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Abstract

This is the final report for NASA grant NAG 5-3 which 18 concerned with
high-1evel language, computer architecture and algorithms for the Massively
Parallel Processor (MPP). Previous work for this grant is described in Purdue
technical reports TR-EE 80-32 and TR-EE 81-45. In this report only the
recent up-dates to previous work and results of new work are given; previous
work which is not described in detail here is mentioned in section one.

The main effort of the research has been to desian a high level language
for the MPP. This language, called Parallel Pascal, is described in detail
in this report. Report sections include a description of the Language design,
a description of the intermediate Language, Parallel P-Code, and details for
the MPP implementation. Appendices give formal descriptions of Parallel
Pascal and Parallel P-Code. A compiler has been developed which converts
programs in Parallel Pascal into the intermediate Parallel P-Code language;
the code generator to complete the compiler for the MPP is being developed
independently by CSC for NASA. A Parallel Pascal to Pascal translator has
also been developed. This allows Parallel Pascal programs to be developed
and run on conventional computers without the need for direct access to the
MPP.

In related work the architecture design for a VLSI version of the MPP
is completed with a description of fault tolerant interconnection networks.
In another section the memory arrangement aspects of the MPP are discussed

and a survey of other high level languages is given in an appendix.
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1. _Introduction
This fs the thivd and final report for grant NAG 6-3. The other two
interim reports TR-EE 82-32 [1] and TR-EE-81-45 [2] contein much information
which is only briefly summarﬂZed in this report. The reader is referred |
to these rcpdrts for a complete datailed description of the work conducted
for this grant. | i |
The main concentration of the research effort has besn directed towards
the development of a high level language for paraIiel processors in gensral
and the MPP in particular. Such a language, called Parallel Pascal, has baen
developed and is described in detail in this report. o
In addition to this work, we have also conducted research into advanced
architecturas for Parallel processors such as the MPP and have programmed
some algorithms for the MPP. In the remainder of this introductory section
the work in languages, architectures and algorithms is briefly surmari zed

and then an outline for the remainder of this report is given.

1.1 High Level Languages
There is an obvious need for the availability of a high level language

for programming paraliel processors such as the MPP. In our research in

this area we have considered languages based on APL, Fortran and Pascal. ,
The majority of the research has been devoted to the development of a language
called Parallel Pascal. A specification for a parallel APL is given in [2],
section 4 and the specification for a Parallel Fortran, which is relatively
simple to implement, is given in [2], section 3. In Appendix 6 a general ; "
discussion is presented on the high level languages which have been developed
for other paraliel processors. This discussion includes their relevance and

shortcomings with respect to parallel matrix processors including the MPP.




In this report section 2 contains the recent developments to the language

since reports [1] and [2]. The 1/0 section of the language is spnciffed here, |

and implementation rastrictions on the compiler for MPP are describad, Methods
of programming the 1/0 for large si2e images with the implemented MPP
language are also outlined in this section. In section 3, thi design of
Paraliel Pascal 1s prasented. This section starts with a discussion of the
design goals of the language and continues to introduce the featurses which

have been added to conventional Pascal in a logical, step by stopvmanner.

In Appendix A a formal spacification of the Parallel Pascal language is giveﬁ
including a complete grammar.

A large part of the research effort was directed towards the specification
of an intermediate compiler language called Parallel P-code which was developed
from the P-Code intermediate language used in many Pascal compilers. The
design of this language is presented in section 4 and a more formal language
specification is given in Appendix B. This language may be used for the
compilers of languages other than Parallel Pascal such as Parallel Fortran.

A compiler which compiles Parallel Pascal into this intermediate language
has been developed as part of the work for this grant NAG 5-3.

A preliminary description of Parallel P-Code was given in [2] section
2.4, extensive revisions have been made to the language since then. These
revisions were caused by the complexity of the new lanquage features and the
different memory systems which the data may be mapped onto. The resulting
language is at a higher, more symbolic level than conventional P-Code which
gives the code generator more flexibility for optimization and allocation
of memory.

A Parallel Pascal translator has also been developed which is described
in [2] sections 2.2 and 2.3. This translator allows programe written in
Parallel Pascal t2 be compiled and run on conventional computers which have

a Pascal compiler. This is a very important tool which enables Parallel Pascal
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3 ,
programs to be developed, debugged and tested without the MPP. Consequantly,
programs may be developed on the users local computer at the users convenience
even before the MPP hardware is available. ’

1.2 Computer Architecture

We have considersd several architecture alternatives and extensions to
the basic MPP design. The first feature which we considered important 1s;ah
hardware bit-counting machanism which can rapidly count the number nf'bits in
a bit-plane. This mechanism was considered to be important for algorithms
involving global feature extraction. A hardware bit counter design is pre-
sented in [3] where it fs shown that a very large speed improvemant over
current MPP bit-counting methods can be achieved at a small cost. Algorithms
where bit counting is important are also discussed in [3]. In reference [4],
which is also in Appendix B of [2], algorithms are described for real-time
image tracking and it is shown that the MPP with the bit counting hardware
could implement these algorithms in real-time.

The construction of aiu MPP 1ike array using VLSI technology components
has been considered in [11, section 4. A three chip set is proposed consisting
of a dense PE ALU chip, a local memory chip and a fault tolerant interconnection
chin. The ALU chip 1s designed for optimal bit-serial multiplication speed
which is much faster than the MPP design; it also has a table-look-up capability
which is not available on the MPP. An extended interconnection scheme, called
the two-dimensional perfect shuffle, is considered which overcomes most of the
problems of the mesh interconnection scheme used on the MPP; but the imple~
mentation cost is very high.

In this report, section 6, a more detailed design of the fault tolerant
interconnection ship is presented. It is shown that a very large amount of
fault tolerance in the mesh connected array can be achieved at a very reasonable

cost. This means that the construction of arrays much larger than the current

b

s
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MPP sfze of 128x128 can be considered in the future. A second possibility
for future consideration s to implement the whole PE array on a single
silicon slice consisting of many interconnected chips. Reconfiguration to
avoid bad parts of the chips can be done in softwars once the siide has been
completely fabricated. Furthermore, 1f additional faults occur in the PE
array at a later time, then software reconfiguricions can be used again to

avoid these new Taults. ‘
| ORIGINAL PAGE I3
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1.3 Algorithms ‘CNUAerv

The design of the high level language and the computer architacturs should
both be algorithm driven. We have considered typical algorithm 1mplemlntations
at both high and low levels.

The MPP does not have a table-look-up facility, in [5] and also in [1]
section 3, an efficient mechanism for impiementing arbitrzry functiens on a
bit-serial computer architecture is described and a function compiler for the
MPP has been developed. The specification of the function is input to this
function compiler which generates an optimized subroutine in bit-level assembler
code for implementing the function. Any arbitrary function may be 1mplemeqted;
however, the number of instructions generated by the compiler increases expon-
entially with the number of bits of the function arguments. This technique
is most suitable for arguments of 8-bits and less and for functions which cannot
be implemented.by a very simple direct method.

Various different algorithms have been programmed in Parallel and are
presented in [1] and [2]. In [1] section 2.3, programs are given for PE address
generation, image rotation, bilinear image resampling, maximum 1ikelihood classi-
fication, convolutjon.hiStegram generation and iscdata clustering. In {2}
section 2.2.5, programs are given for manipulating large arrays on zhe,1zaxlas
PE array of the MPP.
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In refevence [2], soms basic parallel sigorithms ave discussed. Algorit. »
for loca) window :perations including local sorting and local median f11tering
are describad in section § of [2], these algorithms have aiso besn published
[4]. 1In Appendix B of [2], algorithms for rapid sequential frame registration,
enhancement and featurs extraction are described.

In this report sections 2 and 3 and Appendix A deal with the final speci-
fication of the Parallel Pascal Language. Section 4 and Appendix B deal with
the intermediate Parallel P-Code language. Section § is concerned with memory
management issues, i.e. methods to overcome the limitations caused by the smell
local memory size on the MPP, Finally, section 6 deals with the design of a
VLSI interconnection chip which completes the dusign for a future VLSI MPP-1ike
architecture. The majority of the effort during this last period in grant
NAG 5-3 has been directed towards finalizing the design of Parallel Pascal and
to fully consider the constraints of the MPP implementation. The work on the
Parallel Pascal compiler which generates the Parallel P-Code has been completed.

1.4 References

1. A.P. Reeves and J.D. Bruner, "High Level Language Specification and Efficient
Function Implementation for the Massively Parallel Processor', Purdue
Technical Report TR-EE 80-32, July 1980.

2. A.P. Reeves, J.D. Bruner and T.M. Brewer, "High Level Languages for the
Massively Parallel Processor", Purdue Technical Report TR-EE 81-45, Oct. 1981.

3. A.P. Reeves, "On Efficient Global Extraction Methods for Parallel Processors,
Computer Graphics and Image Processing, Vol. 14, pp. 159-169, 1980.

4. A.P. Reeves, "The Local Median and Other Window Operations on SIMD Computers",
Computer Graphics and Image Processing, Vol. 19, pp. 165-178, 1982.

5. A.P. Reeves and J.D. Bruner, "Efficient Function Implementation for Bit<
Serial Parallel Processors", IEEE Trans. on Computers, Vol. C-29, No. 9,
pp. 841-844, September 1980.




2. Par p
The current specification of Parallel Pascal is very similar to the
specification given §n TR-EE 81-45. The main changes, made to controi structures

array indexing and 1/0, are ottlined below in section 2.1. A complets spacification i

is given in Appendix A.

The vestrictions which will bs made to the initial MPP compiler have bsen
determinad and these are described in section 2.2. Several examples of performing
1/0 on the MPP are outlined section 2.3.

2.1 Revisions and 1/0 Specification

The only control construct which can have an array control variable is the
where=-do-otherwise construct, This 1s similar to the if-then-else construct with
the following differences:

1. The control expression may have an array data type

2. A1 the targets of assignments must be conformable with the control

expression, 1.e., they must be either a similar sized array or a scalar.

3. Both the do and the otherwise sections will be executed in sequence;

the do first and then the otherwise with the complement of the condition.

The where structure involves conditional assignment rather than conditional
evaluation. Where structures may be nested with other where structures and with
other convential control structures.

In report TR-EE 81-45 the concepts of subrange constant and subrange indexing
were introduced. For example, the expression a[11..20) specifies a subvector of a
consisting of elements a[11]through a[20]. This feature has now been extended to
include an offset expression. For example, a[5 @ 11.,20] adds the offset § to
she constant subrange and results in the elements a[16] through a[25]. This offset
has a similar effect to the shift function but i1s notationally more convenient

in some cases and may be used on the left side of . - assignment. The offset
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may be specified by an expression whereas the subrange must be a constant. The
syntax given for subrange indexing has been changed slightly since the
grammer using the old  syntax would no longer be of type LL(1) which is a
requirement for the simple parsing of Pascal.

The 1/0 specification for Parailel Pascal will be the same as that for
conventional Pascal. Paraliel array 1/0 will be done with files declared to have
Parallel arrays as basic elements. Special techniques for dealing with very
large arrays and for reformatting array data are outiined in section 2.3.

The names of th? standard reduction functions have been changed; however,

these functions are still defined in the same way. The old and new names

for these functions are given below:

01d Name New Name Function
asum sum sum
aprod prod product
aand all AND
aor any OR
amax max max imum
amin min minimum
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2.2 The MPP Parallel Pascal
The initial Parallel Pascal to be implemented on the MPP will have several

basic restrictions. Some of these restrictions may be removed with subsequent
versions of the compiler.

The most fundamental restriction is that the last two dimensions of any
parallel array must be 128 x 128 (or the last dimension must be 16384). It was
decided that to not hide the machine architecture from the programmer 16 this
way wis necessary, at least in the early programming of the MPP, to ensure that
well structured efficient programs are developed. The local memory is very
limited on the MPP and the processing efficiency is greatly reduced if arrays
are used which are not multiples of 128 x 128. For effecitve programming the user
must be aware of these characteristics; in some cases different array sizes may
dictate different programming strategies to efficiently implement the same function.
A future compiler may contain some built in strategies for arbitrary sized arrays,
but these will not be optimal for all cases. Techniques for dealing with large
arrays in MPP Parallel Pascal are disucssed in section 2.3

Any arrays having the last two dimension other than 128 x 128 will be stored
in the staging buffer. Only subarrays having the last two dimensions 128 x 128 can
be directly processed; smaller subarrays may be "read" or "written" by assignment

statements.
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A second restriction is that parallel arrays cannot contain pointers cr
records. It is possible for a parallel array to contain vacords without variant

parts; however, a record of parrallel arrays is probably a better data structure
to use in this case. Pointers are not allowed since they would, in general, point

-
| o

to a different memory system and would be very difficult to manage.

Finally, there may be iome minor restrictions to procedures or program

blocks which contain parallel expressions. These will be a feature of the code

oo

generator which may be removed at a later date and are outside the scope of this

report.,

2.3 Large Array Processing
In this section the processing of arrays larger than 128 x 128 is considered.

Al1so a mechanizm for using the reformatting features of the staging buffer is
described. To aid clarity all declarations of parallel arrays which are to be

located in the staging buffer rather than the PE array unit will be specified by

| buffer array rather than parallel array. Only single band arrays will be described,
| however multispectral data may be easily accomodated by defining the arrays to
fé have one more dimension.
Large arrays will be considered to be of two types (a) arrays which will
fit in the staging bu’fer and (b) arrays which are too large for the staging buffer.

Type (a) arrays are considered first.

2.3 1 Whole arrays in the MPP
For arrays with the last dimensions being 128 x 128 the following program

example is typical for reading an array




Type
pixel = 0,.255;
MPPA = parallel array (0..127,0..127] of pixel;

Var
f : file of MPPA;
a: MPPA;

Begin

reset (f);
read (f,a);

For arrays larger than 128 x 128 that are to be accessed in 128 x 128 chunks
the following scheme may be used (for a 384 x 640 array in this case).
Type

pixel = 0..255;

MPPA = parallel array [0..127,0..127] of pixel;

BUFA = buffer array [0..383, 0..639] of pixel;
Va

bf: file of BUFA;
a: MPPA;
b: BUFA3
Begin
reset (bf);

read (bf,b);

a: = b[0..127,256 @ 0..127];
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A second alternative, if the array is to be processed as a single entity in
the MPP (as cutlined in section 2.5 of TR-EE 81-45), is to consider the array
to have dimensions 3 x § x 128 x 128 as shown below.
Type

pixel = 0..255;

MPPL = parallel array [1..3, 1..5, 0..127,0..127] of pixel;

var
fe:  file of MPPL;
c: MPPL;

Begin

reset (fc);
vead (fc, ¢) 3

2. 3.2 Partial arrays in the WPP,

When the array is too large to fit 1into the MPP then it must be stored on
the disk in convenient sized chunks. The formatting of the data on the disk could
and should be done by a back end processor since the processing requirement of this
task is very low and would be a waste of time on the MPP. Alternatively the
reformatting could be done by the MPP at the beginning of the program,

The data, therefore, is in the form of a file of chunks; for simplicity we
will consider each chunk to have the last dimensions 128 x 128 although they could
also be a multiple of 128. Random access of these chunks is possible but the
seek time of conventional disk systems will make this scheme very slow. A "seek"
function in Pascal would be very useful for random file access and could easily be
implemented in the Parallel Pascal compiler. A faster mode of operation, which
is adequate for most applications, is to spool the data through the MPP. In this
case the sequence of disk accesses is known and the data may be arranged on the

disk to minimize seek time.




The spooling system could be written as a set of Parallel Pascal library

functions. The following functions would be required: resets, open a spooling file; |

reads, read the next block; writes, write the next block; and closes, close the
spool file. Each reads and writes operation will access the next sequential block
of the large array file. Four modes of data access have been considered and are
fllustrated in Fig. 2.3.1. Each mode 1s useful for a particular class of algorithm,

In mode 2ero each block is overlapped with the previous one by a specified
amount. In this way some edge effects, caused by sequential block accessing, can
be ignored.

In the simple mode, mode one, there is no overlap between blocks. This is
the simplest mode to implement and is adequate for point operations but edge

effects may cause problems if near neighbor information is used.

The three near neighbor mode provides an alternative method for near neighbor
processing, especially for large window operations. The near neighbor chunks
provide sufficient edge‘information for rotation and geometric distortion probliems
also.

The eight near neighbor mode, mode three, is useful when not enough near
neighbor information can be obtained with mode two.

The near neighbor accessing modes (zero, two and three) must use a large
part of the stagjng buffer to minimize the number of disk accesses. When possible,
several rows of chunks will be kept there. Much use of pointers will be used in

the reads and writes procedures to minimize the number of data transfers.

2.3.3 Data Reformatting
The MPP staging buffer has the capability of reformatting data flowing through

it in a large number of ways. This feature has not been explicitly used in

Parallel Pascal, although it is used implicitly when reading 128 x 128 chunks.
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Explicit use of the reformatting feature is useful in twé,main applications
(a) when the data file is in an unusual format and (b) when the data in the PE
array is to be redistributed in the array for more efficient processing.

These functions should be treated separately, file reformatting specifies
the programs view of the outside world and has no impact on the algorithm to be
implemented; for this reason the format should bs declared once and then conven-
tional read and write statements may be used. On the other hand, internal data
redistribution 1s a part of the algorithm to be implemented and this should be
made explicitly clear. Methods of implementing data refbrmatting in Parallel
Pascal are outlined below. On the MPP implementation the new functions would

be built into the compiler.

File reformatting will be achieved by a procedure called reformat which
takes a file identifier as an as an argument and regenerates the mapping
parameters for the staging buffer. Other parameters to reformat specify the
new permutation. The final parameter format for reformat has not been
specified; however, a typical example using provisional format is outlined below.

Consider that a multispectral image is organized fn 128 x 128 chunks of
6 bands which are interleaved and the standard Parallel Pascal I/0 usuaily
expects the data in a non-interleaved form.

The reformatting of the data can be achieved by a single call to reformat
as shown in the following program segment.

Type

MPPM = parallel array [ 1..6,0..127,0..127] of 0..255;
var

£ : file of [0..127, 0..127, 1..6] of 0..255

a : MPPM;

)
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read (f,a);

The file declaration specifies the external format of the data while the
reformat parameters specify the dimension reordering to achieve the corract internal
format.

Reformatting data in the PE array is achieved with three oracedures:

resetf, readf, and writef. The first parameter to resetf is a virtual

channel number (an’integer) which has a similar function as a file identifier
except that there is no disk file associated with it. The remaining parameters
of resetf complately specify the data transformation to be made.

Readf and writef are similar to read and write except that the virtual
channe! number replaces the file identifier. Resetf initializes the virtual channel
then readf and write™ can be used as if it were a conventional Pascal file,
Sufficient data must be written by writef calls before readf is used.

For axample, suppose that we want to combine two 128 x 128 arrays to form a
2 x 128 x 128 array, and the elements are to be shuffled together by the staging

buffer. The following program segment 11lustrates how this might be organized
const

vchan = 13

Type
MPPA = parallel array [0..127,0..127] of 0..255;
MPPB = array [1..2] of MPPA;
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var
a,b: MPPA;
r : MPPB; , PAGE 18
ORIGINAL P
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resetf (vchan, <permutation parameters>);
writef (vchan, a);
writef (vchan, b);

readf (vchan, r);

The virtual channel, vchan, i¢ still open and may be used for subsequent
data permutations. In general, the data transfers are not restricted to having
the last dimensions 128 x 128 since the data item being transferred may have
subrange indices.

For the more restrictive, but useful, case where a single array is to be
permitted then a single function, called map, may be appropriate. Map is used
in the following way:

a:= map (b, <permutation parameters>);
where a and b are arrays with the same number of data elements. Map may be
programmed in Parallel Pascal if the functions resetf, writef and reaf are

available.

B
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31 _PARALLEL PASCAL DESIGN

3.1 Motivation

Parallel Pascal is a high~level matrix language dnsigned for
the user of a parallel matrix processor. The decision to design
a new language reflects a degree of dissatisfaction with
facilities available in existing languages. PFor some reason (or
combination of reasons) no single existing language was Jjudged to

be suitable for parallel matrix processors.

To judge the suitability of a language, it is necesssary to
consider the functions it is to serve. Wulf[l! defines three

goals of a programming language: it is a design tool, a vehicle

for human communication, and a vshicle for instructing a
computer. The language which is chosen for a particular

application should be one which satisfies all of these criteria.

Programming can be considered to be the act of mapping a
problem into machine code(2]. This mapping occurs &t two levels.
The original problem is translated by a human into & program in
some language, and then this program is translated by a compiler

(or assembler) into machine code. Each translation involves the

s e b




et 3 Al e b bt Ccoln g IR sty -

T R s

) R e = - ST . . ey

18 | |
DRIGINAL PAGE 18

loes of information =~ the program ccﬁhntan less inforsation than
the problem and the machine code coutains less information than
the program. Unfortunately, these velationships are often dual
in nature - a language which facilitates programaing by humans
(and communication among them) will often be more difficult to

compile into machine code.

in recent years, a great deal of emphasis has been placed
upon the use of & set of techniques collectively referred to as
‘‘structured programming.’’ (The opinions on this subject have
been by no means unanimous; & discussion of the merics and harms
of a number of the ‘‘tenets’’ of structured prograaming is given
in reference J among many others.) These techniques encourage
careful, regular, modular designs, thereby facilitating the
construction of programs which are highly reliable and

maintainable.

Taking the above factors into consideration, & ‘‘good’’
language is one which facilitates communication among humans and
between humans and machines, one which permits expression of a
problem without undue loss of information, one which can be
compiled intc ressonably efficient machine code, and one which

encourages structured programming techaiques.

Having determined what factors are naecessary for a ‘‘good’’
language, the development of Parallel Pascal can now be

considered.
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3.2 PRarsllel Pascal Specification

3¢2¢.1 Design Goals

S8ince none of the available languages were entirely suitabdle
for implementation on & parallel metrix processor, the design of
s new language was undertaken. The design goal of this new
ianguage (which eventually became Parallel Pascal) for a parallel

matriz processor were

® The language should be ef“iciently implementable. A
principle reason for using a parallel processor is to obtain
the maximum possible execution speed; & language whose
fioaplenentation is costly significantly diminishes the
advantage of parallel processors relative to more

conventional (and familiar) sequential processors.

® The language nust permit the direct specification of
parallelism. This relates stiongly to the previous

objective - the direct specification of parallelism produces
more efficient programs than the extraction of inherent

parallelism by a compiler.

® The language nmust be easy to learn and use. Such a language
facilitates comnunication among humans and between
programmers and computers. A language which is difficult

will be avoided by its users whenever possible.

® The language should not require the user to have an intimate

understanding of the hardware upon which it is implemented.

i
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Because Pascal is (by design) efficiently implementable and
easy to learn and use, it was chosan as the basis for the new
parallel matrix language. The resulting language was therefore
named ‘‘Parallel Pascal’’. The following criteris were used in

the specification of Parallel Pascal:

® Parallel Pascal is an extencion to standard Pascal. As
such, it should be fully upward=compatible; that is, any

Pascal progrem should also be a valid Parallel Pascal

program.

® Parallel Pascal extensions to Pascal should be consistent

with the design philosophy of Pascal. The design should be

orthogonal and the new features should not detrsct from the

careful program construction permitted by Pascal.
When deciding upon extensions to a language, it is necessary to
consider the applications for which the language will be used.
Someone once said that a general-purposes system (or processor, or
lanj,uage) 1is one which does does many things but which does none
of them well. To avoid the trap of implementing everything that
anyone would possibly want, new features were considered in light
of the desired applications area - image processing and dense

natrix numerical algorithme (e.g. partial differential

equations).

The following sections deszribe the Parallzl Pascal
extensions to standard Pascal. The developmert of each extension

will be discussed.

1624 i zn.’:" ‘
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In order to satisfy the design objective that parallelism be
directly expressible, & suitable dats structure must be chosen.
Since this specificaction should be as compatible as possible with
standard Pascal, it is instructive to first counsider the data
structuring provided by Pascal. 1Indeed, Pascal’s flexible date

type facility is one of its most significant features.

The most basic Pascal data types are the predefined
primitive types ‘‘integer’’, ‘‘real’’, ‘‘char’’, and ‘'‘Boolean’’,
and the scalar types. o user-defined scalar typs associates with
the typs name & set of distinct identifiers. This permits the
programner to use nnemonic names rather than arbitrary integer
constants, which in turn improves program readability and

facilitates compile-time error checking.

The range of values which may be assigned to a ecalar may be
restricted by defining a subrange type. A subrange type
definition comprises a base type (either a user~defined scalar
type or a primitive type other than ‘‘real’’) and a range of

legal values. Hence, if type ‘‘x’’ is defined by

type ® = | Y- H

then a variable of type ‘'‘x‘’ may legally take on only the values
1, 2, 3, 4, or 5. Like simple scalar types, subrange types aid
in program documentation and compile-~time error checking. Also,
subranga types provide information to the compiler about the

amount of storage required for a variable of that type; in the
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above example only 3 bits of storage need be allocated to lpocify
any legal value in type ‘‘x’’. Providing there is hardware
support, the compiler may choose to adjust the space allocated to
a subrange type depending upon the available hardware

representations.

A pover set may be defined for a scalar or subrange type. A
power set in Pascrl is conceptually the same as a set in
mathematice; it 4s a collection of slements, the composition of
which changes at runtime. The base type (the subrange or scalar
type over which it 1is defined) determines the items which may

belong to the set.

There are two data stzucturing facilities in Pascal, the
array and the record. An array is a homogenous ordered set of
items. The elements of an array may be of any type: scalar,
subrange, set, array, or record type. Associated with each array
component is an ‘‘index’’; the range of this index may be
spe-.‘fied by a scalar or subrange type. A record is a non-
homogenous collection of items. The components of a record may
be of any type, and may occur in any order. There is also a
provision for the overlapping use of storage by allocating
elements which are mutually exclusive into the same storage area

- this is achieved through the use of a variant record.

Pascal also provides pointer types. These are defined by
the compiler and initialized at runtime by the user=-controlled

dynamic storage allocation routine (‘'‘new’’). They contain

R —
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addresees and may be copied and compared (for equality), thus
permitting the comstruction of data structures such as linked

1ists, trees, etc.

The target architecture for Parallel Pascal - a parallel
matrix processor = consists of » set of identical execution units
which perform the same operation at the same tims. The hardware
thus appears as an ordered collection of homogenius processors.
This organization maps naturally into the array sﬁruceurc
provided by Pascal; hence, the array was chosen as the vahicle

for the expression of parallelism in Parallel Pascal.

Often a parallel matrix processor will be closely coupled to
a more conventional processor. For example, the Massively
Parallel Processor contains a main control unit which is a
conventional 16=bit minicomputer. In addition, the MPP is
attached to a host machine, a VAX=-11/780. In such an
environment, it may be more efficient to perform scalar
operations on one processor and matrix operations on another.
This in turn is reflected in the assignment of astorages to
variables used in the program - those variables which are used in
a scalar fashion may be physically located in a different memory
than those used in an array fashion. Parallel Pascal provides

for this situation by permitting an array to be declarad
parallel:

xxx: parallel array (l..5] of integer;

The parallel keyword 1s a means by which the programmer can

o < 4Sperbe a0 PR ‘
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advise the compiler that the array ('‘xxx’’ in this cass) will be
heavily used in a parallel fashion. Some compiler
implenmentations may choose to ignore this (e.g. if there is only
one type of memory). The concept that the user is advising the
compiler about the implementation is similar to the regieter

keyword in the languages C[4].

It is important to note at this point that, aside from the
possible difference in physical storage, arrays declared as
parallel are syntactically and semantically equivaleat to

‘‘ordinary’’ arrays in Parallel Pascal.

3.2.3 Array Indexing

Having chosen the array as the vehicle for expressing
parallelism, it is necessary to specify the manner in which that
parallelism is to be expressed. The logical starting place is
the building block of any computational language - the assignment
statement. It must be possible to specify the evaluation of

array quantities in a simple, direct form.

Standard Pascal provides an array assignment statement; if

LAY x4

a and ‘‘b’’ are the same type then the statement

specifies that each element of ‘‘b’’ is to be ansigned to the
corresponding element of ‘‘a’’., A natural extension of this
concept is to allow arrays of the same type of participate in

arithmetic operations, for example, given
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a,b: array [(l..5] of integer;
i nteger;

the statement
a = 3 + b}

would achieve the same result as

While expressions involving identical arrays are useful,
they are limited in the range of problems to which they can be
applied. Several deficiencles are evident. First, it is
necessary to be able to select 8 portion of an array (for
instance, a row or a8 column) rather than the entire array; hence,
some additional indexing mechanisms are required. Second, it is
necessary to allow arrays of different types (but identical

shapes) to be combined in an arithmetic expression.

A number of schemes have been proposed for array indexing,

as described above in the discussion of other parallel languages.

The array indexing facilities which are provided must be powerful
enough to solve useful problems, while remaining simple enough to
efficiently implement. The choice of indexing mechanisms should

therefore begin with the simplest and proceed toward the more

complex.

In standard Pascal, each array index may be specified by a
scalar constant or expression. This is the simplest form (and

least parallel) of indexing permitted in Parallel Pascal. Whan
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an array is indexed by a scalar its rank is (conceptually)
reduced by one. When a one-dimensional array is indexed by a

scalar the (logical) type of the result is a pointer to a scalar.

It was stated above that standard Pascal permits arrays
participating in an assignment statement to be unsubscripted.
Thie 1is actually a special case of a more general feature 1in
standard Pascal - it is possible to elide (omit) the rightmost
indices in an array assignment, provided the resulting

expressions are of the same type. For example, given the

‘definition

var a,b: array [le.5,1.410) of integer;
both of the following are legal assignments in standard Pascal:

a t= b
all) :» b{l];

L) ’

The first statement assigns to each element of a the value of

the corresponding element of '‘b’’. The second statement

L) e

performs this action only on the first row of a and ‘‘b’‘.

It has the same effect as:

L2

AT —1 -———
= b

or i := |} 0 do
a yi] {(1,1i};

" oo

(

Parallel Pascal extends this to permit the omission of any index;

hence, in Parallel Pascal the statement

af,1] := b[,1]);

L) o’

assigns to the first column of a the values contained in the

first column of ‘‘b’’. The use of a scalar index effectively

3 vi:‘j‘;d

3
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- reduces the rank (number of dinmensions) of an asrray by one; hence

: ‘‘al,1]’’ is considered to be a vector.

The ability to select a row or column, as opposed to an

entire array, is useful; however, it 1is often desirable to

R AR .

further restrict the number of elements which participate in an
operation. A common requirement is the selection 6! a subset of
& row, column, or both. Standard Pascal provides no symbolisam to
directly express this concept; hence, it is necessary to

introduce a new construct to the language.

The simplest subset of a eet of array indices is &

consecutive range. For example, given an array with five

clements, one may wish to access elements 2, 3, and 4. Standard
Pascal permits the use of a subrange in type definitions to
specify a range of values which a variable may poesess. Parallel

Pascal extends this concept by defining a subrange coustant. The

Pascal const statement may be used to define an identifier as a

subrange constant:

conat rangaeconst = low..high;

A subrange constant may be added to a scalar expression aand
used as an array index. The most desirable syntax for this would

be

arr(scalarexpression + low..high]

[

where ‘‘rangeconst

(or)
E arr{scalarexpression + rangeconst]
E is an identifier defined as a subrange
3

,‘,.ww..w,..........,_....4,,..\.. .
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constant. Unfortunately, due to the recursive-descent

implenentation of most Pascal coampilers, this eyntax introduces
complications when a compiler parses the program. In deference
to the implementation the symbol *‘*@‘’ is used to represent the

addition of a subrange constants

arr{scalarindex @ low..high]
(or)
arr{scalarexpression @ rangeconst]

Given the following definitions:

const
£ = 1005;
cCc = 2004;
Jar
a,b: array (1..10,1..10] of integer;
1,): integer;

the following two code sequences achleve the same result:

(* wicth subrange indexing: *)
a[0@rr, 0@cec] := b[1@rr, 3Ccec];

(* without subrange indexing: ¥)
for 1 := | to 5 do

for § := 2 to 4 do
afi,j] s= b{l+dl, 3+3);

Subrange indexing does not alter the rank of an array. Thus,

while ‘‘a[l,]’’ is a 10-element vector, ‘‘a[0@l..1,])’’ is a 1x10

matrix.

Other languages provide additional array indexing

facilities, such as indexing by a logical set or a vector. These
indexing notations are powerful, btut on a processor with a
limited interconnection network (e.g. a mesh network) their

implementation can be very expensive. For this reasomn, set and

1
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vector indexing were excluded from the specification of Parallel

Pascal.

The ability to elide indices and use subrange constants for
array indexing brings wich it an associated problem: what
conbinations of array expressions are legal? In standard Pascal,
the operands of an arithmetic expression must be type compatible.
A subrange is type compatible with its base type, and integers
are type compatible with reals. (An integer may be converted to
a real number with no loss of information. Thus, 1f an integer
expression is used where a real expression is required, gs.g. on
the right-hand side of an assignment sratement or as an argument
to a funection or procedure, Pascal automatically converts the
integer expression into a real expression. Since it is not true
that any real may be converted to an integer with no loss of

information, Pascal prohibits the opposite case - using a real

expression where an integer expression is required.)

Parallel Pascal preserves the Pascal concept of type

compatibility. Because of the array indexing, scalar type
compatibilicty alone is insufficient to determine the
conformability of array expressions. It is necessary to also
consider the rank (number of dimensions), size, and indices of
each array expression. The specification was designed to meet
the following goals (note that the term ‘‘array’‘’ below may refer
to an entire array or a subset created according to the indexing

facilities described above):
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o Arzays of the same type should be compatible.

® A scalar of the same base type as an array should be

conformable to that array. This implies that the scalar is

effectively replicated into an array of! identical type.

® Arrays vwhich differ in rank (number of dimensions) or eicse
are not compatible. Recall that indexing with & scalar

‘‘compresses’’ s dimension out of the array.

® Arrays which have the same index ranges, but whose element
types are different are compatible if the elemeat types are

compatible.

e Arrays which are the same size and shape should either be
compatible, or it should be possible to make them compatibple

with 1ittle efforc.

The first requirement above preserves the standard PFascal

array assignment statement:

t= b;

L)

where a’’ and ‘‘b’’ are of identical types. The second
requirement allows the use of scalars with array expressions;
e.gs given that ‘‘a’’ and ‘‘b’’ are of the same type, and ‘‘c’’
18 the same type as the elements of ‘‘a’’ and ‘‘b’’, then the

following statement:
a = b + ¢}

adde ‘‘c’’ to each element of ‘‘b’’ and stores the result in the

D pmeR
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corresponding element of ‘‘a’’,

Arvays are required to be the same shape and sise to prevent
situvations such as
vat

T at array [l..5] of integer;
bs array [l..6] of integer;

b t= a;

Allowing arrsys which are the same type except for the

elements, which are compatible, allows common constructions such

as
var
a: array [l..5) of integer;
bs array [1..5] of real;
b t= aj

The biggest difficulty which arises from the generalized
indexing mechanisms ies the compatibility of arrays whose eizes

and shapes are identical, but whose index ranges are not:

var
a: array {l..5] of integer;

b: array (2..6] of integer;

a s b3

This problem becomes more severe when the control-flow facilities
of Parallel Pascal (which are discussed later in this chapter)
are used. In order to prevent ambiguity in these cases, two
arrays with non-identical index ranges are compatible only if the

elements of at least one are specified explictly by subrange

L ,r e

indexing. Hence, given the a and ‘‘b’’ defined above, the
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following iontgnlonen are all legals

a t» b[002..6];
llO@‘ooSl i1s by
.(0@10051 = b(O@Zooﬁ]t

The type coampatiblity rules described above extend in the
intuitive way to multiple dimensions. If ‘‘c’’ and ‘‘d’’ are

defined by

var

ct array (lee3,1¢.3] of integer;
d: array [1..8,1.47]) of integer;

then cthe following assignments are all legal:

c 1= d{202.44,002..6];
3[061003.1 i d[0@6003.0@200613
e{l,] t= a;

(Note that in the last example the ranks of ‘‘c[l,])’’ and ‘‘a’’
are the esame becauss the scalar iudexing reduced the rank of

LY

‘e¢’’ by one.
3.2.4 Standard Functions

Pascal provides a number of standard functions and standard
procedures. These perform various services, including type
conversion (e.g. trunc, ord) arithmetic functions (e.g. sin,

sgrt), and input/output procedures. This last group is discussed

in more detail in section 3.2.6.

Many of the standard functions perform simple

transformations, for instance:

s etrrmtvmties
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var x, y: real;

% 1= eqre(y);

It 49 quite natural to think of these functions as extensions to
the set of operators provided by Pascal (w.g. ‘‘'+'’, '‘=’’),
Situce Parallel Pascal allows the operators to act upon arcays as
aggregates, it is only natural to extend this feature to the

standard functions. Thus,

vae
%, yt array (l..16] of real;
i1t integer;

X = gqere(y);
is effectively the same as

for 1 3= 1 to 16 do
x[4) 3= sqre(y(i]);

These standard functions are, in a sense, ‘‘generic’’: they
may be used with arrays of any shape. The value returned by the
function has the same index ranges as its argument. Since these

functions operate independently upon each array elenment, they are

called elemental functions.

While the elemental functions are useful, the affaective use
of Parallel Pascal requires the use of functions which alter the
structure of arrays in a more complex fashion. These functions

r referrad to as trangformational functions.

The first type of array restructuring which Parallel Pascal
provides is the reordering of array elements. Certain image

procesaing algorithms (e.g. convolution) require the capability
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to move dats within an array. This movement may take two forms,
a ‘‘shift’’, in which data is shifted off the edge of the array
and seros are brought in from the other end, or a ‘‘rotate’’, in -
which data is moved within an array such that dats shifted off | A
one end will reappear at the other. Pavallel Pascal providas |

both these functions!

shifc(array, 1,, 1,, 1., vee) o
rotate(array, ll' 22. §3' ess)

where array is the array name and 15 is the magnitude of the

shift slong dimension n. (Row msjor order is used,)

In addition to shifting (rotating) data, it is scmetimes
necessary to transpose two dimensions of an array. This is

performed by the trans function:

trans(array, diml. dimz)

This effectively swaps two index ranges. For instance, given the

definition:

var
z: array [0.e7, 3004, 6..10] of intoger;
y: array [6..10, 3.44, 0..7] of integer;

i,jokt integer;

then the statement

TP,

y s= trans(x, 1, 3);

is equivalent to

for i := 0 to 7 do
for J := 3 to 4 do
for k := 6 to 10 do
YlkoJ.ﬂ_" x(1,3,k];
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The second major type of arrey maunipulation is the
slteration of the number of dimensions of an arvay. BSome arcvay
operations may require that s array with N dimensions be combined
with a array with N+l dimensions. (One example is the
computation of the matrix product AX where A is an nxm matrix aud
% is an m-element vector. In this case, it woﬁld be desirable to
multiply all rowe of A by X simultaneously, or, equivalently, to
perform an element-by-element multiplication of K‘nnd an hdm
matrix B, each of whose rows are the vector x.) Tha expand |

function can be used to expand an array along a new dimenaion.
expand(array, dim, newidz)

array is either a ecalar or an array. Let N be the nunber of
dimensions of array (zero if array is a scalar). dim must be an
integer constant in the range 1 to N+J. newidx is a subrange or
the name of a subrange type (note: it is ggg a subrange
constant). The array is replicated along a new dimension of type
newidx which is inserted before dimension dim. For example,

given the definition:

var
x: array [0..7,8..15] of integer;

the result of
expand(x,2,5¢.7)
is a matrix with dimensions [0ee745¢+7,8:.415] in whiech the value

of [1,3,k] is the same for all 5¢<j<7.

The last type of array operatiomn which is frequently

o i e i i SRS R o et S
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required is the reduction of an array - applying an operator over
s set of dimensions. For instanci, one might Jish to accunmulate
the sum along all of the rows of an array. Reduction functions

have the general form:
func(array, dim,, dia,, aima....)

whopo array is the array to be reduced and each dimt is a
constant expression specifying a dimension along which the
reduction is to be performed. (These are required to be
constants so that the compiler may determine the shape of the

result.) The following reduction functions are provided:

sunm arithmetic sum
prod arithmetic product
all Boolean AND

any Boolean OR

nin arithmetic ninimun
max avrithmetic maximunm

3.2.5 Control Flow

Standard Pascal provides several mechanisms for controlling
the flow of execution. The most basic (and often overlooked)
mechanism is sequencing - assignment statements are executed onme
at a time, in the order they appear. At a higher level, the flow

of control may be altered »y one of the following mechanisms:

procedures A Pascal program consists of a set of procedures

A}

and functions (called ‘‘subroutines’’ here for
convenience). A subroutine call (a procedure call
or function call) diverts the flow of control to

one of these subroutines. When execution of the

.
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subroutine is conmplete, control returns to the

statenment following the subroutine call.

A statement (or a group of statements) may be
sxecuted several consecutiva times by using the
Pascal while, repsat=-until, or for comstructs.
For the while construct a Boolean expression is
evaluated before each iteration of the controlled
statenent(s); as long as this controlling
expression is true the repetition continues. The
repeat-until construct performs the test after
each iteration rather than before it; when the
termination condition is satisfied (the Boolean
expression is true) the iteration stops. The for
statement uses an index variable; this variable is
assigned an initial value and successively
incremented or decremented until it reaches a
final value. The controlled statement (or
statements) is executed for each value of the

index.

A statement (or group of statements) may be
conditionally executed by placing it in the body
of an if statement. If the controlling expraession
evaluates to true the statements are exaecuted;
otherwise, they are skipped. Optionally, an glse
keyword may be specified, followed by a second

statement (or block of statements); this statement
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is executed if che controlling expression {is

false.,

salection One of a set of statements (where each
‘‘statement’’ may actually be a block of
statements) may be executed according to the value
of a controlling expression. This is the case

statement in Pascal.

LY

goto’’ The flow of control may be directed to any defined
statement label by use of the goto statement in
Pascal:. The ability to transfer control to any
label within the program has been criticised as an
impediment to good program design{3] l¢ wase
included in Pascal becasuse of the lack of a
general agreement as to what should replace 1t[6]
and bacause it is occasionally useful for breaking

out of deeply~nested code structures.

All of the standard Pascal control flow comstructs are
present in Parallel Pascal. 1In order to effectively deal with
arrays as aggregate entities, it 13 necessary to extend these
constructs to deal with array operations. This extension must be
care.ully considered to avoid adding unnecessary complexity to

the semantics of the language.

The most basic form of program construction - sequencing =
is essentially the same for an SIMD-class processor (such as a

parallel matrix processor) as it 1s for an SISD-class
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(conventional scalar) processor. (This concept changes in an
MIMD=class processor, since in that environment many instruction
streans nay be eimultaneously processed.) Similarly, the concapt
of a procedure or function call, and the meaning of & goto are
unchanged. This suggests that the extensions to Pascal will be
based upon its control statements: if, case, while, repeat-until,

and for.

The if statement causes the execution of one (and possibly
two) statement(s) according to the value of a controlling
expression. The execution is ‘‘all-or-nothing’’ = either the
controlled statement is executed or it is not. This is well
suited to a scalar machine, but it presents problems in Parallel
Pascal. It {s sometimes necessary to conditionally perform sone
actions using only a subset of an array. Parallel Pascal

provides the where statement to addrese this naid.

The where statement has two forms:

where arrayexpression do
statement

where arrayaxpression do
statenment

otherwise
statemant

where ‘‘arrayexpression’’ is a Boolean-array-valued expression

L ’ e

and gtatement is a Parallel Pascal statemaeant. Some

restrictions apply to the controlled ‘‘statement’’:

® A goto out of the where or between the two controlled

statements in a where is forbidden. (These restrictions are
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imposed to facilitate the implementation of where statements
with a conditional stack; uncontrolled use of the goto

conplicates such an implementation.)

® Array variables which appear on the left-=hand side of an
assignment statement must be type=-compatible with the

controlling array expression.

The execution of a whers is defined as follows. First, the
controlling expression is evaluated to obtain a Boolean array.
Next, the firet controlled statement (referred to later as the
where clause) is evaluated. Array assignments are masked
according to thé Boolean array computed above. Finally, if there
is a second controlled statement (an otherwise clause), it is
evaluated. Array assignments within the ‘‘otherwise clause ’ are
masked by the inverse of the Boolean array computed in the first

step.

where statements may be nested, provided that all of the
controlling array expressions are type compatible. The effect of
a8 where statement is local to the procedure or function in which
it appears; that i., it does not affect :he‘execution of any
procedures or functions called from within a ‘‘where clauée" or

‘‘otherwise clause’’.

The where statement provides Parallel Pascal with

conditional assignment (or masked assignment). That is, all

array expressions within both the ‘‘where clause’’ and

‘‘otherwise clause’’ are fully evaluated, but the results are

SONFEL OO
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only assigned to a subset of the array appearing on the left-hand
side of an assignment statement. This allows the specification
of many common problems, for instance: ‘'‘Given two arrays A and B
(of the same type), determine the maximum of A and B element=by-
element and store the result in A.’’ This is achieved by the

statement:

where a < b do
a t® b}

An alternative to conditional aseignment is conditional
evaluation. A conditional evaluation scheme would cause the
evaluation of all array expressions to be masked (element by
element) by the controlling expression. This could be used to

catch exceptional conditions; for instance, divide by zero:

where a <> 0 do
a := l/a;

While conditional evaluation provides some additional
capabilities that conditional assignment does not, it introduces
semantic difficulties. One problem which conditional evaluation
raises is the treatment of function (or procedure) calls from
within the where statement. If an array expression is passed to
a function, what values are passed for those elements for which
the controlling expression is false? Similar problems arise with
the use of standard functions which alter the shape of arrays =~
at what point is the masking applied (for at that point the
expression must be type compatible with the controlling

expression)? The presence of these problems with conditional
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evaluation and the vrelative semantic simplicity of conditional

assignment led to the latter’s choice for the where construct.

The design of the where statement as a parallel extension of
the if statement led to the consideration of a parallel extension
of the Pascal case statement. The case statement selects one
statement (or block of statements) from several depending upon
the value of a controlling expression. It differs from the if
statement {in that the controlling expression is multi-valued
rather than Boolean; hence, a very large number of alternatives
may be salected. It was felt that a parallel version of the case
statement would be used infrequently; in the interest of keeping
the size of the language to a minimum it was therefore omitted
from Parallel Pascal. If necessary, the effect of a parallel
case statement can be achieved through the use of a series of
where statements (in the same fashion as a standard Pascal case

statement can be implemented by a series of if statements).

The only remaining control constructs to be considered are
the loop structures while, repeat-until, and for. The loop is
one of the biggest sources of error for programmers; therefore,
adding complexity to the looping mechanisms seemed unwise. It is
unclear how a for loop should be extended. Further, a
combination of a standard Pascal while or repeat-until loop
statement (perhaps using a reduction function such as ‘‘any’’ or
‘*‘all’’ to use conditionals based upon entire arrays) and a where
statement can express all of the operations that any new loop

construct of moderate complexity could express.
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3.2,6 lnput and Output

Pascal provides & fairly minimal set of input and output
procedures. Each file consists of a uniform sequence of objects
of a fixed type. The file 1is accessed by means of a ‘‘buffer
variable’’. Syntactically, file buffer variables are used in the
same fashion as pointers. To perform output, the data is placed
into the file buffer and the ‘‘put’’ procedure is called. To
perform input, the file variable is read, after which the ‘‘get’’
procedure is called to advance to the next item in the file. The
‘‘eof’’ function may be used to determine whether a file 1is
positioned at the end. .Tho ‘‘reset’’ procedure repositions a
f1le at the beginning and makes it available for reading, while
the ‘‘rewrite’’ procedure raepositions a file at the beginaing

after truncating it, and nmakes it available for writing.

In addition to the ‘‘get’’ and ‘‘put’’ procedures, the
‘‘read’’ and ‘‘write’’ procedures may be used. Given the file
‘‘£’’ and variable ‘‘=x‘’’ (both having the same type) the

following equivalences hold:

read(f,x) S x t= f¢; get(f)
write(f,x) 2 £+ 1= x; put(f)

Files whose elements are of type ‘‘char’’ (i.e. thoese of
type ‘‘text’’) are treated specially. The procedures ‘‘read’’
and ‘‘write’’ may be used to transfer numeric data to or from a
text file - the appropriate conversion is performed. 1In

addition, the procedures ‘‘readln’’ and ‘‘writeln’’, and the
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function ‘‘eoln’’ are provided for intelligent handling of line~

formatted input.

The use of text files for mass information input and output
on & parallel processor was considered highly unlikely.
Therefore, it was decided that Parallel Pascal needed no
additional provisions for dealing with text filee beyond those

provided by standard Pascal.

On the other hand, it was apparent that ‘‘binary format’’
input and output would be heavily used. 1In particular, the
limited main memory of a matrix processor implies that a great
deal of data movement will be performed during the execution of a
program. This subject falls in a ‘‘gray area’’ between the
specification vf the language and its implementation, for the
manner in wvhich the main memory of the parallel processor is
managed directly affects the type of input and output required.
For these reasons, it was decided to retain standard Pascal input
and output without extensions for the definition of Parallel
Pascal. The facilitiez which are required for memory management
can best be determined after a period of use. Additional
standard functions (which can be added to the language without
significant trauma) could be added at a later time 1if a definite
need arose. (Another, less desirable possibility, would be the
inclusion of some standard procedures on a site~dependent basis.
This is in fact likely in other areas of Parallel Pascal, e.g.
the implementation of interconnection functions which are more

conplicated that the simple mesh network defined for Parallel
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Pascal, but which are supported by a particular machine.)

A discussion of some of the possible input and output
facilities for managing a limited memory is presented in Section

Se¢
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43 PARALLEL P=-CODE

In this section c¢he development of Parallel P=code 1is

described. Appendiz B contains a complete description of

Parallel P=code.

4.1 Pseudo=code

The concept of pseudo~code ('‘P=code’’) was introduced by
Urs Ammann with the portable Pascal P4 compiler{l]). P=code is a
sinmple, fixed format language representing the assenbly language
of a hypothetical stack computer ('‘P-machine’’). The low=level,
inplementation~dependent details (e.g. the internal
representation of the various data types) are not specified. The
operators in P=code were chosen to closely reflect the
architecture of contemporary computer systems; hence, code
generators (to convert P-code to native machine code) can be
constructed fairly easily. Alternately, the P-code can be

converted from its symbolic form to a binary form and executed by

an interpreter.

The structure of P=-code reflects the structure of Pascal.
The P-machine upon which P~code runms 1s a stack=-orientad

computer. All procedure activation records are maintained on the

—
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stack, permitting access to variables according to their lexical
level (static nesting) and offset within the procedure
activation. There are no directly=-accessible registers.
Instructions and dats are completely separate, and all data
menory locations (whether on the stack or the heap) are strongly
typed. The P-code instruction set includes instructions to check

array bounds.

Since P=-code was introduced, some variants have been
developed. Reference 2 compares standard P=code (also called P=4
P=code) with variants developed at the University of California
at San Diego and at Los Alamos Scientific Laboratories. Thess
variants were motivated by implementation needs. 1In the case of
UCSD, & efficient and compact form was needed for execution on
nicro=- and mini-computers with & limited address space. In the
case of LASL, extensions were needed to fully utilize the target

machine (a CRAY-l) and to interface with Fortran programs.

An alternate intermediate language form which was also

considered was a8 tree-structured language. One example of this
form is ‘‘T-code’’, a language defined by the Systems Research
Group of the University of Illinois{3] for use in another
compiler. T=code is a directed acyclic graph based upon Pascal
expression trees. The representation of Pascal expressions as
trees, rather than as a linear sequence of P-code instructious,

can facilitate optimization and code generation.

Since the P4 compiler was selected as the basis for
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inplementing & Parallel Pascal compiler, it was decided to define
an intermediate language based upon P-4 P=code. While a compiler
which directly produced an intermediate language such as T=code
vas considered, the simplicity of & P=code~-like language, the P=
code nature of the P4 compiler, and the fact that the Illinois
T=code generator accepted P=code as input swayed the decision in

favor of the more conventional pseudo~code format.

Although & P=code format was chosen as the internediate
language, standard P-code was inadequate to represent the data
structuring and aggregate operations that are required for a
perallel matriz processor. This led to the development of a new
intermediate language, based upon coanventional P-code, called
‘‘Parallel P=code’’. The following sections describe the

development of Parallel P=code.

4.2 Data Types

The most significant difference between standard P-code and
Parallel P=code is the way in which they treat data types. 1In
standard P-code, only a few data types are supported - integer,
real, Boolean, character, set, and pointer. These are sufficient
to perform all operations in standard Pascal, because Pascal
deals with data on an element-by-element basis. Parallel Pascal,
however, permits (and in fact encourages) the manipulation of

arrays as aggregates. The problem of array aggregate operations
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can be solved in one of two ways.

The first slternative is to define a small number of new
data types representing éhc array types that eﬁ. mateix processor
can act upon directly. A set of fundamental oporieton- would be
defined upon these basic datas types. Larger operations wodld
then be explictly ‘‘unrolled’’ by the eodpilor tneé a ooqucheo of
these fundamental operations. This approach positions the
intermediate language at a low level; the pseudo-code is nearly
the asscmbly language of the target mnchine'éteh the syntax

‘‘ecleaned up’’,

The second alternative is to treat all operations at a high
level, Rather than having a finite set of fundamental types, the
conpliler would define new data types and would epecify atrray
operations with a single instruction instead of aﬁ varolled
sequence. This approach positions the intermediate language at a

much higher level than the first approach.

0f the two schemes, the first method requires more work by
the compiler ‘‘front end’’ and very little work by the ‘‘back
end’’ (code generator). The second method requires a great deal
more of the code generator. However, the‘innermediaee language
for the second method is nmuch more machine-independent, and with
its higher information content it facilitates qpeimizacion.

Parallel P-code is designed according to the second approach.

The base types defined in Parallel P-code are very similar

to those in standard P=code: integer, real, character, and
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Boolean. With the appropriate definition statements, these base

types are used to define all structured types.

In the following discussion, the definition statements are
referred to as ‘‘pseudo-operators’’ or ‘‘pseudo-ops’’ since their
role in Parallel P=code is very eimilar to the role of pseudo-

operators in & conventional assembly language.

4.2.1 Subrange Types

Standard P-code uses objects of type ‘‘integer’’ to hold
values of a subrange type. While thiu is suitable for a
conventional word-oriented machine, a bit-addressable machine
(such as a bit-sarial matrix processor) can utilize memory more
afficiently by only allocating the minimum number of bits needed
to represent all values within the subrange. Parallel P-code
provides the .RANGE pseudo=-op to declare a subrange; for example,
the type ‘‘rng’’ can be defined to be the integers from 1l to 5

with the statement:
+RANGE rng,1,5

The base type for a subrange is always ‘‘integer’’. As in
standard P-code, integers are used to represent user-defined

scalar types. There is no provision for a subrange of characters

- the standard character type is used instead.

o
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4¢2.2 8et Types

In standard P=-code there is only one type for sets. The P4
compiler {mplementation notes{l] recommend the use of a bitstring
to implement a set. Limiting the set to one representation
restricts its goncruliéy in two wayes. FPirst, the maximum number
of elemente in the set is fixed. Second, the range of the
elements themselves is restricted. That is, 1f there ar; nunset

poseible elements, then they are represented by the integers 0,

1, ¢¢¢ numget~l, Integers which fall outside of thias range

cannot belong to a set.

Parallel P-:code permits the definition of a powerset type
with the .SET pseudo-op. For example, the type ‘‘pset’’ can be

defined to contain the integers from 5 to 10 with the statement:
+SET pset,5,10

The base type for a powerset is always ‘‘integer’’. A4s in

standard P-code, integers are used to represent user~defined

scalar types.

Parallel P-code does not define the format that a powerset
is to have; instead, it is left to the implementation. However,
it is occasionally necessary to specify a powerset comnstant. The
constant is specified by the type of the set and the elements:
e+ge the powerset constant ‘'[5,6,9]'’ of type ‘‘pset’’ would be

represented in Parallel P=code as

pset,(5,6,9)

‘5;‘
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It is necessary to ipceity the type name as well as the menbers,

because different sets may have different 1mplemcnzae£onu.
4.2.3 311.. i

The P4 compiler only permits files to bs of type ‘‘text’’,
that is, ‘‘file of char’’s. Thus, there is n> need to distinguish
files of different types in standard P-code. Parallel P=code §¥
provides the .FILE pseudo-operator for specifying the type of a
file. The syntax is intuitive; to define ‘‘ftype’’ as a file 2

with elements of type ‘‘etype’’ the statement is: !

+FILE ftype,atype

be2.4 Array Types

In etandard P-code, almost all operations are performed on
scalar elements. (The exception to this rule is a provision for ;f
moving blocks of data from one place to another.) Parallel [
Pascal, however, requires operations to be performed upon arrays
as aggregates. As discussed above, the decision was made to
provide a formalism for specifying these parallel opaerations in

the intermediate language.

In order to process array operations, the code generator i
must know at least the size of the array and the type of £ v;
elements. For more sophisticated operations (g.&. operations
involving only a subset of the array) it must also know the 5

layout of the array = the number and range of array dimensions.

This information can be divided into two portions, static and
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The static portion represents information that is known at
compile time. It consists of such things as the basae type (i.8.
the type of the array elements), the number of dimensions, and
the low and high bounde of each dimension. This portion can be

considered the logical specification of the data.

The dynamic portion of an array type consists of the address
of the arvay and the specification of which elements are to
participate in an operation. This portion therefors represaents
the physical specification of the data - wherae it is estored and
what portions of it (e.g. which array elementi) are to be

affected.

The static and dynamic information is collectively referred
to as an array descriptor. The parallel languages ALA[4) and
LRLTRAN([S] also contain array descriptors, but there are eevaral
significant differencea between those descriptors and Parallel
P-code descriptors. The descriptors in ALA and LRLTRAN are
usevr~accessible, while the dascriptors defined here are not
directly usar-accesaibla. Parallel Pascal contains no concept of
an array descriptor; they ara defined only in the Parallel P=code
implementation. The size of the data rafarancad by an ALA or
LRLTRAN descriptor may be variaed by the user; Parallel Pascal
dascriptora by contrast always crafar to data whosae size is fixed.

(Both typas of descriptors allow selaection of a rubsat of the
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elenents to which they refer.)

The static portion of an array descriptor is specified in
Parallel P~code via the +ARRAY psesudo-operator. The base type
(i.e. array element type), number of dimensions, and range of all
dimensione are specified. For instance, the array type defined

by
arr = array {(1.+5,2..6] of integer;
would be defined in Parallel P-code with the statement:

+« ARRAY arr,integer,2,1,5,2,6

An array is never defined in terms of another array; thus,

the following definitions:

row = array [l
mat = array (4

will bde translated to Parallel P=code as:

«ARRAY row,real,l,1,5
«ARRAY mat,real,2,4,8,1,5

Parallel Pascal provides the parallel reserved word for
declaring that an array should be allocated in the parallel array
memory rather than the sequential control unit memory. If an

array is declared parallel, this fact is reflected in Parallel

P-code by a negative rank. For instance,

arr = parallel array [2..4,8..16] of integer;

is translated to
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OARRAY .tr.inccg.r.'2.2.6.8.16

The dynamic portion of array descriptors will be dealt with

in more detail in a later section.,

4.2.5 Record Types

In order for arrays of records to be intelligently
processed, it 1is necessary for the intermediate language to
define descriptors for records, as well as arrays. Like array
descriptors, record descriptors consist of a static and a dynanmic
portion. The static portion specifies the record: the fields and
their types. Th~ dynamic portion specifies the address of the
record and the field which has been selected for a particular
operation. (Unlike arrays, it 1is not possible that more than one
field in a particular record will be simultaneously selected.
This property is a result of the choice of the array, rather than
the record, as the data structure used to express parallelism, as

described in chapter 2.)

Because the structure of a record is not as regular as the
structure of an array, a single type definition statement for the
static portion of a record would be cumbersome. For that reason,
Parallel P-~code defines records according to the fields which
they contain. The pseudo-operator used to define record

components is RECORD. One .RECORD is generated for each field.

Parallel Pascal, like standavrd Pascal, permits variant

records. When a8 record has variants, several components will
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share the same memory allocation. (Only one is in use at any
given time.) Parallel P-code permits the specification of an
offset with each f£field declaration. A record definition in
Parallel P=code consists of a sequence of .RECORD statemeuts.
Normally, each successive field in the same record is assigned a
sequential location in memory. However, this behavior can be
overridden so that a field is aligned at the same offset as a

previous field.

The general syntax of the .RECORD pseudo-op is
+RECORD rname,fname,o0ffsat,ftype

where ‘‘rname’’ is the name of the record being defined,
‘‘fname’’ is the name of the field being defined, ‘‘ftype’’ is
the type of the field, and ‘‘offset’’ is either ‘‘nil’’ or the
name.of a previously-defined offset. If ‘‘offset’’ 1s the
literal string ‘‘nil’’, the next sequential memory location is
assigned; otherwise, the new field ‘‘fname’’ is aligned with the

existing field ‘‘offset’’. As an example, the record defined by:

rec = record
X integer;
y: real;
case Boolean of
false: 2£: integer;
true: 2t: real;
end;

would be translated to

+RECORD rec,nil,x,integer
+RECORD rec,nil,y,real
+RECORD rec,nil,zf,integer
«RECORD tec,2f,2t,real
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4¢2.6 The Dynamic Portion of Descriptors

In order to exauine the specification of the dynamic portion
of array and vecord descriptors, it is necessary to first

consider the way in which they are to be used.

As discussed above, standard P-code is the asseumbly language
of a hypothetical stack computer. Parallel P-code was also
designed with this general philosophy. All operations are
performed by means of a run-time stack. Data is loaded onto the
top of the stack, mauipulated on the stuck, and stored from the
top of the stack. 1In standard P-code, dats is manipulated in one
of two ways. The first way is to load the data onto the stack
and manipulate it directly. This is the most common method (in
standard P~code) and it worke well because Pascal usually deals
only with one item at a time. An alternate way is to perform a
data transfer of a compile-time specified number of elements
between two addresses which are computed at runtime. In this
second case (used i{in assignment statements where both sides are
fdentical arrays or records), the addresses, not the data, reside
on the stack. They could be called very simple descriptors

because they describe where the referenced data is (or is to go).

It seems reasonable that Parallel P-code should also make
use of these two mechanisms. When an operation is performed on
scalar data, the dats itself is loaded onto the runtime stack,
manipulated, and stored from the stack. When an operation

involves an array or record, or some combination thareof, the
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second method 1is called for. However, because Parallel Pascal
provides more flexibilicy in aggregate operations, an address
alone 1s not sufficient. Unlike the standard P-code case, which
involved a typeless move of a consecutive block of data from one
address to another, information must be provided about the shape
and type of the data. The type information is supplied by the
static descriptor (i.e. by an +ARRAY or .RECORD pseudo-operator).
The runtime~dependent shape information is provided by the

dynamic descriptors on the runtime stack.

Dynamic descriptors on the runtime stack in Parallel P-code
are most easily understood when considered recursively. Each
level of structuring is applied to a descriptor formed at a
higher level. Baefore exploring this concept completely, an

examination of the format for array and record descriptors is in

order.

The runtime nature of an array is determined by two dynamic
attributes: the address of the array and the index ranges of its
dimensions. The dynamic (physical) portion of the array
descriptor which resides upon the runtime stack specifies these
attributes. This information is constructed by loading s
‘‘blank’’ descriptor (one which specifies the array address btut
does not specify index ranges) and then ‘‘filling in’’ the index
ranges using one of three operators: 1X0 (select entire index
range), IXl (index by a scalar), or 1X2 (index by a subrange).
Each successive index instruction is applied to the next

unspecified array index range. Note that the compiler does not

e erputerase
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know or care what in what format the dynamic array descriptor {s

specified.

The concept that indexing by a scalar is to reduce the rank
of the array (e.g. 8 colunn of a matrix is considered to be a
vector) requires extra sttention. The static type of the top=
of-stack is changed by scalar indexing. This represents the
logical type of the data. Parallel P=code does not specify the
impact upon the dynamic portion of the descriptor, which
indicates the phyesical attributes of the object. 1In the
hypothetical machine which implements Parallel P-code, the
dynamic descriptor still specifies the physical memory asoociniod
with the array, even though the type of the array has changed. A
code generator (which does not actually simulate 4 runtime stack)
must similarly ‘‘remember’’ the physical origins of an array

whose logical shape has been altered by scalar indexing.

In contrast with arrays, only one component of a record may
be specified at a time. However, unlike arrays, the fields in a
record are non~homogenous. The manner {n which the target
machine stores the fields of the records will affect how a record
field 18 specified; the compiler cannot simply calculate a
constant offset (as is done in standard P-code). Word sizes
differ between machines - one machine may store both integers and
floating=point numbers in the same size word, while another may
require several units of storage for a flosting-point number. A
further complication is introduced by the architecture of the

intended target machine (a parallel matrix processor), because it

i A A it a0
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will usually contain tvwo non-identical memories for scalar and
array data. One of the design goals of the intermediaste language
was to be relatively implementation~independent. In addition,
there was a strong desire to keep Parallel P=code at a high level
of abstraction to simplify the ‘‘front end’’ and retain as nuch
symbolic information as possible for the ‘‘back end’’ to use for
optimization and code generation. Therefore, all record offsets
in Parallel P-code are made by means of symbolic names. The
names éorrclpond to the field names defined in .RECORD

statenents.

The exact format of a record descriptor is not kaown to the
‘‘*frout end’’, 1Instead, the record descriptor is constructed
with the aid of the ‘‘select’’ (SEL) instruction. A descriptor
that specifies the entire record is loaded onto the stack; this
is similar to the ‘‘blank’’ descriptor described above for arrays
but may be used without further modification to access the entire
record. The SEL operator is used to select a field from the
record. This replaces the record descriptor on top of the stack
with a modified descriptor that indicates the address of the
record and the selected field. If that field is itself a record,
another SEL 1s thenm used to select a field within that sub-

record.

The SEL operator, like the IXl1 operator, changes the logical
type of its operand from a record to a record field. As with the

array case, the dynamic descriptor will still contain information

EETOS—
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about the physical storage associated with the new logical cype.

Descriptors for more complex structures (e.g. arrays of

records, arrays within records) are constructed by repeated

application of the techniques above. PFor instance, given the

followings

arrect array [l..5) of
record
x: array [1..10] of integer;
y: integer;
end;

a descriptor for ‘‘arrec(0l..,2].2[100.42)°’ would be constructed

by the following steps:

1.

2.

3.

4.

Load a ‘‘blank descriptor’’ (which specifies the address but

no index ranges) of ‘‘arrec’’ onto the runtime stack.

Load the constant 0 onto the stack. Perform an 1X2
operation using the subrange ‘‘1..2°’. The stack now

containe a descriptor for an array of recorde.

Perform a SEL to salect the field ‘‘x’‘ in the records
described by the descriptor on the stack. The stack now
contains a descriptor for a two-dimensional array, for which
the first index range has been saelected as ‘‘1..2’’ and the

second 18 (as yet) -unspecified.

Load the value of ‘‘i’’ onto the stack. Perform an 1X2
operation using the subrange ‘‘0..2°°. The stack now
contains a descriptor for a 2x3 array whose dimensions have

been selected as ‘"‘l1..2°° and ‘"‘i..(4+2)°".
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4.2.7 Pointers

In standard Pascal, a pointer is simply che address of a
dats item. The pointer can be copied and compared, but its value
cannot otherwise be affected by the programmer. Parallel Pascal
provides the same symbolisn for specifying pointers that standard
Pascal does. However, the implementation of a pointer as eiamply

an addrees limits its usefulness in Parsllel P-codo.

As the previous section discussed, the dynamic portion of an
array descriptor, a record descriptor, or a hybrid of both,
consists of an address and information about which dimensions (or
fields) are selected. Once this information has beean constructed
on the runtime stack, it can be used as an address for P-code
operations (for example, loads and stores). Normally, the
descriptor is used in the process of manipulating the data it
describes, but at times it is necessary for the descriptor ;tsolt
to be manipulated. (These operations are compiler-generated,
since Parallel Pascal does not provide the conce: " of a
descriptor.) For this reason, Parallel P-code implements sall
pointers as descriptors. Daescriptors of scalar datca are simply
addresses; hence, for scalars the concept of a pointer is

unchanged.

Descriptors (pointers) are defined in Parallel P=code with
the ‘**.POINT’’ pseudo-operation. For instance, to define type

‘‘abe’’ as a pointer to type ‘‘xyz’’ the statement would be:

«POINT abe,xyz

xorb
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Occasionally, to expedite processing by the compiler front-
end, it is convenient to refer eo'ewo identical types by
different names. Parallel P=code provides the ‘‘.TYPE’’ pseudo-

operation for this purpose. The statement
«TYPE XRR,yyY

defines type ‘‘xxx’’ to be the same thing as the already-defined

20
L]

type ‘‘yyy

4¢3 Memory Allocation

There are two types of variables in a Pascal program = those
which are allocated on the runtime stack and those which are
allocated dynamically from a runtime heap. The former cotrespond

to the ordinary variables declared by a subroutine (function or

procedure) = they are automatically created upon subroutine entry

and automatically deleted upon its exit. The latter correspond

to the pointer variables = the pointers themselves are allocated
upon entry to a subroutine but they reference memory which 18
allocated by the procedure ‘‘new’’ and released by the procedure
‘‘dispose’’. Like Pascal, Parallel Pascal uses both types of

memory allocation.

In standard P=-code the local variables for each subroutine
are allocated on the runtime stack by reserving a consecutive

block of stack memory. A special instruction, ENT, specifies the




PR : R oo I T . . : P P RP I

64
AL PAGE 1S
ORIGIN Y

OF POOR QUAL

number of arguments to the subroutine and the number of memory
units required for local variables and temporary storage. The
conmpiler which produces the P=code ‘‘knows’’ the memory
requirements of each type of variable; thus, it can calculate the
offset within this consecutive block of each local variable
contained therein. In the case of an array, the eslements of the
array are stored consecutively in row-major order; the compiler
can compute the address of any element according to the usual

formula.

A typical Pascal program will contain a main program and one
or more user-defined functions or procedures. Because Pascal is
a block=structured language, procedure and function definitions
are naested; that is, the definitions of some subroutines will be
contained within the main program, and some of these subroutines
will themselves contain the definition of other subroutines.
This 18 referred to as the static nesting of the program. Each
procedure is associated with a lexical level. The outermost
block contains the main program and the global variables; these
are located at lexical level 0. If a function or procedure
definition .: contained inside a block at level i, then that
function or procedure is at level i+l. Functions and procedures
at level i can reference all of the variables and invoke all of
the procedures and functions defined in the i-1l containing

blocks.

Pascal permits recursive function and procedure calls. Each

time a function or procedure at level { is called a new set of

E }.;4, L
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local varisbles is allocated. Thus, whe: ~ function or procedure
at level i accesses a variable at level j i. is accessing the
variable corresponding to the most recent set of allocations at
level j. Unlike the static nesting, the sequence of memory.

allocations, called the dynamic chain, will vary at runtime.

Corresponding with each called function or precedure is an
area on the runtime stack called the gtack frame (or activation
record). In addition to the arguments to the fuactionm or
procedure, the local variables, and space for temporary results,
the stack frame includes some linkage information.” In standard
P=code this includes the return address, space for a returned
function result (this field is unused for procedures), and two
locations for the static and dynamic linke. The static and
dynamic links point to the appropriate previous stack frames.
The hypothetical machine which 1mplemencs‘P-code contains a non-
user-accessible register called the ‘‘frame pointer’’ which holds

the address of the current stack frame.

Because of the dynamic nature of the memory allocatiom, it
is not possible to compute the absolute addresses of any data
(except for variables in the outermost = global = block).
Instead, the desired locations are obtained by using a two-level
lexical~level addressing scheme. The form of a lexical-level

address {is

(level, offset)

where ‘‘level’’ is the static nesting level and ‘‘offset’’ is the
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offset of the variable relative to the beginning of the stack
frame which contains it. 8tandard P-code uses a modifiaed version
of this scheme. Rather than specifying the lexical level
directly, it instead specifies the difference between the current
lexical level and the lextcal level of the desired operand.
Thus, 1f the current lexical level is 4 and the desired variable
is at offset 43 at lexical level 1, the lexical address is
(1,43), which standard P=-code expresses as (4~1,43) or (3,43).

The use of lexical~level addressing is a powerful technique.
However, the allocation of memory directly on the runtime stack
presents problems for Parallel P-code. First, one of the goals
is that Parallel P-code be machine-independent. This precludes
the use of compiler~calculated offsets for variables within a
stack frame, since word sizes and data representations vary from
machine to machine. Second, a parallel matrix processor which
contains more than one type of memory (e.g. array memory and
scalar memory) cannot allocate all variables on one stacke.
Therefore, Parallel P=-code implements a modified form of lexical

addressing.

Parallel P-code represents lexical addresses directly,
rather than subtracting the lexical level of the operand from the
current lexical level. This definition is more intuitive and
constitutes no loss of information. Parallel P-code does not
define the exact format of a stack frame; specifically, it does
not define the format of the static and dynamic links. These are

left to the implementation. This provides a degree of

L {'Q




e e e TR TR R ETIIRAL e 8 s ® b TR R e TR s teR [ERNE o et A N

ORIGINAL PAGE IS 67
OF POOR QUALITY

flexibility - an implementor mey wish to use a display(6] rather

than an explicit static link chain.

To eliminate the need for compiler-generated offsets in a
lexical address, Parallel P=code uses a symbolic form of lexical
addressing. Each function or procedure argumeant and each local
variable is asssigned an index number. The lexical address
consiste of the lexical level and the index nuamber. For

instance, given the function:

function func(a,b: real) : integer;
var x,y!: iutegar;

AN )

the function result is index O, a’’ is index 1, ‘‘b’’ is index
2, ‘'x’’ 18 index 3, and ‘‘y’’ is index 4. If this function i

at lexical level 5 the lexical address of ‘‘x’‘’ would be (5,3).

Local variables, arguments to the function or procedure, and
the result (if the routine is a function) are specified in
Parallel P-code with the ARG and .LOCAL pseudo operators.
Arguments and local variables share the same set of indices;
however, arguments require special treatment and thersefore are
warranted a separate declaration statement. The iandex 0 is
reserved for the result of a function. It is unused for

procedures. Arguments are defined with the syatax:

»ARG index,;type,rv

4

where ‘‘index’’ is the index number, ‘‘type’’ is a type name, and

A3 0

rv is zero if the argument was passed by value or one 1f it

was passed by reference. Local variables are declared with a
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similar statement!
+LOCAL ihdox.typo.ovctlay

The ‘‘index’’ and ‘‘type’’ fielde are identical to those for
+ARG. The ‘‘overlay’’ field is similar to the ‘‘align’’ field
for the .RECORD pseudc operator. It is normally zero, indicating
that the local variable should be allocated the nexzt available
memory location (or locations). If it is non=-zero, it specifies
a previously-defined local variable (at the same lexical level);

the new variable 1s to be overlayed on the memory allocated for
the specified old variable. The use of this feature to implement

the with statement is described below.

Parallel P-code also defines explicitly the lexical level or
each procedure of function. Each routine is preceeded by an
+ENTRY statement and followed by an .EXIT statement. These
specify the lexical level of the enclosed procedure. The .ENTRY
statement also specifies the processor on which the procedure or

funection i3 to run:

+ENTRY level,site
+EXIT level

‘‘level’’ is a lexical level number, and ‘‘site’’ is either the

literal string ‘‘HOST’’ indicating that the routine 1is to be
executed on the host machine, or ‘‘*MCU’’ indicating that it is to

be executed on the (main) control unit of the parallel processor.

There are no Parallel P-code instructions which directly

allocate or release dynamic memory. These operations are

¥
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performed by the standard procecdures ‘‘new’’ and ‘‘dispose’’.
These proceduraes operate in Parallel P=code the same way as in
standard P-code, except that they may return either a scalar

memory pointer or an array memory pointer. They accept as an

operand a pointer variable.

4.4 Data Manipulation

bebel Overall Strategy

As the previous sections have discussed, Parallel P=code,
like standard P=code, is a stack-oriented language. This section
describes the overall data manipulation scheme in Parallel P-
code. The specific opcodes provided in Parallel P-code are

described in full in Appendix B.

Conceptually, the runtime stack for Parallel P=code contains
quantities which are either scalars or are descriptors for an
array or record type. At times, the stack also contains pointers

to scalars (one might consider these to be scalar descriptors).

When an operation is performed on scalars, the address where

the result is to be stored is loaded onto the stack, the scalar

. x4

expression is calculated, and a ‘‘store indirect is performed
to store the result of the expression (on top of the runtime

stack) at the specified address (the second item on the runtinme
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In order to generalize the scalar case to structured types
(arrays and records), it is necessary to define what is meant by
a ‘‘load’’ of an array or record. In Parallel P-code these are
always accessed through a descriptor. Simce a descriptor is
egsentially a 3qneralized pointer, there is a fundamental
difference between manipulating scalars and manipulating
structured types. In the former case, the value of the scalar is
loaded onto the stack, manipulated, and stored. In the latter

case there is an additional level of indirection.

When an operation is performed, the result must be stored in
a temporary area and a descriptor for that temporary area placed
upon the runtime stack. Considered in this fashion, the
descriptors for the defined local variables are analogous to the
addresses of scalar variables, and the descriptors of temporaries
are analogous to scalar values on the stack. The automatic
allocation of the temporary storage to which the descriptors

refer is the responsibility of the implementation.
4.4.2 Load Instructions

Parallel P-code provides five instructions for loading data

onto the runtime stack.

The simplest instruction is LDC, which loads a constant.
The constant is never an array or record. The constant may be an

integer, floating~point number, character, Boolean value, or set.
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The specified constant is pushed onto the top of the runtime

stack,

Two instructions are provided for loading addresses. The
first, LCA, 1is used to load the address of a conetant. The
constant is specified as in the LDC instructicn. Rather than
loading the value of the ébnl:anc. however, LCA creates a
constant in memory and loads its address onto the stack. This
instruction is used when it is necessary to pass a coastant
string ‘‘by reference’’ to a procedure or function. The second
instruction, LLA, converts a lexical addreses (level,index) to an
absolute address and pushes the address on the runtime etack. 1If
the item is an array an array descriptor which specifies the
location of the array but no indexing information 1is pushed;
similarly, 1if the item is a record a descriptor which specifies
the entire record will be pushed. (Hybrids of arrays and recorde

are handled in the same fashion, as discussed in section 4.2.6.

Data is loaded by means of the LOD and LDI instructions.

LOD is used to load scalar values whose (lexical) address is

known at compile~time. LDI deserves detailed attention.

The syntax for LDl is:
LDI type

where ‘‘type’’ is the type of the data to be loaded. The top of
the runtime stack contains a descriptor for the data to be
loaded. If ‘‘type’’ is a non-array, non-record type, this

descriptor is simply an address. 1In this case, the specified
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dats is loaded onto the stacks If ‘‘type’’ is an array or record
type, the addressed data is copied to a temporary location (in
either the array memory or the scalar memory) and the top of the

runtime stack {s replaced with a descriptor to the temporary

location.

Usually, an LDI of an array or a record is redundant because
the descriptor will only be used as the input to a subsequent
operation (e.g. ADD). However, in some cases it is necessary to
preserve the distinction between the variable itself and its
value. For instance, if a variable is passed ‘‘by value’’ to a
function, it 1is not acceptable to pass the original array
descriptor; instead, a descriptor for & copy of the array amust be
passed. Where this Jdistinction is not necessary, the
implementation may choose to ignore the LDI (e.g. a simple
optimization would be to omit any LDI whose result is used in a

subsequent expression).

When an LDIl is performed on a file, the file buffer variable

is loaded onto the stack.

4.,4.3 Store Instructions

Parallel Pascal provides only two store instructions, STO
and STO. STO is used to store non-array, non-record data at a
(lexical) address which is known at compile-time. STO is used to
store all forms of data (on top of the runtime stack) into the
variable specified by the descriptor which is next to the top of

stacks In the case of a non-array, non-record, this descriptor

whin,
[
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is ciaply an address. .tn this case, the top of stack is copiled
into that address. Otherwise, the data indicated by the
descriptor on top of the stack is copied into the area indicated

by the descziptor next to the top of the stack.

When an 8TO is performed using a file as the address, the

top of stack is stored in the file buffer variadble for the

epecified file.

b.b4.4 Type Conversions

There are two mechanisms by which the type of an item on the
runtime stack may be altered. It may be explicitly coerced by
the. CVT or CVN operator, or, if it is a record type, & field may

be selected with the SEL operator.

The CVT and CVN operators are used to perform a variety of
type conversions. They are essentially the same operator, except

that CVT operates upon the top of the runtime stack, while CVN

operates upon the next=to-top of the runtime stack. The syntax

for these operators is

CVT oldtype,newtype
CVN oldtype,newtype,tstype

where ‘‘oldtype’’ is the old type of the item to be converted,

’ LY

‘‘newtype’’ is :ilie type it is to be converted to, and tstype’’
(for CVN) is the type of the top of stack (this information is

needed because stack items may be different sizes).

VT and CVN perform three major functions. First, they



convert scalars or arrays of a eimple type from one base type to
another. An example of this is the conversion of an array of
integers to an array (with the same shape and array indices) of
real numbers. Second, they collapse one-element arrays into
scalars. FPor this case, the array descriptor specifies a single
element. Third, they expand scalars into arrays. 1In this case,
every eslement of the resulting arrvay has the value of the scalar.
The role that these scalar-to-array conversions play is discussed

in nore detall below.

SEL is used to select a field from a record. The syntax is:
SEL rectype,field,newtype

where ‘‘rectype’’ is the type of the record, ‘‘field’’ is the

name of the field to be selected, and ‘‘nevwtype’’ is the typs of
the result. ‘‘newtype’’ is not necessarily the type of ‘‘field’’
- if ‘‘rectype’’ is an array of records then ‘‘newtype’’ will be
an array also. The record descriptor on top of the runtime stack
is modified to include the additional field selection

information.

4.4.5 Conformability

Parallel Pascal has strict rules regarding the
conformability of two items which are used together. The
conformabilicty rules ensure that the specified operation is
well-defined and efficiently implementable. Operands in Parallel
P-code are also required to be conformable, although the

requirements are less rigid than those in Parallel Pascal. An
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operation which is performed on two non=conformable items is an
error. The disposition of this errvor condition is left to the

implementation.

In Parallel P-code, the operands of a binary op.fcelon (chis
class includes the ‘‘store’’ instructions) nmust be conformable in
two ways. PFirst, the base types of the operands must be
identical. Por instance, it is illegal to combine an integer (or
an array of integers) wicth a real number (or an array of real
nunbers) without first explicitly coanverting one of the opcgando
so that both are integers or both are real numbers. This
conversion is performed by the CVI and CVN operators. It is also
1llegal to combine an integer and a value of subrange type
without first explictly converting one operand so that the types

matche

In Parallel Pascal, arrays may be combined with scalars, and
two arrays of the same shape may be used together. (More

precisely, two arrays whose non~scalar index ranges are identical

or explictly specified, and which have the same shape may be used
together.) In Parallel P-code, the operands to an instruction
nust always be the same type. If a scalar is to be combined with
an array, the scalar must first be expanded to an array of the
same shape. This expansion creates an array descriptor with
‘‘blank’’ indexing information. For instance, if the top of the

runtime stack contains a descriptor for the array defined by

var
a: array [l..5] of integer;
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This might be defined in Parallel P-=code ast

« ARRAY T8,integer,1,1,5
+LOCAL 1,78,0

To increment all eclements of ‘‘a’’ by one, the following sequence

could be used:

LLA gél jarray descriptor for ‘‘a’’

IX0
LLA 0,1 jarray descriptor for ‘‘a’’
IX0 T8

LDI T8 sload ‘‘a’’
LDC integer,l

CVT integer,T8 jconvert scalar to array
1X0 T8 jdefine index range for new array
ADD 18 ‘

STO0 T8

The LDC places the integer constant 1 onto the top of the stack.

The CVT expands the top of the etack into an array of type
‘‘arr’’, every element of which contains the value 1. (The
resulting array is allocated in temporary wmemory and its
descriptor replaces the integer on top of the stack.) The top of
stack 4is an array descriptor with ‘‘blank’’ indexing information,
so the IX0 is used to select every element of the (newly=-created)
array. The ADD then adde together the two arrays whose

descriptors are on top of the stack.

The creation of a ‘‘blank’’ array descriptor by the CVT
instruction allows a scalar to interact with any subset of an

array. In the previous example the entire array was selected;

however, a subset can also be easily incremented. The operation
8[0@1..2] ‘- 8{0@10.2] + 1;

would be implemented bYy

;
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LLA 0,1
LDC 4integer,!
LDC integer,2
IX2 T8 jarcray descri.tor for ‘‘alBl..2}’’
LLA 0,1 ,
LDC 4integer,l
LDC 4integer,2 V
IX2 1718 ;jarray descriptor for ‘‘af@l..2]’’
LDC 4integer,l
CVT 4integer,78 ;jblank descriptor for constant array
LDC integer,l
LDC integer,2 :
I1X2 T8 ;jselect subrange
LDI T8 jload ‘‘a(@l..2]1’’
ADD T8
STO0 18

Because the opeéﬁnda to all Parallel P-code instructions
must be the same type, when two array segments (that is, arrays
or subsets of arrays) with the same shape but different types are
combined, one must be coanverted to conform to the other one. For

example, given the Parallel Pascal statements:

var

a: array [l..5]) of integer;
bs: array (5..9]) of 1neegor;

a @ g %+ b{@5..9);
the Parallel P-code definitions night be:

+ARRAY T5,integer,1,1,5
+ARRAY Té6,integer,1,5,9
+LOCAL 1,75,0
+LOCAL 2,76,0

The two arrays would be loaded onto the stack by conatructing

their array descriptors and performing a LDI:
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LLA 0,1 jarray descriptor for ‘‘a’’

IX0 TS

LLA 0,1 jarray descriptor for ‘‘a’’

IX0 7T5

LDI T4 sload ‘‘a’’

LLA 0,2 jarray Jdescriptor for ‘‘b’’

IX0 76

LDI T6 jload *‘bH’’

However, before these two arraye can be added (and the result
stored), it is necessary to convert them to the same type. For

example, the top-of-stack can be converted from type TS to T4:
CVT T6,TS

The array 1a‘convortad in temporary memory and the array
descriptor for the result replaces the array descriptor on top of
the stack. (Note that the resulting descriptor is not ‘‘blank’’
- that is, the index ranges are filied in by CVT. ‘‘Blank’’
indexing information only results whaen a scalar is expanded to an

array.)

In some cases, such as the example above, the index range of
the array to be converted does not fall within the index range of
the type it is converted to. In these cases, the implementation
of CVT must adjust the index ranges so that they fall within the
dimensions of the result type. (If a dimension of the result
type 1is not large enough to contain a dimension of the operand an
error has occurred, for in this case the two arxay operands can
not possibly have the same shape.) After the operands have}baen
converted to identical types, the arrays may be added and the

rasult stored:
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At tires, two stack operands will have the same type but the
index ranges of the two operands will be different. The
implenentation must ‘‘shift’’ one of the operands so that the
active array elements ‘‘line up’’s The choice of which operand
to shift is left to ths implementation except in the case of a
STO instruction; in this case the data being stored aust be

aligned with the subset of the array it is to be stored into.
Finally, 1f scalar 1ﬁdax1ng is used the logical shape of the
array is altered. Thus, given the definition:

var
a: array [l.¢5,1.45] of integer;

which might be defined in Parallel P=code by

+«ARRAY T8,integer,2,1,5,1,5
+LOCAL 1,78,0

then the satatemant
‘ afl,]) := a(,1};
would be translated into Parallel P=-code as

"LLA 0,1
LDPC integer,l
+«ARRAY T9,integer,1,1,5

IX1 1T8,T9 ;jindex by scalar == note type conversion
1X0 T9 ;jselect entire dimension
LLA 0,1

IX0 T8 ;jselect entire dimension
LDC integer,l

IX1 T8,T9 ;jselect entire dimension == note type conversion

LDI T9 $load column
STO T9 ;store in row

ety T a5 e
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This 1llustrates the difference between the static (logical) type
and the dynamic (physical) information which is contained on the
run-time stack. Clearly the data allocations for the two ‘‘T9’’
types are noan-identical; however, their logical types are

identical and hence the two arrays are conformable.

The SEL instruction, like the IXl .-struction, provides
additional information to the dynamic descriptor (physical
specification) and alters the static descriptor (logical type).

For example, given the definition:

var

a: array [l.e3,1.45] of integer;
r: array [l..5] of

record
x: array (l..5] of integer;
y: real;

end;

which might be represented in Parallel P-code as

«ARRAY T8,integer,2,1,5,1,5
+ARRAY T9,integer,1,1,5
+RECORD T10,x,nil,T9

+RECORD T10,y,nil,real
+ARRAY T11,T10,1,1,5

+LOCAL 1,78,0
+LOCAL 2,T11,0

then the statement

would be translated into Parallel P-code as
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LLA 0,1 ;‘'‘blank’’ descriptor for ‘‘a’’
IX0 T8

IX0 T8 jdescriptor for entire array ‘‘a’’
LLA 0,2

IX0 T1l1 j;descriptor for array of entire records

SEL Tll.x,TB
IX0 T8 jdescriptor for entire array ‘‘x’’ in ‘‘r’’

The physical storage correeponding to all elements of the array
‘‘*a’’ 18 clearly different than the storage correcsponding to all
elements of the field ‘‘x’’ the array of records ‘‘m’’. However,
their logical types are identical and hence the two items are

conformable.

4.5 8Standard Functions and Procedures

Parallel Pascal, like standard Pascal, provides a set of
standard functions and standard procedures to perform tasks which
are difficult or impossible to specify directly. Standard
functions and procedures can in some sense be considered as
extended operators, for the types of (and often even the number

of) their parameters may vary.

In P-code, the arguments to a standard function or procedure
are loaded onto the stack and the routine is called. At the P-
code level all standard procedure calls have a fixed number of
arguments and a fixed type. When a Pascal procedure such as
‘‘write’’ has multiple arguments of different types it is

inplemented as a series of calls to fixed-format routines such as
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‘‘wri’’ (write integer), ‘‘wrr’’ (write real), etc.

In Parallel Pascal some standard functions may be called

with a variable number of arguments which cannot be serialized

into a set of fized-format calls. An example is the ‘‘shift’’
function, for which the number of dimensions of the first
argument (the array to be shifted) determines the number of

parameters which are passed to the function.

To deal with the variable number of arguments and the
varying ctypes of the arguments (since arrays of any shape may be
operated upon) Parallel P-code uses a modified calling sequence.

First, the stack is marked with the MST instruction. Standard

functions and procedures are considered to be at lexical level
zero; no other routine are (the outermost block = the program
block = is at lexical level 1). The arguments are then computed.
Scalars are treated as in etandard P-code: if passed ‘‘by value’’
a scalar expression is avaluated; otherwise, the address of the
scalar is passed. Arrays and records are always passed as
descriptors. If they are passed ‘‘by value’’ an LDI is
performed, so that the descriptor points to a temporary-storage i

copy of the data, rather than to the original variable. If they

are passed ‘‘by reference’’ the original descriptor is passed.
Finally, the CSP instruction is used to call the standard
procedure or function. If the called routine is a function it is
responsible for storing its result on top of the runtime astack

when it exits; in all cases the return from the called routine

O ————




P4

Stesamcrisn

’ *
J——

Forore

[ohe—

e

83

ORIGINAL PAGE (9
OF POOR QUALITY

will reset the stack back to the marked location.

Standard procedures and functiuns operate principally upon
an item of a particular data type; the other arguments have fixed
data types. PFor instance, the ‘‘shift’’ routine operates upon an
arrsy whose type and shape may vary; the additional operands are
all integers. Parallel P=code provides a mechanism for
specifying the logical data type of this primary argument as well
as the result type of the function. Thus, the format of the CSP

instruction is:
CSP stdfunc,argtype,rastype

where ‘‘stdfunc’’ is the name of the standard function or
procedure, “argcype" is the (logical) data type of the primary
argument, and ‘‘restype’’ is the (logical) data type of the
function result. (If the called routine is a standard procedure

the literal string ‘‘nil’’ will be used.)

4.6 User-defined Functions and Procedures

Unlike the standard functione, a user-defined function or
procedure is always called with a fixed number of arguments whose

types are constant. This leads to a regular structure for

calling user-defined routines

As discussed earlier, standard P=code and Parallel P=code

both organize memory allocation on the run time stack into stack

frames. Each stack frame contains the static and dynamic links,
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the return address, the arguments to the routine, and the local
variables. (In the case of Parallel P-code these variables are

symbolically specified.)

In standard P-code, a subroutine or function call iavolves
several steps. First, the stack is ‘‘marked’’s Thise sets up a
nevw stack frame and f1ills in the static and dynamic links. Next,
each argument to the routine is generated. For arguments pasved
‘‘by value’’ this involves the evaluation of the argument as an
expression on the stack; for arguments passed '‘by referance’’
this consists of loading the address of the argument onto the
stack. (Standard P=code has no provision for paseing procedure
or function parameters; these ars therefore not implemented in
the P4 compiler.) After all of the arguments have been prepared
the function is called. When the function returns, the stack is
reset back to the marked location. 1If the called routine was &
function, the function result is left on top of the runtime

stack.

The calling sequence in Parallel P-code is very similar to
the standard P-code case. The stack is marked with the MST
instruction, which specifies the lexical level of the procedure
or function to be called. The arguments are then computed.
Scalars are trecated as in standard P-code: if passed ‘‘by value’’
a scalar exp:eaéion is evaluated; otherwise, the address of the
scalar is passed. Arrays sand records are always passed as array

descriptors. If they are passed ‘‘by value’’ a LDI is performed,

so that the descriptor points to & temporary-storage copy of the

&
ot
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array or record, rather than to the original variable. If they
are passed ‘‘by reference’’ the orviginal descriptor is passed.
Parallel P=code, like standard P=code, does not provide for

passing functions or procedures as parameters.

The function or procedure is called with the CUP

instruction, which has the syantax:
CUP level,routinename,resulttype

where ‘‘level’’ 1is the lezical level of the called routine,
‘‘routinename’’ is its name, and ‘‘resultype’’ is the dats type
of the function result. (If the called routine is a procedure

this will be the literal string ‘‘nil’’.)

The function return is performed by the RET inetruction.

This instruction has the syntax:
RET type

whecre ‘‘type’’ is the type of the function result. In the case
of procedures, ‘‘type’’ will be the literal string ‘‘nil’’.
Local variable 0 is used by fuactions to hold the function
result. When the RET instruction is executed, the stack is
‘‘popped’’ back to the caller, and the function result (if the
called routine was a function) is left on top of the runtime
stacke If the result was an array or record the top-of~-stack

will be an array descriptor.
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4.7 Conditional Execution

Parallel Pascal, like standard Pascal, provides a set of
control flow coastructs. 1In standard P-code, these are
inplenented with four ‘‘junp’’ instructions: XJP, BJP, UJP, and
UJC. The implementation of the if, case, for, while, and
repest-until statements in Parallel P-code is identical to the
inplementation in standard P-cudes The XJP and FJP inetructions
use the top of the runtime stack as an opaerand - as an index into
a table of addresses (XJP), or as a Boolean cordition (EJP or
‘‘“Jump 1if false’’), and in both of these cases the quantity on

the stack nust be a scalar.

Parallel Pascal cl;o provides the whore statement to specify
conditional aseignment of expressions to arrays, con®rolled by an
array expression. The where statsment cannot be (efficiently)
inplemented with the scalar-oriented control mechanisms of

standard P=code.

Parallel Pascal specifies that array assignments are
conditional within the body of a where statement. Thus, the
inmplementation in Parallel P-code will only affect the ST0

operator (the ST0 operator is never used to store array data).

The MPP and most SIMD-class parallel

processors associate with each processor a flag known as the
‘‘mask bit’‘’ or ‘‘activity bit‘’. This bit controls whether or
not the processor is enabled or disabled. The collection of mask

bits for each processor can be considered to be a ‘‘mask array’’.

Ao st
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This array can further be considered to be & Boolean arrcay, since
the values it contains are binary. The controlling expression of
a wvhere statement in Parallel Pascal is a Boolean array; hence,

it is natural to implement the where statement by using this

avrray as a nask array.

Parallel Pascal permits where statements to be nested. All
of the mask arrays in such a nested collection of statements nust
have the same shape. Thus, there is a need for a nested sequence

of conditional expressions.

The current conditional status of a eet of N nested
conditionals can be determined by using a stack of length N
{bits). If the current conditional state is A, and a ggggg.
statenment is encountered which svaluates to B, the new
conditional state i{s AB (the Boolean product of A and B). At
some later point, if an otherwise is encountered, the doiir.d

con’‘tional state is AB. Taking ‘‘+’’ as the symbol for a

Boolean ‘‘inclusive or’’ and ‘‘¢’’ as the symbol for a Boolean

‘*‘exclusive-or’’, and recalling:

2Oy 2 Xy + Xy

RY 3 X+y
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ABeA 3 (AB)A + (AB)A = AAB + (A+B)A

8 (AA)B + AA+AB 3 AD

Using this result, the stacke-oriented implementation can be

defined.

Initially the stack is empty, and all processors are
enabled. When a where conditional is encountered, a Boolean
‘‘and’’ i{s performed with the current top of the stack (if the
stack is non-empty) and the result is pushed onto the stack.

When an otherwise is encountered, a Boolean ‘‘exclusive or’’ is
computed between the top two elements of the etack and the result
replaces the top of the stack. (If the stack contains only one
item, a Boolean ‘‘not’’ = conmplement - is performed.) When the

end of the conditional is encountered, the stack is popped.

The implementation of nested conditional masks in Parallel
P=code is based upon this algorithm. A new conditional

expression 1is pushed onto the mask stack by the WHR instruction,

which has the syntax:
WHR type

The sense of the most recent conditional is reversed with the OTW

ingtructicn, which has the syntax:

OTW type

and the mask stack is ‘‘popped’’ by the ENW instruction, which
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ENU type

When a4 new level of masking is entered, the mask expression
is computed on the runtime stack, and then the WHR statement is
used to put the mask into effect. If the implementation co
desires, the WHR instruction may optionally mnot pop this
expression off of the run time stack, provided that the ENW
instruction does. This retains the temporary memory which holds
the mask sxpression. If a set of nested conditionals are
evaluated, there will be a set of temporary mask array
descriptors on the run time stacke The implementation may then
use the storage to which these refer to implement the mask stack.
(This method'requires a small amount of temporary memory
allocated outside of the run time stack which holds pointers to

all of the descriptors on the stack.)

Parallel Pascal specifies that the effect of a mask is not
transmitted to a called function or procedure. Thus, each
procedure or function has its own mask stack. The implementation
nay choose to include the information about the mask stack for
each routine in the stack frame (8.8, alcng with the static and

dynamic links, etce.).
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4.8 he ‘‘with’’ Scatement

Both standard Pascal and Parallel Pascal provide the with

stacenment to reduce the need to fully specify record accesses.

Por instance, the following sequence of code:

recpt.subrec.x t= 03
recpt.subrec.y t= 0;
recp?.subrec.s = 0;

could be written as

with recpt.subrec do
Ecgin
g = 03
y 3= 03
g s=» 03
H

[-%

The use of a with statement has two principal advantages.
The first advantage is that the program notation is simplified by
eliminating repetitions of the same record specification. (This
is not always an advantage, however, in programs with many record
types, because at times it becomes difficult for a human to keep
tzack the record to which each component refers.) The second
advantage is that the address of the record to which the fields
belong is calculated only once, rather than each time a field is
referenced. For instance, in the first example above (without
the with statement) the pointer ‘‘recp’’ is de-referenced three
times. When the with statement is used (the second example

above), the address computation is performed only once.

To determine the implementation in Parallel P-code, it is

useful to first consider the implementation in standard P-code.
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Two types of records are used ss operands to & with statement =~
those which are ‘‘normal’’ variables and those which are

specified by a record pointer.

In the case of non-pointer variables, the (lexical) address
of the specified record is known at compile time. Whenever a
reference is made to a field in that record the compiler adjuste
this address by the offset of the specified field and locads that
address on the stack. Thus, the (lexical) address of every field
specified in the with statement is kunown at compile time if the

argument to the with is an ordinary variable.

When a pointer is used in a with statement, the value of the
pointer must be preserved so that rcferences to fields in the

record indicated by that pointer can be properly addressed. 1In

this case, not even the address of the pointer itself is
necessarily known at compile time. For instance, given the

following code segment:

type
rec = record
X: integer;
y: real;
end;
ptr = 4rec;
pptr = 4dptr;

KA

PP PPtr;

begin
new(pp); (* "pp" points to an object of type "ptr" %)

new(ppt); (* "pp+" points to an object of type "rec" %)
wicth pp++ do
X := 03

C- 2

B R T To

»
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the address of the pointer itself (‘'‘pp4’’ is clearly not known
at compile-time). Hence, it is necessary to compute the value of
the pointer and save it in a temporary stack location. The P4
compiler ‘‘knows’’ the size of each stack element and can compute
the address of the temporaries. When a field within an
applicable record is referenced, the pointer is loaded onto the
top of the stack and the offset (in this case, the offset of
**x’’ relative to the start of the record) is added. This

produces the effective address of the desired operand; it may

then be used as the address for a LDI or STO.

In Parallel P-code, the situation 1is somewhat different
because the ‘‘front end’’ of the compiler is unaware of the
layout of records. A complle-~time-constant (lexical) address for
an ‘‘ordinary’’ record (that 1is, one which is not accessed
through a pointer) cannot be calculated. (Actually, the
complle-time address 1is known if the record in question is not
itself a component of another record.) In addition, the
expression may be an array of records rather than a single
record. For this reason, the Parallel Pascal compiler always
calculates the value of the address expression in a with
statement. The descriptor for the record is loadad (either by
construction from the compile~time-known lexical address and a
sequence of SEL instructions, or - in the case of a pointer = by
loading the ‘‘pointer’’). This descriptor is then stored in a
temporary variable. When a record field is used, the descriptor

is loaded from the temporary variable, the necessary SEL is
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performed to access the desired field, and the resulting

descriptor 1is used.

Unlike standard P~cods, which stores only the address of the
record, Parallel P-code must store the entire descriptor.
(Recall that descriptors in Pavallel P-coda play the same role ae
pointers in standard P-code.) This presents a problem, because
several different descriptors may be required at different times
during the execution of a routine. It is desirable to overlay
the space which is allocated to them as much as possible. The
need for this sharing of temporary storage contributed to the

syntax of the .LOCAL pseudo operator, described above.

Briefly, the syntax of the .LOCAL pseudo operator is

«LOCAL index,type,overlay

4

where '‘index’’ 1s an index that symbolically identifies the

location in the current procedure activation, ‘‘type’’ is the

A ) ’

data type, and ‘‘overlay’’ is used for memory sharing. The

L3R Y ’

fields are described in more detail above;

‘‘index’’ and type’

4

the ‘‘overlay’’ field is of interest here.

Local variables are allocated according to the following

’

rule: 1if ‘‘overlay’’ 1s zero, allocate the new variable beginning
at the next available location; otherwise, allocate the new
variable beginning at the same location as the variable whose

index 1is ‘‘overlay’’. Thus, the following statements:
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+LOCAL l,integer,0

causes local variables 2 and 3 to be allocated in the next
available memory after local variable l. If possible, variables
2 and 3 are to share the same memory. (The implementation isa
free to ignore this memory sharing specification. This may be
necaegssary if the variables would reside in different memories =
something which i8 noct the case for descriptors. However,
variables which are defined to use disjoint memory must indeed be
allocated that way; otherwise unexpected memory sharing will

result.)
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3¢ MEMORY MAWAGEMENT

5.1 The Memory Problem

The language Parallel Pascal was defined in section 2, and
an implementation using Parallel P-code was described in section
3. The language definition for Parallel Pascal places no limits
upon the utilization of mewmory by a program. Similarly, Parallel
P-code has no inherent restrictions on the size or shape of

arrays, whether they are parallel or not.

Although the specifications of the high-level and
intermediate~level languages contain no size restrictions, the
first implementations of Parallel Pascal almost certainly will.
The implementation of the language is affected by two fundamental
hardware constrants: the size of the processor array and the
amount of memory in each processing element’s local memory. In
this section, these problems will be considered relative to the
implementation of Parallel Pascal on the Massively Parallel

Processor(l].

The first restriction arises from the fact that the MPP has

a 128x128 element processor array. Lf data arrays are declared
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with these dimensions there is no problem; however, arrays with
much larger or much smaller dimensions require special

consideration. The problem of assigning memory locations to

variables is examined in section 5.2.

The second implementation restriction results from the very
small local memory in each processing elemeat. Each PE has only
1024 bites of random-access memory. Although this amounts to two
megabytes of memory for the whole array, it is limited when
manipulating large amounts of data - e.g. each local memory can
store only 32 (32-bit) rloating-point numbers. The main memory
1s supplemented by two levels of secondary memory: a high-speed
random-access memory called the ‘‘staging buffer’’, and a
secondary input-output system (connection to the host computer or
a proposed parallel disc system). The staging buffer in the
fnitial delivered version of the MPP will have a two megabyte
capacity; plans are underway to eventually expand to sixteen
megabytes, out of a total capacity of 64 megabytes. Section 5.3
examines the efficient management of memory with this

configuration.

CRIGINAL PAGE 1S
OF POOR QUALITY
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5.2.1 Introduction

In this section, the allocation of storage on the PE array
18 considered. To facilitate discussion, the following

definitions are assumed:

NROW = number of rows in the processor array
NCOL = number of columas in the processor array

An array whose last two dimensions have sizes NROW and HCOL,
respectively, can be easily mapped into the parallel array

memories - if the array is declared as:

var
arr: parallel array [I..J,K..L] of something;

where NROW=J-I+l and NCOL=L-K+l, then ‘‘arr(i,k]’’ will be stored

in row i-I, column k-K.

This storage mapping can be extended to multi-dimensional
arrays whose last two index ranges have sizes NROW and NCOL,
respectively. The address within an array memory is computed

according to the usual formula. As an example, given the

definition:

var
arr: parallel array [9..12, 4..5, 1..128, 8..135]) of integer;

and assuming that the base address within the PE memories for

AN} [N

arr 1is a. and that {ntegers are stored in 16 bitplanes, then

0

‘*arr{i,j,m,n]’’ will be stored in row m-1, column n-8, at

address
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When the last two dimensions of an array do not match the
size of the PE array another mapping strategy must be used.
There are two cases to be considered - data array dimensions
smaller than the PE array size, and data array dimensions larger

than the PE array size.

522 Small Arrays

If an array dimension is smaller than the corresponding
dimension of the PE array, then some PE’s will not be used to
store the array. For instance, a 64x64 array will only use one
quarter of the PE‘s in the MPP. This manifests itself in two
ways. First, it 18 extremely wasteful of tie main memory (a very
precious commodity). Second, since the edges of the array no
longer coincide w.th the edges of the PE array, rotating data
through the array will require more than one cycle per position

rotated.

One possible way to store a small array would be to use a
contiguous subsection of the hardware array; e.g. to store a
32x32 array on the MPP one could use all PE’s
(1,3), 0<1i<32, 0<j<32. This implementation works well if only
elemental oéerations area performed upon the data. In addition,
~he ‘‘shift’’ function can be used without substantial overhead
(an extra cycle is required for each shift from the ‘‘east’’ or
‘‘south’’ in order to force the incoming values to zero).

’

However, the ‘‘rotate’’ function will be very expensive because
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it will be necessary to propagate data shiftead out one end across

96 inactive PE'’s to reach the other end of the array.

An alternate storage scheme would be to store in every
fourth PE in each direction; that is, the 32x32 array described
above could store array element (i , j) in PE (ix4 , jx4)
(because 128/32 »~ 4). This scheme has the advantage that data
can be rotated across the logical array without having to
propagate edge information across a large number of inactive
PE‘’s. However, each position shifted now requires 4 hardware
shift operations instead of one bYecause the data items are
further apart. In addition, this scheme works best when the data
array has a dimension which evenly divides the length of the
hardware array; the implementation is not as apparent if the data
array 1is, say, 59x59. Finally, 1if arrays are stored in non-
contiguous PE’s then it will be necessary to compress or expand
them when gubsets interact with subsets of arrays of different
slzes. For these reasons, it seems advisable that small arrays

be stored in contiguous subsets of the hardware array.

Since small arrays do not occupy every memory module in the
PE array, sev-val small arrays can shar= the same memory offset.
For instance, four 64x64 arrays can be stored at the same PE
memory address in the 128x128 MPP array. Arrays of different
sizes can also be stored together - the available PE’s in a

memory plane can be ‘‘parceled out’’ as required.

If a small array has more than two dimensions, one possible

ORIGINAL PAGE I9
OF POOR QUALITY
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way of storing the array is to store several subarrays in the
same mamory plane(s). For instance, a (x64x64 array could bde
stored at the same address in the 128x128 MPP memories. This
storage scheme has the advantage that all elements of the array
can be operated upon at once. The disadvantage of this scheme is
the time required to transfer data from element (i,j,k) to
element ({i+1,j,k) = in the case described above 64 shifts are
required; whereas if the storage were ‘‘vertical’’ the data could

be handled internally by the PE’s.

A special case of the general problem of small arrays 1is the
handling of vectors. Although a vector has only one dimension,
it is frequently convenient to manipulate a vector in the PE
array. In addition, a vector may result from a reduction
operation upon an array (e.g. using ‘‘sum’’ along the columns of
a matrix). A reasonable storage implementation would be to treat
a vector as a matrix with only one row or one column (whichever
is more convenient for the problem at hand). Like other small
arrays, several vectors could then be storad in the same memory

plane (e.g. in successive rows of the PE array).

Finally, if a matrix or vector is very small the
implementation may wish to ignore the parallel specification and
store the array in the scalar memory. Small vectors and matrices
can easily be accomondated there without incurring a significant
storage overhead. If the array is small, not much parallelism

will be sacrificed by performing operations with it serially

ORIGINAL FAGE IS
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The ability to specify the data storage format for small
arrays s lacking in Parallel Pascal. The decision about storage
formats (s therefore left to the code generator. A future
language revision wight {nclude some provision for specifying the
data storage, along the lines of the parallel keyword which

Parallel Pascal does provide.

5.2.3 Large Arrays

Large arrays present a different set of problems which must
be addressed. First, siice the PE array {s smaller than the data
array, no mapping of the last two array dimensions into the PE
array will be one-to-one. Instead, some PE’s will contain more
than one point. Second, large arrays seriously iupact the main
memory capacity - {f the array is too large it may not fit in the
main memory at all. An example of this case is a 2048x2048 array
of {ntegers, which requires eight megabytes of wmain memory (the
MPP as delivered will have only two megabytes of main memory).
Finally, if the dacta array size is rot an even mulciple of the PE
array size, extra operations will be required when data rotations
are performed. This last case closely resembles the rotation
problem for small arrays which was discussed in the previous

saection; it will not be considered further here.

The first problem is the manner in which large arrays are to

be stored. For convenience, the last two dimensions of the data

arvay will be assumed to be multiplies of the PE array
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diaensions. In the follorwing discussion, two-dimensional arrays
are considered :or coavenience; additional dimensions are

.

implemented ‘‘vertically’’ within the PE array and are therefore

of nn special interest here.

Let the PE array have dimensions (!l , N) (both M and N are
128 on the MPP) and the data array have dimensions (AxM , BxN).
There are many possible ways in which to maj; cthe larze data array
into the PE array, but simplicity dictates that the array be
stored in such a way that each PE is associated with AxB

elements.

If the data array is fairly small relative to the main
memory of the matrix processor (e.g. & 256x256 array of 8-bit

data on the MPP) one possible implementation is to store in each

’e

TE memory a MxN subimage. That is, if ‘‘arr were defined by:

(* NROW = A%M, NCOL = B#N #)
var
arr: parallel array (0..NROW, 0..NCOL] of integer;

and {t were stored starting at a then {(assuuing an integer is

0'
16 bits) arr(i,j] would be stored in PE

AnEE

aO + 16x[(1 mod A)xB + (i mod B)]

at address

The advantage of this storage scheme 18 that adjacent points are
often in the same PE and no data transfers are needed. This can

be very useful when operations are performed involving near

ORIGHVAL PACE |3
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neighbors. Tho disadvantage of this scheme ia that when a

section of the array is operated upon (e.g. & 128x128 pfece of a
256x256 array) the parallelism will be lower. Also, large arvays
cannot be convenientiy manipulated because they will not (it into

main memory.

An alternate astorage method {s to divide the large array
into ‘‘chunks’’, each of which is the same size as the PE array.

LI

arr

'’

Given the array defined above, this scheme would map

arr(i,4] (with base address lo) into PE
(1 mod M , § mod N)

at address

o + toxt[S]es + |4])

“l.e advantage of this scheme is its capability for performing
operatione on subsections of the array with the maximum degree of
parallelism. This facilitates the processing of large® arrays

(which are too large for the PE memories).

Another important factor in the choice of a storage layout
for large data arrays is the ease with which the arrays can be
transfeired into and out of the main memory. In general, the
second format (breaking a large array into pieccs) is easier to
handle than the first format (storing a local subimage in each
memory); however, on the MPP both formats can be handled - the

staging memory 1is capable of ‘‘crinkling’’ an input image in

ORICINGL PAGE(@
OF PGUR QUALITY
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The initial ifmplementation of Parallel Pascal on the MPP
will restrict the size of the last two dimeneions of a parallel
array to be less than or equal to the PE array size. As a
result, the programmer will have to explicitly deal with large
data arrays in one of the ways described above (i.e. storing
multiple points in each PE or dividing the array into
‘‘chunks’’). The latter i{s performed by dimensioning an

128Nx128M array as

type
large = parallel arvay [le.sid,leeM,1..128,1..128] of integer;

and logically associating the first and third dimensions of this
array with the first dimension of the large array (similarly, the
second and fourth dimensions of the declared array are assoclated
with the second dimension of the large array). Simple operations

on the array can be expressed directly; statements such as
a = bt + ¢

mean the same thing regardless of how the array is dimensioned.
However, data movements in the large array must be mapped into
movements in the small array. The following two routines,
‘‘lshift’’ and ‘‘lrotate’’ illustrate how a shift and rotate on a
(logical) large 128Hx1.84 array would be implemented on an
NxMx128x128 array. These functions also illustrate how an
automatic memory allocation scheme would handle large arrays

\

which are stored in ‘‘chunks’’.
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(*
* LSHIFT - Shift large array
®
* The array "a" (conceptually size N#MPPROW by M*MPPCOL,
* dimensioned as af[l..N,l..M,1..MPPROW,1.,.MPPCOL])) 18 end=-off
) enifted.,
"
* The shifting is done in two stages - by rows and then by columns.
*)
const
MPPROV = 128; (* number of PP rows W%)
MPPCOL = 1283 (* number of MPP columns %)
N = 10; (® N*MPPROW = number of conceptual rows ¥)
M = 20; (* M*MPPCOL = number of conceptual columns %)
type

MPPREAL = parallel array [l..MPPROW,1l..MPPCOL] of real;
MPPBOOL = parallel array [l..MPPROW,1..MPPCOL] of Boolean;
LARRAY = array (l..N, l..M] of MPPREAL;

function lshift(a: LARRAY; r,c: integer) : LARRAY;

var
bsr: Q..N; (* block shift amount (rows) *)
isr: O0..MPPROVW; (* internal shift amount (rows) *)
bsc: 0..M; (* block shift amount (cols) *)
isc: 0..MPPCOL; (* internal shift amount (cols) *)
* . * *
5?8R:LQ§BQBOL; f* 53gﬁ°§3§y18E5?Xal)rocates *)
begin
bsr := r div MPPROW;
isr := r mod MPPROW;
bsc :s ¢ div MPPCOL;
isc := ¢ mod MPPCOL;

tmp := rotate(a, 0, 0, isr, isc);

mask := shift(a=a, 0, 0, isr, 0);
where not mask do
tmp := shift(a, 1, 0, 0, 0);

mask := ghift(a=a, 0, 0, 0, isc);
where not mask do
tmp := shifet(a, 0, 1, 0, 0Q);

ishift := shift(tmp, bsr, bsc, 0, 0);

(]
2
(=9

vass g
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(»
* LROTATE - Rotate large array
»
* The array "a" (conceptually size N*MPPROW by MwiipPPCOL,
* dimensioned as a{l..N,l.eM,1..MPPROW,1..MPPCOL]) 18 rotated
* (circularly shifted).
"
* The rotation is done in two stages = by rows and then by columns.
")
const
MPPROW = 128; (* number of MPP rows *)
MPPCOL = 128; (* number of MPP cclumns *)
N = 10; (* N*MPPROW =« number of conceptual rows %)
M o= 20; (* M*}.2PCOL = number of conceptual columns *®)
type

MPPREAL = parallel array [l1..MPPROW.1..MPPCOL] of real;
MPPBOOL = parallel array {1..MPPROW,1..MPPCOL] of Boolean;
LARRAY = array (l..N, l..M] of MPPREAL;

function lrotate(a: LARRAY; r,c: integer) : LARRAY;

var

T bsr: 0..N; (* block rotation amount (rowg) *)
isr: 0..MPPROW; (* {nternal rot.tion amount (rows) *)
bsc: 0..M; (* block rotation amount (cols) ¥*)
isc: 0..MPPCOL; (* internal rotation amount (cols) *)
tmp: LARRAY; (* temporary array %)
mask: MPPBOOL; (* mask for internal rotates %)

begin
bsr := r div MPPROW;
isr := r mod MPPROVW;
bsc := ¢ div MPPCOL;
isc = ¢ mod MPPCOL;

tmp := rotate(a, 0, 0, isr, 1isc);

mask := shift(a=a, 0, 0, isr, 0);
where not mask dc
tmp := rotate(a, 1, 0, 0, V);

mask := ghift(a=a, 0, 0, 0, isc);
where not mask do
tmp := rotate(a, O, 1, 0, 0);

lrotate := rotate(tmp, bsr, bsc, 0, 0);

o
3
(=%
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5.3 Data Migration

Because the main memory on the MPP is so small, it 1ie
inevitable that many programs will require more memory than can

be provided in the processor array alone. Thus, some form of
data migration will be required. This can be implemented in one
of two ways. First, the programmer could be required to handle
all data migration. Second, an automatic memory management
system could be used and the programmer could be unaware of the

transfer of dats between memorties.

In the following sections, the behavior of the MPP is
considerad in an attempt to determine an appropriate memory

management strategy.

5¢3.1 The Overlap Factor

The movement of data between memories will slow down the
computation of the MPP system on a problem by some amount. On
the MPP, input-output and computations may be overlapped. A
quantity which 1is of some interest 1is the execution time penalty
for not overlapping input-output with computation. Let Tc be the
total computation time, Tio be the total input-output time, and
To be the time required if input-output is overlapped with
computation as much as possible. Then f, the fraction of the

possible speed obtained with non-overlapped input and output

versus a fully-overlapped implementation, may be defined as

CRICIY v
OF POOR QUALI1Y
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T >T y T>T , TKT
o ¢ o

+
o 1io o Tc

i
The last of these implies that f<l. The first two inequalities

bound f from below:

T T
c c
1) 1f TC>T1° then TO-Tc + f = Ti T > T 3T 1/2
op ¢ ¢ ¢
io io
2) 1£ T, >T then T =T + f = > - 1/2
{i0”" ¢ o 1io Tiogrc Tio+Tio
o
3) if Tc-Tio then To-Tc-Tio + f-To+T° 1/2

In summary, 1/2<f<l. 7Thus, the maximum penalty for not

overlapping input-output and computation is a speed reduction of

1/2.

5¢3.2 1/0=-CPU Time Ratios

Another factor of interest is the relationship between the
time required for the input-output associated with a problem and

the CPU time required to solve that problem.

Let S be the execution speed (in operations per second).
Define Top as the time required to perform one array operation.
Since the MPP has an array of 128x128 PE’s, Top can be calculated
by

T . 128x128 16384
op S - S

The MPP has a two-level secondary memory. Data is
transferred from the PE memories to the staging buffer b&

shifting it across the rows of the array. It requires 128 cycles
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to shift a single bitplane into the array. Let Tcpu be the CPU

cycle time and B be the number of bitplanes to be shifted.
Define Ta as the time required to transfer a data item from the

staging buffer to the PE memories. Then

- ORIGINAL PA@EE
Ta IZSBTcpu OF POOR QU

One possible configuration of the MPP is to use a very-
high-speed parallel disc system for secondary storage. Let Ld be
the average seek and rotational latency of the disc, and R be the
transfer rate (in bytes per second). Define TB as the time
required to transfer data from the disc to the staging area.

Then

T el 128x128xB 1

B
8 d + ——u—Tr———-xR = Ld + ZOASE

(The number of bytes is equal to the number of bitplanes divided

by 8-)

Define X as the ratio of the time spent on input and output

to the time spent performing the operation. Then

B

.. Tyo Tt _ 12887 L 2048y SBT ., . SL, , S8
T _ T 16384 128 16384 © BR
op op —f—

The first term represents the contribution of the staging area;
the second term {s due to the disc access latency, and the third

term is due to the disc transfer rate.

The value of X represents the average number of operations
per array element required to keep the PE array busy. If,

instead, only aX operations are performed (where 0O<a<l) then the
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aversge utilization of the PE array will be a« Thus, when X is
large the input-output will dominate unless the task is very

proceseor~intensive.

X can now be computed for three typical MPP operations: 8-
bit integer addition (computing a 9-bit result), 32-bit
floating~-point addition, and 32-bit floating-point

multiplication.

5¢342¢1 1/0-CPU time ratio: integer addition

The reported speed of the MPP performing 8-bit integer
addition is 6553.6 million operations per second. There are two
8-bit operands and one 9-bit result., The.cycle time of the MPP

is 100 nanoseconds. Hence,

6
$=6553.6x10
B=3+8+9=25
T =10 6
g - (6553.6x10%)(25) 1077y | (6393.6x10 Dby (6553.6x10%)(25)
128 16384 BR
10

-1zs+(4x1o“)Ldfz°°“g“1°

If the data 1is transferred between the PE memories and the

staging buffer, the input-output will take 128 times longer than
the computation. If a secondary memory is involved, its latency
must be very low and its transfer rate very high. Figure 1 shows

the dependence of X upon the disc transfer rate for two values of

ORIGINAL PAGE IS
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For this relatively-simple operation, the procesesing time is
swvamped by the time required to perform input-output. For

instance, a disc system with L =15ms (fast by current standards)

d
and R-losnb/a (very fast relative to currant technology), X 1is

still high:

10
X = 128+(6x10“)(.015)%3'048310 - 6332.8
10

This means that in order to achieve 50% processor utilization
when performing integer addition with two input arrays and one

output array, it is necessary to perform (6332.8)(0.50) = 3166.4

array operations.

503.2.2 1/0-CPU time ratio: floating addition

The reported speed of the MPP performing 32-bit floating-
point addition is 470 million operations per second. There are

two 32-bit operands and one 32-bit result. The cycle time cof the

/

MPP is 100 nanoseconds. lence,

S-470x106
B=32+32+32=96

T 10!
cpu

Using these values, X can be computed as

6
o . roxio®yeeyaoTly | HTOEO Ly 470x10%) (96)
178 T638% 8K
4. 5.64x10°
=35.254+(2.87x10% )L +2200x 10

1f the data 1is transferred between the PE memories and the

ORIGINAL PAGE IS
OF POOR QUALITY



s aram ity

staging buffer, the input-output
longer than the computation. If
its latency must be very low and
Figure 2 shows the dependence of

for two values of Ld.

While the input=-output time

computation time, the difference

113
will take approximately 35 times

a secondary memory is involved,
its transfe¢r rate very high.

X upon the disc transfer rate

is 8till much greater than the

is an order of magnitude less

than in the 8~bit integer addition case above; for example, given

Ld-lSms and R-IOBMb/s.

X = 35.25 + (2.87x10%)(1.5x10"

5.3.2.3

5.64x10° _

108

2

) + 522.153

1/0-CPU time ratio: floating multiplication

The reported speed of tne MPP performing 32-bit floating-

point multiplication is 291 million operations per second.

are two 32-bit operands and one 32-bit result.

the MPP {s 100 nanoseconds.

6
S=291x10

B=32+32+32=96
-7
rcpu-1o

There

The cycle time of

Hence,

Using these values, X can be computed as

) (2.91x10%)(96)(10”7)

8
(2.91x10 )L

+

X 128 +

d . (2.91x10%)(96)
16384 SR

9

- 21.83+(1.776x10“)Ld+345%1l9—

If the data is transferred between the PE memories and the

staging buffer, the input-output will take approximately 22 times

T 1S
ORIGINAL PAGE |
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longer than the computation. If a secondary amemory is involved,

its latency must be very low and its transfer rate very high.

Figure ) shows the dependence of X upon the disc transfer rate

for two values of Ld.

The gap between the input-output time and the computartion
time is narrower than {n efther of the two cases above; tor

Ld-lSml and a-xosub/- the ratio is

3.49x10° _

108

2

X = 21.83 + (1.776x10%)(1.5x107%) + 323.13

5¢3¢244 1/0=-CPU Time Ratio: sequence 0% operations

In the previous three cases, X hia+ been computed assuming
that each data item (128x128 array) is transferred individually
and used only once. If instead the data is ‘‘spooled’’ =
transferred in blocks - the access latency will be ‘‘spread out’’
across many more elements. For instance, if a block of N 128x128
arrays of floating-point numbers is transferted in one operation,

X can be c~mputad as

8
7 (2.91x10)Ly () 91x10%)(ax32)

¢ o eortxaohymazyao™h | .
128 16384 BR

Note that now X is the number of operations that must be
performed on the set of N arrays; the number of operations per
transfer i{s X/3N. Figure 4 shows this value for transfers with

different block sizes (i.e. values of N).

Problems which are best suited toc a parallel matrix

processor are usually very computationally intensive. It is an
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extreme case to input two opcrnndoj]:crtotu an operation, and
output the results. A far more common occurrance is to input the
operands, perform many operations upon them, and then output the
results. As the previous sections have J3scribed, X indicates
the ratjio of the input-output time to the computation time. An
equivalent way of expressing this is that If N operatione are
performed per transfer, N<X, and input-output is completely
overlapped with processing, the PE array utilitation will be N/X.
(If N>X then the PE array utilization will be l.) Figures 5 and 6
illustrate the effect of the disc transfer rate (with 15
millieecond access latency) and the number of operations
performed per transfer upon the PE array utilization, for a
sequence of floating=-point multiplications. Figure 5 assumes
that each 32-bit floating-point operand is transferred
individually; figure 6 assumes that the data is spooled with a
block size of 512 bit planes (sixteen 32-bit operands are
tranaferred to/from the disc at once). If the disc is
sufficiently fast, the operands are spooled (transferred in
blocks), and each value is used in many operations, a totally-

overlapped input-output system can keep the PE array busy 1007 of

the time.

53.2.5 1/0-CPU Time Ratios: Conclusions

It is not particularly surprising that the MPP can process
data much faster thanm it can perform {input and output. However,

the discrepancy between the input-output speed and the processing
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speed can be very large. This suggests sevaeral things.

First, {t {is abuwolutely enlon:fhl that data transtfers bLa
kapt to a wminimum. Data should be read i{n and written out only
once {f at all possible. It 1is far wmore important tov minimize
the number of transfers than to achiave maxiwmum overlup between
fnput=-output and processing, for a system which pertorms the
minimal smount of i{nput-output but Jdoes not ovarlap that input=-
output with computations L3 at worst one-half as fast as the

optimum system.

Second, a4 high-speed secondary memory {s absolutely

assentiale The very optimistic figures for Ld and R still

produced a high ratfo of {input-output time to CPU time. As

delivered, the MPP will {nstead have a six megabaud link to the

host procaessor. Unfortunately, although this link {tself is slow
relative to the MPP processor sepseds, the limitinyg factor {n this
systom will be the mewmory systems which are attached to the host.
Some standard disc subsystans for the VAX are listed in Table |
along with their average access times and transfer cates|l].
Considaering the analysis of the praeceeding section, disce with
such high access times and low transfer rates (relative to MPP
processing times) will severely limit the performance of the'
system,
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Table 1: Access Times and Tranefer Rates for DEC Discs

L R
disc accessdtime transfer rate
(milliseconds) (kilobytes/second)
— RM02 'Y %) 8006
RMO3 38.3 1200
RM80 33.3 1200
RPO6 38.3 806
RMOS5 38.3 1200
RPO7 31.3 1300
RPO7-D 31.3 2200

Third, transfers should be performed between the staging
buffer and the PE memories whenever possible. The gap between
the input=-output time and the processing time 1is relatively
narrow when only the staging buffer is involved. When sequences
of complicated operations (e.g. intensive floating-point
calculations) are performed it will be possible to significantly

overlap transfers between the PE array and the staging buffer.

Finally, when it 1is necessary to transfer dat: to the
secondary memory it should be transferred in relatively large
blocks. The dominating factor in the input-output time to the
disc 1s the access latency; hence, it is desirable to transfer as

much as possible when input-output must be performed.

533 Implementation Alternativec

There are two possible implementation schemes for data
migration on the MPP. The transfer of data between memories may
be handled by a memory~-management system (and hence be
transparent to the prograumer) or it may be directly programmer-

ORIG!.f.L Fasn
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5¢3.3.1 Autowatic Data Migration

Chapter 3 described the implementation of Parallel Pascal
through the intermediate language Parallel P-code. One of the
significant characteristics of Parallel P-code 1is 1i:s stack
orientation. The amount of memory (excluding dynamically
allocated memory, which is runtime-dependent) which the main
program and each function or procedure require (per call) can be
determined by the code generator at complle-time. GCiven an
unbounded memory size, the memory address of the next temporary
location can be easily determined (it 1is the address following

the top-of=-stack).

Unfortunately, the available memory on the MPP is not
unbounded; on the contrary, it 1is very small. If an automatic
memory management scheme 1s to be used, some locations in the
main memory must be shared by several different data items.
Hence, the main memory, staging area, and secondary memory form a

three-level memory hierarchy.

Conventional machines often utilize memory hierarchies at
two levels, The first 1is the addition of a hardware cache memory
to supplement the bulk main memory of the machine. This 1is
usually implemented solely in the hardware of the machine. The

N

second level is the implementation of ‘‘virtual memory’’, which
migrates data from main memory to secondary (disc) memory. This

allows a program to use a large (virtual) address space without
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requiring that all of thet address space be physically resident
in main memory at all rimes., Virtual memory is typically

performed by software, with appropriate hardware support.

The MPP memory hierarchy does not greatly resemble a cache

memory system. Cache memories are usually an order of magnitude

faster than the main memory of the computer and a few orders of
magnitude smaller. For example, in the PDP-11/70 the cache

memory has an access time of O.3us and a capacity of 2 kilobytes,
while the (magnetic core) main memory has an access time of
1.32uys and a typical capacity of 512-1024 kilobytes. In the MPP,
on the other hand, the time to access data from the staging
buffer is approximately two orders of magnitude greater (it
requires 129B cycles rather than B cycles to fetch B bits), while
in the delivered versioa the main store is equal in slize to the
staging buffer. (Even with a full complement of memoiy, the
staging buffer will only be 32 times larger than the main
memory.) Therefore, consideration of the MPP memory hierarchy as

a cache memory seems ill-advised.

The MPP memory hierarchy also does not greatly resemble a
virtual memory hierarchy. Conventional machines typically
operate in a multiprogrammed environment (i.e. several programs
running concurrently). These programs compete for (share) the
main memory and other machine resources. When an executing
program attempts to reference data which is not resident in main
memory a page fault occurs. The operating system transfers the
decsired data from the secondary memory to the main memory, and
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vhen it {s accessible the program is restarted. While the
transfer is taking place the program is suspended and another
program {s allowed to run. In the ideal case, the processor {is
always buey even though one or more programs is currently
blocked. The MPP, however, is not multiprograimmed. When the
program is blocked awaiting input (or output) the array of
processing elements {8 idled. As section 5.3.2 noted, input-

output (especially to a secondary memory) is very expensive.

Without actual runtime experience it is difficult to predict
the type of automatic memory management system which would be
most effective. Without such experience it seems advisable to
consider some qualities that such an 1mpiementation might
possess, instead of attempting to fully define the

implementation.

First, because transfers between the staging area and main
memory are the least expensive (for sequences of complex
operatiuns such as floating=-point arithmetic it will be possible
to overlap most of the input=-output with other computations) the
staging buffer should be used to hold variables and temporary
data which will be needed again, and the secondary memory should
be used only for input of the original problem and output of the

results (or, if necessary, overflow from the staging area).

Second, all transfers between the staging area and the
secondary memory should consist of blocks of data. If necessary,

data may be loading into the staging area before it is needed 1in
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nrder to avoid later disc references (with their long access
latencies)., This is analogous to demand prepaging in vircual
memory systems{3]. Some form of dat( restructuring may be used
to improve the clustering of commonly-used locations into

contiguous locations[4].,

Finally, the stack orientation of Parallel P-code can be
used to advantage. When a function or procedure 1is called
recursively the data locations corresponding to the previous
activation of that routine become inaccessible (until the
recursively-called Foutine returns)., Temporary locations at any
outer lexical level are also inaccessible until control returns
to the routine which calculated them. If data migration is
necessary, these locations could be used, especially those at the
outermost lexical levels (for which the next reference will be a
relatively long time in the future)., If memory planes are shared
by several small arrays (those with dimensions less than the
hardware array size), this method can still be used provided that
memory planes are shared only by variables (or temporary data)

within the same procedure activation.

5¢3¢3.2 Programmer-Directed Data Migration

The alternative to an automatic memory management system is
a programmer~directed system. Such a system requires the
programmer to be concerned with the implementation details; it {is
therefore less portable and somewhat more difficult to use.

However, it has the potential for higher system performance since
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no potentially inefficient data transfers are performed '‘bebind

Loy o |

the programmer’s back.’’ The initial implementation of Parallel

Pascal on the MPP will use this scheme, as described in ncctioh

2.3 of this report.
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6: FAULT TOLERANCE IN HIGHLY PARALLEL
MESH CONNECTED PROCESSORS

6.1 Jdntroduction

The mesh interconnection scheme has been used on several large scale SIMD
parallel processors. This scheme involves organizing the prucessing elements
(PE’s) into a two dimensional matrix such that each PE has data interconnections
with its adjacent neighbors. In a typical organization a PE has connections to 4
near neighbors in the cardinal directions N, S, E and W. In a single instruction
data may be shifted in a single specified direction between all adjacent PE's.
That is, a distributed matrix of data may be shifted one mesh position in parallel.
The main advantage of the mesh scheme is its simplicity and suitability for a
large class of scientific applications. Data interconnections only occur between
adjacent PE's this means that they may be kept very short and lsid out on a sin-
gle interconnection plane. The usual disadvantage with this scheme is that data
transfers to distant PE's require a large amount of time since the data can only
cross between adjacent mesh nodes with each clock cycle. However, there is a
large class of problems including physical system modeling using partial
differential equations and image processing in which the data needed by a PE is
located in its local mesh area and the mesh interconnection scheme is very
efficient.

One potential problem with the mesh scheme is that the failure of any node
in the mesh renders the whole paralle! processor inoperable. Current LSI proces-
sor designs involve a mesh with more than 10,000 nodes; with VLSI technology
systems having 1,000,000 nodes and more may be anticipated. For some applica-
tions, for example real-time image processing in a remote inaccessable robot sys-
tem, some fault tolerance is essential.

6.2 Mesh Connected Parallel Processors

An important large scale mesh parallel processor is the Illiaz IV 1] developed
in the late 1960’s. It consists of an 8 x 8 mesh connected set of 64 PEs; each PE
having an ALU with a 84-bit-wide datapath and floating point capabilities. This
architecture is well suited to applications such as partial differential equations.
The implementation of Illiac IV was hampered by the technology of the time.
[Iardware lailures were anticipated to occur every few hours. The PE's were regu-
larly subjected to an extensive library of automatic tests and were replaced manu-
ally if any faults were detected.
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A more recent design, based on LSI technology, is the Massively Parallel Pro-
cessor (MPP) [2,3] which is currently being developed for NASA by Goodyear
Aerospace and should be constructed by late 1981. The MPP consists of o 128 x
128 mesh of 16,384 PE's; each of which has a 1-bit-wide data path and can
achieve floating point operations through bit-serial algorithms. This architecture
is designed for image processing applications where a single image may be as large
as a 6000 x 6000 matrix. The MPP processes such an image s a sequence of 128
x 128 subimages. The MPP involves parity checks on each 8 bits of the PE local
memories snd has a redundant column of PE's which may be switched in by the
host computer to replace a faulty column. With this fault tolerance the MPP is
expected to run for several hundred hours before requiring manual intervention.

The fault tolerance concepts in this paper will be considered with respect to s
bit-serial PE array scheme or Binary Array Processor (BAP) [4] such as the MPP.
These concepts may be extended to word parallel designs such as the Illiac IV
type architecture. However, with the constraints that the matrix to be processed
is larger than the PE array and that the algorithms to be implemented are well
formed for the mesh organization, the bit-serial approach has significant advan-
tages over the word parallel approach for equivalent amounts of hardware (5].

A general block diagram for a large scale BAP is shown in Fig. 1. Data pro-
cessing is achieved with the array of PE's. Data is input to and output from the
PE array via the I/O buffer memory which communicates the data to peripherals
and bulk auxiliary storage devices. Instructions to the PE array are issued by a
single high-speed microprogrammed control unit. The whole system synchroniza-
tion is maintained by a conventional host computer which issues macro instruc-
tions to the control unit. Some feature information may be extracted from the
PE array by the global information extraction mechanism.

A typical organization for an MPP-like PE is shown in Fig. 2. Data from
adjacent pear neighbors is selected by the NN multiplexor. The control lines and
local memory address lines are broadcast to all PE's in the array. The OR bus is
a line from all PE's to the control unit which has a one value if any PE outputs a
one. The I register is used for data I/O; it receives data from the I register of the
adjacent PE to the left and transmits data to the PE on the right.

The I/O buffer memory is vital part of the BAP system, it is responsible for
making reformated data available to the PE array. With the MPP a data matrix
is input to the array as a set of bit-planes. Each bit plane is input along one edge
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of the PE array; one column with each clock cycle. Each row of the array acts as
a shift register. When the complete bit plane has been input it is stored in the PE
local memories in one clock cycle. Fault tolerance in the I/O Buffer can be
achieved with the single error correction-double error detection (SECDED)
schemes common in many recent large memory systems. For the PE array the
I/O mechanism is like a one dimensionali mesh connection; and it will not be
treated as a separate issue for fault tolerance. For a BAP system the 1/O could be
achieved by the mesh interconnection hardware; alternatively a separate but basi-
cally similar I/O hardware as shown in Fig. 2 could be used, if neceszary, to avoid
blocking.

The global feature extraction mechanism on the MPP is an OR function over
all PE elements, which outputs a 1 if any PE has a 1. If we have an error detec-
tion mechanism then a similar global OR function would be needed to report an
error to the host processor. Once again these two functiors will be considered to
be implemented with the same hardware in this paper; such a scheme is used with
the MPP [3]. It has been suggested that a more powerful feature extraction
mechanism, such as counting the number of bits set in a bit plane may be cost
effective for future BAP systems [6].

The MPP PE array ie constructed with two LSI chips, A PE chip and a
memory chip. The PE chip contains 8 PE's (without local memories) in a 2 x 4
array. Each PE chip has connections to 8 1-bit memories for the PE's and an
additional 1-bit memory for a parity check of the other 8. The total P array
consists of 33 4-PE wide columns; each column consisting of 128 PE chips. A PE
chip has a control input which, when activated, disables the chip by connecting
corresponding East West pin data lines together. In this way any one of the 33
columas may be disabled to achieved on operational 128 x 128 PE array. When
an fault is detected the faulty column is disabled and the redundant column is
used to replace it.

Faults will be considered here to be of two basic types - local and module. A
local fault may typically be a broken data line or a faulty memory bit whereas a
module fault implies the complete failure of a module, such as a chip, which may
result in a set of related PE's being made inoperable.

Since we are dealing with functionally very complex chips the probability of

a local fault may be expected to be significantly higher than a module fault.
Therefore the main effort of the work here is concerned with local faults as they
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are much simpler and cheaper to des' with. However, any practical very large
scale mesh connected processor also needs some fault tolerance at the module
level.

For the MPP, the redundant column scheme is effective for any single
memory chip failure. It is also effective for most PE local failures, e.g. if a data
line breaks in a PE. Therefore the most probable fault causes have been covered.
However, if a catastrophic failure occurs to a PE chip, (module) then the whole
PE array may become inoperable since it is necessary for data to flow through a
disabled chip.

6.3 A VLSI PE Array Ozganization

For a VLSI system design there are two fundamental chip size limitations (1)
the number of devices which can be put unto a chip and (2) the number of pin
connections which may be made to the chip. A usual characteristic of a VLSI
design is modularity, i.e. a chip consists of a very large number of identical
modules, which is important to minimize the development cost. Finally, with
very large functionally complex chips fault tolerance may be effective to
significantly increase the production yield and the fault free lifetime of the chip.

A possible chip organization for a very large VLSI PE array is shown in Fig.
3. Three different VLSI chip types are involved: a PE ALU chip, a local memory
chip and a PE mesh interconnection chip (MIC).

The PE ALU chip consists of a set of PE ALU's, each having a limited
amount of local memory. These ALU's share common ALU-function and address
lines but do not have any data interconnections between each other. The data
access to a PE is achieved by a single pin on the chip which is connected to a
bidirectional bus line. The design of an effective PE with this input/output con-
straint is described in [5]. With this design optimal bit-serial processing times for
addition, multiplication and logical ope:ations can be achieved. The limited size
on-chip local memory may be used for table-look-up applications since it may be
addressed by an ALU register (unlike the external local memcry) or for a cache
memory.

The PE ALU chip will be a functionally very dense chip and will contain as
much logic as the VLSI technology will allow. There are no pin connection prob-
lems since only one pin is required for each additional PE.

R ———



134

ORIGINAL PAGE 13
OF POOR QUALITY

From other PE's

Joool

Interconnection

1/0 Control

Interconnection Function e Network MIC

ALV F i
LU Function - PE ALU

and Extended
Address o{ Local Memory — Local Memory

VLSI PE Organization
Fiq. 3



]

| -
5

ik
+

 Eae

v
. ”

135

ORIGINAL PAGE S
OF POCR QuaLITY
The external local .nemory chip will provide the main local data storage for a
1 is. With the amount of single chip storage which is becoming available with
emerging memory technology, it is possible that one VLSI memory chip could con-
tain adequate storage for one or even several PE's. The 1-bit wide external PE
memory is connected to the single-bit PE data bus. Once again the limitation
with the memory chip is caused by the functional complexity achieveable with the
VLSI technology; there is no pin connection problem.

The interconnection chip realizes the mesh interconnections between the PE's
and also contains an input/output mechanism for data 1/O to the PE array.
Unlike the previous chips this chip is functionally very simple and the size of the
mesh which can be contained on a chip is limited by the maximum possible
number of pin connections. Each mesh node requires one pin connection to its PE
data bus and also, for a m x n mesh, 2(m+ n) additional data interconnections are
needed to adjacent MIC's.

All the additional logic to achieve error reconfigurability for the PE array is
located in the MIC's.

0.4 PE Faulit Tolerance

Both the ALU and external memory chips are functionally very complex and
therefore more likely to fail than an MIC. In this section we consider how to
reconfigure the array if a single PE-external memory combination fails. This
reconfigurability is achieved by modifying the MIC so that it has access to spare
PE's which may be switched in to replace the faulty PE.

A basic non-fault-tolerant MIC organization for a 2x2 mesh subsection of a
PE array is shown in Fig. 4. This chip has a total of 12 data pin connections; 1 to
each of the 4 PE’s and 8 to adjacent neighbor MIC's. In goneral a m x n mesh
MIC would require mn+ 2m+ 2n data pin connections.

The basic logic device which the design of the MIC will be based on is the
selector which is illustrated in Fig. 5(a). A selector has a set of control inputs, C,
which specify by a binary code which of the X data items is to be connected to the
Y data line. Once connected, data may flow in either direction from Xto Yor Y
to X. With some logic technologies an additional control input may be needed to
specify the data flow direction. However, with designs considered here, the direc-
tion information is always locally available therefore this additional control line is

no problem.
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Each mesh node of the simple MIC shown in Fig. 4 may be implemented with
a 5-way selector and a 1-hit register as shown in Fig. 5(b). Two clock cycles are
required, with this design, to transfer data between adjacent PE's. In the first
clock cycle the data is output from the PE and loaded into its mesh node P regis-
ter. Then, in the second clock cycle, the PE reads the value of an adjacent PE's P
register. Data may be transferred between more distant PE's by shifting it
through a connected sequence of P registers. In general, a data transfer through a
path of K stages requires K+ 1 clock cycles.

To achieve fault tolerance to a single PE failure we first consider adding a
spare PE to each MIC group. A possible organization for such a reconfigurable
MIC is shown in Fig. 6. Each mesh node may be connected to one of two PE's. If
any PE fails each mesh node can be connected to a unique, operational PE.

The details of the modified mesh node design are shown in Fig. 7. A Q regis-
ter and a 2-way selector have been added to each node. The value of the Q regis-
ter specifies which of the two possible PE's the mesh node is connected to. When
a faulty PE is identilled the host computer generates a bit mask which is distri-
buted to the P registers; then the Q registers are loaded from the P registers to
isolate the faulty PE. The task which was in progress when the faulty PE was
detected must be reloaded or restarted.

The above MIC modifications require only two new pin connection to the
MIC. One is the load control and the other is the data connection to the extra
PE. One extra PE must be available to each MIC; however, it is possidle for
MIC's to share a PE as indicated by the broken lines in Fig. 6. In this case only
one extra PE for a group of MIC's is needed.

The above technique is easily extended if protection against more than one
faulty PE for each MIC (or group of MIC's) is required. For example, protection
against any two faulty PF . could be achieved by connecting two extra PE's to
the MIC as shown in Fig. 8. The PE selector at each mesh node must select
between three PE's, and the Q register must be extended to contain two bits of
information. In the general case, fault reconfiguration for the up to K faulty PE's
requires K extra PE's; each MIC requires K+ 1 more pin connections than for no
protection. Each mesh node in the MIC must contain a K+ 1 way PE selector
and a Q register large enough to address it.
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6.5 MIC Mesh Node Fault Tolerance

Once the system may be reconfigured for any faulty PE, the next problem
area is the very large mesh interconnection network itself. Fault tolerance is con-
sidered here for the failure of any mesh node or data interconnection in the inter-
connection network.

Mesh node fault tolerance on the MIC can be achieved using a similar scheme
to the MPP global fault tolerance. That is, have a spare column of mesh nodes
which may be utilized when a faulty mesh node is detected. One way in which a
spare column of mesh nodes may be incorporated within an an MIC is illustrated
for a2 2x2 mesh MIC in Fig. 9. In the general case with n4 1 columns the
configuration is specified by a register (not shown in Fig. 9) having two bits for
each column. A possible organization of a mesh node for this organization is illus-
trated in Fig. 10. The two bits from the reconfiguration register are represented
by RL and RR. When RL is set it specifies that the left (W) input to the node
noi be connected to the adjacent column node but to the next node to that, i.e. to
skip the node to the left; RR specifies which column node is connected to the (E)
input in a similar way. A bit pattern is loaded into the reconfiguration register
such that one column is skipped. It does not matter what values a disabled faulty
node may have on its interconnection lines since these lines are never used by the
other nodes. For the rest of this paper the configuration in Fig. 10 will be con-
sidered to be implemented by s single 7-way selector.

Any external data interconnections pin may be connected to one of two mesh
nodes; therefore it i3 necessary to have a 2-way selector associated with each node
as shown in Fig. 8. The control for these selectors is derived from the
reconfiguration register contents.

The simple organization shown in Fig. 9 can reconfigure for any faulty mesh
node however, there is no fault tolerance from either a data pin connection failure
or a data pin selector failure. Fault reconfigurability for such failures may be
achieved by adding spare pin connections and selectors, one for each of the four
directions of data connection as shown in Fig. 11. Only the connections to pin
selectors are shown, the interconnections between mesh nodes is similar to Fig. 9.
This organization assumes that the MIC's are themselves connected in a matrix.
Now if any pin selector or connector fails the two remaining pin connections may
be used. The MIC connected to this chip must also use the same data connec-
tions, therefcre, we have fault tolerance to any single selector or data connection
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failure between the interface of two MIC chips. In the general case, this fault
tolrrance requires four extra pin connections and pin selectors. Furthermore,
except for selectors at the end of the rows or columns, column pin selectors are 3-
way and row pin selectors are 4-way.

To complete the reconfigurable mesh node design the PE's must be connected
i the ensbied mesh nodes. One way of doing this is illustrated in Fig. 12. For a
2x2 active mesh there is one extra column of mesh nodes and one extra PE. Since
any mesh node may fail the node-PE selector is associated with the PE rather
than the mesh node in contrast to the PE-only fault tolerance shown in Fig. 6. In
the general case, each PE must be connected to a mesh node by either a 2-way or
a 3-way selector to the mesh nodes.

Finally, we note that there is a simple extension to this scheme to achieve
reconfiguration for any two faulty mesh nol:s. This may be done by having
either two extra columns on onc¢ extra row and one extra column. In either case
all the mesh nodes require an additional two data connections. In general a
second spare column will be cheaper than an additional row. For example for an
o x n MIC a spare row requires n+ 1 mesh nodes whereas a spare column only
requires n mesh nodes.

6.6 Module Fault Tolerance

Fault tolerance to catastrophic chip failures, such as a broken power line or
command line may be achieved by organiziag the total array into a set of
modules. Each module contains a set of related PE's and fault tolerance is
achieved by baving a spare module available when one fails.

For the discussions in this section an example array design will be considered,
however, the techniques discussed here are general in nature and may be applied
to system with very different design parameters. The example system could be
constructed with present day technology and is for a 1000 x 1000 PE array. The
three PE chip types have the following characteristics: each PE chip contains 16
PE's each MIC contains 3 4x4 matrix of active mesh nodes and there is a memory
chip for every 4 PE's. Fault tolerance will be considered at two module levels (a)
che chip level and (b) at the group level where each group consists of a set of
chips.
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9.7 Chip Level Fault Tolerance

A catastrophic fault could occur in any chip, the PE chip is considered first.
The smallest possible group size consists of the following, ore MIC, one PE chip
(plus an extra PE for fault tolerance) and 4 memory chips (plus one bit for fault
tolerance). This group, therefore involves a dx4 matrix of active PE's. If the PE
chip fails then it is necessary to replace the whole groug.

As an alternative, a larger group may be used involving 256 active PE's in
which the PE chips are distributed between the MIC's. This group consists of 16
MIC's, 17 PE chips and 68 memory chips. Each PE chip contributes one PE to
every MIC in the group; therefore, since each MIC has fault tolerance to one
faculty PE, a single PE chip failure can be handled locslly within the group. The
cost of PE chip fault tolerance within the group is more complex inter-chip data
routing.

The total failure of a memory chip would render 4 PE's inoperable in our
example. lowever, the memory chips may be distributed between MIC's in a
similar way to PE chips in order to achisve group local fault tolerance.

If an MIC fails completely them the whole group is rendered inoperable.
Therefore we need a mechanism to selectively enable a group in the total array.
One approach is to make a group in the form of a column of PE's and hLave a
spare column of PF : in » similar scheme to the MPP. In our example design, a
group could be orgsai.e! is 8 64x684 matrix of PE's and 16 groups would consti-
tute one 4 PE-wide ccdunet: of the PE array; 256 such columns would be required
for the complete PE arn sy

To allow for the disabling of a column each MIC needs to have a spare set of
data selectors and data pin connections for all data lines in the E/W directions.
This spare set would bypass the adjacent column and link with the spare data
connections on the following column. In this way any single column may be com-
pletely isolated. Since these are 258 active columns it might be advantageous to
have more than one spare columns. Then muitiple MIC chip failures could be
dealt with as long as they do not occur in adjacent columns.
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6.8 Cost of MIC Fault-Tolerance

The cost of implementing the fault tolerance schemes with the MIC has been
estimated using three measures (1) the number of selectors, (2) the number of
internal data lines and (3) the number of data pin connections. The number of
selectors may be considered as a measure of the functional complexity of the chip.
No weight is attached to the complexity of each selector and the small amount of
control logic is not considered. Although the mesh node selectors are more com-
plex for the fault tolerant design this is balanced by the many additional simplier
selectors which are used for PE's and data pins. The number of internal data
lines is also a measure of chip complexity since they may consume a large propor-
tion of the chip area. The data pin count gives a good indication of the pin
requirements of the MIC since less than 10 additional pins will be required for con-
trol and power.

The costs for various fault tolerant MIC configurations are expressed for a m
x o mesh design in Table 1. The first row in Table 1 is the cost for the simplest
MIC without any fault tolerance. The second row is for single PE fault tolerance
as shown in Fig. 7. The third row is for an MIC with complete single mesh node
and data interconnection fault tolerance as illustrated in Figs. 8-12. The last two
rows include the cost of an extra se: f left and right data connections and selec-
tors for group fault tolerance. The first set of figures is for a spare column within
the MIC and the second set of figures is for a spare row within the MIC. The
spare row concept is slightly cheaper than a spare column for a square mesh i.e.

when n = m.

Table 1: MIC cost for an n X m active mash

Fault Selectors Internal Data Dsta Pin
Tolerance Lines Connections
None mn 3mn+ m+n mn+ 24 2n
single PE 2mn 4mn+ m+n+1 mn+ 2m+ 2n+ 1
single mesh 2mn+ 2m+ 3n0+5 6mn+ 7m+ 7n-1 mn+ 2m+ 2n+ 5
node

group (a) 2mn+ 4m+ 30+7 6ma+ 1704+ 709 mn+ 4m+ 2n+ 7

group (b)

2mon+ Sm+ 20+ 7

8mo+ 15m+ 7n-5

mn+ 4m+ 2n+ 7
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These costs are shown graphically in Figs. 13-156. In Fig. 13 the number of
selectors for the MIC is shown. While a significant increase in selectors is needed
for fault tolerance the chip is still not very complex. For the example system of
16 active nodes only 67 selectors are needed for group fault tolerance; when
a=m==10, i.e. 100 active nodes, only 277 selectors are required. In Fig. 14 we sce
that there is s large increase in internal data lines when mesh fault tolerance is
introduced, however the total number of data lines is still quite reasonable. The
limiting size design parameter for the MIC is the number of pin conaections; in
Fig. 15 it is shown that there is only a small increase in total pin connections
when fault tolerance is introduced. For the example 16 node MIC 21 data pins
are required without fault tolerance and 34 data pins are required for group fault
tolerance. When there are 100 active nodes on the MIC the data pin requirements
are 140 without fault tolerance and 167 with group fault tolerance.

6.9 Fault Detection

The MPP PE chip for 8 PE's has an additional memory chip for parity infor-
mation. This mechsnism provides good fault detection for the local memory
chips. With the VLSI chip organization proposed here a similar mechanism could
be implemented. In this case the MIC would monitor all PE local memory reads
and writes and store the parity in a separate memory chip. For fault tolerance
each MIC may select between two parity memory chips and one spare parity
memory chip for each group would be required.

An alternative fault detection scheme is to use additional parity bits with
each data operand. The advantage of such a scheme is that data parity may be
checked after any data transfers, either I/O or interprocessor, in addition to any
memory data transfers. For a bit-serial system this could be implemented with
very little hardware in the PE ALU. A single 1-bit parity register and an
exclusive-OR gate as shown in Fig. 18(a) is all that is needed for a multibit regis-
ter ALU. As each operand is read its parity is computed in the T register; then all
T registers are output to the global OR function which will report any parity
errors back to the host processor. The T register is selected by the local memory
address mcchanism for setting it to an initial value or reading its contents; there-
fore, no additional pin connections to the ALU chip are required. This same
mechanism is used to generate the parity when a result is stored in local memory
or transferred to another PE.




149

ORIGINAL PAGE 1S
OF POOR QUALITY

badh

(d)
(c)

"

S (b)

9]

2

B

K

i

- (a)

!
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With simple bit-serial PE ALU’s having only 1-bit registers it is necessary to
interleave the fetching and storing of operand bits. For example, an integer add
operation requires first the least significant bit of the operands to be read and the
first bit of the result is stored, then the next least significant bits are dealt with
and so on. To deal with this data flow the parity hardware shown in Fig. 16(b)
may be used. Three parity registers are used in this case; T1 and T2 compute and
check the parity of the two operands while T3 computes the parity bit for the
result. Two extra pin conneztions are needed to each PE ALU chip to specify
which operand the current bit on the data bus belongs to.

An important feature of tagging data with parity bits as described above is
that, like other bit seriai operations, the data format including the number of par-
ity bits is completely user programmable. The cost of a large amount of parity
checking is a reduction in effective local storage and an increase in processing

time. The cost of the parity checking is proportional to the number of data bits

associated with each parity bit. For 32-bit operands this cost is fairly small i.e. in
the order of 3% loss of storage and increase in processing time while for 1-bit logi-
cal data this cost may be 100%. The user has the freedom to select where and
how much parity checking is to be done.

Once an error has been detected, either through data parity or by running
diagnostic programs for the PE's the host processor must reconfigure the PE
array. It isolates the problem by finding which column, and when possible, the
node PE which is the source of the error, and generates the bit masks, using the
PE array when possible, to reconfigure the array.

6.10 Conclusion

The problem of fault tolerance in highly parallel mesh connected processors
has been considered and methods of protecting against the most probable faults in
the PE array have been proposed.

Fault tolerance at different levels has been considered. It has been shown
that fault tolerance to the most error sensitive components, i.e. the functionally
complex PE ALU'’s and local memory chips, may be achieved at a low cost at the
local level. More extensive but less common errors such as catastrophic chip
failures, broken command lines including a faulty OR bus line, usually need to be
dealt with at the more expensive module or column level.

skl
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The cost of a high degree of fault tolerance can be achieved with a moderate
amount of additional hardware. Such hardware may become a very important
part of VLSI PE arrays having 1,000,000 or more nodes or in applications for
smaller arrays in situations where high reliability and fault tolerance is necessary.
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Parallel Pascal, an initial high level language tor the MPP, has been
specified with surprisingly few extensions to the base Pascal Language. It
has been implemented on conventional computers via a translator and, for the
MPP, the front end of the compiler which generates Parallel P-Code has been
developed. The suitability of the language notation has been demonstrated
by program examples of typical MPP alqorithms. Several useful algorithms have
been developed for the MPP including fast median filtering and efficient,
bit-level arbitrary function implementation.

Other high level languages have been specified for the MPP including a
Parallel Fortran and a Parallel APL. The availability of the Parallel P-Code
language and a code generator for Parallel Pascal should greatly simplify the
construction of a compiler for these lanquages; only a front end which compiles
the source language into Parallel P-Code is needed. If Parallel P-Code is
used as common intermediate language then programs written in one lanquage
will be able to call functions and procedures written in a different language.

A considerable effort was made to carefully design the Parallel P-Code
language. This intermediate lanquage is at a hiaher level than conventional
P-Code since it must deal with the more complex environment of a parallel
matrix processor; i.e., a host processor and a PE array. Arrays and record
data structures are described by descriptors rather than offsets so that the
selection of the memory system on which they reside may be made by an optimizer
or code generator. Code qgenerators may be based on Parallel P-Code for many
other parallel processors in addition to the MPP. The linear format of
Parallel P-Code is a carry over from its P-Code compiler origins. The experience
gained from developing Parallel P-Code suggests that for a future intermediate
language a parse tree structure format might be more appropriate. This is because
of the many different data aggregate structures which occur internally in a

parallel language program.
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Architectural extensions to the MPP PE design have been proposed which
would greatly enhance the PE's performance. The construction of such PE's
fs feasible with todays VLS! technology; furthermore, much larger, fault
tolerant PE arrays could now be constructed. The performance of the initial
MPP for the benchmark image processing tasks will obviously be strictly 1limited
by the completely inadequate input and output facility of the host VAX
computer and disk. If the I/0 problem is solved then the next bottleneck
is the small 1 K bits of local PE memory. However, there is an important
set of large scale scientific tasks which could be efficiently impliemented
on the MPP (with a larger PE local memory) which are so computation intensive
that the current I/0 speed would not be a problem. Without a larger local
memory, a MPP with a high speed disk, large stagina buffer and efficient
spooling mechanism may offer an alternative solution for these tasks.

Pascal was chosen as the most suitable base language, however, it also
has some problems. The major problems, which were inherited by Parallel
Pascal, are (a) user defined functions and procedures are constrained by strong
typing to operate only on a single specified array size and (b) there is no
separate compflation facility.

The fixed array size problem is a very frustrating limitation that makes
the implementation of general purpose library functions very difficult. There
have been many solutions proposed for this problem, one of the best of which
is the conformant array schema which has been proposed for the next Pascal
standard. This feature allows the actual index ranges of an array passed as
an argument to be determined at run-time. However, the rank (number of
dimensions) of the arrays is still fixed at compile time. If this becomes a
standard then it could be incorporated into Parallel Pascal without any
problems. For efficient compilatiorn a further minor restriction may be that the
set of all possible subranges to be passed as arauments should be determinable

at compile time. Other possibilities exist before a Pascal standard is

s
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established; for example, a preprocessor could be used to make multiple
variant copies of a procedure which is called with different size arguments.

The lack of a separate compilation facility means that libraries cannot
be used in the usual way. Also, large programs take a long time to compile
since all functions and procedures must be recompiled with every compilation.
Several proposals have been made for an external function and procedure
facility for Pascal but none has yet been accepted as a standard. Once a
standard is developed it should not be difficult to incorporate into Parallel
Pascal. Until a standard is developed a mechanism (preprocessor) should
be developed for Parallel Pascal which enables the use of libraries and also
permits library functions to deal with different sized arrays. It may be
possible to store the libraries in Parallel P-Code form ther much of the
recompilation overhead for large programs can be avoided.

The Parallel Pascal implemented on the MPP will have the initial restriction
that the last two dimensions of parallel arrays must have 128 elements to
match with the MPP PE array size. The initial implementation of Parallel
Pascal may have some further restrictions to simplify and speed the develop-
ment of the MPP code generator. More work needs to be done in this area.

An optimizer should be developed to make Parallel P-Code generated by the
compiler more efficient for the MPP, Also other design options for the code
generator should be explored such as the location of program code (MCU or

VAX) and the prefetching of data from secondary storage. These options may

be better explored once the initial code generator and the MPP are operational.

In order to make the MPP a more complete system which is convenient to
use a library facility needs to be added to Parallel Pascal, as mentioned
above, and a library of commonly used, efficiently coded functions needs to
be developed. Initially this library could be very quickly established with
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maximum flexibility by programming the functions in Parallel Pascal. Then
key functions should be recoded in assembler language in order to achieve
the maximum performance of the MPP. Since tne MPP will frequently be

limited by the input/output requirements the library should include an [/0

spooling system such as the one described in Section 2.
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APPENDIX A: PARALLEL PASCAL SPECIFICATION

A.l Overview

Parallel Pascal is a high~level language, based upon
standard Pascal, for parallel matrix processors. The philosophy
of the standard language was a major factor in the choice of
extengions. In the following description of Parallel Pascal,
familiarity with standard Pagcal is assumed. [Standard Pascal 1is
described in reference 1. A more recent definition is given in

reference 2.]

A.2 Declaratlons

Each program, procedure, or function block in a Parallel
Pascal program consists of a (possibly empty) set of declarations
followed by a set of instructions. The declarations are grouped
together according to their function: statement label
definitions, constant definitions, type definitions, and variable

definitions.

Parallel Pascal uses the same syntax as standard Pascal for



[
¥

& iz 1

[ N ]

L

161
ORIGINAL Piils 9
OF POOR QUALITY,

these definitions; however, two extensions are provided: subrange

constants and parallel array types.

As2.1 Constant Subranges

Standard Pascal uses the syntax

consat
{dentifier = value;

to associate '‘value’’ with the named ‘'‘identifier’’. 1In
standard Pascal, ‘‘value’’ must be either a literal or a

(possibly signed) previously-defined constant identifier.

Parallel Pascal extends the definition of a constant to

include a constant subrange. Constant subranges are used in

array indexing (described below). Effectively the definition of
an identifi{er as a constant subrange assoclates two values with

the {dentifier - conceptually these represent a consecutive range

of values. The syntax 1is:

const
identifier = low .. high;

where '‘low’’ and ‘‘high’’ are either literals or (possibly

signed) previously~-defined constant identifiers. As an example:

const
mpplow = 0;
mpphigh = 127;
mppidx = mpplow..mpphigh;

associates the {ntegers 0 and 127 with the identifier '‘mppidx’’.

When used in an array indexing expression, '‘mppidx’’ represents

~

the ordered set of integers (0, 1, 2, +.., 126, 127).

VRS
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A.2.2 Parallel Array Types

Standard Pascal specifies an array type definition with the

syntax:

type
newtype = array [ indextype ] of aeltype;

’

where ‘‘newtype’’ 1is the name of the new array type,

4

‘‘indexrange’’ is a type expression (either a subrange or a

\

scalar type) defin’ng the type of the indices, and ‘‘aeltype’’ is

the type of the array elements.

On a parallel matrix processor, it is common to store some
arrays on rthe non-parallel host machine (or in the scalar control
unit) and some in the (parallel) hardware array. Parallel Pascal
provides the reserved word parallel to allow the programmer to
specify the memory in which an array should reside. A parallel

array is defined with the syntax:

type
newtype = parallel array ([ indextype ]| of aeltype;

Aside from the memory in which they reside, parallel arrays

A

and ‘‘ordinary’’ arrays are treated identically in Parallel
Pascal. The parallel keyword exists only to provide a means for
the programmer to give the compiler a '‘hint’’ as to a variable’s

usage.
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The principle difference between standard Pascal and
Parallel Pascal is that Parallel Pascal permits the specification
of array expressions. In other words, arrays may be added,
multiplied, compared, etc. as aggregate quantities rather than
element-by~-element. In order to deal with arrays, and sections
of arrays, as aggregate units, Parallel Pascal provides

extensions to standard Pascal’s array indexing mechanisms.

As in standard Pascal, a scalar (non-array) expression may
be used as an index. Optionally, a subrange constant may be
added to the scalar expression. The subrange addition is
specified by the special operator '‘'@’’ to prevent ambiguity when
a compiler (or human) is parsing the program. The subrange
constant may either be an identifier defined with a conut
statement (see above) or a literal subrange - two constants
separated by the symbol ‘‘..’‘. 1I1f the scalar expression is zero
it may be omitted. As an example, if the array ‘'m’’ 1is defined

by:

var
m: array (l..10] of integer;
1i: integer;

then the expression
a{i@1..5]

specifies the following subset of m” "

m{i+l] m[i+2] wm[i+3] wm[i+4] m{i+5]
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Finally, {f {t {is desired to select the entire range of an

index, the index expression may be omitted entirely. Hence, for

LAY [

m defined above, either of the expressions

m(] or m

will select the entire range of the array.

Parallel Pascal also provides a mechanism whereby the

individual bits of an integer array element can be accessed.

This mechanism is known as bit indexing. Since the form in which

numbers are represented varies widely from machine to machine,
bit indexing 1s inherently a very non-portable feature; however,
the availablility of this feature may allow the programmer to
avoid the use of assembly~language code which would be even less
portable and more difficult to write, debug, and maintain. The

bit index follows the ‘‘regular’’ indices and is pre:eceded by a

colon:

arr{2,3:4] - select bit 4 of arr([2,3]
arv[:0] - select bit O of all elements of ‘‘arr

s

Bits are numbered from 2ero, with bit O considered the lowest-

order bit.

In order to prevent ambiguity, when arrays are used together

in an expression they must be conformable. (Additionally, the

array elements must be type compatible, as in standard Pascal.)
Two arrays are conformable if they have the same rank (number of
dimensions) and the same shape. Additionally, 1if the index

ranges of the arrays are not identical, then the non-matching
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index range(s) of at least one of the arrays must be expiictly

specified. Table | {illustrates the conformability of two arrays

of the same size but with different index ranges.

Table 1l: Conformability Examples

a: array [l..5] of integer;
b: array [(0..4] of integer;
a b not conformable (implied ranges do not match)
a b[Q0..4] conformable (explicit range for '‘b"’)
al@l..2]) b not corformable (shapes do not match)
al@l..5]) b(Q0.. 4] conformable

A.4 Standard Functions and Procedures

A.4.1 Elemental Functions

Standard Pascal defines a number of standard functions to
perform input/output, type conversion (e.g. truncating a real to
an integer), and to perform common mathematical computations
(esge cosine function). Parallel Pascal considers these

’

functions to be ‘‘generic’’ in the sense that they may oparate

upon an array of any shape. For these functions, called
‘‘elemental’’ because they treat each element of the array
independently, the value returned by the function is the same
shape as the function argumeant. Ffor example, given the

definitions:
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var
sine: array [l1..10] of real;
angle: array [l1..10] of real;

the following computes the sine function for each element of
‘‘angle’’ and stores the result in the corresponding e’ement of

‘*‘sine’’:
sine := sin(angle);

Table 2 summarizes the elemental functions.

Table 2: Elemental Functions

syntax meaning
type conversions e

trunc(x) truncate real to integer

round(x) round real to integer

ord(x) ordinal value of x (for scalar types)
chr(x) character with ordinal value 2«

arithmetic functions ]

abs(x) absolute value

sqr(x) square (lL.e. X )

sqret(x) square root (i.e. +X)

exp(x) exponential (i.e. e®)

la(x) natural logarithm

sin(x) sine function

cos(x) cosine function

arctan(x) arctangent function

miscellaneous

odd(x) boolean: true 1f x is odd
eof(£f) boolexn: true if at end-of-file on file f
eoln(f) boolean: true if at end~-of-line on file f
succ(x) successor of x (if defined)

pred(x) predecessor of x (if defined)
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In addition to the elemental functions, Parallel Pascal also
provides some ‘‘transformational’’ functions, so named because
they perform transformations upon the entire array rather than
element-by-element. Table 3 summarizes the transformational

functions, which are discussed in more detail below.

Table 3: Transfo.mational Functions

syntax meaning ;
Bhift(array, S1, S2, e¢s, 50) end-off Bhift data within array !
rotate(array, S1, S2, ¢+., Sn) circularly rotate data within array ;
expand(array, dim, size) expand array along specified dimeneioﬂ ;
transpose(array, ™1, D2) transpose two dimensions of array :
sum(array, D1, D2, «¢., Dmn) reduce array with arithmetic sum ;
prod(array, D1, D2, ¢+, Dn) reduce array with arithmetic product :
all(array, D1, D2, «¢., Dm) reduce array with Boolean AND
any(array, D1, D2, «¢., Dn) reduce array with Boolean OR ,
max(array, D1, D2, .+.., Dn) reduce array with arithmetic maximum
Lgin(atray, Dl, D2, +s., Dn) reduce array with arithmetic minimum

The functions ‘‘chift’’ and ‘‘rotate’’ are used to move data
within an array. These two functions have the same syntax; they
differ in that ‘‘shift’’ performs an end-off shift of the array
(with zeros shifted in at the other end) whereas ‘‘rotate’’
performs a circular rotation along the specified dimensions. The
function call specifies the array to be operated upon and the
amount that each dimension is to be moved. As an example, given

the definition

var {
a,b: array {0..127, 0..127] of integer;

A s
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the statement
a := ghift(b, 0, 3);

is functionally equivalent to (but much faster than):

" begin
for § := 0 to 124 do
ali,]J] := b1, j+3];
for § := 125 to 127 do
a(i,3] := 0;
end;

4

The ‘‘transpose’’ function is used to transpose an array

about two specified dimensions. If only one dimension is
specified, the array is ‘‘flipped’’ about that dimension. 1In
order to determine the shape of the rasult at compile-time, the
dimensions about which the transposition are to take place must

be specified by compile-time constants.

The shape of an array may be altered by the ‘‘expand’’

function. The arguments to this function are the array to be

- operated upon, the new dimension along which the expansion is to
take place, and a type specification. The array is expanded
along the indicated dimension. If the rank of the array is n,
then the second argument to '‘‘expand’’ can be at most n+l. The
dimension along which the expansion is to take place must be a
complle~-time constant, in order to ensure that the shape of the

result can be determined at compile-time.

LY s

The functions sum’’, ‘‘prod’’, ‘‘all’’, ‘‘any’’, ‘‘max’’

A3 ) a4

and min are used to reduce an array along a specified set of
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dimensions. These functions differ only in the reduction
operation that they perform. The arguments to a reduction
function are the array to be operated upon an a list of
dimenaions over which the reduction i3 to be performed. In order
to ensure that the compiler can determine the shape of the
result, the dimensions must be compile-time constants. The first
dimension of an array is numbered 1 (not 0). As an example,

L) .

given a two-dimensinal array a’’,
sum(a,l,2)

computes the arithmetic sum of all of the elements in ‘‘a’’,

while
max(a,2)

produces a vector consisting of the maximum element in each row

L

of ‘*‘a .

A.4.3 Standard Procedures

Like standard Pascal, Parallel Pascal also provides a set of

standard procedures for file handling, dynamic memory allocation,
and data transfer. Table 4 summarizes the available staandard

procedures.

Bttt it +
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Table 4: Standard Procedures

syntax meaning

file handling procedures
put(f) append the buffer variable to file f
get(f) get a new buffer variable from file f
reset(f) reset file f for reading (rewind)
rewrite(f) prepare file f for writing

dynamic memory allocatlion
new(p) allocate storage, place address in p
new(p,tl,eeetn) as above, but fix record variants
dispose(p) release storage described by p

data transier procedures
pack(a,i,2z) pack 1L elements of a into 2
unpack(z,a,i) unpack { elements of 2z {into a

A.5 Control Flow

In addition to the standard Pascal control structures ( if,

case, while, repeat-until, goto), Parallel Pascal provides the

where statement for conditional assignment to arrays according to

a controlling expression. The syntax is

where array-expression do
statement

otherwise
statement

where the otherwise and the second controlled statement may be

omizted.

The execution of a where 1is defined as follows. First, the
cantrolling expression is evaluatad to ohtain a Boolean array
(mask array). Next, the first controlled statement is evaluated.

Array assignments are masked according to the mask array computed
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above. Finally, if thereis a second controlled statement, it is
evaluated. Array assignments within the sacond controlled

statement are masked by the inverse of the mask array.

where statements may be nested, provided that all of the
controlling array expressions are conformable and type
compatible. The effect of a where statement is local to the
procedure or function in which it asppears ~ it does not affect

the execution of any proceduree of functions called from one of

the controlled statemence.

- NS Y
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A.6 Parallel Pascal Grammar

The metalanguage for this grammar is as follows:

l. The left-hand-side of each production is separated from {its

right-hand~side by the symbol ::= ,
2. Nonterminal namee are represented directly.

3. Literal symbols are underlined. In cases where confusion
with metasym:ols is possible, literals are enclosed in

double-quote marks ".
4., The vertical bar | represents a choice between alternatives.

5. Parentheses () enclose a selection of constructions which

are separated by vertical lines.

6. Square brackets [] enclose a construction or choice of
constructions which may occu¢ zero or one times in the

production.

7. Curved brackets {} enclose a construction or choice of

constructions which may occur any number of times.

letter ::= ajbicidielfigihillijikilinin|oipiqirisitiulviwixiylz

digit ::= 0(112/31415/6171819

special-symbol ::= and|array|begin|case|const|dividoidowntolelselend]|
filelfor|functfonigotolifiinilabel Imodinilinot]
of i[packed|parallel |procedure|programirecord|repeat|
set|then|tojtypejuntilivarjwhilejwith

identifier ::= letter { letter | digit }
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directive ::= letter { letter | digit }

digit-sequence ::= digit { digit )
unsigned-integer ::= digit-sequence
unsigned~-real ::=»
unsigned-integer . digit-sequence | e scale-factor ] |
unsigned-integer ¢ scale-factor
ungigned-number ::= unsigned-integer | unsigned-real
scale-factor ::= signed-integer
sign s +|-
signed-integer ::= [ sign ] unsigned-integer
signed~-real ::= [ sign ] unsigned-real
signed-number ::= gigned-integer | signed-real

label ::= digit-sequence
character-string ::= ‘' string-element { string~element } ’

string-alement °‘:= apostrophe-image | string-character
apostrophe~image ::= ‘'’

string-character ::= one~of-an-implementation-defined-set-of-~characters

block ::= label-declaration-part
constant~definition-part
type-definition-part
variable~declaration-part
procedure~and-~function-declraration=-part
statement-part

label~-declaration-part ::= [ label labe! { , label } ; ]

constant-definition=-part

tt= [ conat constant-definition ;
{ constant-definition ;

} ]
type-definition-part ::= [ type type-definition ;
{ type-definition ; }

variable~declaration~part

t:» [ var variable-declaration ;
{ variable-declaration ;

}

procedure~and-function-declaration-part ::e
{ ( procedure-declaration | function-declaration ) ; }

statement-part ::= compound-statement

constant~definition ::= jidentifier = constant

constant ::= subrange=-constant | scalar-constant

subrange=-constant ::= scalar-constant .. scalar=constant !
subrange=-constant-identifier

gcalar-constant ::= [ sign ] ( unsigned-number | scalar-constant-identific

character=-string
scalar-constant-identifier ::= constant-identifier
subrange-constant~-identifier ::= constant-identifier
constant-identifier ::= {dentifier
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type-definition ::= identifier = type-denoter
type-denoter ::= type-identifier | naw-type
new-type ::= simple-type | si actured-type | pointer=-type

simple-type-identifier ::= type-identifier
structured-type-identifier ::= type~identifier
pointer-type-identifier ::= type-identifier
type-identifier ::=» iden:ifler

simple-type ::= ordinal-type | real-type
ordinal-type ::= enumerated-type | subrange-type | {rteger=-type |
Boolecan~-type | char-type | ordinal-type-identifier

enumerated-type ::= "(" identifier-list ")"
identifier~list ::e identifier { , identifier }

subrange-type ::w scalar-constant .. scalar-constant

stzuctured-type ::= [ packed ] unpacked=-structured=-type |
structured-type~identifier

unpacked-structured-type ::= array-type | record-type |
set-type | file-type

array-type ::= [ parallel | array "[" index~type { , index-type } "]"
of component-type

index=-type ::= ordinal-type

component~type ::= type-denoter

record=-type ::
field-list ::= fixed=-part [ ; variant-part ] | variant-part
fixed-part ::= record-section { ; record-section }

variant=-part ::= case var.ant-selector of variant [ ; variant ]
variant-gelector ::= [ tag-field : ] tag-type

tag-field ::= identifier

variant ::= case-constant=-list : "(" [ field=list [ ; 1 ] ™))"
tag-type ::= ordinal-type-identifier

case-constant=-list ::= case-constant { , case-constant }
case-constant ::= constant

= raeacord [ field=list [ ; ] ] end

set-type !
base=-type :

= get of base=type
t» ordinal-type
file-type ::= file of component-type

pointer—-type ::= ¢ domain~-type | pointer-type-identifier
domain-type ::= type~identifier

variable-declaration ::= identifier-list : type-denoter

variable-access :i!= entire-variable | component=-variable |
referenced-variabie | buffer-variable
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entire-variable ::= variable-identifier
variable-identifier ::= identifier

component-variable ::= indexed-variable | field-designator

indexed-variable ::= array-variable "["

[ index=~expression { , index-expression } ] [ : bit-specifier ]
index-expression ::= [ expression ] [ @ subrange-constant ]
array-variable :t1= variable-access
bit-specifier ::= simple-expression

field-designator ::= record-variable . field-designator
record-variable ::= variable=-access
field~identifier ::= identifier

buffer-variable ::= file-variable ¢t
file-variable ::= variable-access

referenced-variable ::= pointer-variable ?%
pointer-variable ::= variable-access

procedure-~declaration ::=

procedure-~heading ; directive |

procedure-identification ; procedure-block |

procedure~heading ; procedure=-block
procedure~heading ::= procedure identifier { formal-parameter-list ]
procedure~-identification ::= procedure procedure-identifier
procedure-identifier ::= id:atifier
procedure~block ::= block

function-declaration ::=

function-heading ; directive |

function-identification ; function-block |

function-heading ; function-block
function-heading ::=

function identifier [ [ formal-parameter-list ] : result-type ]
functTon-ldentification ::= function function-identifier
function-identifier ::= identifier
tresult-typz ::= type-identifier
function=-block ::= block

formal-parameter~list ::=
"(" formal-parameter-section { ; formal-parameter-section } ")"
formal-parameter-gection ::i=
value-parameter-specification |
variable-parameter-specification |
procedural-parameter—-specification |
functional-parameter=-specification
value-parameter-specification ::= identifier-list : type-identifier
variable-parameter-section ::= var identifier-list : type—-identifier
bound~identifier ::= identifier
procedural-parameter-specification ::= procedure-heading
functional-parameter-specification ::= function-heading

"]"

e
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unsigned~constant ::= unsigned~-number | character-string |
constant-identifier | nuil

factor ::= variable-access | unsigned=-constant | bound-identifier |
function~designator | set=-constructor |
"(" expression ")" | not factor
set-constructor ::= "[" [ member-designator { , member-designator }] "]
member-designator ::= expression { .. expression ]
term ::= factor { multiplying-operator factor }
simple-expression ::= [ sign ] term { adding-operator term }
expression ::=

simple-expression [ relational-operator simple-expression ]

multiplying=-operator :
adding-operator ::= +
relational-operator :

- % | / | div | mod | and

= | O 1< > K= | >= | in
function-designator ::= function-identifier [ actual-parameter-list ]
actual-parameter-list ::= "(" actual=-parameter { , actual-parameter } " "

actual-parameter ::= expression | variable-access |
procedure~-identifier | function-identifier

statement ::= [ label : ] ( simple~-statement | structured-statement )
simple-gstatement ::= empty-statement | assignment—-statement |
procedure~statement | goto-statement

empty—-statement :(:=

agsignment~gtatement ¢
( variable-access

function-identifier ) := expression
procedure-statement ::= procedure-identifier [ actual-parameter-list ]
goto-statement ::= goto label

structured-statement ::= compound-statement | conditional-statement |
repetitive-statement | with-statement

compound~statement
e

t:= begin statement-sequence end
statement-sequenc :

t:= statement { ; statement }

conditional-statement ::= {if-statement | case=statement |
where-statement

if-statement ::= if Boolvan-expression then statement [ else-psrt ]
else~part ::= else statement

case-statement ::= case case-index of case-list-element

{ ; case-list-element } [ ; | end
case-list-element ::= case=-constant-list : statement
case~index ::= expression
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where~statement ::= where parallel-Boolean-expression do
statement [ otherwise-part

otherwise~-part ::= otherwise statenment
parallel=-Boolean-expression ::= expression

repetitive~statement ::= repeat-statement | while-statement |
for-statement

repeat-statement ::= repeat statement-sequence until Boolean-expression
while-statement ::= while Boolean-expressic. do statement

for-statement ::= for control-variable := initial-value
( to | downto ) final=-value do statement

control=varible ::= entire-variable

initial-value ::= expression

final=-value ::= expression

with-statement ::= with record-variable-list do statement
t

record-variable-list ::= record-variable { , Tecord-variable }

read~parameter-list ::= "(" [ file-variable , ] variable-access
{ , variable-access } ")" |

readln-parameter-list ::= [ "(" ( file-variable | variable-access )
{ , variable-access } ")" ]

write-parameter-list ::= "(" [ file-variable , ] variable-parameter
{ , write-parameter } ")"

write~-parameter ::= expression [ : expression [ : expression ] ]

writeln-parameter-list ::= [ "(" ( file-variable | write-parameter )
{ , write-parameter } ")" ]

program ::= program-heading ; program-block .

program-heading ::= program identifier [ "(" program=-parameters ")" ]
program-parameters :i= ?Hentifiet-list

program-block ::= block
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Parallel Pascal Error Codes

In addition to the standard Pascal error codes (defined in

reference 1), the following error codes are defined for Parallel

Pascal:

350: must be parallel array type

351: illegal type for parallel array

352: boolean type required

360: arrays not compatible

361: array not compatible with controlling array
362: result must be array type

363: parallel array not allowed

364: function result type must be array

365: dimension not compatible with array

3J66: integer constant expected

367: at least one dimension expected

368: bit index type must be integer

369: error in number of standard function arguments
370: subrange exceeds array index limits

371: set type not compatible with array index type
373: bit indexing not allowed

374: 4illegal array type for bit indexing

375: subrange constant expected

397: unimplemented feature

398: i{implementation restriction

399: implementation restriction

400: internal 1inconsistency
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APPENDIX B: PARALLEL P-CODE SPECIFICATION

B.l Data Declarations

To permit efficient handling of arrays, both parallel and
ordinary, it is necessary that the ccde generator be supplied
with information about the size and shape of data {items. Thus,

the intermediate language must include specifications for the

findamental data types (arrays and records).

The code generator’s view of the world is based upon the

following assumptions:

l. The code generator '‘knows’’ whether the code {t 1is
generating 1is to reside on the host (for the MFP this would

be the VAX) or the sequential control unit.

2. A few standard types are predefined:

integer

real

Brolean

char

scalar pointer

array (i.e. parallel) pointer
file

All other types that the code generator must deal with are

SR A e iR
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defined in various ‘‘pseudo-op’’ statements in the

intermediate language.

3. The size and shape of arrays and the layout of records are

known to the code generator.

The compiler specifies the target machine on which code 1is

to be generated via the .SITE pseudo-operator. The syntax is:
«SITE sitename

where sitename may be either '‘HOST’’ to specify the host
processor (for the MPP this is the VAX-11/780) or '‘MCU’’ to

specify the (main) control unit of the parallel processor.

The followiag pseudo-operators are used to define derived

types:

+ARRAY This pseudo-operator is used to specify the size and

shape of an array type. The syntax {is:

+«ARRAY newname,basetype,rank,dimOlow,dimOhigh,...

where newname is the name of the type which 1is being
defined, basetype is the name of a previously defined
type, rank is the total number of dimensions of the

array, and dimilow dimihigh are the low and high bounds

of each index range. rank is negative 1if the array 1is

a parallel array. For instance, the type definitions:

type
parr = parallel array [(1..128,1..128] of integer;
avrr = array (5..10] of parr;
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would be translated to

+ARRAY parr,integer,-2,1,128,1,128
« ARRAY arr,parr,1,5,10

This pseudo~operator is used to define a subrange. The

syatax 1sa:
+RANGE newname,low,high

For example, the definition

type

Xxxx = 10..32;
would be translated to

This pseudo-operator is used to define a record. The

code generator must know the configuration of a record,

hence it is necessary to provide the type of each
component. The code generator 1is respoansible for

computing the appropriate offset. The syantax is:

+RECORD recname,cmpname,offset,type

where recname is the name of the record type, cmpname
is the name of the current component, offset is the
offset (see below) and type is the type of component.
There is one recname field per record and one cmpname
for each component. offset is normally ‘‘nil’’,
indicating that the code generator should choose the

offset (normally as the uext component in the record

WY 1 T
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being defined). If offset is not ‘'‘nil’’ {t specifies
a record component; in thie case, the current record
component is to have the same offset as the named
component. This is used to align variant records. A
+RECORD statement implicitly defines two types: the

record itself and the record component. As an example,

the type definition:

type
rec = record

X: integer;

y: real;

case Boolean of
false:zf: integer;
true: zt: real;

end;

could be translated as follows

«RECORD rec,x,nil,integer
« RECORD rec,y;nil,real
«RECORD rec,z2f,nil,integer
« RECORD rec,zt,zf,real

(The last definition specifies that the component

A Y

zt’’ 1is to aligned with the component ‘‘zf’’.)

+SET This pseudo-operator is used to specify the size of a

power set. The syntax is:
+SET newname,low,high

where nevname 1is the name of the type which is being
defined, low is the lowest element (integer) and high
is the highest element. Sets of type char are

converted by the compiler to the appropriate integer

type.
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+FILE This pseudo~operator is used to specify a file. The

syntax is:
+FILE newname,ftype

newname is definad to be a file of ftype.

« POINT This pseudo-operator is used to defined pointer types.
For the most part, pointers are considered to be the
same thing as integers; however, occasionally it is

necessary to distinguish them. The syntax is:
+POINT newname,ptype

which causes newname to represent a pointer to type

ptype.

«.TYPE This pseudo-operator equivalences an exist.ng type-name

with a new name. The syntax is:
.TYPE newname,oldname

newname is defined to be the same type as oldname.
This redundant statement allows some simplification in

the front-end of the Parallel Pascal compiler.

The intermediate language representation of arrays consists
of two portions. The first is the (static) logical type
information specified by the .ARRAY pseudo-operator. The second
1s the (dynamic) information about the physical storage
allocation which is required at runtime. 1If set and vector
indexing are excluded, then Parallel Pascal permits any

contiguous subset of array elements to be operated upon at once.

o NN e
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The intermediate language manipulates arrays through a conceptual

entity called an array descriptor. Instead of pushing the actual

eclements of an arrey onto the stack, the descriptor for that
array is pushed instead. The array descriptor specifies the base
address and the storage mapping defined by the !ndex ranges of
each array dimension. The compiler does not know or care what
format the array descriptor has. The LLA instruction is used to
load a "‘blank’’ descriptor onto the stack (a descriptor
spacifying the address but no index ranges); a sequence of

indexing instructions (IX0, IXl, IX2) is performed to ‘‘fill in’’

this information.

Records are similarly defined by a record descriptor. Like

array descriptors, record descriptors consist of the (static)
information provided by the .RECORD pseudo-operator and the
(dynamic) information contained on the runtime stack. The
dynamic information specifies the address of rhe record and the
fi: ds8 of the record which have been selected to participate {in a
future operation (e.ge. load, add, store). The compiler does not
know or care about the format of this information. A record
descriptor is constructed by performing an LLA (which loads a
descriptor for the entire record) followed by one or more SE

instructions to select successively-nested fields.

Records may contain arrays and array elements may be
records. The appropriate combination of 1IX? and SEL
instructions is used (recursively) to select a set of array

elements within a record and a field within a set of nested
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specification of a type.

Most of the intermediate language operators require the

how the (static) type and (dynamic) erray descriptor are used:

and

t e
arrl = array (l..5] of integer;
arr2 = array [2..6] of integer;
yar
a: arrl;
b: arr2;
begin
a := b[l@l..5]);
end.
«ARRAY arr! {integer,1,1,5
«ARRAY arr2,integer,1,2,6
1X0
LLA <address of ‘‘a’’>
IX0 arrl

LLA <address of '‘b’ ‘>
LDC 1integer 2
LDC 4{integer,6

IX2 arr2
LDI arr2
STO arrl

An example with records and record descriptors (the

L3R ) 4

yYyy are arbitrarily-chosen names):

type
arrl0 = array [(l1..10] of real;
recrd = record
X, y: arrl0;
end;
arrrec = array [l..3] of recrd;

var

v: arrrac;

V.X[S] = 0;

A

.

XXX

’

The following code segment illustrates

4

Lo wieiaed TR e

e
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+« RECORD recrd,x,nil,arrlo
+RECORD recrd,y,nil,arrl0

«ARRAY arrrec,recrd,l,!1,5
LLA <address of ‘'‘v’’>
IX0 arrrec

«ARRAY xxx,real,l,1,5
SEL arrrec,Xx,xxx

LDC integer,5

«POINT yyy,real

IX1 xxx,yyy

LDC 1integer,O

CVT 1integer,real

STO real

B.2 Procedure/Function Arguments and Local Variables

The following pseudo-operators are used to define subroutine

arguments and local variables:

+ENTRY

+EXIT

+ARG

This pseudo=-operator indicates that a new block 1is

being entered.

This pseudo=-operator complements .ENTRY by indicating
the end of a block. Definitions in the current block

’

are to be ‘'‘forgotten’’ by the code generator at this

point.
This pseudo-operator defines an argument to the current
subroutine., The syntax {1is:

+ARG num,tyje,rv

where num i1s an integer which starts at zero (see

comment below) and is incremented by one for each
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argument, type is the type of the argument, and rv is

either zero or non-zero to indicate that the data {s ;
being pessed by value or reference, respectively. The

nun field normally is a positive integer. 1If the

subroutine returns a value (i.e. if it {s a function

rather than a procedure) the space for the result is

resaearved by an .ARG pseudo-operator with zero in the

num field.

This pseudo-operator defines local variables. The

syntax i{s:
«LOCAL num,type,equ

where num and type are defined as for .ARG. equ 1is
used to indicate storage sharing to the code generator.
If equ is zero, the next available memory locution
should be allocated. If equ is non-zero it specifies a
previously~defined local variable; in this case the
storage for the new local variable is to be allocated
on top of the previously-defined variable. The numbers
assigned to local variables belong to the same space as
those assigned to subroutine argumenis. Thus, if there
are n arguments to a subroutine (and hence n ARG
statements), the num field for the first .LOCAL

statement will contain n+l.
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Parallel Pcode Mnemonics

The mnemonice ar! their functions for the opcodes defined in

parallel p-code are as follous:

ABS

ADD

AND

CHK

cse

cup

Produce absolute value. The syntax 1is:

ABS type

Add two operands. The syntax 1is:

ADD type

Perform Boolean ‘‘and’’. This is only defined for Boolean
variables; however, an array may be specified so a type is

required. The syntax is:

AND type

Check that top of stack is between two specified values.

Call standard procedure. The syntax is

CSP procedurename,argtype,resulttype

where ‘‘argtype’’ 1is the type of the primary argument and

’

‘‘resulttype’’ 1is the type of the functina result. (If the
called routine 1is a standard procedure the literal string
**nil’’ 4is used.) Calls of standard procedures and

functions are discussed in more detail below.

Call user procedure. The syntax is

RN
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CUP level,proceduraname,resulttype
Calls of user procedures and functions are discussed in

more detail below.

Convert the top of stack from one type to another.
Conversions performed by this operator may alter both the
shape (array dimensions) and the underlying type of the

objects The syntax 1is:

CVT oldtype, newtype

Convert the next-to-top of stack from one type to another.

This is similar to CVT, defined above. The syntax is:
CVN oldtype, newtype, tstype

where tstype is the typse of item on top of the stack (this
information is required in order to locate the next=to-top

element, since descriptors vary in size).

Decrement top of stack by a specified amount. This may

only be applied to integers or subranges or arrays of type

integer or subrange. The syntax 1is

DEC type,amount

Evaluate set difference. The syntax is:

DIF type

Perform real division. The syntax 1is:

DIV type
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Notice that, unlike Pascal P4, integer operands must be

explicitly converted to real format before the division.

DUP Duplicate top of expressicn stack. The syntax 1is

DUP type

DVI Perform integer division. This may only be applied to
integers or subrangee or arrays of type integer or

subrange. The syntax is:

DVI type

ENW This operator is used to remove the effect of a mask ('‘end

where’’). The syatax is:
ENW type

where type is the type of the mask (located on top of the
expression stack). The mask stack is ‘‘popped’’; the
previous mask (that is, the mask in effect before the most

recent WHR) is restored. This operation is illegal 1if

there 18 no curreant mask.

EOF Test for end-of-file condition. There are no arguments,

the filename is assumed to be the top item on the stack.
EQU Test for equality. The syntax is:

EQU type

FJP Jump 1f 1item on top of stack is false. The item must be a

scalar Boolean quantity. The syntax {s
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19

ORIGINAL PAGE 1§
FJP label OF POOR QUALITY

Test for greater-than or equal-to. The syntax is:

GEQ type

Test for greater~than. The syntax is:

GRT type

Increment top of stack by specified amount. This may only
be applied to integers or subranges or arrays of type

integer or subrange. The syntax is

INC type,amount

Test for set membership. The syntax is

INN settype

Perform set intersection. The syantax is

INT settype

Perform Boolean inclusive or. This 1is only defined for
Boolean variables; however, an array may be specified so a

type is required. The syntax 1is

IOR type

Index with zero values. This operator is used in the
construction of array descriptors. It *‘fills in’’ the

index specification for the first unspecified index range

SR
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in the array descriptor on the top of the runtime stack.

The syntax is

IX0 type

Index with one value. Thie operator is used in the
construction of array descriptors. The top of stack is an
array descriptor for which at least one dimension is
unspecified. This instruction selects one value for the
first unspecified dimensicn. This reduces the dimension of
the array by one The descriptor on top of the stack will be
modified to reflect this new type; if the logical type {is
now a scalar this descriptor will (conceptually) be a

pointer to a scalar. The syntax 1is

IX1 oldtype,newtype

’

where ‘‘oldtype’’ is the type of the descriptor on top of
the stack before indexing and ‘‘newtype’’ is the type after

indexing.

Index with two values. This operator is used ian the
congstruction of array descriptors. It '‘fills in’’ the
index specification for the first unspecified index range.
The second element on the stack and the top of stack are
integers specifying the low and high bounds, respectively.
The third element on the stack is the array descriptor.

The syntax 1is:

IX2 type
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Load address of constant. The syntax is:

LCA type,constant

The constant itself is specified, the code generator {is
responsible for setting up a static constant somewhere.
The constani must be a scalar.

Load constant. The syntax is

LDC type, constant

Load indirect (load value pointed to by top of stack). The

syntax is

LDI type

When an LDI {s applied to a file, the file buffer is loaded
onto the stack.

Test for less-than or equal-to. The syntax is

LEQ type

Test for less-than. The syntax 1is

LES type

Load address. The syntax 1is:
LLA 1lexlevel, localid

where lexlevel is the lexical level (the level of nesting)
and localid is the local variable index number as specified

by a +LOCAL or .ARG definition (see above).
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Load contents of address. The syntax is
LOD type,lexlevel,localid

where type is the type of the variable, lexleve. is the
lexical level (level of nesting), and localid is the local
variable index as defined by a .LOCAL or .ARG definition

(see above).

Perform modulus (remainder) operation. This is only valid
for items of type integer (or subrange) or arrays of type

integer (or subrange). The syntax is:

MOD type

Move a specified number of storage units. The syntax is

8till unknown.

Multiply. The syntax 1is:

MUL type

Mark stack (used for procedure calls). The syntax is

MST 1level

where level is the lexical level of the procedure or

function which will be called.

Negate top of stack. The syntax is

NEG type

Test for not-equal. The syntax is
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Perform Boolean not (logical complement). This 1s only

valid for Boolean scalars and arrays. The syntax 1is

NOT ctype

Test for odd. This is only valid for Lnteger (or subrange)

scalars and arrays. The syntax {is

ODD type

This operator implements the ‘‘otherwise’’ conditional. It
is used to reverse the sense of a nested mask established

by the WHR instruction. The syntax ‘s:
OTW type

where type is the type of the current mask. (At this
point, the expression on top of the expression stack
specifies the current mask.) OTW is illegal if no mask 1is
currently in effect. I1f a mask is currently in effect, the
new mask is computed by performing an exclusive-or .between
the current mask and the previous mask (that is, the mask

that was in effect bafore the most recent WHR).
Return from block. The syntax 1is:

RET type

where type is either the literal string **nil’’ or 1is a
type name. ILn the former case, the called routine is a

procedure and no value is to be returned to the caller. 1In

-

PANEP .

AR 2 Yoo 1
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the case of a function, type is the type of the data which

ie returned by the function. (Seea below.)

Select a8 record field. This operstor causes a vecord

descriptor to be coustructed from an address, array

descriptor, or record descriptor already on the stack. The

syntax {is:
SEL oldtype,cmptype,newtype

where oldtype is the type of the curreant top-of-stack,

coptype is the type of the item being selected (i.e. it
speclifies the record typa and the component name), and

newtype is the type of the result.

Perform subtrection. The syntax is

SUB type

Generate singleton set. The syntax is:

SGS settype

The set is constructed from the element on top of the
stack.

Square top of stack. The syntax 1is

SQA type

Store indirect (at address specified by second element on

stack). The syntax is:

STO type
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When a STO {s applied to a file, the top of stack is stored

in the file buffer.

Stop execution. Therea are no arguments.

Store at compile~time known address. The syntax {s
STR type,lexlevel,localid

where type is th: type of the value, lexlevel {s the
lexical level (level of nesting), and localid is the local
variable index as defined by an .ARG or .LOCAL definition

(see above).

Error in case statement (abort). The syntax is

UJC label

Unconditional jump. The syntax is

UJP label

Perform set union. The esyntax is:

UNI typae

Define a new lcgical mask ('‘where’’). The syntax {is:
WHR type

where type must be an array of type Boolean. Masking is
performed in a nested manner. If there s no active mask,
the top of the expression stack defines the mask. If a

mask {s active, the current mask is logically ANDed with

se—
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the array on the top of the expression Jtack to form the

new mask., (The previous mask is '‘pushed’’.) In this case,
the two expressions mus: have identical types. Masks
established in this fashion can be further manipulated with

the OTW and ENW operators.

Indexed jump (jump to specified value + top of stack). The

item on the top of the stacl must be an integer or

subrange. The syntax is

XJP value

escriptors and the Stack

As in P4, all operations are performed on a conceptual

stack.
{ctems

variou

scalar

arrays

However, the stack may contain several different types of
beyond those allowed by P4. The representation of the

8 data types 18 described below:

s Scalars are manipulated directly on the stack, 1i.e.
when a scalar is loaded the value of the scalar is
placed on the stack. Thus, scalars can be directly

manipulated.

Unlike scalars, arrays are not pushed on the stack.

Instead, the array is described by an array descriptor.

The array descriptor consists of the type of the array

(as defined by a .ARRAY statement) which {s static, and
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a dynamic portion which specifies the array address and
the indexing information. The descriptor is
constructed by performing an LLA (loading the ‘‘lerical
address’’ uf a variable) or CVT (when a scalar is
converted to an array) followed by a series of indexing

instructions (IX0, IX1l, IX2) to specify the index

ranges.

records Records are represented by a record descriptor whose

exact format is the domain of the code generator. The
layout of the various records is specified by .RECORD

pseudo~ops and the descriptors themselves are

constructed by use of the SEL instruction.

sets Sets are represented by a set descriptor which merely

gives the address of the set. The permissible values

in the set are known statically and are given by .SET

statements.

Unlike the use of scalars, performing a '‘load’’ of an
array, record, or set does not place the data on the stack.
Instead, the hypothetical stack machine (machine code generator)
replaces the descriptor on top of the stack with another which is
identical except for the address (the address of a temporary
array location is used). Similarly, when the conversion operator

(CVT or CVN) is applied to convert one item to another, the

conversion 18 performed into a temporary area and the appropriate
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descriptor is placed on the stack.

It 1s {llegal to perform eny operation in which the siva and
shape of the arguments doc rot match. It is possidle, however,
that two arraye with different index ranges (but identical
shapes) will be combined by an operation. 1In this case, the
result will be placed into a temporary array according to the
indices specified by the second descriptor on the stack. Also,
an array consisting of a record component may be combined with
another array, provided that the base types and array shapes

matche.

The function of the CVT and CVN operators when one of the
.ypes is a scalar deserves some comment. First, either may be
used to convert a scalar to an array with the same type as the

scalar. For instance,

«ARRAY arr,real,l,1l,5 (array [l..5] of real)

CVT real,arr

In this case, the scalar on top of the stack is replaced by an
array .lescriptor (which references a temporary area). This
descriptor is ‘‘blank’’ - no indexing information is specified.
A sequence of IX? instructions is then performed to '‘fill in’’
the indexing information. Second, either may be used to convert
a one~element subset of an array into a scalar. 1In this case,
the array descriptor on the stack is replaced by the appropriate

scalar value.
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Be35 Functior and Procedure Calls

Standard procedures and functions (hereafter called
subroutines) are all called in the same fashion. First the stack
is marked with MST, specifying that the called routine is at
lexical level zaro. (The lowest lexical level available to user
routines is 1, and that is used for the main program.) Next, the
arguments are evaluated left-to~right and placed on the stack.
Finally, the routine is called with a CSP inetruction. In all
standard function and procedure calls at most one argument has a
rype which varies from call to call; this is referred to as the
‘‘primary’’ argument. In addition to specifying the called
routine, the CSP instruction specifies the type of the primary
argument and the result type of the function (‘'‘nil’’ 4f the

called rouatine is 2 standard procedure).

Scalars are passed to subroutines on the stack; structured
types are passed via descriptors. For call by referenca, the

array, set, or record descriptor is pushed on the stack. For

call by value a LDI is performed - this causes the array to be
coplied into a temporary area and a descriptor for this temporary

array to be placed on the stack.

Control is returned to the cailer when the RET instruction
1s executed. If the called routine is a procedure, the runtime
stack is reset to the last marked location. If the called
routine is a function, the returned value is placed on the

runtime stack in the locations reserved for it (see above) and
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the stack is reset to the end of this area.

User subroutines are called in the same fashion as the
standard ones except that the CUP instruction is used. This
instruction specifies the lexical level at which the user
subroutine will run and (for functions) the data type of the

function resuit. (Thie 18 ‘‘nil’’ for procedures.)

B.5.1 Elemental Functions

The Pascal standard functiouns all may operate on elther
scalars (as in standard Pascal) or arrays. The result has the
same shape as the function argument (although sometimes the base
type is different). Because they operate independently upon the
elements of arrays these functions are referred to as ‘‘elemental
functions’’. The following functions form this set: abs, arctan,
chr, cos, eof, eoln, exp, ln, odd, ord, pred, round, sin, sqr,
sqrt, and trunc. For all nf these functions, the stack is

marked, the argument is loaded, and the function 1is called:

MST @
{load argument)

CSP func,argtype,resulttype

An argument is always specified; if no argument was specified in
the Parallel Pascal program (e.g. using ‘‘eof’’ with no argument)

the default ('‘input’’ in cthis case) is explicitly specified by

the compiler '‘front~end’’.
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Be5.2 Transformational Functions

In addition to the standard functions provided by Pascal,

Farallel Pascal contains some standard functions which perform

transformations on entire arrays. This set of functions includes

‘‘shift’’, ‘‘rotate’’, '‘trans’’, ‘‘expand’’, and the reduction

¢’ LY L4

functions ('‘any’’, ‘‘all’’, ‘‘max’’, win’’, ‘‘prod’’, aud
‘‘sum’’). In all of these cases the only argument to the

function whose type varies 1s the array to be transformed. The
stack {s marked, the arguments are pushed, and the function is

called. The old type of the array and the type of the function

rasult are specified in the CSP instruction.

The ‘‘shift’’ and '‘rotate’’ functions havz the following

calling sequance:

MST O

LLA <array address>

IX? ... j8pecify index information

LDC 1integer ,<#> ;one for each array dimeusion
CSP func,arrtype,resulttype

The ‘‘expand’’ function has the following calling sequence:

MST O
LLA <array address>
IX? e s;epecify index information

LDC 1integar,<i> ;jnaew dimension
LDC integar,<# slow bound of new dimension
LDC 1integer,<#> ;high bound of new dimension

CSP expand,arrtype,resulttype

The redunction functions have the following calling sequence:
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MST O

LLA <array address>

IX? +es specify index information
LDC 1integar,(<set of dimensions>)
CSP func,arrtype,resulttype

Note that the dimensions along which the reduction is to take

place are specified in one powerset constant.

B.5.3 Input and Qutput Procedures

A (a4 LY e

The standard procedures ‘‘get’’, put’’, ‘‘reset’’, and

‘‘rewrite’’ each operate upon one argument. The calling sequence

is

LLA <file>
CSP func,filetype,nil

where ‘'‘filetype’’ is the logical type of the argument.

The standard procedures ‘‘read’’ and ‘‘write’’ are actually
implemented by several specialized procedures. When the file
type is not ‘‘text’’ (that is, not file of char) the following

equivalent sequences are used:

read(f,x) =
write(£,x)

tm f£4; get(f)
f4 := x; put(f)

(1T

When the file is of type '‘text’’ the standard procedures
‘‘rdi’’, ‘‘rdr’’, and ‘‘rdc’’ are used for reading integers, real
numbers, and characters (respectively); the standard procedures
‘‘wri’’, “‘wrr’’, ‘‘wre’’, and ‘‘wrs’’ are used for writing

integers, real numbers, characters, and strings (respectively).

The read functions have the calling sequence:
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LLA <filed>
CSP func,text,resulctype

,r s

is the type name for a file of -:har.

whare ‘‘text

The write procedures require additional arguments. These
specify the field width and the scale factor (this is meaningful

only for floating=-point numbers). The calling sequence for

L}

*‘wri’’ and wre’’ ie:

{compute expression to be outputd
LDC 1integer,<{width)>

LLA <filed>

CSP func,exprtype,nil

The ‘‘wrr’’ function requires the scale factor:

{compute expression to be output>
LDC 1integer,<{widthd>

LDC 1integer,<{scalefactor>

LLA <file>

CSP wrr,exprtype,nil

The ‘‘wrs’’ function requires one additional parameter - the

string length:

LLA <string>

LDC 1integer,<widthd
LDC 4integer,<length’

LLA <file>
CSP wrs,stringtype,nil

B.5.4 Miscellaneous Standard Procedures

The procedures ‘‘new’’ and ‘‘dispose’’ are used for dynamic

memory allocation. The calling sequence 1is:

LLA <polnter>
CSP func,pointertype,nil
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There is no concept of packed data in Parallel P-code;
hence, the Parallel Pascal procedures ‘‘pack’’ and ‘‘unpack’’

have no Parallel P-code counterparts.

B.6 Masking

Normally, all selected elements of arrays participate in all
operations. A subset of these elements can be selacted by
specifying a mask. When a mask i{s in effect, all array
assignments must conform to the shape of the mask. Masking is

done with the use of a mask stack. If the stack is empty, no

masking is in effect. If the stack is non-empty, the top of the
mask stack specifies the current mask. The mask stack can be
implemented as a set of pointers to values on the runtime
(expression) stack. Expressions which are used to construct
masks remain on the expression stack until the mask is removed.
(They are never examined by the compiled code after they are
calculated; thus, the storage specified by the runtime stack may

be used to hold temporaries for the mask stack.)

A new mask is established with the WHR ('‘where’’)
instruction. The top of the expression stack is logically ANDed
with the top of the mask stack, and the result is pushed on to
the mask stack. (If there was no previous mask, the expression
is simply pushed onto the mask stack; If there was a previous

mask its type and the type of the new expression must be
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The OTW ('‘otherwise’’) instruction provides the means for
reversing the sense of the last conditional. If there is only
one mask on the mask stack, it is complemented. Otherwise, the
new mask {s computed as the exclusive-or of the current mask (top
of the mask stack) and the previouc mask (next-to-top of the mask

stack).

The ENW ('‘end where’’) instruction i{s used to ‘‘pop’’ the
mask stack. The mask stack and the runtime stack are popped. If

the mask stack is now empty, the effect of masking 1s removed.

Masking only affects the STO and STR instructions (i.e. only
assignments). The effect of a mask is not transmitted to any

called procedures or functions.
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APPENDIX C: HIGH LEVEL LANGUAGES FOR PARALLEL MATRIX PROCESSORS

A number of languages exist which could potentially be
implemented on a parallel matrix processor. This appendix
considers these languages. They can be grouped into conventional
languages (that is, languages designed for conventional machines)
and array languages (those designed with parallel processing in

mind).

C.l1 Conventional Languages

There is a wide variety of languages in this class. Of
these languages, three stand out as possible candidates: APL
(because of its inherent array capabilities), FORTRAN (because of
its popularity among sclentists and engineers), and PASCAL

(because of its growing popularity in the programming community).

Celsl APL

APL (''A Programming Language’’) was originally developed by

Iverson as a mathematical notation. It is characterized by a
rich set of primitive functions, compact notation, and flexible
data handling. The type, shape, and size of data 1is runtime

dependent, and primitive functions as well as properly-written
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Caton A e i b

user functions can operate upon data of greatly diverse size.

) O AT TR

APL provides a direct means for specifying parallel
operations - entire arrays may be manipulated at once in a
variety of ways. Unfortunately, the flexibility of the eize and
shape of expressions is often obtained at a high execution cost.
APL implementations usually involve some degree of interpreted
code (or periodic recompilation of code to adapt to new data

shapes).

APL provides no data structures in addition to the (very
flexible) array. The only control flow construct (aside from

function calls, which may be recursive) is the branch statement.

Some programmers dislike APL because it is by nature unconventional.
These factors, in combination with the concern over its runtime
efficiency make it unsuitable for direct implementation on a
parallel matrix processor. Only a few restrictions need to be

made to the APL language for it to be completely compilable.

These restrictions and other modifications to the APL to make it

suitable for parallel matrix processors are described in reference 1.

C.les2 FORTRAN

FORTRAN 1is, in a sense, the ‘‘grandfather’’ of high-level
languages. Designed in the early 1950°’s, it is the oldest high-
level language still in use. It was designed for numerical
computation (the name stands for '‘FORmula TRANslation’’), and
many highly-optimizing compilers for FORTRAN produce very fast

numerical code. Because of its age and dominance in the
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scientific proceesing field it is familiar to most scientists and
engineers. 1Its widespread use has also resulted in the
development of & number of software libraries which assist in che

construction of large programs.

FORTRAN’s age is & mixed blessing, however. The language
was developed before lexical analysis and parsing were fully
understood, and its syntax is flawed in a number of ways. It is
not conducive to structured prograoming (although the 1977
standard does provide a number of revisions toward this end). It
provides no data structuring facilities other than the array, and
is very awkward when dealing with character data or complax
prograw control flow. It does not provide any aggregate array
operations (although array facilities are under consideration for
the next FORTRAN standard)[2]. It therefore is unattractive as a

language for a parallel matrix processor.
C.1.3 Pascal

The programming language Pascal(3] was designed to achieve

several goals, including(é4]

® To make available a notation in which the fundamental
concepts and structures of programming are expressible in a

systematic, precise, and appropriate way.

® To make a notation available which takes into account the
various new insights concerning systematic methods of

program development.,
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® To demonstrate cthat a language with a rich sec of flexibdle

data and program structuring facilities can be {mplemented

by an efticient and moderately sized coampiler.

The resulting language has heen the center of s great deal
of attention since its development. It is awskiang inroads {into
areas previously occupied dy FORTRAN (for example, introductory
progr.mming courses at many universirties) and has become very

popular in the so-called ‘‘personal computer’’ market.

Pascal provides a flexibla data structuring facility,
permitting programmers to collect data into aggregyate structures
(records) and to define enumerated scalar types to provide
mnemonic access to flag variables, etc. To reduce the errors
which occur from incorrectly specifying the type of a data iten,
strong type checking is enforced. Type compatibility i@ checked
at compile time whenever possible (thereby providing for fast

execution).

Pascal {8 not without its faults. There has been some

discusejon concerning ambiguities in the typing mechanism and
fnscecurities {n the use of records(5,6,7]. Two other problems
are particularly distressing: the lack of a separate compilation

facility and the lack of dynamic-length arrays.

Some implementations of Pascal do provide for separate
compilation (Wirth’s PASCAL 6000, for example), but these often
are done in a way which eliminates the advantages of Pascal’s

strong type checking. There have been a number of proposals
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addressing this issue(8,9,10])., Perhaps the reason for this
omission is the philosophy expressed by Wirth{4) chat with a
sufficiently fast compiler (and no linkage editor) it would be
acceptable to make all changes at the source level, and merge
sources together. Unfortunately, this philosophy does not work
vell on most systems where recompilation is expensive, especially
wvhen the change which forced the recompilation affects only a

small portion of the code.

The fixed-size array problem results from Pascal’s strong
tyre checking and the fact that thc array index ranges are
considered part of the array type. This is especially limiting
vhen an array is passed as a parameter to a procedure or
function, prohibiting the design of ‘‘library functions’’ such as
a general sort routine. A number of solutions have been
suggested(11,12,13] including a parameterization echeme proposed
by Wirth(l4). More recently, the ISO Pascal standard{15] has
introduced the concept of a ‘‘conformant array schema’’, a means
by which a parameter to a procedure or function may be an array
whose index range is determined when the procedure or function is

called.

Despite its limitations, Pascal is a powerful language which
can be efficiently i{mplemented. Although the standard language
does not possess any facilities for expressing parallel
computation, it forms an attractive base upon which such

facilities could be built.
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C+«2 Array Languages

The languages discussed above were designed for efficient
implementation on a conventional (non-parallel) processor. In
order to efficiently execute programs on an SIMD-class parallel
processor, it is necessary that computations be performed in
parallel whenever possible. There are basically three ways to
achieve this goal - using a vectorizing compiler, a language
which directly specifies the implementation, or a language which
directly specifies the parallelism but not the low=level
inplementation. In the following sections, each approach 1is

considered.

Ce2.1 Vectorizing Compilers

The first approach 18 to use a conventional language and
writa a compiler which can detect operations that can be
performed in parallel. (The portion =f the compiler which
performs this task is often referred to as a ‘‘vectorizer.’’) Two

examples of this technique are ILLIAC IV Fortran and the

Paraphrase vectorizer.

Ce2.1.1 ILLIAC 1V Fortran

On the ILLIAC IV, the Fortran compiler contains a phase
called the ‘'‘Paralyzer’’ (for ‘'‘parallelism analyzer and
synthesizer’’) which performs parallelism analysis and converts
the original Fortran code into IVITRAN, an extended Fortran

dialect[16,17). (IVTRAN 1is discussed in more detail in section
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Be2:.2.4.) The Paralyzer analyzes nested DO loops and extracts the
inherent parallelism, subject to a number of restrictions. The
Paralyzer output is then further processed by the IVTRAN compiler
to produce the object program. Since the Paralyzer accepts
standard Fortran as input, the use of the Paralyzer with IVTRAN
permitted an ILLIAC IV user to run standard Fortran programs on

the ILLIAC IV with no changes.

C.2.1.2 PARAPHRASE

The PARAPHRASE vectorizcr([l8) is not, by itself, a compiler.
Rather, it was designed as a preprocessor for SiMD machines (the
specific focus in this case wae on pipelined vector machines).

It performs a number of source-to-source optimizations on FORTRAN

programe which restructure those programs for parallel execution.

PARAPHRASE produces output in standard Fortran with only two
extensions - the specificairion of ‘‘vector loops’’ to mark loops
which can be executed in parallel, and a provision for masking
conditionals by a8 mode vector. As a result of this approach, the
output from PARAPHRASE is relatively portable. This output can
then be processed by a relatively unsophisticated compiler for

the target machine to produce the final object code.

Ce2.1.3 Vectorizing Compilers: Conclusions

The advantage of the vectori:iing compiler approuach {s that

the programmer need not learn anything new. Unfosrtunately,

language systems based upon vectorizing compilers suffer froam
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several problems. One major problem is the vectorizer itself.

In order to be able to extract a large degree of parallelisam from
an algorithm, the vectorizer will be complex. Like the
vectorizers described above, most vectorizers operate upon nested
iterative structuraes (3.1. nested FOR loops) and there are many
special cases which can frustrate attempts to fully extract the

parallelism that is presaent.

A more serious problem with the vectorizer approach is that
fv does not account for the different nature of the architecture
upon which the prougram will be run. In many cases, algorithms
which are optimal on a scalar (conventional) processor are not
suitable for implementation on a parillel procassor. In order to
effectively program a parallel processor it is necessary to
‘“think parallel.’’ A vectorizing compiler hides this fact from
the user; thus, a programmer who uses such a compiler may be
reluctant to change his programming practices, believing
erroneously that the compiler will do as well as he would. These
reasons discourage the use of a vectorizing compiler for a

parallel matrix processor language.

Ce2.2 Direct Specification of Implementation

The second approach to implementing a high-level language
system is to design a language which fully exposes the
architecture of the machine to the user. 1In a sense, the result

’

is a '‘high=-level assembly language.’’ The following sections

describe (in alphabetical order) some languages in this category.

MG e
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CFD is & Fortran dialect that was developed by the
Computational Fluid Dynamics branch of NASA Ames Research Center
for the ILLIAC IV[19]. It was designed for the applications area
of fluid flow analysis for which programs which had previously

been coded in standard FORTRAN.

CFD provides two forms of variables: CU (control unit)
variables, which hold scalars, and PE (proéeseiug element)
variables, which hoid vectors. The first dimension of a PE
variable {8 always 64 elements lcng and is represented by an
asterisk. For instance, the following statementa declare a 64-

element vector and a square 64x64 matrix:

*PE INTEGER X(*)
#*PE INTEGER MAT(*,64)

(The leading asterisk appears in all CFD statements except

assig -ment statements.) Scalar variables are used as in standard
FORTRAN. Array variables may be used as scalars (with one
element selected) or as vectors of length 64 (that is, with every
element along the first dimension selected). Hence, given the
above definitions, the following would store the first column of

\\MATII in \\xlI:
X(*) = MAT(*,1)

Index arithmetic may be used to reposition data by circularly

shifting it through the array; for {instance,

X(*) = X(*+1)
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rotates the vector ‘'‘X’’ one position to the laft. When the
first subscript of an array is an asterisk, the second subscript

(1f any) may specify a vector expression. For instance:

MAT(* ,X(*)) 3 MAT(L1,X(1)), MAT(2,X(2), +es, MAT(64,X(64))

Two provisions are made for selecting a subsaet of the 64-
element vector. First, a parallel conditional statement may be

used; for example,
®IF ((A(*)LT.0.)) A(%) = =A(®)

takes the absolute value of the vector A by storing only into
those elements which are less than zero. Second, the 64
processors in the ILLIAC IV can be explicitly turned on or off by

manipulating the logical vector ‘‘MODE’’:
MODE = (-A(").LT.O.)

turns off all processors except those where the value of '‘A’’ {s

less than zero.

The special operators ‘‘.ANY.’’, ‘‘ ALL.’’, ‘' NOT ANY.’’,
and ‘' NOT ALL.’’ can be used to construct scalar logical
expressions from array logical expressions by performing the
indicated operation (e.g. ‘‘.ANY.’’ returns '‘.TRUE.’’ 1if any
element of its argument vector is true. The ‘‘.SHL.’’ and
***SHR.’’, and ‘' RTL.’’ and ‘'‘.RTR.’’ operators perform left and
right shifts and rotates (respectively) on bit vectors,

Individual bits can be manipulated with the "‘.TURN ON.’’ and
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CFD also contains provisions for transferring data between
the array memory and the main control unit. This is performed by
the TRANSFER statement. For instance, the following statement
transfers eight elements of the vector '‘TEMP’’ into the control

unit array ‘‘'1°‘:

*TRANSFER (8) I=TEMP(1)

Although CFD permits the conscruction of extremely efficient
programs, its heavy reliance on the structure of the the
underlying machine (in this case, the ILLIAC IV), particularly in
the number of processing elements and the vector nature of the

machine, make it unattractive as the basis for a new language.

Ce2.2.2 DAP Fortran

DAP Fortran is a Fortran dialect for the Distributed Array
Processor{20]. The DAP was designed to be connected to a host
computer as a memory module with {nternal processing

capabilities. DAP Fortran reflects this design.

A complete program consists of a main program and set of
subroutines writtean in standard Fortran for the host computer,
along with a set of subroutines written in DAP Fortran. The host
computer loads and starts the DAP; thereafter the two programs
can operate asynchronously. Communication is carried out through

a COMMON block. (The host processor can access the DAP as a
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memory unit at all times, even when the DAP is processing data.)

DAP Fortran provides two basic data types: vectors and
matrices. Arrays of higher orders (that {s, with more
dimensions) are represaented as indexed sets of vectors or
matrices. The size of a vector (or the dimensions of a matrix)
must be the same as the hardware array size. The array
dimensions are not explicitly stated when declaring the array;

for example, the two~dimensional array ‘'‘A’’ would be declared

with:
REAL A(,)

Two different data representations are used for vectors and
matrices; the representation is automatically changed when the

language semantics call for it.

DAP Fortran permits elements in a vector or set to be
indexed in several ways. First, a scalar index may be used as 1in
standard Fortran. Second, an index may be omitted; 1if this 1is

done the entire range of that index 1is selected. Third, the

notation
A(*1)

may be used; this specifies that the element selected by '‘I°’ is
to be expanded to fill the entire vector. These methods can be

combined; for example, the expression:
A(,*1)

returns an array the size of '‘A’’, every column of which is the
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DAP Fortran contains a number of useful facilities,
particularly array indexing facilities. However, the underlying
structure of the machine is evident (especially with respect to
array declarations). Also, DAP Fortran contains no input=-output
facilities; instead, this 18 accomplished by the host processor.
Finally, DAP Fortran does not remedy many of the problems
associated with Fortran and its basic syntax. These factors
discourage the use of DAP Fortran as the basis for a general

parallel matrix processor language.

Ce2¢62.3 Glypnir

Glypnir was the first high-level language sucessfully
implemented on the ILLIAC 1IV{2l]. It is based upon Algol 60,
with extensions to allow the programmer to explictly specify the

parallelism of his algorithm.

Glypnir provides two major categories of variables: CU
(control unit) variables which are single words, and PE
(processing element) variables which are swords (64-word items).
Vectors of words or swords may also be defined. There are no

higher~-order arrays. The statements:

CU INTEGER CI
CU REAL VECTOR 2(100]

PE REAL A
PE REAL VECTOR V[100]

declare the variable ‘'CI’’ to be a scalar integer, ‘‘Z°’ to be a

100-element array of real, ‘‘Z’’ to be a sword of real (actually,
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a 64-element vector of real), and 'V’’’ to be a 100-element

vactor of swords (actually, a 100x64 matrix). In addition to
these types, the type ‘'‘BOOLEAN’’ may be used to define 64-bit
Boolean variables. These are stored in the scalar memory, and
there is a correspondence between every processing eleament and

every bit in the Boolesan word.

PE variables are never indexed along the ‘‘parallel’’
dimeneion. An index expression for the non-parallel dimension
may be a scalar expression or it may involve PE variables. For
instance, {if ‘‘I’‘ 18 an {integer sword with values (IO - 0,

Il = 1, 163 = 63), than the expression '‘Z[I+1]’’ would reference
the following components of ‘‘Z°'“: (1,0), (2,1), (3,2), see,

(64,63). Thie I8 referred to as a slice.

Although Glypnir does not provide any means for indexing an

individual member of a sword, it does provide a means for
accessing the fndividual bits within each word. For instance,

the expression:

A.[0:20] := A.[21:10] + 1

will cause the 10-bit field starting at bit 21 of A to be added
to ! and stored in the first 20 bits of A. (If A is a sword,
this 1is done simultaneously for every word of the sword.) This

allows for dense packing of the (limited) available main memory.

4

Glypnir provides a '‘pointer’’ data type for dynamic memory
allocation. Blocks ¢! words and blocks of swords may be

allocated and deallocated. A pointer variable may be either a
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simple variable or a sword of pointers. There are two types of
pointers: those which can point anywhere in memory and those

which can only point to locations within a given memory module.

Glypnir extends the Algol 60 control-fiow constructs for
parallel expressions. Conditionals may involve swords; if so,

then an enable pattern is set during the executlon of each

LY 0

arm of the conditional to mask the execution in each
processing element. The iteration constructs are extended to
swords as well - the processor continues to loop until the

controlling expression is not satisfied in any array elements.

Glypnir provides for the declaration of subroutines;
however, recursion is not permitted and all arguments are passed

4

‘‘by value.’’ Subroutine arguments may be words, swords, or

8lices, and subroutines may return either word or sword values.

The structure of Glypnir is very significantly influenced by
the underlying hardware (the ILLIAC IV). The lack of an indexing
mechanism along the parallel dimension makes it a highly
machine~dependent language. This fact, coupled with its vector
nature, make it unsuitable as the basis of a new language for the

class of parallel matrix processors.
Ce2.2.4 1IVTRAN

IVTRAN 1is a Fortran compiler for the ILLIAC IV{22,17]. It
was designed for use with a vectorizing preprocessor (described

above), but {t also contains some provisions for diresctly
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epecifying parallelism., The principal provision is the DO FOR

ALL statement:

DO n FOR ALL (11. i ce 0y ’.n)/.

2.

wvhere | i ess Aare subscript variables and 8 supaecifies the

l’ 2.
range over which they will vary. (n {8 a statement number which
defines the and of the loop.) Within the body of the DO FOR ALL

statemaent the control indicies may only appear in assignments (or

conditional aesignments) and all index expressions must be of the

form
I
or I + C
or I -C
where '‘I‘’ is one of the controlling indices and '‘C’’ {s an

expression not deapending upon any of the controlling indices.

IVTRAN also provides a syntax for specifying in detail the
memory allocation for an array. Array dimensions may be skewed
or aligned within ILLIAC processing elements, depending upon the

nature of the problem.

Because the alignment of arrays places limitations upon the
use of the Fortran EQUIVALENCE statement, two new declaration
statements are provided. OVERLAP {is used to overlap array
allocations, thereby saving memory space, and DEFINE is used to
define new arrays (with different index ranges) that correspond
to previously-allocated arrays in a specified manner. Together,

OVERLAP and NDEFINE provide most of the functionality of the
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EQUIV.LENCE statemaent.

IVIRAN provides mechanisms for specifying parallelism within
DO loops in a fairly machine-independent fashion. However, for
efficlient program construction the programmer nmust deal very
closely with the ILLIAC IV architecture in the area of array
declarations, particularly concerning the alignment or skewing of
array dimensions across the (one-dimensional) array of processing

elements. This strong coupling to the underlying architecture
limits IVTRAN’s suitability for Implementation on a parallel

matrix processsor.

Ce2.2.5 Direct Implementation Specification: Conclusions

A programmer who is familiar with the machine architecture
can write extremely efficient progrems in a language which
directly specifies the low-level implementation. Unfortunately,
languages designed for a specific machine are usually very non-
portable. In addition, it 1s somewhat undesirable that
programmers be concerned with the specific detalls of the

hardware implementation.

A survey of users’ experiences with the ILLIAC IV([23]
indicated that while users preferred to be able to directly
express the parallelisam in their programs, the need to coerce
their algorithms to f£it the underlying machine structure (as the
available languages, especlally Glypnir and CFD, required them to
do) was considered a drawback. These reasons discouraged the use

of the direct specification of the low-level impiementation in
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Ce2.3 Direct Specification of Parallelism

The third approach to parallel language design is base«d upon
thie idea. Languages in this category permit the direct
specification of parallel operations without requiring the
programmer to be intimately acquainted with the underlying

hardware.

In view of the criteria established above for a ‘‘good’’
programming language, a language which 18 designed according to
this third philosophy (that 1is, one which permits specification
of parallelism without forcing the programmer to specify the
exact hardware implementation) is highly desirable. A number of
languages in this category already exist. The following sections
discuss these languages and their suitability to languages (in
alphabetical order) and their suitability for implementation on a

parallel matrix processor.

C.2.3.1 Actus

Actus[24] 18 a Pascal-based language suitable for scilentific
programming on a vector processor. The original turget machine
for Actus was the ILLIAC IV, but the language was designed to be

independent of the hardware upon which it is implemented.

The design of Actus reflects the results of the survey of
ILLIAC IV users mentioned above[23]. Perrott lists the following

design criteria for Actus:
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® The idiosyncracies of the hardware should be hidden from the

user as wmuch as possible.

® The user should be able to express the parallelism of the

problem directly.

® The user should be able to think in terms of a varying

rather than a fixed extent of parallel processiung.

® Control of the parallel processing should be possible bdoth

explicitly and through the data, as applicable.

® The user should be able to indicate the minimum working set
size of the database (in those cases where the database is

larger than the size of the fast memory).

Actus supports most of the standard Pascal types (the most
significant omission is the lack of variant records) along with
some additional types (short integer, short real) that, when
supported by the underlying hardware, provide more efficient
memory utilization., Parallelism is achieved through the use of
arrays - in an array declaration, one dimension may be declared
to be parallel by replacing the standard Pascal subrange symbol

L3} L

.o with a colon. For example,

var xxx: array [(l:m, l..n] of real

LY LA

declares XXX to be a mxn array, wherethe first dimension may
be accessed in parallel., It is important to note that the

programmer 1is free to choose any size for the parallel dimension
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- {ts size is not constrained by the underlying hardwvare.

Actus provides for the definition of index sets and parallel

constants for indexing and initializing arrays. The syntax for

both is si-<llar:

const parconst = initial : (increment) final
index indexset = initial : (increment) final

The expreseion to the right of the '‘=’’ generates the following
(ordered) set of values:

initial, initial+increment, initial+2xincrement, ..., final

While index sets are used for the parallel dimension of an
array, Actus allows the use of a vector (one-dimensional array)

as another indsn. For example, given the declarations

var diag: array [1:100] of integer;
para: array [1:100, T..100]} gg’integet;

the statements

diag = 1:100;
para(1:100, diag(1:100]] := 0

are effectively the same as

(where ‘'1‘’ and '‘j’’ are arbitrarily-chosen integer variables).

The operators shift and rotate are provided to align data in

a parallel expression. shift performs an end-off shift, while
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rotate performs a circular rotation. As an example, the

following:

index ficrst50 =« 1:50;
var para: array [1:100] of integer;

para{first50] := para(first50] + para[first50 shift 50};
is equivalent to

for 1 = |l to 50 do
para(i] := para(i] + para([i+50];

When parallel variables or congstants are used in an Actus
statement, the extent of parallelisw must be the same for all of

the participants. The extent of parallelism encompasses both the
slze of the various iteme and the way that they are accessed;

this excludes statements such as

a{l:10] := af2:11])

Such a statement must be written

all:10] := a{l1l:10 shift 1]
so that the extent of parallelism is clear.

The smallest program unit over which the extent of
parallelism cannot change is the assignment statement; however,
some of the control flow statements also define an extent of
parallelism. Once an extent of parallelism has been defined by

such a statement, it is signified in the controlled statements by

a sharp character ('‘'#"7).

Control statements which specify an extent of parallelism
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include parallel version of the Pascal while, if, and for

statements, the new while any, while all, if any, and if all

statements, and the new within statement. The within statement
merely defines the extent of parallelism - it has no other effect

upon the program flow.

Finally, Actus addresses a common problem awong parallel
processors - lack of sufficient high-speed ('‘core’’) memory,
requiring some form of automatic buffering or virtual memory. It
provides a syntax for specifying the minimum working set size for

A3

an array, so that automatic memory management won't swap out’’

crucial data.

Actus 1is a very attractive language for vector processors.
It satisfies most of the criteria stated at the beginning of this

.

chapter for a ‘‘good’’ programming language. It is based upon a
well-understood language (Pascal) and therefore is relatively
easy for programmers to learn, it can be efficiently compiled, it
does not force programmers to think at the low level of a
particular machine architecture, and it encourages the
development of well=-structured programs. Unfortunately, Actus is
tied very strongly to a vector architecture, making it unsuitable
for matrix processors (e.g. Actus allows only one dimension of an

array to be accessed in parallel). This restriction was

addressed by Perrott {ia the language Actus Plus.
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Actus Plus(25]) is a revision of the language Actus,
eliminating the one-dimensional restrictions of the original
language. Arrays may be declared with any number of parallel

dimensions.

Actus Plus allows considerably greater flexibility in the

use of index sets than Actus does. 1Index sets may consist of a

consecutive or skipped range (as in Actus):
index indexset = 1:(2)99
a broken range:
index indexset = 1:10, 91:100;
an arbitrary range:
index indexset = 1, 3, 6, 9;
or a repeated range:
index indexset = 1*10, 2*5, 1*10;

Index sets may be combined with the operators ‘‘+°’ (union),

A3 ) a4

(intersection), and - (set difference). The rotate

\\*Il
operator may also be used (av in Actus) to rotate the members of

an index set; e.g. the following are equivalent:

1, 5, 3, 4 rotate 1 = 5, 3, 4, 1

Index sets play a crucial role in the specification of
parallel expressions. Actus Plus permits an expression to

combine any two items, provided that their extents of parallelism

- et
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are the same. Thus, the following

var
matl: array (l:n, l:m] of real;
mat2: array [l:m, l:n] of real;

matl(l:n,l:m) := matl{l:n,l:m] * mat2(l:m,1l:n];

13 equivalent to the Pascal code (where ‘‘i’’ and ‘‘3j’’ are

arbitrarily-chosen integer variables):

[}
—
(a4
[+]
3
B
o

for

i:
for

. B
[-%
[

J = 1
matl{i,3] := matl[i,j] * mat2{i,3);

Although the meaning of the above is clear the following similar

case 1s ambiguous:

var

row: array [l:n] of real;

mat: array [l:n,l:n] of real;

mat{l:n, l:n] := mat[l:n,l:n] * row[l:n];
because it 1s not clear whether the multiplication should

A3 )

performed along the rows or the columns of mat’’. The

ambiguity is resolved by using an index set:

index iset = l:n;

mat{l:n,iset] := mat{l:n,iset] * row([iset]; (»
mat[iset,i:n] := mat(iset,l:n] * row(iset]; (*

The while, if, and case statements in Actus are also

be

row mult #*)
column mult

available in Acrtus Plus. Since these control constructs affect

the extent of parallelism, a sharp-sign notation (similar to that

in Actus) is used to represent the actual extent:

tm] <> 0 then
] = al{#1,#2) + 1;

*)
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Actus Plus is an attractive language. It provides for the
direct specification of parallelism without forcing the
programmer to know the detailed architecture of the machine on
which his programs will run. The generalized lndex sets, and the
flexible operators provided for manipulating them could be
somewhat expensive to implement on a machine with a limited
interconnection network. Nonetheless, Actus Plus would be a
strong candidate for implementation on a parallel matrix
processor. It did not influence the design of Parallel Pascal
because it was not specified in time; in addition, no research

results from an implementation of Actus Plus were available.

Ce2.3.3 Proposed Extensions to ALA

The language ALA was proposed by Zosel as an extension to
ALGOL for the STAR-100[{26]. The language reflects the

philosophies of APL and ALGOL-68.

Vector extensions to ALGOL are implemented in a natural way:
a vector may be used wherever a scalar may be used, provided that
there is an obvious interpretation of its meaning. Operands in
an arithmetic expression must be conformable: either they must be
the same size or one must be a scalar. The set of primitive data
types includes all of the data types defined by the hardware,
facluding 32- 64- and 128-bit floating point representations (on

the STAR-100), the various integer representations, and bit
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Control statements (e.g. conditional statements and loops)
must have scalar control variables; however, the functions
‘‘allof’’ and ‘‘anyof’’ are provided to reduce array expressions

to simple Boolean values.

ALA provides user-accessible descriptors for maniulating

vectors. A descriptor ‘'‘DESC’’ may be associated with a vector

‘*VECT’’ by one of the following two statements:

DESC => VECT
DESC => VECT(slice]

In the first form, the descriptor refers to the entire ‘‘VECT’’
array; in the second, it refers only to a subset of the elements
in ‘‘VECT’’ (the subset is determined by the ‘‘slice’’; the
format of the ‘‘slice’’ is defined below). During the course of
execution, the size of the vector referrad to by the descriptor
may change; however, this change will not be reflected ia the

original array. Descriptors are also used when an entire array

is passed as a parameter to & subroutine. Rather than passing
the array, the called routine receives a descriptor for the

array.

ALA peraits indexing by a scalar, a Boolean set, a set, a
sparse set (a special STAR-100 capability), or a ‘‘slice.’’ A
slice may have one of two forms:

1:J
I;J

.
.
’
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In the first case. items ‘'‘I’’ through '‘J’’ are selected. In
the second case, all items except the first ‘‘I’’ and the last
‘**J’’ are selected. All forms of indexing are valid on both
sides of an assignment statement, and indexing may be performed

on expressions as well as simple variables.

ALA has some desirable features; in particular, the ability
to deal with vectors in the same fashion as (and in combination
with) scalars is very appealing. However, ALA is very heavily
weighted toward implementation on the STAR-100, and it 1includes
features which may be expensive to provide on other machines.
These include Boolean indexing, the use of sparse vectors, and
the large runtime variability of the size of vectors. Also, a
language designed for a vector processor is dissimilar in many

ways from a language for & matrix processor.
Ce2.3.4 APLISP

APLISP[27] is a language for image and speech processing.
Its target machine is the partitionable SIMD/MIMD system PASM([28]

but the language 's machine independent.

The syntax of APLISP is similar in many ways to that of
Pascal. Deviations from Pascal include the definition of two new
fundamental data types (BYTE and INDEX), a flexible array

indexing scheme, and conditional control statements.

Arrays in APLISP are viewed as a set of named objects, each

of which is an ordered n-tuple consisting of the index (or
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indices) and the value. (As an example, for a one-dimensional
array, the objects are ordered pairs (i,x) where i is the 1index
and x 1is the corresponding value.) Index sets are used to select
subsets of these n-tuples. For multi-dimensional arrays, sets of
index n-tuples may be specified by a Cartesian product or

concatenation of two index sets.

Index sets may be used in assignment statements on both
sides of the expression. Index sets which appear on both sides
of an assignment are forced to correspond to one another; hence,
the assignment A[U] := B[U] implies that for each u U, A[u] :=

Blu] .

APLISP provides the WHERE statement for parallel conditional
evaluation. Execution is controlled by a conditional expression
over an index set. Within the body of the WHERE clause and
optional ELSEWHERE clause the range of the index set {is
restricted to only those n-tuples for which the conditional is

true or false, respectively.

APLISP provides a flexible mechanism for expressing
parallelism without consideration of the underlying machine. The
concept of index sets is a very powerful one (although as with
APL, the uninitiated may object to the concise and highly-
symbolic format). The runtime~dynamic shape and configuration of
the index sets may pose an implementation problem on processors
with restricted interconnect networks (e.g. matrix processors

with simple near-neighbor connections). Nonetheless, APLISP has
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many attractive featuree. It did not influence the design of
Parallel Pascal because it was not specified in time; in

addition, no research results from an implementation are

availabdle.
Ce2.3.5 Fortran 8X

At the presant time, the X3J3 committee of the American
National Standards Institute is considering proposals for
extensions to Fortran(2,29]. All of the proposed changes are
still subject to change, so it is impoasible at this time to
determine the form of the new language (often referred to as
"Fortran 8X"). However, it 1is ins.ructive to consider some of
the proposed extensions in the realm of array indexing and

parallel processing.

The current proposals permit the use of unsubscripted array
names in arithmetic expressions on either side of the assigument
syabol (*'=’’), The evaluation and assignment {8 considered to
be simultaneous for all array elements. (This definition
facilitates the implementation on a parallel processor, where the
evaluation and assignment is simultaneous, as well as on a

conventional serial machine.)

When subscripts are specified, the special symbol ‘‘*’’ ig

used to represent the entire range ¢f the array. For example:

A(l,*®) - 8elect row 1
A(*, 1) - select column 1
A(=*,1) - select column | in reverse order
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Finally, an array section may be specified by a doublet or

triplet:
V(1:5) - select V(1), V(2), V(3), V(4), V(5)
V(1l:K) - gelect V(1l), V(2), «oe , V(XK)
V(1:5:2) - gelect V(1), V(3), V(5) (step by 2]

Other capabilities which are under consideration are more
complicated array sections, vector indexing for arrays, an
IDENTIFY etatemant (to restrict the number of array elements
which are active when an explicit index expression is not given),

and a conditional assignment (WHERE) statement.

The proposals for Fortran 8X are of interest, because
Fortran is one of the most widely-used high level languages in
the field of scientific computing. However, it would be unwise
to adopt the current proposals for Fortran 8X as the basis for a
new language at this time, since it 1is likely that there will
still be significant revisions to the language before a standard
is adopted. Until some of the other problems with Fortran can be
satisfactorily resolved (for example, its lack of facilities for
structured programming), a language based upon Fortran and the
proposale outlined above is not suitable for implementation on a

parallel matrix processor.

Ce2.3.6 Parallel Extensions to LRLTRAN (Fortran)

LRLTRAN is an extaended Fortran in use at the Lawrence

Livermore Laboratories in California. To accomodate the STAR-

100, a number of vector extensions were made to the language[30].
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The resulting language provides for the specification of

efficient manipulation of vector quantities.

The one-dimensfonal nature of LRLTRAN is very apparent in
the declaration of parallel variables. These variables are

explicitly declared as vectors, e.g.
VECTOR A(99)

declares that ‘‘A’’ is a vector with 100 elements (the lower-
bound of a vector index is always zero). Vectors so defined may

be used in arithmetic expressions (with the expected results),
3.3-
A=A+ 1

increments each element of the vector ‘'‘A’’ by 1.

In addition to declaring vector storage, one may also define

vector descriptors:

VECTOR (BPTR,B)

In this case, the variable ‘'‘BPTR’’ is a user-accessible

description of the address and size of a vector. After setting
‘*BPTR’’ appropriately, the desired data may be accessed as a
vector via the descriptor ‘‘B’‘., For example, 1if ‘‘BPTR’’ points

to a 7-word area beginning at address 1000, then the statement

will set words 1000..1006 to 1. Operators are provided to

convert scalars to vector descriptors and vice versa and to
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determine the length of a vector.

Vectors (or vector descriptors) which participate in
assignment statements need not be the same size. Scalars are
automatically extendsd to vectors during an assignment. If both
the left- and right-sides of the aseignment are vectors, the
right-heand-side {8 completely evaluated and the results are

assigned one-by-one until one ol the two vectors is exhaused.

Vectors may be subscripted with a scalar, a vector, a
contiguous range of elements, or a set (bit-vector); they may

also be treated as sparee vectors.

Finally, LRLTRAN contains a number of {ntrinsic functions to
provide for summing along vectors, merging vectors, etc. The
implementation of these is somewhat unfortunate: unlike normal
Fortran intrinsic functions, the user cannot override the
standard definitions with his own. Even if he supplies a

function definition the compiler will use the predefined

intrinsic function.

LRLTRAN {s a flexible language for dealing with the STAR~-
100, but because of its strictly-vector nature it is not well
suited for a matrix processor. Many of its facilities (such as
sparse vectors and vector indexing) are directly related to the
hardware capabilities of the STAR-100 and may be very expensive

on a processor with a more rigid structure.
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Ce2.3.7 PascalPL

PascalPL[3l] ts & Pascal-bssed language which facilicates
parallel image processing. Its design was influencaead by the
architectures of contemporary parallel arrays. It is presently
available at the University of Wisconsin, Madison, as a

translacor which converts PascalPL programs to standard Pascal

programs.

A PascalPL program consists of a standard Pascal program
which containe parallel procedures. The parallel procedures
themselves may contain a8 mix of standard Pascal statements and
parallel constructs. All parallel constructs are distinguished
by the presence of two leading vertical lines (‘'‘'|}’’, the

standard symbol for parallelism).

A parallel procedure is introduced with the declaration

| lprocedure procedurename ;

At some point after this (between which there may be standard

4

Pascal statements), a ‘'‘dimension declaration’’ must be placed to

define the bounds over which operations take place:
}idim [030127. 000127] H

Optfbnal fields also declare the data type (either integer =
which is the default - or Boolean), the association of arrays
with set names (sets of arrays), and the index mapping from the
iaput array set to the result array set. Once the dimension has

been defined, the following parallel constructs may be intermixed
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with standard Pascal statements:

I

||writ.(ooo) H .

|iset arrays_assigned_to := compound_of_ arrays ;
I compound_of_arrays inequality

then arrays_modified

else arrays_modified_on_failure ; (optional]

|
' e
order := bordertype ;

The ||Iread and ||{write constructs perform input and output
of arrays or subsets of arrays. The ||border statement defines
the value that is to be used when array indexing lies outside the

declared array dimensions.

The most significant feature of PascalPL is its array
indexing mechanisme. Array operations are performed by the ||set
and ||if constructs. The [|set inetruction unconditionally
performs array assignments. The left-hand-side of the assignment
specifies one or more result arrays; the right-hand-side
specifies an array expreesion. The array expression may contain
scalar variables (always preceeded in this context by a ‘‘#’’
character), constants, and array index expreseions. A simple

example 1is:
||set arrayl := 2*%*array2 + arrayl - fmean;

which performs (element-by-element) addition of 2 times
‘‘array2’’ with ‘‘array3d’’, subtracts from each element the value
of the scalar variable ‘‘mean’’, and stores the result (element

by element) in ‘‘arrayl’’.

PascalPL provides even greater flexibility in array
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expressions by permitting the specification of neighborhood
operations. A specified set of near-neighbors may be
individually weighted and combined by a specified operation. For

instance, suppose that it is desired to compute
b{i,3) := ali=1,3=1] + a(i=1,3+1) + a(i+1,3=1] + a[t1+1,3+1) + 4*a(4L,

for all elements of ‘'‘a’’ and '‘b’’, This can be accomplished

with the following PascalPL statement:
flset b t= a[+(-1:-1, =1:1, l:=1, 1l:1, 0:0%4)];

This mechaniem i3 generalized even further to permit
thresholding; e.g. the following performs the same sum, but only

includes the value of the center if it is greater than 32:

liset b :=» a[+(=-1:~1, =1:1, l:=1, 131, ©:0%4>32)];

The conditional structure (||if) can be used to perform
simple modifications to arrays on an element-by-element basis, as
determined by the controlling conditional. For instance, to
triple the value of all elements in the array ‘‘b’’ if the
corresponding elements in array ‘‘a’’ are non-zero, the statement

would be:

PascalPL is a very intriguing language. It has a compact
and powerful notation which {s capable of representing many
desirable operations which can be efficiently performed by a

parallel matrix processor. The language appears to be easily
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extensible to arrays with any number of dimensions. The ability
to mix PascalPL and standard Pascal within tiie same program is
also a definite advantage. Its biggest drawback may be ite
biggeat feature - the symbolism used to express parallel
operations. The operations that are specified for arrays are
syntacéically and semantically different than similar operations
specified in standard Pascal. The conditional statement also

operates upon arrays with a different syntax; multiplying an

LI L4

array Xyz by 3 is done by
Xyz*3
in an ||if statement, but by

|18et xyz (= xyza%3;

in an assignment statement. Thus, while PascalPL is a viable
candidate for a parallel matrix processor such as the MPP, {t
gseems desirable that a different approach, one which does not
significantly distinguish between parallel and scalar operations,

be taken.

C.2.3.8 VECTRAN

VECTRAN was proposed by researchers at IBM as an extension
to IBM FORTRAN IV([32]. It was designed as an upward compatible
extension to FORTRAN (66) for sclentific applications

programming.

The declaration statements RANGE and IDENTIFY are used to

specify the array elements which participate {in an operation.
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The RANGE statement can be used to restrict the range of a

parallel operation to some subset of the array; for example:

RANGE /N,M/ A(10,10), B(15,25)
N =35
M = N+2

A = 2,5%*A + B

Only the 5x7 gubarraya of A and B participate in the parallel

computation.

The IDENTIFY statement permits the r~rdefinition of axes in
the array, so that well-defined substructures of an array may be
defined and used. For instance, the elements along the diagonal
of a two-dimensional array may be ‘‘identified’’ with the

elements of a one-dimensional array of the appropriate siza.

Vector indexing is permitted in VECTRAN. The semantics are
similar to APL. The order of the values 1in the vector 1is

gsignificant.

Parallel conditional control is provided by the WHEN and AT
statements. These statements differ in the order {in which
evaluation is performed. WHEN fully evaluates the conditional
expression and each controlled expression, and then performs
conditional assiznment. AT evaluates the conditional expression
and then conditionally evaluates the appropriate controlled

expression. Hence, WHEN performs conditional assignment while AT
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performs conditional evaluation.

VECTRAN also provides functions for manipulating data

logically (PACK and UNPACK) and arithmetically (e.g. matrix

multiply).

VECTRAN has a number of desirable features. It is based
upon a well-known language (Fortran, albeit Fortran 66), it
provides for flaxible manipulation of data, and it is targeted
toward numerical applications. Unfortunately, VECTRAN does not
remedy many of the problems in Fortran - poor control flow
constructs, the lack of user-defined data types witih thelr
associated type checking, and Fortran’s generally poor syntaxe.
Also, its indexing mechanisms, particularly vector indexing, are
complex to implement; this may seriously impact the efficizucy of

an implementation on a parallel matrix processor.

Co2.3.9 Direct Parallelism Specification: Conclusions

A language which permits the direct specification of
parallelism, without requiring the specification of the low-level
implementation, i8 very attractive. However, none of the
languages described above (with the exception of Actus Plus,
whose full description was unknown at the time of the initial
language survey) 1s entirely suitable for implementation on a
parallel matrix processor such as the MPP. The languages are
either tvo vector-oriented or too general for efficlent

implementation.
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