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1. INTRODUCTION

The work presented herein represents the results of the

first phase of activities sponsored by the NASA Lewis Research Center

under Contract No. NAS 3-22530. The activities were directed to the "Con-

tinued Development of a Detailed Model of Arc Discharge Dynamics". This

work is a continuation of previously documented results on the subject

[Beers, et al., 19791. The purpose of these ^tudies is to develop a model

of the catastrophic breakdown and discharge of spacecraft dielectrics which

have been charged by the geosynchronous substorm plasma environment. In pre-

vious studies, a series of codes (SEMC, CASCAD, ACORN) were developed to

describe the development of a single electron-initiated avalanche into a

negative tip streamer. A conceptual model was also presented for a discharge

mechanism which proceeds by a stochastic (random) succession of this basic

process. The results presented herein are specifically directed toward a

more fundamental understanding of this model. A major portion of the effort

was directed towards characterizing the numerical solutions computed with

the code models.

A primary goal of the studies was to explore the parameter space

associated with the numerical solutions of the code models. Preparatory to

initiating these parametric studies, it was necessary to modify the code pack-

ages in order to use them. The required modifications are described in Sec-

tion 2. Details of these changes and a user's manual are described in a sepa-

rate document entitled Operational Aspects of the Computer Codes: SEMC,

CASCAD, and ACORN , Beers Associates, Inc., Report No. 1-82-16-04.

Section 3 of the report details the results of an extensive

series of computations over a wide range of problem parameters. The re-

sults are presented on a code-by-code basis. In Section 3.1 the results

of SEMC computations of the electron distribution function are presented.

1
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Computational results from the CASCAD model of the undistorted avalanche

are given in Section 3.2. A total of 60 separate calculations were per-

formed for each of the above 2 sections. Section 3.3 describes the de-

tails of ACORN calculations of the evolution of the self-consistent electron

avalanche. Eleven distinct computational configurations were considered here.

Section 4 gives a very brief discussion of the work on discharge

initiation in space. The reader is referred to several appendices where

published papers on the subject have been reproduced. The published results

describe the activities performed during the contract period. Work of a more

speculative nature is presented in Section 5 on discharge quenching and blow

off mechanisms. The results of all work are briefly summarized in Section 6.

Six appendices to the body of the text present reproductions of

published papers which were generated either directly or indirectly by the

work described in this report. Appendices 1 and 2 describe seni-analytic

calculations of the electron distribution function. These results support

the interpretation of the SEMC results of Section 3.1. 1 paper describing

the preliminary results of Section 3.3 is reproduced as Appendix 3. Appen-

dix 4 gives detailed calculations supporting an internal discharge initiation

mechanism which was developed. In Appendix 5, calculations of thermal break-

down in the presence of field distortion are given. Finally, further de-

velopments in the classical approach to the discharge problem are given in

Appendix 6.

2



2. CODE MODIFICATIONS

An extensive set of modifications to the SEMC-CASCAD-ACORN family

of computer codes previously developed has been implemented. The set of modi-

fications may conveniently be split into two areas: upgrades to the physical

models; and installation of graphics. These modifications will be discussed

in the following sections on a code-by-code basis. Operational features of

the updated codes are separately documented in a user's guide report. The

modified codes were delivered and installed on the Lewis Research Center

UNIVAC 1108 system.

2.1 SEMC MODIFICATIONS

Three major changes were made to the SEMC code:

• Modification of the mean free path sampling algorithm;

• Computation of an equilibrium velocity-space distribution; and,

• Automatic linkage to the CASCAO code.

These modifications are discussed in turn below.

The first change modified the mean free path sampling routine.

In the usual Monte Carlo transport calculation, the energy of the particle

does not change between collisions. For the required calculations however,

0e presence of large electric fields requires a new sampling approach.

3
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The probability P(x) that a particle will have a collision along

a path between x and x + dx is:

x

NO&	 exp -^ dx J dx

0	 J

where a is the mean free path. In order to sample from this distribution, we

equate the probability that a random number is between E and & + dC (denoted

G(O dO to the above probability that a collision occurs between x and x + dx.

By noting that GM = 1 for random numbers uniformly distributed on the interval

[0,1), we obtain

dC _ I	 I i

 exp I -f d" ' I	 dx

0

Or by the integration

x

dE =	 r	 exp f -	 d I	 l	 dx	 (2.1.2)

0	 0	 L	 1	 a

We observe however, that the integrand o	 e right is an exact differential

and obtain:

= 1	 - exp	
dx'	

(2.1.3)

or

dx 

x
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For those situations in which the particle is in force free flight

between collisions, the total macroscopic cross section E t remains constant be-
tween collisions. The mean free path, related to the total macroscopic cross

section by:

X - E	 (2.1.5)
t

is also a constant. Integration is easily performed to yield:

x - - X Rn(1 - 0	 (2.1.6)

Since 1 - & has the same distribution as E,, we have the familiar result:

x - - a x,nC	 (2.1.7)

In order to sample in time, one merely replaces x by t (time) and

A by T (mean free time) in the above expressions.

When there is an electric field present however, a charged particle

will experience an acceleration between collisions, resulting in a constantly

changing particle energy over the particle path. 	 The mean free path (mean free

time) is no longer constant in general ( E t is a function of energy) and the in-
tegration of Equation (2.1.4) depends on the form of A. For a tabuiar form of

A(E), the integration must be performed numerically. The scheme presently im-

plemented is as follows:

(1) Begin with a particle energy E01

(2) Select a random number V.

(3) Numerically integrate 1/T from 0 to t' until the integration
is equal (to a preprescribed accuracy) to tn(&').

5



(4) The time to the next collision is then V.

(5) The coordinates of the next co l lision site are given by a
integration of the erjations of motion.

While the above discussion could easily be given in terms of c

Lance and mean free path, the time to the next collision site must be deti

from a numerical inversion of a rather complicated expression previously c

veloped	 [Beers, et al., 19791. An overall reduction in the complexity oT the

calculation is achieved by use of the mean free time formulation.

The second major modification was the incorporation of an algorithm

for scoring the equilibrium velocity distribution g 0(v). Scoring the equilibrium

velocity distribution allows for the computation of the macroscopic transport co-

efficients directly from appropriate velocity space integrations. Routines for

performing these computations have also been included in the code.

A method of scoring the equilibrium velocity distribution g 0(v) has

been devised. An understanding of this distribution may be obtainer through the

following argument. One may obtain g0(v; by visualizing a snapshot in time of

the electron dynamics in phase space. The distribution g0 (v) may then be ob-

tained by tabulating the instantaneous velocity of all particles in the snapshot.

With the Monte Carlo methods however, we are able to follow only one sample

particle at, a time. One may view each trajectory as a contribution to the phase

space snapshot by sampling the velocity of each trajectory at a single ran-

domly selected time. By sampling a trajectory at many points in time, for ex-

ample at a random time between each collision, the statistical uncertainty in the

calculated value of g0 (v) for a fixed number of particle trajectories will be

greatly reduced. This is the method implemented in the code.

The transport coefficients are obtained by velocity space integra-

tions. The average velocity <v> is simply

<v> = f v g0(v) dv	 (2.1.8)

6
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The drift velocity then, is the component of <v> in the direction of the field,

and components perpendicular to the field should vanish with sufficiently good

statistics. The mobility is obtained in the usual fashion.

Now, introduce the random velocity u by the equation

V = <v> + u	 (2.1.9)

The mean random energy T (mean energy minus drift energy) is given by

T = f 
1 
m* (u •u)go(v)dv	 (2.1.10)

The energy may be split into coript,nents parallel and perpendicular to the field

in the obvious fashion.

The diffusion coefficients are obtained from the integrals previously

derived using the Chapman-Enskog theory [Beers, et al., 1979]. Using the notation

given in that reference, let K(v,v0 ) be the scattering kernel for the Boltzmann

equation. Let I be the following vector integral:

-v'0) _ f
It follows from symmetry arguments that I ha

v0 ) = v0K1(v

where K 1 is a scalar function of the variabl

may be written as the following integral:

D = f dv g
0 (v)

 K (v2
1

7
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where u was introduced ito Equation (2.1.9). The tensor D may be diagonalized,

with diagonal components being the coefficients along tie electric field and

perpendicular to the electric field.

Finally, the ionization rate a 1s given by

S	 r dv vion(v) goo)	 (2.1.14)

where vion (v) is the fundamental ionization rate for an electron with velocity

v.	 Routines for performing all the above integrations have been included in SEMC.

The final major modification to SEMC was thr! installation of an auto-

mated link between SEMC and CASCAD. The link was implemented by installing in

SEMC a routine to write the distribution function of ionization sites on disk.

This file is subsequently read by CASCAD with no user intervention required.

8



2.2 CASCAD MODIFICATIONS

In addition to the automated linkage described in Section 2.1,

two other changes were made to CASCAD. The previous version of CASCAD was not

able to follow the calculations for mc.-e than 13 generations. This limit is im-

posed by the amount of central memory required to store the location of each

electron in the cascade. This limit was extended beyond 24 generations by the

use of a dual file flip-flop buffering scheme. At the end of each generation,

the locations of the electrons are stored on one disk file. These locations

are then read, updated and stored on the second disk file. At the end of each

generation, the read/write pointers are interchanged and the process repeated.

The disk storage available was sufficient to run all cases of interest.

The final modification to CASCAD involved the installation of graph-

ics display routines. At the end of each CASCAD run, the following four (4) plots

are produced:

• charge density contour plot;

• electric potential contour plot;

e electric field magnitude contour plot; and,

e electric field vector plot.

9



2.3 ACORN MODIFICATIONS

Modifications to ACORN were made primarily in the development of a

complete graphics output system and for the replacement of the routine formerly

used to print the arrays. A vector plot routine was developed to provide a

clear concise display of the electric field. At many points within the calcu-

lated grid an arrow is drawn. The length of the arrow is proportional to the

magnitude of the electric field at that point. The direction is that of the

electric field vector at that point. The routine chooses the density of arrows

to be as large as possible, without producing a cluttered plot.

The contour routine developed for ACORN was designed to provide the

option of either user-specified contour levels or contour levels chosen by the

routine itself. Past experience has indicated that many automated graphics

schemes frequently chose scaling levels which do not reasonably span the calcu-

lational regimes of interest. For this reason a more flexible scheme seemed

desirable. For the ACORN results presented here, the contour levels chosen by

the routine have thus far been entirely satisfactory. The routines as implemented

in ACORN therefore use automated scaling as a default, with user override only

when desired.

The remaining plots, such as the electron number density versus

one spatial variable with the other spatial variable fixed, were also generated

with a more generalized plot routine. This routine can 0 so be used on a stand

alone basis for other purposes. Again the automated scaling within this routine

has proven satisfactory for the case of interest. This routine is also used to

produce time history plots of the problem variables.

All three of the main plotting routines, CONTOUR, VECPLT and GRAPH

were designed as general purpose stand alone routines. These routines are now

available for incorporation into future codes. A complete description of how

to use these graphics packages is included in the appendix of the companion

operational procedures report.

10
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3. COMPUTATIONAL STUDIES

An extensive series of computations was performed using the SEMC/

CASCAD/ACORN family of codes. The computations were performed on site at LEWIS

RESEARCH CENTER. These computations are discussed on a code-by-code basis in

the following text.

3.1 SEMC STUDIES

The computer code SEMC solves the linear Boltzmann transport equa-

tion for the electron distribution function in the presence of an applied electric

field. No electron self-scattering effects are ii!cluded in the simulation. The

electrons undergo collisional events with a background set of scattering centers.

A specification of the scattering events determines a model for the electron inter-

action with the background material.

A crude model which was developed earlier [Beers, et al., 1979]

represents the interaction of conduction band (quasi-free) electrons in a

solid material representing Teflon. 	 It was the purpose of the SEMC compu-

tational studies to explore the dependence of the electron distribution function

(and resulting transport coefficients) on the parameters which define the scat-

tering model. As all subsequent calculations in the CASCAD/ACORN series depend

on the coefficients determined from the SEMC calculations, a determination of

the sensitivity of these parameters on the material model also provides infor-

mation for subsequent CASCAD/ACORN calculations.

The choice of scattering models for the SEMC computations, results

the subsequent calculations, and a discussion of these results are presented

below.

11



3.1.1 SCATTERING PARAMETER FORMULATION: SCALING

As currently formulated, the single scattering Monte Carlo Co

ZM requires the definition of three distinct processes: elastic scatte

inelastic energy loss (non-ionizating), and ionization. The scale for th

processes is set by some overall dimensional quantity having units of len

(i.e., mean free path). Thus, the 'n put depends on three dimensional parw,,,`^`.,

Xet' X
0' XI where the a's are the m_an free paths for the respective processes.

In addition, the inelastic and ionization processes are characterized by their

energy thresholds (denoted liw and E I respectively). These two dimensional

parameters characterize the energy loss of the electron. The only other di-

mensional parameters available are the electronic effective mass m*, the

electronic charge e, and the electric field F. One eight also introduce the

density of the solid N. Within the present formulation however, it will be

assumed that N only enters the problem through the mean free paths (MFP),

with all MFP's scaling inversely with density.

From this list of eight dimensional variables aeZ, ^0' 
X I' EI'

11w, m*, a and F. three independent variables may be chosen to represent the

fundamental units of mass, length, and time. All other dimensional variables

may then be expressed in terms of this basic set. A convenient choice is the

electronic effective mass m*, the elastic mean free path A et , and the ionization

energy E I (a quantity conjugate to time). Denoting the fundamental dimensional

units by a subscript "naught", we then have the following expressions for the

units of mass, length, time, velocity, force and energy:

12
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MD a m* ,	 (3.1.1)

L D = ),ek ,	 (3.1.2)

XI
TD=Aek	 (3.1.3) •

2E
VD =	 m*	 (3.1.4)

E 
CTO_ AeR	 and	 (3.1.5)

ED = E 	 (3.1.6)

All other dimensional quantities may be expressed in terms of the fundamental

units of mass, length and time. For example, the units of the diffusion co-

efficient DD (L 2T_ 1 ) are

w

(It is implicitly assumed that the temperature of the lattice is fixed in the

above discussion, and that the temperature dependence of the solution enters

only through the parameters already given).

The remaining problem variables may be expressed in terms of the

three basic variables, together with dimensionless parameters formed from

various combinations of the problem variables. A convenient set of dimension-

less parameters is:

13
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^	 x
AI 

aI	
(3.1.8)

et

a
A =	 (3.1.9)

del

R = I	 (3.1.10)
F

1 '
EI

X	 e	 and	
(3.1.11)

e^

= e
--2	 (3.1.12)
FXeR

where A I and AO are the length ratios and R, X, and Q are energy ratios. The

quantity X is the ratio of ionization energy to energy gained in an elastic mean

free path, while S2 is the ratio of electrostatic Coulomb energy in a mean free

path to the energy gain in a mean free path. The two quantities a and F enter

the linear Boltzmann equation as a product e • F (in the external force term).

Dimensional analysis of this equation gives rise to quantities which depend on

this product, rather than on a and F individually. It follows that the equation,

and hence the solution, is independent of the variable 0 because Q varies as

the ratio of a and F. The variable S2 enters only when the electron can act on

itself (i.e., in collective problems).

With the above information, it is an elementary task to rewrite

all the problem variables in terms of the three dimensional variables, and

the four dimensionless parameters A I , AO , R and X. Distinct problems (not

obtainable by scaling) are therefore specified by the four dimensionless

variables noted above. Of these, only the quantity X depends on the external

field strength, so that X may be chosen as the variable specifying field

strength. The remaining three parameters A l l AO , and R characterize the

scattering parameter set.

14
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For the purposes of this investigation, we will now suppress

one of these variables (11 I ). Shown in Figure 3.1.1 is a typical ionization

cross-section (determining X I ). The major feature to note is that the cross-

section rises very sharply out of threshold, reaches a peak substantially

above threshold, and then begins to trail off slowly for higher energies.

For solid densities, cross-sections with this order of magnitude correspond
O

to rather short mean free paths (a few Angstroms). Except for enormous

fields (greater than 10 1OV/M), the energy gained in an ionization mean free

path is completely negligible compared to the energy required to pass the

peak in the cross-section. For moderate fields the electron will lose es-

sentially all of its energy in the collision ionization. This implies that

the results will be very insensitive to the exact value of the cross-sectiun

above threshold. In conformity with all other investigators, we will make

the assumption that this parameter is not of concern for the field strengths

of interest here; only if a study of runaway electrons were required would

it make sense to investigate this parameter. For solids these runaways occur

at field strengths substantially higher than those of interest.

The parameter variations for the present study are those in-

volving R and A0 . For the model of Teflon chosen during the first phase of

this work [Beers, et al., 1979], the optical phonon energy ,fw was taken to be

0.11 eV, while the band gap E  was taken as 6.5 eV to a corresponding

R-value of 0.017. Reasonable band gaps for insulators may be chosen in the

range from 2 to 10 eV. Optical phonon energies in polymer type materials

typically vary in the range of 0.04 to 0.4 eV. This range of energy values

produces a spread of R-values from 0.004 to 0.2. We have chosen three R-

values to span this range [0.2, 0.03,0.004]; other values may be interpolated

as required. The dependence of ionization on this parameter may be partially

understood from the literature and is discussed in Section 3.1.3 below.

In the Teflon Model previously investigated the quantity 110 had

a value of 4.4. Because cross-sections in polymers do not vary widely, it is

unlikely that this quantity will vary by more than a factor of 5 from this

nominal value. We therefore choose the values of 110 to be [1, 5, 25].

15
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Figure 3.1.1 Total Ionization Cross Section in N2; 	
I	 A

From [Strickland, et al., 1976].
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All combinations of the above parameters give rise to nine

different cross-section sets. Because the code SE14C requires dimensiona, in-

puts, the fundamental units must be given specific values, and the actual pa-

rameters determining R and A0 must be given their appropriate values. Specif-

ically the quantities A , E I , and m* have the same values as in the previous
ek

study, whereas 41w and a0 are varied to give the required variations in R and i

A0 . Also, the ionization mean path retains the same value as previously. The

fixed parameters are:

{

Aet = 6 x 10-10m

a I = 2 x 10-10m	 (3.1.13)

E	 6.5 eV
I

i

and last, the electronic mass (chosen as the bare electron mass).

Table 3.1.1 defines the variations of 16 and a0 used to define

a material model (cross-section set). Each set is given a numerical label

from 1 to 9, spanning the range of R, AO discussed above. In addition, a 	 A

10th model is included in the table representing the nominal model developed

in the previous study. [Beers, et al., 1979].

The field values chosen for the computations were all at the

high end of the physical scale. Based on general theoretical considerations

(see Section 3.1.3 below), the high field results may readily be extrapolated

to lower field values. Six field values were chosen, spanning a single decade

of field strength. These values were [4 x 109 , 2 x 109 , 8 x 108 , 6 x 108,

4 x 108], where the quantities in brackets are in volts per meter. These field

valu s correspond to values of the dimensionless variable X of [2.7, 5.4, 10.89

13.5+ 18.1. 27.1].

11
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MODEL

NUMBER

OPTICAL

PHONON

ENERGY

(eV)

R

OPTICAL

PHONON

MFP
O

A

A0

1 1.300 0.200 6 1

2 0.195 0.030 6 1

3 0.026 0.004 6 1

4 1.300 0.200 30 5

5 0.195 0.030 30 5

6 0.026 0.004 30 5

7 1.300 0.200 150 25

8 0.195 0.030 150 25

9 0.026 0.004 150 25

10 0.110 0.017 26 4.3

4	 j	 Table 3.1.1

Definition of Material Models by Parameters R, AO

4
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3.1.2 SEMC RESULTS

The updated version of SEMC was exercised on the ten models

of Table 3.1.1. Each material model was run for the six field levels dis-

cussed in Section 3.1.1, for a total of 60 distinct computations. The re-

sults are summarized below.

3.1.2.1 MOBILITY

Shown,.in Figure 3.1.2 is the mobility for three different models

(3, 6, 9). Each of these models has a fixed value of the optical phonon energy.

The mean free path for optical phonon emission increases with increasing model

number. Thus, we see that an increase in optical phonon MFP leads to a de-

crease in mobility, but that the absolute mobility is relatively insensitive

to this parameter. Each of the other sets (for constant R) shows the same

behavior.

Shown in Figure 3.1.3 is the mobility for three models (4, 5, 6)

which have a fixed value of A0 . In this case the optical phonon energy de-

creases with increasing model number. The dependence on optical phonon energy

and field level is somewhat more complicated, as evidenced by the cross-over

in the curves. In absolute terms however, the mobility is very insensitive to

this parameter. Other sets with fixed AO show similar behavior.

It may be concluded that the mobility is very insensitive to

the value of 1w and only slightly sensitive to the value of a0
1
 The mobility

does however, show a strong dependence on the value of the electric field,

varying by a factor of 5 over a decade of field strength.
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3.1.2.2 DIFFUSION COEFFICIENTS

Shown in Figure 3.1.4 is the transverse diffusion coefficient for

three scattering sets with fixed R. Increasing the optical phonon MFP corres-

ponds to an increasing scattering set number. We also see that an increase in the

optical phonon MFP leads to an increase in the diffusion coefficient and that

the absolute change is small. Other groups of scattering sets with fixed R

show similar variation. Illustrated in Figure 3.1.5 is the transverse diffusion

coefficient for three scattering sets having fixed A 0 . Increasing set numbers

correspond to decreasing optical phonon energy. The dependence on this parameter

(optical phonon energy) is much stronger, with variations of nearly 50% between

sets 4 and d. The relationship is also not monotonic as is evidenced by the

shuffled order and the apparent crossing at low fields. The other sets (for

fixed AO ) show the same ordering with respect to 11w. The field dependence of

the transverse diffusion coefficient is quite weak. (The scale on the figure

is linear and exaggerates the variation of this quantity).

Shown in Figure 3.1.6, family (3, 6, 9) represents the longitud-

inal diffusion coefficient for three scattering sets which have the same value

of R. For small values of the field, an increase in X0 
results in an increase

in diffusion. For high values of the field, this ordering is not present. A

cross-over point is evident and the dependence on " , 0 is quite weak. The cross-

section family ;2, 5, 8) shows similar behavior, but the family (1, 4, 7) is

different in that there is a uniform increase in diffusion for increasing a0.

It appears that the cross-over point may be at much higher fields. All the

families show a similar weak variation as a function of 10.

Shown in Figure 3.1.7 is the longitudinal diffusion coefficient

for variations in 11w, with a0 fixed. Both the longitudinal diffusion coef-

ficient and the transverse coefficient demonstrate an identical behavior with

16. Other families show the same behavior as well.

S

^i
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The variation in the longitudinal diffusion coefficient with

field is comparable to the variation of the transverse coefficient, varying

by leas than a factor of 2 over a decade of field strength.

3.1.2.3 IONIZATION LENGTH

Shown in Figure 3.1.8 is the ionization length versus electric

field for three scattering sets having a fixed value of 16. For low values

of the field, an increase in the optical phonon MFP leads to a decrease in

the ionization length. For higher fields, this rather sharp difference de-

creases and the curves coalesce, cross, and the dependence on 
N0 

inverts,

but is much weaker. Other families of scattering sets show a similar behavior.

Shown in Figure 3.1.9 is the ionization length for three scatter-

ing sets with fixed a0 and different values of ilu). An increase in optical

phonon energy at low fields gives rise to a strong increase in ionization

length. At high fields there is a coalescence of the curves, showing a

strong suppression of the dependence on this parameter. Other families for

fixed 110 show similar behavior.

The most remarkable feature is the very strong dependence on

electric field, with variation of more than a factor of 200 over one decade of

field strength. Because this is the quantity most sensitive to field strength,

a compilation of all the computed ionization lengths is given in Figure 3.1.10.
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3.1.3 DISCUSSION

A momentum transfer collision rate vD is 1

by the relation

u=mv
D

(3.1.14)

The rate vD is related to the mean free path for momentum transfer A D , and the

mean speed v by the usual relation

VD = 
AD
	

(3.1.15)

Because the inelastic processes do not lead to any net momentum transfer on thLS

average, the quantity A D is equal to 
Aek (a constant). 'thus, all the dependence

of u on the model (and field) is through the mean speed v. As the field in-

creases and the electrons heat up, with a consequent rise in v, the mobility de-

creases a;; seen in the calculated results. Equation (3.1.15) is implicit, be-

cause the mean speed includes a contribution due to the drift velocity v D . Using

the random velocity u (with magnitude u) defined in Equation (2.1.9), we have

the obvious relation

v2 = vp + u 2	(3.1.16)

Combining relations (3.1.14-3.1.16) together with the relation of drift velocity

and mobility, the resulting equation may be solved for vD . The following re-

sult is found
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v0 =	 ( ^4Yy - 1)	 u	 (3.1.17)

(f(y)u)

where

Y =	
F aet	

(3.1.18)
2 (1-2

Equation (3.1.17) displays explicitly the dependence of the drift velocity on

the mean random energy of the electrons. Combining Equation (3.1.17) with the

definition of mobility gives

u( F ) = Y	 u(0)	 (3.1.19)

where f(Y) is defined in Equation (3.1.17) and u(0) is given by

u(0) = e— Z	 (3.1.20)
mu

Equation (3.1.19) is a useful form for the mobility. The quantity u(0) has

the dimensions of u, reduces to the zero field mobility at F = 0, and is a rela-

tively weak function of the electric field. Most of the variation of the mobility

due to the field is contained in the dimensionless function f(Y)/Y, which varies

with the dimensionless quantity Y. The variable Y is directly proportional to

the field F and inversely proportional to the random energy of an electron

}

	

	 (112 m*u2). Shown in Figure 3.1.11 is the random energy of the electron for the

^ariuus models computed above. While the energy varies strongly with electric

field, it does not vary too strongly from model to model.
4§

i

T

M	
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It is possible to feel comfortable with the relative insensitivity

of mobility results to the material parameters together with the relatively

stong dependence on field. Scattering is dominated by the elastic process.

The drift velocity must saturate at high fields. For the ACORN computations

of Section 3.3, we will assume a single fit to the mobility of all models, an

excellent assumption based on the computed results.

In elementary kinetic theory, the diffusion coefficient D is

related to the average energy and the collision frequency v for randomizing

collisions,

1 <v2'	
(3.1.21)

D	 v

Equating <v o, with G 2 and assuming that only the elastic collisions are

randomizing, we find

D = 3 v ^ek	 (3.1.22)

The dependence of D on v given by Equation (3.1.22) shows that heating of the

electrons will lead to an increase in D. This expression may be rewritten in

terms of u, to yield

D = u aek	 f1 + 1 2	 (3.1.23)

The explicit dependence of D bn the field is contained in the quantity under

the radica;, while the dimensional dependence is contained in the factor out-

side the radical.

E
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Although the quantity Y varies relatively rapidly as a function

of the field, the quantity under the radical is a very weak function of Y

for the range of values taken on by Y. In a first approximation, the de-

pendence on the field may therefore be suppressed. As displayed by Firgure

3.1.11, D may be seen to vary as the square root of the random energy of

the electron, u. This dependence accounts for the substantially slower varia-

tion of D with both field and model parameters. It is apparent however, that

increasing the energy of the electrons does increase diffusion. In the computa-

tional approach to ACORN of Section 3.3 below, we will ignore both the model and

field dependence of the diffusion coefficient. This seems well justified in view

of the calculated results.

As a final parenthetical note, Equations (3.1.23) and (3.1.19)

may be combined to give an expression for the Einstein relation

1 m*u2
D =	 (3.1.24)
u	 e

where

1/2

= 3 
Y	 1	 + 1	

(3.1.25)
1^- 1

The quantity ^ is the distribution dependent coefficient in the general Einstein

relation [Bates, et al., 1962].

The quantity displaying the strongest dependence on both the

scattering model and field strength is the ionization length. The dependence

of this quantity on both model parameters and field may be understood from the

work of Lin, [1979] and Lin and Beers, [1981], which is based on the work of

Baraff, [1962]. The first two of these papers are reproduced herein as

Appendices 1 and 2 respectively because they are the result of previously

sponsored NASA work on this subject. To facilitate comparison with results

34
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in those papers, we present in Figure 3.1.12, a plot of the inverse ionization

length a (in dimensionless units) versus the dimensionless field variable X of

Equation (3.1.11). The plot is specifically chosen to be log-linear. It can

be seen that most of the curves are very nearly straight lines on this plot.

This provides a rationale for extrapolation tc lower field values corresponding

to a fit to ,, of the form

FM
a = aM exp !• -F} , (3.1.26)

where aM and FM are fitting parameters. In fact, this form of a is used in

the ACORN computations within Section 3.3 below.
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an

nat + V	 (n v) = on_ + DV 2n_ . (3.2.1)

3.2 CASCAD STUDIES

CASCAD is a Monte Carlo computer code which uses the distr

tion of ionization sites computed by SEMC to generate an avalanche of E

tronc. New electrons are created at each step, and the resulting distr

tion of charge is used to compute the self-field. When the self-field

a pre-assigned value, the code scores the final distribution of positiv

negative charges. This code was exercised for each of the solution set

ated by SEMC, i.e., 10 scattering models at 6 different field levels.

It is possible to estimate the fields due an avalanche by in-

voking various approximations. A discussion of these estimates is given in

Section 3.2.1. These estimates are used as background for interpreting the

results of the CASCAD calculations. The computed results are discussed in

Section 3.2.2.

3.2.1 ANALYTICAL ESTIMATES

In a continuum approximation to the basic avalanching process,

the number density of electrons n_ is determined by the equation

If the self fie'ids are ignored, then v, B, and D are constants. The equation

is then linear in n_. The quantity a provides a unit of time, while (vI
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provides a unit of velocity. These together provide a unit of length A (the

ionization length) given by A = JvJ/R, or R = a jvj. Equation ( 3.2.1) may be

brought to dimensionless form by scaling out these quantities. Choose the drift

velocity to be in the z direction. Equation (3.2.1) reduces to

^n	 Jn
' at ; + — # • n_ + C 1 0 2n_	 (3.2.2)

where^ 1 = R2	 (3.2.3)
v.^

is a dimensionless diffusion coefficient, and the space and time variables are

now dimensionless. The solution to Equation (3.2.2) is

n_(r',t' ) _ '1°e t o f	 1	
/ 
3 eXp r_(x'2+y2+(ZI—t' ) a ) 1	 (3.2.4)

2 ^clt lL
	 4^jt 	J 

The boundary conditions for the problem are such that the solution reduces to

a d function centered at the origin at to = 0, and vanishes at infinity. The

solution represents a diffusio n, sphere which is translating in space with unit
velocity. The r.m.s. sphere radius satisfies the relation.

<r2 > = 6C lt'	
(3.2.5)

where <> indicates a density weighted average. Larger values of C1 therefore

correspond to more rapid diffusion.

y

11;
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The total number of electrons N_ may be shown to increase

exponentially

N- = N - et'	 ( 3.2.6)	 ^`+

The density of positive charge sites n + satisfies the equation

with n_ in the form given by Equation (3.2.4), the required integral is not

analytically tractable, so that the resulting charge density and electric field

cannot be brought to simple form.

Reverting to dimensional variables, and working in the co-moving

frame (y = x - vt), the magnitude of the electric field F due to the electrons

alone may be shown to be

	

(FI = F1 
fl	

3/2 IYI
/r0

where

_ 3 e ex stF 1	 2	 4,ncor2

e is the electronic charge, co is the permitivity of free space,

r2 =6Dt i

(3.2.8)

(3.2.9)

(3.2.10)
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6
f l 00 = erf2x) _ 2 

e-x

X	 ^/,r x
(3.2.11)

In Equation (3.2.11), erf is the standard error function [Abramowitz, 19651.

The function f l is plotted in Figure 3.2.1. 	 It may be seen to have a maxi-

MUM at x = 1 ( 1yI =	 2/3 r0). The value at *k° m=„•m,^, +e n a9a	 Tho

maximum value of the electric field is therefor(

F
inax = 0.428 F1

A convenient form of this equation may be obtaii

and introducing the dimensionless time to = at

eto

Finax - F 1 F—

where

F = (0.428)	
e8

1	 67e0

Introduce another dimensionless variable C2 by

_ e a2

2 e0 0

where F 0 is the ambient field. Equation (3.2.1

_ 0.428 ( ^2

F 1 -	 167T	 1 ^1
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Equations (3.2.16), (3.2.13), together with the spatial dependence given by

fl (x) in Equation (3.2.11) give a complete characterization of the field due

to the diffusing electrons. The field is radial and centered about the co-

moving origin.

The function ( et /t') has a minimum at to = 1. Assume the solution

is only valid for to > 1. Then this expression for the self-electric field gives

a first estimate of when the self-field will become important. It will not

become important until the field due to the negative charge alone becomes com-

parable to the external field. When this field does become comparable to the

external, however, it does not follow that the total self-field is important.

The field due to the positive charge which is left behind will give a canceling

contribution over much of the volume, leading to a reduction in field.

The electric field due to the positive charge r* satisfies the

equation

a?, (X,t)
at	 = - R r_(

z ,t) (3.2.17)

by virtue of Equation (3.2.7). The total electric field ^ is therefore given

by

t
(x t) = F_(X,t) - a f dt' F_(x,t') ,	 (3.2.18)

0

with - (X,t) given by Equation (3.2.8). Unfortunately, the integral in Equa-

tion ( 3.2.18) is not analytically tractable (the situation is not helped by

working with the potential).

Estimates of the peak field due to Equation ( 3.2.18) are necessary.

It is possible to compute the multipole moments of the charge distribution

giving rise to the electric field (3.2.18). The dipole movement pis found

42
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o	 and	 (3.2.23)

(3.2.24)
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to be

ev 0 - est) .
R

(3.2.19)

Since the total charge Q is simply e st , we have the expression

P^	 2Qa	 .	 (3.2.20)

where 2a is the length of the dipole and

2a = S (1 --Rt)
	

(3.2.21)

After a few generatioi., this tends to a constant (the ionization length). Thus,

a reasonable approximation to the fields is provided by the field associated with

two diffusion spheres separated by an ionization length.

A good estimate of this field is provided by the field from two

spheres of uniform charge density separated by an ionization length. As may

be seen from Equations (3.2.12) and (3.2.9), a maximum field matching may be

accomplished by putting all the charge Q inside a sphere of radius 1.25 r0,

which we denote r6. Three cases may be distinguished:
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Case (I) corresponds to two non-overlapping spheres, while case (III) cor-

responds to two spheres with a strong overlap (separation of centers less than

a radius).

With this model, a rigorous value may be derived for the maximum

field strength. The relation is

F	 F	 ` 2 (0.428) ^2 1	 e t	h	 1
max	

o+ V v	
167T	 3/2f 1t13 	

S6 V	 '	 ( 3.2.25)

c1

where the function h is defined by

h(x)	 1 I x 2 -2x+2 1	 x> 2
2 x(x-1)2

1	 0.618 <x<22	 (3.2.26)

_ 1 ^ (x+2) 1-	 0<x<0.618

2  (1+x)2)

The function h(x) is plotted in Figure 3.2.2. It has a maximum value of unity

for small x (large time). The quantities in curly brackets will be recognized

as the field of a dipole, written in dimensionless form. Note that this de-

pends only on the dimensionless ratio (C2^I-3/2). The quantity h gives a measure

of the degree of overlap between the positive and negative charge. Note that

for long times h tends to unity, at which time there is substantial overlap of the

distributions. Note that for small values of C I (diffusion less important) h

gives substantial corrections to the dipole field for long periods of time.
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In the limit that a sufficient number of electrons are involved

in an avalanche so that a continuum representation is sensible, Equation

(3.2.25) should provide a rather good representation of peak electric field

in an avalanche. The spatial distribution implied by the model should also

be rather good over most of space.

The rather complicated considerations were investigated in an

attempt to understand the CASCAD computations presented in the next section.

As will be explained in that section, the analytical treatment becomes in-

adequate when only a small number of electrons are involved in the avalanche.

Further discussion may be found in the next section.

K
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3.2.2 CASCAD RESULTS AND DISCUSSION

CASCAD compu';es the evolution of a single-electron initiated

avalanche by a Monte Carlo method. The avalanche proceeds in the undistorted

applied field. The self-fiPlu is computed at each stage of the process. When

the self-fields reach a preassigned percentage of the applied field, the pro-

cess is terminated. The purpose of this code is to provide the initial con-

ditions for the ACORN computations of the next section. Unfortunately, it

has not been possible to automate the interface of these two codes during the

current period of activity.

The lack of an automatic linkage between the two codes means that

it is necessary for an analyst to look over the CASCAD output very carefully,

and decide on a procedure for providing an analytical fit to the data. The

data fit may then be used as an input routine for defining the initial condi-

tion of the ACORN routine.

Because of the large number of computations, it was decided to

attempt a universal fitting procedure for the CASCAD output. The analytical

considerations of the previous section were pursued in an attempt to provide a

rationale for a fitting procedure. It was hoped that an adequate fitting of

the data would be provided by using the charge densities given by Equations

(3.2.4) and (3.2.1).

The diagnostic which was used to compare the adequacy of a

possible fit to the computed data was a comparison of the number of genera-

tions required to reach a preassigned self-field level as obtained in

CASCAD versus the same quantity predicted by Equation (3.2.25). Additionally,

the functional form of the fields, as computed by CASCAD, was compared to

the form of the fields as given by Equation (3.2.25) and related equations.

47



l

i

Qualitatively, the fields computed by CASCAD appear to be

describable by the model of Equation (3.2.25) and related formulae. Quantita-

tively, however, significant disagreement was found between the predicted

values of the maximum field using Equation (3.2.25) and those computed from

ACORN. The reason for this discrepancy has been uncovered. The understanding

required to elucidate the discrepancy has shed new light on the avalanche

process.

The understanding and resulting conclusion is as follows. When

the self-fields of an avalanche become important after a relatively few genera-

tions (ti 10), the transition to a continuum model of the process is not strictly

justified. A discrete description of the avalanche will have statistical features

which are not present in the analytic continuum description of Section 3.1. The

transition to a continuum description required by the CASCAD/ACORN interface must

therefore be viewed as a transition to an ensemble averaged description. Further

definition of the interpretation of the ACORN results will be required. Further

discussion of the observations which lead to these conclusions is given below.

For each of the material models and field strengths of Section 3.1,

a CASCAD computation of the avalanche was performed (60 calculatiu..:). The

calculation proceeded until the self-field reached 50% of the applied fi.,ld. In

most cases, this required very few generations (approximately 10). Analyt!c

computations of the number of generations required to reach this same field

level were also performed. The first computations were made using the most

rudimentary estimates of the field as presented in Section 3.3.2 of a previous

report [Beers, et al., 1979]. Preliminary spot checks comparing these analytical
results with the CASCAD results suggested good agreement. A later complete

comparison of all 60 cases was performed. Sigrificant differences appeared.

Because of these differences, it was felt that perhaps the analytic

estimates which led to the equation referred to in the previous paragraph were

too crude. A more detailed estimate was therefore performed. The results of

this estimation procedure are presented in Section 3.2.1 above. The best
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estimate of the maximum field in the avalanche is provided by Equation

(3.2.25). It was believed that this equation should correctly predict the

maximum field within a factor of 2. The number of generations to reach a

given field should therefore be predicted to within differences of one or two

from the actual.

Table 3.2.1 provides a comparison of the number of generations

required to reach 50% of the impressed field for all sixty computations. The

number of generations predicted by Equation (3.2.25) is shown in brackets,

while the actual number achieved in the CASCAD calculation is unbracketed.

It is evident from this table that good agreement between the two is not

present.

The discrepancies of Table 3.2.1 are similar when cruder estimates

of the self-field are made. As noted above, the first approach to explaining

the differences was to obtain a better analytic estimate of the field. As

evidenced by Table 3.2.1, the better estimates did not eliminate the differences.

The second approach looked more carefully at the parameters controlling the

CASCAD calculations.

The most obvious quantity to check is gridding which is used to

perform the field calculations in CASCAD. Figure 3.2.3 summarizes the effect

of grid size. The ordinate of the figure is the ratio of the number of genera-

tions obtained by CASCAD to number predicted, as taken from Table 3.2.1. The

abscissa is the ratio of the axial grid size which was used in the CASCAD

calculation divided by the characteristic ionization length for the problem

(as obtained from SEMC). The figure is constructed as a standard scatter-plot.

It is obvious from the figure that the degree of agreement be-

tween the CASCAD computed result, and the analytical prediction is very

strongly related to the normalized grid size. Large grid size corresponds

to analytic underprediction, while small grid size corresponds to analytical

overprediction. A linear regression of the data is also shown on the figure

(the dashed line). The equation of this fit is shown on the figure.
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TABLE 3.2.1

Comparison of Number of Generations Required for Avalanche

to Reach 50% of Impressed Field CASCAD Result is Unbracketi

dieted Result from Equation (3.2.25) is Given in Brackets.

Cross
Section

Set
Ambient Electric Field (V/M)

4x 109	2x 109	1 x 109	8x 108	6x 108	4x 108

1 9(8) 18(11)

2 5(8) 6(9) 11(9) 18(9) 19(11)

3 2(8) 5(9) 6(9) 8(9) 9(9)

4 5(10) 9(11) 16(12) 18(13) 19(13)

5 5(9) 5(9) 7(9) 8(9) 10(10) 14(10)

6 1(9) 5(9) 7(10) 7(10) 1(10) 8(10)

7 5(10) 7(11) 9(12) 11(12) 14(13) 16(13)

8 5(8) 6(9) 6(9) 7(10) 7(10) 8(8)

9 5(9) 7(10) 6(10) 7(10) 7(10)

10 6(10) 7(10) 8(11) 10(12) 12(12) 17(12)
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A reasonable interpretation of Figure 3.2.3 is that the results

the CASCAD computations are strongly grid-size dependent. This hypothesis

was tested by computing the identical problem for several choices of grid

size. These comparative computations confirmed the hypothesis. Smaller

grid size gives rise to larger values of the calculated fields. Larger grid

size gives rise to smaller values of the computed field. The number of

generations required to reach 50% of the applied field increases with increas-

ing grid size.

The fact that the CASCAD results are sensitive to the choice

of grid size should not be construed to mean that the results are incorrect,

but only that the results are subject to interpretation. Some comments must

be made about the numerical algorithm. In principle, one can easily compute

the electric field from a system of discrete charges by using Coulomb's law

for point charges. It was deliberately decided to not follow this procedure

in computing the self-field of the avalanche. The rationale for the decision

is simple. The purpose of the ca l -ulation is to provide initial conditions

for the transition to a continuum description of the avalanche. The quantity

which is desired is the value of the self-electric field in this same con-

tinuum description. Only if the field is large in this smeared description

will it be important to the subsequent evolution of the smeared description.

If a discrete representation of the field is used, it is very difficult to

decide what is meant by the maximum field. Getting close to a bare change

will always lead to a large field, independent of the i.!onber of particles in

the avalanche. Not only is it desired to make the transition to a continuum

approximation, but it is deliberately intended to exclude this field close to

the bare charge. The force between bare positive and negative char ges fin the

short range sense) is meant to be handled via the primary ionization pro-

cesses.

We are led to the conclusion that a smeared description of the

charge is necessary. Given this choice, the difficulties of gridding become

apparent. If only a small number of generations are required to reach important

I
^w
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levels of the self-field, then the statistical aspects of the avalanche may

dominate. Choosing too small a grid leads to a significant probability that
a

bins will end up with a single charge in them, leading to the same problems

with large local fields as with Coulomb's law. Choosing too large a grid

tends to give cancellation of the fields due to separated charge if the grid

size is larger than the separation distance. The separation of charge occurs

over an ionization distance. The conclusion that crust be reached from this

discussion is that the best one can do in gridding the problem is to choose

the grid size to be very nearly equal to the ionization length. Choosing

the grid either larger, or smaller tends to lead to poor results. This

statement is borne out by the linear regression which is drawn in on Figure

3.2.3. It passes very near the point (1,1). 	 n

These observztions are sufficiently important to restate. A

given set of discrete charges from an avalanche has electric fields associated

with it which can be computed exactly using Coulomb's law. It is desired

to describe this set of charges in a continuum approximation. To do this

requires a choice of distance scale for describing a "charge density".

Equivalently, a choice of distance scale is required for averaging the electric

field. The choice of distance scale must be consistent with the scale of the

physics of interest. More fine-grained distance scales always lead to larger x

local fields, and larger fluctuations in the local fields. A choice of grid

size in the CASCAD algorithm is a choice of the distance scale over which

averages are to be performed. The computed fields will depend on the choice

of grid size.	 f

The behavior of the peak computed local field in CASCAD and its

dependence on grid size is entirely intelligible. The physical distance scale

of importance is the avalanche length. Choice of a grid spacing significantly

larger than this will lead to an averaging over positive and negative charges

which will tend to obscure the effect which is being studied. Choosing grid

size much smaller than this will lead to a very noisy (non smooth) local field

description with larger values of the local field. The optimum choice of
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distance scale is therefore very nearly equal to the ionization length.

For this choice of gridding ', the analytical results of Section 3.2.1 provide

a reasonable representation of the CASCAD results.

Of course, these results were implicit in the choice of algorithms

in CASCAD. The very strong dependence on grid size shown in Figure 3.2.3 was

not anticipated. This strong dependence is due to the relatively small number

of particles involved in the avalanche. Inspection of the analytically pre-

dicted number of generations in Table 3.2.1 shows it to be a very weak function

of the problem parameters. The number of electrons is typically 2 10 = 1024.

For this small number of electrons, the averaging will be highly sensitive to

the choice of scale used for the averaging. The strong dependence on gridding

for a relatively small variation in the grid size simply reflects the small

number of particles on the avalanche.

We conclude that the charge densities computed by CASCAD may be

adequately represented with Equations (3.2.4) and (3.2.7). The parameter t'

is taken to have the value given by Equation (3.2.6) where N -0 is unity and

N is the total number of electrons in the avalanche. These formulae have

been used to provide the initial conditions for the ACORN computations of the

next section.

Because of the small number of particles in the avalanche when

self-fields become important, it will be necessary in future investigations

to determine more carefully the statistical fluctuations about the ensemble

mean given by the above procedure. There may be significant features of the

process contained in these fluctuations.
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3.3 ACORN STUDIE

The computer code ACORN is designed to compute the self-consisten

evolution of the electron avalanche. A series of computations has been perfori

using this code for various values of the impressed field and several differen

material models. These computations are discussed below.

3.3.1 ACORN RELATED ANALYSIS AND SCALING

The computations to be performed were determined by the following	
i

considerations. The equations which are solved by the ACORN package depend on

the three transport coefficients p, D. a (mobility, diffusion coefficient, ion-

ization rate) and the impressed electric field F 0 . The ionization rate B is re-

lated to the inverse of the ionization le.igth (denoted cx) by the equation

IN, = ,IV  where v  is the drift velocity in the ambient field. The quantity (Y is

often referred to as the first Townsend coefficient. Specifying ^x,u and the field

provides a value of 0. We will treat p, D and Lx as the set of independent transport

coefficients.

The transport coefficients are functions of the local field. From

the results of Section 3.1, it was determined that the mobility and diffusion

are very nearly independent of material model for the range of models and electric

fields considered. The quantity displaying the greatest variation with material

model (arid field strength) is the inverse ionization length, a. This parameter

was used as the discrimination variable. That is, it was decided to choose three

material models which had first Townsend coefficients a which bracketed the

apparent range of variation of the ex's computed for the ten distinct models.



Material model 10 (see Table 3.1.1) was specifically chosen as

the nominal parameter set. Variations in material model parameters were chosen

to bracket the parameters of this set. By referring to Figure 3.1.12, it may be

seen that the ionization coefficient a for scattering set 10 is bracketed by

ionization coefficients for the other scattering sets. The values of a on

the high side (slow decrease with decreasing field) are clearly bracketed by

those of scattering set number 9. This set was chosen as the set having the

weakest dependence on field in the regime of interest. The decision on the

low side was much more difficult. Scattering set number 1 had such a sharp

dependence on field that values of a for low field were not obtained in the

SEMC computations. It was decided to eliminate this scattering set on these

grounds. The ionization is simply too low at many field strengths of interest.

Scattering sets 2 and 4 have very similar slopes, but different absolute values.

It was decided to use scatter i ng set number 2 to represent the lower bound on

ionization behavior. Its behavior is most different in that it crosses some

of the other ionization curves.

The final choice of scattering parameter sets dictated that ACORN

computations be performed using SEMC data from scattering sets 2, 9 and 10.

Set 10 represents the nominal case; set 9 represents the high ionization limit,

and set 2 represents the low ionization limit for the computations. The specific

transport coefficients .used for the computations were chosen as follows. The

existing version of ACORN has the requirement that the diffusion coefficient be

a constant, independent of location, field strength, or orientation. The SEMC

computations presented in Section 3 above demonstrate that this constancy is a

reasonable approximation. We have used the corresponding values from the SEMC

calculations in each of the ACORN computations. These values are presented in

Table 3.3.1 below.

3
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Scattering Set

2

2
2
9
9

9
10

10

10

10

10

Electric Field

V/m

2 x 109

1x109
8 x 108
4 x 109
1 x 108

8 x 108
4 x 109

2 x 109
1 x 109

8 x 108

6 x 108

ORIGINAL PAGE I^.
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1.42 x 10-4

1.28 x 10-4

1.24 x 10-4

1.73 x 10-4

1.60 x 10-4

1.59 x 10-4

1.55 x 10-4

1.49 x 10-4

i

Table 3.3.1

Diffusion Coefficients from SEMC
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s for a specific functional

of the electric field. The

demonstrated that the dependence

quite weak. A universal field

for all ACORN calculations. The

The existing version of ACORN call

fit to the electronic mobility u as a function

results of the SEMC computations of Section 3.1

of the mobility on scattering parameter set was

dependent parameterization was therefore chosen

equation for the mobility u is given by

	

u = uM F -A 1 	 (3.3.1)

where

11M = 1.29 m2/V- S

(3.3.2)

A = 0.44

and the local electric field F is expressed in Volts/meter.

As evidenced by Figure 3.1.12, the dependence of the ionization co-

efficient a on local electric field F is reasonably well represented by an ex-

ponential. This type of parameterization has been chosen for all ACORN calcula-

tions, with the specific parameters depending on the material model (scattering

set). The functional form of the ionization coefficient a was taken to be

F
of	 exp [ - --] r
	

(3.3.3)

where a and aM have units of m-1 and the local electric field F has units of

V/m. Table 3.3.2 gives the values of the parameters N and FM for the various
scattering sets.

The computations presented in Section 3.2 below were performed

using the transport coefficients noted above. The values of the ambient field

were chosen to span the regime of interest, and are reported specifically in
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Scattering Set	 cim (m-1 )	Fm (V/m)

	

2	 1.37 x 10
9
	3.55 x 109

	

9	 4.35 x 108	7.04 x 108

	

10	 5.10 x 108	1.63 x 109

F

	

aM exp [-	 ]

Table 3.3.2

Coefficients for the Equation of the Ionization Coefficient
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the results section. As a result of these calculations, certain similarities

in the computed solutions were noted. These similarities prompted an investi-

gation into the anticipated scaling dependence of solutions of self-consistent

avalanche equations. An investigation of scaling relationships sheds further

light on the expected behavior of the solutions. A discussion of this feature

of the problem follows.

The equations which describe the evolution of the avalanche as

solved by ACORN are:

an- = on- + $(n_u ) + 02%	 (3.3.4)
at

'n* - on_	 ,	
(3.3.5)at

^, ►̂ = e n - n_	 (3.3.6)E

where n_ is the mobile electron density, n+ the hole density, r the electric

field, u the electronic mobility, D the diffusion coefficient, a the electronic

charge, c the dielectric jermitivity of the medium, and ti = 'i1vD1 is the ionization
rate, a being the inverse ionization length discussed above and v D = - µF being the

electronic drift velocity. Denote the ambient electric field by F 0 , and the values

of s, and V evaluated at F 0 as B0 , u0 . Let the functions g l (F) and 
92 

(F) be

defined by the equations

u(F) = uOg l (F)	 (3.3.7)

S( F ) = a0 g2 (F)	 +	 (3.3.8)

so that gl and 92 both have values of unity at F = F O . Choose the unit of

time TO to be s0-1, the unit of velocity V  = u oFO , with the unit distance X 

60



ORIOItIAL PAGE 19'
OF POOR QUALITY

given by X0 = 
V 0 

T 
0 

( ambient ionization length). If the unit of electric field

is chosen to be the ambient field F 0 , and all quantities are replaced with their

non-dimensional analogs (which we denote with the " symbol) (e.g., t = Tot),

Equations (3.3.4 - 3.3.6) may be brought to the form

_an_

at = 9
2n_ + v • (g 1nF) + y n - '	 (3.3.9)

= 92 n- 
9	 (3.3.10)

at

V - F = C2 (n+ - n_)	 (3.3.11)

where two dimensionless variables, c1 and ^ 2 have been introduced, and

are given by the relations

Da

^ 1 = 0
	

(3.3.12)

uo F 

en
°

 ,,
' 2 = E 6° 	 (3.3.13)

0

The variable ^1 is the dimensionless diffusion coefficient which

was introduced in Section 3.2.1. The variable Z2 depends on the choice of

the unit of density 11 0* A free choice of n 0 is possible. In particular,

n0 may be chosen so that the variable C2 has a value of unity. The choice

leads to the following expression for n0:
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0 F0
nO	

e1j0

(3.3.14)

= ca0F0

e

}

it	 If 4-h	 iti	 1 h	 dgy.	 a cr	 ca c atticensity

has the form enc , where nc is a critical number density, then n c is identical-to

the value of no given by Equation (3.3.14). Thus, choosing n0 so that 
C2 

has a value

of unity is equivalent to measuring number densities in terms of the critical

number density n c . Recall that the critical charge density (and associated critical

number density) occurs as a saturation charge density near the streamer tip.

previously obtained for a "critical" char a dens

Equations (3.3.9 - 3.3.11) explictly display the scaling properties of

the avalanche equation:. Because the parameter 
^2 

may be chosen equal to unity,

different problems are specified by different values of the parameter ?' I , and

different forms of the functions gI and 92 . In the limit that gl and 92 are

weakly varying functions of the field (and hence nearly unity) different problems

will be specified by the single parameter C 1 . This parameter is the same para-

meter introduced in the discussion of the electron continuity equation in Section

3.2.1. Different problems are specified by different values of C 1 . Other

parameter variations may be obtained by dimensional scaling.

Of course, the functions g 1 and 92 introduce other parametric de-

pendence in general. If the functional form for the mobility given by Equation

(3.3.1) is used, then the function g l depends only on the dimensionless field F,

and introduces no further parametric dependence. Using the fits of Equations

(3.3.1) and (3.3.3) gives rise to a form of the function 92 which has the

expression

k-

92 (F) = exp { 
FM 

(1 - 1 )} F (1 - A)
0	 F

where A = 0.44 was derived in the above mentioned equations.

(3.3.1E't

The second expression in Equation (3.3.14) for n 0 may be compared to an expression
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The function 9 2 depends on the dimensionless parameter (F M/FO ). The range

of variation C 1 and (FM/FO ) for the computed results is noted below. Within

the existing models used for ACORN, these two parameters are sufficient to

describe all possible distinct solutions.

Several other interesting features of the scaling should be noted.

Let subscript "naught" again denote values of parameters in an ambient electric

field	 F0 . Equation (3.3.12) gives an expression for a dimensionless constant

which can be formed from some of these parameters. The set of parameters de-

fining a problem is {D0 , s0 , u0 , F0 , a/d o together with the subsidiary relations

v0 = uOEO , and SO - a0v0 . This entire set of parameters may be characterized in

a slightly different manner. One chooses three independent dimensional parameters

to provide the fundamental dimensions. The dimensions of any of the given

quantities may then be written as powers of these basic dimensional units. Any

given quantity may be rewritten as a dimensionless constant multiplied by the

appropriate algebraic expression of fundamental units.

For the above set of quantities, a convenient choice of the dimensional

parameters is R 0 , v0 = t^oE0 , and E 0 1 The remaining parameters (D O , a/u) may be

re-expressed as dimensionless constants times various powers of the dimensional

units. With the indicated choice of units, the dimensionless diffusion coef-

ficient is given by t 1 of Equation (3.3.12). The dimensionless coupling con-

stant corresponding to e/c (denoted by C 2 ) is Given by

^2 =(e602
cF
	 +

(3.3.16.)

ea0
2

- eTO
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r'l = (0.379) 
• t2 

= 0.533

Figure 3.3.1 Scatter Plot of the Dimensional Quantities

C, and ^2 Obtained From Various SEMC Compu-

tations. See text for explanation.
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The reason for the choice of notation, and the precise relation of 
C2 

to

{ 2 will emerge below.

The quantities C1 and 42 characterize the dimensionless parameters

which can be formed from the given problem parameters. Shown in Figure 3.3.1

is a scatter plot of the values of 4 1 and 42 . The plot was constructed as

follows. For each SEMC computation (10 materials models, 5 field levels) the

values of 41 and 42 were computed. Each SEMC computation gives rise to a pair

(41' 4 2 )• Each of these pairs was plotted on the figure.

From thn plot, it may be seen that the two parameters show a

very wide range of variation, (as much as five orders of magnitudQ for C2).

The plot is rather remarkable because a definite covariance is shown between

the values of these presumably independent variables. A linear regression of

the observed covariance yields the equation

C 1 = (0.379) • C2 .533 •
	

(3.3.17)

This equation suggests that the quantity (^i/C 2) is very nearly a constant over

a wide range of parameter values. This quantity has the expression

2	
D 

2
C^ = e ^
	

1	 (3.3.18 )
C

2	
e ( u0 ) F0

This equation, together with Equation (3.3.17) implies that the transport

coefficients u0 , DO obtained from SEMC computations satisfy the rough equality

D

0

O z (0.379)-	
ee0	

(3.3.19)

^

t
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For the choice of models which have been computed, Equation (3.3.19) is an

Einstein type relation which gives the field dependence of the mean electron

energy. Though the relation (3.3.19) appears very reasonable, there is no

a priori explanation of this behavior. It remains a problem for future

understanding.

The net result of the above discussion is that a SEMC output is

characterized by a single parameter, C 1 . The second parameter C2 is obtained

from ^1 by the relation (3.3.17). Two things should be noted. The first re-

lates to the regression Equation (3.3.17) and the second relates to scaling of

ACORN results. In a preliminary report of this work [Beers, et al., 1981];

(reproduced here as Appendix 3) it was reported that 
C1/2/^2 

was very nearly

a constant for the parameters of interest. It was noted that the quantity

( r3/2 /C 2 ) also occurs in Equation (3.2.25), the ex pression for the self-field

of the undistorted avalanche. It was speculated that there was some deeper

meaning associated with this coincidence. This speculation is now believed

to be incorrect.

The constancy of the quantity (C 
3/2
	 was obtained from an

inadequate (eyeball) fit to the data. The properly weighted linear regression

of the data represented by Equation (3.3.17) yie l ds the approximate constancy

of (c 1 2/Y. This is a very different result. Though the resulting expression

for the Einstein relation is not understood a priori it does have a reasonable

form. Were (C13/2/y2) to be constant, the resulting Einstein relation would

contain an expor.,­ tial of the field on the right-hand side, a very difficult
expression to reconcile. The constant value of (C 1 2/C 2 ) also makes it clear

that this relation is completely independent of the self-field effects of un-

distorted avalanches. There is no relation.

In the same publication [Beers, et al., 1981] it was further sug-

gested that the covariance of the values of C1 and ^2 
exhibited by Figure

3.3.1 provides an explanation of the similarity of the form of the solutions

of the ACORN computations. While this statement is superficially correct, it
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Figure 3.3.2. Scatter Plot of the Quantities

C 1' C4• See text for explanation.
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does not provide the pruper interpretation of the phenomenon. As shown in

the discussion on the scaling of the underlying equations, the physical de-

scription may be cast in a dimensionless form which depends on the dimension-

less parameters L. 1
 and ^2 . The quantity 

C2 
as given by Equation (3.3.13) de-

pends on a choice of the unit density n 0 . If the unit density is chosen to

be n0 = 103 , the quantity 
C2 

takes on the value of C 2 . With this choice, the

equations depend on the two parameters C I and C2.

However, as shown in the previous discussion of the scaling, the

un"t density may be chosen such that ^2 takes on a value of unity. Even if

there were no covariance of 
C1 

and ^2 , the problem may be brought to a form

which does not depend on C2 . The reason that a single parameter defines a

problem is now apparent. There is no predefined natural unit of density for the

problem. The only naturally occuring density is the critical density, a quant-

ity which is dynamically determined. The conclusion to be drawn from these facts

is that the dependence of the solution on the parameter 
;2 

is trivial, and can

be obtained by dimensional arguments alone. In the limit that gl and 92 are con-

stant, problems solved by ACORN depend on a single parameter, C1.

The characterization of the scaling laws may now be completed.

Dimensional analysis is used to bring the equations to the form (3.3.9-3.3.11).

is unity. Explicit use is made of the ACORNA choice of n 0 is made such that C2 

functional fi gs for mobility and ionization rate to provide explicit functional

forms for gl and g2 . The two functions gl and g, depend on the dimensionless

field F and a single dimensionless parameter (which we denote ^ 4 ). The quantity

C4 is simply the ratio F'm/Fo of Equation (3.3.15). Thus, all problems solved by

ACORN in this series of calculations depend on twu parameters, C1 
and ^4 . There

are no other parameters.

The dependence on two parameters is only apparent. Shown in Figure

3.3.2 is a scatter plot of the values of (C l , C4 ) the plot was constructed by

computing the values of ^, and 4 
which occur for the different SEMC computations.

Each point represents a separate SEMC calculation. Again, a strong covariance

4
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with very little scatter can be seen. The relation between c l and c4 dis-

played by Figure 3.3.2 is easily understood. The quantity c l depends on c4

through the quantity G; O . Because the dependence is exponential the small

variation in other problem parameters is marked.

The conclusion is that for practical purposes. all ACORN

computations may be shown to depend on a single parameter. The parameter

r. l (or tp4 ) may be chosen as the discriminating parameter. All other changes

of problem parameters which du not vary the value of cl lead to solutions

which can be obtained by dimensional scaling.
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3.3.2 ACORN RESULTS AND DISCUSSION

A series of eleven computations was performed with the ACORN

code. Transport coefficients were obtained for scattering sets (10, 9, 2)

as described in Section 3.3.1. Scattering set 10 was used for computations

at 5 field values (4 x 10 9 , 2 x 109 , 8 x 108 , 6 x 108 volts/meter),

while scattering sets 9 and 2 were used for computation at three field values

(4 x 109 , 2 x 10 9 , 8 x 108 volts/meter). The rationale for the choice was

discussed in Section 3.3.1.

The plots which were generated as diagnostics of the calculations

were quite remarkable. Visual inspection of these plots leads to a very strong

impression that the form of the solution is the same, independent of problem

parameters. That is, the plots are all qualitatively the same as the plots

which were previously presented for a single computation [Beers, et al., 1979].

This "sameness" of the solutions was regarded as highly significant. A sub-

stan J al investigation was initiated to understand this occurrence. The results

of that investigation will now be discussed.

The inves^igation has been based on the notion of similarity

solutions of mathematical models. The concept of similarity solutions of the

hydrodynamical equations has a relatively well-defined meaning [Landau and

Lifschitz, 1959]. In the simplest sense, it refers to solutions which depend

on certain ratios of problem parameters. The most elementary examples in-

volve one - dimensional time-dependent flows which are not characterized with

either a time or distance scale. The solutions of the equations can be shown

to depend on the ratio ( x/t) only, and not x and t separately, where x is the

spatial variable, and t the time variable. The use of the term similarity is

related to the same word in geometry.

After completing the work reported herein, an analytic similarity

s olution to the one-dimensional avalanche problem was discovered. It is a
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similarity solution in the ordinary hydrodynamic sense. The details of
a

this solution will be reported elsewhere. Its properties have not been

fully investigated as of this date. In the remainder of this section, a

discussion will be given which presents some of the results which led to

the belief that this solution existed. The importance of this type of	 `=

solution is that all possible parameter variations can be accounted for by

properly scaling and interpreting a single computed solution.

The first step in a search for similarity solutions is to perform

a detailed dimensional analysis. The results of that analysis were presented

in Section 3.3.1 above. It was shown that the dependence of the solutions on

the multiplicity of problem parameters could be represented by a single non-

dimensional parameter, together with dimensional scaling.

The second step in attempting to discover a universal similarity

solution is to construct simple, easily viewed diagnostics of the solution. The

plotted outputs of the quantities in two dimensions as a function of time are

too complicated to provide simple measures of the similarity of the solutions

(except in the pattern recognition sense that the visual appearance of the

plots is the same).	 Simple quantitive measures are required. The remainder

of this section provides some of the simple diagnostics of the solution which

were investigated.

The diagnostics presented below were investigated specifically

to determine if the ACORN computation could be interpreted in terms of a

single similarity solution. For the purposes of this investigation, a general-

ized sense of the words "similarity solution" was felt to be important. In

this context, we need a generalized idea of when two solutions are the "same".

The most general point of view is topological. We refer the reader to the

book by Thom [1975] as an example of this generalized point of view. The im-

pact on the investigation reported below was to allow a wider latitude in

the investigation. In all further discussions in this section the word

similarity will have a deliberately vague meaning to allow for these possible

generalizations.
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The result of the investigations is that all the ACORN computations

appear to be interpretable in terms of a single similarity solution.

The simplest diagnostic of the evolution of the avalanche is the

total number of electrons involved in the process. By integrating Equation

(3.3.4) over all space, the following equation is obtained for the total

number of electrons N

a _ <P N	 (3.3.20)

where f A an -
<a> _	 — r--- .	 (3.3.21)

is the density weighted average ionization parameter. The solution of

Equation (3.3.20) is simply

N = O exp 
rft

N 
	
dt' <R(t')> dt'

1
	(3.3.22)

I. 0

For early times, when self-fields are unimportant <S> qd SO where RO is the

value of R in the ambient field F 0 . It is sensible to plot the number N versus

the dimensionless time S Ot. Shown in Figure 3.3.3 is a composite graph on

which the computed results for all eleven computations are shown. From this

plot (in dimensionless variables) it may be seen that the solutions have a

general trend. As the self-fields build up, the rate of avalanching decreases,

giving a decreasing slope to the graph. The number of electrons involved shows

a remarkably small scatter. The mean fit shown on the plot represents the

average behavior. It is apparent that the boundaries of the envelope of points

have a very similar appearance. The composite plot was generated to display this

similarity. Shown in Figure 3.3.4 is a plot of points from four separate runs.

with a distinct symbol for each computation. In this figure it is easy to discern

the distinct smooth curves of the individual outputs. The curves are clearly similar.
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dN =	N2
dt	 SON -

(3.3.25)

aot
NOe

N =	 NO	
SOt

1 + N	 (e	 - 1)
F

9
	

(3.3.26)

ORIGINAR QVA^ITf
OF R00

What is meant by this similarity may be made explicit by the

following recourse to a simple example. From Equation (3.3.20) it is ex-

pected that N is a unique function of time. Assume that the function is

invertible and that the inverse is analytic. Then <S>, which depends ex-

plicitly on t, may be expressed as a function of the density N (chain rule).

Assumirg <S> to be an analytic function permits a Taylor series expansion

about N = 0. The first term in the expansion is clearly 0 0 . By retaining

powers through the first order, it is found that

	

<S> = SO (1 _ _N -	 (3.3.23)
F)

where NF is de fined by

SO _ 
d<S>	

(3.3.24)N
F 

- dN	 N =0

The minus sign has been introduced in Equation (3.3.23) to indicate that the

curve in Figure 3.3.3 is turning down. With the approximation of Equation

(3.3.23) (which is valid for sufficiently small N), Equation (3.3.20) becomes

which will be recognized as the classical equation of population growth in the

presence of competition [Davis, 1962]. The solution of Equation (3.3.25) is
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where NO is the population at t - 0. Figure 3.3.5 is a plot of Equation

(3.3.26) for the condition that NO - 1, and the three cases N F - 10 3 , 105 , 107.

The solution saturates at a value N F making the notation transparent. These

curves clearly have the same form and are only shifted with respect to one

another. Shifting can be accomplished by plotting N/N O versus 60t, and

choosing NO such that NO/N F is a constant.

Equation (3.3.25) is only an approximate expression, valid for

small N. Higher order terms will very likely alter the behavior. In fact,

there are reasons to believe that N increases linearly with t for long times

[Beers, et al., 1978], so that the expansion of Equation (3.3.23) is at best

asymptotic. The illustration serves to clarify the ideas of similarity and

does have some physical content for small enough N.

A second simple diagnostic also shows behavior suggestive of

similarity. Let z denote the distance along the field measured from some

reference position. Let the symbol < > denote density weighted average values

of quantities. For instance, the mean location of the negative charge is

given by

fzr^-(x)d3x
<z> =	 N

It follows from the equation of continuity for the electron density (Equation

3.3.4) that the following equation holds:

d
,tZ> _ <„

z> + {<Bz> - <a> <z>} .

For early times, when self-fields are unimportant, <Sz> z <a> <z > because

of the constant value of a. Thus, for the undistorted avalanche, with

<v z> z uOEO,

(3.3.27)

(3.3.28)
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<z> z < Z>0 + (uoEot)	 (3.3.29;

or

ao ( < Z > - < Z >o) ' 00 t	 (3.3.30;

Departures from a straight line on a plot of n0 <z> versus Rot will depict

the integrated effect of the dynamics on the right-hand side of Equation (3.3.28).

Shown in Figure 3.3.6 is a composite plot constructed from all the

computed solutions of the motion of the centroid of the electrons. Two branches

of the solution are apparent on this graph, but most of the commuted points are

along a single curve. Shown on the figure is a constant acceleration fit of the

data (i.e., quadratic in at). The value of the acceleration in dimensionless

units UO is 2.0 x 10 -2 . The most interesting feature is that the velocity is

increasing, not decreasing. The enhancement of the field due to space charge is

generating a faster drift with the field, faster than drift in the ambient field

alone. The possibility of this occurrence was suggested in a previous publication

[Beers et al., 19791.

Introduce the quantity ds by the equAtion

as = a > - <B>
	

(3.3.31)

Assuming that the initial value of <z> vanishes for t = 0, the solution of

Equation (3.3.28) is

t

dt' <v 
Z
> ( t') exp [- B(t')] jo

0

ft
 dt" 66 (t")	 •

0

<z> (t) = exp [B(t)]

where

B(t') =

(3.3.32)

(3.3.33)
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This form of the solution shows that the behavior seen in Figure 3.3.6 is

rather remarkable. That is, the fit to the equation shows a quadratic de-

pendence on time, while solution (3.3.32) shows explicitly an exponential.

This demonstrates that either B(t) is very small, or that some other delicate

cancellations occur. Of course, the solution (3.3.32) is implicit because 60

depends on <z ,, . This dependence may explain in general the weak time de-

pendence displayed by the computed solutions.

Other evidence suggests however, that the delicate cancellation

is real. Referring to Equation (3.3.23), it may be seen that <a> depends on

N. For short enough times, N depends exponentially on time as given in

Equation (3.3.26). If this explicit time dependence for <P is introduced

into Equation (3.3.28), then the right-hand side contains a term with ex-

ponential dependence, while the left-hand side is linear in time (from the

computed solution). Thus, the other terms on the right-hand side of Equation

(3.3.28) must also introduce exponential terms which provide a delicate cancel-

lation to provide a linear behavj,;^r in t.

The significance of this point is that it is suggestive of a

similarity solution. Because <v z > is not expected to depend exponentially

on time, the simplest solution to the cancellation problem is obtained by

demanding that 0 be small, i.e.,

;6z ' - <z> — 0.	 (3.3.34)

If Equation ( 3.3.34) is approximately  true, it implies a remarkable constraint

on the solution. Recall that R3 is a very strong function of the electric field

(and hence the charge density). Relatively small variations in the field distri-

bution could make large differences in the moments occurring in Equation (3.3.34).

It appears that the negative feedback in the dynamical equations adjusts the charge

and field distribution so that Equation (3.3.34) is approximately true. Because

3 is such a strong function of E, it seems unlikely that there are many field
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distributions which provide the minimization associated with this constraint.

A natural interpretation is that the solution has moved to a stable equil-

ibrium (in some sense) and continues in that state.

Further diagnostics of the evolution may be obtained from the

charge distribution. Inspection of contour plots of the distribution of

charge gives a strong impression of similarity. Visually, there is little

to distinguish the contours for the individual computations from those pre-

viously presented [Deers, et al., 1979]. An attempt to quantify this similar-

ity may be made by considering the multipole moments of the distribution.

These are scalar diagnostics of how the charge is distributed in space. ACORN

computes these quantities as part of the numerical package. It must be men-

tioned that they are computed in a moving frame. The procedure is as follows.

The centroid of negative charge is first computed (<z> in the above discussion).

A similar computation is performed for the positive charge. The origin for

the multipole expansion is then chosen to be at the midpoint between the two

charge centroids.

In Section 3.2.1, a discussion of the dipole moment p of the un-

distorted avalanche was given. It was Down that p quickly tended to the limit

p = 2Qa, where Q was the total charge of the electrons in the avalanche, and 2a

was the avalanche length. An inspection of the dipole moment as computed by

ACORN shows that this behavior persists throughout the self-consistent phase of

the evolution. A plot of the dipole moment in time shows an identical behavior

to the behavior of the total number of electrons involved in the process (Figure

3.3.4). The dipole length shows a very small variation.

The behavior of the quadrupole moment has also been investigated.

Utilizing the techniques of Section 3.2.1, it is possible to derive an exact

expression for the quadrupole moment of the undistorted avalanche. Denoting

this moment as q, it is found that

	

q = 4Q
4

	

	 -sOt
f e	 + ROt - 1l t	 (3.3.35)

	

0	 J
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where Q is the total electronic charge, a0 is the inverse ionization length,

and s0 is the ionization rate. After a few generations, the term in brackets

increases linearly with time. An interesting quantity to plot is the dimension-

less ratio (ga02/4Q) as a function of the dimensionless time BOt.

Shown in Figure 3.3.1 is a plot of .:r s dimensionless ratio as

a function of a0t. The origin of time for each individual computational set

was chosen to correspond to the origin for the number of electrons in the distri-

bution. At first sight it may seem that there is little order in this figure.

It must be remembered, however, that the quantity which is plotted is the ratio

of two exponentially growing quantities. Small absolute errors in either of

the quantities can lead to relatively large percentage errors in the ratio. A

reasonable interpretation of this plot is that the quadrupole moments of the

charge distributions are also very similar for different parameter choices.

Generally they have the same behavior as given by Equation (3.3.35). It

should also be mentioned that each individual set of points for a given compu-

tation varies smoothly with time.

No higher order moments were computated in the ACORN calculations,

as they were not required for the convergence of the numerical algorithm.

All of the diagnostics discussed above support the statement

made at the beginning of this section which noted that a visual inspection

of the plotted output strongly suggested a great similarity of all solutions.

A major portion of this similarity was deduced in Section 3.3.1 where the

scaling properties of the solutions were discussed. It was determined that

the pro')lem could be reduced to solving a set of dimensionless equations

depending on a single dimensionless parameter. The results of this section

have shown that simple diagnostics go further than this and strongly imply

that solutions having different values of the dimensionless problem parameter

are also similar. It would appear that when properly interpreted, there is

but a single problem described by ACORN.
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4. INITIATION MECHANISMS

BecAuse of mounting evidence that the majority of spacecraft

dielectric discharges in space occur for low differential voltages [Stevens,

19801, it was decided to expend the majority of effort for this task in-

vestigating the effects of internal charge distribution. The results of

this investigation were published. This paper, (Beers et al., 19811 reproduced

here as Appendix 4, adequately discusses the effort and may be referred to for

details. It is believed the results demonstrate that the internal charge dis-

tribution has an important bearing on the occurrence of discharge.

The behavior of avalanching and streamer formation as a function

of the manifold material parameters follows from the computed results of section

3. Local field enhancement increases the probability of occurrence, as does a

decrease in scattering probability. The quantitative change is provided by the

computed results. No quantification of the decrease in scattering probability

near various defects has been given. Field enhancement due to the internal

charge distribution has been given in Appendix 4. Field enhancement near de-

fects has not been quantified.

During the course of the research, it was noted ghat the classical

literature on thermal breakdown failed to account for field distortion in the

medium. A proper formulation of the problem was developed to account for the

effect. A brief account of this work was published [O'Dwyer and Beers, 19801

and is reproduced herein as Appendix 5. The inclusion of space-charge distortion

does not change the fact that thermal breakdown is a high temperature phenomenon.

Consequently it is of little interest to the spacecraft discharge problem.

The overall conclusions from the initiation mechanisms study are

that the conditions in space are conducive to low differential voltage break-

down and that huried change is probably involved.
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5. QUENCHING AND BLOWOFF MECHANISMS

85

Laboratory charging of spacecraft dielectrics with electron

beams has led to an extensive data base on the subsequent breakdown. Two

features of the observed process are: (i) the amount of charge cleaned off

in the process is approximately proportional to the area of the sample

[Balmain, 19791 for sample sizes up to 1 m 2 ; and, (ii) the discharges are al-

most always accompanied by the release of electrons from the front of the

dielectric into the vacuum. The electrons released quickly escape to the ex-

periment chamber wall and manifest themselves as a return current to the

sample substrate. The magnitude of these blowoff currents is large, involving

as much as 50% of the total charge released there (the remainder existing via

other current paths). In addition, the peak current scales approximately with

a characteristic dimension of the sample [Balmain, 1979]. The first of these

observations is normally called surface rleanoff. The second is described as

the blowoff current. Certain theoretical aspects of these two phenomena are

discussed I-elow.

The fact that laboratory discharges appear to involve charge

from most of the sample surface suggests that once a discharge has initiated,

it is self-sustaining, and does not cease until the source of energy for the

process (within the field due to the trapped charge) has been relaxed. It is

of interest to ascertain whether the negative tip streamer described by ACORN

has properties which are consistent with this behavior.

Before addressing this subject, it should be remembered that

the negative streamer is not envisioned to be the discharge. Rather, a

Markovian sequence of small streamers, initiated near the positive ends,

is expected to provide the mechanism for discharge and propagation. Because

a pre-ise mathematical formulation of this process has not yet been given,

the discussion of the quenching of the discharge given below must be viewed

as speculative. Explicitly, the discussion is concerned with possible quench-

ing mechanisms for the negative tip streamer described by ACORN. A conclusion



about the behavior of the negative streamer can become a conclusion about

the behavior of the entire discharge only if it is the quenching behavior

of the negative streamer which controls the propagation. If there are slower

processes which control the stochastic initiation of subsequent streamers,

then the above conclusion does not follow. Of course, if any mechanism

exists which tends to quench the streamer itself, it does follow that the

entire process is quenched.

Within a streamer, there are a number of processes which could

be expected to lead to a quenching of the propagation. These processes are:

diffusion, trapping, recombination, encountering a region of field reversal,

encountering a macroscopic or microscopic material boundary, and global

field decay. Each of these mechanisms is discussed in turn.

Diffusion is already incorporated into the numerical ;1odel im-

plemented in ACORN. With the inclusion of this effect, an avalanche appears

to evolve into a propagating, self-sustaining, ionization front. While the

effects of avalanche are smeared out due to diffusion, the effect does not

appear to lead to any mechanism which would stop the avalanche process.

Trapping is not expected to be a viable mechanism for quenching

the avalanche process. Shown in Figure 5.1 are the ionization times for all

the models which have been considered in earlier sections of the text. Typical

trapping times are of the order of 10
-8
 sec. [Hayashi, et al., 1975] or more,

depending on whether shallow or deep trapping is considered. Thus, in order

for trapping to be a competing mechanism with avalanche, the avalanche times

must increase to values which are as large as the trapping time. From the fig-

ure, it is seen that this occurs for much smaller fields than those of interest.

In fact, one may turn the argument around. If trapping times are sufficiently

small as to compete with avalanche, then the avalanche will not initiate at all.

Once it initiates trapping cannot be of concern.

This conclusion may be reached from a slightly different viewpoint.

It was seen in earlier sections that once an avalanche initiates, it quickly
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reaches a critical charge density given by Uc = cr0a0 . Assuming no

cancellation by positive charge, a purely negative charge leads to a

critical number density NC = Joao/e. Shown in Figure 5.2 is a plot of

this quantity for all the models considered in earlier sections. Typical

trap densities are of the order of :0 15/cm3 , with a maximum of perhaps 1017/

cm3 . With the densities shown in Figure 5.2, it is clear that even if the

trapping rate were very fast, all traps would quickly fill, and there would

still be adequate charge in the conduction band to continue the avalanche

process.

Recombination is somewhat more difficult to quantify. There are

several reasons for this. The first is that recombination with the parent atom

(so-called geminate recombination of Onsager [19381) is somewhat difficult to

observe. Second, most observations of recombination have been performed for

relatively small carrier concentrations (<< 10 15/cm3 ). In this regime, re-

combination is dominated by trapping processes. That is, recombination occurs

between a mobile electron and a trapped hole, or vice versa. This trap control-

led recombination tends to give rise to a kinetic theory term which :s linear in

the mobile electron density. At higher carrier densities, typical of those noted

above, direct two body recombination is expected to dominate (the kinetic theory

term is proportional to the product of the mobile electron and hole densities and

increases quadratically with the carrier density). It is possible at the very

high densities associated with Figure 3.2, that even higher order processes may

become important. This has been observed in high dose irradiations of semi-con-

ductors [Van Lint, et al., 1980]. Finally, all the recombination processes are

sensitive to the electron distribution function. For the high fields considered,

significant distortion of the distribution function takes place. This shift to

a heated electron distribution function tends to make recombination less likely.

Even with all these caveats, it is probably still safe to say t%at

recombination will not quench an avalanche once initiated. Assuming a term in

the rate Equation of the form r-n-m, where r is a rate per unit density, n is

the mobile electron density, and m is some hole density (whether trapped or
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free), the rate r is related to a capture cross-section a through a

formula r - <ov>, where < > indicates an ensemble average, and v is the

electronic velocity. The largest quoted value for a [A. Rose, 19631 is

of the order 10 -13 cm 
2. 

This large value of the cross-section occurs

at very low energies. At higher energies, a falls off rapidly. The maxi-

mum value for the recombination rate r occurs at low energy. For electrons

of near thermal velocity at room temperature, the mean speed is about 10 7 cm/

sec. With these estimates of c and v, the recombination rate has a maximum

value of 10
-6
 cm3/sec. Assuming a hole density of 10

18
 /cm . gives a minimum

recombination time of 10 -12 sec. Even this worst case estimate gives a time

which is larger than the characteristic avalanche times as noted in Figure 5.1.

In practice, it is expected that the maximum recombination time is substantially

larger. For example Gross [1978] quotes a value of r = 10 -8 cm3/sec for Teflon.

Therefore recombination cannot quench the processes which are

occuring in the active region of the avalanche, the ionization front. Once

initiated, it will continue. In the body of the streamer, however, it might be

possible for recombination to reduce the conductivity. In this region, the

field drops substantially from ambient levels, and there are significant free

carrier densities present. If nothing further happened, except for the propaga-

tion of the single ionisation front, then the recombination process will take

over and decrease the fr-,e carrier concentration. Further quantification of the

importance of this process requires a precise formulation of the discharge in

terms of a succession of small streamers.

The question of whether a region or field reversal will impact

the negative streamer formation has a strail;htforward answer. It is topolo-

gically impossible for the field reversal region to impact the evolution once

initiated. The reader is referred to Figure 3 of Appendix 4 which shows the

field configuration near the front surface of a dielectric irradiated by a

space-like electron environment. It explicitly shows the field reversal of

the postulated mechan-'Ism [Meulenberg, 1976]. To the right of the zero of the

field, the electric fie l d intensity is negative. Electrons and subsequent
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streamers in this region will therefore dri ft to the right and never encounter

the zero crossing. Similarly, to the left of crossing, the field is positive

and electrons and streamers will move to the left in this re g ion and never

encounter the zero crossing. The point is simple. Electrons are trying to

escape the region of trapped electron density. There is no way to configur•c

the boundary conditions so that drifting electrons will encounter a region of

field reversal.

The most difficult processes to quantify are those associated with

encountering a physical boundary, whether macroscopic or microscopic. For this

reason, the following discussion is primarily intuitive and heuristic. Clearly

if the negative streamer encounters a conductor, then the avalanching process

will cease. Subsequently, the region of space which has been left with mobile

carriers will rearrange itself so that the surface of this region is equipotential

with the conductor which was encountered. For the conductivities computed in

Section 3, this happens very rapidly, ,, 10 -13 sec. The primary process has

been stopped, but the net effect has been to project an "effective" needle-like

conductor into the dielectric. Assuming the potential has been maintained, and

the positive tip is nearer the cathode, the field continues to be enhanced at

the positive tip. If nothing further happens, the process has ended. A repeti-

tion of the avalanche mechanism must be invoked for further spreading of the

process. Further statements must await a formulation of this mechanism of

breakdown.

On reaching a vacuum boundary, -;t is also clear that the avalanch-

ing process must cease. The disposition of the avalanching electron front

thereafter is not quite so clear. Two things could happen. The front could

reach the surface and encounter a potential barrier which stops the electrons

at the surface. Alternatively, the potential barrier could be sufficiently

small that the electrons are energetic enough to penetrate the barrier and

escape to free space. Of course, the experimental evidence suggests that

the la;ter occurs. Theoretical arguments to support this conclusion are more

dif	 1 * to muster. The electrons have at most a few eV of energy above the
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conduction band edge of the solid. The relevant barrier is that of the work

function, or electron affinity. It typically has a value much less than the

work function of metals. Values of 1-2 eV at most may be expected. The major

uncertainty concerns the effect of the deeply trapped space charge (the internal

electric field) on this value. It is not absolutely apparent that all aspects

of this field have been accounted for by merely computing the bulk electronic

distribution function in the field. Indeed enhanced secondary emission of

charged dielectrics has been reported from time to time suggesting that some

lowering of the work function barrier may occur.

In any case, the barrier is at most about the same energy as a

characteristic energy of the bulk electron distribution function. One there-

fore expects a significant fraction of the electrons in the front to escape.

The exact escape ratio depends on the details of the distribution function

and the electron affinity. A detailed formulation and calculation is outside

the scope of this effort.

The effect of the above is that the avalanche ceases, a short

burst of electrons is emitted into the vacuum, and an enhanced field conduct-

ing region is left behind. Further evolution depends on a successirl mecha-

nism for avalanches.

The effects of microscopic discontinuities have not yet been

investigated.

The dependence of the solutions on global field decay follows

from the discussion of Section 3 and the trapping and recombination discussion

of this section. From the scaling laws of Section 3, the characteristic time

for avalanching is 6O-1. The quantity increases exponantially with a decrease

in field. If sufficient charge has been released so that the bulk field is de-

creased significantly below the initiation field, then the trapping and re-

combination times can begin to dominate, thus providing the required quenching.

It should be mentioned that an exact quantitative relation cannot be given
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within the present format f r r the field at which this occurs. As the field

decreases, and trapping and recombination become dominant, the assumptions

which were used to solve the transport equation for electrons become invalid.

That is, it was explicitly assumed in the formulation that the field was suf-

ficiently large that the quasi -free electron approximation could be used.

Transitions to localized states were to be treated as a perturbation. The

limit of interest requires that trapping and recombination become dominant.

In this limit, it is the conduction band motion which is a perturbation on

the trapped states (sometimes called hopping conduction, or trap modulated

drift). The effect is that significant ionization shuts off even faster than

implied by the exponential behavior. What remains clear is that this

mechanism will turn off the discharge, but only after a significant fraction

of the charge has been lost from the insulator.

A review of the paper by Leadon and Wilkenfeld [1978] leads to

the belief that magnetic forces are probably not important in the blowoff pro-

cess. A review of the numerical values presented therein is sufficient to

come to this conclusion. In order to obtain a magnetic force even remotely

close to the ambient electric field, the following parameters were chosen;

electron drift velocity in the dielectric, 10 9 cm/sec; peak discharge current,

6 x 103 Amps, and distance from punch through channel, 10 -3 meters. With

these parameters, the electric field equivalent of the force is 10 5 V/cm.

These values are probably not appropriate. The drift velocity

used is approximately two orders of magn'tude too high when compared to those

computed from SEMC, and measured under a very wide variety of conditions

The discharge time (10 ns) assumed is significantly shorter than observed

for the assumed sample size ( 10 cm). A value closer to 103 ns [Balmain and Hirt,

1980" is more reasonable. Thus, the assumed peak current is probably two orders

of magnitude too high. Finally, the magnetic force falls off inversely with the

distance from the discharge channel, so that 1 cm from the channel, the force

is reduced another order of magnitude. Since it is impossible to emit the

amount of the blowoff current which has been measured 0, 50 A) for samples of

this size from a spot 10 -3 m in radius (see discussion below about space-charge
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limiting), it is necessary to look at larger distances from the punch-through.

These considerations imply that the importance of the effect is an estimate

of at least five orders of magnitude too high for the example presented. It is

concluded that the mechanism is unimportant.

More generally, if these forces were important, then their effect

would be strongly dependent on sample six:- (since the discharge current is). It

is difficult t- conceive of circumstances which would allow t 1 a scaling of this

force (it decreases with current) in such a fashion as to always dominate the

electric field force. More generally, magnetic forces are seldom of importance

in transport processes unless both electric fields are shorted and inertial

effects dominate.

Two other mechanisms can be envisioned for the blowoff process.

The first of these is the termination of an avalanche at the surface, or, more

generally, the punch through of a discharge to the surface, with the sub-

sequent emission of electrons. It is important to distinguish between large

scale or macro-discharges and small scale or micro-discharges in considering

this mechanism. While it is possible that this mechanism is important for

micro-discharges, it seems very unlikely that it is responsible for macro-

discharges.

The reasoning is based on space-charge limiting. The large dis-

charges which have been observed cannot possibly have been emitted from a small

area characteristic of a surface punch through. Under space-charge limited

emission conditions, the maximum current which can flow (I) for an applied

voltage drop V is given by the Langmuir-Child law I = GV 3/2 where G is the

perveance of the emitting system. For the purposes here, a detailed discussion

of G is not required. Instead, we assume a 10 cm  sample which has a grounded

grid 10 cm from the front surface of the dielectric. The perveance in this

case is G = 33 mA cm-2W 3/2 . For a 20 kV potential drop, this gives a maxi-

mum space charge limited current of 30 Amps. This estimate is based on the

assumption of uniform emission from the entire surface. The total allowed
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current will scale roughly as the actual emitting area. Thus, a small punch

through with an area of 10 -2 cm  (which is large for a punch through), can emit

nearly four orders of magnitude less current than is observed. We do not pursue the

quantitative aspects of this line of thought further. It is apparent that a
	

`tip

few small punch through channels cannot emit enough current to account for the

observations of current scaling for macro-discharges.

By contrast, micro-discharges with very small total blowoff cur-

rents could be sustained by this very same mechanism. A surface direct,-d aval-

anche/streamer can arrive at the surface, and the free electrons can be ejected

from the surface. This was discussed earlier in this section. It seems quite

likely that this type of small scale charge emission occurs routinely in charged

dielectrics. The details of this mechanism should be developed for describing

small scale scintillation (probably without damage) of charged spacecraft di-

electrics.

The final mechanism which has been considered is the diffusion

and release of free electrons generated in a subsurface propagating arc discharge.

The idea is quite simple. Based on the conceptual model of a stochastic sequence

of avalanches, it is expected that streamers of the type described by ACORN will

propagate through the subsurface trapped charge layer, with the direction of

propagation parallel to surface. Evidence of this type of subsurface propagation

has been given by Balmain [1979] from observing damage paths in the material

subsequent to breakdown. These discharge channels are expected to branch out

into a tree, which is similar in form to the damage patterns. Filamentary

processes are therefore expected to lie under the entire surface area.

Each of the filaments may be described by a conducting channel of

the type computed by ACORN. In these channels, a large density (see Figure 5.2)

of free electron carriers is generated. These electrons will diffuse outward

away from the channel and a portion of them will further drift to the surface,

where they will subsequently escape.

It is to be determined whether this mechanism is quantitatively

reasonable. The mechanisms which could prevent the electrons from reaching
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n =exp[-t] .
U

(5.2)

the surface are trapping and recombination. Because the holes are relatively

immobile, and the diffusion is away from the regions of large concentrations

of holes, recombination is not expected to be important. Trapping is included

in the following estimate.

Assume that a quantity n0/cm2 electrons are released at depth d

below the surface in a planar configuration. The process of escape to the

surface may then be followed with elementary diffusion in the presence of

absorption (trapping). Let T be the time constant for trapping, and D be the

diffusion coefficient. Define a characteristic distance L by the equation

For each electron released at a depth d below the surface, the fraction (n/na)

which reach the surface is

Some numbers are instructive. From the high field computations of

Section 3.1, D has a value of about 10 -4 m2/sec. Assuming a trapping time of

10
-8
 secs [Hayashi et al., 19751 gives a characteristic length of 10 -6 meters.

Typical depths of the charge layer are a few microns, so that the exponential

in Equation (5.2) is not extremely small. Since a copious supply of electrons	 w

will be generated in the discharge channels, the fraction reaching the surface

will be more than adequate to account for the observed amount of charge released

in the discharge.

The time T required for electrons released a distance d below the

surface to reach the surface is given by

T = d2/D •	 (5.3)
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Choosing d - 10 -6 m gives T = 10-8 secs. Compared to the time scales of

macro-discharges, this is quite fast. The rate of formation of discharge

channels (which would control the release rate of diffusing electrons)

would therefore control the current reaching the surface. The model is

consistent with the blowoff current having the same pulse shape as the

propagating subsurface current. The scaling with area, which has been

observed, is consistent with this process if the subsurface discharge has

the anticipated scaling behavior (peak current proportional to length).

The conclusion is that diffusion to the surface of electrons

freed from a subsurface discharge is a very likely mechanism for the blowoff

current production. Note that emission is expected over most of the surface

area in this mechanism. The released current is not so severely limited by

space-charge considerations, and is comparable with observations.
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6. SUMMARY

A description of continuing work on the development of a

detailed model of arc discharge dynamics has been given. The work de-

scribed is centered around an extensive parameter study which was per-

formed with the SEMC/CASCAD/ACORN family of computer codes. The salient

results of this effort are summarized as follows:

• Code modifi,-ations were incorporated into the SEMC/CASCPU/

ACORN family which permit reasonable code to code interface.

Adequate output routines were also included in the package.

• Dimensional analysis and an extensive computational study

with the SEMC code have provided a characterization of the

single electron distribution function and associated transport 	 b

coefficients over a wide range of material models.

• Analytical approximations for single electron induced un-

distorted avalanches were compared to an extensive set of

computations of the same phenomenon using the CASCAD code.

The problem parameters were those obtained from SEMC compu-

tations. It was noted that self-fields become important

when only a small number of particles are involved in the
3

avalanche. The transition to a continuum description for

the self-consistent further evolution must therefore be

interpreted as an ensemble averaged description.

• An extensive series of computations of the self-consistent

evolution of electron avalanche/streamer formation suggests

that this evolution can be described by a self-similar

solution of the macroscopic equations. The scaling dependence

of the solutions on almost all of the parameters has been given.

I%
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• A model for low voltage differential breakdown in ^i-

electrics was given. The electrons from the environment

penetrate the dielectric and give rise to a trapped charge 	 0

layer in the dielectric. This layer gives rise to large

internal electric fields near the surface which cannot be

reduced by enhanced secondary emission. These fields can 	
Y

become large enough to induce breakdown. The space environ-

ment gives rise to the field configuration of the proposed

mechanism. This is in strong contrast to monoenergetic

laboratory simulations. 	
i

• The likely quenching mechanisms for terminating a discharge

appear to be associated with encountering a vacuum boundary

and/or global field collapse due to a release of sufficient

charge.

• The most likely mechanism for large blowoff current appears

to be diffusion to the surface of free carriers released in a

subsurface discharge.
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PAGE t8	 Electron multiplication in r uliiiii.
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Nii"ed u, he due io rithcr the lesv stnnilen1 ittiuimmenai or the mild sioSulanry of the irso+uwn
prObubibtiev it the numtrtul appivacb to salving the l)ulumann equstion.

1 IN I ROI ► UVI ION

Under the stress of a ver y strong electric field,
156 . 11116 nnduclors and diek-cirics tend to exhibit ava-
lanche breakd o wn. A qu..ntitat ► ve measurement of
the t1tarre multiplication in !i-n )unr'•ons of Si and
(',e was carried out and its implicatme on the ton-
izatinn rate per unit length, as a (unction of the
,tpi,lwd electric field, was analyzed t.vndecades

The fundamental prncesses for charge mul-
tiplicalinn in t,nGds were ast.unied in be analogous
to tlLil (1'ownsend's dg mechanism') W gas dis-
charge. The ionization rate is an important para-
meter which brings out the details of the micro-
scopic solid-state properties from the macro-
sropic characterestics of breakdown measure-
ments. Methods have been developed to calculate
this parameter, most of them involving the solu-
tion of the Ilnitzmann equation in a high electric
field. Thus, neglecting the then-unknnwn bond
structure of silicon, Wollf' expanded the electron
distribution (unction in terms of Legendre polyno-
iniaLs, kept the first two terms, and solved the
llnit:.mann equation in a steady state. Baraff" cm-
pinyed the concept of collision densit y and derived

an integral equation by Ltplace- transforming the
Boltzmann equation which he then solved numer-
ically. To solve the Boltzmann equation at high
fields is generally difficult, as pointed out by Wan-

nier. a On the other hand, Shockley considered
the collisinn processes as probabilistic processes
with exponential probability distribution and,
treating only the electrnns which survive any col-
lision, directly obtained the innizatinn rates in
the Inw-field and high-livid limils. Although the

validity of snnie assumptions made by Shockley
was questinn(d at that time, the concept of expo-
nential prnimbility it, particularly attractive in its
r•iniplicity. It appears that for the calculation of

20

ionization r•^.tes, nne may avoid solving the I)nilz-
mann equation by treating all processes as Airrkov
processes and following the motion of the electron
in a completely stocl,astic way.

In this paper, we will address the calcuLitioti of
ionization rates in semicond,ietors or dielectrics
where b,,nd-structure details can be neglected. A
strung electric field v is appliml to a thick t lab of
material. The clec•trnn whnt.e to ark we will fol-
Icnc starts wi t zero energy in the rnnduclinn rand.
We aasunie that there are three energy rant es in
each of which nnly cont , single. electron prncet s is
possible. Thus from zero to hie (the energy of the
only optical phonon), only acnustic-phonon scat-
tering is possible; between hwr and Er (the inni •r,a-
tion threshold to produce an electron-hnle pair),
the electron can only emit the optical phonnn. as-
suming no optical phnnanb to be prebent so that
the absorption of optical phonons is negligible:
above E t , electron excitation from the valence
band is the only interaction the electron has with
its envirnnment. Wt- also asswnr that the mean
free paths; of these three fundamental processes
sr* independent of the electron enerl^y Further-
m r ire, these three mean free paths are usunted
for simplicity to have the same value A. These
assumptions are in line with previnus wnrks.'-'-a
Most of them can be relaxed iI nne sowishes: the
involved modifications of the equations, to be
derived below, either are trivial or can be car-
ried out with minor effort.

The main quantity we are interested in is the
mean Ionization distance for an electron starting,
with zero kinetic energy at t = 0 (r is the depth cn-
ordinate). An electron, emilling n nptical phrrnnns,
will reach Er at localinn c = (F. ► +	 Since t
and n are two random variableti, the mean dis-
tance t per mean free path is related to the mran
number of optical - phonnn emissinns, n, by

52 M 	 (̂ ^ 1979 The American I'hytical Swrr.
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Setting A'' JL r'6A and It h.' 1', the mean nuur-
four fit cicr,root -hole pairs I,rodurttf 1,1 a e,nitle
elcctrun uiIri^cliry; r ti,ern free loth A is given	 s1s	

I,t, l i't, +,,.,1
IrF 	 r t

^rur^ (1'•iiJt1 • I) -r .	 (2)

'I it I no the rrl it_bAnd side Liket, pare of tic
t iti r i nic.in di ,ctArce A, the eL elms has to Ir Ave l,

.,tier rcacIonr '', in order to I.rndurn a pair. The
ct.art value of this extra 1; van ui,Lince its not Iin-
portant,^ ' Iwo, ever	 Ilene we .VISM,ie A,• A.

Lq i,ttiu i (2) if>,licatru 11641 ^V pri , is a uruvcrt•al

fuocli , in of X And R since it, as will tie shown Li-
ter, del,eiKle only on X and R.

TIW crncol.1 described hr,,, cnutd u' applied to
thr ciolculatsnn of the average- energy M hot elec-
trnne cnierlung from a slab of gwen thickness it..
The proper equation reads

F - r 1r„- iiih a	 (J)
and ii could be obtained exactly in the same way,
as dc ,4crsbed in Sec. 11. The only change is to re.
Race y _ 4 ti in the arguments by y, Though Monte
Carlo results' do exist, the suggestcd approach
1wre gives an exact answer.

11 TIMM'

Let ► be the mean free path of a collision (a star.
kov process). The no-collision probability for an
electron in traveling a distance r is c - 'A and the
protubtlity of one collision in dz is dilh. The
mean collision distance is given by

"'
(r)- 

r-	 kt r 	 de s A	
(4)

the m-an free path of this process.
At some reference level, an electron is released

with both kinetic and potential cnergics zero. Un-
der the influence of a constant electric field 6,
this electron behaves like a particle of some in-
ertial mass in a gravitrtinnal field Now, if this
electron experiences an acoustic (elastic) collision,
it simply adjusts the direction of its velocity with
magnitude unchanjied. If on optical- phonon emis-
sion occurs, the electron not only changes the
velocity dtiection but also+ loses some quantum
kinetic energy (the quantum energy AW of the np-
tical phonon). Since in a conservative field, there
Is a one-to-one correspondence between kinetic
energy and potential enemy, once the reference
level of zero potential is chosen, the fact ttut the
electron loses Ate+ kinetic energy will be equsva.

lent to pushing this electron a distance hj,r6 clo-
ser to the reference level, ar, shown in Fit-, 1.
The probability of having a collision fit

f7i l	 I:Iri tarsi at A coins tin ouUc.il t 1,n4rn 01st Its
location Is rnnweyucntly put at H, As - A. /eeA,

by (fie exponrutial function of the Irnlhh of the lra-
jeclory this electron travels after the latest col-
lisinrt,

For a filarkov process, the history of the elec-
tron before a collision is completely wiped out
when a coVision occurs, In oilie r wordb, the Angu-
lar do tributinn of the cross section of a en;liturin
it; independent of the direction of this incidi-ni elec-
lion, n few examples are in nrder:

(a) Forward scattering. The electron can (only
travel in the direction of the electric force, There
is no el'i::tic collision in this cat.e because the di-
rcction is fixed.

(b) Two -direction scattering. The electron can
ninve either alone; or against the electric field.
Movement in either direction can cause collision
v.ilh the conbtquence of, say, full chance of the
electron fining along and half chance of gning
against the electric field.

(c) Isotropic scattering. The cross section is
isotropic and thus of Markov type.

In general, we can assume the angular distribu.
tion of the probability to be P(0) nn matter what
direction the electron is moving in immediately be-
fore a collision. B is the angle the velocity vector
makes with the horizontal line as shown in Fig, 2.
The electron is at a location y, (v in t/A) below the
reference level, Let r(y,, y,)dy, lie the probability
distribution that the electron, suffering a colbsinn
at y„ will not have any collision before reaching
the height y, below the reference level and having
a collision in dv, at v,- The collision here could
be acoustic or optical. This probability is compu-
table, from classical mechanics, as can be done
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foilnwutg the results of the Apjwndiii. It is ea sy In
prole 111.14f'7lt,,v,t4/v,= 1 if nne realizvti thil,
for a vivrn projectile angle, the prnlubilitt of hay.
irw a cnilt"ir,n regalMesh of hose Orr the s pent 'n
lrat• elh it. unil y , i e ,	 r 1. Once PW in
assil'ned and 7(v , .i,) is enmrutcd, the ionization
rate ran bo otrlainell as foilo> s.

1.4'1

'u T(rv,Nt, n f T(t',,v )dv:
°	 '°

he the prnh.ibility than an electron suffering a cni-
lision at i A ill not have any collib ► on before reach-
ing v,, ( .\ ), the ionization Ihreiihold Inr produc.
in,; an clectrrin-hole pair. Let Av be the width of
the acoustic-scattering region, i.e.,

Av - e64t/. 6u . !tw/e6A • RX.

We can then compute, by the technique of regroup.
ing, the prnbabiht)' of having n optical-phonon
enub.,inns, regardless of the nurul>cr of bcatter-

intta due to acoustic phnnons.
The electron released at zero kinetic energii at

the pntt•nlul reference , level re.rche., k, eithe r
without am' rnilu,iion or with at Ieat.i one colh,,mn
4 3cou*tic or optical). In other widdh,

I . m01. o go
 I x T(,,,Ol'h	 t^,°

After breaking up tho intel!r.ttion limits iian the
atnusiic an y ', (j)tii of rej!iiria, the , I oo tliv i.ght.
hand hide can fit . re plated by

'o

0

when y, is in (tie acoustic scattering region, nr by

r

e

when v, is in the optical cnio,svui r•r.l;ion:

r er	 ar	 f.,. 
1 =,\(0) ♦ 

1	
\'(v,)Tift. ,0ItA . 	 J	 dv, 1 	di';T( t'7,t',)r(t', , 0)• f	 rl^,,\'(1',_ Jt)T ( v,,0)

u	 o	 n	 er

r

. ( r ^dv i	 ody,TO',, ►',— 40T(v,,0).
er

(6)

If (n,, ►r, denotes the numbers of acoustic and op-
tical scatterings, then the first term in Eq. (6) is
(0, 0), the second (1, 0), and the fourth (0, 1). For
the thi rd and the last, we need to break up the in-
tegration f c° and then substitute the appropriate
equation for 1 as before. ?his procedure could be
repeated indefinitely. Collecting the terms with
(ne ,O) for it, a 0, 1, 2,3 ...... -gives

sr

N(0) . I dV,N(v,)T(v,,0)
0
N N

• ( d'e, j dv,N(v,)T(v,, Y,)T(v„0). • • -
0 	 0

n N(0)..6,dv,10(v,)T(v,,0)=N(0), (7)
.!o

where N(v,) satisfies the inlinwtnr inhomni-,eneoub
integral equation of the second kind;

or

,v(v,)=N(v,). r dnr:(t;)T(v,,t',1,	 (P)
to

We can Interprets i; (") as the rennrmalizr'd (by
interactinn with acoustic phnniim .n vcrt.ton of the

bare quantity N(v).
For nne optical-phonnn emission, all the terms

of the type (it., 1), it. a0.1,2,.... need to be collec-
ted and rerrouped. Alter two regrotipings and one
relabeling, the probability of one nhtical emission
is given by

f 'dv,,ti'(v, _'ov)1''ly „01, 	(!a)
e.

where T(v„ v,) also satisfies an integral equatinn,

sr
T(v,,y,) n T(v,,V,)• f dv,T(v„Y,)t(v,,Y,).	 (10)

e

Again, due to the presence of the acoustic -seat -
tering region, the tare transition probability di'n-
sity T(V,,V,) is rennrmalized to t( ► „t,).

A similar prncedure leant, to the fnilnwing prole.
bility for two optical-phonnn emtssinns,

f
dv	 rlc,. .^,.)r(^'., t, — ^c1Th„01	 (11 )

to	 nr

Tle rule fnr writing the probabilit y of anv nom-
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:n	 I l.lt.1Koh f it , LIIl'I ' li'Athis 1% %ill III,	 Sal

ber n( ipituaLl,h,in,sn mission, ern Iw rlilauti•t)
by cx.rn ► ininl Lq (11)	 f',+ ,U) i4cbt.ues ti.il the
electron is releared at + - U, ni.timing all pnr,sible
tnler,tcllnnh A-1111 Ihr' a ,• noise phnnunr,, antd reach
es t, in the optical cmis"nn it%ion F milting an

Optical phonon at +, alld that liv c 1 ►1ni;,ti1; rl'c lo.

t•ttitill In t,. Ai, the tal,.cllfill ,moulder', all pos
s,l • ie, ,ne l+lclmg rein, nuI0 lvr% c f ac nurtic-phuncxs
hcatterint;r. bedorr the neat cyHrc 

at 
140111011 mlis-

suin at V r in the oplical titsihs,on region, a-, dev-
crilied I,y fiA, • +, . A%). 'If r optical . phntin •i vinih-
I,,un at t: puMirt• tic Icx ali • ,it of the electron to

v t - AV. BVIA'VOI 0,0, 1101 i1 )%Itiun All 3 the pair-

1

productimi lhrerhol,i no ,+pticAl enuh*run occurs
while any numiter rd Avowstle scalterinits Ism) take
pi,ice. T his Is represented by ,\ lc, - AV). fteadiry;
equations like kcl. 01) is cntnpletti -ly equiValonl tci

deheribing the physical procehses they represent.
It v, (;uurrl,:c c,1, 11 (1111 t1W w,i, li,c Above prob.i-

bililivs ate detived, Ihal the stun ul all prtsliab,li-
(it, equils unit).

The average nun,t y r of oplical ishnnnn etvistiont
is Liven I,y Ill, , suns of lhr )inducts of the number
of uii'ic,il I,hainns entitled and ll,c coircbpswiding
prob,thilily,

r o	 °
►1.ON(0)+1 1 JIV I 'li,_ Av)T(1',,0)so2I^ dv,R	

^u
(V, -oy l dV,^(1'i,Y,- o))tIr',,0)

r,	 r	 ♦ r	 o

r	 r

• 3 f r0dv, A (y , -- av) f ° dv, l'(v,,v,- AV)
J 

° dv, T(i',,Yr- oy1T(v,.0)• • -	 (12)
r	 Ar	 Ar

LayutK dnwn the proixibili , tes with % e ights (the
number nl phonons enutltal) ab in Fit;. 3, and suns.
minl; ve i ticaily for cac • h t O unm, tine obl.tins a
function G satisfying

G(v,)	 „0) r r°dV, 7'(V,,v,- AV)G(v,) (13)
J.

for each column. When all the columns are
surnmed, the iiiv I expression lot- the average
number of ol, l scal-phonon, emissions is given by

rr

q•
J
 °dyR(v-AyV1(V1.
AV

where

r
H(%,	G(V,).	 °dv,r(+,,V,- A011(V,).	 (15)

fAr

•	 r Ohl OPTICAL IMISSiON

• As .— lao OPTICAL LMist,ioN+

• •	 •	 tic.

• • • •

• • • • •

• • its • • •

U	 (•	 _	 h

	

vic. 'I. M:mrrit^;- a coh;mti Enos C. 	 :.,.r in,ryt all G'n

i ve9 It.

F.quatinn (14) indicates if is a function of V,,,
which is erluicaicnt to the energy ratio X T F, /cSa,
and AV, annther ent'ra rain, ho,'e6ti (+' HN)

Given R and X, ,Qr„r is uniquely determined by

Eq. ("0.

III RESULTS AND DISCUSSION

As tnenttoned in Sec. 11, there are three interes-
ting cases of scatterings: forward scattering,
two-direction scattering, and isotropic scattering.
The first case provides a check of the formula-
tion described above against an algebraic approach
to be published elsewhere.' The second case gives
a hint of hm the backward scattering (against the
electric force) would chaiyle the mean ionization
distance, while the conlpbcation of calculating
the trajectory length is kept In a minumurtl. The
third case is that of the real physical situation
which has been discussed by others in the Litera-
ture.

Case (i): forward scattering.

0 for V, < y, or y , < y,<Ay

exp - (V,- max(v,, Ov)I otherwise.

Dackward scattering (v is or v,) is forbidden in this
case. The N(v) corresponding to this transitinn
probability is given by explmaxlV. AV)- yj, Using
the formul y t ton of Sec. 11,oneoblainse83 - 1, and
11J81 . (1 - RX)r 1T3 - 2 Inr U► e average number of
nptiral.plinnrni emist;ims in the respective cases
nl R i and'- These results agree with that of
the simple Algebraic apprnach•” Fnr smaller R's

(14)
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of the Iyl,v Ii(ty& 1) otlh i tit i-ger -n, numerical
evaiu.ititrti% in a self-c( iiwstent way of flee ii tcgral
equations ini See 11 yield the wine h a-, that of the

algebraic .6-hiliow' torthcanalytic confttn,ation
(if the equivalence of these two different apprtuch.
es , a canjectut v )t„ I Vim . I) - toile"" for R 1,
(pit t 1), ni,-d:, to he proven. the ),(t ) is clefinod as
H(v)= h(v) c t " and h A ish(v) (or off J% <v k %,,. The

dcfirutirn of M o n) can lie found in iii f. 8 'l hat

Ilya conitcturt , is true free err- 1 and : has lievi)

checked
C'abi,60 Iwn-dircrurin scattering with equal

probabilities,

7'(V,.v, ) e ! cap(- l y ,- v, i ).: cxp!- (v, ♦ v, ) ] . 	(17)

No ,)-e''0cosh(y) in thin case, Shown in Fig. 4 are
the transition probabilities for rariousy,. Notethat
an electron, after having a collision at a given lo-
cation, may move against the external electric
torte (backward scattering ` ind have annther col-
lision somewhere upstreatn in the electric field,
further delaying the time at which it will reach the
ionization threshold. Consequently, the mean ion-
izatv)n distance for this case is srnnewhat lancer
than for case (i) above. In Fig. 5, the innization
events per mean free path (N,,,,) of these two
cases for R =0.05 are compared in a sentilog
scale. The one-half chance to scatter backward
does change pN„ substantially for low electric
fields (large E,/e6'A).

	

-1 	 _. . 1 	_	 ,	 ,	 t	 -	 ,

its. OR

X'%

sy	 ^

	

I	 `
	• 1, -1	 i ^ ^ iFrc

ua`
IS0140P IC Il'FF^II

	

I ! ,'4	 .......J _. _i	 i. _ _i __\.._,___J

	

4	 t.	 n	 1 	 ;:	 14	 1(
11/0Ek

FIG. 5, i,.nizatinn events per mean fcer path for vnrt-

	

ous tt, ^s of scn1tvrtn4; 	 V.05.

Ca!:e (iii): general scattering.

t^
T(V,.v,)dv,_	 P(B)d(c'si	 n

1 I 	 I

♦ c-s,tr..,V1 01 ft).	 (18)

The functims S,(v„y„B) and S ,(y„v„B), as can be
found in the Appendix, are the arc lengths of the
electron from v, to the points m the T rajectory at
which the height is v,, V it, the projectile angle
and P(6) the corresponding; probability IP(h)= const
for isotropic scatleringl. Trivially,

N(y ,)= 	 (19)
.

There are three important observations con-
cerning Eq. (18). The first is that (lie angular in-
tegration appears as a multiplicative factor where-
as in Baraff's formulation' it shows up in the ex-
ponent. The second is about the behavior of
T(v,,v,) at some seemingly singular points. For
example, at cos'6=v,,'v,, bntli terms on the right-
hand stee of Eq. (18) are dnrrgont. 1 • hey sum up

to a finite i:ilue because S, - S . a hen cos” t+= t • ; 'v,.
Another exaniple is when cos N = if rn that the fie -
nctnuiatnr- in tht , Iot•arithime fonctinn of S;It,.l,.Nl
in Eq, (Mi hernmcs : cro. The	 lactnr irl
Iran' of 0111. loltarohmir function uhrimi-tteb This
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'u	 I 1 1 ( 11111%	 N1 1.1 /1'1 It.A (lt %	 I N ` , 'I llt^ 5:11

^n,l: filar bthav,nr	 'I lu g( ,•,) It,•h,ivrir of T' (VI v,)

in start of 1th)siia111 cb it Ill,nl tip• dt • Ilnitinil 01

7tt , ,v,I II %-t- II - I:trl • r A c;caIIi ring .,1 % I , the pro Iti

hull% nl for nsvt +-iAleslll, • -ith,n a !tril l ,lv; al t,

Olould It-• (mite I-eraunc tht .,('1 wrr,l of the tra)rc-

lot % .te r lit! III, :1,, • , ,tl !p shrink!, 1t, zvio at lt%i:-1

!.i!"t .+r; di if •	 l"i.tlf's apps-xitiwf- expres.

,, n Inc i (low. t w.lo n a siiwuL i fly At 1', s % I.

'I ht third oh--nrv.ftimi it,tiolvt-s flit nor•malizAtion
of Ttt,., ;	 I`t l ,wl •• n Ilhlautf.ri,a l it.Ill) , slitit.(ies
tI. $ - i t 	l.rt 1 1,tl'(!i (,1 tt • ,I'n,;ll,lt l tnn (,t•t:au!•o it Is

1„I if 	 1t• a i,1rr1% pinlral , lltstit • w•Iv.

An t , i '!,c„lea' %.ay of I arrllnl; out if., trlcula-
tlnn`• 	In ;;, • c • II Is t(, ac l u:t li, c • ntpute the
pr(•1 ►tbility of rn • ptical pi,viwo cnns:;tn i for
n:. 0, 1 .2	 . flue Sant-, T arc • kiln- i, these
prnhtl , ihttef, are just sirlple inte l;rals. The im.
portant .idv.mt .i,tr n! this it-, to v1wrk :uid see if the
suns of all prnbabilitres equals unity , a very strin-
gent constraint nn the accuracy of both the most
fui,danilntat funds(", 7'(i^.% 1 ) Itself and all tile nu-

Isles wal prncodurr • s Invoiv „d. lit Wier wnids,

once 7'(v,,;,) tf set, A prnbablllly distribuUnn is
nhtainvd '.t • hich h tti in lit ^-utntrtd u} to unity to be
correct. This rr t ulrt'n ruI h.ir• livt^n nhe yed to
gu.tr,lntf c flit, r l -rtctm • tis r , thf , rf^fl,puted Iesults.

In art :al ralrt.'.f!Inns. a slt.tdy state will lie

reached• as cnrrert1^ nhstirved by llarafl,' In
which the ratio of adjacent probabilities of emit-

lG'1

i.•.GS

,.	 L

I N O-LI F ;Cf10N 5t^1TLttlt,^,
I

:c•

I SJ1 Y l/ 1 'IC J. 1 11 1 i'14',

.m
O
C
C	 .

10 '

Flt; I.	 !'rtrNtHh1v rlustr!hutmris of two different ecal-

u • rtni- f !n , ti-w. for G ame R alld .1• 'I nc Nurl of cast,

pror.o! , iIT; d,ctribt:honequals unit>

108

lilts: pit .fait! err • 1 ol,tiv-il llilom"tn appi-nae lies a con.

r,l;tnt. Thr constant. called ). Is strict Iy con.

trolll•d It: 7 (%..',,) itself and nt.t; he computed by

uslni: other flit- eigenvelue rl,cthnd or rteraltve

procedures. Using this con,tant. flit- probability

.!t list, p,isvt of the hle,ldy store. amt Ilse runt of the
prol,►Iltlltties t , t`fnre rearhing Ili ,- !;lt'.tdy sla t s, orte

van von,pu:e the totll pr(Ihability whit•h nl,ould be

unity If evcrylhing Is right.

In f i ►t. I; we : hors flit- prohtbl:ity dlr.tributtnn:, n1

s at y r (tit and vast.- (err) for It = U,LS and X1 4. 7Lt-
steady state I!, detcssmit +l uitt'n the fracli(w.li
OiAi e of Uw pi-N ability ratio y * !ey e than 10”
(in 5onw cases 10't).

The result of the present v► r.rk for the ihotropic-
scatterinit case Ili prrseutcd in Fig. 5 for R= 0.05.
Alf:n shown in the filrure Is acurve of Wrall for
ident.t • al assurnptinns. The difference is about a
factor o; 2 at X - 10 where, on the average, an
innization event occurs every thousand niran free
path:, (f,iaa charl'e multiplication). 'rhe dlacrep-
ancy gradutlly disappears as X is dvcrvasol.
Comp.iris•on of Ilardf's µork and the present ap-
prnarh for R -0.01 0imA's excellent agreement for
X (rout 2 to 14! the mean ionization dist.ince In
ti,is case is gcneraily lest, than 100 utean free
paths (fast clarge multiplication). It is noted that
in the slow-niultiplication carves the steady states
always possess probability ratios very close to
1, i.e., y = 1. Since the tqua ! ion for the mean toni.

I•lG 7. ta•nther III Lire. fir0,ired ro a r mean Itto path
as a fundinn of t; I ir•t> for vairbus tvlues of B' Jls./rl.
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_	 1	 I , 1	 1	 t	 1	 1

ems. ^ 
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^ (^ • ^ ^ , n '0	r, 	 ^I

.+ rJ . ^ K f a	 _.

	

, r I r l ^I	 1	 (	 1 '! '1 
N 

it

N	 c 1	 .r	 ^ (. It
II

I	 1	 1	 1	 1 ,1 	 I ^	 f Ii

	

I c r. c iI	 •r C-. l

I	 I	 i	 l	 l	 l i ^'i

1?; r, o. CI 1-• 	11; In

r9 - I — C, N !) C!

f! N N e'1 N C', f^ T
I	 l(	 l	 l	 l	 t	 l

'• N C t-	 r.

I	 _i	 I	 l	 l	 l	 l	 i

(.: 1: C Ci r: ^. t C; I

f, N f, N N C! P: ;.

N C .1 C 1 C ^. r-
.: T T N v e a .-

•+ N N CJ N N CJ CI

1	 1	 1	 1	 1	 1	 1	 1

oc.r-.n or: t- •r
.^ t` 7 Q to N .^ «

.w .r N N N N CJ N
I	 I	 1	 1	 1	 1	 1	 1

H rt N f- G• H G. C
M. .i C tv OR a; c; C)

i i i+ 1 1 1 1

1	 1	 1	 1	 1	 1	 1 '1
^r v = c t- u ^ .=

. o C+ r- v In .i

N N N ti .+ « .r .y

^ 1! 1 1 1	 1 II
N ^• C G^ .f^ J° f- t•

^I ^I	 I	 I "I	 I	 I	 - r	 I
« 1 •' f:

r.^. C,	 ~ n	 1 •• 1

.f

C • _ C c	 c.
C n : _.	 C -.

7atton I1--41nrt Inviolvt • , term ,, prrq,otllrv,al to
1 0 - 0 .trill I 11 - ) t ', the rer,ult t:* wry sensi-

live to 1 . ) w'ten i is near 1. the y b y the prey.
tot (alrulatmo (nr /t - 0.0') and A :- 10, lot- example.
l:, 0". 1 9951 and the >,unl of all prol ►ibilil ► es ih a
t:ati%lacimy 1.(1(112•

The ro,,,ultr nt the calculati o n-, of 'i1fslr all- 0.own
its hit;. 'i, 'fable 1 1 , weh the c01:1pute•d v,flue , :, Tlw
al;rlrment In wtrn thest , rehu:ts and Haratl's wflrk

tt, l;eot • rallt twitor for Large' ` rrir (fa."t wulttpb(a-

tior.) th.w,, I'll- hnl.ill N '. " (tInw otultlpircat1wi).

Ah dehti-0, d al i%v, th,s rn,ty to , clue to the d,ff.•r-

tnl it gaire;l,i r is ill I;r ltul" y'-, or the wild sirtl;u-

larity In U.traff'h exprchston of the appr•oxiniate
transition probability density T(f,, Ed. Th. , over.

all a,;rcrntcnl Is considered l;aod in viewing the

very diflerenl approaches used.

Shockley's ^;rttr for the high-field (mitt concep-

tually corresponds to our h =0, In his simple

model, the high-field Ilnut corresponds to the

case of very hnt elt•c• trons whose enerlttes are

always gr(ater than E 1 . In cur mrxfel, those hot
electrons rannnt produce any nptical phonon, thus

ii=0. 'The argument for olitalntril, 1 r'.w-field hoot

in his mr,del is not applicable tr, the tperial situa-

tion of 1 1 . ' ) = 0. Even if we choose A t k 1 , the

formula for	 is this simple mode-1 reads

Rviltr=c'xl[?X, which dries not nnrrchpond to any
of our curves.

IV. C'ONC'LUSION

A theory is developed for the calculation of the

mean ionization distance In solids. The founda

lion of this formalism is the same as that of the
Boltzmann equation, namely, concepts of proliu-
bility. This shortcut approach clearly relates the
phy^acs to the equations and has versatility in ap-
pl:cations. A simple application, to the isotropic-

scattering case proluces results that generally
agree with that obtained try numerically solvirq;

the BolLi mann equation.

[•0

1 Ir, t,	 G , 1 • r• , I : n of t- a prnle etile•

,
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APVI Sill%

This ap;x'ndiw glVf'S the Inrn,ula Jor the lentth

Of the electim traleclor y und,-r the action of a

ct,natant eAlernal electric (r,rce The ceiling

whore the kinetic enerl • v i,f tl, ,, elertron is tern is
defined as t = , 0. The coordinate z ib ►neasured

dnwnw'ard (Am,, the direction of the force) and

therefore rSr Vol: electron at to is pro.

)ectolO at angleb . 0 (B positive) with resimct to the

horizon, as shown oil 	 b, By clamiral mrch.
anicb, the lraJeclnry lengths from the point z, to
the intert.ectinns with a Wrizontrl line at height
Z, are given W

sin(/	 ^i •	 r	 11/7 t	 1/9

ti,(t,, : ,, u) r, hint cus'r In ( --- rT--	 lr:, 	 ( 1	 ( t -COS'(	 IA I )
'	 (z;; .,)	 a (zi/ti - co ` 1 ' )	 / - 1 r i^	 \ l c	 )	 I

^,(z,, z„ N) z, I sin 6 4 ens 2 0 In 1 ...	 i7i' 
1 • 

slnB ---i i7i) 4 (?: l
ii:( r , . 

eub'e^
i/rl
	(A2)

l	 \(z,/zi)	 (z'/z, -cus O) 	 i s 	t,	 J

11 these lengths and the z coordinate are Scaled
by a and y is defined as r / A, the domenmiMICb1i

trajectory lengths S,(v t , v,. B) and S,(v,, t,, 0) art-

obtained. They are used in Eq. %18).

i K G McKa y amt K. 11. hlrAfco, I'hse, Rcv, lit, IN 
119:,;+1. K. G. McKa y , p hya Itw, !i .l, n77 119541.

loot), twid,inwnta( Prurr•^rc n(tirrfnc Ih's-
rhnrAc ► n Gasrc (Wile) , ,Kew Yorv„ 19391.

'1 1 . A. Wulff. Phya. IICV. 9% 141!. 1195111.
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Stochastic treatment of electron multiplication without scattering In
dielectrics

D. L. Lin and B. 1. Beers	 ORIGINAL (PAGE 13

Rudtatinn :nd Electro+rta8n, etc, Da-mon, Science Applications, Inc. 8110. Old Courthouse Road, Suue j1Q Of POOR QUALITY
Vienna Virginia 21180

(Received 27 July 1980; accepted for publication 14 October 1980)

By treating the emission of o1,64,al phonon, as a Markov pnxrs, a simple anal tic method is
developed for calculating the electronic ionisation rate per unit length for dielectrics. Theeffects
of -wattenng front 	 and optical phonons are neglected. The treatment obtains universal
functions in recursive form, the theory depcnding on only two dimensionless energy ratios. A
comparison of the present work with other numerical approaches indicates that the effect of
scattering becomes important only when the electric potential energy dmp in a mean free path for
optical•photion emission is less than about 25% of the ionization potential. A comparison with
Monte Carlo results is also given for Teflon.

PACS numbers: 77.50. + p, 52.80. — s

I. INTRODUCTION

Interest in calculating ionization coefficients a, in semi-
conductors and dielectrics dates back about three decades.
McKay' derived a curve of a, versus applied electric field
from experimental data. Wolff= developed a method for
computing a, by expanding the electron distribution func-
tion in terms of Legendre polynomials, keeping the first two
terms in soiving the Boltzmann transport equation in the
steady state. This approximation is iostifled at high electric
Reld strengths. Shockley' conjectured that the steady-state
electron distribution function must have a spike in the direc-
tion of the electric field. By neglecting all other electrons not
in this spike, he was able to obtain an expression for a, such
that the logarithm of a, was inversely proportional to the
electric field. This approach is reasonable for low electric
fields. Baraff,' in an effort to unify the work of Wolf!' and
Shockley,' numerically solved the Boltzmann equation. He
obtained an important plot of the quantity a,A versus the
quantity E, lecA for various values of the parameter AwlE, .
In these expressions, the symbol A is the optical man free
path, E, is the energy gap between the valence and conduc-
tion bands, Aw is the energy of the optical phonon, and E is
the external electric field. Further work by Baraff' concen-
trated on the high-field case. A spherical harmonics expan-
sion was introduced and a truncation procedure utilized to
obtain a closed system of equations. A consideration of tem-
perature effects was later given by Okuto and Crowell,' and
Crowell and Sze.' An alternate approach, involving the con-
cept of Markov processes, was studied by Lin."The results of
this approach agree with those of Baran' for the quantity a,
A at small values of E, leirA, but disagree by a factor of two
for larger values of E,leEA. Monte Carlo studies of hot elec-
tron distributions in thin insulating films were reported by
Baidyaroy et a/.' From these investigations an interesting
scaling law for the average electron energy of the steady-
state distribution was numerically obtained.

To date, the calculations of ionization coefficients have

"Presently at Bell I.at+oratorim Holmdel, New Jerzy 077))
"Ptexntly at 11eers Anociates, Inc., Reston. Virginia 22000.

centered around the solution of tSc Boltzmann equation and
concomitant electron distribution function. Though the ef-
fects of scattering are properly included in this approach, the
numerical methods required to solve the Boltzmann equa-
tion may hinder one from gaining a direct insight into the
problem. In this paper, the problem will be approached from
a different point of view.

Just as the Boltzmann equation is derived by the con-
cept of probability (via cross sections), so it will be assumed
that the motion of an electron is a stochastic process. The
two approaches are connected by the cornmon concept of the
mean free path for the underlying interactions. The cross
section multiplied by the number density of scatterer gives
the inverse mean free path of transport theory. For a stochas-
tic process, the mean free path is defined in the usual fashion
as the man distance of free trajectories. The probability dis-
tribution of free paths is assumed to be of exponential form
as described in Sec. II.

To simplify the problem, the effect of scattering is ne-
glected, an assumption which is justified for large electric
fields. This simplification, however, does not eliminate the
essential aspect of electron multiplication in the phenomena
of dielectric breakdown. By comparing the present results
with those of Baran'-' (in which scattering is included), one
can assess the importance of scattering at various strengths
of the external electric field.

II- THEORY

If A is the constant mean free path between collisions,
the probability of no collision occuring for an electron trav-
eling a distance x is exp( — x/A ) and the probability of one
collision in dx is dx/A. The man distance x between colli-
sions is given by the expression

f
" xe - "AdVA—A.

thus providing a consistent definition of A.
In the following, we will treat the collisions as stochas-

tic event, and calculate the ionization coefficient (for the
case that the scattering effect is neglected) by regarding the

x=
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elltv.t of ttic col lni„n• n, the event% of a Markov process.
Thu ♦ an electron is released with zero energy, gains en-

ergy from the constant electric field E, and lo%es an amount of
energy Aro by emitting an optical phonon of energy Aru after
tramversing a constant mean-free-path A. The question to be
addressed analytically is, "What is the mean distance re-
quired for the electron to !ach the ionization energy E,1"

ShockleyY conjecture about the aforementioned spike
is hard on the Markov concept in a triv ial way, as follows.

The number of electrons, per unit volume, which have sur-

vived the transport to energy E, without collisions, is pro-
portional to exp( — E, /etA ► , where the quantity E, /et is the
distance traveled by the electron to reach energy E,. These
are the electrons which can "ionize" electrons in the valence
band, i.e., promote them to the conduction band. The num-
ber of ionizations in a unit length is therefore proportional to
exp( — E, /eeA ):

a, — c exp( — E,/teA ).	 (2)

The results of the present analysis, on the other hand,
indicate a more complicated dependence on (E,/eeA ).

To simplify the analysis, choose the ionization energy
F, such that the relation E, a (n + IMw holds, and let the
quantity AZ, denote the mean distance that an electron will
need to travel in order to reach the energy E„ given that the
electron was released at the origin with an energy E =14w.

There are three basic quantities involved in this prob-
lem: (1) the quantum energy of the optical phonon Arv, (2) the
ionization energy E„ and (3) the electric potential energy
drop in a mean -free-path mA. Two independent dimtnsion-
less energy ratios can be constructed:

R mAru/E, and X a3E, /teA.

An important distance parameter of relevance to the prob-
lem is the distance that an electron must travel in order to
gain from the electric field an increment of energy equal to
that of an optical phonon. This distance is given by the ex-
pression t'4u/et. Moreover, by choosing the mean -free-path
A as the unit of length, as is done in the following, this dis-
tance may be expressed as a dimensionless ratio RX, also
denoted by AZ. The probability that no collision occurs for
an electron traveling a distance AZ is cap( — RX). The nota-
tion aaeexp( — RX) and,8 =RX is used in the following de-
velopement.

Figure 1 illustrates the evolution of the state of an elec-
tron beginning with energy /Am at the origin as it travels a
distance ,JZ in the applied field. If no phonon is emitted (an
event with probability a), it will move to the state (I + 1).
Emitting only one phonon, with probability a,6, it will return
to the state 1. To end up in the state j(% # 1), the electron must
emit (/ - j + 1) phonons. The probability for this event is
aP(l,ii, where P	 ' I ''/(1—j 1 1)!. The probabilities
for mutt .̂ 1c emission , r^- csses are calculated via simple in-
tcgr.ltums using the underlying probability assumption stat-
ed at the beginning of this section. Finally, the electron ltas
the: er mining probability to emit I phonons and drop down
tostatel The probability for this event is not aP (/, 1)because
to the elastic refion op:tc.il - phonon emission is forbidden.
The di,tance factor Z,11 <n ^ 1) is connected by a sequence

L (n^1) ► ^

V-14,

L.2Ar

L-ho
1
1	 ELASTIC 1901 011

L-o	 1

FIG. 1. All possible states of an electron released with evwXy 14w at aipa,

of appropriate probabilities to the distance factors Z,, + dZ
where k takes on the values k = (I + 1), /,•••,l. Thus Zo is
related to Z, by the equation Zo — Z, + AZ. The general
relation is given by the equation

1
Z, — a(Zr„ + AZ) + a PVA (ZJ + AZ)

r	 r

+ I I —a —a	 PVJ) (Z, + AZ )• 	 1jl i

Because the goal is to calculate Zo, it is natural to eliminaw
the intermediate quantities Z, in the above relations by in-
troducing a series of kernals K (/) which satisfy the equation

Z, =Zo—KV)J Z. 	 NI
It is apparent that the first of these, K (1) has a value of unity,
K (l) = 1. By substituting the defining relation of Eq. (4) into
Eq. (3), a recursive equation for the kernel is obtained. This
equation is

aK(I+ 1)=1 +K(I)—a	 P(lJ)K(n

—(1 —a —a	 PVJ) K(1).	 (s)

This equation, together with the initialization condition
K (1) = 1, determines all of the kcmals K (1). By inspection.
the first few are given by

K(2) =a — ' + l;

k(3)=a-: +(I —R!a- ' +1.

It should be noted that Eq. (5) depends only on the two di-
mensionless energy ratios R and X because a and P (ll) are
functions of R and X.

Even though the kernals K (I) are known by solving Eq-
(5). the various values of 7.; (I = 1,2 •••, n + 1) cannot immedi-
ately be obtained from Eq. (4) because the quantity Z„ is still
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unknown. It is possible, however, to compute the special
distance Z. . , by other means, as is described below. The
quantity Z,may then be obtained by an application of Eq.
(4). For electron energies greater than the ionization thresh-
old E, = (n + 1) 6, the electron of interest can raise a va-
lence-band electron into the conduction band (collision ion-
ization). This occurs in travelling a mean free ionization path
Ai which is assumed to be much smaller than A. With this
assumption, the relation Z. 4 , — A, /A is immediately ob-
tained. Setting I — n + 1 in Eq. (4) then determines Zn as a
function of R and X. 	 1

With the mean-free -path A chosen as the unit of length,
the ionization coefficient (denoted by Y) is given by
Y- 114. Thus, the number of ionization events Yin a
mart -free-path A is a function of the two energy ratios

R tee+ 4w/E,

and

X =E,/eeA.

111. DISCUSSIONS AND CONCLUSION

Calculations have been carried out for various values of
the parameter R m=ilt lE,. These results are shown in Fig. 2
for the condition that A, =A.ThecuncfurR — 0(n = colis
obtained by special considerations. In this limit (zero opti-
cal-phonon energy), the electron hoes not Irnc any energy via
the emission process so that the relation Z „A = F-,/cE + A,

holds. This relation implies that Y is Riven by the expresion

	

Y , 1/11 + X) for A,	 A.	 Ihl

Thc: unes of Fig 2 as generate) by the present anal) sis
do not have the simple behavior implied by IUI. (21(a straight
line on a semilog plot), except for the case when R - 0.3.
This complicated behavior is expected because there are
terms of the type exp(mRX I (m - 1,: ,r. 4- !! in the equa-
tion determining K In + I). It is only ror the condition that
m — n a 1 that exp(mRX) _ exp; tr 1, the behavior of F,q.12).

Comparison with Barafl s' acrd Lin's" results, in which
an isotropic scattering effect is included, shows that the pre-
sent results agree with their only for %mall values of
X (X S 4). In this regime, the electric field is so high that the
direction of the electron after an isotropic scattering reverts
almost immediately to the direction of the applied field. On
the other hand, for large X (small electric field), the scatter-
ing effect should be very important. Indeed, the present re-
stilts deviate significantly from theirs under these condi-
tions. The difference is shown in Fig. 3 for a value of
R - 0.02.

The curves in Fig. 2 are the same in general form as
those from more realistic calculations' • "; thus increasing the
ratio of the optical-phonon energy (lino) to the ionization
threshold energy (E,) rapidly decreases the number of ioniza-
tions per mean free path. Though the isotropic scattering
effect must be included in describing the actual physical situ-

R-0.02

THIS WORK (NO SCATTERING,)

1

BAHArF	 —

LIN	 \

(WITH SCATTERING)

2

\
\

\

l0-;
2	 ^4	 6	 8	 10	 12	 14

E I /e. a A

FIG. 3. Itiniratirm events per mean free path as a function of electric field e.
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Ii, a In summary. a method has been derived for solving the
problem (if two competing processes to which the effect of
one of the processes is to produce pin in a continuous r"'
i(xt, while the effect of the other is to diWpate that gain in a
stochastic way. An application of this method to the study of
a simplified model of electron multiplication is dielectrics
yields the essential  features of the electron ionization eoel& t
cient. This coefficient is a central feature of all theories of
dielectric breakdown which explicitly invoke impact ionilw
tion. The relative merits of these various theories, as well ar
theories which do not explicitly utilize impact ionisation (for
example, the theory of Fr6hlich' 1) :s best ascertained from
the literat ure on the subject."

Other applications of the method include the analysaof
ne Ise currents in device physics, this may produce useful
information about the process occuring in the device in tae
prebreakdown stage. The steady-state energy distribution of
hot electrons in thin insulating films subjected to high-eler-
tnc fields could also be obtained by the present method.
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FIG 4 Ion sation length as a funL"on of euerual electric field for CF,

ation, the essential features of electron multiplication in die-
lectrics is contained in, and described by, the present simple
approach.

I he above approach has been applied to a crilde model
of Teflon. The optical-phonon mean free path is chosei to be
A = 26 A -"' the ionization energy is taken to be E;
_- 6.3 eV,'" while the optical-phonon energy is given the

value tier = 0.1 1 eV. "' The calculated ionization length for
this model is plotted in Fig. 4 as a function of the applied
electric field. In the regtoci above 10" V/m (the high-field
region), the reliability of the present model is greatest. Also
shown in the same figure is the result of ix Monte Carlo calcu-
latior. of the same quantity." The Monte Carlo model in -
c ludes the effects of an energy-dependent mean free path,
(; _ 26 A/(; - f$ W 1 "I and elastic scattering. The two
approaches give results which are III reasonable agreement
(within a factor of 2) in the high-field region above 10" V/m
(see Fie. 4).
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Si''.t	 ( 1 1.	 lh.	 r t ,uitv.i lrput d.il•r .tr y a n. , dvI	 1	 tli,-

V e . I t'on •.• a1 tot ► ;lY I f tot.* •iy b (.t m.ct y ri 11 rwdt l ) .utd tho,

t, pl lcd . Ie. trI,	 f It ld .trvtlp111.

F t tIit. I-urp.t+c • of thit. p,lt.lra tot %tu.l y , a %vr\

mitt rfrill m• dt l vnr chnben. 	 Three ,cntte ► Ine ; , r.t-
. e •S.r - wet.• . MIS idervd;	 s. at tvrWk I nisi .icouta 1. ph.otuuK,
enia'.1 t ti of opt 1.11 p l toroms; a t td .%cll.,t 1 , -it of itlterl•and

ttan,iti-n • , it..)III Kit) n Lon i:.itI -n). 	 Thc weat, free path
1. t .tt lust i•- plonlon b.attvrinV wat. taken to b. con-

^ lint.	 the pti(nl phonon spectrum was represented with
a .ingl y opt ical phonon of energy 11 . The cnvrigy de-
pt t ,Jvn, o of l by my .u: f r.e p-it h (to r npt icll phonon emis-
sion li th.tt g iven by S y its (3), while the scale is set
with a v.lrlahle parameter l o , InterbaA transitions arc
de,cribed with a lhreshol

'
1 f. for c • le.tr.n-Mile creatic.n

tcgether with r constant mv.ut l (rev path - I .►bove the
thteshold. Statt-ring from acountic phonons was taken to
he isotropic, white both inclantit pro.csseb were assumed

to of ur without angular deflection.

A material model is therefore described with the
following bet of parameters:

. q . m".' t . i vI ,	 ' 0 .	 ' I .'1'1 . EI).

where y ib the elt^(ronic charger, m• the effective miss
of the electron, and . the relative dielectric constant
of the material. The Eemaining problem parameter is the

impressed electric field . The set of quantities
lm* ". I , E I ) was chosen as the fundsta,- I f *t al dimensional set,
and tie doltzman equation was brought tc non-dimensional

form. The resulting equation is totally independent of
c . The following five dimensionless parameters charac-

tirize the resulting equation: 	 - Z'U/••el' It 
;act*

	 X•
E /(q ^ ): 1	 aI/ae ,Z	 q / Oel ).	 In fact,tl)le linfir prAblem is Independent of :`. For this parame-
ter study, the dependence on the variable.1 I was suppres-

sed. A value of ) was chosen sufficiently small that
ionization occurs Iractically instantaneously once the
threshold is reached. This is a good physical assumption;
and is in accord with other researchers (4,5,6). The
parameter X is taken to be a measure of the electric
field. Up to scaling by the fundamental dimensional set.

a material model is therefore specified by a pair of

values f!O$R).
CnmputAtions of the transport coefficients were
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p  rform► •d 6'1t1, v ► Iiie:, i.f	 ,0 i'i th. , rr:i • ,,	 f ront 11. ►̂ i;
and valuuri of R in the ringu from 14 x 10' 1 .	 2 x 10-1).
Beth the d if t u• 1, n couf f is ient and the m, ,bi l ity w. ry
fund to be rather liv,ensitivc to tli. aj'uv" R an,!	 In
the high field limit (X in the run,, • of (:, 101) whicIt I 
the parameter regime of con:ern for Chit. ii)t y . Both D
and ., vary as a function of the field strength. In

di7-en:;lonIehb unIt tit D tncreases fr„fit 0.I to 0.2 art X is

decreased from 30 to 2, corresponding to electron heat-

ing for the higher field values. Similarly. U decreases
from 2.2 to 0.6 over the same parameter range, exhibiting

the anticipated trend toward saturatian of the drift

velocity at high fields. The mean energy (effective

temperature) shows a slightly greater vnriation with

the parameters ". O ,R. indicating that the coefficient in

the Einstein relation depends pore strongly on these

parameters th. ► n	 or D individually. The mean energy
varies by ab( , ut a factor of five front the lowest fields
t, , tine hibtiest, with ;::t.: ,ttr i. -s	 l u i; in th,.

10-2, 1.B :< 10 -1 1 dependin:, on the values of ,,O.K.
:he quantity must sensitive to the parameter

v„'.ues (and the field) is the ionization length, or its

inverse ► (the first Townsend coefficient . Shown in
figure 1 are plots of n (in units of 1el- ) as a func-
tion of X for 10 differt•nt scattering seti• Given the

rough independence of t. and D on the parameters ' p and

R. the quantity ' ► is the quantit y which characterizes a

material model for the macroscopic description discus.ce.

below. The general features of the curves in figure 1

may be understood from prt 'ous serif-analytical work (4,
5,6) .

S I'RUMMER EVOLUTION

The macroscopic model of the Krlf- conbiStCnt evolu-
tion of electron avalanche requires specification of the

parameters ;,, D and t (1.2). A universal value of D

war, Chosen, given its weak dependence on both material
model and field. A universal fit of the mobility as a

function of field strength was chosen because of its

weak dependence on material model. Finally, the ioniza-,

tion coefficient 1 was fit with the usual form

10 exp (- ` 0/p

where 
•0 

and 1e are the fitting parameters which depend
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.11141 H.	 111i1•	 lull(II,n.11	 It , 1n lit I-%	 dv:• is ralht'l
ot o,1d	 I	 pt t• -I'll 1. .41 ton o f 	 1114• 41.11 .1 of	 ! I ►:ul (	 I .

llit-	 Init 1.11	 „'11.111141n^	 I,^I	 II,l, p It I111t I. lit	 cau-
1 I ' i ts llt	 cgu•,II, n l, 1-4 . 14	 tit tctnliltld . I y 1 1 1I,lw.r,	 A III Imtty
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,1,`11.	 I I ) .	 1144 • I v, l ltit it'll t.• . ► •. t,topih • d wlrtrl flit' I,( • 11	 I lcld
f t hl • .I v .I I .Inr ho ol, I .I I it 	 .I	 : a l u4- 1-I	 •II )'	 „t t ho ,11 1 1 . 1 14-41

t Iv I,I .	 I I,%	 rc!.u! t Int;	 t II,II Kt	 it t:•t t II,ut 14 1 11 w.,	 it 	 .I:,
1114 • I.t.11 ll11'; lit' 111	 10 	 1114 , ml(rot.c till lc	 dcnc l l

 
lit 1 I'll .

In:,114 . 1 t 1 	 n IIt	 t he •v I! 1'.I I II,ut 14111:: 11.1 1; 	lit wi t t hen, it t	 by
t11tI14 • ly trnsl:Itent with ItImlIt- ln.11vtit II tc lit extnta-

tl, ,w; uI	 tlit	 1 , 11maIv t.ndi St. „ I tcd, .4-1l. its, lit- (7).

'1'1„	 1161, 10 •-.iul , I%	 tgu..	 ^:Il	 d r ► cI II Init tl,o t•volulic11

tit	 1111-	 .It.I I . IIsC • it-	 1, 1v	 ht, 	1 , 1 „tII ,.!I1	 ! 4 •	 4 I	 .4 :Ir.I,	 114 • .n	 1, 17,1 1 )

II , t IoIIh	 1!1 . 1+, 1111	 , 1 11	 tw„	 ,lll•d .1 .I, n 14	 1,1tAt I'lt 1 :	 a •1 I 	 t h
IL ► ve I " , n cltol,en t o lit- ' ^I • (1)1,	 f) .111.4	 I - 11 1 ,1 /,	 )

the t 1 1	 ,	 Ii.II.nnctt I	 n'Av C,,	 14-1 • x4 , 1	 :4',1 ,t1-. lilt' Iat 4t , tit
rho mr,ul ctccll-ort 4 tit rpy 1,	 (it , 4 • nct( •,\ .xII at , tcd II,1r,
the f icld in .In Iottl:.tt ion ltt,v.tII.	 '1 114- 1,vkond	 I. tht'
I.It It, oI' two clodI I. • 1 It L ldh; th.1t du.	 .1 :;1111;14- uIcctr,sit

loc,ttcd Inc 14)111..It t„11 Iv11 t 	 itIA ant , .nt.1 tho amblcnt
Ileld.	 I.arper val tit , s of '., citrrvt poll d tI, dIIf tit. I,m
frilly	 t , IitIiv4-1v m, 11 1	 imp ­ 1 	 th.ul tit !it , whiI,	 •1-.,.1111.1

\',I I lit , ••	 4't'l 1 4-•.11,111.1 	I I ,	 I li,• 	 •111141•`.111 	 i , , it,! It It'll.	 1111'	 1,t,. • Il-
t it : ;. 4 It. .1 mc.ltuut• v nl tit, • PAIR-rlpth , • f the cxt4-111,t1
t 11 Id	 In I.crT y of	 IIlc I llnd•II11CI1taI t till , , n1 , Lcl , .11.lt 11,11
1 field. For the model paramotcl t, latcd with 1 tgutc

1, t 1 vatic(. in th4- tango if 14 x I()- 4 , '1 It Il) -I J still, II

' . 1 va r it, :, in it he I atip.- ( `1 x 10- 6 . 7 x ill

Both 1,.Ita tilt' tcl-, .01, )w w1d, • V.II I.ItIkill flit tllt • molt 1

v.11u.r, rhonvil for th! • - Ru	 Ftidy 	 rr Ittc	 InmoAvIs .d 1Ir111
1rcvIIs art;oc lit 1 p it wit11 t 1y.u1c 1. ,I icmtet plot	 if the

Ill: tmtI vallic., of '	 •tad	 W-18 gelle,at I'd .	 on .1 log 1,411.

plot, the v,tluvu (Ii vI.I\	 .1 rumarkallIt • tread.	 Ct:t;ct;-

tl,tlly all the value•► Ili . within it narrow band of It

t:treIgllt Itn4- till the plot.	 The Ili traIKhI line It 	 a

(.lope cif R o ughly l. s , corresponding to it constant value

. I f the qu.tnr Itv 
t'3	

l'. 1 /t. 3 /1 ).Comput.lt lon 1-f t,
3
 for

the varit'ut; model value:: ?;Aow .; that it v;tricv by lcltl.
than one order of migtiltude (corresponding tit 	 hand

width) ovet thita wide range of model values. 	 It Is
poikisible to examine the solutions of lire equations Ilti
a function cif n !tingle parrursctet (say ',) with tl,e re-

m.ltning parametcr determined h) the collvt.ulcv of t,3,

120



ORIGINAL PAGE IS
OF POOR QUALITY

VA

I ,
l'	 `.	 1111 . . l; r, ,.t l) tvduce•+ the t:u.nner of tom

p11i.1t ► , I?v 1 1e , lulr,, A l, 1 v%plora' the par.ln.etet Lpa,- e. 711111

1.;.11111p law iA not Grldvrst•n , d at pTV44.11; .	 It Alould be
n , ta • ,1, h. , ';, %. r ,	 t11.1t	 ',, 1:, the	 ! 1. na n_, 1	 11 , 	,	 p 11 .l,. oter

►.aich occur:. wl.4•:1 otitirating the strength ,^f th-- sclf-
flcld to the unJistor'ad .Iv.11.lr.;hc .Illude,l t, , at,ove (7).

'111e signtflcance of thlb coincidence of parameters is

1111, not undet!,to,,d.
1'h,,ueh strongly Indic It ive, the ab,,e • u se ll inl; d ib-

cvs.-ijon 11. ovtrrsin,plIfied as it only concerns itself
with the tvt , rall dimcn y ional abpects of the , problem.	 In
fact, the transport coefficients	 and . have a rather

strung dependence on the field, and vary signtflrantly In
n; .ice an,f t ime during the e v..lut f n of the o t v.ir vr.
the parx.,'ters dotcrmining this v, ► illtion add further
!lrensio:lle, , vat 11!.lt! to the pr.'hlcm.	 'ILL no-, •.Uil 1 t
that the dependence : ls4o :.Ite 'd with this coefficient
•:,1rl it Ion in a !^inj;lo problem miy.',t have a ma .Or i^1,,ILt
011 t11,' "01'tn 01 the ,01 Ut On r- Ia'.Id t'' .111 lniticll OIJiie of

:,,ml"ut.,t ions• ba-od prmiril'; on distinct 1 •:e functional
tortn, It r tho t:an'.port c,, cffiLients.	 Referring; to
figure I, It was tec.ided to compute the evolution f„r
the ionization rut'ves .ixsoclatcd with model numbers 2, 9
and 111, c„mpuI at ions being performed uvrr the span of
I lrid x.11 1r, 1 •	 the f1 l;ur, .	 1'nf o rtun:ltel •.. [hit: cholcu
lead t•' a set'ics of comput.i , Ions in which the Jir1u1,1„n-
1.;,. p.1r meter	 only v.lrle,t by two or,tcr!; of magnitud.,

x lU”	 4 x'10 -1 1, ' z (10- 2 , 8 x 10 -1 1 rather than

w— r the full r. ► nge implied by the previous discussion.
L ,,1,1t.1t t„t, of soriv of the sm.iller values of '„ await:;,
f uture work.

1[ f I Icw!, from Ow defining; equations that tha tn[al
I. I Owl 0' el,". t 1 1IS in th,• stre.lmcr p ows expont.- It fa l i :•
a.•	 •,,v	 4here	 ` indicates an electron ;lenity
wetp!,tod avoi)age of th, 1, ni^'•lt i ,r, rate.	 7h•' qua-t ity

provides the simplest diagnovtic on the distribution
of elect ron • . and f tell, durinr the avalanche.	 Shown in
f I',mt, . .Ire the result!: of eleven separate computations
avf the growth o f the number of electron:, as a function

of .^t.	 The solid line 1s a butt fit to the set of al 

p , int!, in this compo ,it y f igure.	 Individual data points
.Ire indicated to show the ,;tread. The f igurr suggests
v,.'ry %trong;ly that seemingly dificient cumput'ltions are
in f,:ct ve-y much the same when viewed in appropriate
dimes; 1011ltl,ti 	 vari.1biv.'.
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.1 n, t  t-1	 1'.11.l11. • t. t	 t.hl,!I I , 1, vIJ, +. .t .11.1i•n,-•.t I,	 ,,t

tb t- ev„l kit I, , n is tit- pt-ak th.ttr;e .:cnt.It y (01 the m.lxi -

n;um I!rll! enhtitcct,l.itt 1 .	 !It 	 I,.1:lavt. unite., tlt.

-tilt icil-atrd I , vak cha ► i;, dettt11ty im giv.'n by :., -I •	 lit-
, 
I i

. c J	 11)1 eacII , , I the st . 1,.1t.1tk .omput.t ions th , l.,I above

11,1t• ealit-	 1	 Itt.ttne.l .,!; it t•..tit1.1t i„I v.11uc	 hln.,ll^.
tot- pot It ion of the cel;troid of nr4at i.t: ch.ltgc its .1

Iun.tit'll o 	 t t ►nc rely h. ft • I Iowt-.l In ulmt its tol,It m 	 unItu.
Thest- po!nts al p.,, lic toughly on tilt- smviv cuiv, , with
the stmt- dcgtct- of ncattel as in IIV.Ure	 Thu resuItlnK

	

tltltI vv I oc itv 1a I , t , 111F.• .it'.t-IvI.1tcd .11 a title of	 I.4x10-
lill ,Iiliww,tonIt. "S	 unit:: vl)I).

Thr ab, , vV di.IgIIost ict., top,ctIicI with del.tilvd cx-
aminat 1, 111 ,`I tilt' ev,11Ut I,'11 ,'1 tht- vat IOUs C, + mt , Uttit it,nh

vct y lit Ionitly tmep-st that tIw ev•11ut it'll of neg.lt ivr-
tlp att.•.,me ► . tends t,1 it similarity solution ovet +1
large ran i;c of problem pit rametcr val tic s.	 I'll is type of
behavior nut  be expected ftom t:ystcm:. exhibiting negative
f cedb:tck.
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'	 Figure 1

i llut of the inverse ionization
length L (in units of 1 e1 -1) vorsus
t1k dimmmsionless field variables
Et (q t ^cj) or ton different materiel
mxlels (sve text for discussion of
rtuteria1 M-XiL - I ) .
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Figure 2

Plot of the number of electrons in
the streamer similation as a function
of the dimensionless time Pt. the
plot is a ocposite of eleven distinct
oaautations for different problem
parameters.
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Reston, Virginia 22090

ABSTRACT

The primary purpose of this paper is to
suggest that low differential voltage, small energy
discharges associated with internal buried charge may
be a dominant mechanism by which stored electrostatic
energy is released from dielectrics on board orbiting
spacecraft. The evidence from space as given by
Stevens l is not1d. laboratory experimental evidence
of Frederickson is invoked to demonstrate that dis-
charges occur under circumstances with n external
potential drop. Previous calculations 3 r $ are then
reviewed which indicate that significant internal elec-
tric fields can exist in dielectrics charged with multi-
ple-kilovolt electron beams under conditions involving
little or no external potential d{op. The internal
discharge mechanism of Meulenberg is -ecalled, and
new calculations suggesting that the space environment
Is conducive to the formation of the conditions re-
quired by this mechanism are presented. Experimental
procedures for checking the suggestions of the paper
are developed.

BACKGROUND

Early in the history of congern with the
spacecraft charging problem, Meulenberg 5 proposed a
mechanism for break-down in electron irradiated dielec-
trics which is critically dependent of the character of
the electric fields very near to the surface of the
material. For a variety of reasons, subsequent experi-
mental work did not concentrate on the conditions re-
quired for this mechanism. Most work was directed to
configurations resulting in large surface to substrate
differential potentials. For these charging conditions,
drb,rxerela0nd distinctive discharges were observ-

e b	 88	 The conditions of the re orted experi-
ments (referred to as "Standard" herein are those
associated with a monoenergetic electron beam incident
on a sample with a grounded substrate. For sufficient-
ly large beam energy and/or current, discharges were
universally observed. The area scaling relationships
that were expected and observed 7 suggested extremely
large amplitude, long pulse width discharges for the
large areas typical of spacecraft. Reports 10 of the
observation of these monster discharges under "standard"
conditions lead to the realization that if this type
of experiment were indicative of space conditions, then
the spacecraft charging problem was extremely severe.
Direct measurements l0,I1 of the electric and magnetic
fields associated with these large discharges directly
supported the idea developed earlier that these large
current discharges were associated with a space-charge
"blow-off" current.

Within the past year, the idea that the

discharges associated with these "standard" simulations
may be significantly different from those which occur
in space began to evolve.

Recent experimental work by Frederickson2
has shown that most types of common spacecraft dielec-
trics undergo spontaneous internal breakdown when ir-
radiated by h"gh-energy electrons (% I MeV). By in-
ternal breakdown, we mean that the experimental con-
figuration is such that there are no external potential
drops across the dielectric sample -- breakdown must be
caused by field internal to the dielectric. while
these results are no particular surprise to workers ir.
the area, and earlier workl2 has shown similar effacts
in more complicated configurations, Frederickson's re-
sults do establish the presence of the affect beyond
doubt. The results also establish the fact that any
program designed to ascertain breakdown criteria for
spacecraft dielectrics must consider far r.,ore detail
than has heretofore been assumed. In particular, the
measurement of external potential differences under a
variety of charging conditions is clearly sufficient
to characterize the onset of breakdown.

In his paper. Frederickson 2 explicitly
notes that the generic features which characterize the
accumulation o f charge for MeV electron irradiations
are no different than those which characterize multiple
keV electron irradiations. The implication of this
statement is clear. Irradiations with multiple-keV
electron spectra characteristics of the spacecraft
charging environment can be expected to lead to break-
down even when external potential differences are small.
Supporting evidence for this viewpoirt is also becoming
available from space. Stevens ll has pointed out that
SCATHA data indicate that breakdowns are occurring on-
orbit, despite the fact that only small differential
voltages are being observed. The appearance of small.
relatively benign discharges, under the conditions of
small differential potentials suggests that the "stan-
dard" simulations are giving rise to qualitatively dis-
similar discharges caused by a different mechanism.
The internal breakdown observed by Frederickson 2 and
proposed by Meulenberg 5 is certainly a candidate mecha-
nism. The conditions required for this mechanism in
a space-like environment are explored below.

CONCEPTUAL MODEL

Previous papers 3,4 on the subject of in-
ternal charge distributions in dielectrics subject to
spacecraft charging type environments have provided the
computational frame work for understanding the dielec-
tric conditions of importance for internal breakdown.
Indeed, it was explicitly notel in these publications
that low-differential voltage internal breakdowns were
a real possibility.

' Work sponsored by the National Aeronautics and Space 	
The non-charging beam introduced in Refer-

Administration, Lewis Research Center under Contract 	
ence 3 is a convenient device for understanding the

Number NAS3-22530. 	 essential features of internal field buildup. A

001P 9499 1 01 ' i :4x ► a129SM.74 1"] If F F	 4529
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non-charyrng beam for a part r^-uO Or mrtrrtal i- a uc m.,
for which the surface emits precisely one electron for
each electron incident on the , rterial. !',utnin, that

the emitted electrons are p rirwrrly secondariespp^.vntt-
ted from a region very near the surface 	 50(-	 A ), and

that the primary electrons Ven,_tr.te sw ^tantiallj d,cp-
er than the secondary emission region, it is apparent
that the prinrry deposition leads to a charge ,epara-
tion in the nateri,il. This region cf sepirated chorye
contains an internal electric field (even though there
is no external potential). For conceptual purposes,
assume all secondary charge is emitted from the precise
geometric surface, and that all primary charge is de-
posited at a single depth d. Let o be the conductivity
in the region from the surface to a depth d (assumed
for simplicity to be uniform). The internal electric
field is given by the well-known expression:

E-( I -exp(-°t))o

where J 1s the beam current density, and c the permit-

tivity of the medivar.

Essentially all qualitative features of the

internal charge and field buildup any be ascertained
from this expression. The magnitude of the internal
field is limited only by the conductivity of the irrad-
iated region. Writing the conductivity as o0 + o

wherea is the ambient conductivity in the unirM ia-
ted 

ma 
t, 	 and eR is radiation-induced conductivity

(RIC), the various regicns may be explored depending
on whether o0 or oR is dominant. We will only consider
the circumAnces in which c is dominant, because
most materials of practical A terest exhibit this domi-
nance at levels of current characteristic of exoatmos-
pheric environment.

If o is linear in dose rate, the internal
field will saturate at a maximum material dependent
value, which may or may not be above the breakdown
strength for the given material. if 

05 
is sub-linear

in dose (as it almost surely is for hih enough dose
rates and/or doses), then the field •.3y be driven arbi-
trarily high by increasing the driving current. Break-
down is guaranteed for sufficiently high current level.

fxan,' nation of the range-energy relationship
for electrons shows that the mean energy loss over the
range of the electron decreases with increasing primary
electron energy. It follows that the mean volumetric
dose throughout the deposition region decreases for in-
creasing electron energy. Thus, for a given material,
and given current level, an increase in the energy of
the primary electrons will lead to an increase in the
internal field.

Both the above statements are easily quanti-

fied within a computational model of the type previdUs-
ly given. 2 . 3 We prefer to explore the possibilities for
achieving the above conditions. A single monoenergetic
beam can be non-charging as noted in Reference 3. For
a given material, only a single incident energy can
satisfy the conditions, so the possibility for varying
the second parameter (depth) is not available in this
configuration. The simplest way to achieve non-charg-
ing with a given monoenergetic electron beam is to pro-
vide a second source of irradiation which produces a
copious supply of secondaries. Possibilities for the
second source are: low energy electron beam, ion ber,n,

photons. The thiro choice is less desirable for mater-
ials which are photo conductive for the wavelengths'of
interest, as it introduces yet another variable into
the problem. Once the basic effect is quantified, of
course, it will be important to include sunlight for
full environmental simulation.

Havrnq c1,OSen a surtace neutralizer, the
basic experimental program involve: varying the energy
and current density of the penetrating beam until break-
down occurs. The location of the breakdown thrEshold
as a function of deposited charge and beam energy should
provide an excellent emperiu 1 _riteriun fo ► internal
breakdown. Combining such experiments with corputs-
tiuns for the configuration will permit the identifics-
tiun of internal conditions at breakdown, as has al-
ready been shown. l It might be speculated that break-
down will ocpr when internal fields reach levels of a

few times 10 1 V/m - the breakdown levels found by Fred-

erickson.)

The point of this section is very simple.
Their exist free floating front surface charging con-
figurations such that no potential drop is developed
between the surface and substrate for which significant
internal fields are developed. These large fields are
near the front surface. if larp enough, they can lead
to breakdown in this region.

RESULTS

A number of calculations have been perform-
ed to compare the internai :harge and field conditions
in a typical dielectric due to a monoenergetic electron
beam to those due to a space-like electron distribution.
The space-like electron environment which was chosen
for simulation was an isotropic Maxwellian with a temp-
erature of 11.5 keV. This environment was taken to re-
present the hot electron portion of a double Maxwellian
fit to the electron distribution function during •
severe substorm. l - The electron. transport model for
determining conditions intgrior to the dielectric has
previously been described. J The model is one-dimension-
al. To specify the charging, the incident electron
distribution function is required as a function of the
surface voltage. For true space-like conditions, this
specification reouires t:,e solution of the coupled
Poisson-Vlasov problem for the dielectric/space craft
configuration of interest. This type of solution can
be obtained using the NASCAP1 4 computer code.

For the purposes of this study a much
simpler appraoch was chosen. Two distinct realizable
configurations admitting analytic solutions were chosen.
The variation from one solution to the other is believed
adequate to be indicative of the type of change which
might be expected were the details of the actual dis-
tribution function to be used. The first configura-
tion is that of a semi-infinite surface, a one dimen-
sional problem in which the pertinent dimension is the
distance from the surface. The equations describing
this simple situation ere well-known. For an isotropic
Maxwellian at infinity, the incident distribution is
due to an unperturbed Maxwellian in the directions
parallel to the surface, and a shifted cutoff Maxwellian
in the direction perpendicular to the surface. This
represents a shift in both energy and angle as a func-
tion of surface voltage. For larger surface voltages,
the incident flux is more nearly mono-directional. The
second configuration is that which is familiar from
spherical probe theory. That is, the surface -,s uni-
form and spherical and the object size is small compared
to the plasma Debye length. The incident flux in this
case is that due to a shifted and cutoff Maxwellian in
the total energy. The flux remains isotropic as a func-
tion of the surface voltage.

The sample chosen for computation was a 2
mil thick Kapton. The computations were performed with
the following normal materials parameters: relative
dielectric constant, 3.45; density 1.23 g1cm 3 ; prompt

conductivity coefficient, Kp 	 1.16 x 10- 117 mho/m/rad/
sec; dark field dependent conductivity given by the

4530	 ORIGINAL PAGE IS
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data of Adowa. et.al .; 15 secondary yield proportional
to surface dose a`4ording to the model of Burke. Will
and Fregerickson, ll6b using the data compilation of
Burke.	 Three comf+utations wore performed, rine u-Any
a 20 keV mono-energetic normrlly incident be4m (label-
led 14M); one using the surface flux taken from the
one-dimensional model noted above (labellod MAX), and
one using the surface flux taken from spherical probe
theory noted above (14helled S pT). For the latter •wn
uses, the distribution at infinity is the 11.5 keV
isotropic Maxwellion noted above. All three cov,puta-
tions were performed with a unperturbed current density
of 0.8 nA/c5. representing a severe charging environ-
ment.

As anticipated, the substantially higher
secondary yield associated with the distribution of
electrons (particularly the angular distribution)
leads to substantially lower surface voltages for the
space-like environment than for the mono-energetic

charging situation.	 it should be noted that at sat-
uration, the rather high field dependent conductivity
of Kapton makes the bulk leakage current the dominant
contribution to the equilibrium current. Because of
this fact, the equilibrium voltage for a monoenergetic
source is a very weak function of the beam energy at
the given current density. Similar charging curves
my be expected for smaller beam energies, and the
choice of 20 keV may be viewed as representative. The
relatively small difference between the two cases with
space-like environments way be attributed to the dif-
ferences in secondary y4eld for the two. The secondary
yield obtained from the SFT flux is higher, leading to
a lower surface voltage. Overall, the figure displays
the well-known fact that space-like distributions give
file to substantially lower charging voltages than those
obtained from mono-energetic charging simulations. In-
clusion of an ionic current makes this difference even

larger.

Shown in Figure 2 is the location of the
mean penetration of the charge in the dielectric (the
charge centroid) as a function of time. The monoener-
getic results are similar to those previously present-
ed.`` The results for the space-like environment ,mow
a very weak dependence on both model and time. The
major feature of the figure is the substantially deeper
penetration associated with the space-like environment,
showing the importance of the higher energy electro;^%.
Shown in Figure 3 are the fields internal to the di-
electric for the three chargingi conditions at a time
near saturation of the external potential. The bulk
fields (to the right) show the variation (from model
to model) expected due to the variation in surface
voltage shown in Figure 1. The higher the surface volt-

sge,
ct

 the higher the bulk fields (distances in the di-
eleric beyond the penetration of the electrons).
What might not have been anticipated is that the space-
like environment leads to higher fields near the front
surface of the dielectric, with the dependence on sur-
face voltage reversed. The higher the surface voltage,
the lower the front surface fields. The differences in
this region are Quite strong, being almost a factor of
three between the monoenergetic and spherical probe
theory simulations.

Consideration of the charging in the frame-
oork of the Meulenberg bilayer suggests that the be-
havior of Figure 3 is precisely what one would expect.

Layer secondary yields are in the same order as the
order of the front face fields. With similar amounts
of buries charge, the field in this region must vary
with the surface positive charge. Shown in Figure 4
is a comparison of the internal charge Jensity at tree
same time as Figure 3. The internal charge distribution

for the two space-like simulations is virtually identi-
cal and not distinguished on the figure. On the dist-
ance scale of the figure, the surface posit i ve charge
would appear as a delta function and is not included
in the display. The space-like environment shows the
sub-.tantlally deeper penetration suggested by Figure 2,
and gives rise to the greater depth river which the
electric field varies as shown in Fiqure 3. Over most
f mho, rangn of depth • , the de;.o.iti.. ,naryy cc den;itfts

are vary similar, being a few thousand couloaibs/m J (few
ti e- ,es 1016 electrons/cm 3 ). The '. aCe-like environment
dues not give rise to the strong charge enhancement
very near the front face seen for the monoenergttic
simulation (which is in part artificial, and reduced,
by the front positive charge density). The to.al nega-
tive charge deposited in both cases is very similar.

Several further calculations were performed
to examine the dependence of the space-like simulation
results on the problem parameters. The transient con-
ductivity coefficient K was allowed to be i 0 times
bigger and 10 times smaller than the nominal value,
representing the range of typical values of K . The
dark field dependent conductivity was sllowed p to he 10
times larger, re presenting a typical "fix" to tht charg-
ing problem. The secondary yield w.s allowed to be a
factor of 2.7 times larger than nominal, representing
both a possible "fix", and also a large contribution
to secondary yield due to ionic environment. (For much
larger values of	 the material will charge positively).
All calculations were performed using the spherical
probe theory incident environment discussed for the pre-
vicus results. Only one parameter is varied from nom-
inal for each calculation.

Shown in Figure 5 is the surface charging
voltage versus time for the nominal case (NOM) and tho
four variations noted above. Variation in K give rise
to only minor variations in the final charging voltage
as shown. Rearrangement of the charge in the deposition
region has little effect on this variable. Of course,
an increase in uor 6 gives rise to a substantial re-
duction in surface voltage. That an increase of o by
a factor of 10 only gives rise to a voltage reductQon
of a factor of two reflects the sharp field dependence
of the dark conductivity in Kapton. The much slower
charging for the case of a larger secondary yield is
precisely as expected. However, even in this case, it
is the sharp field dependence of the conductivity which
turns off the charging.

In Figure 6 are shown the internal electric
fields at saturation for the same parameter variation.
The variations in K give rise to variations in the
field only in the deposition region. Mule it might
seem surprising that the bulk fields are identical when
there are variations in surface voltage as shown in
Figure 5. a little reflection should convince the reader
that Figures 5 and 6 are both correct. Rearrangement of
the charge in the deposition does effect the surface
voltage but does not affect the bulk field. Within the
deposition region the variations with K are those ex-
pected from previous work. 3 Sasaller	 pvalues of K

give rise to larger values of the front face field.p

Increasing the bulk dark conductivity is
effective in decreasing both the bulk fields and fields
in the deposition region. This is expected. By contrast,
increasing the secondary yield leads to a decrease in the
bulk fields and an increase in the field near the front
surface. This situation was discussed above, and is
expected within the frame work of Meulenberg bilayer.5

One should also note the behavior of bulk
fields for the large co and large a cases. Note that
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the bulk field for the later is larger despite the
fact that the surface vultage is lower. This is a
consequence of the fact that a substantial amount of
charge is deposited at depths which are comparable to
the sample thickness (50 microns on the f igure). Thus,
for thin samples in a space-like enviro4sment, the sur-
face voltage is not an accurate diagnostic fo- the bulk
fields. Shown ;n Figure 7 is the charge density associ-
ated with the fields of Figure 6. These profiles are
consistent with the above discussion.

DISCUSSION

The Neulenberg 5 idea that an internal dis-
charge may be initiated in the deposition layer of
electron charged dielectric has been invoked. Evidence 2
his been given which snows that internal discharges do
occur. Space observations have been noted which sug-
9est that breakdown condition,, in space are different
from those in "standard" laboratory simulations. A con-
ceptual model was presented which demonstrated that
large internal fields could develop with no differential
potential. An experimental procedure for realizing
these conditions was noted. These conditions obviously
favor an internal breakdown mechanism. New calculations
were reported which demonstrated that space-like simula-
tions give rise to conditions which favor the internal
breakdown machanisn; decreased bulk fields. increased
deposition region fields; similar charge  densities.
Materials parameter variations were explored for the
space-like simulation. The resulting changes in intern-
al fields are easily understandable in terms of the
general theoretical model. Increased conductivity is
an effective deterrent to discharge. Enhanced secondary
emission is not, and favors internal discharge.
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,1r' • t hr he It flow equ,tt lon
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xl1'	 tilt 	 Ctt'l,it It 11 Of . lrrt r,t	 .'t w .'I I I t ^
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whcrc tt,c ,)rdr Is hat c t b y I r usu .il	 an I ng, .	 Tht . on,vr
vat icn of cnt rgy is exnrc-,sed by t-y	 I , .I:Id 1 : :	 thcre-
futc necessary. Equation 2 requires that the di-loc-
trtc rclarat eon time L/17 he much smalit r• tl;in t I	 Intt r-
',.'1, c.lnt,Idetcd in the Integration of LtI. i. 	 ll,:s tondl
tern hold, for the ex.:etples worked helow.

It' the cluctrical conductivity,	 I'• not Umpt-ra-
ture dependent, then the electric field, I , at .Inv ,Tint
IS dcterminct! onl y by the electrode geometry ,end 1' c ,-

1 ► 1 t ed vo I t ,igt . .	 The pro p l rm then redo: ca t . 1 that t rra t ed
In the :I,isric paper by Col'ple, 1lartrev, iortcr, .ind
i^'<,"Ili) wht` c,ti.ulated the tran ,;ICnt currc,t t'•1:- rlrutl-
rarll lrl cIv. tiode ,	 11,1t.ctcr, .I tcmrcr.ltl,r • ticil , nd. r,t
Ic. • rtc 11 :nndll;t l%tt % 	t< it-;Cif ,I	 „t	 ..I!. t	 1n	 I•

+hc cic:trl: field ;teen,^,th in order to -.,• I:*.fY I:y. :.
1ht, ( ftect ha, been Invc%t ig:Ited 1, ) hinCO.') wh,l dc-
ri,ved -, toady -4 tatc %olut ions to the cyuat Ions h% nnalyt tc
methods for spec iA functional form-, of the tempvr: ► +ure
dependence of the electrical and thermal cnrnluctt y lt ivs.
In the following we develop transtcnt - dutl,•n < to the
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can he calculc.ted from 6.
Iur computations, the following values %ere taken:

11) 01% 	 6J S: i m ^, A - U.KbeV, C - 2x10".)/m'CO3
t o = ROOK, and d * soon.	 Fig. 1 shows the computed cur-
tcnt dvosity as a function of t im p• fur vat iu , ,s appl ied
voltages with the critical voltage apparently nhuut ..1k1.
Fig. ' shows the distribution of temperature and electric
field within the dielectric after study conditions h.,re
i p eei. attained. The field strength at th+ center(z=:.Smm)
is about half the average field strength, while near the
electrodes it is about four times the average. This suq-

Qest ,. the possibility that thermal effect; might sn di:.-
tort the field as to produce purc'v electrical bre.11dcwn
nt.ir the electrodes. The center temperature is abuut
IShCo above the ambient, and this is much higher than the
temperature increaFc expected from the constant field
case.

?. Cylindrical Elect rodes.	 For cylindrical geometry
with inner and outer electrode radii r i and r - respec-
tively Eq. 5 is replaced by

K

( at r 2r (r T FF }	 oo[' exp ( - A/ kT)	 (9)

Application of a step function voltage Vo at t = 0 gives

Jr: Edr a Vo for t > 0
i

if the outer electrode is maiptained at ambient tempera-
ture and the inner one allowed to take up the temperature
of the adjacent portion of the dielectric, the boundary
conditions become

T a To for r a r^
}	 (11)

8T/8r a 0 for r - ri

Solution of the partial differential equation shows an
instability in the current density similar to that shown
in Fig. 1. The temperature distribution rises monoton-
ically from ambient near the outer electrode to a maximum
near the inner electrode. however, the electric field

(10)
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dI,strthut it) n ^.Itrw% an int e resting e'cv, • lupmcnt depcnJing
on t he	 • l c, t i , J • r, I,' t i . 	 I i + ; .	 S ino i	 h• , a t he , l c. t r ,.

field a, a fun: t I , ) it of r all ► aI d ► , t ut: c t-tr III
	 i,-d

.ol t. ► 1;e ut 1.'.5ki	 Ind e l r: trodc	 cl..I.It101	 of or'm	 In
I 'oth r. ► s,s the ,tplrIIud voIta};e ,	 ll:;l.tl,	 In ct:c	 of
tI • Iti:.el eoltage.	 I ► };.	 t tll I's tr.Itcs t!tc :h. ► r.};e	 ► n IF
distrlbut ton with t ime wh-o t I ►c rtt to r / r	 t : cry•
It ime the field nun-unif41re;ity is de t 'rmI	 by gconctry
only, after Ss thermal effe:ts plu. Qcom • tr y m. ► kc the
field ne rly uniform, .uui .after 10s thcrm.tl ,ffcet^ Jom ► -
natc set that the field is large rrear the nttvv electrode
and smaII near the ,cntraI ono. 	 F • h. t tllustratr	 the
dlffercnt s;tu,ittoil th.It pre y iiI -• when r, % r 1	h.	 (n
tht% :ase, thermal cttcit•, m. ► ke a rontrlf"utton to ttic
field distortion, but Jo not ovcicomc the 	 ,!comet

ric e'ontribution.
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Fig. 1.	 Current tran:cic , nts for pla:ie parallLI
electrodes at 5 min spacinc; and for
parameters quoted in the text. The
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Fig. 2. variation of temperature and electric
field between plane parallel electrodes
at 5 mm sracing and 2.1 kV pctential
differcnct: after attainment of steady
r-nditions.
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by J. J. O'Dwyer

S.U.N.Y. Oswego, NY 13126

Abstract.	 Collision ionization may occur in a dielectric solid that

ii stibjected to a large electric field, and the positive and negative

species produced then constitute space char „e within the dielectric.

Emission from an elect-ode into the dielectric can be increased by

substantial heterocharge density adjacent to the electrode. It is the

purpose of the current work to estimate both the dielectric conduction

parameters and the electrode configuratinns that would be required for

significantly enhanced emission.

1.	 Introduction.	 We consider steady state current conduction by

both electrons and holes in a dielectric in which a strong electric

field is causing collision ionization. The conduction current density

is gi ven by

j = n e w  F+ p e 4  E	 (1)

where n and p are the electron and hole densities, and 
dip 

the corres-

ponding mobilities. The electric field is E and the electron charge

is e. 11ie spatial variation of E is governed by Poisson's equation

7 . E _ (u - n) e/E	 t2)

where	 is the permittivity of the dielectric. The collision ionization
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where a is an inverse length and H an electric field characteristic of

the dielectric. If diffusion and recombination are assumed to be

negligible, the equations governing steady state electron and hole

density are

div (n w  t) - n a w  E exp (-H/E) - 0
} (4)

div (p u p E) - n a u p E exp (-H/E) - 0

The basic problem is then the solution of the system of equations (1),

(2), and (4) for given electrode geometry and electrode emission

characteristics.

In a real dielectric, electrode emission probably begins from an

asperity and the emitted charge begins to spread as it enters the

dielectric.	 If the electrodes were, for example, parallel planes, then

the emitted charge density would be lzrge only at points within a

re(,;- on that spreads from the asperity towards the other electrode. In

this cast, the charge density pattern is not rel"ted to the electrode

symmetry, and the problem is insoluble without additional assumptions.

In order to propose a soluble problem that retains at least some ele-

ments of the real situation, we write the equations in a form suitable

for spherical geometry with emission taking place from the electrode

of sm.iller radiiis. 	 in these circumstances there are now two different

reasons for enhaTICCMent of the electric field in the dielectric.	 In

the first pla,-e the spherical geometry results in a higher electric

-2-

A
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field near the electrode of smaller radius; secondly, the field nC3r

this electrode is further increased hN Iecal heterocharge. In the

following calc• ul.1tion-; we separate these effects by quoting a geometric

field enhancement factor, and a total field enhancement factor.

Computations for Spherical Geometer. 	 Using the spherical form

for the divergence and writing tha results in the form of finite

difference equations, we have from (1), (2), and (4)

u
,,1: - -	 ^ —^ ( j - j n (1 . _..p ) ) . LL. 1 Gr	 (S)

Aj n - r a exp (-II/E) - 
2 J j

n Ar	 (6)

In addition the total current . density obeys the equation

Aj	 -	 j Ar	 (7)

The boundary conditions used with these equations are:

0) At the anode j = j n , meaning that this electrode is blocking

to hole emission

(21 At the cathode j  _ 
?
n (Ecath) where the functional form used

in the following computations was that for Fowler -Nordheim

emission (see e.g. O'Dwyer I).

Niunerical solution then consists of integrating the equations from the

;anode to the cathode and imix-,sing the Fowl er-Nordheim boundary condition.

If the ratio of the electrode radii is g eatl ► in cxces^; of unity, then

the first order expressions for the divergence in equations (S), (b),

and (') lead to geometric factors on the field and current densities that

at• c too low. he therefore drop the Spherical geometry requirement and
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specify the electrode system by its geometric enhancement factor and

the interelectrode distance.

The following values were used for various parameters during the

computations:

E n 3 x 10 -11 F/m	 (corresponding to E r 	 3.4)

H n 109 V/m

a Range 2 x 10
7
 to S x 108 m

-1

up Range 3 x 10-14 to 3 x 10-12 m2/Vs

un Does not enter computation if v n )0 up

The electrode separation was taken at 90um unless otherwise noted, and

the cathode work function at 2.SeV in the Fowler-Nordheim formula.

Fig 1. shows the current -voltage characteristics for a geometric

field enhancement factor of 22. In every case there is a current con-

trolled instability with a certain critical voltage beyond which a

negative resistance region corresponds to an unstable current-voltage

relation. All curves are marked with the total field enhancement fac-

tor that pertains at the critical voltage, and they show that the space

charge enh,inces the field by an additional factor of about 2 to 3 over

the geometric enhancement, the exact value depending on the collision

ionization coefficient and the hole mobility. Fig 2. shows the same

characteristics for an interelectrode spacing of 290um and geometric

field enhancement factor of 165; once again the space charge enhances

the field by in rdditional factor of about 2 to 4.

1. i.;. shows the effect caused by variation of the geometric field

cnhancement factor while keening the hole mobility, the electrode sep-

ORIGINAL PAGE 13
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aration, and the- collision ionization coefficient constant. The criti:al

current density is relatively unchanged while the criti:al voltage is

lower for larger field enhancement factors. The space charge enhances

the field by an additional factor of about 2.5 to S over the geometric

enhancement, the exact value depending on the electrode geometry. Fig 4.

shows the effect of changiT.g the electrode separation while maintaining

the other parameters constant. Increased electrode separation results

in larger space charge field enhancement, and larger critical voltage but

does not change the critical current density. In both Figs 3 and 4 the

current density is that near the cathode; this is in contrast to the pre-

vious diagrams where the current density refers to the anode.

3.	 Discussion.	 Some general conclusions emerge from the computations,

showing the effect of varying certain parameters while keeping they others

constant.

(a) An increase in the collision ionization coefficient (all other

parameters remaining constant) causes a marked reduction in the

space-charge field enhancement factor. The critical current

density is not :substantially altered.

(b) An increase in the hole mobility (all other parameters remaining

constant) causes a marked increase in the critical current density,

together with slight increases in both the critical voltage and

the space-charge field enhancement factor.

(c) An increase in the geometric field enhancement factor (all other

parameters remaining constant) caused a marked decrease in the

critical voltage, %hile not substantially altering the critical

rurrviit density.
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(d) An increase in the electrode separation (all uther para-

meters remaining constant) causes a marred increase in the

critical voltage but a decreau- in the mean field strength.
4

The critical current is not substantiall y altered.

In summary it appears that the most critical parameter for the

possible existence of collision ionization space charge field enhance-

ment is the hole mobility. For a cathode of radius IOvm, the hole
t,

mobility should be of order 10 -13 m 2/Vs or lower for the effect to

uccur at reasonable values of current density and voltage. Published

results ` ' 3 indicate values of this order for polyethylene, but it is

not clear that a comparison can readily be made. The computations

above consider the holes as the less mobile of the two species involved

in collision ionization, and-the experimental results on charge carrier

mobilities do not relate to the products of collision ionization.

Given a s.Fficiently low hole mobility, the existence of space charge

enhancement at a given value of mean field strength is facilitated by

the following factors:

(10 j large collision ionization coefficient

ih	 :i large geometric field enhancement factor

(c ) a large electrode separation

In simple terms this means that avalanches of many generations from

sharp asperities are most effective in promoting space charge enhanced

emission - a fact that could have been seen without detailed computing.

The major conclusion, therefore, remains as the estimate of the order

of magnitude for the hole mobility (< 10
-13 

m 
2
/Vs) required to produce

-;ign i f icant sp.i: c charge.

%%ord should he said about the cxpectvd effect of tem-
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perature. The parameters rust affected by a temperatur y change would

probably he H and u p , both of which wveld he expe:ted to increase with

increasing tempt-r3ture. This should cause higher values for both the

critical current density and the critical field strength, with the

exact details depending on the form of the temperature variation for

the parameters in question.
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Cations to Diagrams

Fig 1. Currunt-vultago- characteristics for a g-ometric field en-
hancement factor of 22 and an electrode spacing of yCrpm. The total

field enhancement factor; at the critical point are narked on the
curves. The collision ionization coefficients refer to the curves

above them. The hole mobilites are denoted as fellows:

u p a 3 x 10-12m2/VS

— — — — — u p - 3 x 10-1 3m2/Vs

u - 3 x 10-14m2/Vs
P

Fig 2. Current-vo l tage characteristics for a geometric field en-
hancement factor of 165 an y! an electrode spacing of 290Vm. The total

field enhancement factors at the critical point are marked on the
curves. The collision ionization coefficients refer to the curves

above them. The hole mobilites are denoted as follows:

i1 p ft 3 x 10-12m2/Vs

— — — — — i, - 3 x 10-13m2/Vs

u 0 3 x 10-14m2/Vs

P

Fig 3. Current-voltage characteristics for a range of geometric
field enhancement factors leading to the total field enhancement

factors marked on the diagram. In all cases the elect ode separa-

tion was 90um. th^ collision ionization coefficient 10 5m' 1 ^ and the

mobility 3 x 10 -1 m2/Vs.

Fig 4. Current-voltage characteristics for two different electrode

separations and the sar.e geometric field enhancement factor of 22.
The total field enhancement factors at the critical point are marked
on the curves. In both cases the collision Ionization coefficient

was 108m -1 , and the hole mobility 3 x 10-14mZ/Vs.
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