
General Disclaimer

One or more of the Following Statements may affect this Document

 This document has been reproduced from the best copy furnished by the

organizational source. It is being released in the interest of making available as

much information as possible.

 This document may contain data, which exceeds the sheet parameters. It was

furnished in this condition by the organizational source and is the best copy

available.

 This document may contain tone-on-tone or color graphs, charts and/or pictures,

which have been reproduced in black and white.

 This document is paginated as submitted by the original source.

 Portions of this document are not fully legible due to the historical nature of some

of the material. However, it is the best reproduction available from the original

submission.

Produced by the NASA Center for Aerospace Information (CASI)

0VAOk n .11 n MMI1010

^r i51

1

AI

1i
(NASA-Cif- lb9719) THE LANGUAGE PARALLEL 	 883- 16014
PASCAL AND OTHER ASPECTS OF THE MASSIVELY
PARALLEL PHUCESSOR Final Report, .Tau. 19OU
- Dec. 19b2 (Cornell Uuiv. , Ithaca, N. Y.) 	 Uuclas
255 a HC A 12 /MF, AU 1	 CSCL 098 G3/61 01963

,^

0	 Alum:1,41[cs'16 Kew

1

T

4.

THE LANGUAGE PARALLEL PASCAL AND OTHER ASPECTS OF
=	 THE MASSIVELY PARALLEL PROCESSOR

'S	 Final Report for the Period

January 1980 to December 1982

Anthony P. Reeves*

John D. Bruner"

School of Electrical Engineerinq

Cornell University
Phillips Hall

Itnaca, NY 14853

Work Supported by NASA Grant E-3

Most of this work was conducted while•the authors were with the School

of Electrical Engineering, Purdu(, university.

'` John Bruner is now with the Lawrence Liver •mcre Laboratory.	 r

l^z

Ab It r,

R

f

P.

it
R C

This is the final report for NASA grant NAG 6-3 which is concerned with

high- level languages computer architecture and algorithms for the Massively

Parallel Processor (MPP). Previous work for this grant is described in Purdue

technical reports TR-EE 00-32 and TR-EE 01-46. In this report only the

recent up-dates to previous work and results of new work are given; previous

work which is not described in detail here is mentioned in section one.

The main effort of the research has been to desi gn a high level language

for the MPP. This language, called Parallel Pascal, is described in detail

in this report. Report sections include a description of the Language design,

a description of the intermediate Language, Parallel P-Code, and details for

the MPP implementation. Appendices give formal descriptions of Parallel

Pascal and Parallel P-Code. A compiler has been developed which converts

programs in Parallel Pascal into the intermediate Parallel P-Code language;

the code generator to complete the compiler for the MPP is being developed

independently by CSC for NASA. A Parallel Pascal to Pascal translator has

also been developed. This allows Parallel Pascal programs to be developed

and run on conventional computers without the need for direct access to the

MPP.

In related work the architecture design for a VLSI version of the MPP

is completed with a description of fault tolerant interconnection networks.

In another section the memory arrangement aspects of the MPP ore discussed

and a survey of other high level languages is given in an appendix.

u

t

^	 :F'+s vss ..	 _	 ^_:'_yt.^........._.:-,'.;. i.•^S.e..,'rx'.*i'Y"r2, x.._. ..., e^ 	 .«	 __.	 ..	 _v „RriH;".	 .'Y^"uF^.:C^z—.v--... :.`a.

D

bole

1. Introduction 0 6 6 0	 1

1.1 High Level Languages_ ..	 1

1.2 Computer Architectures . -	 3
1 .3 Algorithms .	 4

1 .4 Refey-oces 6 0 . 0 .	 5
2. Parallel Pascal Update 	 6

F

2.1 Revisions and I/O Specification 6

2.2 The MPP Parallel Pascal 8

2.3 Large Array Processing 9 f
2.3.1 Whole Arrays in the MPP 9
2.3.2 Partial Arrays in the MPP 11
2 .3.3 Data Reformatting 12

3.	 Parallel Pascal	 Design 17

3.1 Motivation . 17

3.2 Parallel Pascal Specification 19

3.2.1	 Design Goals	 19 s

3.2.2 Data Types 21
3.2.3 Array Indexing 24
3.2.4 Standard Functions 32
3 .2.5 Control	 Flow 36
3.2.6 Input and Output 43

3.3 References	 45

4.	 Parallel	 P-Code	 46

4 .1 Pseudo-code	 46

4.2 Data Types	 48
504.2.1 Subrange Types 	

4.2.2 Set Types 51
4.2.3 Fi 1 es 52

524.2.4 Array Types	
4.2.5 Record Types	
4.2.6 The Dynamic Portion of Descriptors

.	
.	

. 55
57

4.2.7 Pointers	 62
4.2.8 Type	 Renaming 63

4.3 Memory Allocation 63
r.

a r^:.a

^	 +	 o	

-	 - T.

	

4.4 Data Manipulation	 69
4.4.1 Overall Strategy►	 69

'	 4.4.2 Load Instructions		 70
4.4.3 Store instructions	 72
4.4. 4 Type Conversions 	.	 .

	

...	 73
4.4.5 Conformabi 1 i ty 	 74

l

Fault Tolerance in Highly Parallel Mesh Connected Processors . . 	 128

6 .1 Introduction . 	 .	 128

6,2 Mesh Connected Parallel Processors - - 128

6.3 A VLSI PE Organization 	 133

6.4 PE Fault Tolerance 135

6.5 MIC Mesh Node Fault Tolerance 140

6.6 Module Fault Tolerance 144

6.7 Chip Level Fault Tolerance	 146

6.8 Cost - of MIC Fault Tolerance 147

ORIGINAL PAGE IS

-	 OF POCIR

4.5 Standard Functions and Procedures	 81

4.6 User-defined Functions and Procedures`.	 83

4.7 Conditional Execution 	 86

4 .8 The With Statement .. 	 90

4 .9 References	 94

5. Memory Management	 95

5 .1 The Memory Problem 	 6	 96

5 .2 Memory Layout	 97
5.2.1 Introduction 	 97
5.2.2 Small Arrays 	 ..	 98
5.2.3 Large Arrays	 .	 .. 101

5 .3 Data Migration	 107
5.3.1 The Overlap Factor 107
5.3.2 1/0-CPU Time Ratios 108

5.3.2.1 I/O-CPU Time Ratio: integer addition 110
5.3.2.2 I/O-CPU Time Ratio: floating addition 		 112
5.3.2.3 I/O-CPU Time Ratio: floating multiplication . . 	 113
5.3.2.4 I/O-CPU Time Ratio: sequence of operations .	 115
5.3.2.5 I/O-CPU Time Ratio: conclusions 	 . .	 118

5.3.3 Implementation Alternatives	 122
5.3.3.1 Automatic Data Migration 	 123
5.3.3.2 Programmer-Directed Data Migration 	 .. 126

5 .4 References . 	 .	 .	 127

Fl

a

{1

1

d

Pat*

6.9 Fault Detection ,	 , ,	 148

6.10 Conclusion	 : 153

6 .11	 References..........,..,., 156

9.	 Conclusions	 156

j Appendix A	 Parallel Pascal Specification 160

(A.1 Overview 160

A.2 Declarations 160
r A.2.1 Constant Subran es	 . .	 .	 , 161

A.2.2 Parallel Array Types-	 162
EF A.3 Array Expressions	 163 ^.

A.4 Standard Functions and Procedures 165

a

A.4.1 Elemental Nnctions`.	 165
A.4.2 Transformational Functions . 	 . .
A .4.3 Standard Procedures

.	 .	 .

.	 .	 .
.
.

.	
.	

.	 .

.	 .
169
169

A.5 Control	 Flow	 190

A.6 Parallel Pascal Grammer 192

A.9 Parallel Pascal Error Codes 	 198

A.8 References	 198

Appendix 6	 Parallel P-Code Specification 199

1 8.1	 Data Declarations 	 199

8.2 Procedure/Function Arguments and Local Variables 186

8.3 Parallel P-Code Mnemonics	 188

8.4 Descriptors and the Stack 198

8.5 Function and Procedure Calls 201
8.5.1 Elemental Functions 202
6.5.2 Transformational Functions 203
8.5 .3 Input and Output Procedures 204 *F*
8.5.4 Miscellaneous Standard Procedures 205

8.6	 Masking	 206

2 Matrix Processors 208Languages for ParallelAppendix C	 High Level

C.1	 Conventional Languages
C.1.1	 APL	

.	 .	 .	 .
,

.
.

.	
.

. 208
208

C.1.2 Fortran	 209
C.1.3 Pascal	 210 M }

Ii

_^	 --,^•---,,..e _.	 ^.. _.-„- ^.,^,..-..,,.•:•-_- .^-,.±--mac ^'•.._. 	 4 .^..-,	 _	 y •	 rs^ •	 .

Page

x

C.2 Array Languas	 ••...	 213
C.2.1 Vectoring Compilers • 	 ..	 213

C•2.1.1 Illiec IV Fortran • 	 .. •		 213
0.2.1.2 Paraphrase	 214
C.2.1.3 Vectoriaing Compilers: Conclusions.......

C.2.2 Direct Specification of implementation . 	 • .	 215
C.2.2.1 CFD •	 216
0.2.2.2 DAP Fortran 218
C.2.2.3 GI pni r	 220
C.2.2.41 WW..	 .. • . •.	 ...	 •..,. ••	 222
0.2.2.5 Direct Implementation Specification: Conclusions. . 224

C•2.3 Direct Specification of Parallelism 22
C .2.3-1 Actus 225
C.2.3.2 Actus Plus.		 230
C.2.3.3 Proposed Extensions to ALA	 . • 232
C.2.3.4 APLISP 9 4 . . • . 234
C.2.3.5 Fortran Dx.		 236
0.2.3.4 Parallel Extensions to LRLTRAN (Fortran)	 237
C.2.3.7 Pascal PL ..	 240
C.2.3.6 Vectran. .	 . 243
C.2.3.9 Direct Paralleiism Specification: Conclusions .	 245

C.3 References .	 .	 . 244

a

i

a'
A'^7^'F....d[3R.3N:£ 	 .,..,w .b x.w-.rk '.%iY'^kRW^Mb{a 3Rf;'.. `T. 	_.... _a.^.: ,•	 ^ s	 ...r..,<:YK.AFZ+!a"SM^'Ftil:i+:WiFA:S,KY M":: 	 .. ^. 'Y. '".',:^SkYTJA4	 y.-.•	 .+k

1

	

	
h1& PAN l

O PR QUA
1. Introduc

This is the third and final report,for grant RAS 5-3. The other

interim reports TR-EE 82-32 113 and TR-EE-81-46 [2] contain much information

which is only briefly sw=, riaed in this report. The reader is referred

to these reports for a complete detailed description of the work conducted

for this grant.

The main concentration of the research effort has been directed towards

the development of a high level language for parallel processors in general

and the MPP in particular. Such a language, called Parallel Pascal $ has been

N' developed and is described in detail in this report.

r

	

	 In addition to this work, we have also conducted research into advanced

architectures for Parallel processors such as the MPP and have programmed

some algorithms for the MPP. In the remainder of this introductory section

the work in languages, architectures and algorithms is briefly summarized

and then an outline for the remainder of this report is given.

1.1 High Level Lang

There is an obvious need for the availability of a high level language

for programming parallel processors suchas the MPP. In our research in

this area we have considered languages based on APL, Fortran and Pascal.

The majority of the research has been devoted to the development of a language

called Parallel Pascal. A specification for a parallel APL is given; in 12,

section 4 and the specification for a Parallel Fortran, which is relatively

simple to implement, is given in 1239 section 3. In Appendix 6 a general

discussion is presented on the high level languages which have been developed

for other parallel processors. This discussion includes their relevance and

shortcomings with respect to parallel matrix processors including the MPP.

0

..	 In this report section 2 contains the recent developments to the language }

since reports [l, and [23, The I/O section of the language is specified here,

and implementation restrictions on the compiler for MPP are described. Methods

of programming the 1/0 for large size images with the implemented MPP

language are also outlined in this section. In section 3, the design of

Parallel Pascal is presented. This section starts with a discussion of the

design goals of the Language and continues to introduce the features which

have been added to conventional Pascal in a logical, step by step manner.

In Appendix A a formal specification of the Parallel Pascal language is given

including a complete grammar.

A large part of the research effort was directed towards the specification

of an intermediate compiler language called Parallel P-code which was developed

from the P-Code intermediate language used in many Pascal compilers. The

design of this language is presented in section 4 and a more formal language

specification is given in Appendix G. This language may be used for the

compilers of languages other than Parallel Pascal such as Parallel Fortran.

A compiler which compiles Parallel Pascal into this intermediate language

has been developed as part of the work for this grant NAG 5-3.

A preliminary description of Parallel P-Code was given in [2] section

2.4, extensive revisions have been made to the lanquage since then. These

revisions were caused by the complexity of the new language features and the

different memory systems which the data may be mapped onto. The resulting

language is at a higher, more symbolic level than conventional P-Code which

gives the code generator more flexibility for optimization and allocation

of memory.

A Parallel Pascal translator has also been developed which is described

in [2] sections 2.2 and 2.3. This translator allows programs written in

}

-'

9

i

Ft 7j

program to be developeds, debugged and tested without the MPP. 	 ConseQuatlYs,
1

programs Owy be developed on the users local computer at the users cOnMience

even before the MPP hardware is available.

1
1.2 Corsouter Archi tectu,

We have considered several architecture alternatives and extensions to

the basic MPP design.	 The first feature which we considered important is a

hardware bit-counting mechanism which can rapidly count the number of buts in

a bit-plane.	 This mechanism was considered to be important for algorithms

involving global feature extraction.	 A hardware bit counter design is pre-

rented in [3] where it is shown that every large speed improvement over t
p

current MPP bit-counting methods can be achieved at a small cost. 	 Algorithms
a

where bit counting is important are also discussed in [33. 	 In reference [439

which is also in Appendix S of [23, algorithms are described for real-time j

image tracking and it is shown what the MPP with the bit counting hardware

could implement these algorithms in real-time.

The construction of aw MPP like array using VLSI technology components

has been considered in [11, section 4.	 A three chip set is proposed consisting

r of a dense PE ALU chip, a local memory chip and a fault tolerant interconnection

chip.	 The ALU chip is designed for optimal bit-serial multiplication speed

which is much faster than the MPP design; it also has a table-look-up capability

which is not available on the MPP. An extended interconnection scheme, called

the two-dimensional perfect shuffle, is considered which overcomes most of the

problems of the mesh interconnection scheme used on the MPP; but the imple-

mentation cost is very high.

In this report, section 6, a more detailed design of the fault tolerant

MPP size of 128028 can be considered in the_futurt.	 ,A second possibility

for future consideration, is to implement the whole PE array on a singl

silicon slice consisting of many interconnected chips.	 2econfiguratipn to

avoid bed parts of the chips can be done in software once the slido has boon

completely fabricated.	 Furthernmo if additional faults occur in the P8

array at a later time, then software reconfigurations can be used again to

avoid these now faults.
ORIGINAL PAS
OF POOR QUALMY

1.3 Alggri tFmm,

The design of the ;high level ,language and the computer architecture should

both be algorithm driven.	 We have considered typical algorithm implantations

at both high and low levels.

The MPP does not have a table-lookup facility, in (8a and also in Ell

section 3, an efficient mechanism for implementinq arbitr ^ry functions on a d

bit-serial computer architecture is described and a function compiler for the 1

MPP has been developed.	 The specification of the function is input to this

function compiler which generates an optimized subroutine in bit-level assembler

a,	 code for implementing the function.	 Any arbitrary function maybe implemented;

however, the number of instructions generated bythe compiler increases expon-

entially with the number of bits of the function arguments. 	 This technique

is most suitable for arguments of 8-bits and less and for.functions which cannot

be implemented-by a very simple direct method.

Various different algorithms have been programmed in Parallel and are
f

presented in [1] and [2],	 In [13 section 2.3, programs are given for P2 address
f ,
f

generation, image rotation, bilinear ima ge resampling, maximum likelihood classi-

fication, convolution,histogram generation and isodata clustering. 	 In E23

section 2.2.5, programs are given for manipulating large arrays on the 128028

PE array of the MPP.

r

S

In reference (23, sores basic parallel algorithm are discussed, Algori's x

for local window gsyperations including local sorting and local median filtering

f	 are described in section 6 of Wo these algorithm have also been published

[4]. In Appendix B of c2,. algorithms for rapid sequential frame registration,
rr

a

enhancement and feature extraction are described.
9

In this report sections 2 and 3 and Appendix A deal with the final speci-

fication of the Parallel Pascal Language. Section 4 and A ppendix B deal with

the intermediate Parallei P-Code language. Section 5 is concerned with memory

management issues * i.e. methods to overcome the li mitations caused by the smal l
local memory size on the MPP. Finally, section 6 deals with the design of a

	
A

VLSI interconnection chip which completes the design for a future VLSI MPP-like

architecture. The majority of the effort during this last period in grant

NAG 6-3 has been directed towards finalizing the design of Parallel Pascal and

to fully consider the constraints of the MPP implementation. The worts on the

Parallel Pascal compiler which generates the Parallel P-Code has been completed.

1.4 References

1. A.P. Reeves and J . D. Bruner, "High Level languagge Specification and Efficient
Function Implementation for the Massively Parallel Processor", Purdue
Technical Report TR-EE 80-32, July 1980.

2. A.P. Reeves, J.O. Bruner and T .M. Brewer, "High Level Languages for the
Massively Parallel Processor", Purdue Technical Report TR-EE 81 -45, Oct. 1981.

r	 3. A.P. Reeves, "On Efficient Global Extraction Methods for Parallel Processors",
Computer Graphics and Image Processing, Vol. 14, pp. 159.169, 1980.

4. A.P. Reeves, "The Local Median and Other Window Operati ons on SIMD Computers",
Computer Graphics and image Processing, Vol. 19, pp. 16SPI78 9 1982.

5. A.P. Reeves and J . D. Bruner, "Efficient Function Implementation for Bit=
Serial Parallel Processors". IEEE Trans. on Computers, Vol. C•29, No. 9,
pp. 841-844, September 1980.

^ 11

A
x	 s

e

ti.

2. Parallel Pascal Uodat►e
The current specification of Paraliel Pascal is very similar U tree

specification given in TREE 81-45. The main chanoes, made to control structures

array indexing and 1/0, are oL tlined below in section 2.1. A complete specification

is given in Appendix A.

The restrictions which will be made to the initial MPP compiler have been
	

v=

determined and these are described in section 2.2. Several examples of perforeing

1/0 on the MPP are outlined section 2.3.

2.1 Revisions and I/0 Specification
	

ii

The only control construct which can have an array control variable is the

where-do-otherwise construct. This is similar to the if-then-else construct with

the following differences:

1. The control expression may have an array data type

2. All the targets of assignments must be conformable with the control

expression, i.e.. they must be either a similar sized array or a scalar.

3. Both the do and the otherwise sections will be executed in sequence;

the do first and then the otherwise with the complement of the condition.

The where structure involves conditional assignment rather than conditional

evaluation. Where structures may be nested with other where structures and with

other convential control structures.

In report TREE 81-45 the concepts of subrange constant and subrange indexing

were introduced. For example, the expression a[11..20] specifies a subvector of a

consisting of elements a[11]through a[20]. This feature has now been extended to

include an offset expression. For example, a[5 @ 11.20] adds the offset 5 to

he constant subrange and results in the elements a[16] through a[25]. This offset

has a similar effect to the shift function but is notationalty more convenient

in some cases and may be used on the left side of 	 assignment. The offset

t

F!,	 may be specified by an expression whereas the subrange must be a constant. The

syntax given for subrange indexing	 has been changed slightly since the

grammar using the	 old	 syntax would no longer be of type LL(1) which is a

[requirement for the simple parsing of Pascal.

The 1/0 specification for Parallel Pascal will be the same as that for

conventional Pascal.	 Parallel array 1/0 will be done with files declared to have

(C Parallel arrays as basic elements. 	 Special techniques for dealing with very
1. large arrays and for reformatting array data are outlined in section 2.3.

The names of thi standard reduction functions have been changed; however,)
these functions are still defined in the same way.	 The old and new names

for these functions are given below:

01_	 Now Name Function

alum	 sum sum

aprod	 prod product

aand	 all AND

aor	 any OR

amax	 max maximum

amin	 min minimum

LI

fil
Pi

^T """	
, 	 4:	 --^.-a,,,:r-Rte^-'•., _ 	 .,n^._	 ^.-_.^„---,._--„..,.,,s...^,..,^...

^ 	 f	 z

2.2 Lhe MPP Parallel Pascal 	
{{

The initial Parallel Pascal to be implemented on the MPP will have severalI

basic restrictions. Some of these restrictions may be removed with subsequent

E	 versions of the compiler.	 4 ”

The most fundamental restriction is that the last two dimensions of any

parallel array must be 128 x 128 (or the last dimension must be 18384). it was

decided that to not hide the machine architecture from the programmer in this

way was necessary, at least in the early programming of the MPP, to ensure that

well structured efficient programs are developed. The local memory is very

limited on the MPP and the processing efficiency is greatly reduced if arrays

are used which are not multiples of 128 x 128. For effecitve programming the user

must be aware of these characteristics; in some cases different array sizes may

dictate different programming strategies to efficiently implement the same function.

A future compiler may contain some built in strategies for arbitrary sized arrays,

but these will not be optimal for all cases. Techniques for dealing with large

arrays in MPP Parallel Pascal are disucssed in section 2.3

Any arrays having the last two dimension other than 128 x 128 will be stored

in the staging buffer. Only subarrays having the last two dimensions 128 x 128 can

be directly processed; smaller subarrays may be "read" or "written" by assignment

statements.

A second restriction is that parallel arrays cannot containp ointers or

records. It is possible for a parallel array to contain records without variant

parts, however, a record of parrallel arrays is probably a better data structure

to use in this case. Pointers are not allowed since they would, in general, point

to a different memory system and would be very difficult to manage.

t	 Finally, there may be Aome minor restrictions to procedures or program

jj	 blocks which contain parallel expressions. These will be a feature of the code

generator which may be removed at a later date and are outside the scope of this

^r	 report.

2.3 Large Array Processing

In this section the processing of arrays larger than 128 x 128 is considered.

Also a mechanian for using the reformatting features of the staging buffer is

described.	 To aid clarity all declarations of parallel arrays which are to be

ji located in the staging buffer rather than the PE array unit will be specified by

([
l

buffer array rather than parallel array. Only single band arrays will be described,

however multispectral data may be easily accomodated by defining the arrays to

have one more dimension.

Large	 arrays will be considered to be of two types (a) arrays which will

fit in the staging W fer and (b) arrays9	 9	 y which are too large for the staging buffer.9	 9	 8

Type (a) arrays are considered first.

2.3 1	 Whole arrays in the MPP ^+	 {

For arrays with the last dimensions being 128 x 128 the following program

example is typical for reading an array

xz

bf: file of BUFA;

a: MPPA;

b: BUFA;

reset W);

read (bf,b);

Begin

Begin

reset (f);

read (f,ah

For arrays larger than 128 x 128 that are to be accessed in 128 x 126 chunks

the following scheme may be used (for a 384 x 640 array in this ease).
f

DO
pixel n 0..266;

MPPA a arallel arm [0..129,0..129] of pixel;
BUFA n bufferffer array [0..383, 0..6393 of pixel;

Var

t t^'.

A second alternative, if the array is to be processed as a single entity in

the MPP (as outlined in section 2.6 of TR-EE 81-45) 9 is to consider the array

to have dimensions 3 x 5 x 128 x 120 as :shown below.

pixel a 0..285;

MPPL s parallel array [1. . 3, 1..5 9 0..129 90. . 1271 of pixel;

Var

fc:	 tilele, of MPPL;

c :	 MPPL;

Begin

reset (fc);

read (fc, c)

2. 3.2 Partial arrays in the MPP.

When the array is too large to fit into the MPP then it must be stored on

the disk in convenient sized chunks. The formatting of the data on the disk could

and should be done by a back end processor since the processing requirement of this

task is very low and would be a waste of time on the MPP. Alternatively the

reformatting could be done by the MPP at the beginning of the program.

The data, therefore, is in the form of a fil e of chunks; for simplicity we

will consider each chunk to have the last dimensions 128 x 128 although they could

also be a multiple of 128. Random access of these chunks is possible but the

seek time of conventional disk systems will make this scheme very slow. A "seek"

function in Pascal would be very useful for random file access and could eas ,;ly be

implemented in the Parallel Pascal compiler. A faster mode of operation, which

is adequate for most applications, is to spool the data through the MPP. In this

case the sequence of disk accesses is known and the data may be arranged on the

disk to minimize seek time.

12	 ,^

The spooling system could be written as a set of Parallel Pascal library

functions. The following functions would be required: resets, open a spooling file;

reads, read the next block; writes, write the next block; and closes, close the

spool file. Each reads and writes operation will access the next sequential block

of the large array file. four modes of data access have been considered and are
	

!1

illustrated in fig. 2.3.1. Each mode is useful for a particular class of algorithm.

In mode zero each block is overlapped with the previous one by a specified

amount. In this way some edge effects, caused by sequential block accessing, can

be ignored.

In the simple mode, mode one, there is no overlap between blocks. This Is

the simplest mode to implement and is adequate for point operations but edge

effects may cause problems if near neighbor information is used.

The three near neighbor mode provides an alternative method for near neighbor

processing, especially for large window operations. The near neighbor chunks

provide sufficient edge information for rotation and geometric distortion problems

also.

The eight near neighbor mode, mode three, is useful when not enough near

neighbor information can be obtained with mode two.

The near neighbor accessing modes (zero, two and three)-must use a large

part of the staging buffer to minimize the number of disk accesses. When possible,

several rows of chunks will be kept there. Much use of pointers will be used in

the reads and writes procedures to minimize the number of data transfers.

2.3.3 Data R, eformatti ng,

The MPP staging buffer has the capability of reformatting data flowing through

it in a large number of ways. This feature has not been explicitly used in

Parallel Pascal, although it is used implicitly when reading 128 x 128 chunks.

11

	 .

i	 "I

k

i

1	 e
1	 1

1	 ,

1

simple

i. PAGE t8	 13
oi^MI"O _.
of PooR QUALITY

Name

overlapped

Data _ Accessed

..r 1- rt ^ rVr
n.

i l	 ^

Ir

n

1

i

!fir

CS,

C	

[fi

a

r},

4

1

2

t

i 3

#t
E
E

Fig. 2.3.1

1	 , 	 1
1

1	 1	 1

3 near neighbor

i

1	 1

1	
^	 e

1	 1'	 1	 1
1	 1	 ^	 1

8 near neighbor

Spooler data accessing modes	 '

14

Explicit use of the refomatting feature is useful In two main applications

(a) when the data file Is in an unusual fomat and (b) when the data In the PE

array is to be redistributed in the array for more efficient processing*

These functions should be treated separately, file reformatting specifies

the programs view of the outside world and has no Impact on the algorithm to be

implemented-, for this reason the format should be declared once and then conven-

tional read and write statements may be used. 	 On the other hands internal data

redistribution is a part of the algorithm to be implemented and this should be -A

made explicitly clear.	 Methods of implementing data reformatting in Parallel
A

Pascal are outlined below. 	 On the MPP implementation the now functions would

be built into the compiler.

File reformatting will be achieved by a procedure called reformat which
A

takes a file identifier as an as an argument and regenerates the mapping

parameters for the staging buffer. 	 Other parameters to reformat specify the

new pemutation.	 The final parameter format for refomat has not been

specified; howeverp a typical example using provisional format is outlined below,

Consider that a multispectral Image is organized in 128 x 128 chunks of

6 bands which are interleaved and the standard Parallel Pascal 1/0 usually

expects the data in a non-interleaved fom.

The reformatting of the data can be achieved by a single call to reformat

as shown In the following program segment.

Type

MPPM	 parallel array	 l..6 9 0..127,0..1271 of 0..255;

Var.

f	 file of [0..127 $ 0..127 9, I.A] of 0..255

a	 MPPM;

1S
J

reformat M29391); ORIGINAL PAGE M
reset (f	 OF POOR QUALITY

read (f ,a);

Clw •

r
The file declaration specifies the external format of the data while the

r
reformat parameters specify the dimension reordering to achieve the correct internal

format.

F
J

	

	 Reformatting data in the PE array .is achieved with three ®r®cbedures:

resetf, readf, and writef. The first parameter to resetf is a virtual

channel number (an'integer) which has a similar function as a file identifier

except that there is no disk file associated with it. The remaining parameters

of resetf'completely specify the data transformation to-be made.

Readf and writef are similar to read and write except that the virtual

channel number replaces the file identifier. Resetf initializes the virtual channel

then readf and writef can be used as if it were a conventional Pascal file.

Sufficient data must be written by writef calls before readf is used.

For example, suppose that we want to combine two 128 x 128 arrays to farm a

2 x 128 x 128 array, and the e1borents are to be shuffled together by the staging

E	 buffer. The following program segment illustrates how this might be organized1
L	 const

vchan = 1;

TypeL
MPPA parallel arm [0..127,0..1291 of 0..255;

MPPB = array [1..2] of MPPA;

resetf (vchan, <permutation parameters>);

writef (vchan, a);

writef (vchan, b);

readf (vchane r);

The virtual channels vchan, is still open and may be used for subsequent

data permutations. In general * the data transfers are not restricted to having

the last dimensions 128 x 128 since the data item being transferred may have

subrange indices.

For the more restrictive * but useful, case where a single array is to be

permitted then a single function, called map, may be appropriate. Map is used

in the following way:

a:' map (b * <permutation parameters>);

where a and b are arrays with the same number of data elements. Map may be

programmed in Parallel Pascal if the functions resetfe writef and real are

available.

,i

'I

i

f

NAL PAW 0
PWR QUALM,

31 PARALL$L PABCAL 018I0H

a

3.1	 Motivation

Parallel Pascal is a high-level matrix language dasiSned for

the user of a parallel matrix processor. 	 The decision to design

" a now language reflects a degree of dissatisfaction with

facilities available in existing lanSuages. 	 For some reason (or E;

combination of reasons) no single existing lea ua a was judged tog	 g	 i	 B	 g

be suitable for parallel matrix processors*

To judge the suitability of a language, it is necessary to

consider the functions it is to serve.	 Wulf(l; defines three 1

goals of a programming languages it is a design tool, a vehicle

for human communication, cad a vehicle for instructing a

computer.	 The language which is chosen for a particular

application should be one which satisfies all of these criteria.

Programming can be considered to be the act of mapping a

problem into machine code(21.	 This mapping occurs at two levelse k
t

The original problem is translated by a human into a program in

some language, and then this program is translated by a compiler i'_

(or assembler) into machine code.	 Each translation involves the

k

...	 _	
.	 -.	 _	 a	,.		 _..

t:l

bRONA PAGIC W
QUALM

loss of information the program contains less information than

the problem and the machine code contains less information than

the program. Unfortunately, these relationships are often dual

In nature - a language which facilitates programming by humans

(and communication among them) will often be more difficult to

compile into machine coda.

In recent years, a great deal of emphasis has been placed

upon the use of a set of techniques collectively referred to as

structured programming." (The opinions on this subject have

been by no means unanimous; a dfacussion of the morLts and harms
F

F

	

	 of a number of the "tenets" of structured programming is given

In reference 3 among many others.) These techniques encourage

careful, regular # modular designs, -thereby facilitating the	 4

construction of programs which are highly reliable and

maintainable.

Taking the above factors into consideration, a "good_"

language is one which facilitates communication among humans and

t

between humans and machines, one which permits expression of a

problem without undue Loss of information, one which can be

compiled into reasonably efficient machine cods # and one which

encourages structured programming techniques.

Having determined what factors are necessary- for a "good"

language, the development of Parallel Pascal can now be

considered.

ssncG DOUG o$ tDe availaOie laDguagss Wars entirely suitable

for implementation on a parallel matrix processor $ the design of

a now language was undertaken. The design goal of this new

language (which eventually became Parallel Pascal) for a parallel

matrix processor ware

• The language should be eflieiently implementable. A

Principle reason for using a parallel processor is to obtain

the maximum possible execution speed; a language whose

implementation is costly significantly diminishes the

advantage of parallel processors relative to more

conventional (and familiar) sequential processors.

• The language must permit the direct specification of

parallelism. This relates strongly to the previous

objective - the direct specification of parallelism produces

more efficient programs than the extraction of inherent

parallelism by a compiler.

• The language must be easy to learn and use. Such a language

facilitates communication among humans and between

programmers and computers. A language which is difficult

will be avoided by its users whenever possible.

• The language should not require the user to have an intimate

understanding of the hardware upon which it is implemented.

owe POOR QUALMwr
Because Pascal is (by design) efficiently isplementable and

easy to learn and use d it was chosen as the basis for the now

Parallel matrix language. The resulting language was therefore

named "Parallel Pascal " . The following criteria were used in

the specification of Parallel Pascals

• Parallel Pascal is an extension to standard Pascal. As

sucho it should be fully upward-compatible= that is, any

Pascal program should also be a valid Parallel Pascal

Program*

• Parallel Pascal extensions to Pascal should be consistent

with the design philosophy of Pascal. The design should be

orthogonal and the new features should not detract from the

careful program construction permitted by Pascal.

When deciding upon extensions to a languages it is necessary to

consider the applications for which the language will be used.

Someone once said that a general-purpose system (or processor, or

language) is one which does does many things but which does none
i

of them well. To avoid the trap of implementing everything that	 a

anyone would possibly wants new features were considered in light

of the desired applications area • image processing and donee

matrix numerical algorithms

equations).

The following sections

extensions to standard Pasc

will be discussed.

(1.1. partial differential

describe the Parallel Pascal

al. The development of each extension	 j

FINAL RAGE 0

3. $.2 Data Tymas	 ®"j' POOR QUALITY

In order to satisfy the design objective that parall

directly expressible i a suitable data structure ®ust be a05%WWW..

Since this specification should be as compatible as possible with

standard Pascal, it is instructive to first consider the data

structuring provided by Pascal. Indeed, Pascal's flexible data

type facility is one of its most significant features.

The most basic Pascal data types are the predefined

primitive types "integer", "real", "char", and "Boolean",

and the scar types * • user-defined scalar type associates with

the type name a set of distinct identifiers. This permits the

programmer to use mnemonic names rather than arbitrary integer

constants, which in turn improves program readability and

i	 facilitates compile-time error checking.

The range of values which may be assigned to a scalar may be

restricted by defining a subrange t,. ►̂ pe. A subrange type

definition comprises a base type (either a user-defined scalar

type or a primitive type other than "real") and a range of

legal values. Hence, if type "x" is defined by

F	 x

then a variable of type "x" may legally take on only the values

1, 2 9 3 9 4 0 or 5. Like simple scalar types, subrangs types aid

Ei

	
in program documentation and compile -time error checking. Also,

subranga types provide information to the compiler about the	 i

amount of storage required for a variable of that type; in the

22	 RIGINAL PAF
pOoR QUA

Ut'Y
OF

G above example only 3 bits of storage need be allocated to specify
^'t 6

any legal value in type "x". 	 Providing there is hardware

support, the compiler may choose to adjust the space allocated to

a subrangs type depending upon the available hardware

representations.

i

.'
to

A 19.wer sit may be defined for a scalar or subrangs type.	 A
l	

a

a power set in Pascal is conceptually the same as a set in

mathematics;	 it is a collection of slements,	 the composition of

which changes at runtime.	 The base type (the subrangs or scalar

type over which it is defined) determines the items which may

belong to the set.

There are two data structuring facilities in Pascal, the

array► and the records 	 An array is a homogenous ordered set of {?

items.	 The elements of an array may be of any types scalar, ;'(
4.x

s?

subrange,	 set,	 array, or record type. 	 Associated with each array

component is an " Index"; the range of this index may be
,i

spa-Jfisd by a scalar or subrangs type.	 A record is a non-

' homogenous collection of items.	 The components of a record may

be of any type, and may occur in any order. 	 There is also a
r

provision for the overlapping use of storage by allocating

elements which are mutually exclusive into the same storage area

- this is achieved through the use of a variantiant re_cor_8_.

Pascal also provides pointer types *	These are defined by

a

the compiler and initialized at runtime by the user -controlled`

dynamic storage allocation routine (" new").	 They contain
i

Ll.

ate	A

23 a

ORIGINAL PANE

OF POOR QUALITY

addresser and may be copied and compared (for •quality) `s thus

permitting the construction of data structures such as linked

listse trees, etc.;y
I

The target architecture for Parallel Pascal - a parallel

matrix processor - consists of a set of identical execution units	 ^p	 +
3	 ,

which perform the same operation at the same time. The hardware

thus appears as an ordered collection of homogenous processors.

This organisation maps naturally into the array structure

provided by Pascal; hence, the array was chosen as the vehicle

for the expression of parallelism in Parallel Pascal.

Often a parallel matrix processor will be closely coupled to

a more conventional processor. For examples the Masaively

Parallel Processor contains a main control unit which is a

conventional 16-bit minicomputer. In additions the MPP is

attached to a host machine, a VAX-11/790. In such an

environments it may be more efficient to perform scalar

operations on one processor and matrix operations on another.

This in turn is reflected in the assignment of storage to

variables used in the program - those variables which are used in

a scalar fashion may be physically located in a different memory

than those used in an array fashion. Parallel Pascal provides

for this situation by permitting an array to be declared

parallel$

xxx: parallel array (1..5l of integer;

The parallel keyword is a means by which the programmer can

3

-

..
C

,c N•....... 	 =MIL...._. y.'i.«.^T..:Y::^SEIi.d+rFi ».. ;^C	_.»_.:...:m.`«.	 - NYC ._.	 ..	 ^	 ^	 :;'. 	
"

24 tP^^.tY^Y4RICINAI.
Of POOR

advise the compiler that the array ("xxx" in thi s case) will be

heavily used in a parallel fashion. Some compiler

implementations may choose to ignore this (e.&* if there is only

one type of memory).	 The concept that the user is advising the

'	 compiler about the implementation is similar to the register

keyword in the language C[4).

It is important to note at this point that, aside from the 3

possible difference in physical storage, arrays declared as

parallel are syntactically and semantically equivalent to

"ordinary" arrays in Parallel Pascal.

3.2.3 Array Indexing	 11

Having chosen the array as the vehicle for expressing

parallelism, it is necessary to specify the manner in which that

parallelism is to be expressed. The logical starting place is

the building block of any computational language - the assignment

statement. It must be possible to specify the evaluation of
a

array quantities in a simple, direct form.

Standard Pascal provides an array assignment statement; if

4a" and " b" are the same type then the statement

a :' b;

specifies that each element of "b" is to be 2asigned to the

corresponding element of "a". A natural extension of this

concept is to allow arrays of the same type of participate in

arithmetic operations, for example, given

-ea

A

Ll

E E

	
25

ORIGINAL PAGE M
OF POOR QUALIRY

r:

a,bs area (I.-S] g integer;
i aInteger;

the statement

a a n a + b;

would achieve the same result as

for i t o 1 to S do
a(i) t n a(i1 + b(i);

While expressions involving identical arrays are useful,

they are limited in the range of problems to which they can be

applied. Several deficianctes are evident * first, it is

necessary to be able to select a portion of an array (for

Instance, a row or a column) rather than the entire array; hence,

some additional indexing mechanisms are required. Second, it is

necessary to allow arrays of different types (but identical

shapes) to be combined in an arithmetic expression.

A number of schemes have been proposed for array indexing,

as described above in the discussion of other parallel languages.

The array indexing facilities which are provided must be powerful

enough to solve useful problems, while remaining simple enough to

efficiently implement. The choice of indexing mechanisms should

therefore begin with the simplest and proceed toward the more

complex.

In standard Pascal, each array index may be specified by a

scalar constant or expression. This is the simplest form (and

least parallel) of indexing permitted in Parallel Pascal. When

t

i3

{	 j

'	 ... - R ._...	 V..«.	 w....:.	
•	

.. . . e ..r6:'CSZ:.^.c J'rt..s..	 .."....._ . "L.:'C	 _	 v-.+'.#:^R4'X. -

MOW-
PAGE 91

ofpOORQUALM

an array is indexed by a scalar its rank is (conceptually)

reduced b one. When a one-dimensional arr ay is indexed by ay	 y	
_

scalar the (logical) type of the result is a pointer to a scalar.

n
It was stated above that standard Pascal permits arrays

participating in an assignment statement to be unsubscripted•

This is actually a special case of a more general feature in

standard Pascal - it is possible to slide (omit) the rightmost

indices in an array assignments provided the resulting

expressions are of the same type.	 For examples given the

-definition

vr as a,b:	 arra[1..5g1..10l	 of 	 integer;

both of the following are legal assignments in standard Pascal:

a	 :- b;
a(1)	 b(1);

The first statement assigns to each element of 	 a	 the value of

the corresponding element of "b". 	 The second statement

performs this action only on the first row of "a" and "b".

It has the same effect as:

for i	 :-	 1 to	 10 do
a(l,11	 b (1 11; ?

Parallel Pascal extends this to permit the omission of any index;

hence, in Parallel Pascal the statement

a(,l] :- b11,11;

assigns to the first column of "a" the values contained in the i

first column of "b". The use of a scalar index effectively

`j
27	 3

ORIGINAL PAGE 19
OF POOR QUALM

Fr

	

	 reduces the rank (number of dimensions) of an array by one; hence

"aj011" to considered to be a vector.

The ability to select a row or column $ as opposed to an

entire array # is useful: howeverp it is often desirable to

further restrict the number of elements which participate in an

rig

operation. A common requirement is the selection of a subset of

a row # columnp or both. Standard Pascal provides no symbolism to

	

Y	 directly express this concept; hencep it is necessary to

introduce a new construct to the language.

	

R

	

The simplest subset of a sot of array indices is a

consecutive range. For example $ given an array with five

alamentso one may wish to access elements 2. 3 9 and 4e Standard

Pascal permits the use of a subrange in type definitions to

specify a range of values which a variable may possess. Parallel

Pascal extends this concept by defining a subrange constants The

Pascal coi nst statement may be used to define an identifier as a

subrange constants

coast rangeconst a loweehigh;

	

F	 A subrange constant may be added to a scalar expression and

used as an array index. The most desirable syntax for this would

be

arr[scalarexpression + low. high
(or)
arr(scalarexpression + rangeconst]

where " rangeconst " is an identifier defined as a subrange 	 ;`

28
ORMNAL PAGE 19

PAR. QUALITY	}

constant. Unfortunately, due to the recursive-descent

implementation of most Pascal compilers, this oyntax introduces

complications when a compiler parses the program. in deference

to the implementation the symbol "0" is used to represent the

addition of a subrangs constant:

arr(scalarindex @ low..highl
(or)
arr[scalarexpression @ rangeconst)

Given the following definitions:

Coco= st
rr
cc - 2..4;

vat
e,b: ar_raZ [1..10 9 1.910 of integer;
i,,g: integer;

the following two code sequences achieve the same result,:

(* with subrange indexing: *)
a[0@rr, 0@cc] :- b[1@rr, 3@cc);

(* without subrange indexing: *)
for i :- 1 to S do
_ for g : Z-2 t3_4 do

a[i,jj . b[1+i, 3+j1;

Subrange indexing does not alter the rank of an array. Thus,

while "a(1,1" is a 10-element vector, " a(0@1..1,j " is a 1x10

matrix.

Other languages provide additional array indexing

facilities, such as indexing by a logical set or a vector. These

indexing notations are powerful, but on a processor with a

limited interconnection network (e.jo a mesh network) their

implementation can be very expensive. For this reason, set and 	 ;	 _;

f li 29	 ORIGINAL PAGE Is
OF POOR QuA mr

vector indexing were excluded from the specification of Parallel

Pascal.

The ability to elide indices and use subrang• constants for

array indexing brings with it an associated problems what

combinations of array expressions are legal? In standard Pascal,

the operands of an arithmetic expression must be 	 co^,ible..

A subrange is type compatible with LLs base type_, and integers

I

are type compatible with seals. (An integer may be converted to

a real number with no loss of information. Thus, if an integer

expression is used where a real expression is required, *&* on

the right -hand side of an assignment statement or as an argument

to a function or procedure, Pascal automatically converts the

integer expression into a real expression. Since it is not true

that any real may be converted to an integer with no loss of

information, Pascal prohibits the opposite case - using a real

expression where an integer expression is required.)

Parallel Pascal preserves the Pascal concept of type

compatibility. Because of the array indexing, scalar type

compatibility alone is insufficient to determine the

conformability of array expressions. It is necessary to also

consider the rank (number of dimensions), size, and indices of

each array expression. The specification was designed to most

the following goals (note that the term " array" below may refer

to an entire array or a subset created according to the indexing

facilities described above):

ei

z

e.

k

W w MUMOM& vo WASSs WWWW wwww v, VW —W ww ----0

conformable to that array. This implies that the scalar is

effectively replicated into an array of identical type.

• Arrays which differ in rank (number of dimensions) or size

are not compatible. Recall that indexing with a scalar

''compresses" a dimension out of the array.

• Arrays which have the same index ranses, but whose element

types are different• are compatible if the element types are

compatible.

• Arrays which are the same size and shape should eithdr be

compatible g or it should be possible to make them compatible

with little effort.

The first requirement above preserves the standard Pascal

array assignment statements

a	 b;

where "a" and "b" are of identical types. The second

requirement allows the use of scalars with array expressions;

^. ,^0 given that "a" and "b" are of the same type. and "c"
is the same type as the elements of "a" and " b", then the

following statement:

r

I

31

OMOI14AL PAGE 18
Of POOR QUAD. MY

corresponding element of " a" .

Arrays are required to be the ease shape •ad fists to prevent

situations such as:

var
'—' as arra 11..Sl of integer;

bi arm 11 6) 7 integer;
b in a;

i

Allowing arrays which are the same type except for the

elements, which are compatible, allows common constructions such

as

var
a: array 11 51 of integer;
b: a._ y 11.. S1 7 real;

b t o a;

The biggest difficulty which • arises from the generalized

indexing mechanisms is the compatibility of arrays whose sizes

and shapes are identical, but whose index ranges are not:

var
.__._ a: array 11..51 of integer;,.,.

b:	 ay 12 61 F integer;
a :- b;

This problem becomes more severe when the control-flow facilities

of Parallel Pascal (which are discussed later in this chapter)

are used. In order to prevent ambiguity in these cases, two

arrays with non-identical index ranges are compatible only if they 	 .a.

elements of at least one are specified explictly by subrange
b

indexing. Hence, given the "a" and "b" defined above, the

^4
p4 	^ 	

y

g3! 	

^	 3

t,

OMQW& PAGE 15
0 mm QtfAL!ff

following assignments ere all legal$

a t o b(OQ2..61t
a10019. 51 i n b;

a(091..51 t o b(002..611

The type compatiblity rules described above extend in the

intuitive way to multiple dimensions. If "c" and "d" are

defined by

vat
as ar. tay (1..3,1..51 of integer;
d$ aria (1..8,1 ..91 ! integer;

then the following assignments are all legal$

c t o d(2Q2..4,002..61;
c(0@1..3,1 t o d(006.0800020.61-
c(1,1 $• a;

(Note that in the last example the ranks of "all *)" and "a"

are the same because the scalar ludexing reduced the Lank of
8

%% a" by one.

3.2.4 Standard Functions

3
i

Pascal provides a number of standard functions and standard

procedures. These perform various services, including type

conversion (I. ,L& tr unc, ord) arithmetic functions (e.$,. sin,

•art,), and input/output procedures*

in more detail in section 3.2.6.

Many of the standard functions perform simple

transformations, for instance:

This last group is discussed
F

i

ti

a

f'

^w

33

ORIGINAL PAGE 1
^^	 ►R QUALITY

va e, as 0 y: ram s

x t o sgrt(y);

It is quite natural to think of these functions as extensions

the set of operators provided by Pascal (!L.&. %%+## 1
)0

SinceSince Parallel Pascal allows the operators to act upon arrays as

aSSreSatesg it is only natural to extend this feature to the

standard functions. Thus,

vat
—"" x, y: ar_ (lool6l ! real;

L: integer;

x t o sgrt(y);
is effectively the same as

fori :• 1 to 16 do
x1l1 :• grt('yTLD;

These standard functions are, in a sense, " generic " : they

may be used with arrays of any shape. The value returned by the

function has the same index ranges as its argument. Since these

functions operate independently upon each array element, they are

called elemental functions.

While the elemental functions are useful, the effective use

of Parallel Pascal requires the use of functions which alter the

structure of arrays in a more complex fashion. These functions

r referred to as transformational functions.

The first type of array restructuring which Parallel Pascal

provides is the reordering of array elements. Certain image

processing algorithms (I.&. convolution) require the capability

9

IMkL FADE 0
+0F pM QUALRY

3

to nova data within an array.	 This movement nay take two fa►rns,

a ' ` shift", in which data is shifted off the adga of the array	 3

and se gos are brought in from the other sad, or a " rotate " , in

which data is sowed within on array such that data shift ed off

an* end will reappear at the other.	 Parallel Pascal provides

both these functions:

shift (array,	 i	 ,	 ! 	 ...)
rotate(array,1, '20";0	 •••)

where arr#_y is the array name and i n is the magnitude of the

shift along dimension: no 	 (Row major order is used.)

In addition to shifting (rotating) data, it is sometimes

two dimensions of an orra .	 This isnecessary to transpos e t	 y

performed by the tr_ans functions

trans (array, dim It diml)

This effectively swaps two index ranges- For instance, given the

definitions

van
_ xs array 10..7, 3..4 9 6..101 of intager;

y: a_rr;ay 16..10 9 3..4, 0..71 ^OT integer;
i,j,ks integer;

then the statement
i
i

y :• trans (x, 1, 3);

is equivalent to

for i s • 0 to 7 do
for j :7 3 to 4 do

for k s ^ 6 to 10 do
Y1k. j .iT—:s x7.ekl;

«. ^...	 }

a...._

E

A

b

^v

r
r

3

The second major type of array tanipulation to the

alteration of the numbe r of dimensions of an -array. Some array

operations may require that a array with N dimensions be crambined

with a array with N+1 dimensions. (One-example is the

computation of the matrix product Asa where A is an nsm matrix and

I is an a-element vector. In this cases it would be desirable to

multiply all rows of A by s simultaneously, or,, equivalently, to

perform an element -by-element multiplication of I and an nam
matrix is each of whose rows are the vector x.) Tho expand

function can be used to expand an array along a new dimension*

expand (arrayp dims newidx)

arr^a Z is either a scalar or an array. Let N be the number of

dimensions of array (zero If ar"r Z is a scalar)., dim must be an

integer constant in the range 1 to N+I * aswift is a subrange or

the name of a subrangs type (notes it is not a subrange

constant). The array is replicated along a new dimension of type

ae_wid_x which is inserted before dimension dim * For example,

given the definitions

3
ORKIM PAS
O POOR QUA1.1 Y

;tr

required is the reduction of an array - applying sfl operator over

a set of dime;nsious.	 For 'Anstancls ono might -fish to sccumuiate

the sun along all of the rotas of an array.	 Red-uction functions

have the general for®:
{

func(array, dim i s dim # dim3....)

lit where array is the array to be reduced and each dim s is a

constant expression specifying a dimension along which the

reduction is to be performed.	 (These are required to be

constants so that the compiler may determine the shape of the

result.) The following reduction functions are provideds
Y

sum	 arithmetic sumk.	
prod arithmetic product
all	 Boolean AND
any	 Boolean OR
min	 arithmetic minimum
max	 arithmetic maximum

f^

3.2.5	 Control Plow

?	 Standard Pascal provides several mechanisms for controlling

the flow of execution. 	 The moot basic (and often overlooked)	 i-

mechanism is sequencing - assignment statements are executed one

at a times	 in the order the 	 appear *ppear.	 At a higher level, the flow

of control may be altered Pay one of the following mechanisms:
i

procedures	 A Pascal program consists of a set of procedures 	
i1

and functions (called "'subroutines" here for

convenience).	 A subroutine call (a procedure call

or function call) diverts the flow of control to

one of these subroutines.	 When execution of the

f Nil,

e

ORIGINAL mar p9
OF POOR QUALITY

subroutine is complete, control returns to the

1 statement following the subroutine call.

repetition	 A statement (or a group of statements) may be

4 executed several consecutive times by using the

Pascal while, rreyeea-t-unnt 1, or for constructs.

j4 For the while construct a Boolean expression is
^

evaluated before each iteration of the controlledk

•tatement(s); as long as this controlling

expression is true the repetition continues. 	 The
r	 p
R

rejeat-until construct performs the test after

1 each iteration rather than before it; when the

termination condition is satisfied (the Boolean

expression is true) the iteration stops. 	 The for

statement uses an index variable;	 this variable is

assigned an initial value and successively d

incremented or decremented until it reaches a

final value. The controlled statement (or

statements) is executed for each value of the

Index*

conditional

	

	 A statement (or group of statements) may be

conditionally executed by placing it in the body

of an if statement. If the controlling expression

evaluates to true the statements are executed;

otherwise, they are skipped. Optionally, an else

keyword may be specified, followed by a second
i

statement (or block of statements); this statement

r

I

^ fi-111

is executed if the controlling expression is

f a_1_s s_.

selection	 One of a sat of statements (where each

statement" may actually be a block of

statements) may be executed according to the value

of a controlling expression. This is the c_

statement in Pascal.

Soto "	 The flow of control may be directed to any defined

statement label by use of the Soto statement in

Pascal. The ability to transfer control to any

label within the program has been criticised as an

impediment to good program design(S) It was

included in Pascal because of the lack of a

general agreement as to what should replace it(61

and because it is occasionally useful for breaking

out of deeply-nested code structures.

All of the standard Pascal control flow constructs are

present in Parallel Pascal. In order to effectively deal with

arrays as aggregate entities, it is necessary to extend these

constructs to deal with array operations. This extension must be

care,ully considered to avoid adding unnecessary complexity to

the semantics of the language.

The most basic form of program construction - sequencing

is essentially the same for an SIMD-class processor (such as a

parallel matrix processor) as it is for an SISD-class

F

i

(conventional scalar) processor. (This concept changes in an
i

MIMO-class processor, since in that environment many instruction

streams may be simultaneously processed.) Similarly, the concept

of a procedure or function call, and the meaning of a LSto are

unchanged. This suggests that the extensions to Pascal will be

based upon its control statements: i! O ego whiles ra,^-un, till

and for.

The if statement causes the execution of one (and possibly

two) statement(#) according to the value of a controlling

expression. The execution is "all-or-nothing" - either the

controlled statement is executed or it is not. This is well

suited to a scalar machine, but it presents problems in Parallel

Pascal. It is sometimes necessary to conditionally perform some

ELIO
actions using only a subset of an array. Parallel Pascal

provides the where statement to address this need.

The where statement has two forms:

where arrayexprsssion do
statement

where arrayexprsssion do
statement

otherwise
statement

where " arrayexprsssion " is a Boolean-array-valued expression

and "statement" is a Parallel Pascal statement. Some

restrictions apply to the controlled " statement" :

f.

y

QRIGiNAL PAGE ' *

OF POOR QUALIV

imposed to facilitate the implementation of whore statements

with a conditional stack; uncontrolled use of the 	 o 0	 ..

complicates such an implementation.)

Array variables which appear on the left-hand side of an

assignment statement must be type-compatible with the

controlling array expression.

The execution of a where is defined as follows.	 First,	 the

controlling expression is evaluated to obtain a Boolean array.

Next,	 the first controlled statement (referred to later as the 	 j

where clause) is evaluated. 	 Array assignments are masked

according to the Boolean array computed above. 	 Finally, if there	 1,

is a second controlled statement (an otherwise claus e), it is
"'	

t
evaluated.	 Array assignments within the ''otherwise clause" are

masked by the inverse of the Boolean array computed in the fleet di

steps

f

where statements may be nested, provided that all of the

controlling array expressions are type compatible *	The effect of	 t

a where_ statement is local to the procedure or function in which	 {

it appears;	 that i-,	 it does not affect the execution of any

procedures or functions called from within a "where clause" or 	 I

"otherwise clause".

^F 	 The where statement provides Parallel Pascal with

41

ORIGINAL PAGE f$
OF POOR QUALITY,

only assigned to a subset of the array appearing on the Left-hand

side of an assignment statement. 	 This allows the specification

of many common problems $ for instances "Given two arrays A and 8 4a

(of the, same.type), determine the maximum of A and H •lsmont•by-

element and store the result in A." This is achieved by the

statement:

where a < b do
a' :• b;

An alternative to conditional assignment is conditional

evaluation. A conditional evaluatiod scheme would cause the

evaluation of all array expressions to be masked (element by

element) by the controlling expression. This could be used to

catch exceptional conditions; for instances divide by taro:

where a 0 0 do
:• 1/a;

While conditional evaluation provides some additional

capabilities that conditional assignment does notq it introduces

semantic difficulties. One problem which conditional evaluation

raises is the treatment of function (or procedure) calla from

within the where statement. If an array expression is passed to

a function, what values are passed for those elements for which

i

the controlling expression is false? Similar problems arise with

the use of standard functions which alter the shape of arrays -

. Lj	 at what point is the masking applied (For at that point the

expression must be type compatible with the controlling

expression)? The presence of these problems with conditional

42	 ORIGINAL. PAGE 1$
OF POOR QUALITY

s
kµ

r

t-	
t

t

e

evaluation and the relative semantic simplicity of conditional

i assignment led to the latter / s choice for the where construct.
s	 j

The design of the where_ statement as a parallel eats sion of

the It statement led to the consideration of a parallel extension

of the Pascal case statement.	 The case statement selects one

statement (or block of statements) from several depending upon
.4

the value of a controlling expression.	 It differs from the if

statement in that the controlling expression is multi-valued

rather than Boolean; hence, a very large number of alternatives 	 7
E	 a	 ^,

{

may be selected.	 It was felt that a parallel version of the ca
statement would be used infrequently; in the interest of keeping

the size of the language to a minimum it was therefore omitted

from Parallel Pascal.	 If necessary,	 the effect of a parallel

co statement can be achieved through the use of a series of

where statements (in the same fashion as a standard Pascal case.

statement can be implemented by a series of if statements).

1 The only remaining control constructs to be considered are

the loop structures while,ile, repeat-un,_ il, and fo"r.	 The loop is

one of the biggest sources of error for programmers; 	 therefore,
i	 i	 x

k'

Fp,	 ,

t	 adding complexity to the looping mechanisms seemed unwise. 	 It is

unclear how a for loop should be extended. 	 Further, a

combination of a standard Pascal while or r_Ueat-until loop

statement (perhaps using a reduction Function such as "any" or

" all "	 to use conditionals based upon entire arrays) and a where 	 '	 n

e;	 statement can express all of 	 the operations that any new loop

construct of moderate complexity could express.

F:

..	 y	 : w—_^-^<__,...... .^:3	 x^-a=^'s	 . aro.^ao1'::.' 	 s	 ..	 _ ••t-	 .fisa".ai4F,t^2s 3s'. :x: °:v

43

2
^`,^,yr

ORIGINAL PAW 0

3. 2.6 Input 'and OutRut

Pascal provides a fairly minimal set of input and output

procedures. Each file consists of a uniform sequence of objects

of a fixed type. The file is accessed by means of a "buffer

variable " . Syntactically, file buffer variables are used in the

same fashion as pointers. To perform output, the data is placed

into the file buffer and the "put" procedure is called. To

perform input, the file variable is read, after which the "Set"

procedure is called to advance to the next item in the file. The

" sof " function may be used to determine whether a file is

positioned at the and. The "reset" procedure repositions a

file at the beginning and makes it available for reading, while

the "rewrite" procedure repositions a file at the beginning

after truncating its and makes it available for writing.

In addition to the "Set" and "Put" procedures, the

read " and "write" procedures may be used. Given the file

"f" and variable " x" (both having the same type) the

following equivalences holds

read(f,x)	 s	 x s ss f+; get(f)
write(f,x)	 s	 f4 s• x; put(f)

Files whose elements are of type " char" (i.e. those of

type "text") are treated specially. The procedures "read "

and "write" may be used to transfer numeric data to or from a

text file - the appropriate conversion is performed. In

addition, the procedures " readln" and "writeln", and the

q

qq^

^	 7

4

;y

s

G

	

INAL PAN IS
	

k

	

CW POOR QUALM
	

i C

L

function " •oln " are provided for intelligent handling of line-
	

i

formatted input.

The use of text files for mass information input and output

on a parallel processor was considered highly unlikely.

Therefore # it was decided that Parallel Pascal needed no

additional provisions for dealing with text files beyond those

provided by standard Pascal.

On the other hand, it was apparent that "binary format"

Input and output would be heavily used. In particulars the

limited main memory of a matrix processor implies that a great
	

!i

deal of data movement will be performed during the execution of a

program. This subject falls in a "gray area" between the

specification of the language and its implementations for the

manner in which the main memory of the parallel processor is

managed directly affects the type of input and output required.

For these reasons, it was decided to retain standard Pascal input

and output without extensions for the definition of Parallel

Pascal. The facilitise which are required for memory management

can best be determined after a period of use. Additional

`

	

	 standard functions (which can be added to the language without

significant trauma) could be added at a later time if a definite

need arose. (Another, less desirable possibility, would be the

inclusion of some standard procedures on a site-dependent basis.

This is in fact likely in other areas of Parallel Pascal, g.-I.

the implementation of interconnection functions which are more

complicated that the simple mesh network defined for Parallel

rl^
44

ORIGINAL PAGE IS

OF POOR QUALITY

Pascal, but which are supported by a particular machine.)

A discussion of some of the possible input and output

facilities for managing a limited memory is presented in Section

S.

3.3 References

1	 William A. Wulf, "Trends in the Design and Implementation of
Programming Languages," IRE: Comu t_, pp.14-22 (January
1980).

2	 Leslie Lamport, "On Programming Parallel Computers," ACM
SIGPLAN Not_+ ice Vol. 10(3), pp.25-33 (March 1993).

3	 Paul Abrahams, "Structured Programming Considered Harmful,"
ACM SIG^PLA_N Noticee Vol. 10(4), pp.13-24 (April 1995).

4	 Brian W. Rernighan and Donnie M. Ritchie, The C Pro ramming
Lance, Prentice -Hall, Englewood Cli f f s,'"'t+T^' ^ '19P

5	 Edsger W. Dijkstra, "Go To Statement Considered Harmful,"
Communications of the ACM Vol. 11(3), pp.149-148 (March

6	 Niklaus Wirth, "An Assessment of the Programming Language
Pascal," IEEE Transactions on Software Engineering Vol. SE-
1(2) # pp. 70-2-198(June 19-73T.	 ..r..

F.111'

x

f

^F

E^

i

i

IAA

AARON & PACE 0

C POOR QUAUrf

41 PARALLRL P-CAUR

In this section the development of Parallel P-cods is

described. Appendix 8 contains a complete description of

Parallel P-cods.

4.1 Pseudo-code

The concept of pseudo -cods C" P-code ") was introduced by

Urs Ammann with the por gable Pascal P4 comptler (1). P-code is a

simple, fixed format language representing the assembly language

of a hypothetical stack computer (" P-machins "). The low-level,

implementation-dependent details (e.j, @ the internal

representation of the various data types) are not specified. The

operators in P-code were chosen to closely reflect the

architecture of contemporary computer systems; hence, code

generators (to convert P-code to native machine code) can be

t	 d f i l	 it	 Al	 1	 h P- dconeructe	 a r y ens y.	 ternate I s t a -CO MO can be
t^

converted from its symbolic form to a binary form and executed by

an interpreter.]

The structure of P-code reflects the structure of Pascal.

The P-machine upon which P-code runs is a stack -oriented

computer. All procedure activation records are maintained on the 	 i

.i

U1
_ ...	 ,.

1	
47

(OWGINAL PAGE
OF POOR QUALM

i	 3
stacks permitting access to variables according to their lexical

level (static nesting) and offset within the procedure	 i

activation. There are no directly-accessible registers.	
x

Instructions and data are completely separate $ and all data
memory locations (whether on the stack or the heap) are strongly

rr	typed. The P-code instruction set includes instructions to check

array bounds.

Since P-code was introduced, some variants have been

developed. Reference 2 compares otandard P-cods (also called P-4

P-code) with variants developed at the University of California

at San Diego and at Los Alamos Scientific Laboratories. Theses

variants were motivated by implementation needs. In the case of

UCSD, a efficient and compact form was needed for execution on

micro- and mini- computers with a limited address space. In the

case of LASL, extensions were needed to fully utilize the target

machine (a CRAY-1) and to interface with Fortran programs.

An alternate intermediate language form which was also

considered was a tree-structured language. One example of this

form is " T-code " , a language defined by the Systems Research

Group of the University of Illinois(31 for use in another

compiler. T-cods is a directed acyclic graph based upon Pascal

expression trees. The representation of Pascal expressions as

trees, rather than as a linear sequence of P-code instructions,

can facilitate optimization and code generation.

Since the P4 compiler was selected as the basis for-

F**

^]]

UNKINVAU
CW

isplementing a Parallel Pascal compiler, it was decided to define

an intermediate language based upon P-4 P •cods. While a compiler

which directly produced as intermediate language such as T-cods

was considered, the simplicity of a P-code-like language, the P-

code nature of the P4 compiler, and the fact that the Illinois

T-code generator accepted P-code as input swayed the decision in

favor of the more conventional pseudo-code format.

Although a P-code format was chosen as the intermediate

languages standard P-code was inadequate to represent the data

structuring and aggregate operations that are required for a

parallel matrix processor. This led to the development of a now

intermediate languages based upon conventional P-cods, called

"'Parallel P-code " . The following sections describe the

development of Parallel P-code.

4.2 Data Types

The most significant difference between standard P-code and

Parallel P-code is the way in which they treat data types, in

standard P-code, only a few data types are supported - integer,

reels Booteans characters set, and pointer. These are sufficient

to perform all operations in standard Pascals because Pascal

deals with data on an element -by-element basis. Parallel Pascals

however, permits (and in fact encourages) the manipulation of

arrays as aggregates. The problem of array aggregate operations

j

i

A

i

}	 l

i +

E .^

t
H

i

x

r	 '^

49

FINAL PAGE 6
OF POOR QUALITY

can be salved in one of two ways. ry

The first alternative is to define a small number of now

data types representing the array types that the matrix processor {

can act upon directly. A set of fundamental operations would be

defined upon these basic data types. Larger operations would

then be esplictly " unrolled" by the compiler into a sequence of
ter	 i

these fundamental operations. This approach positions the

intermediate language at a low level; the pseudo-code is nearly

the assembly language of the target machine with the syntax

"cleaned up"*

The second alternative to to treat all operations at a high

level# gather than having a finite set of fundamental types, the

compiler would define new data types and would specify stray

operations with a single instruction instead of an unrolled

sequence. This approach positions the intermediate language at a

much higher level than the first approach.

Of the two schemes, the first method requires more work by

the compiler "front and" and very little work by the -" back

and" (nods generator)e The second method requires a great deal

more of the code generator. However, the intermediate language

for the second method is much more machine-independent, and with

its higher information content it facilitates optimization.

Parallel P-code is designed according to the second approach.

The base types defined in Parallel P-code are very similar

to those in standard P-code: integers_ real, character, and

s
so	 ORIGINAL PACE 19

OF POOR QUALITY

Boolean. With the appropriate definition statements t these bass a

t	 types are used to define all structured types.
e

In the following discussiono the definition statements are 	 .

referred to as "pseudo-operators" or "pseudo-ops " since their

role in Parallel P-code is very similar to the role of pseudo- -.;

operators in a conventional assembly language.

4.2.1 Subrange Types

Standard P-code uses objects of type "integer" to hold

values of a subrange type. While this, is suitable for a

conventional word-oriented machine, a bit-addressable machine

(such as a bit-serial matrix processor) can utilise memory more

efficiently by only allocating the minimum number of bits needed]

to represent all value3 within the subranga. Parallel P-code

provides the .RA_ GE pseudo-op to declare a subrange; for example,

the type "rng " can be defined to be the integers from 1 to S

i
with the statement:

.RANGE	 rng9195	 }

The base type for a subrange is always "integer". As in

standard P-code, integers are used to represent user-defined

scalar types. There is no provision for a subrange of characters

- the standard character type is used instead.
4

i

Y	
.

(a

I .

	

	
MINA . PAGE 18

OPOOR QUA1
4,292 Set Types

A

In standard P-code there is only one type for sots. The PG

compiler implementation notes(l) recommend the use of a bitstring

to implement a set. Limiting the setto one representation

restricts its generality in two ways. First, the maximum number

of elements in the set is fixed. Second, the range of the

elements themselves is restricted. That is, if there are numset

possible elements, then they are represented by the integers A,

1 0 ... numest-1. Integers which fall outside of this range

cannot belong to a set.

Parallel P-node permits the definition of a powerset type

with the .SET pseudo-op. For example, the type " pset " can be

defined to contain the integers from 5 to 10 with the statement:

.SET psst,5,1O

The base type for .a powerset is always "integer". As in

standard P--.code, integers are used to represent user-defined

scalar types.

Parallel U-code sloes not define the format that a powerset

is to have; instead, it is left to the implementation. However,

it is occasionally necessary to specify a powerset constant. The
constant is specified by the type of the set and the elements;

e.$ * the powerset constant "15,6,91" of type " pset" would be

represented in Parallel P-code as
:a

pset,(5,6,9)

a

x

4. :.

F
	 R QUA1-

It is necessary to specify the type name as well at the m•mbe s,

because different sets may have different implementations.;

4.2.3 Files

The P4 compiler only permits files to be of type "text " s

that is, "file of char " . Thus, there is a* need to distinguish

files of different types in standard P-code. Parallel P-code

provides the .FILE pseudo-operator for specifying the type of a 	
^i

file. The syntax is intuitive; to define " ftype " as a file

with elements of type " etype " the statement is:

.FILE	 ftype,etype

4.2.4 Array Types

In standard P-code] almost all operations are performed on

scalar elements. (The exception to this rule is a provision for

moving blocks of data from one place to another.) Parallel

Pascal, however, requires operations to be performed upon arrays

as aggregates. As discussed above, the decision was made to

provide a formalism for specifying these parallel operations in
4	 >

the intermediate language.

In order to process array operations, the code generator 	 a

must know at least the size of the array and the type of

elements. For more sophisticated operations (j.lo operations

involving only a subset of the array) it must also know the 	 j

layout of the array - the number and range of array dimensions.

i ^This information can be divided inta two portions, static and

f r^

63

ORIGINAL RAGE IS

dzaa_ min.	 OF POOR QUALITY

The static portion represents information that is known at

compile times tt consists of such things as the bass type (i.q*

the type of the array elements), the number of dimensions, and

the low and high bounds of each dimension. This portion can be

	

g	 considered the logical specification of the data.

The dynamic portion of an array type consists of the address
^s i

of the array and the specification of which elements are to

participate in an operation. This portion therefore represents

the Rhys^ specification of the data - where it is stored and

what portions of it (e. ,Lo which array element s:) are to be

affected.

The static and dynamic information is collectively referred
i

to as an array descriptor. The parallel languages ALA141 and

LRLTRANISI also contain array desartptors^ but there are several

significant differences between those descriptors and parallel

P-code descriptors. The descriptors in ALA and LRLTRAN are

user-accessibles while the descriptors defined here are not

directly user-accessible. parallel pascal contains no concept of

an array descriptor; they are defined only in the parallel P-coda

implementation. The siae of the data referenced by an ALA or

	

k	
LRLTRAN descriptor may be varied by the user; Parallel pascal

descriptors by contrast always refer to data whose size is fixed.

f	 (Roth types of descriptors allow selection of a 6ubset of the

_I

arr = par_ allel array (2..4,8..16] of integer;

is translated to

i
54

ORIGINAL PAGE 18

OF POOR QUALITY

elements to which they roller.)

[The static portion of an array	 pdescriptor is • eciffied in
t	 p

`

	

	 Parallel P-cods via the .AR___ pseudo-operator. The base type

(lose array element type), number of dimensions, and range of all
i{

i

dimensions art specified. For instance, the array type defined 	 U

by

arr • array (1..5,2..6] of integer;
would be defined in Parallel P-coda with the statement:_

.ARRAY	 arr,integer 9 291,59296	 {4

An array is never defined in terms of another array; thus,

the following definitions:
i^
it

row a arr	 (1.. 5] of real,
mat - array (4 81 f row; {

will be translated to Parallel P-code as:

ARRAY	 row,.	 real.1,1.5
.ARRAY	 mat,rea1,2 , 4,8,1,5

Parallel Pascal provides the parallel reserved word for

declaring that an array should be allocated in the parallel array

memory rather than the sequential control unit memory. If an

array is declared pars a_ , this fact is reflected in Parallel
	 I

P-code by a negative rank. For instance,

^_ .
.A

^S	 ORIGINAL PAGE 13
OF POOR QUALITY

.ARRAY	 arr,inte&sr,-2,2,469,16

The dynamic portion of array descriptors will be dealt with

in more detail in a later section.

6.295	 Record Types y

In order for arrays of records to be intelligently

processed, it is necessary for the intermediate language to

define descriptors for recorde, as well as arrays. 	 Like array

descriptors, record descriptors consist of a static and a dynamic

. portion.	 The static portion specifies the record;	 the fields and

their types.	 Th^ dynamic portion specifies the address of the

record and the field which has been selected for a particular

^operation *	(Unlike arrays, it is not possible that more than one

field in a particular record will be simultaneously selected.

This property is a result of the choice of the array, rather than

the record, as the data structure used to express parallelism, as
M

described in chapter 2.)

Because the structure of a record is not as regular as the

Y ' structure of an array, a single type definition statement for the

static portion of a record would be cumbersome. 	 For that reason,
t

Parallel P-code defines records according to the fields which

they contain.	 The pseudo-operator used to define record

components is .RE_ CORD.	 One .RECORD is generated for each field.

Parallel Pascal,	 like standard Pascal, permits variant

records.	 When a record has variants,	 several components will

share the same memory allocation. (only one is in use at any
z

given time.) Parallel P-cods permits the specification of an	 {

offset with each field declaration. A record definition in

Parallel P-cods consists of a sequence of .AE_Cs statemsuts.

Normally, each successive field in the same record is assigned a

sequential location in memory. However, this behavior can be

overridden so that a field is aligned at the same offset as a

previous field.

The general syntax of the * RECORD pseudo-op is

.RECORD	 ruame,fname,offset,ftype

where "ruame" is the name of the record being defined,

"fname" is the name of the field being defined, "ftype" is

the type of the field, and "offset" is either "nil" or the

name, of a previously-defined offset. If "offset" is the

literal string "nil", the next sequential memory location is

assigned; otherwise, the new field "fname " is aligned with the

existing field " offset". As an example, the record defined by:
^	

r

roe - re_ cord
x: integer;

F	 y: real;

R_
case_ Boolean of
false: zf: integer;
true: zt: real;

a n_,

would be translated to

r

57

	

	 ORIGINAL PANE
OF POOR QUALM

E	 4.296 The Dynamic Portion of Descriptors

In order to examine the specification of the dynamic portion
((

_	 a

t

	

	 of array and record descriptors, it is necessary to first

consider the way in which they are to be used.

As discussed above, standard P-code is the assembly language	 }

of a hypothetical stack computer.	 Parallel P-code was also

designed with this general philosophy. 	 All operations are

performed by means of a r_ time std.	 Data is loaded onto the	 J

top of	 the stack, manipulated on the stack, and stored from the

top of the stack. In standard P-code, data is manipulated in one

of two ways.	 The first way is to load the data onto the stack

ELI
and manipulate it directly.	 This is the most common method (in

standard P-code) and it works well because Pascal usually deals

only with one item at a time.	 An alternate way is to perform a

data transfer of a compile-time specified number of elements

between two addresses which are computed at runtime. In this

second case (used in assignment statements where both sides are

identical arrays or records), the addresses, not the data, reside

on the stack. They could be called very simple descriptors

because they describe where the referenced data is (or is to go).

It seems reasonable that Parallel P-code should also make

use of these two mechanisms. When an operation is performed on

scalar data, the data itself is loaded onto the runtime stack,

manipulated, and stored from the stack. When an operation

involves an array or record, or some combination thereof, the

second method is called for*

provides more flexibility in aggregate operations an address

alone is not sufficient. Unlike the standard P-code asse t which

involved a typeless move of a consecutive block of data from one

address to anotherg information must be provided about the shape	
f

and type of the data. The type information is supplied by the

static descriptor (i.e. by an .A gw or * RECORD pseudo-operator).
3

The runtime-dependent shape information is provided by the 	 1
f

dynamic descriptors on the runtime stack.

Dynamic descriptors on the runtime sleek is Parallel P code 	 #

are most easily understood when considered recursively. Each

level of structuring is applied to a descriptor formed at a 	 z

higher level. Before exploring this concept completely, an
i

examination of the format for array and record descriptors is in

order.

The runtime %ature of an array is determined by two dynamic

attributes: the address of the array and the index ranges of its

dimensions. The dynamic (physical) portion of the array

descriptor which resides upon the runtime stack specifies these

attributes. This information is constructed by loading a

"blank" descriptor (one which specifies the array address tut

does not specify index ranges) and then "filling in" the index

ranges using one of three operators: IXO (select entire index

range), IX1 (index by a scalar), or IX2 (index by a subrange).

Each successive index instruction is applied to the next

unspecified array index range. Note that the compiler does not 	 {

3

3

59

ORIGINAL RAGE 0
OF POOR QUALITY

know or care what in what format the dynamic array descriptor is

specified.
	 t

3

The concept that indexing by a scalar is to reduce the rank	 F
of the array (19&e a column of a matrix to considered to be a
vector) requires extra attention. The static type of the top-

of-stack is changed by scalar indexing * This represents the

logical type of the datae Parallel P•code does not specify the

Impact upon the dynamic portion of the descriptor, which

indicates the physical attributes of the object, to the

hypothetical machine whieh implements Parallel P-coda, the

dynamic descriptor still specifies the physical memory associated

with the array, even though the type of the array has changed. A

code generator (which does not actually simulate 4 runtime stack)

must similarly "remember" the physical origins of an array

whose logical shape has been altered by scalar indexing*

In contrast with arrays, only one component of a record may

be specified at a time. However, unlike arrays, the fields in a

record are non-homogenouse The manner in which the target

machine stores the fields of the records will affect how a record

field is specified; the compiler cannot simply calculate a

constant offset (as is done in standard P-code). Word sizes

differ between machines - one machine may store both integers and

floating-point numbers in the same size word, while another may

require several units of storage for a floating-point number. A

further complication is introduced by the architecture of the

intended target machine (a parallel matrix processor), because it

4'+'r!w--•-	
.... —,as	 ::	 _.	 '_'	 }:	 _ 'ar ,r	 r	 7F°..

I

FINAL PAQE 1

I
1	

Y	

j

OF POOR QtJAUTY

will usually contain two non-identical memories for scalar and

array data.	 One of the design goals of the intermediate language

was to be relatively implementation-independento 	 in addition,

there was a strong desire to keep Parallel P-code at a high level fF	 ,

of abstraction to simplify the "front and" and retain as such

symbolic information as possible for the "back and" to use for

optimisation and code generation.	 Therefore, all record offsets

" in Parallel P-code are made by means of symbolic names. 	 The

names correspond to the field names defined in .READ

statements.

^;

The exact format of a record descriptor is not known to the
A

"front and".	 Instead, the record descriptor is constructed

with the aid of the "select" (S_) instruction.	 A descriptor
a

that specifies the entire record is loaded onto the stack; this t

Is similar to the "blank" descriptor described above for arrays

but may be used without further modification to access the entire

record. The SEAL operator is used to select a field from the

record. This replaces the record descriptor on top of the stack

with a modified descriptor that indicates the address of the

record and the selected field. If that field is itself a record,

another SEL is then used to select a field within that sub-.

record.

The SEL operator, like the IX1 operator, changes the logical

type of its operand from a record to a record field. As with the

array case, the dynamic descriptor will still contain information

t.^

C'

F

k

T

Af -

C	 ORIGINAL PACE-. IS
OF POOR QUALITY

1

61

F

about the physical $to gas* associated with the now logical type.

1

Descriptors for more complex structures (e.je arrays of

records, arrays within records) are constructed by repeated

application of the techniques above. For instance # given the

followins:

arrec: arm a,; 110951 of
re... co

X1 array 110010 of integer;
y: integer;

e.. d

a descriptor for " arrec(Q1..2j.xji@0..2I " would be constructed

by the following steps:

I. Load a "blank descriptor" (which specifies the address but

no index ranges) of " arrec " onto the runtime stack.

2. Load the constant 0 onto the stack. Perform an IX2

operation using the subrange " 1..2" . The stack now

contains a descriptor for an array of records.

3. Perform a 3LL to select the field 1% x" in the records

described by the descriptor on the stack. The stack now

contains a descriptor for a two-dimensional array, for which

the first index range has been selected as "1..2" and the

second is (as yet) -unspecified.

4. Load the value of "I" onto the stack. Perform an IX2

operation using the subrange "0..2". The stack now

contains a descriptor for a 2x3 array whose dimensions have

been selected as "1..2" and "1..(1+2)".
4v u.^

r
Y

O

4s2s9 Pointers .

In standard Pascal, a pointer is simply the address of a

data items The pointer can be copied and compared, but its value

cannot otherwise be affected by the prolramaer. Parallel Pascal

provides the same symbolism for specifying pointers that standard

Pascal does. However, the implementation of a pointer as $IMPLY

an address limits its usefulness in Parallel P-cods.

As the previous section discussed, the dynamic portion of an

array descriptor, a record descriptor, or a hybrid of both,

consists of an address and information about which dimensions (or

fields) are selected. Once this information has been constructed

on the runtime stack, it can be used as an address for P-cods

operations (for example, loads and stores). Normally, the

descriptor is used in the process of manipulating the data it

describes, but at times it is necessary for the descriptor itself

to be manipulated. (These operations are compiler-generated,

since Parallel Pascal doss not provide the cone`;°, of a

descriptor.) For this reason, Parallel P-coda implements all

pointers as descriptors. Descriptors of scalar data are simply

addresses; henceg for scalars the concept of a pointer is

unchanged.

Descriptors (pointers) are defined in parallel P-code with

the " * POINT" pseudo-operation. For instance, to define type

" abe " as a pointer to type " xyz " the statement would be;

.POINT	 abc,xyz

t	 ,3

T

t'	 ._	 n	 .+mv	 mnSSR»-.4T'^.^.:531.9C'n+"1^:*^f1^.TW.Y r..n ...F*3444N! _ }

63	

..

r

PAOR
492#8 	 Type Renaming Of POOR QUAL

Occasionally, to expedite processing by the compiler front-

end, it is convenient to rotor to two Identical typo s by

different names.	 Parallel P-code provides the "MRS" poeudo-

operation for this purpose, The statement

.TYPE	 xxxsyyy

defines type " xxx " to be the same thing as the already-defined

type "
yyy" .

r' it

j^

493	 Memory Allocation

There are two types of variables in a Pascal program - those

which are allocated on the runtime stack and those which are
T

allocated dynamically from a runtime heap.	 The former correspond

to the ordinary variables declared by a subroutine (function or

procedure) - they are automatically created upon subroutine entry

and automatically deleted upon its exit. 	 The latter correspond

to the pointer variables - the pointers themselves are allocated

upon entry to a subroutine but they reference memory which is

allocated by the procedure "now" and released by the procedure

"dispose". Like Pascal, Parallel Pascal uses both types of

memory allocation.

In standard P-code the local variables for each subroutine

are allocated on the runtime stack by reserving a consecutive

block of stack memory. A special instruction, ENTs specifies the

64

number of arguments to the subroutine and the number of memory

units required for local variables and temporary storage. The 	 4

compiler which produces the P-code "knows" the memory 	 k

requirements of each type of variable; thus, it can calculate the

offset within this consecutive block of each local variable

contained therein. In the case of an array, the elements of the

array are stored consecutively in row-major order; the compiler

can compute the address of any element according to the usual

formula.

A typical Pascal program will contain a main program and one

or more user-defined functions or procedures. Because Pascal is

a block-structured language, procedure and function definitions

are nested; that is, the definitions of some subroutines will be

contained within the main program, and some of these subroutines

will themselves contain the definition of other subroutines.

This is referred to as the static nesting of the program. Each

procedure is associated with a lexical levels The outermost

block contains the main program and the global variables; these

are located at lexical level 0. If a function or procedure

definition	 contained inside a block at level I. then that

function or procedure is at level i+1. Functions and procedures

at level i can reference all of the variables and invoke all of
i

the procedures and functions defined in the i-1 containing

blocks.

Pascal permits recursive function and procedure calls. Each

time a function or procedure at level i is called a new set of

r^

s rte:

1
_

ORIGINAL PAGE IS	 66 s
OF POOR QUALITY

local variables is allocated.	 Thus, who'	 function or procedure

at level i access*$ a variable at level j LL is accessing the

variable corresponding to the most recant set of allocations at

level j.	 Unlike the static nesting, the sequence of memory.

allocations, called the dynamic ch,-, a_$ will vary at runtime.

t:

Corresponding with each called function of procedure is an

area on the runtime stack called the stack frame (or activation

record).	 In addition to the arguments to the function or
{

t
procedure,	 the local variables, and space for temporary results,

the stack frame includes some linkage information.' 	 In standard
a	 r'

P-cod* this includes the return address, space for a returned

function result (this field is unused for procedures), and two

x
•

t
locations for the static and dynamic links. 	 The static and

dynamic links point to the appropriate previous stack frames.

The hypothetical machine which implements P-code contains a non-

k user-accessible register called the 	 "frame pointer' 	 which holds

the address of the current stack frame.

Because of the dynamic nature of the memory allocation, it

is not possible to compute the absolute addresses of any data

(except for variables in the outermost - global - block).

Instead, the desired locations are obtained by using a two-level

lexical-level addressing scheme. The form of a lexical-level

address is

(le_ vel. of_ fret)

where "level" is the static nesting level and "offset" is the

I

j^ "IN

66

ORIGINAL, PACE 19	 !
OF POOR QUALITY

offset of the variable relative to the beginning of the stack

frame which contains it. Standard P-code uses a modified version<
i

A# this scheme 0 father than specifying the lexical level

directly, it instead specifies the difference between the current

lexical level and the lexical level of the desired operand.

Thus, if the current lexical level is 4 and the desired variable

is at offset 43 at lexical level 1, the lexical address is

(1,43), which standard P-code expresses as (4-1,43) or (3,43).

The use of lexical -level addressing is a powerful technique.

However, the allocation of memory directly on the runtime stack

presents problems for Parallel P-code. First, one of the goals

is that Parallel P-code be machine -independent. This precludes

the use of compiler -calculated offsets for variables within a

stack frame, since word sizes and data representations vary from

machine to machine. Second, a parallel matrix processor which

contains more than one type of memory (e.$ * array memory and

scalar memory) cannot allocate all variables on one stack.

Therefore, Parallel P-code implements a modified form of lexical

addressing.

Parallel P-code represents lexical addresses directly,

rather than subtracting the lexical level of the operand from the

current lexical level. This definition is more intuitive and

constitutes no loss of information. Parallel P-code does not

define the exact format of a stack frame; specifically, it does

not define the format of the static and dynamic links. These are

left to the implementation. This provides a degree of

q

ORIGINAL PANE 67IS
OF POOR QUALITY

flexibility - an implementor may wish to use a die la X61 rather
I

than an explicit static lints chain.

To eliminate the need for compiler-generated offsets in a

lexical address, Parallel P-code uses a symbolic form of lexical

addressing. Each function or procedure argument and each local

variable is assigned an index number. The lexical address

consists of the lexical level and the index number. For

instance, given the function:

fungi func(a,b: real) : integer;
var x,y: integer;

the function result to index 0 1 "a" is index I t "b" is index

2, "x" is index 3, and "y" is index 4. If this function is

at lexical level S the lexical address of "x" would be (5,3).

Local variables, arguments to the function or procedure, and

the result (if the routine is a function) are specified in

Parallel P-code with the .ARG and .LO_ CAL pseudo operators.

Arguments and local variables share the same set of indices;

however, arguments require special treatment and therefore are

warranted a separate declaration statement. The index 0 is

reserved for the result of a function. It is unused for

procedures. Arguments are defined with the syntax:

.ARC index,type,ry

where "index" is the index number, "type"type" is a type name, and

ry " is zero if the argument was passed by value or one if it

was passed by reference. Local variables are declared with a

i

{	 r

68 a

OR{BINAL PA
OF POOR QUALM

1
similar statements

.LOCAL	 a,ndex,typa,overlay

The "Index" and "type" fields are identical to those for

•AAG• The **overlay" field is similar to the " align " field

for the .RECORD pseudo operator. It is normally zero, indicating	 ° F

that the local variable should be allocated the next available

memory location (or locations). If it is non-zero, it specifies

a previously-defined local variable (at the same lexical level);

the new variable is to be overlayed on the memory allocated for

the specified old variable. The use of this feature to implement

the with statement is described below.
'r

Parallel P-code also defines explicitly the lexical level or

each procedure of function. Each routine is proceeded by an

* ENTRY statement and followed by an .EX_IT, statement. These

specify the lexical level of the enclosed procedure. The .ENTRY

statement also specifies the processor on which the procedure or

function is to runs

.ENTRY	 level,site

.EXIT	 level

"level" is a lexical level number, and "site" is either the

literal string "HOST" indicating that the routine is to be

executed on the host machine, or " MCU " indicating that it is to

be executed on the (main) control unit of the parallel processor.

There are no Parallel P-code instructions which directly

allocate or release dynamic memory. These operations are

ORIGINAL PAGE 19
OF POOR QUALITY

}	 performed by the standard procedures "new" and "dispose".

These procedures operate in Parallel P•code the same way as in

standard P-code, except that they may return either a scalar

memory pointer or an array memory pointer. They accept as an

f operand a pointer variable.

b	
494 Data Manipulation

I- >	 A
F

^g	 4.4.1 Overall Strategy

As the previous sections have discussed, Parallel P-code,

like standard P-code, is a stack-oriented language. This section

describes the overall data manipulation scheme in Parallel P-

code. The specific opcodes provided in Parallel P-code are

described in full in Appendix 89

Conceptually, the runtime stack for Parallel P-code contains

quantities which are either scalars or are descriptors for an

array or record type. At times, the stack also contains pointers

to scalars (one might consider these to be scalar descriptors).

When an operation is performed on scalars, the address where

the result is to be stored is loaded onto the stack, the scalar

expression is calculated, and a "store indirect" is performed

to store the result of the expression (on top of the runtime

stack) at the specified address (the second item on the runtime

w..p	 .	 ..	 ,._ate....	 ^w-a-	
$Y.	

e. ♦>xw#a..s...yy z_,fl.. :C.. ._...,a.	um.w.>rKwo.ey. 	
I t`

70

OR11MINAL PA®S

stack) .	 OF POOR QUALITY	 k
j

In order to generalise the scalar case to structured types
i

(arrays and records), It is necessary to define what is meant by

a "load" of an array or record. In Parallel P-code these are

alwa a accessed through a descriptor. Since a descriptor is

essentially a generalised pointer, there is a fundamental

difference between manipulating scalars and manipulating

structured types. In the former case, the value of the scalar is

loaded onto the stack, manipulated, and stored. In the latter

case there is an additional level of indirection.

When an operation is performed, the result must be stored in 	 ;#

a temporary area and a descriptor for that temporary area placed

upon the runtime stack. Considered in this fashion, the

descriptors for the defined local variables are analogous to the

addresses of scalar variables, and the descriptors of temporaries

are analogous to scalar values on the stack. The automatic

allocation of the temporary storage to which the descriptors

refer is the responsibility of the implementation.

4.4.2 Load Instructions

Parallel P-code provides five instructions for loading data

onto the runtime stack.

The simplest instruction is LDC, which loads a constant.

The constant is never an array or record. The constant may be an

integer, floating-point number, character, Boolean value, or set.
j

7r

j

[-I

^ I li

a

1,111,

I

r.

ORIGINAL PAVE 18
OF POOR QUALITY 71

The specified constant is pushed onto the top of the runtime

stack*

Two instructions are provided for loading addresses. The

first, LCA, is used to load the address of a constant. The

constant is specified as in the L_DC Instruction. Rather than

loading the value of the constant, however, LCA greats$ a

constant in memory and loads its address onto the stack. This

instruction is used when it is necessary to pass a constant

string ""by reference " to a procedure or function. The second

instruction, LLA, converts a lexical address (levsl,index) to an

absolute address and pushes the address on the runtime stack. If

the item is an array an array descriptor which specifies the

location of the array but no indexing information is pushed;

similarly, if the item is a record a descriptor which specifies

the entire record will be pushed. (Hybrids of arrays and records

are handled in the same fashion, as discussed in section 4.2.6.

'

	

	 Data is loaded by means of the LOD and LDI instructions.

LOD is used to load scalar values whose (lexical) address is

known at compile-time. LDI deserves detailed attention.

The syntax for LDI is:

LDI type

where "type" is the type of the data to be loaded. The top of

the runtime stack contains a descriptor for the data to be

loaded. If "type" is a non-array, non-record type, this

descriptor is simply an address. In this case, the specified

3

f	 F

i

data is loaded onto the stack. If "type" is an array of record

type, the addressed data is copied to a temporary location (in

either the array memory or the scalar memory) and the top of the

runtime stack is replaced with a descriptor to the temporary

location.

Usually, an L_ of an array or a record is redundant because

the descriptor will only be used as the input to a subsequent

operation (s.jL. AD,DDD). However, in some cases it is necessary to

preserve the distinction between the variable itself and its

value. For instance, if a variable is passed "by value" to a

function, it is not acceptable to pass the original array

descriptor; instead, a descriptor for a copy of the array must be

passed. Where this distinction is not necessary, the

implementation may choose to ignore the LDI (a.jo a simple

optimization would be to omit any LDI whose result is used in a

subsequent expression).

When an LDI is performed on a file, the file buffer variable

is loaded onto the stack.

4.4.3 Store Instructions

Parallel Pascal provides only two store instructions, STO

and STO. STO is used to store non-array, non-record data at a

(lexical) address which is known at compile-time. STO is used to

store all forms of data (on top of the runtime stack) into the

variable specified by the descriptor which is next to the top of

stack. In the case of a non-array, non-record, this descriptor

t

x

a

73	
owrwN ►L PAGE 18

OF POOR QUALITY

is simply an address. In this case, the top of stack is copied

<	 into that address. Otheewiss, the data indicated by the

descriptor on top of the stack is copied into the area indicated

by the descriptor next to the top of the stack*

When an dTA is performed using a file as the addresso the

top of stack is stored in the file buffer Variable for the

specified file.

4.4.4 Type Conversions

There are two mechanisms by which the typo of an item on the

runtime stack may be altered. It may be explicitly coerced by

the.CVT or CVN operators or * if it is a record type, a field may

be selected with the SEL operator.

The CVT and CVN operators are used to perform a variety of

type conversions. They are essentially the same operator, except

that CVT operates upon the top of the runtime stack, while C_

operates upon the next-to-top of the runtime stack. The syntax

for these operators is

i

f

(.e
cef.

w	 i

CVT oldtype,newtype
CVN oldtype.newtype,tstype

where " oldtype " is the old type of the item to be converted,

"newtype" is t::e type it to to be converted to, and "tstype"

(for CVN) is the type of the top of stack (this information is

needed because stack items may be different sizes).

CVT and CVN perform three major functions. First, they

74
PAQE
^ d

r

a	 s

convert scalars or arrays of a simple type from one base type to }

another. An example of this is the conversion of an array of

integers to an array (with the same shape and array indices) of

real numbers * second, they collapse one-element arrays into

scalars. For this case, the array descriptor specifies a single
r

a

element. Thrdp they expand scalars into arrays. In this ease,

every element of the resulting array has the value of the scalar.

The role that these scalar-to-array conversions play is discussed

in more detail below.

8_81 is used to select a field from a record. The syntax isa

881. rectype, f ield onewtype

where "rectype" is the type of the record, " field" is the

name of the field to be selected # and " newtyps " is the type of

the result. " newtype " is not necessarily the type of "field"

If " rectype " is an array of records then " newtyps " will be

an array also. The record descriptor on top of the runtime stack

is modified to include the additional field selection

information.

4.4.5 Conformability

Parallel Pascal has strict rules regarding the

conformability of two items which are used together. The

conformability rules ensure that the specified operation is

well-defined and efficiently implementable. Operands in Parallel

P-code are also required to be conformableg although the

requirements are less rigid than those in Parallel Pascal. An

r—	

95	 ORIGINAL PACE 19
OF POOR QUALITY

tt

operation Which is performed on two non-conformable items is an

^rt	 error. The disposition of this error condition is left to the

Implementation*

in Parallel P-codep the operands of a binary operation: (this

n	
class includes the "store" instructions) must be conformable in

P

two Ways * first, the base types of the operands must be

s
Identical * For instancep it is illegal to combine an integer (or

k"	 an array of integers) with a real number (or an array of real

numbers) without first explicitly converting one of the operands

M so that both are integers or both are real numbers. This

conversion is performed by the CVT and C, VN operators. It is also

illegal to combine an integer and a value of subrange type

without first expiietly converting one operand so that the types

match.	 i

In Parallel Pascal # arrays may be combined with scalars, and

two arrays of the same shape may be used together. (More

precisely, two arrays whose non-scalar index ranges are identical

or explietly specified, and which have the same shape may be used

together.) In Parallel P-codeq the operands to an instruction

must always be the same type. If a scalar is to be combined with

an arrayq the scalar must first be expanded to an array of the

same shape. This expansion creates an array descriptor with

"blank" indexing information. For instance, if the top of the

runtime stack contains a descriptor for the array defined by

v. ar
}	 a: array (1..51 of integer;

6

PW QUALMor
This might be defined in Parallel P-code ass

* ARRAY	 Upintegerplpt#S
.LOCAL	 1jT0g0

To increment all elements of "a" by one, the following sequence

could be useds

LLA 0 t 1 ;array descriptor for "A"
IXO TO
LLA O t t ;array descriptor for "a"
IXO TO
LDI TO	 ;load "a"
LDC intoger,l
CVT integer # T$;convert scalar to array
IXO TO	 ;define index range for now array
ADD TO
STO TO

The LDC places the integer constant 1 onto the top of the stack ♦

The CVT expands the top of the stack into an array of type

" arr " . every element of which contains the value I. (The

resulting array is allocated in temporary memory mnd its

descriptor replaces the integer on top of the stack.) The top of

stack is an array descriptor with "blank" indexing information&

so the IRO is used to select every element of the (newly-created)

array. The ADD then adds together the two arrays whose

descriptors are on top of the stack.

The creation of a " blank " array descriptor by the CVT

instruction allows a scalar to interact with any subset of an

array. In the previous example the entire array was selected;

however, a subset can also be easily incremented. The operation

a(001. ♦2] s- &(001..21 + 1;

would be implemented by

i

i

E

I

1

3

,f

I

f ^

77

OF POOR QUALM €

LLA 0,1
LDC intelorpl
LDC integer,2
IX2 T8	 ;array dsscr.;, por for	 "a[Q1..21"
LLA 0,1
LDC integer,l
LDC intager,2
IX2 T8	 ;array 'descriptor for
LDC integerpl
CVT intogerjT8 ;blank descriptor for constant array
LDC tntegsrpl
LDC integer,2
IX2 T8;select subrange
LDI T8	 ;load "a(01.92111
ADD T8
3TO T8

l	 y

Because the operands to all Parallel P-code instructions

(i
	

must be the same type, when two array segments (that is, arrays

or subsets of arrays) with the same shape but different types are

combined, one must be converted to conform to the other one. For

example, given the Parallel Pascal statements:
^p

vat
a: arra [1 51 of integer;
b: ar tray, [5..9, —of integer;

a :40 a + b(@590941;

the Parallel P-coda definitions might be:

.ARRAY TS,integer,l9195

.ARRAS! T6,integer,195,9

.LOCAL 1,T5,0

.LOCAL 29T690

The two arrays would be loaded onto the stack by constructing

their array descriptors and performing a L_DI:

x..

UUA ups	 Farray aascri' vGur New	 a
IKO TS
LLA 0o1	 ;array descriptor for	 ` • a `• z
IXO TS
LDI T4	 ;load "a"
LLA 0 9 2 	 ;array descriptor for " b "
IXO T6
LDI T6	 ;load "b"

i

However $ before theta two arrays can be added (and the result

stored), it is necessary to convert them to the same type. 	 For

example # the cap-of-stack can be converted from type TS to T4:

CVT T69TS

The array is converted in temporary memory and the array

descriptor for the result replaces the array descriptor on top of

the stank. (Note that the resulting descriptor is not "blank"

- that is, the index ranges are filled in by CVT. "Blank" j

Indexing information only results when a scalar is expanded to an

array.)

In some caseep	 such as the example abovaq the index range of

the array to be converted does not fall within the index range of

the type it is converted to. In these cases,	 the implementation

of CVT must adjust the index ranges so that they fall within the

dimensions of the result type. (If a dimension of the result

type is not large enough to contain a dimension of the operand an

error has occurred $ for in this case the two array operands can

not possibly have the same shape.) After the operands have been

converted to identical types, the arrays may be added and the

result stored:

.i

a

ORIGINAL PAGE IN
AD D 	TS OR POOR QUALITY
STO	 TS

At times,	 two stack operands will have the same type but the

Index ranges of the two operands will be different. The

Implementation must "shift" one of the operands so that the

V.

A

active array elements " Line
'1

up".	 The choice of which operand

to shift is left to the implementation except in the case of a

STO instruction; in this case the data being stored must be

aligned with the subset of the array it is to be stored into.

Finally, if scalar indexing is used the logical shape of the

array is altered. Thus, given the definition:

vat
® a: ar̂^ (1..S,i..5l If integer;

which might be defined in Parallel P-code by

.ARRAY	 T8,integsr,2,l,5,i,5

.LOCAL	 18T810

then the statement

all,) :- a(0);

would be translated into Parallel P-code as

LLA 0,1
LDC integer, l
.ARRAY	 T9,integer,101,5
IX1 T8,T9	 ;index by scalar -- note type conversion

^.a	 1X0 T9	 ;select entire dimension
LLA 0,1	 x

IXO T8	 ;select entire dimension
LDC integer,l
IXl T8 1 T9	 ;select entire dimension -- note type conversion
LDI T9	 ;load column
STO T9	 ;store in row

This iilustratss the difference between the static (iogicai) type

and the dynamic (physical) information which is contained on the

run-time stack. Clearly the data allocations for the two "T9"

types are non-identical; however, their logical types are

identical and hence the two arrays are conformable *	j

The 3EL instruction, like the i,_ :%structiong provides

additional information to the dynamic descriptor (physical

specification) and alters the static descriptor (logical type)•

For example, given the definition:

var
'— a: arra [1..5,1..5] of integer;

r: array [l..S] of
record

x: . ar_rray (1..5] of integer;
y: real;

e=;

which might be represented in Parallel P-code as

.ARRAY TS,integer,2,19591,5

.ARRAY T91integer,l,1,S

.RECORD T10,x,ni1,T9

.RECORD T10,y,nil,real

.ARRAY T119T1091,195

.LOCAL 10T890

.LOCAL 21T1190

then the statement

a t o r.x;

would be translated into Parallel P-code as

M'

!r

I

t

I 	 1 -1 ^t
ORIGINAL F^Ĝ"^

OF POOR Q

LLA 0 0 1 ;"blank" descriptor for "a"
IXO TS
IXO TO	 ;descriptor for entire array "a" €

LLA 002
IXO T11 ;descriptor for array of entire records
SLL T11,x,T8
IXO TS	 ;descriptor for entire array " x" in "r"

all elements of the array

torage corresponding to all

of records "m". 1lowever,

hence the two items are

The physical storage corresponding to

%% a" is clearly different than the s

elements of the field "x" the array

their logical types are identical and

conformable*

4.5 Standard Functions and Procedures

Parallel Pascal, like standard Pascal, provides a set of

standard functions and standard procedures to perform tasks which

are difficult or impossible to specify directly. Standard

functions and procedures can in some sense be considered as

extended operators, for the types of (and often even the number

of) their parameters may vary.

In P-code, the arguments to a standard function or procedure

are loaded onto the stack and the routine is called. At the P-

code level all standard procedure calls have a fixed number of

arguments and a fixed type. When a Pascal procedure such as

4	 ^	 ti

i

a

w

7__._A_ -- _._

82
ORWINAL PAGE t
OF POOR QUALITY

" wri" (write integer), " wrr " (write real,), etc.

In Parallel Pascal some standard functions may be called

with a variable number of arguments which cannot be serialised

Into a set of fixed-format calls. An example is the "shift"

function, for which the number of dimensions of the first

argument (the array to be shifted) determines the number of

parameters which are passed to the function.

To deal with the variable number of arguments and the

varying types of the arguments (since arrays of any shape may be

operated upon) Parallel P-code uses a modified calling sequence.

First, the stack is marked with the MST instruction. Standard

functions and procedures are considered to be at lexical level

zero; no other routine are (the outermost block	 the program

block - is at lexical level 1). The arguments are then computed.

Scalars are treated as in standard P-code: if passed "'by value "

a scalar expression is evaluated; otherwise, the address of the

scalar is passed. Arrays and records are always passed as

descriptors. If they are passed "'by value " an LDI is

performed, so that the descriptor points to a temporary-storage

copy of the data, rather than to the original variable. If they

are passed " by reference" the original descriptor is passed.

Finally, the CSP instruction is used to call the standard

procedure or function. If the called routine is a function it is

Ti

a

1
83

ORIGINAL Pace IS
OF POUR QUALITY

will reset the stack back to the marked location.
1{f

Standard procedures and functions operate principally upon

an item of a particular data type;	 the other arguments have fixed

data types. For instance, the "shift " routine operates upon an

array whose type and shape may vary; the additional operands are

all integerse Parallel P-code provides a mechanism for

specifying the logical data type of this primary argument as well

as the result type of the function. Thus, the format of the CSP

Instruction is:

CSP stdfunc,argtype,restype

where "stdfune " is the name of the standard function or

procedure, " argtype " is the (logical) data type of the primary

argument, and " restype " is the (logical) data type of the

function result. (If the called routine to a standard procedure

the literal string "nil" will be used.)

4.6 user-defined Functions and Procedures

Unlike the standard functions, a user-defined function or

procedure is always called with a fixed number of arguments whose

types are constant. This leads to a regular structure for

calling user-defined routines

As discussed earlier, standard P-code and Parallel P-code

both organize memory allocation on the run time stack into stack

frames. Each stack frame contains the static and dynamic links,

84
PUa11t61NA1.

.f i

Op POOR
f

the return address e the arguments to the routines and the local

variables.	 (In the case of Parallel P-code these variables are{

symbolically specified.)!

z,F	
In standard P-code, a subroutine or function call involves 1

t 1

several steps.	 First, the stack is "marked " *	This sets up a
1

t''

new stack frame and fills in the static and dynamic links. 	 Neat,

each argument to the routine is generated. 	 For arguments paseed

e "by value" this involves the evaluation of the argument as an

expression on the stack; for arguments passed "by reference"

this consists of loading the address of the argument onto the

stack.	 (Standard P-code has no provision for passing procedure

or function parameters; these are therefore not tmplemented in

the PG compiles.) After all of the arguments have been prepared
_ 4

the function is called. When the function returns, the stack is 	 5=

reset back to the marked location. If the called routine was a

function, the function result is left on top of the runtime
^y

stack.

The calling sequence in Parallel P-code is very similar to

the standard P-cods case. The stack is marked with the FIST 	 1

instruction, which specifies the lexical level of the procedure

or function to be called. The arguments are then computed. 	 st

Scalars are treated as in standard P-code: if passed "'by value "

a scalar expression is evaluated; otherwise, the address of the

scalar is passed. Arrays and records are always passed as array 	 ?

descriptors. If they are passed ""by value " a L, DI is performed,

so that the descriptor points to w temporary-storage copy of the

ORIGINAL PAG' I
OF pooR QUALI'T'Y

array or record, rather than to the original variable. If they

are passed "by reference" the original descriptor is passed.

Parallel P-cods, like standard P-code, does not provide for

passing functions or procedures as parameters.

The function or procedure is called with the CUP

instruction, which has the syntax:

CUP level,routinename,resulttype

where "level" is the lexical level of the called routine,

"routinename" is its name, and "resultype" is the data type

of the function result. (If the called routine is a procedure

this will be the literal string "nil"-)

The function return is performed by the RET instruction.

This instruction has the syntax:

RET type

where "type" is the type of the function result. In the case

of procedures, "type" will be the literal string "nil".

Local variable A is used by functions to hold the function

result. When the RET instruction is executed, the stack is

popped" back to the caller, and the function result (if the

 called routine was a function) is left on top of the runtime

stack. If the result was an array or record the top-of-stack

will bean array descriptor.

-	 t

f

PAGE
or POOR QUALM	 y

4.9 Conditional Execution
^	

eE t
Parallel Pascal # like standard Pascal, provides a sat of

control flow constructs. In standard P-eodeq these are	 IV

implemented with four "Jump" instructionst XJPs FdP, U_, and
e

UJC. The implementation of the if # causer, forg whip and	 #
F:

r,e^-until statements in Parallel P-code is Identica l to the	 i

implementation in standard P-code. The UP and FJP instructions

use the top of the runtime stack as an operand - as an index into

a table of addresses (XJP)q or as a Boolean condition (PJP or

"Jump if false ")o and in both of these cases the quantity on

the stack must be a scalar.

Parallel Pascal also provides the where statement to specify

conditional assignment of expressions to arraysp conftrolled by an

array expression. The whets statement cannot be (efficiently)

implemented with the scalar-oriented control mechanisms of

standard P-cods.

Parallel Pascal specifies that array assignments are

conditional within the body of a wherestatement. Thus, the

implementation in Parallel P-cods will only affect the S_

operator (the STO operator is never used to store array data).

The MPP and most SIMD-class parallel

processors associate with each processor a flag known as the

"mask bit" or "'activity bit". This bit controls whether or

not the processor is enabled or d13abled. The collection of mask

bits for each processor can be considered to be a "mask array".

a

z^

r

E 1.

x

87

®RIc-11NA1. PAGE 'S" GE'S	 9

OF POOR QUALOY

This array can further be considered to be a Boolean array, since

the values it contains are binary. The controlling expression of

a where statement in Parallel Pascal is a Boolean array; hence$

It is natural to implement the where statement by using this

array as a mask array.

Parallel Pascal permits where statements to be nested. All

of the mask arrays in such a nested collection of statements must

have the same shape. Thus, there is a need for a nested sequence

of conditional expressions.

The current conditional status of a set of N nested

conditionals can be determined by using a stack of length N

(bits). If the current conditional state is As and a where

statement is encountered which evaluates to B, the new

conditional state is AB (the Boolean product of A and B). At

some later point, if an otherwise is encountered, the desired

con-' I.tional state is J. Taking "+" as the symbol for a

Boolean "inclusive or" and " ♦ " as the symbol for a Boolean

" exclustvs•or " , and recalling:

WW 9

PAO%

then

ABlA i (AB)A + OAT)A = AAS + (A+8)A

• (AA)B + M+AB t A8	 a

using this result, the stack-oriented implementation can be

defined.

Initially the stack is empty, and all processors are

enabled. When a where conditional is encountered, a Boolean

and " is performed with the current top of the stack (if the

stack is non-empty) and the result is pushed onto the stack.

When an otherwise is encountered, a Boolean "exclusive or" is

computed between the top two elements of the stack and the result

replaces the top of the stack. (If the stack contains only one

Item, a Boolean "not" - complement - is performed.) When the

and of the conditional is encountered, the stack is popped.

The implementation of nested conditional masks in Parallel

P-code is based upon this algorithm. A new conditional

expression is pushed onto the mask stack by the W_ instruction,

which has the syntax:

WHR type

The sense of the most recent conditional is reversed with the OTW

instructic:., which has the syntax:

OTW type

and the mask stack is "popped" by the ENW instruction, which

t 	 Y

INAL PAw f
has the syntax $	 O POOR QUAWY

NNW type

When a new level of maskins is entersdo the mask expression

is computed on the runtime stack, and then the WHR statement is

used to pit the mask into effect. If the implementation oo

desires, the VUR instruction may optionally not pop this

expression off of the run time stack, provided that the INV

Instruction does. This retains the temporary memory which holds

^^	 n
the mask expression. If a sat of nested conditional s are

evaluated, there will be a set of temporary mask array

descriptors on the run time stack. The implementation may then

use the store$* to which these refer to implement the mask stack.

(This method requires a small amount of temporary memory

allocated outside of the run time stack which holds pointers to

all of the descriptors on the stack.)

Parallel Pascal specifies that the effect of a mask is not

transmitted to a called function or procedure. Thus, each

procedure or function has its own mask stack. The implementation

may choose to include the information about the mask stack for

each routine in the stack frame (2. .IL * along with the static and

dynamic links, etc.).

IV 	 t

i

E=?-	 E 6

r

Both standard Pascal and Parallel Pascal provide the with

statement to reduce the need to fully specify record accesses.

For instance, the following sequence of codes

recp+.subrec.x t o 01
recp+.subrec.y t o 01
recp+.subrac.s3 :• 0=

could be written as

with recp+.subrec do

x s • 0;
Y s• 0;
z s • 0s

end;

The use of a with statement has two principal advantages.

The first advantage is that the program notation is simplified by

eliminating repetitions of the same record specification. (This

is not always an advantages however, in programs with many record

types, because at times it becomes difficult for a human to keep

track the record to which each component refers.) The second

advantage is that the address of the record to which the fields

belong is calculated only once, rather than each time a field is

referenced. For instance t in the first example above (without

the with statement) the pointer " recp" is de-referenced three

times. When the with statement is used (the second example

above)g the address computation is performed only once.

To determine the implementation in Parallel P-code, it is

i
useful to first consider the implementation in standard P-code.

.^-... .c^rxs:	 ..	 . 	 Rr.«^E+tr,;.,x	 _	 .., ._x.s +-	 .+^adleCZ^"	e_ m.ry Y.

GrNk,L PAGE 15	 91
OF pWR

Two types of records are used as operands to a with statement

those which are ' • normal " variables and those which are

specified by a record pointer.

.. in the case of nou•pointer variables, the (lexical) addpass
i

A
1.

of the specified record is known at compile time s 	Whenever a

I^
reference is made to s field in that record the compiler adjusts

this address by the offset of the specified- field and Toads that A

F
address on the stack. 	 Thus, the (lexical) address of every field -

k	 ~x specified in the with statement is known at compile time If the

argument to the with is an ordinary variable.

When a pointer is used in a with statement, the value of the A.

(Y pointer must be preserved so that references to fields in the

record indicated by that pointer can be properly addressed. 	 In

this case, not even the address of the pointer itself is

A

necessarily known at compile time. 	 For instance, given the

following code segment:

roe	 record
X: integer;
y:	 real;

Y._ end le
ptr • T roe;
p p t r	 +ptr;

pp:	 pptr;

be in
^^ew(pp);	 npp" points to an object of type "ptr" ^)

new(pp+);	 ($Q " pp +" points	 to an object of	 type "rec")
with pp++ do

X :• 0•
•. • •.

i

92
oRtGer'pt. yrUAllOF pOOR

the address of the pointer itself ("ppf " is clearly not known

at compile-time). Hence, it is necessary to compute the value of

the pointer and save it in a temporary stack location. The P4

compiler "knows" the size of each stack element and can compute

the address of the temporaries. When a field within an

applicable record is referenced, the pointer is loaded onto the

top of the stack and the offset (in this case, the offset of

"x" relative to the start of the record) is added. This

produces the effective address of the desired operand; it may

then be used as the address for a LDI or STO.

In Parallel P-code, the situation is somewhat different

because the "front end" of the compiler is unaware of the

layout of records. A compile-time-constant (lexical) address for

an "ordinary" record (that is, one which is not accessed

through a pointer) cannot be calculated. (Actually, the

compile-time address is known if the record in question is not

itself a component of another record.) In addition, the

expression may be an array of records rather than a single

record. For this reason, the Parallel Pascal compiler always

calculates the value of the address expression in a with

statement. The descriptor for the record is loadad (either by

construction from the compile-time-known lexical address and a

sequence of SEL instructions, or - in the case of a pointer - by

loading the "pointer"). This descriptor is then stored in a

temporary variable. When a record field is used, the descriptor

is loaded from the temporary variable, the necessary SEL is

1 tl

I.

t	

93

ORIGINI AL PACC 13

OF POOR QUALITY

performed to access the desired field, and the resulting

descriptor is used.

Unlike standard P-code, which stores only the address of the

record, Parallel P-code must store the entire descriptor.

(Recall that descriptors in Parallel P-coda play the same role as

pointers in standard P-code.) This presents a problem, because

several different descriptors may be required at different times

during the execution of a routine. It is desirable to overlay

the space which is allocated to them as much as possible. The

need for this sharing of temporary storage contributed to the

syntax of the .LOCAL pseudo operator, described above.

Briefly, the syntax of the .LOCAL pseudo operator is

.LOCAL	 index,type,overlay

where "index" is an index that symbolically identifies the

location in the current procedure activation, "type" is the

data type, and "overlay" is used for memory sharing. The

"index'' and "type" fields are described in more detail above;

the "overlay" field is of interest here.

Local variables are allocated according to the following

rule: if "overlay" is zero, allocate the new variable beginning

at the next available location; otherwise, allocate the new

variable beginning at the same location as the variable whose

index is 'overlay". Thus, the following statements:

f4	 ..

_.

94

ORIGINAL PAGE IS
OF POOR QUALITY

.LOCAL	 I,integer,0

.LOCAL	 2,real,0

.LOCAL	 3,integer,2

causes local variables 2 and 3 to be allocated in the next

available memory after local variable 1. If possible, variable

2 and 3 are to share the same memory. (The implementation is

free to ignore this memory sharing specification. This may be

necessary if the variables would reside in different memories -

something which is not the case for descriptors. However,

G

M

r.

variables which are definer: to use disJoint memory must indeed be

allocated that way; otherwise unexpected memory sharing will

result.)

4.9 References

1	 K. V. Nori, U. Ammann, K. Jensen, and H. Naegeli, The Pascal
(P) Compiler - Implementation Notes, Institut fur
Informatik, Eidg•uoessische Technische Hochschule, Zurich
(1975).

2 Philip A. Nelson, "A Comparison of PASCAL Intermediate
Languages," ACM SIGPLAN Notices Vol. 14(8), pp.208-213
(August 1979).

3. " University of Illinois internal report..

4	 Mary E. Zosel, "A Modest Proposal for Vector Extensions to
ALGOL," ACM SIGPLAN Notices Vol. 10(3), pp.62-71 (March
1975).

5	 R. G. Zwakenberg, "Vector Extensions to LRLTRAN," ACM
SIGPLAN Notices Vol. 10(3), pp.77-86 (March 1975).

6	 Alfred V. Aho and Jeffrey D. Ullman, Principles of Compiler
Design, Addison-Wesley, Reading, Massachusetts (1977).

9

95

ORIGINAL PACE IS
OF POOR QUALITY

5: MEMORY MANAG611ENT

5.1 The Memory Problem

The language Parallel Pascal was defined in section 2, and

an implementation using Parallel P-code was described in section

3. The language definition for Parallel Pascal places no limits

upon the utilization of memory by a program. Similarly, Parallel

P-code has no inherent restrictions on the size or shape of

arrays, whether they are parallel or not.

Although the specifications of the high-level and

intermediate-level languages contain no size restrictions, the

first implementations of Parallel Pascal almost certainly will.

The implementation of the language is affected by two fundamental

hardware constrants: the size of the processor array and the

amount of memory in each processing element's local memory. In

this section, these problems will be considered relative to the

implementation of Parallel Pascal on the Massively Parallel

Processor[1].

The first restriction arises from the fact that the HPP has

a 128x128 element processor array.	 If data arrays are declared

R

PAGE 13
QUALITY

96

with these dimensions there is no problem; however, arrays with

much larger or much smaller dimensions require special

consideration. The problem of assigning memory locations to

variables is examined in section 5.2.

The second implementation restriction results from the very

small local memory in each processing element. Each PE has only

1024 bits of random-access memory. Although this amounts to two

megabytes of memory for the whole array, it is limited when

manipulating large amounts of data - e.$. each local memory can

store only 32 (32-bit) floating-point numbers. The main memory

is supplemented by two levels of secondary memory: a high-speed

random-access memory called the "staging buffer", and a

secondary input-output system (connection to the host computer or

a proposed parallel disc system). The staging buffer in the

initial delivered version of the MPP will have a two megabyte

capacity; plans are underway to eventually expand to sixteen

megabytes, out of a total capacity of 64 megabytes. Section 5.3

examines the efficient management of memory with this

configuration.

F I.

97

5.2 Memory Layout

	

	 ORIGINAL PAGE I.^i

OF POOR QUALITY

5.2.1	 Introduction

In this section, the allocation of storage on the PE array

is considered. To facilitate discussion, the following

definitions are assumed:

NROW	 number of rows in the processor array
NCOL - number of columns in the processor array

An array whose last two dimensions have sizes NROW and WCOL,

respectively, can be easily mapped into the parallel array
U

memories - if the array is declared as:

va r
arr: parallel array (I..J,K..L] of something;

where NROW-J-1+1 and NCOL-L-K+1, then '*arr [i,k]" will be stored

in row i-I, column k-K.

This storage mapping can be extended to multi-dimensional

arrays whose last two index ranges have sizes NROW and NCOL,

respectively. The address within an array memory is computed

according to the usual formula. As an example, given the

definition:

var
arr: parallel array [9..12, 4..5, 1..128, 8..135] of integer;

and assuming that the base address within the PE memories for

arr'' is a
0
 and that integers are stored in 16 bitplanes, then

arr[i,j,m,n] " will be stored in row m-1, column n-8, at

address

98
ORIGINAL PAGE 'S

a 0 + 16 x ((i - 9) x (5 - 4+ 1) + (J-4)) 	 OF POOR QUALITY

When the last two dimensions of an array do not match the

size of the PE array another mapping strategy must be used.

There are two cases to be considered - data array dimensions

smaller than the PE array size, and data array dimensions larger

than the PE array size.

5.2.2 Small Arrays

If an array dimension is smaller than the corresponding

dimension of the PE array, then some PE's will not be used to

store the array. For instance, a 64x64 array will only use one

quarter of the PE's in the MPP. This manifests itself in two

ways. First, it is extremely wasteful of the main memory (a very

precious commodity). Second, since the edgee of the array no

longer coincide w.th the edges of the PE array, rotating data

through the array will require more than one cycle per position

rotated.

One possible way to store a small array would be to use a

contiguous subsection of the hardware array; e.jk * to store a

32x32 array on the MPP one could use all PE'

(i,j), 04i<32, 04J<32. This implementation works well if only

elemental operations are performed upon the data. In addition,

-he `shift" function can be used without substantial overhead

(an extra cycle is required for each shift from the "east" or

south " in order to force the incoming values to zero).

However, the "rotate" function will be very expensive because

r.

r

1

y

99

it will be necessary to propagate data shifted out one and across

96 inactive PE's to reach the other and of the array.

An alternate storage scheme would be to store in every

fourth PE in each direction; that is, the 32x32 array described

above could store array element (i , j) in PE (ix4 , jx4)

(because 128/32 - 4). This scheme has the advantage that data

can be rotated across the logical array without having to

propagate edge information across a large number of inactive

PE's. However, each position shifted now requires 4 hardware

shift operations instead of one because the data items are

further apart. In Addition, this scheme works best when the data

array has a dimension which evenly divides the length of the

hardware array; the implementation is not as apparent if the data

array is, say, 59x59. Finally, if arrays are stored in non-

contiguous PE's then it will be necessary to compress or expand

them when subsets interact with subsets of arrays of different

sizes. For these reasons, it seems advisable that small arrays

be stored in contiguous subsets of the hardware array.

Since small arrays do not occupy every memory module in the

PE array, sev , ral small arrays can share the same memory offset.

For instance, four 64x64 arrays can be stored at the same PE

memory address in the 128x128 MPP array. Arrays of different

sizes can also be stored together - the available PE's in a

memory plane can be "parceled out" as required.

If a small array has more than two dimensions, one possible

ORIGINAL PAGE t9
OF POOP. QUALITY

r'	 A

100

way of storing the array is to store several subarrays in the

same memory plane(*). For instance, a 4xb4x64 array could be

stored at the same address in the 128x128 MPP memories. This

storage scheme has the adva •itage that all elements of the array

can be operated upon at once. The disadvantage of this scheme is

the	 time required to	 transfer	 data	 from element, (i,j. , k) 	 to
element (i+l,,I,k) - in the	 case described above 64	 shifts	 are

required; whereas if the storage were "vertical'' the data could

be handled internally by the PE's.

A special case of the general problem of small arrays is the

handling of vectors. Although a vector has only one dimension,

it is frequently convenient to manipulate a vector in the PE

array. In addition, a vector may result from a reduction

operation upon an array (e.jL. using "sum" along the columns of

a matrix). A reasonable storage implementation would be to treat

a vector as a matrix with only one row or one column (whichever

is more convenient for the problem at hand). Like other small

arrays, several vectors could then be stored in the same memory

plane (e.j, . in successive rows of the PE array).

Finally, if a matrix or vector is very small the

implementation may wish to ignore the Earallal specification and

store the array in the scalar memory. Small vectors and matrices

can easily be accomondated there without incurring a significant

storage overhead.	 If the array is small, not much parallelism

will be sacrificed by performing operations with it serially

ORIGINAL PAGE IS
OF POOR QUALITY

101E

G-	 4 ORIGINAL PAGE IS
OF POOR OUALITYinstead of in parallel.

The ability	 to specify	 the	 data storage	 format for	 small

arrays	 is lacking	 in Parallel	 Pascal. The	 decision about	 storage

formats is	 therefore left	 to	 the	 code generator.	 A future

language revision	 might include	 some provision	 for spucifying	 the
^9

data	 storage, along the	 lines	 of	 the parallel keyword which
d

i

Parallel Pascal does provide. A

5.2.3 Large Arrays

Large arrays present a different set of problems which must

be addressed. First, si:ce the PE array is smaller than the data

array, no mapping of the last two array dimensions into the PE

array will be one-to-one. Instead, some PE's will contain more

than one point.	 Second, large arrays seriously iL.,,act the main

memory capacity - if the array is too large it may not fit in the

main memory at all. An example of this case is a 2048x2O48 array

of integers, which requires eight megabytes of main memory (the

MPP as delivered will have only two megabytes of main memory).

Finally, if the data array size is ncit an even multiple of the PE

array size, extra operations will be required when data rotations

are performed. This last case closely resembles the rotation

problem for small arrays which was discussed in the previous

section; it will not be considered further here.

The first problem is the manner in which large arrays are to

be stored. For convenience, the last two dimensions of the data

z,

102

E

dimensions. In the following discussion, two-dimensional arrayo

are considered or convenience; additional dimensions are

implemented "vertically" within the PE array and are therefore

of no special interest here.

Let the PE array have dimensions (I1 , N) (both M and N are

128 on the MPP) and the data array have dimensions (AxM , BxN).

There are many possible ways in which to mad, the large data array

into the PE array, but simplicity dictates that the array be

stored in such a way that each PE is associated with AxB

elements.

If the data array is fairly small relative to the main

memory of the matrix vrocessor (eel,. a 256x256 array of 8-bit

data on the MPP) one possible implementation is to store in each

rE memory a MxN subimage. That is, if " arr " were defined by:

(* NROW - A*M, NCOL a B*N ^)
var

arr: parallel array [O..NROW, O..NCOL] of integer;

and tt were stored starting at a 0 , then (assuming an integer is

16 bits) arr1i,.11 would be stored in PE

B]

at address

a0 + 16x [(i mod A) x B + (i mod B) I

The advantage of this storage scheme is that adjacent points are

often in the same PE and no data transfers are needed. This can

be very useful when operations are performed involving near
}

UNIGINAL PAGE 13
OF POOR QUALITY

t

to
neighbors. Tho disadvantage of this scheme is that when a

section of the array is operated upon (e.g. a 128x128 place of a

256x256 array) the parallelism will be lower. Also, largo arrays

cannot be conveniently manipulated because they will not l:t into

main memory.

An alternate storage method is to divide the large array

into " chunks", each of which is the same size as the PE array.

Given the array " arc " defined above, this scheme would map

arr(i,jl (with base address a 0) into PE

(i mod M , j mod W)

at address

aG + 1 6 x (Ii x
+ ` ^

I
. ^.a advantage of this scheme is its capability for performing

operations on subsections of the array with the maximum degree of

parallelism. This facilitates the processing of larg o arrays

(which are too large for the PE memories).

Another important factor in the choice of a storage layout

for large data arrays is the ease with which the arrays can be

transferred into and out of the main memory. In general, the

second format (breaking a large array into pieces) is easier to

handle than the first format (storing a local subimage in each

memory); however, on the MPP both formats can be handled - the

staging memory is capable of "crinkling" an input ima&a in

OF POOR QUALITY

ioa
ORIGINAL PAGE IS

order to store a local window in each PE. 	 OF POOR QUALITY

The initial implementation of Parallel Pascal on the MPP

will restrict the size of the last two dimensions of a parallel

array to be less than or equal to the PE array size. As a

result, the programmer will have to explicitly deal with large

data arrays in one of the ways described above (i.e. storing

multiple points in each PE or dividing the array into

chunks"). The latter is performed by dimensioning an

128Nx128M array as

type
large - parallel array (1.. ►J,1..M,1..128,1..128) of integer;

and logically associating the first and third dimensions of this

array with the first dimension of the large array (similarly, the

second and fourth dimensions of the declared array are associated

with the second dimension of the large array). Simple operations

on the array can be expressed directly; statements such as

a	 F + c;

mean the same thing regardless of how the array is dimensioned.

However, data movements in the large array must be mapped into

movements in the small array. The following two routines,

"lshift" and "lrotate" illustrate how a shift and rotate on a

(logical) large 12814x14814 array would be implemented on an

NxMx128x128 array. These functions also illustrate how an

automatic memory allocation scheme would handle large arrays

which are stored in "chunks".

6

105

ORIGINAL PAG" [3
OF POOR QUALITY

*

*	 LSHIFT - Shift large array
*
* The array "a" (conceptually size N*MPPROW by M*ttPYCOL,
* dimensioned as a[1..N,1..M,1..MPPROW,I..MPPCOL]) is end-off
*	 shifted.
*
* The shifting is done in two stages - by rows and then by columns.

const
MPPROW - 128;	 (* number of APP rows *)
MPPCOL - 128;	 (* number of 11PP columns *)
ti - 10;	 (* N*11PPROW - number of conceptual rows *)
M - 20;	 (* M*MPPCOL - number of conceptual columns *)

type
MPPREAL - parallel array [1..MPPR0W,I..MPPC0L] of real;
MPPBOOL - p arallel array [1..MPPROW , I..MPPCOL] of Boolean;
LARRAY - array 1..N, 1..M] of MPPREAL;

function lahift (a: LARRAY; r , c: integer) : LARRAY;
var

bar: O..N;	 (* block shift amount (rows) *)
isr: O. . MPPROW;	 (* internal shift amount (rows) *)
bsc: O. . M;	 (* block shift amount (cols) *)
isc: 0**M^PAyP ,COL;	 ((* internal shift amount (cols) *)

ma^ft: LMFPSO ®L; 	 (* mas^' O oc y in eHal) rotates *)

begin

bar :- r div MPPROW;
isr :- r mod MPPROW;
bsc :- c 3—iv MPPCOL;
isc :- c mod MPPCOL;

tmp	 rotate (a, 0, 0, isr, isc);

mask :- shift (a-a, U, 0, isr, 0);
where not mask do

tmp :- shift (a, 1, 0, 0, 0);

mask :- shift (a-a, U, 0, 0, isc);
where not mask do

tmp :- shift (a, U, 1, 0, 0);

lshift :- shift (tmp, bar, bsc, 0, 0);
l

end;

106 ORIGINAL PAGE 13
OF POOR QUALITY

* LROTATE - Rotate large array
*
* The	 array "a" (conceptually	 size	 N*t1PPROW by 11*MPPCOL,
* dimensioned as	 a(1..N,i..M,1..MPPROW,I..MPPCOLj) is	 rotated
* (circularly shifted).
*

* The	 rotation is	 done	 in	 two	 stages - by	 rows and	 then by columns. ~*)
const

MPPROW -	 128; (* number of MPP	 rows	 *)
MPPCOL -	 128; (* number of MPP columns *)
N	 -	 10; (* N*MPPROW - number of conceptual	 rows	 *)
:!	 -	 20; (* M*t.PPCOL - number of conceptual columns	 *)

cype
AlPPREAL - parallel array [1..MPPROW,1..MPPCOL] of real;
MPPBOOLparallel array (1..MPPR0W,I..MPPC0Lj of Boolean;
LARRAY - array 1..N, 1..MJ of MPPREAL;

function lrotate(a: LARRAY; r,c: integer) : LARRAY;
va r

bar: O..N;	 (* block rotation amount (rower) *)
isr: O..MPPROW;	 (* internal rotation amount (rows) *)
bsc: O..M;	 (* block rotation amount (cols) *)
isc: O..MPPCOL;	 (* internal rotation amount (cols) *)
tmp: LARRAY;	 (* temporary array *)
mask: MPPBOOL;	 (* mask for internal rotates *)

begin

bar :-	 r div MPPROW;
isr :•	 r mod MPPROW;
bsc :•	 c div MPPCOL;
isc c mod MPPCOL;

tmp :- rotate(a, 0, 0, isr, isc);

mask :- shift(a •a, 0, 0, isr, 0);
where

t
_ not mask dc

	

mp	 rotate(a, 1, 0, 0, 0);

mask :- shift(a-a, 0 9 O, 0 9 isc);
where not mask do

	

tmp	 rotate(a, 0, 1, 0, 0);

	

lrotate	 rotate(tmp, bar, bsc, 0, 0);

end;

__- .nil_

107

5.3 Data Migration

Because the main memory on the MPP is so small, it is

inevitable that many programs will require more memory than can

be provided in the processor array alone. Thus, some form of

data migration will be required. This can be implemented in one

of two ways. First, the programmer could be required to handle

all data migration. Second, an automatic memory management

system could be used and the programmer could be unaware of the

transfer of data between memories.

In the following sections, the behavior of the KPP is

considered in an attempt to determine an appropriate memory

management strategy.

5.3.1 The Overlap Factor

The movement of data between memories will slow down the

computation of the MPP system on a problem by some amount. On

the MPP,, .input-output and computations may be overlapped. A

quantity which is of some interest is the execution time penalty

for not overlapping input-output with computation. Let T be the

total computation time, T io be the total input-output time, and

T o be the time required if input-output is overlapped with

computation as much as possible. Then f, the fraction of the

possible speed obtained with non-overlapped input and output

versus a fully-overlapped implementation, may be defined as

T
0

f	 T io+Tc

OF POOR QUAU_1 Y

;-4

108

T is bounded by the inequalities: 	
URiGINAL PAGE IS

o

	

	 OF POOR QUALITY

T o
)

O T io , T0 vT c , T04Tio+Tc

The last of these implies that f<1. The first two inequalities

bound f from below:

T	 T

1) if T >T	 then T -T + f
c

c io	 o c	 Tio+Tc > Tc+Tc	
1/2

2) if T >T then T T	 + f-
io c	 o io	 T T+T > T +T1/2

io T c	 io to

3) if Tc -T io then To-Tc-Tio + f- +T+T -
1/2

0 0

In summary, 1/24f4l. Thus, the maximum penalty for not

overlapping input-output and computation is a speed reduction of

1/2.

5.3.2 I/O-CPU Time Ratios

Another factor of interest is the relationship between the

time required for the input-output associated with a problem and

the CPU time required to solve that problem.

Let S be the execution speed (in operations per second).

Define T	 as the time required to perform one array operation.
Op

Since the MPP has an array of 128x128 PE's, Top can be calculated

by

	

128x128	 16384
Top -	 S	 -	 S

The MPP has a two-level secondary memory. Data is

transferred from the PE memories to the staging buffer by

shifting it across the rows of the array.	 It requires 128 cycles

N

4
109

to shift a single bitplane into the array. Let T
cpu

be the CPU

cycle time and B be the number of bitplanes to be shifted.

Define T
a

as the time required to transfer a data item from the

staging buffer to the PE memories. Then

	

Ta 128BTcpu	
O F @Y&

One possible configuration of the MPP is to use a very-

high-speed parallel disc system for secondary storage. Let L be

the average seek and rotational latency of the disc, and R be the

transfer rate (in bytes per second). Define T 8 as the time

required to transfer data from the disc to the staging area.

Then

TS	
Ld + 128x828xBx1	

Ld + 20481

(The number of bytes is equal to the number of bitplanes divided

by 8.)

Define X as the ratio of the time spent on input and output

to the time spent performing the operation. Then

X	
Tio	

Ta+TB	 128BT
CPU

+Ld +2048R	 SBTcpu + S L
d

+ 8R
S

T	 T	 16384	 128	 16384op -
	
op

5-

The first term represents the contribution of the staging area;

the second term is due to the disc access latency, and the third

term is due to the disc transfer rate.

The value of X represents the average number of operations

per array element required to keep the PE array busy. 	 If,

instead, only aX aperations are performed (where 0<a4l) then the

s	 .

I	 t

t

110

average utilization of the PE array will be a. Thus, when X is

large the input-output will dominate unless the task is very

processor-intensive.

X can now be computed for three typical MPP operations: 8-

bit integer addition (computing a 9-bit result), 32-bit

floating-point addition, and 32-bit floating-point

multiplication.

5.3.2.1 I/O-CPU time ratio: integer addition

The reported speed of the MPP performing 8-bit integer

addition is 6553.6 million operations per second. There are two

8-bit operands and one 9-bit result. The cycle time of the MPP

is 100 nanoseconds. Hence,

6
S-6553.6x10

B-8+8+9-25
-7

T	 •10cpu

X - (6553.6x106)(25)(10-7) + (6553.6x106)Ld + (6553.6x1U6)(25)
128	 16384	 8R

• 128+(4x 10 4)Ld+2-04a 10
10

If the data is transferred between the PE memories and the

staging buffer, the input-output will take 128 times longer than

the computation. If a secondary memory is involved, its latency

must be very low and its transfer rate 'very high. Figure 1 shows

the dependence of X upon the disc transfer rate for two values of

ORIGINAL PAGE IS
OF POOR QUALITY

1.8000

9-1519

1, 1 t(A"

50000

to,

tadd

to',	top	 too	 10^	 t010

dlwc transFer rate

UNIGIN',% PA -4-7 f:3

OF POOR QUALITY
k

Figure 1: 1/0-CPU Time Ratio: 3-bit addition

112
L .

For this relatively-simple operation, the processing time is

swamped by the time required to perform input-output. For

instance, a disc system with L d o 15ms (fast by current standards)

and R-108 Mb/s (very fast relative to current technology), X is

still high:

lU

X • 128+(4x104)(.015) 1
2.048x10	

. 6332.8
108

This means that in order to achieve 50% processor utilization

when performing integer addition with two input arrays and one

output array, it is necessary to perform (6332.8)(0.50) - 3166.4

array operations.

5.3.2.2 I/O-CPU time ratio: floating addition

The reported speed of the MPP performing 32-bit floating-

point addition is 470 million operations per second. There are

two 32-bit operands and one 32-bit result. The cycle time of the

MPP is 100 nanoseconds. Hence,

6
S-470x10

8-32+32+3296
-7

T	 X10cpu

Using these values, X can be computed as

X	 (470x106)(96)(10-7) + (470x10
6)L d + (470x10

6
)(96)

128	 16384	 8R

e35.25+(2.87x104)Ld 4
 5.644x10

9

If the data is transferred between the PE memories and the

ORIGINAL PAGE 19

OF POOR QUALITY

y

113

staging buffer, the input-output will take approximately 35 times

longer than the computations if a secondary memory is involved,

its latency must be very low and its transfer rate very high.

Figure 2 shows the dependence of X upon the disc transfer rate

for two values of Ld.

While the input-output time is still much greater than the

computation time, the difference is an order of magnitude less

than in the 8-bit integer addition case above; for example, given

Ld -15ms and 8 - 108Mb/s,

9
X - 35.25 + (2.87x104)(1.5x10-2) + 5.648

1 0 - 522.15
10

5.3.2.3 I / O-CPU time ra t io: floating multiplication

The reported speed of the MPP performing 32-bit floating-

point multiplication is 291 million operations per second. There

are two 32 - bit operands and one 32-bit result. The cycle time of

the MPP is 100 nanoseconds. Hence,

5-291x106

B-32+32+32-96

T CPU- 10-7

Using these values, X can be computed as

(2.91x10
8
)(96)(10-

7)
	 d	 (2.

(2.91x108)L	
91x108)(96)

X
	

128	 + 16384 +	 Ste`
21.83+(1.776x1U4)Ld^3.49HxlU

9

If the data is transferred between the PE memories and the

staging buffer, the input-output will take approximately 22 times

URIGINA ►- PACE

OF POOR QUALITY

.A

t.Mo

t .09"

o .94500
x
V

.p9m
r

6"00
Y

-wm

aJ

tem

t0^	 t09	 too	 to'	 tote

disc transfer rate

03000

toy

L _ 114

ORIGINAL PAGE 18
OF POOR QUALITY

►add

io: floating-point addition

116
longer than the computation. If a secondary memory is involved,

..	 its latency must be very low and its transfer rate very high.

Figure 3 shows the dependence of X upon the disc transfer rate

for two values of Ld.

The gap between the input-output time and the computation

time is narrower than in either of the two cases above; for
fq .

Ld-15ms and R-10 8 Mb/s the ratio is

9

FX - 21.83 + (1.776x104)(1.5x10 -2) + 3.69x10	 - 323.13
108

5.3.2.4 I/0-COU Time Ratio: sequence of operations

In the previous three cases, X hat been computed assuming

that each data item (128x128 array) is transferred individually

and used only once. If instead the data is "spooled" -

transferred in blocks - the access latency will be ""spread out "

across many more elements. For instance, if a block of N 128x128

arrays of floating-point numbers is transferred in one operation.

X can be c^mputsd as

8

X - (2.91x108)(Nx32)(10-7)
+ (2.91x10

)Ld + (2.91x108)(Nx32)
128	 16384	 8R

Note that now X is the number of operations that must be

performed on the set of N arrays; the number of operations per

transfer is X /3N. Figure 4 shows this value for transfers with

different block sizes (i.e. values of N).

Problems which are best suited to a parallel matrix

processor are usually very computationally intensive.	 It is an

ORIGINAL PAGa, 15

OF POOR QUALITY.

3

M9.0

"Ms

son-0

Moo

2"?.S

BOM-0

to"4

too -00

to,

rMul

t06	top	 too	 too	 tots
disc transfer rate

116

ORIGINAL PACE 18
OF POOR QUALITY

Figure 3: 1/0-CPU Time Ratio: floating-point multiplication

.	
I

M-93

M-OF

M-81
0
r
^o

MIO

t24-09

Q
K'

9t 1,^

".508

BF-84t I
number oa Mans per block

Figure 4; Dependence of I/O-CPU time ratio on block size

117

ORIGINAL PAGE IS

OF POOR QUALITY

I 	 i

118
extreme case to input two operands, perform an operation, and

output the results. A far more common occurrence is to input the

operands, perform many operations upon them, and then output the

results. As the previous sections have ^iscribed, X indicates

the ratio of the input-output time to the computation time. An

equivalent way of expressing this is that If 11 operations are

performed per transfer, N<X, and input-output is completely

overlapped with processing, the PE array utilitation will be N/X.

(If N>X then the PE array utilization will be 1.) Figures 5 and 6

illustrate the effect of the disc transfer rate (with 15

millisecond access latency) and the number of operations

performed per transfer upon the PE array utilization, for a

sequence of Floating-point multiplications. Figure 5 assumes

that each 32-bit floating-point operand is transferred

individually; figure 6 assumes that the data is spooled with a

block size of 512 bit planes (sixteen 32-bit operands are

transferred to/from the disc at once). If the disc is

sufficiently fast, the operands are spooled (transferred in

blocks), and each value is used in many operations, a totally-

overlapped input-output system can keep the PE array busy 100% of

the time.

5.3.2.5 I/O-CPU Time Ratios: Conclusions

It is not particularly surprising that the MPP can process

data much faster than it can perform input and output. However,

the discrepancy between the input-output speed and the processing

ORIGINAL PAGE 19
OF POOR QUALITY

LJI

0

1, -0000

$FWO

-------------------500

,
,

,
,
,

200

,

,
,

,
,
,
,

,.----- - 100

•

	

^•'•^''	 -------20

	

•	 10

t06	to'	 too	 to,,

. Moo

6
.6awo

N

450000

.37300

a

tote

disc transFer rate

Figure 5: Dependence of YE utilization on transfer rate: unspooled

t .0000

®moo

^dr
. 6mo

N

. 50000

Inoo

W
0.

. Amoo

taco

51

20

!0

120

ORIGINAL PAGE 19
OF POOR QUALITY

0.00001-
...0 .-L	 t0?	 too

disc transfer rate

to°	 tote

utilization on transfer rate: spooled

x

ear

r

'x

flr.
S	 d

speed can be vary largo. This suggests several things.

First, it is absolutely essential that data transfers be

kept to u minimum. Data should be read in and written out only

once if at all possible.	 It is far more important to minimize

the number of transfors than to achieve maximum overlap between

input-output and processing, for a system which performs the

minimal amount of input-output but does not overlap that input-

output with computations is at worst one-half as fast as the

optimum system.

Second, a high-speed secondary memory is Absolutely

essential. The ver y optimistic figures for L and K still

produced a high ratio of input-output time to CPU time. As

delivered, the MPP will instead have a six megabaud link to the

host processor.	 Unfortunately, although this link itself is slow

relative to the MPP processor speeds, the limiting factor in this

system will be the memory uysteims which are attached to the host.

Some standard disc subsystems for the VAX are listed in Table 1

along with their average access times and transfer catas(21.

Considering the analysis of tits proceeding section, discs with

such high access times and low transfer rates (relative to MPP

processing times) will severely limit the performances of the

system.

ORIC:IN-M-	 13

OF POOR QUALITY

1 22

Table 1: Access Times and Transfer Rates for DEC Discs

disc access	 time transfer	 rate
(milliseconds) (kilobytes/second)

RM03 38.3 1200
RM80 33.3 1200
RP06 38.3 806
RM05 38.3 1200
RP07 31.3 1300
RP07-D 31.3 2200

Third, transfers should be performed between the staging

buffer and the PE memories whenever possible. The gap between

the input-output time and the processing time is relatively

narrow when only the staging buffer is involved. When sequences

of complicated operations (e.j. intensive floating-point

calculations) are performed it will be possible to significantly

overlap transfers between the PE array and the staging buffer.

Finally, when it is necessary to transfer data to the

secondary memory it should be transferred in relatively large

blocks. The dominatin, factor in the input-output time to the

disc is the access latency; hence, it is desirable to transfer as

much as possible when input-output must be performed.

5.3.3 Implementation Alternatives

There are two possible implementation schemes for data

migration on the MPP. The transfer of data between memories may

be handled by a memory-management system (and hence be

transparent to the programmer) or it may be directly programmer-

OF POOR QUALITY"
. ro_l

I W

123

specifisd. ORIGINAL PAGC 45
OF POOR QUALITY

5.3.3.1 Automatic Data Migration

Y
Chapter 3 described the implementation of Parallel Pascal

through the intermediate language Parallel P-code. One of the

significant characteristics of Parallel P-code is ii-.s stack

orientation. The amount of memory (excluding dynamically

allocated memory, which is runtime-dependent) which the main
Y

program and each function or procedure require (per call) can be
k

0
determined by the code generator at compile-time. Given an

unbounded memory size, the memory address of the next temporary
r:

u location can be easily determined (it is the address following

the top-of-stack).

Unfortunately, the available memory on the MPP is not

unbounded; on the contrary, it is very small. If an automatic

memory management scheme is to be used, some locations in the
r

main memory must be shared by several different data items.

Hence, the main memory, staging area, and secondary memory form a

three-level memory hierarchy.

Conventional machines often utilize memory hierarchies at

two levels. The first is the addition of a hardware cache memory
d

to supplement the bulk main memory of the machine. This is

usually implemented solely in the hardware of the machine. The

second level is the implementation of "virtual memory", which

migrates data from main memory to secondary (disc) memory. This

allows a program to use a large (virtual) address space without

yf 	 J

124

requiring that all of that address space be physically resident

in main memory at all times. Virtual memory is typically

performed by software, with appropriate hardware support.

The MPP memory hierarchy does not greatly resemble a cache

memory system. Cache memories are usually an order of magnitude

faster than the main memory of the computer and a few orders of

magnitude smaller. For example, in the PDP-11/70 the cache

memory has an access time of 0.3us and a capacity of 2 kilobytes,

while tt.,.e (magnetic core) main memory has an access time of

1.32ys and a typical capacity of 512-1024 kilobytes. In the UPP,

on the other hand, the time to access data from the staging

buffer is approximately two orders of magnitude greater (it

requires 129B cycles rather than B cycles to fetch B bits), while

in the delivered version the main store is equal in size to the

staging buffer. (Even with a full complement of memory, the

staging buffer will only be 32 times larger than the main

memory.) Therefore, consideration of the MPP memory hierarchy as

a cache memory seems ill-advised.

The MPP memory hierarchy also does not greatly resemble a

virtual memory hierarchy. Conventional machines typically

operate in a multiprogrammed environment (Leto several programs

running concurrently). These programs compete for (share) the

main memory and other machine resources. When an executing

program attempts to reference data which is not resident in main

memory a page fault occurs. The operating system transfers the

deGired data from the secondary memory to the main memory, and

ORIGINAL PAGE IS
OF POOR QUALITY

G*

125

when	 it	 is accessible the program is	 restarted.	 While	 the

transfer	 is taking place	 the program is	 suspended and another

program is allowed to	 run.	 In	 the ideal	 case,	 the	 processor	 is

always	 busy even though one or more programs	 is	 currently

v
4,R

blocked.	 The MPP, however,	 is	 not multiprogrammed.	 When the
t

L program is blocked awaiting	 input (or	 output)	 the	 array	 of

processing elements is	 idled.	 As section	 5.3.2	 noted,	 input-

output	 (especially to a secondary memory)	 is	 very expensive.

Without actual runtime experience it is difficult to predict

the type of automatic memory management system which would be

most effective. Without such experience it seems advisable to

consider some qualities that such an implementation might

possess, instead of attempting to fully define the

implementation.

First, because transfers between the staging area and main

memory are the least expensive (for sequences of complex

T

	

	 operutiuns such as floating - point arithmetic it will be possible

to overlap most of the input -output with other computations) the

staging buffer should be used to hold variables and temporary

data which will be needed again, and the secondary memory should

be used only for input of the original problem and output of the

results (or, if necessary, overflow from the staging area).

Second, all transfers between the staging area and the

secondary memory should consist of blocks of data. 	 If necessary,

data may be loading into the staging area before it is needed in

OR G^:'.',AL PAGE IS
OF POOR QUALITY

1
i.

126

order to avoid later disc references (with their long access

latencies). This is analogous to demand prepaging in virtual
t

memory systemsf31. Some form of date restructuring may be used

to improve the clustering of commonly-used locations into

contiguous locations141.

Finally, the stack orientation of Parallel P-code can be

used to advantage. When a function or procedure is called

recursively the data locations corresponding to the previous

activation of that routine become inaccessible (until the

recursively-called routine returns). Temporary locations at any

outer lexical level are also inaccessible until control returns

to the routine which calculated them. If data migration is

necessary, these locations could be used, especially those at the

outermost lexical levels (for which the next reference will be a

relatively long time in the future). If memory planes are shared

by several small arrays (those with dimensions less than the

hardware array size), this method can still be used provided that

memory planes are shared only by variables (or temporary data)

within the same procedure activation.

5.3.3.2 Programmer — Directed Data Migration

The alternative to an automatic memory management system is

a programmer —directed system. Such a system requires the

programmer to be concerned with the implementation details; it is

therefore less portable and somewhat more difficult to use.

However, it has the potential for higher system performance since

ORIGINAL PAGE IS

OF POOR QUALITY

z

r;	 127

^s

no potentially inefficient data transfers are performed " babind

the programmer's back." The initial implementation of Parallel

Pascal on the MPP will use this schema, as described in section

2.3 of this report.

5.4 Refeaences

^w
1. Kenneth E. Batcher, "Architecture of a Massively Parallel

Processor," Ptc oceedings, International Symposium on Computer
Architecture (1980).

2. Peripherals Handbook, Digital Equipment Corporation,
Maynard, Mass. (1981-82).

3. Kishor S. Trivedi, "On the Paging Performance of Array
Algorithms," IEEE Transactions on Computers Vol. C-26(10),
pp.938-947 (October 1977).

4. Jehan-Francois Paris, "Application of Restructuring
Techniques to the Optimization of Program Behavior in
Virtual Memory Systems," UCB/ERL M81/44, College of
Engineering, University of California, Berkeley, CA (18 May
1981).

A

ORIGINAL PAGE 18
OF POOR QUALITY,

lag

6: FAULT TOLERANCE IN HIGHLY PARALLEL

MESH CONNECTED PROCESSORS

6.1 sntroduction

The mesh interconnection scheme has been used on several large scale SD4D

parallel processors. This scheme involves organising the processing elements

(PE's) into a two dimensional matrix such that each PE has data interconnections

with its adjacent neighbors. In a typical organization a PE has connections to 4

near neighbors in the cardinal directions N, S, E and W. In a single instruction

data may be shifted in a single specified direction between all adjacent PE's.

That is, a distributed matrix of data may be shifted one mesh position in parallel.
The main advantage of the mesh scheme is its simplicity and suitability for a
large class of scientific applications. Data interconnections only occur between
adjacent PE's this means that they may be kept very short and laid out on a sin-

gle interconnection plane. The usual disadvantage with this scheme is that data

transfers to distant PE's require a large amount of time since the data can only

cross between adjacent mesh nodes with each clock cycle. However, there .is a

large class of problems including physical system modeling using partial

differential equations and image processing in which the data needed by a PE is

located in its local mesh area and the mesh interconnection scheme is very

efficient.

One potential problem with the mesh scheme is that the failure of any node

in the mesh renders the whole parallel processor inoperable. Current LSI proces-
sor designs involve a mesh with more than 10,000 nodes; with VLSI technology
systems having 1,000,000 nodes and more may be anticipated. For some Ipplica-

tions, for example real-time image processing in a remote inaccessable robot sys-

tem, some fault tolerance is essential.

6.3 Mesh Connected Parallel Processors

An important large scale mesh parallel processor is the Illia IV 111 developed

in the late 1960's. It consists of an 8 x 8 mesh connected set of 64 PEs; each PE
having an ALU with a 64-bit-wide datapath and floating point capabilities. This

architecture is well suited to applications such as partial differential equations.

The implementation of Illiac IV was hampered by the technology of the time.

Hardware failures were anticipated to occur every few hours. The PE's were regu-

larly subjected to an extensive library of automatic tests and were replaced manu-

ally if any faults were detected.

ORIGINAL PAGE 19
OF POOR QUALITY

o ft

129	 ORIGINAL PAGE 19
OF POOR QUALITY

A more recent design, based on LSI technology, is the Massively Parallel Pro-

cessor (AtPP) (2,3) which is currently being developed for NASA by Goodyear
Aerospace and should be constructed by late 1081. The MPP consists of a 128 x

128 mesh of 16,384 PE's; each of which has a 1-bit-wide data path and can
achieve floating point operations through bit-serial algorithms. This architecture

r is designed for image processing applications where a single image may be as large

as a 6000 x 6000 matrix. The MPP processes such an image as a sequence of 128

x 128 subimages. The MPP involves parity checks on each 8 bits of the PE local

memories and has a redundant column of PE's which may be switched in by the

host computer to replace a faulty column. With this fault tolerance the MPP is

expected to run for several hundred hours before requiring manual intervention.

The fault tolerance concepts in this paper will be considered with respect to a

bit-serial PE array scheme or Binary Array Processor (BAP) (4) such as the NIPP.
These concepts may be extended to word parallel designs such as the Illiac IV

type architecture. However, with the constraints that the matrix to be processed

is larger than the PE array and that the algorithms to be implemented are well
formed for the mesh organization, the bit-serial approach has significant advan-
tage over the word parallel approach for equivalent amounts of hardware 151.

A general block diagram for a large scale BAP is shown in Fig. 1. Data pro•

cessing is achieved with the array of PE's. Data is input to and output from the

PE array via the I/O buffer memory which communicates the data to peripherals

and bulk auxiliary storage devices. Instructions to the PE array are issued by a

single high-speed microprogrammed control unit. The whole system syncbroniza-

tion is maintained by a conventional host computer which issues macro instruc-
tions to the control unit. Some feature information may be extracted from the

PE array by the global information extraction mechanism.

A typical organization for an MPP-tike PE is shown in Fig. 2. Data from

adjacent near neighbors is selected by the NN multiplexor. The control lines and

local memory address lines are broadcast to all PE's in the array. The OR bus is

a line from all PE's to the control unit which has a one value if any PE outputs a

one. The I register is used for data I/O; it receives data from the I register of the

adjacent PE to the left and transmits data to the PE on the right.

The I/O buffer memory is vital part of the BAP system, it is responsible for

making reformated data available to the PE array. With the MPP a data matrix

is input to the array as a set of bit-planes. Each bit plane is input along one edge

130

ORIGINAL PACE 19
OF POOR QUALITY

Auxillary Store	 1/0 Buffer
(Oink, Tape etc.)	 Memory

Host	 ControlE:nA
Ca^npu*^ew 	

u
nt
it
t 	 PE Array

Feature
Extrac-
\t Ion c

Binary Array Processor System

Fiq. 1

A

F`

Y

i
i

4j

131

ORIGINAL PAGE 19
OF POOR QUALITY

E —+4 I
	

Wi

To adjacent Near

Neighbor PE's

From	 N

adjacent	 S	 NN
ALU

near	 E	 multiplexor

neighbor	 W

PE's

Local

PE

Memory

address

control

OR bus

Fig. 2. A typical BAP PE organization.

132

ORIGINAL PACE 19
OF POOR QUALITY

of the PE array; one column with each clock cycle. Each row of the array acts as
a shift register. When the complete bit plane has been input it is stored in the PE

local memories in one clock cycle. Fault tolerance in the IJO Buffer can be

achieved with the single error correction-double error detection (SEGDED)

schemes common in many recent large memory systems. For the PE array the

I/O mechanism is like a one dimensional mesh connection; and it will not be

treated as a separate issue for fault tolerance. For a BAP system the I/O could be
achieved by the mesh interconnection hardware; alternatively s separate but basi-

cally similar I/O hardware as shown in Fig. 2 could be used, if neceixa.ry, to avoid

blocking.

The global feature extraction mechanism on the MPP is an OR function over
all PE elements, which outputs a 1 if any PE has a 1. If we have an error detec-

tion mechanism then a similar global OR function would be needed to report an
error to the host processor. Once again these two functiocs will be considered to

be implemented with the same hardware in this paper; such a scheme is used with

the MPP 131. It has been suggested that a more powerful feature extraction

mechanism, such as counting the number of bits set in a bit plane may be cost

effective for future BAP systems 161.

The MPP PE array is constructed with two LSI chips, A PE chip and a

memory chip. The PE chip contains 8 PE's (without local memories) in a 2 x 4

array. Each PE chip has connections to 8 1-bit memories for the PE's and an

additional 1-bit memory for a parity check of the other 8. The total PC array
consists of 33 4-PE wide columns; each column consisting of 128 PE chips. A PE

chip has a control input which, when activated, disables the chip by connecting

corresponding East West pin data lines together. In this way any one of the 33
columns may be disabled to achieved on operational 128 x 128 PE array. When

an fault is detected the faulty column is disabled and the redundant column is

used to replace it.

Faults will be considered here to be of two basic types - local and module. A

local fault may typically be a broken data line or a faulty memory bit whereas a

module fault implies the complete failure of a module, such as a chip, which may
result in a set of related PE's being made inoperable.

Since we are dealing with functionally very complex chips the probability of

a local fault may be expected to be significantly higher than a module fault.

Therefore the main effort of the work here is concerned with local faults as they

I.J...

a
t

i

^z

r

U

133

ORIGINAL PUAI-1,N,
OF POOR Q

are much simpler and cheaper to des! with. However, any practical very large
scale mesh connected processor also needs some fault tolerance at the module
level.

For the MPP, the redundant column scheme is effective for any single
memory chip failure. It is also effective for most PE local failures, e.g. if a data
line breaks in a PE. Therefore the most probable fault causes have been covered.
However, if a catastrophic failure occurs to a PE chip, (module) then the whole
PE array may become inoperable since it is necessary for data to flow through a
disabled chip.

6.3 A VLSI PE Array Organization

For a VLSI system design there are two fundamental chip size limitations (1)

the number of devices which can be put onto a chip and (2) the number of pin

connections which may be made to the chip. A usual characteristic of a VLSI

design is modularity, i.e. a chip consists of a very large number of identical

modules, which is important to minimize the development cost. Finally, with

very large functionally complex chips fault tolerance may be effective to

significantly increase the production yield and the fault free lifetime of the chip.

A possible chip organization for a very large VLSI PE array is shown in Fig.

3. Three different VLSI chip types are involved: a PE ALU chip, a local memory

chip and a PE mesh interconnection chip (MIC).

The PE ALU chip consists of a set of PE ALU 's, each having a limited

amount of local memory. These ALU 's share common ALU-function and address

lines but do not have any data interconnections between each other. The data
access to a PE is achieved by a single pin on the chip which is connected to a
bidirectional bus line. The design of an effective PE with this input/output con-
straint is described in)5). With this design optimal bit-serial processing times for
addition, multiplication and logical ope ► ations can be achieved. The limited size
on-chip local memory may be used for table -look-up applications since it may be
addressed by an ALU register (unlike the external local memory) or for a cache
memory.

The PE ALU chip will be a functionally very dense chip and will contain as
much logic as the VLSI technology will allow. There are no pin connection prob-
lems since only one pin is required for each additional PE.

1/0 Control

Interconnect

ALU Ft,

Addres

134

ORIGINAL PAGE 19
OF POOR QUALITY

From other PE's

VLSI PE Organization

Fig. 3

135

t	 no problem.
4

W

ORIGINAL PACE r

OF POGh QUALITY

The external local ,nemory chip will provide the main local data storage for a

i ::. With the amount of single chip storage which is becoming available with

emerging memory technology, it is possible that one VLSI memory chip could coa-

tain adequate storage for one or even several PE's. The 1-bit wide external PE

memory is connected to the single-bit PE data bus. Once again the limitation

with the memory chip is caused by the functional complexity achieveable with the
VLSI technology; there is no pin connection problem.

The interconnection chip realizes the mesh interconnections between the PE's

and also contains an input/output mechanism for data I/O to the PE array.

Unlike the previous chips this chip is functionally very Simple and the size of the

mesh which can be contained on a chip is limited by the maximum possible

number of pin connections. Each mesh node requires one pin connection to its PE

data bus and also, for a m x n mesh, 2(m+ n) additional data interconnections are

needed to adjacent MIC's.

All the additional logic to achieve error recon6gurability for the PE array is

located in the NHC's.

5.4 PE Fault Tolerance

Both the ALU and external memory chips are functionally very complex and
therefore more likely to fail than an MIC. In this section we consider how to

reconfigure the array if a single PE-external memory combination fails. This

recon6gurability is achieved by modifying the MIC so that it has access to spare

PE's which may be switched in to replace the faulty PE.

A basic non-fault-tolerant NUC organization for a 2x2 mesh subsection of a
PE array is shown in Fig. 4. This chip has a total of 12 data pin connections; 1 to

each of the 4 PE's and 8 to adjacent neighbor MIC's. In general a m x n mesh

MIC would require mn+ 2m+ 2n data pin connections.

The basic logic device which the design of the NHC will be based on is the
selector which is illustrated in Fig. 5(a). A selector has a set of control inputs, C,
which specify by a binary code which of the X data items is to be connected to the

1' data line. Once connected, data may flow in either direction from X to Y or Y
to X. With some logic technologies an additional control input may be needed to

specify the data flow direction. However, with designs considered here, the direc-

tion information is always locally available therefore this additional control line is

x1

x2

x
n

v

N

S
E

W

Fig. 5(b). A simple MIC
mesh node
organization.

{	 136

ORIGINAL PAGE 11
OF POOR QUALITY

N00	 N01

^E 00 ^	 ^PE01

N10	 N11

,jP.,	 y_ e
1 PE 10)	 PE19 1

Fig. 4. A simple 2 x 2 mesh interconnect chip organization.

c

Fig. 5(a). A selector switch.

PE

137

r.

ORIGINAL PAGE 13
OF POOR QUALITY

Each mesh node of the simple MIC shown in Fig. a may be implemented with

a 5-way selector and a 1-hit register as shown in Fig. 5(b). Two clock cycles are

required, with this design, to transfer data between adjacent PE's. In the first

clock cycle the data is output from the PE and loaded into its mesh node P regis-

ter. Then, in the second clock cycle, the PE reads the value of an adjacent PE's P

register. Data may be transferred between more distant PE's by shifting it
through a connected sequence of P registers. In general, a data transfer through a

S	 path of K stages requires K+ 1 clock cycles.

To achieve fault tolerance to a single PE failure we first consider adding a

spare PE to each MIC groulp. A possible organization for such a reconfigurable

MIC is shown in Fig. 6. Each mesh node may be connected to one of two PE's. If

any PE fails each mesh node can be connected to a unique, operational PE.

The details of the modified mesh node design are shown in Fig. 7. A Q regis-
ter and a 2-way selector have been added to each node. The value of the Q regis-

ter specifies which of the two possible PE's the mesh node is connected to. When
a faulty PE is identilled the host computer generates a bit mask which is distri-

buted to the P registers; then the Q registers are loaded from the P registers to

isolate the faulty PE. The task which was in progress when the faulty PE was

detected must be reloaded or restarted.

The above MIC modifications require only two new pin connection to the

MIC. One is the load control and the other is the data connection to the extra

PE. One extra PE must be available to each MIC; however, it is possible for

MIC's to share a PE as indicated by the broken lines in Fig. 6. In this case only

one extra YE for a group of MIC's is needed.

The above technique is easily extended if protection against more than one
faulty PE for each MIC (or group of MIC's) is required. For example, protection

against any two faulty PF , could be achieved by connecting two extra PE's to
the MIC as shown in Fig. S. The PE selector at each mesh node must select

between three PE's, and the Q register must be extended to contain two bits of

information. In the general case, fault reconfiguration for the up to K faulty PE's

requires K extra PE's; each MIC requires K+ 1 more pin connections than for no

protection. Each mesh node in the MIC must contain a K+ 1 way PE selector

and a Q register large enough to address it.

OF POOROF OR QUALITY

138

Fig. 6. A 3 x 3 matrix of interconnection nodes connected to 10 PE's.

I	 f

139

ORIGINAL PAGE 19
OF POOR QUALITY

Fig. 8. Organization for fault tolerance to any two faulty PE's.

4

140

ORIGINAL PAGE iR

OR
POOR QUALITY

6.5 MIC Mesh Node Fault Tolerance

Once the system may be reconfigured for any faulty PE, the next problem

area is the very large mesh interconnection network itself. Fault tolerance is con-

sidered here for the failure of any mesh node or data interconnection in the inter-
connection network.

Mesh node fault tolerance on the MIC can be achieved using a similar scheme
to the MPP global fault tolerance. That is, have a spare column of mesh nodes

which may be utilized when a faulty mesh node is detected. One way in which a

spare column of mesh nodes may be incorporated within an an MIC is illustrated

for a 2x2 mesh MIC in Fig. 9. In the general case with a+ 1 columns the

configuration is specified by a register (not shown in Fig. 9) having two bits for

each column. A possible organization of a mesh node for this organization is illus-

trated in Fig. 10. The two bits from the reconfiguration register are represented

by RL and RR. When RL is set it specifies that the left (W) input to the node

not be connected to the adjacent column node but to the next node to that, i.e. to
skip the node to the left; RR specifies which column node is connected to the (E)

input in a similar way. A bit pattern is loaded into the reconfiguration register
such that one column is skipped. It does not matter what values a disabled !aulty
node may have on its interconnection lines since these lines are never used by the

other nodes. For the rest of this paper the configuration in Fig. 10 will be con-

sidered to be implemented by $ single 7-way selector.

Any external data interconnections pin may be connected to one of two mesh
nodes; therefore it is necessary to have a 2-way selector associated with each node

as shown in Fig. 9. The control for these selectors is derived from the
reconfiguration register contents.

The simple organization shown in Fig. 9 can reconfigure for any faulty mesh
node however, there is no fault tolerance from either a data pin connection failure

or a data pin selector failure. Fault reconfigurability for such failures may be
achieved by adding spare pin connections and selectors, one for each of the four
directions of data connection as shown in Fig. 11. Only the connections to pin

selectors are shown, the interconnections between mesh nodes is similar to Fig. 19.

This organization assumes that the MIC's are themselves connected in a matrix.
Now if any pin selector or connector fails the two remaining pin connections may

be used. The MIC connected to this chip must also use the same data connec-

tions, therefore, we have fault tolerance to any single selector or data connection

a

ORIGINAL
OF POOR

t tolerance to any single mesh node

ORIGI
OF P

Ll

L2

PE

node.

Fig. 11. Pin connector and pin selector organization for complete data
line fault tolerance.

2— G

144

ORIGINAL PAGE IS
OF POOR QUALITY

failure between the interface of two MIC chips. In the general case, this fault
tolerance requires four extra pin connections and pin selectors. Furthermore,

except for selectors at the end of the rows or columns, column pin selectors are 3-

way and row pin selectors are 4-way.

To complete the reconfigurable mesh node design the PE's must be connected

U.- the enabled mesh nodes. One way of doing this is illustrated in Fig. 12. For a

2x2 active mesh there is one extra column of mesh nodes and one extra PE. Since
any mesh node may fail the node-PE selector is associated with the PE rather

than the mesh node in contrast to the PE-only fault tolerance shown in Fig. 6. In

the general case, each PE must be connected to a mesh node by either a 2-way or

a 3-way selector to the mesh nodes.

Finally, we note that there is a simple extension to this scheme to achieve

reconfiguration for any two faulty mesh no . s. This may be done by having
either two extra columns on one extra row and one extra column. In either case

all the mesh nodes require an additional two data connections. In general a
second spare column will be cheaper than an additional row. For example for an

a x n MIC a spare row requires a+ 1 mesh nodes whereas a spare column only

requires a mesh nodes.

6.6 Module Fault Tolerance

Fault tolerance to catastrophic chip failures, such as a broken power line or

command line may be achieved by organizing the total array into a set of

modules. Each module contains a set of related PE's and fault tolerance is

achieved by having a spare module available when one fails.

For the discussions in this section an example array design will be considered,

however, the techniques discussed here are general in nature and may be applied

to system with very different design parameters. The example system could be

constructed with present day technology and is for a 1000 x 1000 PE array. The

three PE chip types have the following characteristics: each PE chip contains 16
PE's each NQC contains a 4x4 matrix of active mesh nodes and there is a memory

chip for every 4 PE's. Fault tolerance will be considered at two module levels (a)
r.he chip level and (b) at the group level where each group consists of a set of

chips.

is

M	 145

ORIGINAL Fj,^"S'
OF POOR QUALIN

I

Fig. 12. PE-mesh node interconnections for both PE and mesh nude fault
Colerance.

^x

146

ORIGINAL PAM IS
OF POOR Q' y Ac ITv

^D. ,	
Chi p Level Fault Tolerance

A catastrophic fault could occur in any chip, the PE chip is considered first.
The smallest possible group size consists of the following, ore MIC, one PE chip
(plus an extra PE for fault tolerance) and 4 memory chips (plus one bit for fault
tolerance). This group, therefore involves a 4x4 matrix of active PE's. If the PE
chip fails then it is necessary to replace the whole grout..

As an alternative, a larger group may be used involving 256 active PE's in
which the PE chips are distributed between the MIC's. Thir group consists of 16
MIC's, 17 PE chips and 68 memory chips. Each PE chip contributes one PE to
every MIC in the group; therefore, since each MIC has fault tolerance to one
faculty PE, a single PE chip failure can be handled locally within the group. The
cost of PE chip fault tolerance within the group is more complex inter-chip data
routing.

The total failure of a memory chip would render 4 PE's inoperable in our
example. However, the memory chips may be distributed between MIC's in a
similar way to PE chips in order to achieve group local fault tolerance.

If an MIC fails completely then the whole group is rendered inoperable.
Therefore we need a mechanism to selectively enable a group in the total array.
One approach is to make a group in the form of a column of PE's and have a
spare column of PF`, i.ci m similar scheme to the MPP. In our example design, a
group could be orga^iim--? rya: a 64x64 matrix of PE's and 16 groups would consti-
tute one 4 PC-wide ed uwri of the PE array; 256 such columns would be required

for the complete PE ari xy.

To allow for the disabling of a column each MIC needs to have a spare set of
data selectors and data pin connections for all data lines in the E/W directions.
This spare set would bypass the adjacent column and link with the spare data
connections on the following column. In this way any single column may be com-
pletely isolated. Since these are 256 active columns it might be advantageous to
have more than one spare columns. Then multiple MIC chip failures could be
dealt with as long as they do not occur in adjacent columns.

W

147

ORIGINAL. PAGE 13
OF POOR QUALITY

6.8 Cost of MIC Fault-Tolerance

The cost of implementing the fault tolerance schemes with the MIC has been

estimated using three measures (1) the number of selectors, (2) the number of

internal data lines and (3) the number of data pin connections. The number of

selectors may be considered as a measure of the functional complexity of the chip.

No weight is attached to the complexity of each selector and the small amount of
control logic is not considered. Although the mesh node selectors are more com-
plex for the fault tolerant design this is balanced by the many additional simplier

selectors which are used for PE's and data pins. The number of internal data

lines is also a measure of chip complexity since they may consume a large propor-

tion of the chip area. The data pin count gives a good indication of the pin

requirements of the MIC since less than 10 additional pins will be required for con-

trol and power.

The costs for various fault tolerant MIC configurations are expressed for a m

x n mesh design in Table 1. The first row in Table 1 is the cost for the simplest

MIC without any fault tolerance. The second row is for single PE fault tolerance

as shown in Fig. 7. The third row is for an MIC with complete single mesh node

and data interconnection fault tolerance as illustrated in Figs. 9-12. The last two

rows include the cost of an extra se ,,- +,f left and right data connections and selec-

tors for group fault tolerance. The first set of figures is for a spare column within

the -,IIC and the second set of figures is for a spare row within the MIC. The

spare row concept is slightly cheaper than a spare column for a square mesh i.e.

when n=m.

Table 1: MIC cost for an n x m active mesh

Fault Selectors Internal Data Data Pin
Tolerance Lines Connections

None mn 3mn+ m+ n mn+ 2+ 2n

single PE 2mn 4mn+ m+ n+ 1 mn+ 2m+ 2n+ 1

single mesh 2mn+ 2m+ 3n+ 5 6mn+ 7m+ 7n- I mn+ 2m+ 2n+ 5

node

group (a) 2mn+ 4m+ 3n+ 7 6mn+ 17n+ 7n-0 mn+ 4m+ 2n+ 7

group (b) 2mn+ 5m+ 2n+ 7 6mn+ 15m+ 7n-5 mn+ 4m+ 2n+ 7

148

ORIGINAL
R OF p(30R QUALITY

These costs are shown graphically in Figs. 13-16. In Fig. 13 the number of
selectors for the MIC is shown. While a significant increase in selectors is needed
for fault tolerance the chip is still not very complex. For the example system of
16 active nodes only 67 selectors are needed for group fault tolerance; when
n=m=10, i.e. 100 active nodes, only 277 selectors are required. In Fig. 14 we see 	 ~^'
that there is a large increase in internal data lines when mesh fault tolerance is
introduced, however the total number of data lines is still quite reasonable. The
limiting size design parameter for the MIC is the number of pin connections; in
Fig. 15 it is shown that there is only a small increase in total pin connections 	 5
when fault tolerance is introduced. For the example 16 node MIC 21 data pins
are required without fault tolerance and 34 data pins are required for group fault
tolerance. When there are 100 active nodes on the MIC the data pin requirements
are 140 without fault tolerance and 167 with group fault tolerance.

6.9 Fault Detection

The MPP PE chip for 8 PE's has an additional memory chip for parity infor-
mation. This mechanism provides good fault detection for the local memory
chips. With the VLSI chip organization proposed here a similar mechanism could
be implemented. In this case the MIC would monitor all PE local memory reads
and write and store the parity in a separate memory chip. For fault tolermce
each MIC may select between two parity memory chips and one spare parity
memory chip for each group would be required.

An alternative fault detection scheme is to use additional parity bits with
each data operand. The advantage of such a scheme is that data parity may be
checked after any data transfers, either I/O or interprocessor, in addition to any
memory data transfers. For A bit-serial system this could be implemented with
very little hardware in the PE ALU. A single 1-bit parity register and an
exclusive-OR gate as shown in Fig. 16(a) is all that is needed for a multibit regis-
ter ALU. As each operand is read its parity is computed in the T register; then all
T registers are output to the global OR function which will report any parity
errors back to the host processor. The T register is selected by the local memory
address mechanism for setting it to an initial value or reading its contents; there-
fore, no additional pin connections to the ALU chip are required. This same
mechanism is used to generate the parity when a result is stored in local memory
or transferred to another PE.

149

ORIGINAL PAGE 19
OF POOR QUALITY

Us

0

U
0

1.0

CS
%W

0

ttY

am

I"

r6

n

0
I
	

3	 9	 ?	 9	 It
n

Fig. 13. MIC selector cost for an n x n active mash. (a) no fault
tolerance; (b) PE fault tolerance; (c) mesh node fault
tolerance; (d) group fault tolerance.

: n active mesh; (a) no fault
,e; (c) mesh node fault toler-

gm

."A

150

uRIGINAL PAGE IS
OF POOR QUALITY

NO

OR

rso

U)

G

.^ 60

t0
u

w
m0

O
M

In
T.

lag

0
l	 8	 7	 7	 9	 it

n

In

M

ma
0 In
41
U
v
a
o
ao IIO

C^

a Ie

w K
O
b

a

a

0
I 8	 s	 7	 9	 ti

n

{

151

ORIGINAL PAGE 15
OF POOR QUALITY

Fig. 15. MIC data pin connections for an n x n active mesh. (a) no fault
tolerance; (b) PE fault tolerance; (c) mesh node fault tolerance;
(d) group fault tolerance.

152

ORIGINAL PAGE IS

OF POOR QUALITY

PE data bus

(a)

operand
select

PE data bus

(b)

Fig. 16. Bit-serial parity hardware.
(a) for a PE with multi-bit registers.
(b) for a simple PE with 1-bit registers.

is

153

ORIGINAL PAE9

i	 OF POOR QUALITY

With simple bit-serial PE ALU's having only 1-bit registers it is necessary to

interleave the fetching and storing of operand bits. For example, an integer add

operation requires first the least significant bit of the operands to be read and the

first bit of the result is stored, then the next least significant bits are dealt with
and so on. To deal with this data flow the parity hardware shown in Fig. 16(b)

may be used. Three parity registers are used in this case; TI and T2 compute and

j	 check the parity of the two operands while T3 computes the parity bit for the

result. Two extra pin connections are needed to each PE ALU chip to specify

1	 which operand the current bit on the data bus belongs to.

An important feature of tagging data with parity bits as described above is
that, like other bit serial operations, the data format including the number of par-
ity bits is completely user programmable. The cost of a large amount of parity

i
checking is a reduction in effective local storage and an increase in processing

` time. The cost of the parity checking is proportional to the number of data bits

associated with each parity bit. For 32-bit operands this cost is fairly small i.e. in

the order of 3% loss of storage and increase in processing time while for 1-bit logi-

cal data this cost may be 100%. The user has the freedom to select where and

}	 how much parity checking is to be done.

Once an error has been detected, either through data parity or by running

diagnostic programs for the PE's the host processor must reconfigure the PE
array. It isolates the problem by finding which column, and when possible, the
node PE which is the source of the error, and generates the bit masks, using the

PE array when possible, to reconfigure the array.

6.10 Conclusion
The problem of fault tolerance in highly parallel mash connected processors

has been considered and methods of protecting against the most probable faults in

the PE array have been proposed.

Fault tolerance at different levels has been considered. It has been shown

that fault tolerance to the most error sensitive components, i.e. the functionally

complex PE ALU's and local memory chips, may be achieved at a low cost at the

local level. More extensive but less common errors such as catastrophic chip

failures, broken command lines including a faulty OR bus line, usually need to be
dealt with at the more expensive module or column level.

154

The cost of a high degree of fault tolerance can be achieved with a moderate
amount of additional hardware. Such hardware may become a very important

part of VLSI PE arrays having 1,000,000 or more nodes or in applications for

smaller arrays in situations where high reliability and fault tolerance is necessary.

ORIGINAL PAGE i$
CF POOR QUALITY

A

la

155

®;ttts ^vrL I=

6.11 References	
OF POOR DUALITY

I. W. J. Bouknight, S.A. Denenberg, D. E. McIntyre, J. M. Randall, A. H.
Sameh and D. L. Slotnick, "The Illiac IV System," Proceedings of the IEEE,
Vol. 60, No. 4, April 1972, pp. 369-398.

K. E. Batcher, "Design of a Massively Parallel Processor," IEEE Transac-
tions on Computers, Vol. C-20, No. 0, September 1980, pp. 836-840.

3.	 P. A. Gilmore K. E. Batcher, M. H. David R. W. Lott and J. T. Burkle ,Y
"Massively Parallel Processor: Phase 1 Final Report," Goodyear Aerospace
Technical Report, 1979.

t	 a.	 A. P. Reeves, "Parallel Computer Architectures for Image Processing," 1981
International Conference on Parallel Processing, Bellaire, Michigan, August

25-28,1981.

5. A. P. Reeves, "The Anatomy of VLSI Binary Array Processors," in
Languages and Architectures for Image Processing, M.J.B. Duff and S. Levi-
aldi eds., Academic Press 1981, pp. 267-274.

6. A. P. Reeves, "On Efficient Global Information Extraction Methods for
Parallel Processors," Computer Graphics and Image Processing, Vol. 14, pp.
150-169,1980.

156

ORIGINAL PAGE 19

OF POOR QUALITY	 7- CONCLUSIONS

Parallel Pascal, an initial high level lanquaQe for the MPP, has been

specified with surprisingly few extensions to the base Pascal Language. It

has been implemented on conventional computers via a translator and, for the

MPP, the front end of the compiler which generates Parallel P-Code has been

developed. The suitability of the language notation has been demonstrated

by program examples of typical MPP algorithms. Several useful algorithms have

been developed for the MPP including fast median filtering and efficient,

bit-level arbitrary function implementation.

Other high level languages have been specified for the MPP including a

Parallel Fortran and a Parallel APL. The availability of the Parallel P-Code

language and a code generator for Parallel Pascal should greatly simplify the

construction of a compiler for these languages; only a front end which compiles

the source language into Parallel P-Code is needed. If Parallel P-Code is

used as common intermediate language then programs written in one language

will be able to call functions and procedures written in a different language.

A considerable effort was made to carefully design the Parallel P-Code

language. This intermediate lanquaQe is at a hiaher level than conventional

P-Code since it must deal with the more complex environment of a parallel

matrix processor; i.e., a host processor and a PE array. Arrays and record

data structures are described by descriptors rather than offsets so that the

selection of the memory system on which they reside may be made by an optimizer

or code generator. Code generators may be based on Parallel P-Code for many

other parallel processors in addition to the MPP. The linear format of

Parallel P-Code is a carry over from its P-Code compiler origins. The experience

gained from developing Parallel P-Code suggests that for a future intermediate

langua ge a parse tree structure format might be more appropriate. This is because

of the many different data aggregate structures which occur internally in a

parallel language program.

157	
ORIGINAL PAGE 19

OF POOR QUALITY

Architectural extensions to the MPP PE desiqn have been proposed which

would greatly enhance the PE's performance. The construction of such PE's

is feasible with todays VLSI technology; furthermore, much larger, fault

tolerant PE arrays could now be constructed. The perrormance of the initial

MPP for the benchmark image processing tasks will obviously be strictly limited

by the completely inadequate input and output facility of the host VAX

computer and disk. If the 1/0 problem is solved then the next bottleneck

is the small I K bits of local PE memory. However, there is an important

set of large scale scientific tasks which could be efficiently implemented

on the MPP (with a larger PE local memory) which are so computation intensive

that the current 1/0 speed would not be a problem. Without a larger local

memory, a MPP with a high speed disk, large stagina buffer and efficient

spooling mechanism may offer an alternative solution for these tasks.

Pascal was chosen as the most suitable base lanquage, however, it also

has some problems. The major problems, which were inherited by Parallel

Pascal, are (a) user defined functions and procedures are constrained by strong

typing to operate only on a single specified array size and (b) there is no

separate compilation facility.

The fixed array size problem is a very frustrating limitation that makes

the implementation of general purpose library functions very difficult. There

have been many solutions proposed for this problem, one of the best of which

is the conformant array schema which has been proposed for the next Pascal

standard. This feature allows the actual index ranqes of an array passed as

an argument to be determined at run-time. However, the rank (number of

dimensions) of the arrays is still fixed at compile time. If this becomes a

standard then it could be incorporated into Parallel Pascal without any

problems. For efficient compilation a further minor restriction may be that the

set of all possible subranges to be passed as ar quments should be determinable

at compile time. Other possibilities exist before a Pascal standard is

Ise

established; for example, a preprocessor could be used to make multiple

variant copies of a procedure which is called with different size arguments.

The lack of a separate compilation facility means that libraries cannot

be used in the usual way. Also, large proqrams take a long time to compile

since all functions and procedures must be recompiled with every compilation.

Several proposals have been made for an external function and procedure

facility for Pascal but none has yet been accepted as a standard. Once a

standard is developed it should not be difficult to incorporate into Parallel

Pascal. Until a standard is developed a mechanism (preprocessor) should

be developed for Parallel Pascal which enables the use of libraries and also

permits library functions to deal with different sized arrays. It may be

possible to store the libraries in Parallel P-Code form,ther much of the

recompilation overhead for large programs can be avoided.

The Parallel Pascal implemented on the MPP will have the initial restriction

that the last two dimensions of parallel arrays must have 128 elements to

match with the MPP PE array size. The initial implementation of Parallel

Pascal may have some further restrictions to simplify and speed the develop-

ment of the MPP code generator. More work needs to be done in this area.

An optimizer should be developed to make Parallel P-Code qenerated by the

compiler more efficient for the MPP. Also other design options for the code

generator should be explored such as the location of program code (MCU or

VAX) and the prefetchinq of data from secondary storage. These options may

be better explored once the initial code generator and the MPP are operational.

In order to make the MPP a more complete system which is convenient to

use a library facility needs to be added to Parallel Pascal, as mentioned

above, and a library of commonly used, efficiently coded functions needs to

be developed. Initially this library could be very quickly established with

URIiGINAL PAGE IS

OF POOR QUALITY

. ,'

}

159

maximum flexibility by programming the functions in Parallel Pascal. '

key function q should be recoded in assembler language in order to achii

the maximum performance of the MPP. Since the MPP will frequently be

limited by the input/output requirements the library should include an I/O

spooling system such as the one described in Section 2.

ORIGINAL PA ^ . IS
OF POOR QUALITY

R

A

7

a^

i

w
160

E

ORIGINAL PACE I

•	 OF POOR QUAL11

APPENDIX A: PARALLEL PASO

A.1 Overview

Parallel Pascal is a high-level

standard Pascal, for parallel matrix processors. The philosophy

of the standard language was a major factor in the choice of

extensions. In the following description of Parallel Pascal,

familiarity with standard Pascal is assumed. (Standard Pascal is

described in reference 1. A more recent definition is given in

reference 2.1

A.2 Declarations

Each program, procedure, or function block in a Parallel

Pascal program consists of a (possibly empty) set of declarations

followed by a set of instructions. The declarations are grouped

together according to their function: statement label

definitions, constant definitions, type definiti•-)ns, and variable

definitions.

LA

161

a ORIGINAL F'w ^,^ ►5
OF POOR QUALITY,

,- these definitions; 	 however,	 two extensions	 are	 provided:	 subrange

constants	 and	 parallel array	 tP	 Y	 Y es.P

r
r A.2.1	 Constant	 Subranges

A

Standard	 Pascal uses	 the syntax

cone[
___Tdentifier	 value;

' to associate	 "value"	 with the named	 "identifier".	 In

`- standard	 Pascal,	 " value" 	 must	 be either a	 literal or a

(possibly	 signed)	 previously - defined	 constant	 identifier.

tit
^t Parallel	 Pascal	 extends	 the definition of 	 a constant	 to

include a constant subrange. 	 Constant	 subranges are used	 in

R
array	 indexing	 (described	 below).	 Effectively the definition of

r

an	 identifier as	 a constant	 subrange	 associates	 two	 values	 with

r the	 identifier	 - conceptually	 these	 represent	 a consecutive	 range

of values. The syntax is:

const
identifier - low .. high;

where "low" and "high" are either literals or (possibly

signed) previously - defined constant identifiers. As an example:

const
mpplow . 0;
mpphigh . 127;
mppidx - mpplow..mpphigh;

	

i	 associates the integers 0 and 127 with the identifier " mppidx' .

	

wi	 When used in an array indexing expression, " mppidx " represents

	

'N	 the ordered set of integers (0, 1, 2, ..., 126, 127).

W

,..s_e.,.

^f

}}
y

i 162

ORIGINAL. P
OF POOR QUALITY

A.2.2 Parallel Array Types

Standard Pascal specifies an array type definition

syntax:

type
newtype - array [indextype J of aeltype;

where "newtype" is the name of the new array type,

" indexrange " is a type expression (either a subrange

scalar type) defin' . ng the type of the indices, and "ae

the type of the array elements.

On a parallel matrix processor, it is common to store some

arrays on the non-parallel host machine (or in the scalar control

unit) and some in the (parallel) hardware array. Parallel Pascal

provides the reserved word parallel to allow the programmer to

specify the memory in which an array should reside. A parallel

array is defined with the syntax:

type
newtype - parallel array [indextype] of aeltype;

Aside from the memory in which they reside, parallel arrays

and "ordinary" arrays are treated identically in Parallel

Pascal. The parallel keyword exists only to provide a means for

the programmer to give the compiler a "hint" as to a variable's

usage.

v,

11^ ,

163

ORIGINAL PACE 13

A.3 Array Expressions 	
Of POOR QUALITY

i

The principle difference between standard Pascal and

Parallel Pascal is that Parallel Pascal permits the specification

of array expressions. In other words, arrays may be added,

multiplied, compared, etc. as aggregate quantities rather than

element-by-element. In order to deal with arrays, and sections

of arrays, as aggregate units, Parallel Pascal provides

extensions to standard Pascal's array indexing mechanisms.

As in standard Pascal, a scalar (non-array) expression may

be used as an index. Optionally, a subrange constant may be
i+

added to the scalar expression. The subrange addition is

 specified by the special operator "0" to prevent ambiguity when
F

a compiler (or human) is parsing the program. The subrange

constant may either be an identifier defined with a conut
R r

statement (see above) or a literal subrange - two constants

separated by the symbol If the scalar expression is zero

it may be omitted. As an example, if the array "m" is defined

by:

var
m: array [1..10] of integer;
is integer;

then the expression

m[i01..51

specifies the following subset of 'gym":

m[i+l]	 m[i+2]	 m[i+3]	 m[i+41	 m[i+5]

164

CRIG"any.

OF POOR QUALITY

Finally, if it is desired to select the entire range of an

index, the index expression may be omitted entirely. Hence, for
.a

m" defined above, either of the expressions

m [I or	 m

will select the entire range of the array.

Parallel Pascal also provides a mechanism whereby the

individual bits of an integer array element can be accessed.

This mechanism is known as bit indexing. Since the form in which

numbers are represented varies widely from machine to machine,

bit indexing is inherently a very non-portable feature; however,

the availablility of this feature may allow the programmer to

avoid the use of assembly-language code which would be even less

portable and more difficult to write, debug, and maintain. The

bit index follows the "regular" indices and is pre%eeded by a

colon:

arr[2,3:4] - select bit 4 of arr[2,31
arr[:O] - select bit 0 of all elements of 'parr"

Bits are numbered from zero, with bit 0 considered the lowest-

order bit.

In order to prevent ambiguity, when arrays are used together

in an expression they must be conformable. (Additionally, the

array elements must be type compatible, as in standard Pascal.)

Two arrays are conformable if they have the same rank (number of

dimensions) and the same shape. additionally, if the index

ranges of the arrays are not identical, then the non-matching

i

165

ORIGINAL PACE IS

OF POOR QUALITY

index range(s) of at least one of the arrays must be exptictly

specified.	 :,able 1 illustrates the conformability of two arrays

of the same size but with different index ranges.

Table 1: Conformability Examples

a: array (1..51 of integer;
b: array (0..41 of integer;

a	 b	 not conformable (implied ranges do not match)
a	 b(@0..41	 conformable (explicit range for "b")

a1@1..21	 b	 not conformable (shapes do not match)
a(@1..51	 b(3U..41	 conformable

A.4 Standard Functions and Procedures

A.4.1 Elemental Functions

Standard Pascal defines a number of standard functions to

perform input/output, type conversion (e.$* truncating a real to

an integer), and to perform common mathematical computations

(e.A. cosine function).	 Parallel Pascal considers these

functions to be "generic" in the sense that they may operate

upon an array of any shape. For these functions, called

elemental'' because they treat each element of the array

independently, the value returned by the function is the same

shape as the function argument. 	 'For example, given the

definitions:

't	 s

166

ORIGINAL PAGE M

OF POOR QUALITY
var

sine: array (1..101 of real;
angle: array (1..101 of real;

the following computes the sine function for each element of

angle" and stores the result in the corresponding e'.ement of

% % sine" :

sine	 sin(angle);

Table 2 summarizes the elemental functions.

Table 2: Elemental Functions

syntax meaning

type conversions
trunc(x) truncate real to integer
round(x) round	 real	 to integer
ord(x) ordinal value of x	 (for	 scalar	 types)
chr(x) character with ordinal value 6

arithmetic functions
abs(x) absolute value
sgr(x) square	 (i.e.	 x)
sqrt(x) square	 root (i.e. ,/x)
exp(x) exponential	 (i.e. ex)
ln(x) natural logarithm
sin(x) sine	 function
cos(x) cosine	 function
arctan(x) arctangent function

miscellaneous
odd(x) boolean:	 true if	 x	 is	 odd
eof(f) boolef.n:	 true if	 at	 end-of-file	 on file	 f
eoln(f) boolean:	 true if	 at	 end-of-line	 on	 file	 f
succ(x) successor of	 x (if	 defined)
pred(x) predecessor	 of x	 (if	 defined)

167

ORIGINAL PAGE IS
A.4.2 Transformational Functions OF POOR QUALITY

In addition to the elemental functions, Parallel Pascal also

provides some "transformational" functions, so named because

they perform transformations upon the entire array rather than

element-by-element. Table 3 summarizes the transformational

functions, which are discussed in more detail below.

Table 3: Transfo.mational Functions

syntax meaning

e	 t	 array,	 S1,	 92, ...,	 n ena-off shift Jata within array
rotate(array,	 S1,	 S2, ..., Sn) circularly rotate data within array
expand(array,	 dim, size) expand array along specified dimension
transpoee(array,	 11 1, D2) transpose	 two dimensions of	 array
sum(array,	 D1,	 D2 0 ..., Dn) reduce array with arithmetic sum
prod(array,	 D1,	 D2, ..., Dn) reduce array with arithmetic product
all(array,	 D1,	 D2, ..., Dn) reduce array with Boolean AND
any(array,	 D1,	 D2, ..., Dn) reduce array with Boolean OR
max(array,	 D1,	 D2, ..., Dn) reduce array with arithmetic maximum
Imin(array,	 D1	 D2 1 ... Dn) reduce array with arithmetic minimum

The functions "ehift" and "rotate" are used to move data

within an array. These two functions have the same syntax; they

differ in that "shift" performs an end-off shift of the array

(with zeros shifted in at the other end) whereas "rotate"

performs a circular rotation along the specified dimensions. The

function call specifies the array to be operated upon and the

amount that each dimension is to be moved. As an example, given

the definition

var
a,b: array (0..127, 0..1271 of integer;

168
X

k

d

ORIGINAL F — L E^

the statement 	 OF POOR QUALITY

a	 shift(b, 0, 3);

is functionally equivalent to (but much faster than):

for i :- 0 to 127

	

--T
for j	 0 to

a(i,j] •.

	

for j	 125
ali,j] :.

and;

do

124 do
bli,j+3];

to 127 do
0;

The "transpose" function is used to transpose an array

about two specified dimensions. If only one dimension is

specified, the array is "flipped" about that dimension. In

order to determine the shape of the result at compile-time, the

dimensions about which the transposition are to take place must

be specified by compile - time constants.

The shape of an array may be altered by the "expand"

function. The arguments to this function are the array to be

operated upon, the new dimension along which the expansion is to

take place, and a type specification. The array is expanded

along the indicated dimension. If the rank of the array is n,

then the second argument to "expand" can be at most n+1. The

dimension along which the expansion is to take place must be a

compile-time constant, in order to ensure that the shape of the

result can be determined at compile-time.

The functions "sum", "prod", 'gall", %% any", "max",

and "min" are used to reduce an array along a specified set of

Y

169

ORIGINAL rA%w IS
OF POOR QUALITY

dimensions. These functions differ only in the reduction

operation that they perform. The arguments to a reduction

function are the array to be operated upon an a list of

dimensions over which the reduction is to be performed. In order

to ensure that the compiler can determine the shape of the

result, the dimensions must be compile-time constants. The first

dimension of an array is numbered 1 (not 0). As an example,

given a two-dimensioal array "a",

sum(a,1,2)
0i

computes the arithmetic sum of all of the elements in ""a",

while

max(a,2)

produces a vector consisting of the maximum element in each row

G '	
of " a" .

a.

-
A.4.3 Standard Procedures

Like standard Pascal, Parallel Pascal also provides a set of

standard procedures for file handling, dynamic memory allocation,

and data transfer. Table 4 summarizes the available standard

procedures.

s
w

4

170

ORIGINAL FACE 13
OF POOR QUALITY

Table 4: Standard Procedures

syntax meaning

fLIs handling procedures
put(f) append	 the	 buffer variable	 to	 file	 f
get(f) get	 a new buffer	 variable	 from file	 f
reset(f) reset	 file	 f	 for	 reading	 (rewind)
rewrite(f) prepare	 file	 f	 for	 writing

yaam c smorx allocation
new(p) allocate	 storage,	 place address	 in	 p
new(p,t1,..9tn) as	 above,	 but	 fix record	 variants
dispose(p) release	 storage	 described	 by	 p

data	 transfer	 procedures
pack(a,i,z) pack	 i elements	 of	 a	 into	 z
unpack(z,a,i) unpack	 i elements	 of	 z	 into a

A.5 Control Flow

In addition to the standard Pascal control structures (if,

case, while, repeat-until, oto), Parallel Pascal provides the

where statement for conditional assignment to arrays according to

a controlling expression. The syntax is

where array-expression do
statement

otherwise
statement

where the otherwise and the second controlled statement may be

omitted.

The execution of a where is defined as follows. First, the

contrn],]i,n,S expression is evaluated to obtain a Boolean array

(mask array).	 Next, the first controlled statement is evaluated.

Array assignments are masked according to the mask array computed

W

ORIGINAL o .	 171

OF Poor} QUALITY

above. Finally, if thersis a second controlled statement, it is

evaluated. Array assignments within the second controlled

statement are masked by the inverse of the mask array.

where statements may be nested, provided that all of the

controlling array expressions are conformable and type

compatible. The effect of a where statement is local to the

procedure or function in which it appears - it does not affect

the execution of any procedures of functions called from one of

the controlled statements.

L.

172

ORIGINAL FACE 13

OF POOR QUALITY

A.6 Parallel Pascal Grammar

The metalanguage for this grammar is as follows:

1. The left-hand-side of each production is separated from its

right-hand-side by the symbol ::- .

2. Nonterminal names are represented directly.

3. Literal symbols are underlined. In cases where confusion

with metasym:, ols is possible, literals are enclosed in

double-quote marks ".

4. The vertical bar I represents a choice between alternatives.

5. Parentheses () enclose a selection of constructions which

are separated by vertical lines.

6. Square brackets 11 enclose a construction or choice of

constructions which may occur zero or one times in the
production.

1. Curved brackets () enclose a construction or choice of

constructions which may occur any number of times.

letter	 al bicldlelflglhliliiklllminlolglglrlsltlulvlwlxiyiz— — — — — — — — — — — — —	 — — — — —

digit ::- 01112131415!61718!9

special-symbol ::- andlarraylbeginicaseiconstldivldoldowntolelselend!
f.1.xRI€c^r.lf^in.ct^l ^oto li_!€_a I1^lmc^dini^inot!

oft ap ckediparallellprocedurelprogramlrecord ► repeat!
setlthenitoitypeluntillvariwhilelwith

identifier ::- letter (letter I digit)

[

173

p	
ORIGINAL, F.,

OF POOR QUALI "Y

directive ::- letter (letter I digit }

digit-sequence ::- digit (digit)
unsigned-integer ::- digit-sequence
unsigned-real a:•

unsigned -integer - digit-sequence [a scale-factor J
unsigned-integer a scale-factor

unsigned-number ::- unsigned - integer I unsigned-real
scale-factor ::- signed - integer
sign ::- +I-
signed-integer ::• (sign J unsigned - integer
signed-.real	 (sign I unsigned-real
signed-number ::- signed-integer I signed-real

label ::- digit-sequence

character-string	 ' string-element { string-element } '
string-element •:- apostrophe-image I string -character
apostrophe-image ::• "
string-character	 one-of-an-implementation-defined-set-of-characters

block ::- label-declaration-part
constant-definition-part
type-definition-part
variable -declaration-part
procedure-and-function-declaration-part
statement-part

label-declaration-part 	 [label label {	 label }	 J

constant-definition-part	 } cod nst constant-definition
{ constant -definition ;

type-definition-part ::• (type type-definition
{ type-definition ; }

variable-declaration-part	 [var variable-declaration
(variable-declaration ;) 7-

procedure-and -function-declaration-part ::-
{ (procedure-declaration I function-declaration) ; }

statement-part ::- compound -statement

constant-definition	 identifier - constant
constant ::- subrange-constant I scalar-constant
subrange-constant ::- scalar-constant .. scalar-constant !

subrange-constant-identifier
scalar-constant	 [sign j (unsigned-number I scalar-constant-identifie'

character -string k«
scalar-constant-identifier ::- constant-identifier;;
subrange-constant-identifier ::- constant-identifier
constant-identifier ::- identifier'

:

174
ORI POOR QUALITYOp

type-definition ::- identifier - type-denoter
type-denoter ::- type-identifier I new-type
new-type ::- simple-type I sti-.sctured-type I pointer-type

simple-type-identifier ::- type-identifier
utructured-type-identifier ::- type-identifier
pointer-type-identifier ::- type-identifier
type-identifier ::- idenifier

simple-type	 ordinal-type I real-type
ordinal-type	 enumerated-type I subrange-type I integer-type

Boolean-type I char-type I ordinal-type-identifier

enumerated-type ::- "(" identifier-list ")"
identifier-list	 identifier { , identifier }

subrange-type ::- scalar-constant to scalar-constant

structured-type ::- [packed] unpacked-structured-type
structured-type-i enti ier

unpacked-structured-type	 array-type 1 record-type I
set-type I file-type

array-type ::- [parallel) array "[" index-type { , index-type
of component-type

index-type ::- ordinal-type
component-type ::- type-denoter

record-type ::- record [field-list [;]] e,id
field-list	 fixed-part [; variant-part] ! I variant-part
fixed-part ::- record-section { ; record-section }
variant-part ::- case var;:ant-selector of variant [; variant
variant-selector ::- [tag-field	 J tag-type
tag-field ::- identifier
variant	 case-constant-list	 "(" [field-list [;]] ")"
tag-type	 ordinal-type-identifier
case-constant-list ::- case-constant { , case-constant }
case-constant ::- constant

set-type	 set of base-type
base-type ::- ordinal-type

file-type ::- file of component-type

pointer-type ::- f domain-type I pointer-type-identifier
domain-type ::- type-identifier

variable-declaration ::- identifier-list : type-denoter

variable-access ::- entire-variable I component-variable I
referenced-variable I buffer-variable

175	 T

i.e

ORIGINAL. 1 , A .w 10

OF POOR QUALITY

m

entire -variable ::• variable - identifier
a"	 variable - identifier ::- identifier

component -variable ::• indexed-variable I field-designator

indexed-variable	 array--variable "("
[index-expression { , index -expression } J [bit - specifier

index-expression	 (expression) [@ subrange-constant] r

array -variable :s- variable-access
bit-specifier	 simple -expression	 v

field-designator	 record-variable . field -designator
record-variable	 variable - access
field-identifier	 identifier

buffer-variable ::- file-variable t

file-variable ::- variable -access

`I

	

	 referenced -variable ::- pointer-variable t

pointer-variable ::- variable-access

procedure -declaration ::-
procedure -heading ; directive I
procedure-identification ; procedure-block I
procedure -heading ; procedure-block

procedure -heading ::- procedure identifier [formal -parameter-list
procedure - identification ::- procedure_ procedure-identifier
procedure - identifier ::- i&,atifier
procedure - block ::- block

function -declaration ::-
function -heading ; directive I
function-identification ; function-block I
function -heading ; function-block

function -heading ::-
function identifier [(formal-parameter -list J	 result-type

funct on- dentification	 function function-identifier
function - identifier ::- identifier
result-typ e , ::- type - identifier
function-block ::- block

formal-parameter-list ::-
"(" formal-parameter - section { ; formal -parameter-section } "^"

formal -parameter - section ::-
value - parameter -specification I
variable-parameter-specification i
procedural-parameter-specification I 	 a
functional-parameter-specification

value-parameter-specification ::- identifier-list 	 type-identifier	 {
variable-parameter-section ::- var identifier-list	 type-identifier
bound-identifier	 identifier
procedural-parameter-specification 	 procedure-heading
functional - parameter - specification	 function-heading

176

ORIGINALPOR QUALITY

OF P

unsigned-constant ::- unsigned-number I character-string I
constant-identifier I nil

factor ::- variable-access I unsigned-constant I bound-identifier I
function -designator I set- constructor I
"(" expression IT' ► not factor

set-constructor	 "(" [member -designator { , member-designator
member-designator ::- expression (.. expression]
term ::- factor { multiplying-operator factor }
simple-expression	 (sign] term { adding-operator term }
expression ::-

simple-expression [relational-operator simple -expression]

multiplying-operator	 * I / I div I mod I and
adding-operator ::- + I - I or
relational-operator	 - I <> I < I > I <- I >- I in

function-designator 	 function-identifier [actual-parameter-list]

actual-parameter-list ::- "(" actual-parameter { , actual-parameter
actual-parameter ::- expression I variable-access I

procedure - identifier I function- identifier

statement ::- [label :] (simple-statement I structured-statement)

simple-statement ::- empty-statement I assignment- statement I
procedure -statement I goto-statement

empty-statement ::-

assignment-statement ::-
(variable-access I function- identifier)	 expression

procedure-statement ::- procedure-identifier (actual-parameter-list]

goto-statement ::- goto label

structured-statement ::- compound-statement I conditional-statement I
repetitive -statement I with-statement

compound-statement 	 begin statement-sequence end
statement-sequence	 statement { ; statement }

conditional-statement	 if- statement I case-statement I
where-statement

if-statement ::- if Boolean- expression then statement [else-part]
else-part ::- else statement

case-statement ::- case case-index of case-list-element
{	 case-list-e'-ement } [] end

case-list-element ::- case-constant-list : statement
case-index ::- expression

ORIGINAL FAC4 19

OF POOR QUALITY

where-statement ::- where parallel-Boolean-expression do
statement [otherwise-part]	 '-

otherwise-part	 otherwise statement
parallel-Boolean-expression 	 expression

repetitive-statement ::- repeat-statement I while-statement I
for-statement

repeat-statement ::- repeat statement-sequence until Boolean-expression

while-statement ::- while Boolean-expressioi do statement

for-statement ::- for control-variable :- initial-value
(to I downto-7 -final-value do statement

control-varible ::- entire-variable
initial-value ::- expression
final-value ::- expression

with-statement ::- with record-variable-list do statement
record-variable-list ::- record-variable { , record-variable }

read-parameter-list ::- "(" [file-variable ,] variable-access
{ , variable-access } ")"]

readln-parameter-list ::- ["(" (file-variable I variable-access)
(, variable-access } ")" J

write-parameter-list ::- "(" [file-variable , 	 variable-parameter
(, write-parameter) ")"

write-parameter ::- expression [expression [expression J J

writeln-parameter-list ::- ["(" (file-variable I write-parameter)
{ , write-parameter) ")"]

program ::- program-heading ; program-block .
program-heading	 program identifier ["(" program-parameters
program-parameters A S f4dentifier-list
program-block ::- block

S

178

ORIGINAL PAGEUAL1^,Y
OF POOR Q

A.7 Parallel Pascal Error Codes

In addition to the standard Pascal error codes (defined in

reference 1), the following error codes are defined for Parallel

Pascal:

350: must be parallel array type
351: illegal type for parallel array
352: boolean type required
360: arrays not compatible
361: array not compatible with controlling array
362: result must be array type
363: parallel array not allowed
364: function result type must be array
365: dimension not compatible with array
366: integer constant expected
367: at least one dimension expected
368: bit index type must be integer
369: error in number of standard function arguments
370: subrange exceeds array index limits
371: set type not compatible with array index type
373: bit indexing not allowed
374: illegal array type for bit indexing
375: subrange constant expected
397: unimplemented feature
398: implementation restriction
399: implementation restriction
400: internal inconsistency

A.8 References

1

	

	 Kathleen Jensen and Niklaus Wirth, PASCAL User Manual and
Report, Springer-Verlag, Berlin, Heidelberg, New York
(1974).

2

	

	 A. M. Addyman, "A Draft Proposal for Pascal," ACM SIGPLAN
Notices Vol. 15(4), pp.1-66 (April 1980).

179

OflJGitd, ;i. t-,^^ ^ ►^
OF POOR QUALITY

APPENDIX B: PARALLEL P-CODE SPEC

B.1 Data Declarations

To permit efficient handling of arrays, both parallel and

ordinary, it is necessary that the code generator be supplied

with information about the size and shape of data items. Thus,

the intermediate language must include specifications for the

fundamental data types (arrays and records).

The code generator's view of the world is based upon the

following assumptions:

1. The code generator "knows" whether the code it is

generating is to reside on the host (for the 14PP this would

be the VAX) or the sequential control unit.

?.	 A few standard types are predefined:

integer
real
Boolean
char
scalar pointer
array (i.e. parallel) pointer
file

All other types that the code generator must deal with are

180

ORIGINAL PA
rr. IS

OF POOR QUALITY

defined in various "pseudo-op" statements in the

intermediate language.

3. The size and shape of arrays and the layout of records are

known to the code generator.

The compiler specifies the target machine on which code is

to be generated via the SITE pseudo-operator. The syntax is:

.SITE	 sitename

where sitename may be either "HOST'' to specify the host

processor (for the MPP this is the VAX-11/780) or *'"MCU " to

specify the (main) control unit of the parallel processor.

The following pseudo-operators are used to define derived

types:

.ARRAY	 This pseudo-operator is used to specify the size and

shape of an array type. The syntax is:

.ARRAY newname,basetype,rank,dim0low,dim0high,..6

where newname is the name of the type which is being

defined, basetype is the name of a previously defined

type, rank is the total number of dimensions of the

array, and dimilow dimihigh are the low and high bounds

of each index range. rank is negative if the array is

a Parallel array. For instance, the type definitions:

type
parr . parallel array [1..128,1..1281 of integer;
a:r	 . array [5..10] of parr;

181

ORIGINAL P C
OF POOR QUALM'

would be translated to

.ARRAY parr,integer,-2,1,128,1,128

.ARRAY arr,parr,1,5,10

.RANGE	 This pseudo-operator is used to def

syntax is:

.RANGE newname,low,high

For example, the definition

type
xxx . 10..32;

would be translated to

.RANGE xxx,10,32

r
.RECORD	 This pseudo-operator is used to define a record. The

code generator must know the configuration of a record,

r hence it is necessary to provide the type of each

component. The code generator is responsible for

computing the appropriate offset. The syntax is:

.RECORD recname,cmpname,offset,type

where recname is the name of the record type, cmpname

is the name of the current component, offset is the

offset (see below) and type is the type of component.

There is one recname field per record and one cmpname

for each component. offset is normally %% nil" ,

indicating that the code generator should choose the	 i
R,

offset (normally as the ctext component in the record
	 ':r

182
ORIGINAL PACE: IS
OF POOk QUALITY

being defined). If offset is not "nil" it

a record component; in this case, the current

component is to have the same offset as the named

component. Thib is used to align variant records. A

.RECORD statement implicitly defines two types: the

record itself and the record component. As an example,

the type definition:

type
rec - record

x: integer;
y: real;
case Boolean of

false:zf: integer;
true: zt: real;

end;

could be translated as follows

.RECORD rec,x,nil,integer

.RECORD rec,y,nil,real

.RECORD rec,zf,nil,integer

.RECORD rec,zt,zf,real

(The last definition specifies that the component

"zt" is to aligned with the component "zf".)

.SET	 This pseudo-operator is used to specify the size of a

power set. The syntax is:

.SET newname,low,high

where newname is the name of the type which is being

defined, low is the lowest element (integer) and high

is the highest element. Sets of type char are

converted by the compiler to the appropriate integer

type.

7:'A

j	 183

I	 ORIGINAL PACE IS
OF POOR QUALITY

.FILE	 This pseudo-operator is used to specify a file. The

syntax is:

I
.FILE	 newname,ftype

newname is defined to be a file of ftype.

.POINT	 This pseudo-operator is used to defined pointer types.

4	 For the most part, pointers are considered to be the

same thing as integers; however, occasionally it is

necessary to distinguish them. The syntax is:

.POINT	 newname,ptype

whi^^h causes newname to represent a pointer to type

ptype.

.TYPE	 This pseudo-operator equivalences an exist.ng type-name

with a new name. The syntax is:

.TYPE	 newname,oldname

newname is defined to be the same type as oldname.

This redundant statement allows some simplification in

the front-end of the Parallel Pascal compiler.

The intermediate language representation of arrays consists

of two portions. The first is the (static) logical type

information specified by the .ARRAY pseudo-operator. The second

is the (dynamic) information about the physical storage

allocation which is required at runtime. If set and vector

indexing are excluded, then Parallel Pascal permits any

contiguous subset of array elements to be operated upon at once.

1 as

ORIGINAL PAGM
QUALITYOF POOR

The intermediate language manipulates arrays through a conceptual

entity called an array descriptor. Instead of pushing the actual

elements of an array onto the stack, the descriptor for that

array is pushed instead. The array descriptor specifies the base

address and the storage mapping defined by the Index ranges of

each array dimension. The compiler does not know or care what

format the array descriptor has. The LLA instruction is used to

load a " bla:tk " descriptor onto the stack (a descriptor

specifying the address but no index ranges); a sequence of

indexing instructions (IXO, IX1, IX2) is performed to ""fill in"

this information.

Records are similarly defined by a record descriptor. Like

array descriptors, record descriptors consist of the (static)

information provided by the .RECORD pseudo-operator and the

(dynamic) information contained on the runtime stack. The

dynamic information specifies the address of the record and the

fi g ds of the record which have been selected to participate in a

future operation (e.g. load, add, store). The compiler does not

know or care about the format of this information. A record

descriptor is constructed by performing an LLA (which loads a

descriptor for the entire record) followed by one or more SEL

instructions to select successively-nested fields.

Records may contain arrays and array elements may be

records. The appropriate combination of IX? and SEL

instructions is used (recursively) to select a set of array

elements within a record and a field within a set of nested

185

3
OR'C!M ^! p l"17 v Ij
OF POOR QUALITYrecords.

r

Most of the intermediate language operators require the

specification of a type. The following code segment illustrates

how the (static) type and (dynamic) array descriptor are Wised:

type
arrl - ar ray [1	 51 of integer;
arr2 - array (2..61 of integer;

vac
a: arrl;
b: arr2;

begin
a	 b(1@1..51;

end.

.ARRAY	 arr1,inte5er,1,1,5

.ARRAY	 arr2 , i.nteger,1,2,6
IXO
LLA <address of "a">
IXO aryl
LLA <address of "b">
LDC integer 2
LAC integer,6
IX2 arr2
LDI arr2
STO aryl

An example with records and record descriptors (the " xxx "

and " yyy" are arbitrarily - chosen names):

type
arr10 - array (1..101 of real;
recrd - record

x, y: arr10;
end;

arrrec s array (1..31 of recrd;

vac
v: arrrec;

v.x[5]	 0;

4^

a	 ^`

186

ORIGINAL PACE I Y
OF POOR Q.ARRAY arrlO,real,1,1,10

.RECORD recrd,x,nil,arrl0

.RECORD recrd,y,ni1,arr10

.ARRAY arrrec,recrd,1,1,5

LLA <address of	 "v">
IXO arrrec
.ARRAY xxx,real,1,1,5
SEL arrrec,x,xxx
LDC integer,5
.POINT yyy,real
IX1 xxx,yyy
LDC integer,0
CVT integer,real
STO real

H.2 Procedure/Function Arguments and Local Variables

The following pseudo-operators are used to define subroutine

arguments and local variables:

.ENTRY

	

	 This pseudo-operator indicates that a new block is

being entered.

.EXIT This pseudo-operator complements .ENTRY by indicating

the end of a block. Definitions in the current block

are to be "forgotten" by the code generator at this

point.

.ARG

	

	 This pseudo-operator defines an argument to the current

subroutine. The syntax is:

.ARG num,ty^e,ry

where num is an integer which starts at zero (see

comment below) and is incremented by one for each

187

ORIGINAL. ^a	 ;:

OF POOR Q!Jl^ U i Y
argument, type is the type of the argument, and ry is

either zero or non - zero to indicate that the data is

being passed by value or reference, respectively. The

`	 num field normally is a positive integer. If the

j	 subroutine returns a value (i.e. if it is a function

1	 rather than a procedure) the space for the result is
r

reserved by an .ARG pseudo - operator with zero in the

}	 num field.

.LOCAL	 This pseudo -operator defines local variables. The

syntax is:

.LOCAL	 num,type,equ

where num and type are defined as for .ARG. squ is

used to indicate storage sharing to the code generator.

If e u is zero, the next available memory location

should be allocated. If eguu is non-zero it specifies a
{

previously -defined local variable; in this case the

storage for the new local variable is to be allocated

on top of the previously-defined variable. The numbers

assigned to local variables belong to the same space as

those assigned to subroutine arguments. Thus, if there
V

are n brguments to a subroutine (and hence a .ARG

statements), the num field for the first .LOCAL

statement will contain n+1.

188

ORIGINAL PACE 18
OF POOR QUALITY

E.3 Parallel Pcods Mnemonics

The mnemonics are" their functions for the opcodes defined in

parallel p— code are as follows:

ABS	 Produce absolute value. The syntax is:

ABS type

ADD	 Add two operands. The syntax is:

ADD type

AND Perform Boolean "and". This is only defined for Boolean

variables; however, an array may be specified so a type is

required. The syntax is:

AND type

CHK	 Check that tap of stack is between two specified values.

CSP	 Call standard procedure. The syntax is

CSP procedurename,argtype,resulttype

where " argtype" is the type of the primary argument and

resulttype " is the type of the function result. (If the

called routine is a standard procedure the literal string

nil " is used.) Calls of standard procedures and

functions are discussed in more detail below.

CUP	 Call user procedure. The syntax is

C

I,1_.

i
189

ORIGINAL
OF POOR Q11Af_I TY

CUP level,procedurAname,resulttype

Calls of user procedures and functions are discussed in

more detail below.

CVT	 Convert the top of stack from one type to another.

Conversions performed by this operator may alter both the

shape (array dimensions) and the underlying type of the

object. The syntax is:

CVT oldtype, newtype

CVN	 Convert the next-to-top of stack from one type to another.

This is similar to CVT, defined above. The syntax is:

CVN oldtype, newtype, tstype

where tstype is the type of item on top of the stack (this

information is required in order to locate the next-to-top

element, since descriptors vary in size).

DEC	 Decrement top of stack by a specified amount. This may

only be applied to integers or subranges or arrays of type

integer or subrange. The syntax is

DEC type,amount

DIF	 Evaluate set difference. The syntax is:

DIF type

DIV	 Perform real division. The syntax is:

DIV type

5	 ^ .

190

ORIGINAL PAGrr 13

OF p00R QUALIFY

Notice that, unlike Pascal P4,

eXplicitly COILVertad 60 real fvrw46 vasvca 619= Qivaaivn.

DUP	 Duplicate top of expression stack. The syntax is

DUP type

DVI	 Perform integer division. This may only be applied to

integers or subranges or arrays of type integec or

subrange. The syntax is:

DVI type

ENW	 This operator is used to remove the effect of a mask ("end

where"). The syntax is:

ENW type

where type is the type of the mask (located on top of the

expression stack). The mask stack is "popped"; the

previous mask (that is, the mask in effect before the most

recent WHR) is restored. This operation is illegal if

there is no current mask.

EOF	 Test for end-of-file condition. There are no arguments,

the filename is assumed to be the top item on the stack.

EQU	 Test for equality. The syntax is:

EQU type

FJP	 Jump if item on top of stack is false. The item must be a

scalar Boolean quantity. The syntax is

191

ORIGINAL. Pt 	 rs
FJP label	 OF POOR QUALITY

	GEQ	 Teat for greater-than or equal-to. The syntax is:

GEQ type

	

GRT	 Test for greater -than. The syntax is:

GRT type

	

INC	 Increment top of stack by specified amount. This may only

be applied to integers or subranges or arrays of type

integer or subrange. The syntax is

INC type,amount

	

INN	 Test for set membership. The syntax is

INN settype

	

INT	 Perform set intersection. The syntax is

INT settype

	

IOR	 Perform Boolean inclusive or. This is only defined for

Boolean variables; however, an array may be specified so a

type is required. The syntax is

IOR type

	

IYO	 Index with zero values. This operator is used in the
F

construction of array descriptors. It "fills in" the

index specification for the first unspecified index range

192

ORtG1NAL
F U :1Z IJOF pOOR

in the array descriptor on the top of the runtime stack.

The syntax is

IXO type

IX1	 Index with one value. This operator is used in the

construction of array descriptors. The top of stack is an

array descriptor for which at least one dimension is

unspecified. This instruction selects one value for the

first unspecified dimensicn. This reduces the dimension of

the array by one The descriptor on top of the stack will be

modified to reflect this new type; if the logical type is

now a scalar this descriptor will (conceptually) be a

pointer to a scalar. The syntax is

IX1 oldtype,newtype

where " oldtype " is the type of the descriptor on top of

the stack before indexing and " newtype" is the type after

indexing.

IX2	 Index with two values. This operator is used in the

construction of array descriptors. It "fills in" the

index specification for the first unspecified index range.

The second element on the stack and the top of stack are

integers specifying the low and high bounds, respectively.

The third element on the stack is the array descriptor.

The syntax is:

IX2 type

LCA	 Load address of constant. The syntax is:

LCA type,constant

The constant itself is specified, the code generator is

responsible for setting up a static constant somewhere.

The constant must be a scalar.

LDC	 Load constant. The syntax is

LDC type, constant

LDI	 Load indirect (load value pointed to by top of stack). The

syntax is

LDI type

When an LDI is applied to a file, the file buffer is loaded

onto the stack.

LEQ	 Test for less-than or equal-to. The syntax is

LEQ type

LES	 Test for less-than. The syntax is

LES type

LLA	 Load address. The syntax is:

LLA lexlevel, localid

where lexlevel is the lexical level (the level of nesting)

and localid is the local variable index number as specified

by a .LOCAL or .ARG definition (see above).

^	 194g

Oft,GmAL
OF POOR QUALITY

LOD	 Load contents of address. The syntax is

LOD type,lexlevel , localid

where type is the type of the variable, lexleve. is the

lexical level (level of nesting), and localid is the local

variable index as defined by a .LOCAL or .ARG definition

(see above).

MOD	 Perform modulus (remainder) operation. This is only valid

for items of type integer (or subrange) or arrays of type

integer (or subrange). The syntax i,

MOD type

MOV	 Move a specified number of storage units. The syntax is

still unknown.

MUL	 Multiply. The syntax is:

MUL type

MST	 Mark stack (used for procedure calls). The syntax is

MST level

where level is the lexical level of the procedure or

function which will be called.

NEG	 Negate top of stack. The syntax is

NEG type

NEQ	 Test for not-equal. The syntax is

3
r

195

ORIGINAL I ^;ta ^,;
OF POOR QUALITY

NEQ type

JOT	 Perform Boolean not (logical complement). This is only

valid for Boolean scalars and arrays. The syntax is

NOT type

ODD	 Test for odd. This is only valid for Integer (or subrange)

scalars and arrays. The syntax is

ODD type

OTW	 Thia operator implements the "otherwise" conditional. It

is used to reverse the sense of a nested mask established

by the WHR instruction. The syntax !s:

OTW type

where type is the type of the current mask. (At this

point, the expression on top of the expression stack

specifies the current mask.) OTW is illegal if no mask is

currently in effect. If a mask is currently in effect, the

new mask is computed by performing an exclusive-or,between

the current mask and the previous mask (that is, the mask

that was in effect before the most recent WHR).

RET	 Return from block. The syntax is:

RET type

where	 type	 is either	 the literal string	 "nil" 	 or	 is a

type	 name.	 In the	 former case, the	 called	 routine	 is	 a

procedure and no value	 is to be returned	 to	 the	 caller. In	 3

196

ORIGINAL '9̀ AG *ti' IS
OF POOR QUALITY

the case of a function, type is the type of the data which

it returned by the function. (See below.)

SEL	 Select a record field. This operator causes a record

descriptor to be constructed from an address, array

descriptor, or record descriptor already on the stack. The

syntax is:

SEL oldtype,cmptype,newtype

where oldtype is the type of the current top-of-stack,

cmptype is the type of the item being selected (i.e. it

specifies the record type and the component name), and

newtZpe is the type of the result.

SUB	 Perform subtraction. The syntax is

SUB type

SGS	 Generate singleton set. The syntax is:

SGS settype

The set is constructed from the element on top of the

stack.

SQA	 Square top of stack. The syntax is

SQA type

STO	 Store indirect (at address specified by second element on

stack). The syntax is:

a:

STO type

191

^ aCAZ 18
OF POOR QUALITY

When a STO is applied to a file, the top of stack is stored

in the file buffer.

STP	 Stop execution. There are no arguments.

STR	 Store at compile — time known address. 'rho syntax is

STR type , lexlevel , localid

where type is the type of the value, lexievel is the

lexical level (level of nesting), and localid is the local

variable index as defined by an .ARG or .LOCAL definition

(see above).

UJC	 Error in case statement (abort). The syntax is

UJC label

UJP	 Unconditional dump. The syntax is

UJP label

UNI	 Perform set union. The syntax is:

UNI type

WHR	 Define a new logical mask (" wher. e"). The syntax is:

14HR type

where type must be an array of type Boolean. Masking is

performed in a nested manner. 	 If there is no active mask,

the top of the expression stack defines the mask.	 If a

mask is active, the current mask is logically ANDed with

r

r

198

ONIG^v A ^_ NW^,^ ;S

OF POOR QUALITY

the array on the top of the ex p reosion stack to form the

new mask. (The previous mask. is " pushed".) In this case,

the two expressions must have identical types. Masks

established in this fashion can be further manipulated with

the OTW and BNW operators.

XJP	 Indexed jump (jump to specified value + top of stack). The

item on the top of the stack must be an integer or

subrange. The syntax is

XJP value

B.4 Descriptors and the Stack

Are in P4, all operations area performed on a conceptual

stack. However, the stack may contain several different types of

items beyond those allowed by P4. The representation of the

various data types is described below:

scalars Scalars are manipulate4 directly on the stack, i.e.

when a scalar is loaded the value of the scalar is

placed on the stack. Thus, scalars can be directly

manipulated.

arrays	 Unlike scalars, arrays are not pushed on the stack.

Instead, the array is described by an array descriptor.

r

	

	 The array descriptor consists of the type of the array

(as defined by a .ARRAY statement) which is static, and

199

ORIGINAL rA R , is

OF POOR QUALITY

a dynamic portion which specifies the array address and

the indexing information. The descriptor is

constructed by performing an LLA (loading the " leuical	 p

address" of a variable) or CVT (when a scalar is

converted to an array) followed by a series of indexing	 q

instructions (IXO, IX1 9 IX2) to specify the index

ranges.

records	 Records are represented by a record descriptor whose

exact format is the domain of the coda generator. The

layout of the various records is specified by .RECORD

pseudo-ops and the descriptors themsd1ves are

constructed by use of the SEL instruction.

sets Sets are represented by a sat descriptor which merely

gives the address of the sat. The permissible values

in the set are known statically and are given by .SET

statements.

Unlike the use of scalars, performing a "load" of an

array, record, or set does not place the data on the stack.

Instead, the hypothetical stack machine (machine code generator)

replaces the descriptor on top of the stack with another which is

identical except for the address (the address of a temporary

array location is used). Similarly, when the conversion operator

(CVT or CVN) is applied to convert one item to another, the

conversion is performed into a temporary area and the appropriate

t

I

descriptor is placed on the stack.

It is illegal to perform any operation in which the Pl.rA and

shape of the arguments do rot match. It is possible, however,

that two arrays with different index ranges (but identical

shapes) will be combined by an opetation. In this case, the

result will be placed into a temporary array according to the

indices specified by the second descriptor on the stack. Also,

an array consisting of a record component may be combined with

another array, provided that the base types and array shapes

match.

The function of the CVT and CVN operators when one of the

^,ypss is a scalar deserves some comment. First, either may be

used to convert a scalar to an array with the same type as the

scalar. For instance,

.ARRAY	 arr,rea1,1,1,5 (array 11..51 of real)

CVT real,arr

In this case, the scalar on top of the stack is replaced by an

array -Sescriptor (which references a temporary area). This

descriptor is 'blank" - no indexing information is specified.

A sequence of IX? instructions is then performed to "fill in"

the indexing information. Second, either may be used to convert

a one-element subset of an array into a scalar. In this case,

the array descriptor on, the stack is replaced by the appropriate

scalar value.

i
201

'	 ORIGINAL FALV. IS
OF POOR QUALITY

1	 B.S Functiov and Procedure Calls

Standard procedures and functions (hereafter called

subroutines) are all called in the same fashion. First the stack

is marked with MST, specifying that the called routine is at

lexical level zero. (The lowest lexical level available to user

routines is 1, and that is used for the main program.) Next, the

arguments are evaluated left-to-right and placed on the stack.
6

Finally, the routine is called with a CSP instruction. In all

standard function and procedure calls at most one argument has a

type which varies from call to call; this is referred to as the

" primary" argument. In addition to specifying the called

G

	

	 routine, the CSP instruction specifies the type of the primary

argument and the result type of the function ("nil" if the

called ro!itine is a standard procedure).

Scalars are passed to subroutines on the stack; structured

types are passed via descriptors. For call by reference, the

array, set, or record descriptor is pushed on the stack. For

call by value a LBI is performed - this causes the array to be

copied into a temporary area and a descriptor for this temporary

array to be placed on the stack.

Control is returned to the caller when the RE,T instruction

is executed. If the called routine is a procedure, the runtime

stack is reset to the last marked location. If the called

E

	

	 routine is a function, the returned value is placed on the

runtime stack in the locations reserved for it (see above) and

202

ORIGINAL PAGE 13

OF POOR QUALI'T'Y

the stack is reset to the and of this area.

User subroutines are called in the same fashion as the

standard ones except that the CUP instruction is used. This

instruction specifies the lexical level at which the user

subroutine will run and (for functions) the data type of the

function result. (This is "nil" for procedures.)

B.5.1 Elemental Functions

The Pascal standard functions all may operate on either

scalars (as in standard Pascal) or arrays. The result has the

same shape as the function argument (although sometimes the base

type is different). Because they operate independently upon the

elements of arrays these functions are referred to as "elemental

functions". The following functions form this set: abs, arctan,

chr, cos, eof, aoln, exp, ln, odd, ord, pred, round, sin, sqr,

sgrt, and trunc. For all nf these functions, the stack is

marked, the argument is loaded, and the function is called:

MST 0
<load argument>
CSP func,argtype,resulttype

An argument is always specified; it no argument was specified in

the Parallel Pascal program (e.$. using "eof " with no argument)

the default ("input" in this case) is explicitly specified by

the compiler "front-end".

}	 203

ORIGINAL PACE IS
OF POOR QUALITY

8.5.2 Transformational Functions

r

In addition to the standard functions provided by Pascal,,

Parallel Pascal contains some standard functions which perform

transformations on entire arrays. This set of functions includes

shift , "rotate", "trans", "expand", and the reduction

functions ("any" , "all" , "Max" , "min", "prod", skid

" sum "). In all of these cases the only argument to the

function whose type varies is the array to be transformed. The

stack is marked, the arguments are pushed, and the function is

called. The old type of the array and the type of the function

result are specified in the CSP instruction.

The "shift" and "rotate" functions have the following

calling sequence:

MST 0
LLA <array address>
IX?	 ...	 ;specify index information
LDC integer,0>	 ;one for each array dimension
CSP func,arrtype,resulttype

The "expand'' func;tion has the following calling sequence:

MST 0
LLA <array address>
IX?	 ...	 ;specify index information
LDC integer,<#>	 ;new dimension
LDC integer,«>	 ;low bound of new dimension
LDC integer,<#>	 ;high bound of new dimension
CSP expand,arrtype,resulttype

The redunction functions have the following calling sequence:

204

ORIGINAL PAGE IS

OF POOR QUALITY

MST 0
LLA <array address>
IX? ...	 ;specify index information
LDC integer,(<set of dimensions>)
CSP func,arrtype,resulttype

Note that the dimensions along which the reduction is to take

place are specified in one powersst constant.

B.593 Input and Output Procedures

The standard procedures "get", "put", "reset", and

rewrite " each operate upon one argument. The calling sequence

is

LLA <file>
CSP func,filetype,nil

where "filetype " is the logical type of the argument.

The standard procedures "read" and "write" are actually

implemented by several specialized procedures. When the file

type is not "text" (that is, not file of char) the following

equivalent sequences are used:

read(f,x)_	 x	 ft; get(f)
write(f,x)	 ft	 x; put(f)

When the file is of type "text" the standard procedures

"rdi", "rdr", and "rdc" are used for reading integers, real

numbers, and characters (respectively); the standard procedures

"wri" , "wrr" , "wrc" , and "wrs" are used for writing

integers, real numbers, characters, and strings (respectively).

The read functions have the calling sequence:

I

205

ORIGINM F-
•	 OF POOR QUALITY

LLA <file>
CSP func,text,resulttype

where "text" is the type name for a file of :har.

The write procedures require additional arguments. These

specify the field width and the scale factor (this is meaningful

only for floating-point numbers). The calling sequence for
/i
1

"wri" and "wrc" is:

i
<compute expression to be output>
LDC integer,<width>
LLA <file>
CSP func,exprtype,nil

The " wrr " function requires the scale factor:

<compute expression to be output>
LDC integer,<width>
LDC integer,<scalefactor>
LLA <file>
CSP wrr,exprtype,nil

The " wrs " function requires one additional parameter - the

string length:

LLA <string>
LDC integer,<width>
LDC integer,<length>
LLA <file>
CSP wrs,stringtype,nil

B.5.4 Miscellaneous Standard Procedures

The procedures "new" and "dispose" are used for dynamic

memory allocation. The calling sequence is:

LLA <pointer>
CSP func,pointertype,nil

14

.,,,A

206

UKjt31WAL Mlz 13

OF POOR QUALITY

There is no concept of packed data in Parallel P-cods;

hence, the Parallel Pascal procedures "pack" and " unpack "

have no Parallel P-code counterparts.

B.6 Masking

Normally, all selected elements of arrays participate in all

operations. A subset of these elements can be selected by

specifying a mask. When a mask is in effect, all array

assignments must conform to the shape of the mask. Masking is

done with the use of a mask stack. If the stack is empty, no

masking is in effect. If the stack is non-empty, the top of the

mask stack specifies the current mask. The mask stack can be

implemented as a set of pointers to values on the runtime

(expression) stack. Expressions which are used to construct

masks remain on the expression stack until the mask is removed.

(They are never examined by the compiled code after they are

calculated; thus, the storage specified by the runtime stack may

be used to hold temporaries for the mask stack.)

A new mask is established with the WHR ("where")

instruction. The top of the expression stack is logically ANDed

with the top of the mask stack, and the result is pushed on to

the mask stack. (If there was no previous mask, the expression

is simply pushed onto the mask stack; if there was a previous

mask its type and the type of the new expression must be

i

s

ORIGINAL

identical.)
	 OF POOR QUALITY

The OTW (" otherwise") instruction provides the means for

reversing the sense of the last conditional. If there is only

one mask on the mask stack, it is complemented. Otherwise, the

new mask is computed as the exclusive - or of the current mask (top

of the mask stack) and the previoua mask (next-to-top of the mask

stack).

The LNW (F end where") instruction is used to "pop" the

mask stack. The mask stack and the runtime stack are popped. If

the mask stack is now empty, the effect of masking is removed.

Masking only affects the STO and STR instructions (i.e. only

assignments). The effect of a mask is not transmitted to any

called proced ,ires or functions.

,	 di

l	 ^^y

4:..	 ..

208
t=

ORIGIMIL PAGIC. 13

OF POOR QUALITY

APPENDIX C: HIGH LEVEL LANGUAGES FOR PARALLEL MATRIX PROCESSORS

A number of languages exist which could potentially be

implemented on a parallel matrix processor. This appendix

considers these languages. They can be grouped into conventional

languages (that is, languages designed for conventional machines)

and array languages (those designed with parallel processing in

mind).

C.1 Conventional Languages

There is a wide variety of languages in this class. Of

these languages, three stand out as possible candidates: APL

(because of its inherent array capabilities), FORTRAN (because of

its popularity among scientists and engineers), and PASCAL

(because of its growing popularity in the programming community).

C.1.1	 APL

APL ('' A Programming Language '') was originally developed by

Iverson as a mathematical notation. It is characterized by a

rich set of primitive functions, compact notation, and flexible

data handling. The type, shape, and size of data is runtime

dependent, and primitive functions as well as properly-written

209

ORMNALpAQ9Of
OF POOR QUALM

user functions can operate upon data of greatly diverse size.

APL provides a direct means for specifying parallel

yoperations - entire arrays may be manipulated at once in a

`zriety of ways. Unfortunately, the flexibility of the size and

° shape of expressions is often obtained at a high execution cost.P

`	 APL implementations usually involve some degree of interpreted

code (or periodic recompilation of code to adapt to new data

shapes).

APL provides no data structures in addition to the (very

flexible) array. The only control flow construct (aside from

function calls, which may be recursive) is the branch statement.

Some programmers dislike APL because it is by nature unconventional.

These factors, in combination with the concern over its runtime

efficiency make it unsuitable for direct implementation on a

parallel matrix processor. Only a few restrictions need to be
i

made to the APL language for it to be completely compilable.

These restrictions and other modifications to the APL to make it

suitable for p arallel matrix p rocessors are described in reference 1.

C.1.2 FORTRAN

FORTRAN is, in a sense, the "grandfather" of high-level

languages. Designed in the early 1950's, it is the oldest high-

level language still in use. It was designed for numerical

computation (the name stands for " FORmula TRANslation "), and

many highly-optimizing compilers for FORTRAN produce very fast

e. Because of its a e and dominance in thenumerical cod	 g

210

ORIGINAL PANE 1
()F POOR QUALITY

scientific processing field it is familiar to most scientists and

engineers. Its widespread use has also resulted in the

development of a number of software libraries which assist in the

construction of large programs.
	 4

FORTRAN's age is a mixed blessing, however. The language

was developed before lexical analysis and parsing were fully

understood, and its syntax, is flawed in a number of ways. It is

not conducive to structured programming (although the 1977

standard does provide a number of revisions toward this end). It

provides no data structuring facilities other than the array, and

is very awkward when dealing with character data or complex

program control flow. It does not provide any aggregate array

operations (although array facilities are under consideration for

the next FORTRAN standard)[21. It therefore is unattractive as a

language for a parallel matrix processor.

C.1.3 Pascal

The programming language Pascal[31 was designed to achieve

several goals, including[4]

e To make available a notation in which the fundamental

concepts and structures of programming are expressible in a

systematic, precise, and appropriate way.

• To make a notation available which takes into account the

various new insights concerning systematic methods of

program development.

211

ORIGINAL. PAGE 133

OF POOR QUALITY

• To demonstrate that a language with a rich set of flexible

data and program structuring facilities can be implemented

by an afticient and moderately sized compiler.

The resulting language has heen the center of a great deal

of attention since its development. It is making inroads into

arsaw previously occupied by FORTRAN (for example. introductory

progr_:mming courses at many universities) and has become very

popular in the so-called "personal computer" market.

Pascal provides a flexible data structuring facility,

permitting programmers to collect data into aggregate structures

(records) and to define enumerated scalar types to provide

mnemonic access to flag variables, etc. To reduce the errors

which occur from incorrectly specifying the type of a data item,

strong type checking is enforced. Type compatibility is checked

at compile time whenever possible (thereby providing for fast

execution).

Pascal is not without its faults. There has been some

discussion concerning ambiguities in the typing mechanism and

inoecuritie3s in the use of rocords(5,6,71.	 Two other problems

are particularly distressing: the lack of a separate compilation

facility and the lack of dynamic-length arrays.

Some implementations of Pascal do provide for separate

compilation (Wirth's PASCAL 6000, for example), but these often

are done in a way which eliminate,3 the advantages of Pascal's

strong type checking. There have been a number of proposals

1

Gt

212

OSIGINAL PACE 13
OF POOR QUALITY

addressing this issue(6,9 9 10). Perhaps the reason for this

omission is the philosophy expressed by Wirth(4) that with a

sufficiently fast compiler (and no linkage editor) it would be

acceptable to make all changes at the source level, and merge

sources together. Unfortunately, this philosophy does not work

well on most systems where recompilation is expensive, especially

when the change which forced the recompilation affects only a

small portion of the code.

The fixed-size array problem results from Pa,y cal's strong

type checking and the fact that th y: array index ranges are

considered part of the array type. This is especially limiting

when an array is passed as a parameter to a procedure or

function, prohibiting the design of "library functions" such as

a general sort routine. A number of solutions have been

suggested(11,12,13) including a parameterization rchems proposed

by Wirth(14). More recently, the ISO Pascal standard(15) has

introduced the concept of a " conformant array schema", a means

by which a parameter to a procedure or function may be an array

whose index range is determined when the procedure or function is

called.

Despite its limitations, Pascal is a powerful language which

can be efficiently implemented. Although the standard language

does not possess any facilities for expressing parallel

computation, it forms an attractive base upon which such

facilities could be built.

_ _ ._._...	 L! _ r

G
g

213

ORIGINAL PQ ;^ ;jj
OF POOR Q"Al.1'ry

C.2 Array Languages

The languages discussed above were designed for efficient

implementation on a conventional (non-parallel) processor. In

order to efficiently execute programs on an SIMD-class parallel

processor, it is necessary that computations be performed in
i

parallel whenever possible. There are basically three ways to

achi e ve this goal - using a vectorizing compiler, a language

which directly specifies the implementation, or a language which

directly specifies the parallelism but not the low-level

implementation. In the following sections, each approach is

considered.

C.2.1 Vectorizing Compilers

The first approach is to use a conventional language and

write a compiler which can detect operations that can be

performed in parallel. (The portion of the compiler which

performs this task is often referred to as a "vectorizer.") Two

examples of this technique are ILLIAC IV Fortran and the

Paraphrase vectorizer.

C.Z.1.1 ILLIAC IV Fortran

On the ILLIAC IV, the Fortran compiler contains a phase

called the "Paralyzer" (for "parallelism analyzer and

j synthesizer") which performs parallelism analysis and converts

1	 the original Fortran code into IVTRAN, an extended Fortran
i

dialect(16,17).	 (IVTRAN is discussed in more detail in section

ie programmer need not learn anything new. Unf.:rtunately,

Lnguage systems based upon vectorizing compilers suffer from

214

FINAL PAQt 19
OF POOR QUALITY

B.2.2.4.) The Paralyzer analyzes nested DO loops and extracts the

inherent parallelism, subject to a number of restrictions. The

Paralyzer output is then further processed by the IVTRAN compiler

to produce the object program. Since the Paralyzer accepts

standard Fortran as input, the use of the Paralyzer with IVTRAN

permitted an ILLIAC IV user to run standard Fortran programs on

the ILLIAC IV with no changes.

C.2.1.2 PARAPHRASE

The PARAPHRASE vactorizcr(18j is not, by itself, a compiler.

Rather, it was designed as a preprocessor for SIMD machines (the

specific focus in this case was on pipelined vector machines).

It performs a number of source-to-source optimizations on FORTRAN

programs which restructure those programs for parallel execution.

PARAPHRASE produces output in standard Fortran with only two

extensions - the specificaLLon of "vector loops" to mark loops

which can be executed in parallel, and a provision for masking

conditionals by a mode vector. As a result of this approach, the

output from PARAPHRASE is relatively portable. This output can

ien be processed by a relatively unsophisticated compiler for

Le target machine to produce the final object code.

2.1.3 Vectorizing Compilers: Conclusions

The advantage of the vectorizing compiler approach is that

k

215

ORIGINAL PAGE 18
OF POOR QUALITY

several problems.	 One major problem is the vectorizer itself.

In order	 to be able	 to extract a	 large degree of	 parallelism from

an algorithm,	 the vectorizer will	 be complex. Like the

vectorizers	 described above,	 most	 vectorizers operate	 Ripon nested

iterative	 structures	 (e.g.	 nested	 FOR loops) and there are many

special cases which can frustrate attempts 	 to fully extract	 the

^p
parallelism that	 is	 present.

t

A more	 serious problem with	 the vectorizer approach	 is	 that

is	 does	 not	 account	 for	 the different	 nature of	 the architecture

upon which	 the program will	 be	 run.	 In many cases,	 algorithms

which are optimal on a scalar 	 (conventional) processor are not

suitable for implementation on a par a llel processor. In order to

effectively program a parallel processor it is necessary to

"think parallel." A vectorizing compiler hides this fact from

the user; thus, a programmer who uses such a compiler may be

reluctant to change his programma , ng practices, believing

erroneously that the compiler will do as well as he would. These

reasons discourage the use of a vectorizing compiler for a

parallel matrix processor language.

C.2.2 Direct Specification of Implementation

The second approach to implementing a high-level language

system is to design a language which fully exposes the

architecture of the machine to the user.	 In a sense, the result

is a "high - level assembly language." The following sections

describe (in alphabetical order) some languages in this category.

216

ORIGINAL PAGE It

C. 2.2. 1 CFD 	
OF POOR QUALITY

CFD is a Fortran dialect that was developed by the

Computational Fluid Dynamics branch of NASA Ames Research Center

for the ILLIAC IV(191. It was designed for the applications area

of fluid flow analysis for which programs which had previously

been coded in standard FORTRAN.

CFD provides two forms of variables: CU (control unit)

variables, which hold scalars, and PE (processing element)

variables, which hold vectors. The first dimension of a PE

variable is always 64 elements long and is represented by an

asterisk. For instance, the following statements declare a 64-

element vector and a square 64x64 matrix:

PE INTEGER X()
*PE INTEGER MAT(*,64)

(The leading asterisk appears in all CFD statements except

assig.inent statements.) Scalar variables are used as in standard

FORTRAN. Array variables may be used as scalars (with one

element selected) or as vectors of length 64 (that is, with every

element along the first dimension selected). Hence, given the

above definitions, the following would store the first column of

"MAT" in %%X010 :

X(*) - MAT(*,1)

Index arithmetic may be used to reposition data by circularly

shifting it through the array; for instance,

X(*) - X(*+1)

217

at

A	

ORIGINAL RAGE 18
OF POOR QUALITY

rotates the vector "X" one position to the left. When the

first subscript of an array is an asterisk, the second subscript

(if any) may specify a vector expression. For instance:

MAT(*,X(*)) 	 =	 MAT(1,X(1)), MAT(2,X(2), ..., MAT(64,X(64))

Two provisions are made for selecting a subset of the 64-

element vector. First, a parallel conditional statement may be

used; for example,

IF ((A().LT.O.)) A(*) - -A(*)

takes the absolute value of the vector A by storing only into

those elements which are less than zero. Second, the 64

processors in the ILLIAC IV can be explicitly turned on or oif by

manipulating the logical vector "MODE":

MODE - (-A(*).LT.O.)

turns off all processors except those where the value of "A" is

less than zero.

The special operators ".ANY.", ".ALL.'', "'.NOT ANY.",

and " . NOT ALL." can be used to construct scalar logical

expressions from array logical expressions by performing the

indicated operation (e. ,&. 	 "'.ANY." returns ".TRUE." if any

element of its argument vector is true. The " . SHL. " and

".SHR.", and ".RTL." and ".RTR." operators perform left and

right shifts and rotates (respectively) on bit vector3.

Individual bits can be manipulated with the ".TURN ON." and

x

218

ORIGINAL PAGE 19

".TURN OFF.'' operators.
OF POOR QUALITY

CFD also contains provisions for transferring data between

the array memory and the main control unit. This is performed by

the TRANSFER statement. For instance, the following statement

transfers eight elements of the vector "TEMP" into the control

unit array "I":

*TRANSFER (8) I-TEMPM

Although CFD permits the construction of extremely efficient

programs, its heavy reliance on the structure of the the

underlying machine (in this case, the ILLIAC IV), particularly in

the number of processing elements and the vector nature of the

machine, make it unattractive as the basis for a new language.

C.2.2.2 DAP Fortran

DAP Fortran is a Fortran dialect for the Distributed Array

Processor(201. The DAP was designed to be connected to a host

computer as a memory module with internal processing

capabilities. DAP Fortran reflects this design.

A complete program consists of a main program and set of

subroutines written in standard Fortran for the host computer,

along with a set of subroutines written in DAP Fortran. The host

computer loads and starts the DAP; thereafter the two programer

can operate asynchronously. Communication is carried out through

a COMMON block. (The host processor can access the DAP as a

219

ORIGINAL PAGE III -
OF POOR QUALITY

memory unit at all times, even when the DAP is processing data.)

DAP Fortran provides two basic data types: vectors and

matrices. Arrays of higher orders (that is, with more

dimensions) are represented as indexed sets of vectors or
ai

matrices. The size of a vector (or the dimensions of a matrix)

must be the same as the hardware array size. The array

dimensions are not explicitly stated when declaring the array;

for example, the two--dimensional array "A" would be declared

I	 with:

REAL A(,)

f

	

	 Two different data representations are used for vectors and

matrices; the representation is automatically changed when the

language semantics call for it.

DAP Fortran permits elements in a vector or set to be

indexed in several ways. First, a scalar index may be used as in

standard Fortran. Second, an index may be omitted; if this is

done the entire range of that index is selected. Third, the

notation

A(*I)

may be used; this specifies that the element selected by " I " is

to be expanded to fill the entire vector. These methods can be

combined; for example, the expression:

A(*I)

returns an array the size of "A", every column of which is the

i
ORIG1NA1- PAGE
OF POOR QUALITYsame as "A(,I)".

220

r/

S

DAP Fortran contains a number of useful facilities,

particularly array indexing facilities. However, the underlying
	 a

i

structure of the machine is evident (especially with respect to

array declarations). Also, DAP Fortran contains no input-output

facilities; instead, this is accomplished by the host processor.

Finally, DAP Fortran does not remedy many of the problems

associated with Fortran and its basic syntax. These factors

discourage the use of DAP Fortran as the basis for a general

parallel matrix processor language.

C.2.2.3 Glypnir

Glypnir was the first high-level language sucessfully

implemented on the ILLIAC IV[211. It is based upon Algol 60,

with extensions to allow the programmer to explictl.y specify the

parallelism of his algorithm.

Glypnir provides two major categories of variables: CU

(control unit) variables which are single words, and PE

(processing element) variables which are swords (64-word items).

Vectors of words or swords may also be defined. There are no

higher-order arrays. The statements:

CU INTEGER CI
CU REAL VECTOR Z[1001
PE REAL A
PE REAL VECTOR V[1001

declare the variable "CI" to be a scalar integer, " * Z" to be a

100-element array of real,	 Z" to be a sword of real (actually,

t

ORIGINAL ^.
gkGE IS	 221

OF POOR QUALITY

a 64-element vector of real), and "V" to be a 100-element

vector of swords (actually, a 100x64 matrix). 	 In addition to

these types, the type "BOOLEAN" may be used to define 64-bit

Boolean variables. These are stored in the scalar memory, and

there is a correspondence between every processing element and

every bit in the Boolean word.

PE variables are never indexed along the "parallel''

dimension. An index expression for the non-parallel dimension

may be a scalar expression or it may involve PE variables. Fair

instance, if "I" is an integer sword with values (1 0 a 0,

1 1 • 1, 1 63 ' 63), than the expression " ' Z[1+11" would reference

the following components of "Z": (1,0), (2,1), (3,2), ...,

(64,63). This is referred to as a slice.

Although Glypnir does not provide any means for indexing an

individual member of a sword, it does provide a means for

accessing the individual bits within each word. For instance,

the expression:

A.(0:201	 A.(21:101 + 1

will cause the 10-bit field starting at bit 21 of A to be added

to 1 and stored in the first 20 bits of A.	 (If A is a sword,

this is done simultaneously for every word of the sword.) This

allows for dense packing of the (limited) available main memory.

Glypnir provides a ''pointer'' data type for dynamic memory

allocation. Blocks c words and blocks of swords may be
^t

allocated and deallocated. A pointer variable may be either a
t"

222

ORIGINAL PAGE IS
OF POOR QUALITY

simple variable or a sword of pointers. There are two types of

pointers; those which can point anywhere in memory and those

which can only point to locations within a given memory module.

Glypnir extends the Algol 60 control-flow constructs for

parallel expressions. Conditionals may involve swords; if so,

then an enable pattern is set during the execution of each

"arm" of the conditional to mask the executions in each

processing element. The iteration constructs are extended to

swords as well - the processor continues to loop until the

controlling expression is not satisfied in any array elements.

Glypnir provides for the declaration of subroutines;

however, recursion is not permitted and ali arguments are passed

''by value." Subroutine arguments may be words, swords, or

slices, and subroutines may return either word or sword values.

The structure of Glypnir is very significantly influenced by

the underlying hardware (the ILLIAC IV). The lack of an indexing

mechanism along the parallel dimension makes it a highly

machine-dependent language. This fact, coupled with its vector

nature, make it unsuitable as the basis of a new language for the

class of parallel matrix processors.

x.2.2.4 IVTRAN

IVTRAN is a Fortran compiler for the ILLIAC IV[22,17]. It

was designed for use with a vectorizing preprocessor (described

above), but it also contains some provisions for directly

,A

^.Tl^ ^R -

i.

223
ORIGINAL. FKGr:
OF POOR QUALITY

specifying parallelism. The principal provision is the DO FOR

ALL statement t

DO n FOR ALL (i l , 1 2 , ..., in)/s

where i i , 120 ..6	 are subscript variables and s specifies the

range over which they will vary. (n is a statement number which

defines the and of the loop.) Within the body of the DO FOR ALL

statement the control indicies may only appear in assignments (or

conditional assignments) and all index expressions must be of the

form

I
or	 I + C
or	 I — C

T, 	where "I" is one of the controlling indices and "C" is an

expression not depending upon any of the controlling indices.

IVTRAN also provides a syntax for specifying in detail the

memory allocation for an array. Array dimensions may be skewed

or aligned within ILLIAC processing elements, depending upon the

nature of the problem.

Because the alignment of arrays places limitations upon the

use of the Fortran EQUIVALENCE statement, two new declaration

statements are provided. OVERLAP is used to overlap array

allocations, thereby saving memory space, and DEFINE is used to

define new arrays (with different index ranges) that correspond

to previously — allocated arrays in a specified manner. Together,

OVERLAP and DEFINE provide most of the functionality of the

224

ISpFtIG^NR^' P V^.OR ^^TtOF
P	 Q

EQUIVALENCE statement.

IVTRAN provides mechanisms for specifying parallelism within

D4 loops in a fairly machine-independent fashion. However, for

efficient program construction the programmer must deal very

closely with the ILLIAC IV architecture in the area of array

declarations, particularly concerning the alignment or skewing of

array dimensions across the (one-dimensional) array of processing

elements. This strong coupling to the underlying architecture

limits IVTRAN ' s suitability for implementation on a parallel

matrix processeor.

C.2.2.5 Direct Implementation Specification: Conclusions

A programmer who is familiar with the machine architecture

can write extremely efficient programs in a language which

directly specifies the low-level implementation. Unfortunately,

languages designed for a specific machine are usually very non-

portable. i n addition, it is somewhat undesirable that

programmers be concerned with the specific details of the

hardware implementation.

A survey of users' experiences with the ILLIAC IV[231

indicated that while users preferred to be able to directly

express the parallelism in their programs, the need to coerce

their algorithms to fit the underlying machine structure (as the

available languages, especially Glypnir and CFD, required then to

do) was considered a drawback. These reasons discouraged the use

of the direct specification of the low-level implementation in

OF PO	
aas

0 POOR QUALITY

the language selected for parallel matrix processors.

C.2.3 Direct Specification of Parallelism

The third approach to parallel language design is based upon

ro o
	

i
this idea. Languages in this category permit the direct

specification of parallel operations without requiring the

t_
programmer to be intimately acquainted with the underlying

r	 hardware.

In view of the criteria established above for a "good"

programming language, a language which is designed according to

this third philosophy (that is, one which permits specification

of parallelism without forcing the programmer to specify the

exact hardware implementation) is highly desirable. A number of

languages in this category already exist. The following sections

discuss these languages and their suitability to languages (in

alphabetical order) and their suitability for implementation on a

parallel matrix processor.

C.2.3.1 Actus

Actus[24] is a Pascal-based language suitable for scientific

programming on a vector processor. The original target machine

for Actus was the ILLIAC IV, but the language was designed to be

independent of the hardware upon which it is implemented.

w
The design of Actus reflects the results of the survey of

ILLIAC IV users mentioned above[23].	 Perrott lists the following

design criteria for Actus:

i '91

226

URIGINAL PAGE 19
OF POOR QUALITY

t
• The idiosyncracies of the hardware should be hidden from the

user as much as possible.

• The user should be able to express the parallelism of the

problem directly.

e The user should be able to think in terms of a varying

rather than a fixed extent of parallel processing.

e Control of the parallel processing should be possible both

explicitly and through the data, as applicable.

• The user should be able to indicate the minimum working set

size of the database (in those cases where the database is

larger then the size of the fast memory).

Actus supports most of the atandard Pascal types (the most

significant omission is the lack of variant records) along with

some additional types (short integer, short real) that, when

supported by the underlying hardware, provide more efficient

memory utilization. Parallelism is achieved through the use of

arrays - in an array declaration, one dimension may be declared

to be parallel by replacing the standard Pascal subrange symbol

.. " with a colon. For example,

var xxx: array [1:m, 1..nl of real

declares " xxx " to be a mxa array, wherethe first dimension may

be accessed in parallel. It is important to note that the

programmer is free to choose any size for the parallel dimension

227

OF POOR QUALITY

- its size is not constrained by the underlying hardware.

Actus provides for the definition of index sets and parallel

constants for indexing and initializing arrays. The syntax for

both is si .Ilar:

const parconst - initial : (increment) final
index indexset - initial : (increment) final

The expression to the right of the	 -" generates the following

(ordered) set of values:

initial, initial+increment, initial+2xincrement, ..., final

While index sets are used for the parallel dimension of an

array, Actus allows the use of a vector (one-dimensional array)

as another index. For example, given the declarations

var ding: arra	 11:1001 of integer;
para: array [1:100, T7.1001 of integer;

the statements

diag :- 1:100;
para[1:100, diag[1:10011 :- 0

are effectively the same as

for i :- 1 to 100 do
diag[ij :- i;

for j :- 1 to 100 do
para(j, diag[JTT :- 0;

(where "I'' and "J'' are arbitrarily-chosen integer variables).

The operators shift and rotate are provided to align data in

a parallel expression. shift performs an end-off shift, while

228

ORIGINAL PACE 1's
OF POOR QUALITY

rotate performs a circular rotation. As an example, the

following:

index firet50	 1:50;
var pars: array (1:1001 of integer;

para(first501	 para(first501 + para(first50 shift 501;

is equivalent to

for i :- 1 to 50 do
para(i1 :- para(ij + para[i+501;

When parallel variables or constants are used in an Actus

statement, the extent of parallelism must be the same for all of

the participants. The extent of parallelism encompasses both the

size of the various items and the way that they are accessed;

this excludes statements such as

x(1:101	 x[2:111

Such a statement must be written

a[1:101	 a[1:10 shift 1]

so that the extent of parallelism is clear.

The smallest program unit over which the extent of

parallelism cannot change is the assignment statement; however,

some of the control flow statements also define an extent of

parallelism. Once an extent of parallelism has been defined by

such a statement, it is signified in the controlled statements by

a sharp character ("V').

Control statements which specify an extent of parallelism

F.
11	 229

p
include parallel version of the Pascal while, if, and for
statements, the new while any, while all, if an y , and if all

statements, and the new within statement. The within statement

merely defines the extent of parallelism - it has no other effect
s

upon the program flow.

1	 Finally, Actus addressee a common problem among parallel

processors - lack of sufficient high-speed (" core") memory,

requiring some	 form of	 automatic buffering or virtual memory.	 It

provides a syntax for specifying the minimum working set size for

an array, so that automatic memory management won't "swap out"

crucial data.

Actus is a very attractive language for vector processors.

It satisfies most of the criteria stated at the beginning of this

chapter for a "good" programming language. It is based upon a

well-understood language (Pascal) and therefore is relatively

easy for programmers to learn, it can be efficiently compiled, it

does not force programmers to think at the low level of a

particular machine architecture, and it encourages the

development of well-structured programs. Unfortunately, Actus is

tied very strongly to a vector architecture, making it unsuitable

for matrix processors (e.j. Actus allows only one dimension of an

array to be accessed in parallel). This restriction was

addressed by Perrott in the language Actus Plus.

w

b

230

nRiG INAL 'AGE IS

C.2.3.2 Actus Plus	 (j'-' IVOR QUALITY

Actus Plus(251 is a revision of the language Actus,

eliminating the one-dimensional restrictions of the original

language. Arrays may be declared with any number of parallel

dimensions.

4

Actus Plus allows considerably greater flexibility in the

use of index sets than Actus does. Index sets may consist of a

consecutive or skipped range (as in Actus):

index indexset - 1:(2)99

a broken range:

index indexset - 1:10, 91:100;

an arbitrary range:

index indexset - 1, 3, 6, 9;

or a repeated range:

index indexset - 1*10, 2*5, 1*10;

dex sets may be combined with the operators " + " (union),

* " (intersection), and " - " (set difference). The rotate

erator may also be used (at; in Actus) to rotate the members of

L index set; e.&. the following are equivalent:

1, 5, 3, 4 rotate 1	 5, 3, 4, 1

Index sets play a crucial role in the specification of

Lrallel expressions. Actus Plus permits an expression to

►mbine any two items, provided that their extents of parallelism

231

UEt IC.:4E` AL ^' tr	 ^`a

OF POOR QUALITY

are the same. Thus, the following

var
matl: array [l : n, 1:m] of real;
matt: array [l:m, l:n] of real;

mat1[1 : n,1:m]	 mat1 [1:n,1:m] * mat2[1 : m,l:n];

is equivalent to the Pascal code (where " 1" and " j" are

arbitrarily - chosen integer variables):

for i	 1 to n do
for j	 1 to m do

matl[i , j^	 matl [i,j] * mat2[i,j];

1.

IAlthough the meaning of the above is clear the following similar

case is ambiguous:

var
row: array [1:n] of real;
mat: array [l:u,l:n] of real;

mat[l:n, l : n]	 mat [l:n,l:n] * row[l:n];

because it is not clear whether the multiplication should be

performed along the rows or the columns of "mat". The

ambiguity is resolved by using an index set:

index iset a l:n;

mat[l : n,iset]	 mat[l : n,iset] * row(iset];	 (* row mult *)
mat[iset,i : n]	 mat (iset,l : n] * row[iset];	 (* column mult *)

The while, if, and case statements in Actus are also

available in Actus Plus. Since these control constructs affect

the extent of parallelism, a sharp - sign notation (similar to that

in Actus) is used to represent the actual extent:

ifa(l:n,l:m] 0 U then
__. a[#l,#2]	 a(Ii^2] + 1;

i

J

ORIGINAL PAGE 19	 232
OF POOR QUALITY

Actus Plus is an attractive language. It provides for the

direct specification of parallelism without forcing the

programmer to know the detailed architecture of the machine on

which his programs will run. The generalized Index sets, and the

flexible operators provided for manipulating them could be

somewhat expensive to implement on a machine with a limited

interconnection network. Nonetheless, Actus Plus would be a

strong candidate for implementation on a parallel matrix

processor. It did not influence the design of Parallel Pascal

because it was not specified in time; in addition, no research

results from an implementation of Actus Plus were availabl..e.

C.2.3.3 Proposed Extensions to ALA

The language ALA was proposed by Zosel as an extension to

ALGOL for the STAR-100(261. The language reflects the

philosophies of APL and ALGOL-68.

Vector extensions to ALGOL are implemented in a natural way:

a vector may be used wherever a scalar may be used, provided that

there is an obvious interpretation of its meaning. Operands in

an arithmetic expression must be conformable: either they must be

the same size or one must be a scalar. The set of primitive data

types includes all of the data types defined by the hardware,

including 32- 64- and 128-bit floating point representations (on

1 [9 233

strings.	 ORIGINAL. PAGE 119

OF POOR QUALITY

Control statements (e.g. conditional statements and loops)

must have scalar control variables; however, the functions

" allof " and " anyof " are provided to reduce array expressions

to simple Boolean values.

ALA provides user-accessible descriptors for maniulating

vectors. A descriptor "DESC" may be associated with a vector

VECT " by one of the following two statements:

DESC 0 VECT
DESC 0 VECT(slicel

In the first form, the descriptor refers to the entire "VECT'°

array; in the second, it refers only to a subset of the elements

in " VECT " (the subset is determined by the "slice"; the

format of the "slice" is defined below). During the course of

execution, the size of the vector referrdd to by the descriptor

may change; however, this change will not be reflected in the

original array. Descriptors are also used when an entire array

is passed as a parameter to a subroutine. Rather than passing

the array, the called routine receives a descriptor for the

array.

ALA permits indexing by a scalar, a Boolean set, a set, a

sparse set (a special STAR-100 capability), or a "slice." A

slice ma y have one of two forms:

I
I

234

OWtir,0114AL

OOR QVALIVOF P

In the first case. items "I" through "J" are select

the second case, all items except the first "I" and t

"J" are selected. All forms of indexing are valid om

sides of an assignment statement, and indexing may be

on expressions as well as simple variables.

ALA has some desirable features; in particular, the ability

to deal with vectors in the same fashion as (and in combination

with) scalars is very appealing. However, ALA is very heavily

weighted toward implementation on the STAR-100, and it includes

features which may be expensive to provide on other machines.

These include Boolean indexing, the use of sparse vectors, and

the large runtime variability of the size of vectors. Also, a

language designed for a vector processor is dissimilar in many

ways from a language for a matrix processor.

C.2.3.4 APLISP

APLISP[271 is a language for image and speech processing.

Its target machine is the partitionable SIMD/MIMD system PASM[28)

but the language 's machine independent.

The syntax of APLISP is similar in many ways to that of

Pascal. Deviations from Pascal include the definition of two new

fundamental data types (BYTE and INDEX), a flexible array

indexing scheme, and conditional control statements.

Arrays in APLISP are viewed as a set of named objects, each

of which is an ordered n-tuple consisting of the index (or

ass

ORIGI14AL PAGE 13

OF POOR QUALITY

indices) and the value. (As an example, for a one-dimensional

array, the objects are ordered pairs (i,x) where i is the index

and x is the corresponding value.) Index sets are used to select

subsets of these n-tuples. For multi-dimensional arrays, sets of

index n-tuples may be specified by a Cartesian product or

concatenation of two index sets.

Index sets may be used in assignment statements on both

sides of the expression. Index sets which appear on both sides

of an assignment are forced to correspond to one another; hence,

the assignment A[U]	 B[U] implies that for each u U, A[u]

B[uI.

APLISP provides the WHERE statement for parallel conditional

evaluation. Execution is controlled by a conditional expression

over an index set. Within the body of the WHERE clause and

optional ELSEWHERE clause the range of the index set is

restricted to only those n-tuples for which the conditional is

true or false, respectively.

APLISP provides a flexible mechanism for expressing

parallelism without consideration of the underlying machine. The

concept of index sets is a very powerful one (although as with

APL, the uninitiated may object to the concise and highly-

symbolic format). The runtime-dynamic shape and configuration of

the index sets may pose an implementation problem on processors

with restricted interconnect networks (e.$. matrix processors

with simple near-neighbor connections). Nonetheless, APLISP has

236	 ORIGINAL PAGE IS
OF POOR QUALITY

many attractive features. It did not influence the design of

Parallel Pascal because it was not specified in time; in

addition, no research results from an implementation are

available.

C.2.3.5 Fortran 8X

At the present time, the X3J3 committee of the American

National Standards Institute is considering proposals for

extensions to Fortran[2,29]. All of the proposed changes are

still subject to change, so it is impossible at this time to

determine the form of the new language (often referred to as

"Fortran 8X"). However, it is i.ns:ructive to consider some of

the proposed extensions in the realm of array indexing and

parallel processing.

The current proposals permit the use of unsubscripted array

names in arithmetic expressions on either side of the assignment

` symbol (" "). The evaluation and assignment is considered to

be simultaneous for all array elements. (This definition

facilitates the implementation on a parallel processor, where the

evaluation and assignment is simultaneous, as well as on a

conventional serial machine.)

When subscripts are specified, the special symbol " * " is

used to represent the entire range of the array. For example:

A(1,*)	 - select row 1
A(*,1)	 - select column 1
A(-*,1)	 - select column 1 in reverse order

I I	 ?

B	 1

4

a .^

F' i

OF POOR QUALITY
ORiGtM%L FS:^ t9	

237

Finally, an array section may be specified by a doublet or

triplet:

V(1:5)	 - select V(1), V(2), V(3), V(4), V(5)
V(1:K)	 - select V(1), V(2), ... , V(K)
V(1:5:2)	 - select V(1), V(3), V(5) 	 (step by 21

Other capabilities which are under consideration are more

complicated array sections, vector indexing for arrays, an

IDENTIFY statement (to restrict the number of array elements

which are active when an explicit index expression is not given),

and a conditional assignment (WHERE) statement.

The proposals for Fortran 8X are of interest, because

Fortran is one of the most widely-used high level languages in

the field of scientific computing. However, It would be unwise

to adopt the current proposals for Fortran 8X as the basis for a
i

new language at this time, since it is likely that there will

still be significant revisions to the language before a standard

is adopted. Until some of the other problems with Fortran can be

satisfactorily resolved (for example, its lack of facilities for

structured programming), a language based upon Fortran and the

proposals outlined above is not suitable for implementation on a

parallel matrix processor.

C.2.3.6 Parallel Extensions to LRLTRAN (Fortran)

LRLTIAN is an extended Fortran in use at the Lawrence

Livermore Laboratories in California. To accomodate the STAR-

ORIGINAL PAGE IS 	 238
OF POOR QUALITY

The resulting language provides for the specification of

efficient manipulation of vector quantities.

The one-dimensional nature of LRLTRAN is very apparent in

the declaration of parallel variables. These variables are

explicitly declared as vectors, e.g.

VECTOR A(99)

declares that "A" is a vector with 100 elements (the lower-

bound of a vector index is always zero). Vectors so defined may

be used in arithmetic expressions (with the expected results),

e.g.

A - A + 1

increments each element of the vector "A" by 1.

In addition to declaring vector storage, one may also define

vector descriptors:

VECTOR (BPTR,B)

In this case, the variable " BPTR " is a user-accessible

description of the address and size of a vector. After setting

BPTR " appropriately, the desired data may be accessed as a

vector via the descriptor "B". For example, if " BPTR" points

to a 7-word area beginning at address 1000, thec, the statement

B - 1

will set words 1000..1006 to I. Operators are provided to

convert scalars to vector descriptors and vice versa and to

239
ORIGINAL PA C ! .
OF POOR QUALITY

determine the length of a vector.

Vectors (or vector descriptors) which participate

assignment statements need not be the same size. Scalar

automatically extendoid to vectors during an assignment.

the left- and right -sides of the assignment are vectors

right-hand-aide is completely evaluated and the results

assigned one-by-one until one of the two vectors is exh;

Vectors may be subscripted with a scalar, a vector, a

contiguous range of elements, or a set (bit-vector); they may

also be treated as sparse vectors.

Finally, LRLTRAN contains a number of intrinsic functions to

provide for summing along vectors, merging vectors, etc. The

implementation of these is somewhat unfortunate: unlike normal

Fortran intrinsic functions, the user cannot override the

standard definitions with his own. Even if he supplies a

function definition the compiler will use the predefined

intrinsic function.

LRLTRAN is a flexible language for dealing with the STAR-

100, but because of its strictly-vector nature it is not well

suited for a matrix processor. Many of its facilities (such as

sparse vectors and vector indexing) are directly related to the

hardware capabilities of the STAR-100 and may be very expensive

on a processor with a more rigid structure.

g
	

if
F

240

ORIGINAL PACE 19

OF POOR QUALITY

C.2.3.7 PascalPL

PascalPL[31) is a Pascal-based language which facilitates

parallel image processing. Its design was influenced by the

architectures of contemporary parallel arrays. It is presently

available at the University of Wisconsin, Madison, as a

translator which converts PascalPL programs to standard Pascal

programs.

A PascalPL program consists of a standard Pascal program

which contains parallel procedures. The parallel procedures

themselves may contain a mix of standard Pascal statements and

parallel constructs. All parallel constructs are distinguished

by the presence of two leading vertical lines ("11", the

standard symbol for parallelism).

A parallel procedure is introduced with the declaration

Ilprocedure procedurename ;

At some point after this (between which there may be standard

Pascal statements), a "dimension declaration" must be placed to

define the bounds over which operations take place:

lidim [0..127, 0..1211 ;

Optional fields also declare the data type (either integer -	 ,

which is the default - or Boolean), the association of arrays

with set names (sets of arrays), and the index mapping from the

input array set to the result array set. Once the dimension has

been defined, the following parallel constructs may be intermixed

I iR"

tai

ORIGINAL PAGE 1$

OF POOR QUALITY

with standard Pascal statements:

Ilread(...)
Ilwrite(...)	 i
Ilset arrays_assigned_to 	 compound _ of arrays
Ilicompound of arrays inequality

Ilthen arrays modified
Ilelse arrays modified-on-failure ; (optional)

Ilborder :a bordartype

The Ilread and iiwrite constructs perform input and output

of arrays or subsets of arrays. The Ilborder statement defines

the value that is to be used when array indexing lies outside the

declared array dimensions.

	

p	 The most significant feature of PascalPL is its array

indexing mechanisms. Array operations are performed by the Ilset

and Ilif constructs. The Heat instruction unconditionally

performs array assignments. The left-hand-aide of the assignment

specifies one or more result arrays; the right-hand-side

specifies an array expression. The array expression may contain

scalar variables (always proceeded in this context by a "C'

character), constants, and array index expressions. A simple

example is:

Ilset arrayl	 2*array2 + array3 - #mean;

which performs (element-by-element) addition of 2 times

array2" with " array3" , subtracts from each element the value
S

of the scalar variable "mean'', and stores the result (element

i

	

I	 by element) in 'arrayl".

PascalPL provides even greater flexibility in array

{ :	 t

242
uhiuirjAl. PA G;: M
OF POOH QUALITY

expressions by permitting the specification of neighborhood

operations. A specified set of near- neighbors may be

individually weighted and combined by a specified operation. For

instance, suppose that it is desired to compute

b[i,j)	 a[i-l,j -11 + a[i- 1,j+11 + a[i+l,j-1J + a[i+l,j+ll + 4*a[i,j

for all elements of "a" and "b". This can be accomplished

with the following PascalPL statement:

Ilset b	 a[+(-1:-1, -1:1, 1:-1, 1:1, 0:0*4));

This mechanism is generalized even further to permit

thresholding; e.j. the following performs the same sum, but only

includes the value of the center if it is greater than 32:

Ilset b	 a[+(-1:-1, -1:1 0 1:-1, 1:1, 0:0*4>32)1;

The conditional structure (Ilif) can be used to perform

simple modifications to arrays on an element-by-element basis, as

determined by the controlling conditional. For instance, to

triple the value of all elements in the array "b" if the

corresponding elements in array "a" are non-zero, the statement

would be:

I Iif a 0 0
Iithen b* 3;

Pascal?L is a very intriguing language. It has a compact

and powerful notation which is capable of representing many

desirable operations which can be efficiently performed by a

parallel matrix processor. The language appears to be easily

1

., s

4

243

ORIGtNAL PAGE

OF POOR QUALITY

extensible to arrays with any number of dimensions. The ability

to mix PascalPL and standard Pascal within ttis same program is

also a definite advantage. Its biggest drawback may be its
r

biggest feature - the symbolism used to express parallel

operations. The operations that are specified for arrays are

syntactically and semantically different than similar operations

specified in standard Pascal. The conditional statement also

operates upon arrays with a different syntax; multiplying an

array ' xyz" by 3 is done by

xyz*3

in an Ilif statement, but by
i	--

Ilset xyz	 xyz *3;

in an assignment statement. Thus, while PascalPL is a viable

candidate for a parallel matrix processor such as the MPP, it

seems desirable that a different approach, one which does not

significantly distinguish between parallel and scalar operations,

be taken.

C.2.3.8 VECTRAN

VECTRAN was proposed by researchers at IBM as an extension

to IBM FORTRAN IV132j. It was designed as an upward compatible

extension to FORTRAN (66) for scientific applications

programming.

The declaration statements RA14GE and IDENTIFY are used to

specify the array elements which participate in an operation.

t

244

ORIGINAL PAGE IS
OF POOR QUALITY

The RANGE statement can be used to restrict the range of a

parallel operation to some subset of the array; for example:

RANGE /N,M/ A(10,10), B(15,25)

N • - 5
M - N+2

A - 2.5*A + B

Only the 5x7 subarrays of A and B participate in the parallel

computation.

The IDENTIFY statement permits the rep definition of axes in

the array, so that well-defined substructures of an array may be

defined and used. For instance, the elements along the diagonal

of a two-dimensional array may be ""identified" with the

elements of a one-dimensional array of the appropriate size.

Vector indexing is permitted in VECTRAN. The semantics are

similar to APL. The order of the values in the vector is

significant.

Parallel conditional control is provided by the WHEN and AT

statements. These statements differ in the order in which

evaluation is performed. WHEN fully evaluates the conditional

expression and each controlled expression, and then performs

conditional assignment. AT evaluates the conditional expression

and then conditionally evaluates the appropriate controlled

expression. Hence, WHEN performs conditional assignment while AT

245

ORIGINAL PAGE 18
OF POOR QUALITY

performs conditional evaluation.

VECTRAN also provides functions for manipulating data

logically (PACK and UNPACK) and arithmetically (e.,j. matrix

multiply).

VECTRAN has a number of desirable features. It is based

r	 upon a well-known language (Fortran, albeit Fortran 66), it

provides for flaxible manipulation of data, and it is targeted

toward numerical applications. Unfortunately, VECTRAN does not

4
	 remedy many of the problems in Fortran - poor control flow

constructs, the lack of user-defined data types with their

associated type checking, and Fortran's generally poor syntax.

Also, its indexing mechanisms, particularly vector indexing, are

complex to implement; this may seriously impact the efficiency of

an implementation on a parallel matrix processor.

C.2.3.9 Direct Parallelism Specification: Conclusions

A language which permits the direct specification of

parallelism, without requiring the specification of the low-level

implementation, is very attractive. However, none of the

languages described above (with the exception of Actus Plus,

whose full description was unknown at the time of the initial

language survey) is entirely suitable for implementation on a

parallel matrix processor such as the MPP. The languages are

either too vector-oriented or too general for efficient

implementation.

246

C . 3 References

1 Anthony P. Reeves, John D. Bruner, and Tony M. Brewer, "High
Level Languages for the Massively Parallel Processor," TR-EE
81-45, School of Electrical Engineering, Purdue University,
West Lafayette, IN (November 1981).

2	 Loren P. Meissner, "The Fortran Programming Language -
Recent Developments and a View of the Future," ACM FORTEC

FORUM Vol. 1(1), pp.3-8 (July 1982).

3	 Kathleen Jensen and Niklaus Wirth, PASCAL User Manual and
Report, Springer-Verlag, Berlin, Heidelberg, New York
(1974).

4	 Niklaus Wirth, "The Design of a PASCAL Compiler," Software -
Practice and Experience Vol. 1, pp.309-333 (1971).

5	 M. Iglewski and J. Madey, "A Contribution to an Improvement
of Pascal," ACM SIGPLAN Noticea(1), pp.48-58 (January 1978).

6	 R. D. Tennent, "Another Look at Type Compatibility in
Pascal," Software - Practice and Experience Vol. 8, pp.429-
437 (1978).

7	 J. Welsh, W. J. Sneeringer, and C. A. R. Hoare, "Ambiguities
and Insecurities in Pascal," Software - Practice and
Experience Vol. 7, pp.685-696 (1977).

8	 Augusto Celentano, Pierluigi Della Vigna, Carlo Ghezzi, and
Dino Mandrioli, "Separate Compilation and Partial
Specification in Pascal," IEEE Transactions on Software
Engineering Vol. SE-6(4), pp.32U-328 (July 1980).

9	 Richard J. LeBlanc and Charles N. Fischer, "On Implementing
Separate Compilation In Block-Structured Languages," ACM
SIGPLAN Notices Vol. 14(8), pp.139-143 (August 1979).

10 Richard J. LeBlanc, "Extensions to PASCAL for Separate
Compilation," ACM SIGPLAN Notices Vol. 13(9), pp.30-33
(September 1978 T

11	 Edward N. Kittlitz, "Another Proposal for Variable Size
Arrays in FASCAL," ACM SIGPLAN Notices Vol. 12(1), pp.82-86
(January 1977).

12 Sergei Pokrovsky, "Formal Types and Their Application to
Dynamic Arrays in Pascal," ACM SIGPLAN Notices, pp.36-42
(October 1976).

13	 B. J. MacLennan, "A Note on Dynami ,. Arrays in PASCAL," ACM
SIGPLAN Notices, pp.39-40 (September 1975).

241

14 Niklaus Wirth, "An Assessment of the Programming Langua
Pascal," LBEE Transactions on Software Engineering Vol.
1 (2) , pp.TV3 -198 June 19755.

15	 A. M. Addyman, "A Draft Proposal for Pascal," ACM SIGPL
Notices Vol. 15(4), pp.l-66 (April 1980).

16 David L. Presberg, "The Paralyzer: IVTRAN's Parallelism
Analyzer and Synthesizer," ACM SIGPLAN Notices Vol. 10(
pp.9-16 (March 1975).

17	 Robert E. Milletein, "The ILLIAC IV Fortran Compiler,"
SIGPLAN Notices Vol. 10(3), pp.1-8 (March 1975).

18	 D. J. Kuck, R. H. Kuhn, B. Leasure, and M. Wolfe, "The
Structure of an Advanced Vectorizer for Pipelined
Processors," COMPSAC:, pp.709-715 (1980).

19	 K. G. Stevens, Jr., "CFU - A FORTRAN-like Language for
ILLIAC IV," ACM SIGPLAN Notices Vol. 10(3), pp.72-75 (M
1975).

20	 P. M. Flanders, D. J. Hunt, S. F. Reddaway, and D.
Parkinson, "Efficient High Speed Computing with the
Distributed Array Processor," pp. 113-127 in High Speed
Computer and Algorithm Organization, ad. David J. Kuck,
Duncan H. Lawrie, Ahmed H. Sameh, Acedemic Press (1977).

21	 D. H. Lawrie, T. Layman, D. Baer, and J. M. Randal, "Glypnir
- A Programming Language for Illiac IV," Communications of
tha ACM Vol. 18(3), pp.157-164 (March 1975).

22	 David B. Erickson, "Array Processing on an Array Processor,"
ACM SIGPLAN Notices Vol. 1,0(3), pp.17-24 ("larch 1975).

23	 R. H. Parrott and D. K. Stevenson, "Users' Experiences with
the ILLIAC IV System and its Programming Languages," ACM
SIGPLAN Notices Vol. 16(7), pp.75-88 (July 1981).

24	 R. H. Parrott, "A Language for Array and Vector Processors,"
ACM Transactions on Proorammin Languages and Systems Vol.
1(2), pp.177-195 October 197 9 .

25	 R. H. Perrot t, "Acttis Plus," CS 008,	 Department of Computer
Science, The Queen's University, Belfast, Ireland (November
1931).

26	 Mary E. 2ose1, "A Modest Proposal for Vector Ext-.nsions to
ALGOL," ACM SIGPLAN Notices Vol. 10(3), pp.62-7i (March
1975).	 t

27	 Philip T. Mueller, Leah J. Siegel, and Howard Jay Siegel, "A
Parallel Language for Image and Speech Processing,"

248	 '

Proceedings, COMPSAC 80, pp.476-483 (October 1980).

28	 Howard J. Siegel, Leah J. Siegel, Frederick Co Kemmerer,
Philip T. Mueller, Jr., Harold E. Smalley, and S. Diane
Smith, "PASM: A Partitionable SIMD/MIMD System for Image
Processing and Pattern Recognition," IEEE Transactions on
Computers Vol. C-30(12), pp.934-947 (December 1981).

29 Richard R. Ragan, "Proposed Argument Association Rules for
Arrays in FORTRAN 8x," ACM FORTEC FORUM Vol. 1(1), pp.9-14
(July 1982).

30	 R. G. Zwakenberg, "Vector Extensions to LRLTRAN," ACM
SIGPLAN Notices Vol. 10(3), pp.77-86 (March 1975).

31	 Leonard Uhr, "A Language for Parallel Processing of Arrays,
Embedded in Pascal," pp. 53-87 in Languages and
Architectures for Image Processing, ed. M.J.B. Duff and S.
Levialdi, Academic Press, London (1981).

32	 George Paul and M. Wayne Wilson, "An Introduction to VECTRAN
and Its Use in Scientific Applications Programming," 7287
(#31383), IBM T. J. Watson Research Center, Yorktown
Heights, NY (September 1978).

	GeneralDisclaimer.pdf
	0029A01.pdf
	0029A03.pdf
	0029A04.pdf
	0029A05.pdf
	0029A06.pdf
	0029A07.pdf
	0029A08.pdf
	0029A09.pdf
	0029A10.pdf
	0029A11.pdf
	0029A12.pdf
	0029A13.pdf
	0029A14.pdf
	0029B01.pdf
	0029B02.pdf
	0029B03.pdf
	0029B04.pdf
	0029B05.pdf
	0029B06.pdf
	0029B07.pdf
	0029B08.pdf
	0029B09.pdf
	0029B10.pdf
	0029B11.pdf
	0029B12.pdf
	0029B13.pdf
	0029B14.pdf
	0029C01.pdf
	0029C02.pdf
	0029C03.pdf
	0029C04.pdf
	0029C05.pdf
	0029C06.pdf
	0029C07.pdf
	0029C08.pdf
	0029C09.pdf
	0029C10.pdf
	0029C11.pdf
	0029C12.pdf
	0029C13.pdf
	0029C14.pdf
	0029D01.pdf
	0029D02.pdf
	0029D03.pdf
	0029D04.pdf
	0029D05.pdf
	0029D06.pdf
	0029D07.pdf
	0029D08.pdf
	0029D09.pdf
	0029D10.pdf
	0029D11.pdf
	0029D12.pdf
	0029D13.pdf
	0029D14.pdf
	0029E01.pdf
	0029E02.pdf
	0029E03.pdf
	0029E04.pdf
	0029E05.pdf
	0029E06.pdf
	0029E07.pdf
	0029E08.pdf
	0029E09.pdf
	0029E10.pdf
	0029E11.pdf
	0029E12.pdf
	0029E13.pdf
	0029E14.pdf
	0029F01.pdf
	0029F02.pdf
	0029F03.pdf
	0029F04.pdf
	0029F05.pdf
	0029F06.pdf
	0029F07.pdf
	0029F08.pdf
	0029F09.pdf
	0029F10.pdf
	0029F11.pdf
	0029F12.pdf
	0029F13.pdf
	0029F14.pdf
	0029G01.pdf
	0029G02.pdf
	0029G03.pdf
	0029G04.pdf
	0029G05.pdf
	0029G06.pdf
	0029G07.pdf
	0029G08.pdf
	0029G09.pdf
	0029G10.pdf
	0029G11.pdf
	0029G12.pdf
	0029G13.pdf
	0029G14.pdf
	0030A02.pdf
	0030A03.pdf
	0030A04.pdf
	0030A05.pdf
	0030A06.pdf
	0030A07.pdf
	0030A08.pdf
	0030A09.pdf
	0030A10.pdf
	0030A11.pdf
	0030A12.pdf
	0030A13.pdf
	0030A14.pdf
	0030B01.pdf
	0030B02.pdf
	0030B03.pdf
	0030B04.pdf
	0030B05.pdf
	0030B06.pdf
	0030B07.pdf
	0030B08.pdf
	0030B09.pdf
	0030B10.pdf
	0030B11.pdf
	0030B12.pdf
	0030B13.pdf
	0030B14.pdf
	0030C01.pdf
	0030C02.pdf
	0030C03.pdf
	0030C04.pdf
	0030C05.pdf
	0030C06.pdf
	0030C07.pdf
	0030C08.pdf
	0030C09.pdf
	0030C10.pdf
	0030C11.pdf
	0030C12.pdf
	0030C13.pdf
	0030C14.pdf
	0030D01.pdf
	0030D02.pdf
	0030D03.pdf
	0030D04.pdf
	0030D05.pdf
	0030D06.pdf
	0030D07.pdf
	0030D08.pdf
	0030D09.pdf
	0030D10.pdf
	0030D11.pdf
	0030D12.pdf
	0030D13.pdf
	0030D14.pdf
	0030E01.pdf
	0030E02.pdf
	0030E03.pdf
	0030E04.pdf
	0030E05.pdf
	0030E06.pdf
	0030E07.pdf
	0030E08.pdf
	0030E09.pdf
	0030E10.pdf
	0030E11.pdf
	0030E12.pdf
	0030E13.pdf
	0030E14.pdf
	0030F01.pdf
	0030F02.pdf
	0030F03.pdf
	0030F04.pdf
	0030F05.pdf
	0030F06.pdf
	0030F07.pdf
	0030F08.pdf
	0030F09.pdf
	0030F10.pdf
	0030F11.pdf
	0030F12.pdf
	0030F13.pdf
	0030F14.pdf
	0030G01.pdf
	0030G02.pdf
	0030G03.pdf
	0030G04.pdf
	0030G05.pdf
	0030G06.pdf
	0030G07.pdf
	0030G08.pdf
	0030G09.pdf
	0030G10.pdf
	0030G11.pdf
	0030G12.pdf
	0030G13.pdf
	0030G14.pdf
	0031A02.pdf
	0031A03.pdf
	0031A04.pdf
	0031A05.pdf
	0031A06.pdf
	0031A07.pdf
	0031A08.pdf
	0031A09.pdf
	0031A10.pdf
	0031A11.pdf
	0031A12.pdf
	0031A13.pdf
	0031A14.pdf
	0031B01.pdf
	0031B02.pdf
	0031B03.pdf
	0031B04.pdf
	0031B05.pdf
	0031B06.pdf
	0031B07.pdf
	0031B08.pdf
	0031B09.pdf
	0031B10.pdf
	0031B11.pdf
	0031B12.pdf
	0031B13.pdf
	0031B14.pdf
	0031C01.pdf
	0031C02.pdf
	0031C03.pdf
	0031C04.pdf
	0031C05.pdf
	0031C06.pdf
	0031C07.pdf
	0031C08.pdf
	0031C09.pdf
	0031C10.pdf
	0031C11.pdf
	0031C12.pdf
	0031C13.pdf
	0031C14.pdf
	0031D01.pdf
	0031D02.pdf
	0031D03.pdf
	0031D04.pdf
	0031D05.pdf
	0031D06.pdf
	0031D07.pdf
	0031D08.pdf
	0031D09.pdf
	0031D10.pdf
	0031D11.pdf
	0031D12.pdf
	0031D13.pdf
	0031D14.pdf
	0031E01.pdf
	0031E02.pdf
	0031E03.pdf
	0031E04.pdf
	0031E05.pdf
	0031E06.pdf

