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SYMBOLS

The dimensional gquantities referred to in this paper are
given in U.S. Customary Units, in which the numerical
calculations were made. The units are in bracksts following
the gquantities. In the case of non-dimensional coefficients

and parameters, the brackets are not included.

Cd ...... +.-u++..Drag Coefficient

Cdo ............. Zero-Lift Drag Coefficient
Cyevmrnnnnnnenns Lift Coefficient

5 ..Drag (lbf)

Biveiennn Ceareen Specific Energy (ft}

Ed"" .......... Dash Energy (£ft)

Ef .............. Final Energy (£ft)

R R EREE T, Maximum Sustainable Energy (£ft)
Gevennas e an e Acceleration Due to Gravity (ft/sec?)
¢ NP Altitude (£t)

H........ e e e Hamiltonian (ft/sec)

Ko it v et ie e Induced Drag Coefficient
P Lift (lbf)

. Mach Number
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Meoserosonosoane Mass (sl)
o R Load Factor
Lo R Fuel Flow Rate (sl/sec)
Toeeoronnaonsons Dynamic-Pressure (lbf/ft’)
= P Wing Surface Area (£t?)
P Thrust (lbf)
Veeeonen N Velocity (ft/sec)
Vd' cres e Dash Velocity (£t/sec)
| Weight (lbf)
Buveoeoannnensss Downrange (ft)
Verrononnsnns ...Crossrange {ft)
I The specific energy is defined as:
j E =h + V¥/2g
{
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GREEK SYMBOLS

- S Flight-path Angle

Bl i i Fast Interspolation Parameter
B2 it e Invermediate Interpolation Parameter
Mo v reonnronanan . .Throttle Coefficient

xE ..... e e Energy Multiplier

Xh .............. Altitude Multiplier

lm .............. Mass Multip%ier (£t/sl)
kx....... ....... Down Range Multiplier

ky .............. Lateral Range Multiplier

Ax .............. Path-Angle Multiplier (£ft)
kx ........... .. .Heading Multiplier (ft)
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Chapter I

INTRODUCTION

On~-board flight control and guidance is a subject which has
had wvarying reception in different fields of Aerospace
Engineering. In the area of unmanned missiles there has
been extensive research, with many resulting applications,
in developing on-board guidance systems, as reported in the
survey papers, Refs 1 and 2. These studies have encompassed
many new optimal control and even differential gaming ideas
(Ref 3 ): in this field the on-board fligiht computer is an
accepted and usually necessary part of the guidance system.
While conventional homing and proportional naviéation
guidance laws are . »le, and reguire minimal computation,
more complex guidan.. schemes may be implemented on~board by
the use of singular perturbation methodology, as in Ref 4,
The willingness +to apply state-of-the-art theoretical
developments to manned ailrcraft is not as evident. This may

be the result of a more conservative approach in applying

" new technology to machines which are responsible for

peoples' lives, machines which are also extremely expensive,
generally larger and more complex than many missiles.
However one of the greatast obstacles may be the threatened

removal of authority from the pilot: despite the existence
L
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of sophisticated autopilots on many expensive aircraft,
there is an aversion to total automation, particularly on
the part of the pilot. As a result there is a significant
gap between the f£light-path optimization and differential
gaming results which have been achieved in the last twenty
years, and the their applications in on-board use, A part of
this is due to the limited computational resources
available, particularly on fighter and small. éeneral
aviation aircraft, where weilght and space are at a premium.

Some of the latest developments relating to the latter case

are given in Ref 5, On the other hand in the area of large

transport aircraft the cost, weight and complexity of a
small main frame computer is justified, but this has yet to
be implemented. In civil aviation much research has been
done in the area of trajectory optimization, with particular
emphasis on efficient fuel usage and minimizing the direct
operating cost. Attention has focused on the calculation of
sub-optimal flight paths, using order-reduction to simplify
the problem, as in Refs 6-~9. Burrows (Ref.6) used singular
perturbations and order reduction to derive sub-optimal
short and long haul trajectories, with on-board corrections
to speed and eneréy errors based on expanding the
performance index to second order, which he found to be more

effective than simple linear feedback. Sorenson and Waters

A
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(Ref. 7) used an assumed constant energy cruise (as did
Erzberger and Lee, Ref. 8), and pointed out that the on-
board flight control needs to be coordinated with the ATC
system, so that fuel saved during the f£light is not wasted
due to traffic congestion at the terminal area. Chakravarty
and Vagners (Ref: 9) attempted .o provide justification for
their étate varigble-selection through the use of non-
dimensionalization. Transitions onto fuel-optimal climbs and
descents are studied in Ref. 10, where they are used to
derive a near-optimal -feedback contrcl law. Sub-optimal
terminal guidance is examined by Erzberger, Ref, 11, for a
Sixed-ying aircraft, and by Beser, Ref, 12, for a tilt-rotor
gaircraft. Optimal shipboard terminal guidance is studied in
Refs 13-15. Despite the active interest and work, as
described above, in this area the aﬁplications have lagged
behind, A description, for example, is given in Ref. 16 of
the DC-9-80 Digital Flight Guidance System; here the
emphasis is on establishing reliabkility and safety criteria
for the engine and flight control systems. It seems safe to
say that in this area applications efforts have focused on
feasibility and reliability sather than optimality. As
mentioned earlier, the computational resources on a fighter
aircraft are even more limited +than on a transport, for

obvious reasons of space and weight constraints. In contrast




with large transports there is a mueh greater range of
applications for on-board optimal contral for fight ar
aircraft., This ig because a fighter can and coften has to
perform a muck wider range of maneuvers (in terms of £flight
path anvles and back angles for instance) as studied in Refs

17-19. In many missions there is less, if any a priori

knowledge of the flight path. Also it is often desirable for

security to minimize the communicatien with +the ground,

which eliminates the possibility of solving flight-control

Iproblems on the ground and-relaying commands to the air.

Witn this background it is the objective of this study to
investigate on-liocard real-time £flight control, with <+the
intention of developing algorithm§ which are simple enough
to be used in practice, for a variety of missions invelving
three-dimensional (3-D) <£flight. inivially an gpproach -is
developed which is restricted to the intercept mission in
symmetric flight, based on Ref. 20, Extensive computation is
required on the ground prior to the mission but the ensuing
on-board expleoitation is extremely simple. The scheme takes
advaﬁtage of the boundary-layer structure commen in singular
perturbations, studied in Ref. 21, arising with the
multiple time scales appropriate to aircraft dynamics.
Energy modelling of aircraft, as first exemined in Refs.

22-24 and extensively developed in Refs 25-27 is used as the
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starting point for the analysis. In the symmetric case, a
nominal path is generated which fairs into the dash or
cruise state, Feedback coefficients are found as functions
of the remaining energy-to-go (dash energy less current
energy), along the nominal path. These serve to generate
transitions towards the nominal path, closed loop and to
counter disturbances, In thir situation the guidance method
is similar to the neighbouring-optimal guidance methods of
Refs 28B-32; these have been applied space shuttle re-entry
problems, Refs. 33-35, and orbital transfer gquidance, Refs.
36=37. However there are two significant differences
between this study and these references. In the present work
the gain indexing is done in terms of the current eneragy;
this aveids the problems encountered in estimating the index
time, as in the time-to-go or min~di§tance methods. Also,
for the extension to 3-d flight, families of reference paths
are used instead of a single trajectory , with heading-to-go

as the additional running wvariable.

U
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1.1 PROBLEM FORMULATION

The overall problem is to develop an on-board, real-time
flight control system, which 1is near-optimal, for an
aircraft flying an intercept mission, with arbitrary initial
conditions. The equations of motion for a peoint-mass model

of an aircraft can be written:

-
H

V(nT - D)/W

By,
fl

Vsin¥

of .
i}

(Lcos¢ - Wcost¥)/mvV

> .
1)

Lsing/mVcos?

X = Vcos¥cosx

Vecos¥siny

-nQ

et
]

-
i

These equations embody the assumptions of thrust along the
path, zero side~force, and flight over a flat earth with
constant gravity. Also winds aloft are assumed to be zero,

and the atmosheric properties stapndaxd.
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1.2 SYMMETRIC FLIGHT

The first approach was to restrict the problem and simplify
the model considerably, to reduce the analytical and
computational Dburden, during the initial research and
development of the guidance scheme. The restrictions in the
problem are the following: to consider oply symmetric
flight, with fuel. open, i.e. fuel optimization is not
examined, which leads to maximum thrust in most maneuvers of
practical interest. The target is assumed to be at a
sufficient distance from the interceptor that a climb-dash
is required: in other words a range-optimal climb to the
dash point on the level f£flight envelope, blending inte a
steady-state dash. This sequence ends with a terminal
transient, which is considered briefly in the next chapter.
The time spent during the climb is assumed to be much
smaller than the time spent at the dash state. The
restriction in the aircraft model is that the variation in
mass due to the fuel expenditure is ignored. Under these

limitations, the equations of motion are reduced to:

E = V{nT ~ D)/W

h = Vsin¥

¥ = (L - Weos¥)/mV
ﬁ = Vcosy
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1.3 AERODYNAMIC MODELLING

The aircraft which is used as an example to perform
numerical calculations is a high-performance interceptor.

The drag is modelled as a parabolic function of the control:

c.=2¢C

. 2
d + K G

do 1

The coefficients cdo and K are functions of Mach Number:

c

do cdo(M)
and

K = K(M)
The thrust is a function of Mach Number and altitude:

T £ T(M,h)
The way in which these three functions are represented is
important in the computational work undertaken in this
study. The reasans for this are discussed, and the different
methods which were used are described in Chapter 5 and

Chapter 6.

S T A T T T e TR T e
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Chapter 11

OPTIMAL CONTROL: REDUCED-ORDER MODELLING

Reduced order meodelling, based on time-scale separations
observedbin vehicle dynamics, is particularly attractive to
the analyst in scolving problems for lifting atmospheric
flight. Numerical computations are simplified by the
reduction in the system order and as a result the number of
initial conditions which may have te be guessed or iterated
upon is also reduced. Further, an improvement in the
conditioning of the differential ecquations results from the
confinement of the more unstable dynamics to boundary-layer
corrections, which are relatively short in time. It has
been appreciated since Kaiser's early work (Ref.22) that the
h and ¥ variables can be changed much more rapidly than the
specific energy, E, which explains the intreduction of this
new variable. Also the energy can be thought of as a 'fast'
variable in comparison to the range, at least in cases where
the climb is a transient which fairs into a steady-state
cruise or dash condition, i.e. when the time spent in the
steady state is much greater than that spent on the c¢limb,
az assumed here. This 1leads +to the reformulating +the
equations of motion, following the development of Ref. 25,

with the inclusicon of the interpolation parameters, &' on
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the left hand sides of the differential equations for h and

¥, and e? on the left hand side of the differential equation

for E:
e2h = V SIN ¥
e2F = (L-WCOS%) /MV
G E = V(nT-D)/W

X -= V COS ¥
To solve the problems of time-optimal control the
variational Hamiltonian is formed:
H= lEé + xhﬁ + kxé + Axﬁ
and the Maximum Principle (Refs.3B and 39) is applied., The
resulting Euler differential eqguations are:

£ 3, = -3H

h
e hy = "3
s" ):E = -a;%

The introduction of three separate time scales in the state
system must conform to the regquirement of the.Tihonov theory
(Ref. 40) that the ratio (e*/e!) + 0 as eg! + 0, as shown in
Ref. 25. When both &? and e! are equal to 1 the original

point-mass model is recovered.

S e ey
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2.1 RECTILINEAR-MOTION MODEL

The simplest model possible is obtained when both ¢! and ¢?
are taken 0. By examination of the differential egquations,

the following consequences of these assumptions may be

noted:

gt =Q ——————th =0] /™" r =0
f=0 L =W
2 =90 é =0 nT=0D

These equations emboedy the assumptions that the altitude, h,
the path angle, ¥, and the energy, E, caﬁ all be wvaried
instantaneously in a contreol~like- fashion subject to the
constraints. In this slow rectilinear-motion model the
path-angle is, however, fixed at a walue of zero, and the
lift coefficient |is chosen at any energy/altitude
combination so that the 1lift equals the weight. Further,
the throttle is constrained so that the herizontal forces
are balanced. The energy and altitude are chosen to minimize
the Hamiltonian. This consists only ?f the range rate and
the associated multiplier, which is constant because the
Hamiltonian is not an explicit function of range in this, ox
any other modelling in this study.' As a result the min-H
operation leads to the high speed point on the level flight

envelope. In the language '0of singular perturbation theory
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this is _the zeroth-~order ‘'outer solution', which the
solutions from the other time scales must fair into
assymptotically. The matching of different solutions and the
compesite generation are discused in a later section. The

next time-scale is now examined.

2.2 ENERGY-STATE MCDELS

The next level of order reduction is generally referred to

in the literature as energy modelling. In this case £? is

set to 1, and £? to zero. Again the altitude and path-angle
are assumed to be 'fast' and and 'control-like', but the
energy change is analyzed and E assumes the role of a 'slow'
variable. Again the path-angle is fixed at Zzero, and the
1ift coefficient chosen so that the lift equals thq weight:
but the only remaining 'control-like' variable ( apart from
the throttle, n) is the altitude: at any energy the altitude
must be picked so as to minimize the Hamiltenian, which is
now defined as:

H = }xx + XEE = XXV + XEE

where the differential egquation for E is given by:

E = V(nT=D) /W
‘. = -3H
E 3
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The altitude which minimizes the Hamiltonian is therefore
going to be determined, at any energy, by the relative

values of lE and kx and their signs: their ratio determines

the relative importance of range rate and energy rate, and
thelr signs determine the sense of the optimization. For

example, if XE is small enough the altitude picked will

correspond to the maximum possible instantaneous range rate

possible at that energy, if lx is negative. This is the

lowest altitude (and highest speed) which is allowed by the
terrain 1limit, dynamic-pressure 1limit or Mach limit,
whichever is greatest. On the other hand if the range
multiplier is set to zero the altitude chosen will maximize

the instantaneous excess power or energy rate, if XE is

negative. This special case is the so-called 'energy-
climb', and is discussed in the following subsection. Note
that if either multiplier is positive the rate of change of

the associated state will tend to be minimized.

2.3 ENERGY CLIMBES

Of the possible energy-state results the energy-climb is the
simplest to calculate: as the Hamiltonian only contains one
term, only one differential egquation needs to be integrated

assuming that XE remains negative., The initial value of the
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multiplier does not in genexal have to be determined: so
long as it is negative the same path will result. Indeed if
time histories are not required nene of the differential
equations need to be integrated at all: the altitude-energy
path may be found simply by maximizing the level-flight
enerygy rate at any energy. The eneray climb for the alrcraft
studied is shown on Fig.l. It is interesting to note that
this schedule shows multiple jumps in altitude, arising from
realistic wvariations in the thrust data. This is somewhat
different to other examples which have been examined, for
example the F-4, where the altitude discontinuities in the
egergy-climb are primarily due to the transonic drag-rise

(Ref 41),

2.4 ENERGY-RANGE CLIMBS

When the range multiplier, kx, is not assumed to be zero,

i.e. 'energy~range climbs' are examined, the analysis and
resulting computations are slightly more complex than the

'energy-climb' discussed above. First of all the AE equation

must be integrated, as the relative magnitude of M\, to lx at

E
any time or energy is important in choosing the altitude.

Secondly, as a result of this, the initial ratio of X, to

E

)Y r®, must be carefully picked: different values of r°

xl

e T T T
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will result in different paths with different terminal
states. As the value of r° 1is increased from =zero the
resulting trajectories move downward in the flight envelope,
with the terminal energy moving from the maximum energy,

E towards the dash energy, Ed. At a certain value of r®

max’
= R* a path results which fairs gracefully intc the dash-
point. This is tlie range-optimal 'energy-range climb' which
is desired and is shown in comparison to the energy climb
found earlier in'Fig. 2, with the level flight envelope also
shown. Determining the correct value of r® is an initial-
ralue problem, but limited to only one dimension, and the
usual one-dimensional search techniques, (i.e. golden~
section, cubic and parabelic £fits) may be employed. For

° which are greater than R° the resulting

values of r
trajectories are range-optimal for terminal energies which

are lower than Ed’ over different time spans. These paths

are characterized by a climb thch approaches the dash
point, a dash, and finally a terminal transient which takes
the energy down to the desired level; This transient begins
with an instantaneous dive to the maximum range rate (speed)

at E as allowed by the terrain, dynamic-pressure, or Mach

dl
limit, whichever is the most severe restriction at the
‘current energy level. In the case studied, no Mach limit

and dynamic-pressure limits were applied; rather the thrust

e e i A e em g b

S S
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data was faired off to limit the level-flight envelope Ifrom
exceeding such limits, as eXplained in Chapter 6. As a
result the terminal mancever takes the aircraft down to the
terrain 1limit, (outside the £light envelope), where it
remains, losing energy. This situation is unchanged until
the energy is reached corresponding to the dash speed at the

terrain limit. At this point the engine is switched off (XE

changes sign) and were speed brakes included in the model
they would be applied: the instantaneous energy rate is made
most negative. This sequence is shown in Fig. 3 for the
aircraft being studied. For the case were Mach an& dynamic-~
pressure limits are applied the equivalent maneuver is shown
in Fig. 4.

This process needs 'some explanaticn: when the Ef is less
than Ed’ the aircraft must perform some terminal transient

which loses energy in the most range-optifinl way. There are
two choices, or ways in which it can lose energy: at speeds
below or speeds above the dash speed. Obviously the range-~
optimal strategy is to spend as much time ;n the latter
region and as little in the former as is poss;ble. This is
done by switching off the engine when the speed drops below
the dash speed, and if possible extending the drag brakes.
The problem of the terminal-maneuver transient is not

pursuzd here; it is of research interest.
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2.5 METHOD OF MATCHED ASYMPTOTIC EXPANSIONS

By the use of singular-perturbation theory, boundary-layer
type corrections can be used to overcome the energy-
modelling weaknesses, i.e. initial and {£inal jumps in
altitude, as in Refs. 25 and 42, and transonic or internal
jumps, as in Ref., 41. While the altitude discontinuities
are eliminated by expansion to the zeroth order, realistic
path~-angle values are cobtained, in the Ref. 25 approach,
only by continuing the expaunsion to the first order or
higher. This is a nontrivial problem in the case where the
altitude transitions occur at'the beginninngr the end of a
trajectory, and is even more complex in the case of the
internal jump. As a result, even the corrected energy model
loses its attraction when realistic path-angles are required
for onboard use as commands. A scheme for providing more
realistic path-angle results in the zeroth order is explored

in Ref 43.

2.6 CONCLUSIONS

To conclude this chapter, some of the results of the
reduced-order modelling are summarized beldw.
First of all energy-state modelling, while attractive in its

simplicity, is inappropriate and unsuitable for uon-board
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guidance use on its own, i.e. uncorrected, for the intercept
mission contemplated. This is Dbecause it generates
significant initial and terminal discontinuities in altitude
and path-angle, which the aircraft is supposed to follow
instantaneously. Secondly, multiple instantaneous jumps are
also possible along along the optimal path, and lastly the
path-angle is obtained as zero, in the usual'approximation,
which is a again a big disadvantage as the actual path-
angles can be guite large.

Corrections to the energy-state model which overcome
thesa weaknesses are possible and have besn demonstrated in
the literature (Refs 41,42). Hoxever this additional
compleXity is extremely unwelcome for on-board calculations
due to limited storage and, more importantly, execution time
available on-board: indeed solutions are not guaranteed due
to the instabilities of the state-Euler system which need to
be suppressed, In this context it is qguestionable whether
this approach is in fact easiexr or quicker than solving the
optimal control problem for the full system,

However, certain ideas from the enerxrgy-state model are
undeniably atiractive. The solutions suggest a hierarchical
structure of states in optimal control solutions. This is
exhibited in the following way: altitude and path-angle

'command' wvalues are determined by the current energy, and



P ———

139

in this sense the energy is the dominant state. If the
current wvalues h and ¥ do not coincide with these
predetermined values a rapid transition can be made which
brings them to their 'correct' values. These ideas form the

basis of the guidance scheme which is presented in the next

chapter.



Chapter III

ON-BOARD GUIDANCE

An alternative to using order reduction, suggested in Ref.
20, which is simple enough to lend itself to onboard
implemention is now developed, for the case of symmetric
flight. The scheme has roots in the hiearchical strucﬁure
of optimal-control solutions of the energy model, in which
the specific energy is a relatively 'slow' variable and its

value determines the control-like 'fast' variables, h and 7.

3.1 NOMINAL PATH

The phenomenon described above suggésts that trajectories of
the point-mass moclel funnel rapidly, {rather than
instantaneously as in the energy model), into the vicinity
of a single path, which leads to the dash-point. The idea
pursued in this thesis, and Ref 44, based upon Ref 20., is
to determine this 'skeletal path' for the peint-mass meodel,
for as wide a range of energies as possible. This is the
nominal, or reference trajectory and the altitude and path-
angle histories are recorded as functions of the energy or
energy-to=-go, rather than time or time-te-go, as is common
in other neighboring optimal guidance schemes (Refs 28-37).

The advantage of this approach in an on-board context is

20
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that approximations to the final time are not necessary, and
implementation of the scheme is greatly simplified as a

result,

3.2 FEEDBACK LAW

The next step is to generate a neighboring—opti@al feedback
guidance law which will contrel the aircraft so as to follow
a neighbor of the nominal optimal path. There are two basic
reasons for doing this. First of all the reference path is
of little use open loop: even if the aircraft is at any time
on the reference path, the control commands which are stored
along this trajectory will be insufficient to keep the
aircraft close to it. This 1is because disturbances and
errors inevitably arise both in the actual £flight (i.e.
variable winds ete¢) and in representiﬁg the control history
using a cubic spline (Ref 45) Secondly, even if this first
problem could be ignored, the reference path is of little,
if any, use when the aircraft has initial conditions which
are far removed from the nominal: for instance if the
aircraft is dinitially loitering at high altitudes and
subsonic speeds, on combat patrel, for example. Linear-
feadback coefficients are proposed to generate the necessary
transients to bring the aircraft to the neighborhooed of the

nominal optimal and stabilize the subsegquent path. The
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guidance law i1is a linear feedback control based on the
difference between the nominal and actual altitude and path-

angle values,

3.3 FEEDBACK COEFFICIENTS

The feedback c¢oefficients, which correspond t¢ minimizing
the second-variational approximation to the lperformance
index, as in Refs. 28-37, are found by perturbing the
altitude and path-angle separately from their nominal values
along the reference trajectory. The optimal-control problem

is re-solved and the partial derivative ¢f the control with

‘respect to the states (at fixed energy) is estimated by

difference quotient approximation. The partial derivatives
which are mentioned here are +the variations in the
parameters of an initial value problem; they should not be
confused with the wvariations of the control along the
trajectory. They are defined for an arbitrary wvalue of

energy = E! in the following way:

let cl*(t) be the control which takes the aircraft from an

initial point at low energy, E°, (altitude and path-angle
zexo), alonyg the nominal path up to the dash point on the
level flight envelope, while optimizing range; the resultant
state time histories are given by

h*(t), ¥*(t), and E*(t)

S -
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let the energy of the aircraft reach the value E!, while
travelling along the nominal path, at a time t!:

E! = E*(t?)
Then at E! the 'correct' altitude and path-angle are given
by h#*(t!) and ¥*(t!). Toe find the altitdde feadback

coefficient at this energy level the procedure is as

follows:

"find the rhnge-optimal path which has the same terminal

conditions, and terminal time as before but use the nominal
state at t! .as the initial conditions, with a perturbation,
Ah, introduced in the initial altitude:

¥(0) = ¥*(t?)

El

il

E(0)
h(0)

h*(t!') + Ah
The solution of this problem results in a new control time

history, clnew(t)' The altitude feedback coefficient is

found bf the following secant approximation:

acl(El) = Clnew(Q) - ?&f(tl)
3h Ah

T T e
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3.4 ON-BOARD USE

The C, commands to the autopilot are taken from the nominal

path with Jlinear corrections for the wvariation o¢f the
altitude and path-angle from their nominal values. On-board
use regquires only the storage of the states (h and T),
control (lift coefficient or lqad factor), and the two
feedback coefficienis, each as functions. of energy, or
energy-to-go. The feedback guidance law with the appropriate
functional dependencies are shown below:

Cy = C*(E) + € (E) ( h - h*(E)) * 3Ci(E) ( ¥ - ¥*(R))
3h ¥

To summarize the only variables réquired to be stored on-

board in symmetric problem are
C]*(E)
h*(E)
¥*(E)

3, (E)
sh

3C; (E)
Y
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Chapter 1V

CPTIMAL SOLUTIONS FOR THE POINT-MASS MODEL

A requirement of the proposed idea is a large number of
optimal—control‘ solutions to the point-mass-modelled
problem. Optimal control selutions can be found in many
different ways. They can be found by the use of direct
methods, such as gradient methods, where the control history
is parameterized in sectionally-linea; or spline
approximation and the terminal conditions are met by either
penalty or projection techniques. Alternatively, the problem
can be resclved into a tmowpoint boundary wvalue problem,
with split boundary conditions. Half are known at the
initial time and the other half at the £final time. This can
be solved by the use of indirect methos such as simple or
multiple shooting (Refs. 22,23). To solve the problem of

time~-coptimal control the variational Hamiltonian is formed:
H = AEE + lhh + xzz + lxx

and the Maximum Principle (Refs 38,39) is applied.

25
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The rsulting Euler differential equations are

hg = - (
- |
Ay, = -%11 ,
Ay = -
Ay = -t 1

The lLift and the throttle setting must be chosen to minimize
the Hamiltonian, which requires that:

8] - = O ;

and

4.1 METHOD OF SOLUTION

Euler solutions were found in the present work by the method
of multiple shooting, using the algorithm and computer
program of Refs. 33,48 kindly supplied by DFVLR,
Cberpfaffenhofen, West Germany. In +this method, the
interval of integration is broken up into many subintervals.
This is preferable to 'simple shooting', where the initial-

value problem is attempted directly, as optimization

PN
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problems of lifting atmospheric flight are ill-conditioned,
the state-Euler system being violently unstable.
Partiticning the time interval has the effect of suppressing
error growth. This metho? was used primarily for reasons of
accuracy. This need arises, for example, in the calculation
of the £feedback gains, found by the difference of the
control at the Dbeginning of two optimal solutions.
Typically to find the gains to 5 figures the coﬂtrol must be
known to about 8 figures. The'multiple-shooting method has
greater accuracy than the other methods available, and
although it is often difficult to generate the initial
reference trajectory, the subsequent calculation of the
feedback gains is relatively easy as the method has good
convergence properties in the wvicinity of a solution.

Further discussion on these topics is found in Chapter 8.
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Chaptexr V

INITIAL EXPOSURE TO OPTSOL

The first use of the multiple shooting program OPTSOL
obtained from DEVLR was to solve a very simple optimal
control problem. This, taken from Bryson and Ho (Ref. 49)
page 121, is similar to the brachistochrone,-and was solved
numerically both with andrwithout a constrained arc, to test

the user~supplied software required for the program.

5.1 AIRCRAET DATA MANIPULATION

The program OPTSOL had been brought to VPI&SU with
subroutines already created to enable the solution of
aircraft flight- mechanics problems and, rather than try to
start from the beginning, attempté were made to use the
eXxisting computational tools, at least until familiarity had
been gained with the program. In particular, the data which
was used to model the airc;aft under study was extensively
modified so that the integration subroutine in OPTSOL, known
as DIFSYS, was able te¢ function. This proved to be a
problem, as DIFSYS, as received, was extremely sensitive to
the degree of smoothness of the right hand sides of the

differential equations. In fact if discontinuities are

28
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encountered in any derivative up to the eighth, the stepsize
of integraticn shrinks to zero. As all data of the point-
mass model had been represented by cubic splines and spline
lattices to facilitate interpolation, considerable effort
was spent on the generation bf an analytical representation
which would reproduce both the values and the shapes of the
data with consistency. This had been done at DEVLR by using
polynomial expressions, and this method was examined for the
aircraft data on hand and abandoned.While a polynomial of
sufficiently high order will fit any number of consistent
data points exactly, there is an increasing distortion of
shape with increasing order of polynomial. In fact even low
order polynomils did not match the data at all well. The
approach taken was to use a combination of polynomials,
exponentials and arctangent functions to gccomplish this. In

the case of the single valued functions, i.e. Cdo(M), K(M},

this was not too difficult. The arctangent functions can be
used as'soft'switches, separating different portions of the
data, which can be represented by a simple function locally
(i.e. by a straight line or a parabola). However in the case
of multivariable functions such as thrust and fuel flow this
is definitely a nontrivial problem (however only thrust was
attempted). In the case of thrust, the representation was

achieved by fitting against Mach number, using coefficients
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which were functions of altitude. 19 variables were
optimized using a conjugate gradient process which minimized
the sum of the square of the errors at the grid points. The

functions developed for Thrust, cdo' K, are shown in

Appendix A, and the aerodynamic data are shown graphically
in Figs. 5 and 6.

After construction of the smooth data, the £flight
envelope was calculated and drawn (Fig 7). As in the case of
some high-performance jet-fighter aircrgft the envelope
turns out not to be performance limited, i.e. the level
£light maximum sustainable speed is much higher than the
Mach limit. In this case M=2.4 is the Mach limit and <the
high speed point occurred at roughly M=3.0. It should be
mentioned that asrodynamic and thrust data are not actually
available for M= 2.4 and the £flight envelope found by
eXxtrapolation is essentially a conjecture. The important
thing is that the excess power at level £flight is greater
than zeroc for a range of altitudes along the Mach limit, for
which both thrust and aerodynamic data are reliable. This
problem, which in general reguires treatment of state-
inequality constraints, was dealt with in the following way:
the Thrust was faired off sharply against Mach Number, near
the Mach 1limit so that the flight envelope no longer

exceeded it. This was done, by multiplying the thrust by a

b
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switching arctangent function which rapidly (but smoothly)
brought the thrust to zero while leaving it unafiected
elsewhere. The dynamic-pressure limit was treated in the
same way. The analytical formulation for these two limits
are included in Appendix A. The £flight envelope with the
Mach-~number limit is shown in Fig. 8; the efiect of bhoth of

the limits is shown in Fig. 9.

5.2 INITIAL ELIGHT-MECHANICS PROELEM

Once the dataset 'had been finalized, OPTSOL was used to
generate some optimal trajectories for a simple atmospheric
flight problem: maximize final speed, from a given initial
state, with final path angle zero and final altitude free.
This was was sélved for several different time intervals,
using simple shooting (initiallyl, and also multiple
shooting, to gain familiarity with the use of multiple
shooting and to investigate the methods of finding families
of trajectories , for instance by time stretching. The time-
histories for a family of four different trajectories are
shown in Fig. 10-12. These are, respectively, speed, path-

angle, and altitude plots.

E
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5.3 FIRPST TRAJECTORIES TO THE DASH POINT

The next step was to attempt to £ind paths which went to the
high speed point, over a fixed time interval and to try to
decrease the initial energy while leangthening the overall
flight time. This was done by starting at an sltitude and
speed colbination ,(path-angle zero), just below the dash
point, guessing the wvalues of the costates. A total
integration time of 5 seconds was used, and as can bhe
imagined, the first guess was far from the targeted £finz.
conditions; however by requiring OPTSOL to satisfy boundary
conditions by successive proximity rather than in one jump,
a trajectory which reached the specified altitude and path
angle combination was found. However, it was nof possible to
to get the final speed to the desired value in the 5 second
interval, because the time was not long enough to reach it,
To achieve the desired final speed and to observe the manner
in which the system approaches the equilibrium point (the
possibility of an osclillatory sclution near the high speed
point , analogous to oscillatory cruise solutions was
considered a possibility), attempts were made to lengthen
the tims of integration, by stretching the sub-intervals in
the multiple-shooting scheme. Initislly it was found to be
very difficult to extend the trajectory at all - OPTSOL

would not converge for evenlextremely small increases in the
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final time. Eventually the interval was increased to 6
seconds. The final speed also increased but still did not
reach the value at <the dash point. It became virtually
impossible to incregse the final time‘any further due to
numerical integration difficulties. For this reason and
computational expense, the approach was reassessed at this

point.

5.4 EIGENVALUE ANALYSIS

The system was linearized about the high speed point to

examine the dynamics of the system in the vicinity of the
equilibrium point . The analysis revealed that the
stablility eigenvalues were all placed along the real axis.
At first the absence of complex roots akin to phugeid
oscillation suggested that the linearization had been
incorrect. After this had been checked and rechecked, the
analysis was repeated at a point removed £from the vicinity
of the sharp arctangent functions which had been used to
limit the flight envelope, =3 it was conjectured that the
switching functions may have introduced large gradients
affecting the dynamics of the closed-leoop system . The
throttle coefficient was reduced to 0.68, reducing the speed

of the dash point by about 100 £t/sec, well away f£rom the
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arctangent switch region, and the linearized analysis was
repeated. The eigenvalues were found to have both real and
imaginary parts, as expected, showing that the steps taken
to limit the flight e&nvelope had engendered significant
effect on the dynamics of the state-Euler sytem. The s-
plane positions of the two cases are shown in Fig. 13 and

1la.

5.5 BACKWARDS INTEGRATION OF STABLE EIGENVECTORS

It was thought that a useful starting trajectory could be
found by using the stable eigenvectors of the linearized
sytem. If the ecuilibrium state is disturbed in proportion
to a stable eigenvector the disturbance will die out in the
linear case and should fair in towards the equilibrium
point, for some finite time at least,in the nonlinear case,
if the disturbance is small enough. So if such a trajecto;y
is integrated backwards in time (using the full nonlinear
system) a series of points will be generated which will fair
in towards the dash point, at least for some time. Only one
of the three eigenvectors approached the dash point from the
desired direction, i.e. from points lower in altitude and
slower in speed. This was integrated for 22 seconds and used

as an initial guess £for -QPTSOL. The path-~angle at the
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initial time was non-zero and attempts were made to reduce
it to =zero. Again convergence troubles were encountered:
OPTSOL could not tolerate large changes in the initial
values and the effort was finally abandoned. Apart from the
cost of computing and poor convergence behaviour, the system
also displayed an alarming instablity to small changes: on
occasions the speed in the final seconds dropped from its

maximum value (about 2300 ft/sec) to 1 ft/sec,

5.6 CONCLUSIONS

It was concluded that the thrust-tailoring approach taken to
make the problem easier had instead probably made it worse.
The integration subroutine DIFSYS is very sensitive to small
changes in derivatives of the right hand sides. By using a
multiplicity of sharp arctangent functions the computational
burden became large, as every time DIFSYS encountered an
arctangent transition the stepsice of integration
automatically became very small , increasing the computer
time required. Further it was evident the system was overly
sensitive to small changes in initial values. As a result it
was decided to use a simpler integration‘subroutine and to

return to splined data.
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Chapter VI

MODIFICATIONS TO OPTSOL

The first step to modify the operation of the program OPTSOL
was tn change the integration routine. The variable step,
eighth order Runge-Kutta package DIFSYS seemed to be a
primary scource of Ithe numerical difficultiés and
computational expense experieﬁced in the early use of
OPTSOL. It was removed in favor of a much simpler fixed

step-size fourth order Runge-Kutta-Gill subroutine.

6.1 SPLINED AIRCRAFT DATA

This substitution enabled the use of cubic splines and
spline lattices of Ref (45) for representation. of the
aircraft thrust and aerodynamic data. The problem c¢f the
Mach-limit viclation was handled by fairing off the thrust
data gently over four tenths of a Mach Number and increasing
the drag by adding more missiles. The aerodynamic and
thrust data are included in tables 1-4. The new flight
envelope was calculated and is shown in Fig. 15. The
courdinates of the dash point were found by a Newton

iteration applied to the usual necessary conditions,

36
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6.2 FAMILY OF TRAJECTORIES TC THE DASH POINT

The new data were used to calculate an 'energy-climb'

schedule(Ref.25); this was used as a2 guide for guesses of

initial altitude, energy and trajectory time combinations. A
thirty~panel division of the trajectory was employed to find
trajectbries starting at lower altitudes, over longer times.
This procedure was succepsful in finding optimal-range
histories starting from an initial energy of 30,000 f£ft.
After this point it became difficult and expensive to
progress any further down in altitude and energy. It was
thought that a smaller stepsize might be necessary to
evaluate partials with sufficient accuracy for the method to
converge. However this did not improve matters
significantly. But when the program was brodght to Langley
Research Center the situation improved. The CDC computer has
a word-length which is approximately double that of the IBM
370, so with double precision at Langley about 28 decimal
digits-were obtainable compared to 14 or 15 digits at VPI.
This had a signifi 'ant effect on the program's operation.
Much smaller stepsizes were used to evaluate the Jacobian
without a penalty in round-off error, and it is conjectured
that the resulting improvement in the accuracy of the
Jacobian helped the convergence of OPTSOL. The trajectory
extension continued until zero altitude was reached over a

trajectory of 282 seconds.




Chapter VII

OPTIMAL-REFERENCE-PATH CALCULATIONS

The first objective is to generate a reference optimal path
ﬁsing point-mass-model dynamics, over the widest possible
energy range. In the climb-dash ﬁroblem, the highest energy
of interest corresponds to that of the high-speed point on
the aircraft envelope, the dash 'outer' solution. The
lowest energy corresponds to the +trajectory which just
kisses the terrain limit, i.e, beloﬁ this energy, optimal
solutions which start at zero altitude would dive below.the
terrain limit if it were absent. This lower energy is found
by examining the initial leoad factor of a family starting
.from level flight at the terrain limit altitude: when the
initial load factor is unitf the lower energy is determined.
This is shown in Fig. 16,'where the initial load factor is

plotted for several different initial energies.

7.1 EFINAL LOAD FACTOR

Once the energy had been found which pulled off the ground
with an initial load factor of 1, the effect of the flight
time was investigated. To satisfy the final conditions in a

finite time requires that the aircraft perform some

38
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maneuvering near the terminal energy: the longer the time
allowed to approach the equilibrium point, the more gradual
the approach should be. The effect of flight time on the
final load factor was studied (for the same inital and final
conditions) and results are shown in Fig. 17 . This clearly
demonstrates how the oﬁtimal path tends to fair in
asymptotically 2s the £flight time ié increased. The load
factor dropred to 1.001 after the £flight +time had been
increased to 360 seconds. This time was chosen for the
nominal path adopted in guidance-scheme development, and the
altitude and path-angle (state variables) as well as the
lift-coefficient (control variable) have been splined as a
function of the energy. The load f%ctor is shown in Fig. 18
, Grawn against energy, showing the grid points used in the
spliné. Fig. 19 - 22 show the energy histories for path-
angle, altitude, load factor and lift  <coefficient

respectively for tmax = 360 secs. The other paths from the

same initial energy, but over longer times, showed identical
state and control energy histories over almost all the
energy range. ﬁowever at the terminal energies the effect of
different flight times is most evident. Comparisons of the
trajectories which result for different f£light times are
shown in Fig. 23 -~ 26 for path-angle, altitude, load factor

and lift coefficient respectively. These wvariables are
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plotted versus energy for the last 2000 £t of energy, for

tmax = 300 and tmax = 360 seconds. The dramatic effect that

the flight time has on the final state and control behaviour

is obvious from these pictures.

7.2 ONE PANEL INTEGRATION

After each converged solution was obtained a trajectory was
performed for the entire time, from the initial conditions.
At higher energies and over shorter times this would
ordinarily generate final states which were close to those
specified in OPTSOL, but owing to the error propagation of
the mismatched paths at each grid peint, there is a
difference between a one-panel integration and a 30-panel
integration. However at energies with zero initial altitude
the error propagation was such the final conditions were not
nearly met. After about 150 to 200 seconds the
instabilities in the state-Euler system would produce
extreme results. This raised the question as to whether the
solution ¢generated by OPTSOL is optimal or even near
optimal. To this end thé number of panels was reduced first
to 10, then to 6. Attempts to drive the number smaller than
this were not succesful as ;t appeared that the computer was
'running out of digits', despite the fact that 28 were being

used. However the difference between the soclution for 6
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panels and for 30 panels lies beyond the 9th digit and so it
was assumed that no benefit would be gained by <trying to

reduce the number of panels.

7.3 ENERGY-MODEL / POINT-MASS-MODEL COMPARISONS
Having established the nominal coptimal path which takes the

aircraft up to the dash point, it is of interest to stop and

. consider the two different models which have been used to

study the problem, in particular it is of interest to
compare the two different paths which climb up to the high-
speed peoint. These ars shown in the h~v plane in Fig 27,
surrounded by the level-flight envelope., The energy-range-
climb model is indeed <close to the point-mass model

particularly at higher energies.
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Chapter VIII

FEEDBACK COEFFICIENTS - CALCULATIONS

This chapter describes the numerical work done fto evaluate
and represent the feedback coefficients used in the guidance
law for the case of symmetric £flight. In thié case the
coefficient- are the‘paftials of the 1ift coefficient with

respect to the altitude and path-angle, at a fixed energy.

B.1 METHOD OF EVALUATION

The calculation of the wvariation in the contrel due to
errors in the altitude and path-angle is treated as an
initial~-value problem, and has been extensively discussed in
Chapter3 To improve  the accurécy of the feedback
coefficients, each one was evaluated twice, by introducing
positive and negative perturbations, and taking the average
of the +two difference-guotient wvalues. This method also
allowed the determination of the optimal size of disturbance
(in terms of the resulting accuracy) by varying the size of
the disturbance ,examining the degree of agreement between
the two values untill the 'best' stepsize has been found for
both altitude and path-angle. While it is true that the
cptimal stepsize will in general vary along the reference

path, it was found that this change was negligible and one

42

U SO

rd



“)

R T e R L i T S
- v .

L L

43

value was effective in evaluating the entire range for
either coefficient., As the stepsize is reduced the errrors
due to nonlinearities shrink, but those due to a finite
word-length grow: hence a compromise defines the optimal
disturbance. It has been noted that a multiple shooting
method such as OPTSOL is well suited to these kinds of
calculations: although it was an arduous task to establish
the nominal path, once +this had been achieved, the
neighboring solutions were found rapidly (within 3 or 4
iterations) and with hiéhaccuracy. This last point is
important, as the use of numerical differentiation of the
initial control to find the feeadback gzins required high
precision the contrel. Typically it was found that 8-9
decimal digits of information were required for 4-6 figure

accuracy in the gains.

8.2 PILOT SCHEME

Feedback coefficients were initially found over a small
range of energies, to evaluate the usefulness of the scheme
before committing the computational resources needed for the
full-scale operation. The last fifth of the energy range was
chosen for this purpose as the integration times are the
shortest and this minimises the cpu time rguired to f£find

optimal control solutions. The energies and corresponding
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times were taken f£rom the reference trajectory (of 360
seconds) in the following manner: the total energy change
was divided inteo twenty. The reference path was then
iqtegrated again and whenever the energy at the end of an
integration step exceeded an integer number of divisions of
the total energy change, the time and energy were recorded.
The times and energies for the pilot run are shown in
table7. The disturbance sizes were varied so as to maximize
the agreement in bétween the two wvalues obtained for each
coefficient. The optimal perturbation-in altitude was found
to be 0.05 feet; in path-angle it was found to be 0.0000001
radians. Agfeement between the wvalues of both of the
coefficients was found to vary in between 4 and 6 figures.

In addition to the energy levels already chosen for feedback

coefficient evaluation, it was necessary to find wvalues

close to the final energy as well. This is because spline.

representations are very unreliable when used to extrapolate
data. The energy at the beginning of the last panel in the
multiple-shooting metheod, i.e. a® 348 seconds, was chosen as

the upper limit for this purpose. The gains at this energy,

which is just 0.11 feet below the maximum value, turn out to

be an order of magnitude larger than the gains at lower
energies. This sensitivity of neighboring-optimal-guidance

schemes close to the terminal state has been noted in the




literature (Refs.(28-37)). It is worth commenting ,
however, that the apparent unboundedness in the gains near
the final state could have been a result of the method by
which they were calculated; it is guite possible that a
finite integration time, which is shorter as the terminal

state is approached, was responsible. In other words if a

longer time of integration had been allowed for the paths

which were clese the final state a different behaviour might
have been observed. However this effect is highly local, and
due to limitations of time and money this. topic was not
pursued. Any actual implementation of the scheme would of
course have to take this into account, pessibly by setting
an upper limit on the magnitudes of the #ains, to avoid
control saturation with small errors. To examine the
transition in the feedback coefficients near the terminal
state, the analysis was repeated for 3 more energies close
to the £final time, at 336,324, and 300 seconds. This is an
inexpensive set of calculations as the integration times are
extremely short. Alsc the ceoefficients were evaluated at the
energy correspeonding to the trajectory time of 188.7
seconds, as it was felt that they were needed for accurate
spline representation.

The next problem was to spline the coefficients as functions

of the energy-to-go. Difficulties were encountered at first
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when the splining was attempted. Cubic splines are not
suited in general to represant functions where large
variations in the gradient exist. In this case the gradient
changes by six orders of magnitude in the vicinity of the
end-point, resulting in large extraneous oscillations
appearing throughout the spline representation, which render
the interpolation useless. ©One way (not very satisfactory)
is to ignore the spurious points which are causing the
trouble. This was done in this case, and the plots ¢f the
coefficients are shown Figs 28,29,

Te overcome these difficulties the splines-under-tension of
Ref., 50 were used. These are similar in character to ths
cubic splines of Ref 45 which had been used so far; the
additional feature of the splines-under-tension package is
the ability te minamise spur%ous wiggles near regions of
rapidly changing gradient by the use of a tension factor, a.
By increasing o: the anomalies can ke reduced but not
eliminated, at least in the wvicinity of the end peint. The
problem is that as the tension factor is increased the
oscillations near the end point die down but the rest of the
reprasentation becomes essentially polygonal, i.e. linear

interpolatiocn between the data points.
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8.3 LOGARITHMIC SPLINING

It became apparent that the normal or ordinary method of
splining was inadequate and a different approach was needed
to continue. Essentially this is a boundary-layer type
problem: there is a region where the coefficients wvary
rapidly. It seemed to be appropriate to separate the two
regions and, using different methods, spline each one
separately,. The only requirement would be that the two
representations fair into each o%kar smocthly. One
possibility is to use the normal splines in the 'outer'
region, and spline the terminal coefficients in terms of the
logarithm of the energy-to-gov, matching the slopes at the
junction between the two regions, (Another possibility is to
use the inverse of energy-to-go in the terminal region, but
this was not used for reasons as the large variations in the
gradients, which are the roots of this problem; still
exist). The logarithmic method was used to spline the
coefficients for the range of energies considered in this
pilot section. The results are shown in Figs 30 and 31.
These show the gains using 10 gridpoints for interpolation.
These show a dramatic improvement over the previous attempts
te spline the data: these earlier efforts had been so bad
that they would only be visible on the same graphs as a

series of vertical lines passing through the gridpoints. It
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was considered likely that with a few additional peoints the
small remaining anomalies would be eliminated. An
additional 16 points were evaluated in the vicinity of these
outstanding 'wiggles' and finally a usable representation
was generated, shown in Figs 32 and 33, as functions of
energy. They are shown as functions of the logarithm of
energy-to-go in Figs 34, 35.

When the decision was made to carry on and evaluate the
coefficients over the rest of the energy range, the same
method was used to spline the data: the logarithm of the
energy~to-go was used, and there was ne need to go to a
boundary layer type of approximation after all. The
coefficients as they were represented over the entire energy
range are shown as functions of the energy in Figs 36 and
37. The corresponding plots versus the logarithm of energy-

to-go are shown in Figs 38 and 39.



Chapter IX

SIMULATION AND TESTING

Following the satisfactory splining of the nominal states,
controls and feedback coefficients as functions of the
energy-to~go, the guidance scheme was tested by running a

similation of the point-mass-model, using the feedback law,

and comparing the resulting trajectory with an Euler.

solution which started from the same initial conditions.
Before the entire range of feedback coefficients had been
worked out a pilot scheme tested out the idea on a small
range of energy near the dash-point. This test was performed
with an initial disturbanze of 1006 ft; the trajectory which
resulted from the guidance law is compared with the Euler
solution from the same initial conditions and the nominal
path in Fig 40 where the altitude is plotted as a functicn
of energy. The guidance law is so close to the optimal path
from the same starting point that it is almost impossible to
discern the difference between them on this Figure., The
difference in altitude between the two is shown as a
function of time in Fig 41 it can be seen that the
difference is always less than 11 f£t. With zero disturbance
the autopilot was able to follow the nominal path more than

satisfactorily, over the eptire range of energies, despite
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the inevitable errors which arise in the spline
representations. Tests were perfcrmed with the initial
altitude disturbed from that of the nominal path at
different energies by 1000, 5000, 10000, and 15000 feet
above and by 5000, 10000 feet below the nominal path. The
resulting trajectories are shown in Figs. 42-46. These show
that the feedback law follows the optimal solution closely,
even when the initial disurbance is far outside of the range
of linearity of the feedback gains., The cost was calculated
for the situation with an initial altitude of 15000 £t above
the nominal value, at the pcint where the two trajectories
faired into the dash point. The difference between the
ranges was less than 600 £t, an extremely small number

considering that the dash speed is 2400 ft/sec,.



Chapter X

EXTENSION TC 3-D FLIGHT

This chapter descibes the work done to extend the analysis
to three dimensional flight, and suggests what direction

future efforts might take.

10.1 CROSS RANGE CONSIDERATIONS

The problem of extending the analysis to 3-D flight is now
considered. The state system is augmented to include vy, the
cCross rahge, and ¥, the heading angle. The addition of the
éorrespondinq multipliers to tﬁe full state-BEuler system
raises the order of the problem +to twelve. For the
intercept problem the final value of y must be zero; the
value of the final heading, relative to the initial heading,
must either be calculated on-board, or be supplied by the
GCI. This will in general vary, for a maneuvering target,
and the value stored on-board must be periecdically or
continuously updated.

The boundary condition on y leads to a dependance of the
cptimal solution on the cross range: for the same heading-
to-go and energy-to-go there will exist many different
possible values of y. As a result, if this formulation is

used, cross range-to-go is an additional running wvariable:
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this increases the order of the nominal paths required,
which means a large increase in the computations on the
ground, as well as an increase in the storage requirements
on-~board.

To get around this situation it is proposed to avoid
using an additional running variable by letting the £final
value of vy be free: this c¢an accounted for in the
computation of the final heading needed for intercept, as
specified by the on-board flight computer or the GCI. The
intexcept paths which result from the two different methods
are compared in Figs 47 and 48, for a tdrget which is

initially far away from the interceptor.

10.2 COMPUTATIONAL CONSIDERATIONS

The first approach considered to generate. a family of paths
to the dash point was to use the symmetric flight reference
path as a starting peoint for the augmented system, and
introduce a small heading-to-go at the initial time. The
argument for doing this is that for very small headings the
state-Euler system should not be changed wvery much: the
paths are clcse to each other. However this method is only
useful for a small number of combinations of heading-to=-go
and energy-to-go. This is because the turning rate at the

energy at which the aircraft lifts off the ground is se¢ high
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that all the heading-to-go disappears in a short time, and
over a very small energy range. In general a method must be
found which generates the part of the family of reference
paths which combines moderate and large headings-to-go and
moderate to small energies to go, The difficulty lies in
knowing what initial conditions to pick for the altitude and
the path-angle: when the aircraft 1is liftihg off the ground,
these wvariables are specified, but in the general case,
starting from an arﬁitrary energy-to-go and heading-to-go
combination, the selection is a problem. Letting ther be
free is not acceptable as it can lead to an initial 1lift
coefficient of zero (i.e. in the symmetric case): the
optimization algorithm takes advaﬁtage of the freedom to
choose the initial conditions in a way which maximizes the
short term benefit. This dees not f£it in with the concept of
a nominal refence path, where the altitude and path-angle
are the same at the same combination of energy and heading-
to-go.

The solution that is reccomended is to use the altitude that
comes out of the energy-turn model, as in Ref 25. Here the
heading is assumed to be a 'slow' variable, and has the same
status as energy. However, instead of having to choose one
variable, (such as the ratio of the initial energy

multiplier to the range multiplier, as in Chapter 2), the
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initial heading multiplier must also be iterated upon. This
is done using a Davidon-Fletcher-Powell algorithm, te find
the path which fairs into the dash pecint with zero heading.
An example.of such a path over a small range of epnergy and
heading-to~ge is shown in Fig 49, where the heading is shown
against energy, and in Fig 50, where the heading vs time

plot for the same initial conditions is shown.

10.3 -SELECTION OF THE INITIAL PATH-ANGLE

The energy-State model produces altitude predictions which
are fairly accurate as a function of the current energy,
{away from altitude jumps), as can be seen Fig where the
Buler soclution to the climb~dash is compared to the energy-
range solution. However the same can not be said for the
path-angle, which is predicted to be zero along the path. As
a result a modification is considered, (Ref 43), which
produces realistic values along the path. The difference
lies in the selection of the fast and slow variables: if
altitude is chosen, zero path-angle results, if velocity is
chosen, a value of the path-angle results which is to high.
A new fast variable is examined in Ref 43 which picks path-
angle values in between these two values, and which may be

used as initial conditions for the problem at hand.
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Chapter XI

IMPLEMENTATION AND CONCLUSIONS

11.1 IMPLEMENTATION

Before the scheme may be used on a real aircraft there are
some important simplifications and restrictions which have
been applied in the interest of reducing the initial work-
load which must be accounted for.

First, the weight wvariation of the aircraft must be included
in the meodelling as a substantial percentage of the total
weight may be used up during a mission. This is perhaps the
easiest or at least the most straicht-forward problem: the
required action is to increase the order of the system, i.e.
the mass is .added as another wvariable and the resulting
boundary conditions are simply that the initial mass is
known, dinitial mass multiplier is unknown, and the £inal
mass is unknown resulting in the mass multiplier being zerc
at the final time.

Fuel optimization is a problem which will no doubt be of
interest, with different combinations of fuel and range
being optmized. Problems can occur here with a non-convex
hodograph, i.e. leading to the possibility of chattering

controls, in this case the throttle.
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Other problems of the real world which have not been
addressed are variations in atmospheric conditions i.e.
winds aloft and non-standard temperature distribution
against altitude. Possibly these could be dealt with by
anlaysing the effect of small perturbations, finding an

approximation teo the first order changes in the variables

which are stored on-board and using simple linear

corrections, Certainly this is the simplest way of tackling
such difficulties and it would be interesting to examine how
effective this approach would be.

Anothexr problem of interest is that of variable
configuration, i.e. the effect on the guidance schgme of
changes in the aircrafts characteristics due <+to battle
damage, releasing external stores{ etc.

The biggest problem that must be looked at is the extension

te 3-D, discussed in the last chapter.

11.2 CONCLUSIONS

The' numerical results bear out the following conclusions:
first, that all trajectories which fair into the high-speed
point consist of a rapid transition onto a reference or
skeletal path if they do not originate on it. Secondly, the

linear-feedback scheme proposed is able to control the
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aircraft so that it closely follows the appropriate neighbor
of the nominal path for large perturbations of initial

conditions.

11.3 FUTURE WORK

A 3-D extension of the computational scheme is of interest
in which there are two dominant states, i.e. heading-to-go
in addition to energy~to-ge. As a result, families of
optimal paths which fair into the dash-point will be needed,
and the feedback coefficients will be functions of two

variables (represented wia a spline lattice) instead of one.
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Appendix A

Cdo » 0.0242 + arccan(S0(4=1.0)) (1.0+0. 35exp (=4, 5(H=1.8) 2) (0.012/7r )
+ 0.08exp(~550M-1.1)% + 0.0096exp(~20(4-1.35)%)
+ 0.003axp(~20(4-1.6)%)

Cdel = (o.sw.2ozsn==:m(socu-1.23)).:c:m(;o(z.zs-u))<o.39u-o.t.75)
+ 0.075 + 0.0Sezp(-lSO(H—OJB”z) + 0.4{0.5+arccan (50 (M-2.25}))

Clmax = 0.32 + (0.72/47 Yarctan(50{0.9-4))+
(1.23-0.6M) (0.5+0.2026arctan{S0(M~0.9)Yarctan(50(2.05-))

-

Thrust(M,b) =
{0.5+(1/ 7 )arccan{40(M¥-XM2)) (H2-H1) + H! +
(0.5+(2/ %) arccan (60 (M=XM1) ) arctan (40 (RH2-M))) (HZ-H1/XH2-XH1) Qé-TH1)

1,X42 ,H1,H2 are funccions of altitudm:
X1 w (3,86(¢exp(0.165((r+1.74)))) ~ 4.82)
02 = 0.0156h° + 2.83h + 1.1

Hl = (£l.gl + £2.g2)£3 (41000)

H2 » (£11.gl+£22.82) (0. 5+(1/ 7 jarctan(40(0,91-h)})40405
fl = -2.43h2 = 1.5%h + 0.974

£2 = 2.38h% - 3.20h + 1.24

gl = (0.5 + (1/9)arctan(40(0.3<h))
g2 = (0.5 + {1/ )arctan(40(h=0.1))
fll = 1-35!12 = 1.53h + 1.56
f22 = 3.25112 - 6.25h + 2,98

£3 = (0.5 + (l/7r )arcean(40{0.75 - ¥))

h = altitude/10°

-
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ORIGINzL PACT 1%
OF POOR QUALITY

Mach Limit Fairing

The thrust is muwltiplied by the factor given by:

f= (0.5+ (L/m)azectan(l50(2.4 - M)

Dynamic Pressure Limit Falring

The thrust is multiplied by the factor given by:
£= (0.5 + (1/7)arctan(1500f" - M)

i" = /{4000/ko) / ss

tho = dengity

ss8 = gpead of sound
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Table 1 Cdo Data

| Mach Number | Cdo |
| 0.00 | 0.01850 |
| 0.50 | 0.01950 |
| ~ 0.80 | 0.01950 |
l 0.88 | 0.02097 |
; 0.90 | 0.02134 |
! 1.00 | -0,03533 |
| 1.10 | 0.04095 |
| 1.20 | 0.04656 |
| 1.30 | 0.04570 |
| 1.40 ! 0.04950 |
| 1.50 i 0.04934 [
| 1.60 [ 0.04918 |
| 1.70 | 0.04744 i
| 1.80 | ¢.04570 |
i 1.90 | 0.04450 I
i 2.00 [ 0.04330 [
1 2.10 | 0.04166 |
! 2.20 | 0.04001 }
! 2.30 | 0.03801 ]
[ 2.50 ! 0.03451 !
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Table 2 Cdecl2 Data

| Mach Number | cdcl? !
! 0.00 I 0.07500 |
| 0.40 | 0.07500 I
I 0.60 [ 0.07500 |
| 0.77 | " 0,07500 i
! 0.80 | 0.07500 |
| 0.90 [ 0.10000 ]
I 1.00 I 0.12500 |
| 1.10 | 0.07500 |
] 1.20 } 0.10000 |
| 1.40 [ 0.15000 |
| 1.60 [ 0.22500 |
I 1.80 ! 0.30000 |
| 2.00 | 0.38750 |
[ 2.15 ! 0. 45000 |
I 2.20 | 0.47500 |
| 2.25 ! 0.47500 |

| 2.40 1 0.47500 [
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Table 3 Clmax Data

| Mach Number | . Clmax ]
| 0.00 i 1.180 i
| 0.40 | 1.180 |
| 0.60 ! 1.180 ]
| 0.80 | 1.160 i
I 1.00 | 1.080 [
| 1.20 | 0.930 !
| -1.40 ! 0.810 f
| 1.60 | 0.700 j
| 1.80 | 0.630 ]
| 2.00 | 0.570 i
I 2.20 | . 0.500 |
| 2.40 | 0.460 |
| 2.50 | 0.460 l
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