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Fields are. In ymeul, wch bluer than a
•Intl• plael and do not t hangs class during
a •trials growing seawo.

11 
It

let p A (i,J,t) denote the ptobability
tint tM pt.sl at spatial loutten ( 1,J) and
9166 t 10 In claw I attar L iteratisso of
the raluatton rule, than the follow

ing
 rule

schwa esl ►e woad to darito varloue speci-
fic rulss:

p,el ( I .J. t ) - M p (1.J.0 • 0 p ( t.J X )
t.0t

neighbor of (1,3):?

Nero, N to a wreallwtloa fact-;(- I pki1
A a;.

(I,J,t)) e-a A to the net of possible classes.
The second .arm rotlwt• the fact that the
cLaa of a pixel doss mot Choose over time,
while the third two aunt repieamt the spa-
tial dependence of (1,J) be Sag to class A
as the likelihood that its selghbore mire in

Val Lou* classes. W can idemtlty at least
these plausible tuectlau for f:

7

1) t1 - mesa pa(at.
1-0

,,*,a,%.
  Is an 11-oelghbor of (J.110 (see

µr.11low) and this "Is can be interpreted
as saying: It (J, ►) is to class A. then since
ttelds sr * large, at least mo spotlal satgM
bar of (J,k) suet M to clue 1.

a7 a 0 t1

n g 	a7

a l aA a3

7	 2
2) 

12 
-ear n pA(a 1tJ ,t7, muLacrlpts Mod B.

J-0 f-0

If fields are roughly rectangular, tiro any
Point will have at least that consecutive
neighbors In the oams flald. Notice that
simply coos W

7

f2 - 11 p',(aJ.t)
J-o

would at first iteration love[ the proba ►111-
ties of correct labale at border pixels, and

propagate these low probabilites lato the
Coster of tbo fit - d at w►aquant iterations.

a1

3) 1	 i3 - 	 ►j(93.t)
J-0

One potential advantage of tie u over the
teaproduct la rte Lmam..lt lv lAy to me et

en nnetwaly low prob bll It lee. ua Mg 1 3 alma

gives sent equal weight to the trmporel and
spat Ll lnforvttoo to the relaestioa rule.
In the next section we will consUer the
affect of applying this updatlry rule to
the last•• to ilguts 1.

Nast, consider the motion ootfratton Problems.
At each pixel we have v ia , the satt6ate of
the velocity -tter the k ill Iteration of
relaaatloe. New, we will aeausae that,
locally, the patt rjrs of linage Mott" vectors
can be well described by a Field lessee plea•
Milos consistly of a treaslatioe ar rote-
tim (over large reglmos thSs might be a
poor assumption since the lase• eotias L
t)e pt of art too of a 3-D rig id not ton).

Consider a 3 .3 neiahLorbood of velocities

v1 v 1 v3

vg v 0 vex

v 7 v d vl

where v 1 is the velocity at p1.

Sloca e07 I-D rigid matins can M rspreemted
as a tresalatioo pleas a rotation about a
timed polar. Lf our aowaptim of local so-
time beta& rigid tang• plane motion& is
correct, then the 3-0 pattern of velocities

I -v v 2-v vi-

g-v	 0 va-v

1-v v L-v v sv

should be a rotation about the cantor point.
In general, if polar o is rotating about
point b with velocity va . then

ova • d ies - 0

when d b. 1e the vector trial b to •. There-
fore, It 10 straightforward to repute a
least squares estimate of the angular veloct-

ty, wpp of p 0 ,to any 3^J (or 0-6) image
me lghbor hood.

In order to canputo a value for vLtl w
proceed with the following parallil opera-
tton: Each pixel Is a mm ►er of the outer
ring of 1 3 .1 oeigbborboods (me centered
at each of its 0 neighbors). Choose the
Neighbor1 ++ wicb mintaal least square error
and sot v^ `_^i ♦ Nei.

A. ITiNATUM

An lapor srt problems to the appl i cation of
relaastton processes 10 deter^lning s tar-
n tnstroo criteria for the ltoratfmo. The
two obvious lermtrrtleo C9 190r1- -te:
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1) "convergence" to the sense that the
change (to probability vectors, aw-
merlc laMle, ate.) Iwo. one Iteratt"
to the nut Is sufficiently small
(see )6) for a diacuaeioa of caver-
*we& s relesatlaa processes).

2) sabaustto{ allocated computational
resources - e.g., to notion detection,
mom say only haves short time ( c 1
P.-O to Iterate the relaxation process

Sonatina$ we rids that while the first se-
veral iteration& of a emissaries process
- 'ad to Improve upon the initial labellag,
zLlovlmg the Iterations so proceed actually
degrade• the results. In such cases one
would west to terminate after only a Inv
Iterations.

For the multi-tomporal, multi-spectral ptaal
classiflcatime, we fled empirically, that
the LarSaat Increase L clurSflcatiw ac-
curacy occurs L toe first Itatstlot, with
subsequent Iteratloss having little effect
w the results. Figure S restates the
classification maps for mach mayor clue L
Figure 1 after .v. iterations of the rele"-
tlon algorithm described in Section 2 using
function 1 3 . From these figures. It to
clear that the relaaatlon algorithm ho. .b-
stantlally enhanced the detection, st the
fields ad the overall classification stra-
tegy.

Meat, consider the series sstlnatiou prob-
lem. Rote, the critical factor in aster-
mining the number of Iterations of the re-
laxatics process Is time, *lace ftseea are
arriving awry .03 seconds. Figure 6 shows
the motion vectors after S Iterations of
relaaatLos. Although the vectors In Figure
6 appear mmootber thr.a those of Figure A,
ow reds som

he
e quantltattrs mes r	for

conperied t. one suc h maam^n 1a to see
how veil the velocity vectors predict Image
structure (may, for coded transmission).
It {(L e),t-1,2 is he intensity at plxal
I at time I. 

than 
1.[

ad, f Inauy.

S- L%M)
a

11 the relaxatles is truly improving time
velocity vectors, then we would "Pact
to be monotonically wnincreasins with t.
figur< 7 shows 

E  
for t-0,...,5 for our

aaang lr .

5. cpICL'IDIMI: IDfARRS

Rsla"tion processes have potential speed
advestages bemuse they cam M implemented
L persllal ( hardware p.raittl g). They
have boom 	 applied to a wide
variety of labelling problems by a {rowing

number of investigators. In spite of
thew successes, little is as yet known
about the design mad control of these pro-
commas. However, a number of praising ap-
proaches to their theoretical formulation,
are being pursued, and it L hoped that a
deeper understanding of their mature will
was be achieved.

Tbe support of the national Irlemes Founds-
time under clant . "M-79-2)622 L gratefully
acknowledged, as is the help of Jew Sales"
L pr(ssring this paper.
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Figure 1. Three acquisitions of LAXDSAT
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OF POOR QUALITY
Dual Problems in Image Segmentation

Jack Bryant* and Susan Jenson+

Summary. The obvious duality between edge finding and segmentation

was exploited in [1). This work has been refined, including a more

general model for multi-image data, and many more tests of the cluster-

ing program AMOEBA. Possible directions for future work in edge follow-

ing and clustering are suggested, using (now) the duality between seg-

mentation and classification made possible by regarding AMOEBA as a

segmentation to classification mapping.

1. J. Bryant, On the clustering of multidimensional pictorial data,
Pattern Recognition 11 (1979), 115-125.

* Jack Bryant, Department of Mathematics, Texas A&M University, College
Station, Texas 77843.

+ Susan Jenson, Applications Branch, EROS Data Center, Sioux Falls, South
Dakota 57198.
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SHAPE AND TEXTURE

Azriel Rosenfeld

Compute: Vision Laboratory
Computer Science Center
University of Maryland
	 .I

College Park, MD 20742

Regions in a segmented image are characterized, for purposes 	

I
of description and recognition, by their geometrical properties	 ^!

(size, shape, etc.), as well as by properties that depend on their

pixel values ( lightness, color/spectral si nature texture). Suchp	 ( gg 	 ^

properties are also used to define or modify the segmentation pro-	 +^

cess itself, as discussed in the sess^_on on segmentation. 	 1

The methods used to measure the geometrical properties of

a region depend on the data structure used to represent the region. 	 11

The simplest representation is a binary "overlay" array that has 1's

at region pixels and 0's elsewhere. However, other types of repre-

sentations are often used that are more compact, and that may make

it easier to extract certain types oL` geometrical information. One 	 fl'.

classical approach is to represent regions by border codes, defin-

ing the sequence of moves from neighbor to neighbor that must be 	
.9

made in order to circumnavigate the border; curves can also be

represented by such move sequences ("chain codes"). Another stan-

dard way of representing regions is as unions of maximal "blocks"

cotained in them - e.g., maximal "runs" of region points on each

row of the image, or maximal upright squares contained in the re-

gion; the set of run lengths on each row, or the set of centers

i
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and radii of the squares (known as the "medial axis"), completely

I.	 determines the region. The square centers tend to lie on a

L.
set of arcs or curves that constitute the "skeleton" of the

region;	 if we specify each such arc by a chain code, and also

specify a radius function along the arc, we have a representa-

tion of the region as a union of "generalized ribbons", which

i, are 2D analogs of the "generalized cylinders	 (or cones)" often

C

used to represent 3D objects.

There has been recent interest in the use of hierarchically

structured representations that incorporate both coarse and

fine information about a region or feature. 	 A hierarchical

-block	 based	 intomaximalrepresentation	 on recursive subdivision

quadrants, where the blocks can 	 represented by the nodes

of a degree-4 tree	 (a	 quadtree

11

 ),	 is described in	 (Samet and

' Rosenfeld,	 1980).	 A hierarchical border or curve representation

based on recursive polygonal approximation, with the segments

' represented by the nodes of a "strip tree", 	 is discussed in

(Ballard,	 1981); on a border or curve representation based on

quadrant subdivision see	 (Shneier,	 1981).

Classically, textural properties have been derived from

the autocorrelation or Fourier power spectrum; 	 for example,

the coarser the texture	 (in a given direction),	 the slower its

autocorrelation falls off in that direction from the origin

(zero displacement)	 and the faster its power spectrum falls

off in that direction from zero frequency.	 A related approach,

studied extensively by Julesz and Haralick, characterizes tex-

tures by their second-order intensity statistics,	 i.e.,	 by the

i I^
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frequencies with which given pairs of gray levels occur at

given relative displacements. It has long been realized,

however, that first order statistics of various local proper-

ty values (e.g., responses of operators sensitive to local

features such as edges, lines, line ends, etc.) are at least

equally effective in texture discrimination.

More recent work (Beck et al., 19b2) suggests that local

processes of linking between local features, giving rise to

"texture elements" or "primitives", also play a significant
role in the perception of texture differences. Texture dis-

crimination based on second-order statistics of local features

(e.g., occurrences of edge elements in given relative posi-

tions and orientations) has begun to be investigated (e.g.,

Davis et al.. 1979). Texture analysis based on explicit ex-

traction of primitives has also been explored (e.g., Maleson

et al., 1977); here statistics derived from properties of

the primitives, or of pairs of adjacent primitives, are used

as textural properties.
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SHAPE AND TEXTURE

1.	 Azriel Rosenfeld

Computer Vision Laboratory
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University of Maryland
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r

Regions in i segmented image are characterized, for purposes

I	 of description and recognition, by their geometrical properties

(size, shape, etc.), as well as by properties that depend on their
I --

pixel values (lightness, color/ppectral signature, texture). Such

properties are also used to define or modify the segmentation pro-

cess itself, as discussed in the session on segmentation.

l	 The methods used to measure the geometrical properties of

a region depend on the data structure used to represent the region.

The simplest representation is a binary "overlay" array that has 1's

at region pixels and 0's elsewhere. However, other types of repre-

sentations are often .used that are more compact, and that may make

it easier to extract certain types of geometrical information. One

classical approach is to represent regions by border codes, defin-

ing the sequence of moves from neighbor co neighbor that must be

made in order to circumnavigate the border; curves can also be

f	

represented by such move sequences ("chain codes"). Another stan-

dard way of representing regions is as unions of maximal "blocks"

contained in them - e.g., maximal "runs" of region points on each

f^
row of the image, or maximal upright squares contained in the re-

I
.	 gion; the set of run lengths on each row, or the set of centers
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and rad-i of the squares (known as the "medial axis"),completely

determines the region. The square centers tend to lie on a

set of arcs or curves that constitute the "skeleton" of the

region; if we specify each such arc by a chain code, and also

specify a radius function along the arc, we have a representa-

tion of the region as a union of "generalized ribbons", which

are 2D analogs of the "generalized cylinders (or cones)" often

used to represent 3D objects.

There has been recent interest in the use of hierarchically

structured representations that incorporate both coarse and

fine information about a region or feature. A hierarchical

maximal-block representation based on recursive subdivision into

quadrants, where the blocks can be represented by the nodes

of a degree-4 tree	 (a "quadtree"),	 is described in	 (Samet and -^

Rosenfeld,	 1980).	 A hierarchical border or curve rearesent,ation

based on recursive polygonal approximation, with the segments iI

represented by the nodes of a "strip tree", 	 is discussed in

(Ballard,	 1981),	 on a border or curve representation based on

quadrant subdivision see 	 (Shneier,	 1981). T
Classically, textural properties have been derived from

the autocorrelation or Fourier power spectrum; 	 for example, I

the coarser the texture	 (in a given direction), the slower its

autocorrelation falls off in that direction from the origin

(zero displacemerit) 	 and the faster its power spectrum falls

off in that airection from zero frequency. 	 A related approach,
n

studied extensively by Julesz and Haralick, characterizes tex-

tures by their second-order intensity statistics, i.e., by the 	 j1



I ^	 59

frequencies with which given pairs of gray levels occur at

given relative displacements. It has long been realized,

however, that first order statistics of various local proper-

ty values (e.g., responses of operators sensitive to local

features such as edges, lines, line ends, etc.) are at least

equally effective in texture discrimination.

More recent work (Beck et al., 1982) suggests that local

processes of linking between local features, giving rise to

	

`	 "texture elements" or "primitives", also play a significant

	

^.	 role in the perception of texture differences. Texture dis-

crimination based on second-order statistics of local features

(e.g., occurrences of edge elements in given relative posi-

tions and orientations) has begun to be investigated (e.g.,

Davis et al., 1979). Texture analysis based on explicit ex-

traction of primitives has also been explored (e.g., Maleson

	

r	
et al., 1977); here statistics derived from properties of

	

l	 the primitives, or of pairs of adjacent primitives, are used

i
^	 as textural properties.
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1. Shape

a) Moments

In this section, we review moments, which are

a very	 useful class of shape properties.

The (i,j) moment of f is defined by

m.- = E Exly3f(x,y)
X y

(in the continuous case, EE becomes Jfdxdy). The first few

moments of the picture

2 1 1
3 1 0
3 2 1

are as follows, if we take the origin at the pixel in the

lower left-hand corner of the picture:

M.	 .

0 0 14

1 0 8

0 1 12

2 0 12

1 1 7

0 2 20

Moments can be given a physical interpretation by regarding

gray level as .Hass, i.e., regarding f as composed of a set

of point masses located at the points (x,y). Thus m 00 is the

total mass of f, and m 02 and m20 are the moments of inertia

of f around the x and y axes, respectively. The moment of

inertia of f around the origin m o - EE(x2+y2)f(x,y)=m20+m02'

It is easily verified that m  is invariant under rotation of f

^1
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about the origin.	 Moreover, if f is

resealed, say by the factor c, it is not hard to see that m 

is multiplied by c4 . Thus we can normalize f with respect

to magnification by resealing it to give m  a specified value.

Alternatively, a ratio of two moments

that have the same value of i+j, e.g. m01/m10, is invariant

under magnification.

If we substitute -x for x in the definition of mij , we

obtain EE ( - x) l0f ( -x,y) _ (-1) l EEx - y j f (-x,y), so that if f is

symmetric about the y axis (i.e. , f (-x,y) = f (x, y) for all

x,y), we have mij = ( - 1) lmij . Thus if i is odd, m ij must be

zero. Similarly , if f is symmetric about the x axis and j is

odd, mij =0; and if f is symmetric about the origin (f(-x,-v)=

f(x,y) for all x,y), and i+j is odd, m ij = 0. Moments for

which i, j, or i+j is odd can thus be used as measures of

asymmetry about the y axis, x axis, and origin, respectively.

. a

if f is a binary-valued picture, s py with S as its set of

1's, the moments of f provide useful information about the

it
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spatial arrangement of the points of S. To compute moments
f

from the binary array representation XS of S, we simply sum

^.

	

	 the x ly3 values for all (x,y) in S. To compute them from

the run length representation of S, we compute them for each

I run and sum the results; for example, the (i,j) moment of
X"

the run whose endpoints are (x',y) and (x",y) is y j " xl.
x=x'

Similarly, they can be computed from the quadtree

representation of S by computing them for each black leaf

j

node, based on its position in the tree, and summing the

i	 results.	 They

j

are not easy to compute from the MAT representation, since

the blocks overlap. They can be computed from the crack or

1
	 chain c-,de representations of the borders of S in much the

same way that area is computed from these representations.

1	 As an example, for each horizontal

1
	 crack ck , let S  be the vertical rectangle of width 1 extend-

ing from the bottom of the picture to c k ; then S is the union

of the S k 's for which cY is an upper boundary of S, minus the

`	 union :;f those for which c  is a lower boundary. The coordi-

nates of ck determine the moments of S k , just as in the case

j

of runs; to compute the (i,j ) moment of S, we add the (i,j)

moments of all the upper-boundary S k 's, and subtract the sum of

j
the ( i.,j) moments of all lower-boundary Sk's.

I
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b) The centroid; central moments

The centroid of f is the point (x,y) defined by
I

X = m10/m0 0

y m01/m00

Thus the centroid of the 3 by 3 picture shown earlier is

(4/7;6/7).	 It is easily verified that if f is shifted, 	 its

centroid shifts by the same amount. 	 (Proof:	 If we shift f

by (a,B),	 the origin is now at	 (-a,-8),	 and the new coordi-

nates of	 (x,y)	 are	 (x+a,y+S).	 Hence	 EE(x+a)f(x,y)/EZf(x,y)

m 10 + a= x+a,	 and similarly for y.)	 Thus if we take the origin

at the centroid of f, we have normalized f with respect to

1
translation.	 Note that since the centroid does not have

integer coordinates,	 if we take it at the origin we should n

1^redigitize f;	 alternatively, we can normalize f by taking the

origin at the integer-coordinate point closest to the centroid.

(Analogous remarks apply in the case of normalizing with

respect to magnification in subsection	 (a).)

When we take the origin at the centroid, moments computed

with respect to this origin are called central moments, and

will be denoted by m 	 Evidently m00=m00, 
and it can be I

ij
verified that m10-m01-0.	

(Proof:	 Take	 (a,8)=(-x,-y)	 in the

preceding paragraph to obtain m 10 = EE(x-x)f(x,y)	 = m10 -xm00 = 0, i

and similarly for m01.)

H

.1

il
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c)	 The principal axis

The moment of inertia of f about the line

(y-B)cos6 =	 (x-a)sine	 which is the line through	 (a,B) 

with slope 6,	 is

(.	 EE[(x-a)sin6	 -	 (y-B)cose)2f(x,y)

`	 We can find the a,	 6, and 6 for which this is a minimum by

`.	 differentiating it with respect to a and B and equating the

results to zero;	 this -	 -yields

EE[(x-a)sin6	 (y-8)cos61f(x,y)	 0	 (from	 a/aa or	 a/aB)

EE[(x-a)cose	 +	 (y-B)sin61f(x,y)	 =	 0	 (from	 a/ae)

Multiplying the first equation by sin6, the second by cosh

1	 and adding gives	 EE(x-a)f(x,y)	 = 0,	 so that a=EExf(x,y)/EEf(x,y)

=r,.	 Similarly, multiplying the first equation_ by cosh,	 the

second by sin6, and subtracting gives B =y.	 Thus the minimum-

inertia line passes through the centroid of f. 	 This line is

called the principal axis of f.

To find the slope of 	 the prin,zipal axis,	 take the origin

i

at the centroid;	 then the moment of inertia of f about the

•	 line y=xtan6 is

1 EE(xsin6-ycos6) 2 f(x,y)	 = m 20 sin 2e -2m
11

sinecosa+m02 cos 2e

Differentiating this with respect to 6 and equating to zero

1	 gives

2m20sin6cos6-2m11 (Cos 2 e-sin g e)-2m02 cos6sine = 0	 i

or	 m20sin2e - 2m11cos2e - m02 sin26 = 0

so that	 tan26 = 2m
11 /(m 20	 m02)

A ,j
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Since tan2e = 2tane/(1-tan 2 e), we can obtain tan g as a root

`	 of the quadratic equation

tan 26+ m 20
-m 02 tang -1 = 0

i	 M 1
It is easily seen that the last equation above is equivalent to

(m11tan6+m
20 ) 2 - (m20 +m02 )(mll

tane+m
20 ) + (m20m02-m112) = 0

This implies that m11tan8+m20 is an eigenvalue of the matrix

( m20 mll)

M 1 m02
Show that the principal axis is in the direction of the eigen-

vector correponding to the larger eigenvalue of this matrix.

A standard method of normalizing f with respect to rota-

tion is to rotate it so that its principal axis has some

standard orientation, say vertical. (Here again, this involves

redigitization.) More generally, f can be normalized with

respect to various types of geometrical distortions by trans-

forming it so as to give standard values to various combinations

of its moments.

The principal axis of f can be regarded as a

line that "best fits" f. More generally,	 one can find

higher-order curves that "best fit" f in various senses. For

example, given a general quadratic curve

q (x, y) = ax, 2 + bxy + cy 2 + ux + vy + w = 0



4

i
r

!r
.c

i

i
t
I
f.
C
f

67

we can attempt to find the values of the coefficients a, b,

c, u, v, w such that

Li (q(x,y)) 2 f (x,y)

is a minimum. The curve having these coefficients would be

a sort of "quadratic principal axis" for f. Given f's best-

fitting quadratic curve q O , one can attempt to perform "shape

normal 4.zation" on f by transforming coordinates so that qO

becomes some standard type of curve--for example, if q O is an

ellipse, we could transform to make it a circle.
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2 ,	 Texture

This section discusses statistical picture properties,

and in particular, properties that can be used to describe

the "visual texture" of a picture, or better, of a statistically	 \\

homogeneous region in a picture. We will not attempt to de-

fine conditions under which a region would be called uniformly

textured. Such regions are often described as consisting of

large numbers of small uniform patches, or "primitive elements,"

arranged according to "placement rules," where the patch

shapes and positions are governed by random variables.
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(1

a) Gray level statistics

The histogram pf (z) of a digital picture f tells us how

often each gray level occurs in f; it provides an es:imate

of the gray level probability density in the ensemble of

pictures of which f is a sample. If there are k possible

gray levels, z l ,..., zk , pf is a k-element vector. Statistics

computed from p f give us general information about this gray

level population. For example,r	 -

!I	1) The mean gray level of f, o f _ N Ezp f (z), where

rN = Ep f (z) is the number of points in f, is a measure of the
1.

overall lightness/darkness of f. The median gray level, i.e.,

the gray level m  such that (about) half the points of f

are lighter than m  and half are darker, is another such

measure.

2) The gray level variance of f, a 2	 U= l E (z- ) 2p (z) , and
^.	 f - N	 f	 f

the standard deviation o f , are measures of the overall con-

trast of f*; if they are small, the gray levels of f are all

1	 dose to the mean, while if they are large, f has a large range

of gray levels. Another such measure is the interquartile

range r f , which is defined as follows: Let mlf be the gray

level such that 1/4 of the pixels of f are lighter than mlf

r	 and 3/4 are darker; let m 3 be defined analogously, with the

*Note that if we define one-dimensional moments by m i _ Ez l,r f  (z),
we have N = m0 and Uf = m l/m0 (so that o f is the centroid of pf);
moreover, if we define central moments iR = E(z-u f ) lp f (z) by

^.	 taking of as the origin, we have cf = m`/m0

..
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1/4 and 3/4 interchanged; then rf - Imlf-m3fl' Other per-

f	 centiles can be u!;ed here in place of the quartiles m lf and

m3f'
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b) Second-order gray level statistics

Statistics computed from the histogram p  are of only

limited value in describing f, since p  remains the same no
matter how the points of f are permuted--for example, pf

is the same when f is half black and half white, when f is

a checkerboard, or when f consists of salt-and-pepper noise.

More insight into the nature of f is obtained by studying how

often the possible pairs of gray levels occur in given rela-

tive positions.

Let d - (Ax, Ay) be a displacement, and let M  be the

k-by-k matrix whose (i,j) element is the number of times that

a point having gray level z  occurs in position d relative to

a point having gray level z j , 1 s i,j S k.
f is

1 1 2 2
0 2 2 1
0 0 2 1
1 0 0 1

and d is (1,0), then M d is

2 1 2
1 1 1
0 2 2

For example, if

q n

Note that the size of N, d depends only on the number of gray

levels, not on the size of f. Elements near the main diagonal

of M  correspond to hairs of gray levels that are nearly

equal, while elements far from the diagonal correspond to

pairs that are very unequal.
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Let N  be the number of point pairs in f in relative

position d; this is less than the total number of points in

f, since if (x,y) is near the border of f, (x+Ax, y+Ay) may

lie outside f. Then in the matrix P d = M b/N 6 (i.e., if we

divide each element of M a by N 6 ), the (i,j) element is an

estimate of the joint probability that a pair of points in

relative position S will have the pair of gray .levels (zi,zj).

P d is called a gray level cooccurrence matrix for f.

The matrices P d , for various d's, provide useful informa-

tion about the spatial distribution of gray levels in f. For

example, suppose that f is composed of patches of approximately

constant gray level of a certain size s. If the length of d

is small relative to s, then the high-valued entries in P

will be concentrated near its main diagonal, since a pair of

points b apart will often have nearly the same gray level.

On the other hand, if d is long relative to s, the entries in

P will be more spread out. If f consists of elongated streaks

oriented in a given direction, the spread of values in P d will

depend on both the length and slope of b. If directionality

	

is not important, we can use matrices P	 that are averages

of P d 's (or matrices M that are sums of M,'s) for sets of

displacements of a given size in various directions. For

example, if f is the 4-by-4 picture shown above, and we use

the displacements (1,0), (0,1), (-1,0), and (0,-1), then the

'I

i

1A I

II
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combined matrix M is

8 4 4
4 6 5
4 5 8

(Note that M is symmetric, since the set of directions used

is symmetric.)

In principle, a large set of P d matrices is needed to

completely specify the second-order gray level statistics of

f. In practice, however, matrices corresponding to large
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displacements are not necessary. As d becomes long, the

pairs of gray levels separated by d become uncorrelated,

and P 6 U ,j) approaches the probability that a pair of ran-

domly chosen points of f have gray levels z  and z j . Thus

for practical purposes we need not use Ps having lengths

greater than the distance over which f's gray levels remain

correlated, or greater than the size of the "patches" of

which f is composed. In fact, the most important P d 's are

usually those for which d has length 1. Historically, gray

level transition probabilities p(z j [z i ) have been used to

characterize textures; p(z j 1z i ) is the probability that a

point has level z j given that the preceding point (with

respect to a scan of the picture) has level z i . Note that the

joint probability p(z i ,z j ), which is equal to p(zi)p(zjIzi),

is just the U ,j) element of P d for d = (1,0). Other investi-

gators have characterized textures by fitting a time series

model to the sequence of gr-y levels, and using the parameters

of this model as texture descriptors; this approach will not

be discussed here in detail.

Haralick has suggested a number of statistics

that can be used to describe a given cooccurrence matrix Pb.

Four of these are:

1) "Contrast", E EU-j) 2 P 6 (i,j) this is the moment of
i j

inertia of P d about its main diagonal. Evidertly,

it is low when the diagonal concentration of P d is

high, and vice versa.



75

2) "Inverse difference moment", E EP6(i,j)/(1+(i-j)2);
i j

this is high when the diagonal concentration is high.

3) "Angular second moment", E EP 6 (i,j); this is lowest
i

when the P 6 (i,j)'s are all equal, and high when they

are very unequal, so that in particular it tends to

be high when the diagonal concentration is high.

4) "Entropy", -E EP  U, j) lo!1F a (i, j) ; this is highest
i

when the P 6 (i,j)'s are all equal, and hence is low

when the diagonal concentration is high.

It should be pointed out that the arrangements of values

in the cooccurrence matrices depend not only on the coarseness

I -.

or busyness of the given picture,

contrast. For example, if we str

ture, the entries in the matrices

diagonal, since the pairs of gray

Features (1-2) defined above will

such changes (this is why feature

while features (3-4) will be less

but also on its lightness and

etch the grayscale of a pic-

will spread away from the

levels will be farther apart.

be especially sensitive to

(1) is called "contrast"),

SO. To avoid confusing the

I
Iri

effects of the first and second order statistics of the picture,

it is-common practice to normalize its grayscale (e.g., by

histogram flattening) 	 before computing the

I	 matrices, so that the first order statistics have standard

values.r

	

	
We can define cooccurrence matrices that may be more

sensitive to the spatial structure of the given texture by

I
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using only selected pairs of points in constructing the

matrices, rather than using all possible pairs having a given

relative position. For example, suppose that we consider

only point pairs (Q, R) in which Q is on an edge (e.g., is at	 `\

a local maximum of the gradient magnitude), and R is a given

distance d away from Q in the gradient direction. In the

matrix Pa defined in this way, diagonal conce.itration still

correspordb to coarseness, since if 6 is small relative to the

texture patch size, R should be interior to the patch on the

edge of which Q lies. However, Pa may be more sensitive to

coarseness changes than the P d matrices were, since Pa is not

influenced by point pairs that are both interior to patches.

u+

n

1
i

II
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c) Local property statistics

Another way of obtaining information about the spatial

arrangement of the gray levels in f is to compute statistics

of various local property values V measured at the points

of f.

As an illustration of how local properties can be used

for texture description, let 6 - (Ox,Ay) be a displacement,

let f 6 (x,y) - f(x,y)- f(x+Ax, y+Ay), and let p 6 be the histo-

gram of f 6 . Suppuse that f is composed of patches of size s.

If 6 is short relative t) s, the high entries in p 6 will be

concentrated rear 0, since pairs of points 6 apart will usually

have small differences in value; but if 6 is large, the entries

in p 6 will be more spread out.	 (Note, in fact, that p6(z)

is the sum of the entries 1,: the matrix M 6 along the line

parallel to its main diagonal for which i- j = z.) Thus the

concentration of p 6 near 0 is a measure of the•"coarseness" of

f relative to 6, or equivalently, the spread of p S away from 0

is a measure of the "busyness" of f. Here again, these pro-

perties may depend on direction. Similar remarks apply if we

use absolute rather than signed differences; this simply folds

p 6 over on itself at the origin.

I
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The gray level (absolute) difference histograms p d are

not affected by shifting the grayscale (as cooccurrence

matrices are), but they are affected by stretching it; thus

they too should be used in conjunction with grayscale normali-

zation. Various statistics can be used to describe p d , includ-

ing its mern (NI
	 if we use absolute differences), its

second moment (Ez 2p d (z); this is proportional to the "contrast"

statistic for the corresponding cooccurrence matrix), its

entropy (-Ep d (z)log p a (z)), and so on. .

A wide variety of local properties V can be used in place

of f 	 for texture description. For example, we can use com-

binations of differences, 	 such as the gradient (magnitude)

or Laplacian; matches to local templates,	 such as spot,	 line, i
I.

corner,	 or line end detectors; and so on.	 f' can be a predi-

cate, e.g. 1 if an above-t2ireshold difference is present and

0 otherwise; in this case, the histogram consists of only two

values, and its mean tells us how many edges (or spots, lines,

etc.) are present in f per unit area. Another possibility

is to count local gray level maxima and minima in f; evidently,

both the number of edges and the number of extrema per unit

area are measures of "busyness". More generally, we can count

occurrences of arbitrary local patterns of values in f.

We can use second order as well as first order local

property statistics as texture descriptorE, by constructing
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cooccurrence matrices of the values of f' in given relative

positions. If desired, we can use only selected pairs of

points in constructing the matricei, e.g., pairs of extrema

or pairs of above-thresho!.d edge points, and we can use dis-

placements at each point that depend on f', e.g., displacements

in the gradient direction, as at the end of subsection (a).

Rather than using a set of local properties, e.g., c:if-

ferences computed for a set of displacements, we can use a

single property and measure it for pictures derived from the

original o:,e by a set of local operations. For e y ample, sup-

pose that we use a sequence of local min (or max) operations,

and at each step, measure the average gray level; the rate

at which this decreases (or increases) is a measure of the

coarseness of the high-valued (low-valued) patches in f. For

a binary-valued f, the analogous idea is to shrink (or expand)

the 1's in f repeatedly, and at each step, count the number

of 1's. This approach, usin-- generalized shrinking and ex-

panding operations, 	 has been extensively

used for textures analysis in microscopy.
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d) Autocorrelation and power spectrum

In the previous two subsections we saw how various

statistics of the cooccurrence matrix, difference histogram,

etc. for a given displacement d = (Ax,Ay) provide useful in-

formation about a texture. Thus the set of values of a given

statistic a as a function of d (in particular, for relatively

short 6's) can be used as a texture descriptor.

For example, let fa = f(x,y)f(x+Ax, y+Ay), and let a be

the mean of fa; then a as a function of d is ust the autocor-

relation Rf , i.e., the expected value of the product of the

gray levels o` a pair of points b apart. By the Cauchy-Schwartz 	 1

inequality, this takers on its maximum value for d = (0,0).	 .^

Ef (x, y) f (x+Ax, y+Ay)(Proof :	 2	 2 /^2 s 1; but the two factors
[ Ef (x,y) Ef (x+Ax, yrAy) ) 

in the denominator are the same, so that the denominator is

equal co Ef(x,y) 2 , which is R f (0,0).) The rate at which R 

falls off as d moves aw-Ay from (0,0) is a measure of the

coarseness of f; the ^^tloff is slower for a coarse texture,

and faster for a busy one. 	 I
Similarly, let f b = [f(x,y)-f(x+Ax, y+Ay)] 2 , and let a=v

be its mean, i.e., the expected squared gray level difference

at two points b apart; this-descriptor is sometimes called

the var iogram of f. (Compare the use of the mean of the	 =+

absolute difference histogram as a texture descriptor in

subsection (c).) The rate at which its value rises as 6 ;roves
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away from (0,0)	 is a measure of the coarseness of f;	 the

rise is slow for a coarse texture and fast for a busy one.

• Note that v(d)	 = E{[f(x,y)-f(x+Ax, 	y+Ay)] 2 }	 =	 E{f 2 (x,y)}	 +

[ E{f2(x+Ax, 	y+Ay)}	 -	 2E{f(x,y)f(x+Ax,	 y+Ay)};	 here the first

two terms are just R f (0,0)	 and the third is -2R f (6),	 so that

v(d)	 = 2(R f  (0,0)-R f (6)).	 If	 f	 is	 isotropic,	 the values of R 

i'
and v depend only on the length of d, not on its direction,

so that they become functions of a single variable.

1 A texture can be modeled as a correlated random field,

e.g., as an array of independent identically distributed

random variables,	 to which a filtering operator has been ap-

plied.	 This model suggests that a texture can be described

by its autocorrelation and by the probability density of the

original random variables;	 the latter can be approximated by

a histogram after a "whitening" operation has been applied to

i- decorrelate the texture.	 If we use the gradient or Laplacian

as an approximate whitening operation, 	 the histogram is just

a histogram of difference values, 	 as in the preceding sub-

section

The Fourier	 power spectrum JFJ2

and the autocorrelation R  are Fourier transforms of each other.

Thus JFJ 2 can also be used as a texture descriptor. The rate

at which JFJ 2 falls off as the spatial '-equency (u,v) moves

away from (0,0) is again a measure of the coarseness of f;

the falloff is faster for a coarse texture and slower for a
T*

t-
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busy one, since fine detail gives rise to more power at high

spatial frequencies. Samples of IF 12 taken over rings centered

at (0,0), or over sectors emanating from ( 0,0) (to detect

directional biases), have often been used as texture features.

11

Other transforms of f can also be used as a source of

texture features. In practice, features based on IF 12 (or Rf)	
^1

seem to be somewhat less effective for texture discrimination 	 1

than features based on second-order or local property statistics.

At the same time, computation of I F 1 2 is more costly than

computation of a few statistical features (recall that they

usually need only be computed for a few d's), unless we compute

it optically.

t

i



( 1	 83

e)	 Region-based descriptions

The texture descriptors considered so far are derived from

local or point Fair properties.	 We conclude by briefly dis-

cussing texture description in terms of homogeneous patches

or "primitive" regions.	 Several types of texture models are

based on such decompositions into regions. 	 For example,

textures can be generated by using a random geometric process

to tessellate the plane into cells, or to drop objects onto the

1 plane, a.^.d `hen selecting gray levels	 (or gray level probabi-

lity .1onsities)	 for the cells or objects in accordance with

some probability law.

If we can explicitly extract a reasonable set of nrimitives

from f, we can describe the texture of f using statistics of

properties of these primitives--e.g., the mean or standard

deviation of their average gray level, area, perimeter,
I

orientation (of principal axis), eccentricity, etc. Second-

order statistics can also be used--i.e., we can construct

matrices for pairs of values of the area (etc.) at pairs of

ineighboring primitives (perhaps in directions defined by each

T	 primitive's orientation.	 Of course, this approach depends on

being able to extract a good set of primitives from f at a

reasonable computational cost. A related, but much simpler,

idea is to extract maximal homogeneous blocks (e.	 runs ofg	 g ,

constant gray level in various directions) from f, and describe

f in terms of (first or second order) statistics of the block

L	 sizes (e.g., run lengths).

y ^	 _
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In general, the description of textures in terms of

primitives may be hierarchical; the primitives may be com-

posed of subprimitives, etc., or they may be arranged into

groupings which in turn form larger groupings, etc. This

..akes it possible to define placement rules for the primitives

in the form of stochastic grammars. Texture analysis can

thus be carried out, in principle, by parsing with respect

to a set of such grammars.

^	 I	 r
!I

I

i
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SHAPE IDENTIFICATION USING 3-U FEATURE:i

C.M. Sjorklund
R.S. Loz

Lockheed Research Labs
Palo Alto, CA 943U4

Image analysis continues to pose significant difficul-

ties for automatic computer analysis due to the unpredicta-

bility of object signatures, variability of scene and il-

lumination content and information lost using twu-

dimensional imagery. Systems providing both intensity and

range information permit geometric analysis of the scene to

be performed concurrently with grey scale analysis.	 Laser

range imagery provides this capability. Pixel values in a

range image measure the distance to the nearest surface

along the ray; thus, physical measurements of shapes can be

extracted. Two applications will be described. 	 In the

first,	 planar surfaces are i^'entified and extracted for

matching in scenes containing buildings [1].	 In the second,

vehicles	 (e.g. trucks and tanks) are discriminated based on

features extracted from the 3-D data.

1.	 U.L. Milyrain and C.M. Li iorkluiiJ, "Hangu	 Linage	 Process- 	 ;f

ing:	 Planar Surface Extraction", 5th ICPR, Dec. 1980,
PP• 912-91`).

1

I

I
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Automatic Photointerpretation via Texture and Morphology Analysis

Julius T. Tou

Center for Information Research
University of Florida 	 ORIGINAL PAGE IS
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Abstract

IThis paper discusses computer-based techniques for automatic photo-

interpretation based upon information derived from texture and morphology

analysis of images. By automatic photointerpretation, we mean the deter-

mination of semantic descriptions of the content of the images by computer.

Such descriptions include a narrative report identifying the objects in

the image and describing their characteristics and relationships. Our

z--roaches consist of two major tasks: (1) Morphology analysis, and (2)

textural analysis. Morphology and shape information enables us to make a

preliminary identification of the objects or region.s.In both tasks, a

growing knowledge-base is generated from past experience and a priori

t	
information. Objects with distinctly different morphology and shape are

1	 recognized and these contents in an image are interpreted. To make a

j,	 finer identification and more accurate interpretation, we make use of

textural information.

To perform semantic analys i s of morphology, we have developed an

heirarchical structure o` knowledge representation. The simplest elements

in a morphology are "strokes", which are used to form "alphabet „ ”. The

IT	 "alphaoets" are the elements for generating "words", which are used to

describe the function or property of an object or a region. The "words"

1	 are the elements for constructing "sentences", which are used for semantic

j

description of the content of the image. We realize that in many cases

morphology a llione may not b p sufficient to make Positive identification and

accurate interpretation.	 Phntointerpretation based upon morphology is

1	 then augmented by textural information.
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To perform textural analysis, we make use of the pixel-vector approach.

Each pixel or cluster of pixels isrepresented by a property vector which

characterizes the pixels belonging to an object or a region in an image.

Pixels of similar properties are extracted by a correlation and clustering

technique. Since an object or a region may contain several types of

pixels, an object may be decomposed into several clusters of pixels with

different types and properties. The features of the decomposed objects are

used in automatic photointerpretation. When objects can be decomposed into

similar clusters, we determine the textural rythm as positive identifica-

tion of the object or the region in addition to morphology information.

The knowledge-base is augmented with acquired information from image ana-

lysis.

Some experimental results of our knowledge-based photointerpretation

system will be discussed.

ORIGINAL PA3r IS

OF POOR QUALITY

]I



^. X83 15'7 7189

ORIGINAL PAui );
OF POOR QUALITY

1-

Summary

FLIR TARGET SCREENING

Raj Aggarwal
Systems 6 Research Center
Honeywell Incorporated
2600 Ridgway Parkway

Minneapolis, Minnesota 55413

r
i^

r.
r.

r.

The remote sensing applications typically involve a sensor that
acquires data from the phyiscal world, a processor to process this
data and mosc likely a controller that performs certain mission
related functions. Remote sensing is characterized by lack of
control over the sensing environment and the scene being sensed.
Thus, in addition to the problems posed by the recognition task
itself, there are special problems due to uncontrolled environmental
factors, including noise and coherent clutter, and in some cases,
uncooperativeness on the part of the objects that are to be
recognized (countermeasures, camouflage).

One application of remote sensing has been in the area of FLIR
target recognition. The sophistication of reconnaissance and strike
systems is constantly increasing due to the high threat operational
environment. Thus, advanced forward looking infrared sensors are
integrated on high performance aircraft. The fast loading and high
information rate of advanced sensors has made it imposssible for a
human to perform the target search/deduction/recognition task
accurately, consistently, and in real time. A lot of work has been
done by university/industry teams towards the development of FLIR
target screening technology.

A typical tarqet screener would consist of segmentation, detection,
and recognition stages. Segmentation step would typically involve
the ability to locate the regions of interest. The detection stage
is to separate out the clutter from potential tar elets and the
recognition step is to label the type of the target. The process to
date includes not only the simulation of this technology in various
laboratories around the country but also the development of real
time hardware. Some of the hardware boxes have been tested in real
time in helicopters, etc.

In FLIR much work has been do
of invidual targets, some
statistical methods.	 One ke
ability of these techniques t
extensive retraining of the
leads us to the development
target screeners.	 There the
learn from what it sees
accordingly without operator
Honeywell in this direction

ne on the segmentation and recognition
of it using structural as well as
y problem that still remains is the
work under varied conditions without

algorithms. This deficiency is what
of what are known as multi-scenario
key ability for the screener is to

through its sensor and adapt
intervention.	 The work being done by
will be discussed at the conference.
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Structural Analysis Techniques for Remote Sensing

Linda G. Shapiro
rDepartment of Computer Science

Virginia Fblytechnic Institute and State University

r	

Blacksburg, Virginia 24061 	 +

1.

SUMMARY

Structural analysis uses knowledge of the properties of an entity,

its parts and their relationships, and the relationships in which it

participates at a higher level to locate and recognize objects in a

visual scene.	 For example, Bajcsy and Tavakoli [ 1 ] used spectral and

shape properties of roads along with knowledge about required
I

connections to other roads in a system for computer recognition of

roads from satellite images. Tenenbaum, et. al. [7] set up geometric

correspondent" between sensed images and symbolic reference maps to

aid in monitoring or tracking predefined targets. We will discuss the

basic techniques required for structural analysis.

One problem	 is the representation of structural knowledge.

Production systems and relational descriptions are the two major

classes of representation used so far. 	 Production systems include

picture grammars [2] that use production rules to parse pictures and

expert systems (4] where knowledge about pictures can be stored and

retrieved.	 Relational descriptions include trees, graphs,	 n-ary

t	 q 6 	 A eE.L:

PRECEDING PAGE BLANK NOT FILMED
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relations, complex relational structures,	 semantic nets [4], and

frames [3].

A second problem is the development of efficient algorithms for

using the structural information to help analyze an image. In [5] we

defined a general model of a structural description and compared

several inexact matching algorithms for finding the correspondence

between models and images. 	 A simple scheme called forward checking

showed the most promise.	 Parallel hardware can also be used to speEd

up the matching process. 	 In general,	 the more the problem can be

constrained by knowledge, the faster the matching can be done.

A third problem consists of techniques for storage and retrieval of

relational models.	 A knowledge database will typically consist of a

large number of models and/or frames.	 Matching an unknown image

against all of them is impossible. 	 Thus schemes for organizing the

database of models for fast retrieval of those models most appropriate

to a given image are essential.	 In [E] we discuss some preltninary 	 I

schemes for database organization. 	 The problem of organizing

structural knowledge and knowledge in general is an important topic of

current research.

ORIGINAL PAGE 15
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FigLt. 11.4 illustrates the number of milliseconds of CPU time on an

IBM 310/158 as a function of number of units for p-.5. c •.1,
and three different search methods.
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DETERMINING 3-D MOTION AND STRUCTURE

FROM IMAGE SEQUENCES*

T. S. Huang
Coordinated Science laboratory

University of Illinois at Urbana-Champaign
1101 West Springfield Avenue

Urbana, Illinois 61801
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Summary

The determination of 3-D motion and structure from image sequences has

many applications, including interframe TV coding, target tracking, and

robot trajectory planning using visual feedback: 	 Past work in the area led

to results which involved the iterative solution of nonlinear equations [r-3],

and the questions of convergence and uniqueness were not resolvi.d. In this

talk, we shall present a new method [4J of determining 3-D motion and struc-

ture from two image frames. This method requires eight point correspon-

dences between the two frames, from which 3-D motion and structure parameters

are determined by solving a set of eight linear equations and a singular value

decomposition of a 3X3 matrix. We also show that the solution thus obtained

is unique,

References

1. S. Ullman, The Interpretation of Visual Motion, MIT Press, 1979.

2. J. W. Roach and J. X. Aggarwal, Determining the movement of objects from
a sequence of images, IEEE Trans. on PAM!, , Vol. 2, pp. 554-562; Nov. 1980.

3. T. S. Huang and R. Y. Tsai, 3-D motion estimation from image-space shifts,
Proc. IEEE International Conf. on ASSP, March 30-April 1, 1981; Atlanta, GA.

4. R. Y. Tsai and T. S. Huang, Uniqueness and astimation of 3-D motion para-
meters of rigid bodies with curved surfaces, Report R-921, Oct. 30 ; 1981,
Coordinated Science Laboratory, University of Illinois, Urbana, Illinois 61801.

* To be presented at the NASA Workshop on Image Structures, April 28-30, 1982,
Texas A&M University, College Station, Texas 77842.
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(1.22)

T_	
where 'Ax,Ay,Az) is the amcu t of translation, and R is a rotation matrix

[1.6]

Q,	 ni + (1 -n 2)c ^:.a	 n1 n 2
(1 - cos8 ) +n3 sin3 n

1 
n

3
(1 - cosS) - n2sin3l

a^^	 R - n
1 
n

2
(1 - cc,.`:, ) - n3 si*ti5 n2 + (1 - n2)cos3	 n2 n 3

(1 - cos9) +nlsiao

n 1n3 ( I - c -se +n2 sin3 n2n3 (1 - cos9) - n lsin3 n3 + (1 -n 2 )Cosa 
J

(1.23)

where n l , n2 and n3 are the directional cosines of the axis of rotation

ni + n2 + n3 = 1	 (1.24)

and 2 is the amount of rotation between the two frames.

Assume the amount of r-)tation, a,is small. Then

1	 n39	 -n2a

R = -n 3a	 1	 n19	 (1.25)

n 
2 
a	 -n19	 1

And we have, using Eqs. (1.22) and (1.15) and after some algebraic manipula-

tion,
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College Station, Texas 77843

Dear Dr. Guseman:

I would like to thank you for inviting me to the NASA Workshop on Image
Analysis. Since I work in the area of technology transfer and applications

of remote sensing, I viewed the conference from the perspective of how
fundamental research influences applied research.

In the area of image segmentation, we now have many tools for clustering and

classification. The extension to be made from current capabilities will

perhaps Take use of ancillary data for classification refinement via digitized

soils data, terrain illumination correction, etc. With many layers in a data

base, total registration accuracy is a weak point, as well as mechanism to
quickly process mixtures of raster and polygonal formats.

Shape and texture analysis seems to me to present the most exciting possi-

bilities - particularly given the finer resolution of Landsat D. Since we

know a human analyst can identify features from shape and texture, perhaps
images can be enhanced to iteratively improve the interpretability until

ultimatriy some features can be machine-recognized. The role of color in
this process has been relatively untapped which to me implies that the exten-

sion of algorithms from 2-D to N-D is not at all trivial and deserves a great
deal of study.

The area of structural knowledge relates to our needs in that we often model 	
^1• desired variable (irrigability, exploration potential, grazing capacity) as

• function of other variables. A structure within which we can analyze and
weight the variables, and arrangements of the variables, Mould be beneficial.

As to where to look for the evolution of new image processing canabilities,

I personally have been dissatisfied with statistical approaches. They seem
to deal with images in measurement space only and make assumptions that are
not true often enough. The best forward strides I have seen are practical
and arise from a well-defined problem.

Again, I enjoyed meeting you, found the workshop stimulating, and am looking
forward to visiting A&M again.

Sincerely,

L,
Susan K. Jenson

Senior Applications Scientist

Geoscience Section

SOUTH DAKOTA OPERATIONS - EROS DATA CENTER • SIOUX FALLS, SOUTH DAKOTA 57198 • TELEPHONE (605) 594-6511	

fl
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May 13,	 1982

Dr. Larry Guseman
Dept. of Mathematics

j Texas A&M University
J College Station, TX	 77840

Dear Larry,

The following are some suggestions for future research
areas under the NASA Fundamental Research Program in
Pattern Recognition:

1.	 Application of AI methodology to develop "expert
systems" for various interpretation tasks.

• 2.	 Automatic registration of multisensor data, and
of images with maps.

3.	 Study of VLSI architecture requirements for remote
sensor data processing and analysis.

4.	 Development of database management techniques
applicable to remote sensor data.

We hope these ideas will be useful.	 We enjoyed the meeting
and look forward to seeing you again soon.

Sincerely,

Larry f. Davis
Associate Professor

q^^
Az el Rosenfeld
Research Professor

AR:job

Computer Science Center, University of Maryland, College Park, Maryland 20742, U.S.A.
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