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TELECOMMUNICATION APPLICATIONS OF MILLIMETER WAVES

P. DuPuis
"Engineer of National Center of Telecommunication Studies, Lannion

Microwave, Space and Radio Engineering Division,
Lannion, Cotes-du-Nord, France

1. Introduction

The subject of millimeter wave application is not new. The 	 /35*

engineers who conceive millimeter components and subassemblies have

long asked transmission system engineers for potential applications

of millimeter technology.

The responses of the latter have always been cautious if not

evasive. It has long been thought that the circular waveguide would

be the vehicle of millimeter transmission in the civilian area, but

waveguides have long been ahead of their time, and the hopes placed on

them have ' not been implemented by orders for operational communica-

tions.

The situation has evolved today, mainly because the bands of the

centimeter range are-all occupied or at least assigned in both micro-

wave transmission and space transmission, while the development of

the telecommunications network has caused the appearance of new po-

tential applications in subscriber networkd".and mobile communications.

Also, to attempt to tabulate a set of applications of millimeter

technology, both guided transmission and microwave transmission, as

well, as space transmission and mbbile communications which have been

studied or are being studied must be described.

Numbers in the margin indicate pagination in the foreign text.

Article from^mmee d'Etudes SEE, 5 December 1980.	
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2. Transmission by Circular Waveguide

2.1. Transmission Carrier

The guided transmission of electromagnetic waves has been the

sub,jec.; of studies since the 1930s. It quickly developed that only the

TE01 mode, guided in a circular oversized conduit, could permit long

distance transmission. To maintain reasonable guide dimensions,

i.e., an inside diameter of 50 to 60 millimeters, it was thus neces-

sary to be in the millimeter wave range.

This was a new frequency area in the 1950s and even the 1960s

beyond customary frequencies, in a way the re.kf-,frontier of microwaves.

Components were scarce and measurement techniques.frequently simple.

Indeed, the prospects were very promising, since transmission losses

of less than 3 dB per kilometer were expected in a band of several

tens of GHz.

Research is oriented in diffei,,ent directions. The guide itself

first had to be perfected. Different options could be considered.

The deposition of a film of dielectric material of a well 'I.selected
thickness and dielectric constant permits compensation for the de-

generation between the useful TE01 mode and the stray TM11 mode and

to thus decrease the coupling due to imperfections of the guide. This

option was chosen in the United States. The use of a helicoidal
circular waveguide was preferred in France and Great Britain. The

'wall is then composed of an insulated copper wire wound in contiguous

turns in a helix, which permits elimination of the transverse magnet-

ic-_mm.de.s*.

rt	

.y

h

r

In addition, any curvature of the guide cau
tion. To avoid any bending due to force exerted

trench, the guide can be protected by putting it

Such protection, the option chosen in the United

has permitted transmission losses of less than 1

be obtained in a 70 GHz frequency band.

2



In France, in order to limit installation costs, it was preferred

not to use such a steel conduit and to install an electrical shield

outside the copper turns to reduce the effect of curvatures. Fifteen

kilometers of guide made according to this principle were thus

buried near Lannion in 1973. The losses obtained were relatively:

high because of lack of rigidity of the casing. A major effort was

subsequently made to simplify the guide fabrication process. In ad- /36

dition, the inside diameter was increased from 50 to 60 millimeters,

and a steel sheath was installed. The transmission losses of this
	 r

new guide, measured over 5 kilometers, are 1.5 dB per kilometer in a
	 4 4

35 GHz band.

2.2. Transmission and Receiving Equipment

The perfection of millimeter subassemblies for circular guide

transmission has permitted considerable progress to be made in milli-

meter technology, in particular at the beginning of the 1970s.

Millimeter channel connection equipment had to be made first.

Semicircular duplexers had to be completed to separate the transmit-

ted signals from the received signals and to divide the frequency

bands into subbands of approximately 6 GHz. This type of duplexer

includes two semicircular guide couplers with multiple coupling open-

ings. Two high pass type cutoff filters were inserted between the

two couplers. The channel relay circuits are made up, as for micro-

wave beams, of circulators and cavity filters. Major progress asso-

ciated with machining methods in particular, have permitted low loss,

wide band couplers and circulators, as well as temperature stable

cavities to be made up to 50 GHz.

In addition, the appearance of semiconductors (varactor, Schottky

diode, Gunn diode and avalanche diode, etc.) has permitted the comple-

tion of transmission and receiving mixers, cavity stabilized oscil-

lators, transmission amplifiers, etc.

In the final phase of industrial development of the waveguide

3
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trans—tssion system at a rate of 560 Mbit/s per channel, microelec-

tronic mixers were made of transfer chip diodes on the microstrip line

of a guide-microstrip transition. The use of linear avalanche diode

amplifiers has permitted the transmission power to be raised to more

than 100 mW.

2.3. Evolution of High Capacity Systems

Large efforts made on waveguide transmission resulted in experi-

mental communications with industrial prototypes in four countries

(Japan, United States, Great Britain and France) [1]. A balance sheet

''of these studies was drawn in 1976, during the last ZEE conference on

millimeter waveguides in London [2]. It then was proved that the

guide transmission technique was completely mastered at this time.

But waveguide transmission has not gone from the experimental

stage to that of operation, even in Great Britain, where a 125 ki-

lometer operational link was programmed then cancelled. In a way,

the development of the waveguide has anticipated the needs of the

telecommunications network. On the one hand, as long as the communi-

cations to be transmitted remain telephone communications, the trans-

mission needs will be covered in large part by coaxial and microwave

networks....

On the other hand, in order to ensure good routing safety, it is

not possible to concentrate the traffic of the major trunks in a

single transmission carrier such as waveguides.

Under these conditions, the installation of communications with

a capacity of more than 10 Gbit/s will only occur at the time when

the network has to carry communications with live images. At this

time, the waveguide will be in competition with both large diameter

coaxial and optical fibers. Table l shows the state of progress of

these different techniques. In France, this takes account of the re-

sults obtained in the study stage and not the operation stage, which

generally occurs several years later.
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Coaxial 1975 140 4 0.6
2,6-9.5 nlm 1979 560 1.5 0.9

e	 Guido tl'ondes• 50 mm 1970 220 15 3
50 mill' 1974 560 2(1 11
60 min 1977 560 35 20

f	 Fibre optiquc
multinlode 1974 34 6 0.2

Illultllliode	 11,811111 1977 140 8 1,1
monunlode 0lini 1981 110 50 7

Key: a. Year of experiment
b. Rate per channel or

by "pair," Mbit/s
c. Distance between trans-

mitter and receiver, km
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d. Factor of merit, Gbit/s x km
e. Waveguide
f. Optical. fiber

It can be considered that

the product of the numerical

rate times the distance between

repeaters is a factor of merit

for high capacity interurban

transmission systems. This fac-

tor of merit becomes economically

significant when the cost of the

infrastructure (structures, power,

line protection, etc.) and of in-

stallation become important in

the total cost of the system.

0,1	 -- - --	 -- -	 The chronological evolution
1970	 1075	 1900	 1905	 1090

of this factor of merit* is shown

Fig. 1. Factor of merit for high 	 in Fig. 1. The performance of a
capacity systems.	

transmission technique first

Key: a. Waveguide	 evolves very quickly, both due
b. Optical fiber	

to the skill acquired in the

transmission carrier (the transition of multimode fibers to monomode

fibers for example) and by the appearance of new components which per- /37
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mit higher transmission rates in particular.

The technique then stabilizes, as is the actual case of coaxial

transmission, where it should not exceed 1.5 Gbit/s x km. For the

circular waveguide, if studies were continued today, the performance

of the transmission carrier undoubtedly would evolve little. On the

other hand, the rate per channel would be increased to at least 1200

Mbit/s. It can be estimated that the ceiling of the factor of merit

of the waveguides would be approximately 50 Gbit/s x km.
q

Figure 1 indicates a divergence between the developments of the

x	 waveguide and optical fiber in high capacity transmission, which can

be calculated at about ten years. The possibilities of optical fibers

are clearly better known today than five years ago. It is even pos-

sible now to predict that their factor of merit eventually will reach

several hundred Gbit/s x km.

3. Microwave Transmission

3.1. Microwave Beams

Microwave beams have been developed mainly between 2 and 12 GHz.

A heavy infrastructure which it is difficult to expand has been in-

stalled in France. More than 600 masts and towers have been built

for long distance networks, and the length of the corresponding micro-

wave ,jumps is large and quite uniform, since it generally is between

35 and 65 kilometers. Moreover, it can be noted that this option,

which was chosen in the 1950s, was not evident for long ,jumps in the

beginning. A.G. Clavier, the French engineer who brought into being

at 2 GHz in 1930 between Calais and Dover the first microwave communi-

cations in the world, wrote the following lines in`1946 [3].

"Therefore,

have major use ii

sections have to

in a mountainous

Therefore, there

6

it now can be foreseen that microwave cables will

z telephone networks, in all cases where the cable

be installed under arms of the sea, a large river,

region or where access is difficult in particular.

is no doubt that the construction of a large number
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of towers to support the transmission and receiving horns of the
t

relay stations will soon be seen. Either high towers where, except

for telephone equipment proper, services which likewise call for cen-

timeter waves and are used as aerial navigation aids for example will

be concentrated, or microwave cables which use the shortest wavelengths

permitted by the laws of propagation, which will result in short towers

and infrastructures which are similar to those of high tension power

transmission lines. It is likely in some way, by means of microwave	 d

cables, that television signals will be transmitted between large

centers, which soon will permit the display of all important events to

be followed on the receiver screens at. home at the same time they oc-

cur."

The second option proposed by Clavier, closely spaced towers, has

z	 not been adopted, since it undoubtedly was not the most economical at

the time the infrastructure of the long distance network had to be in-

stalled, i.e., at a time when the transmission capacities were low.

Frequencies above 12 GHz cannot be used in the existing national

infrastructure, since higher frequency waves are absorbed by rain and,

to limit the cutoff time due to spreading, the length of the jumps

must be reduced.

In France, the existing microwave beams at 13 and 15 GHz have

been installed in local and possibly regional networks, with 15 to

30 kilometer jumps. The 19 GHz band could be used to extend major

microwave trunks in an urban zone. The lengths of these communica-

tions links, which possibly include several ,jumps, would not general-

!	 ly exceed 10 to 20 kilometers..

Curve c in Fig. 2 gives the maximum range of a microwave ,jump,

when it is desired to ensure an annual cutoff time of 12 s/km (CCIR

specification) . with a system which has a 40 dB fading margin avail-

able under average climatic conditions (the Paris Region for example).

This range decreases very quickly with frequency.

t
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Fig. 2. Range of microwave trans-
mission.

Key: a. Communication with obstacle,
occultation margin 16 dB,
beam relative to ground K=1

b. Communication without obstacle,
occultation margin 8 dB,
relative beam K=l

c. Communication with fading due
to rain, fading margin 40 kB,
annual cutoff time <12 s/km

d. Communication with fading due
to rain, fading margin 20 dB,

To reduce the cost of

the line of a millimeter

microwave beam channel, an

attempt can be made to in-

crease the transmission rate

as much as possible. Thus,

at 29 GHz the utilization

of a microwave beam at 800

Mbit/s per channel with l

kilometer jumps has been
considered [4].  The equip-
ment developed in this way

was very similar to circular

waveguide equipment.

3.2. Microwave Distribution

Another radically dif-

ferent approach, based on

very light equipment, has

appeared at a time when talk /38

has begun of millimeter

voice carriers and millimeter

wave binocular radios for

noncivilian applications [5,
6].

\1

annual cutoff time hours,	 Why not attempt to
e. Range, km
f. Microwave beams	 Perfect simplified equip

g. Microwave distribution 	 ment to bring into being dis-
h. Frequency, GHz	 tribution lines for sub-

scriber connections,not ,just lines for the transmission network? It

then is a question of reducing the most costly functions to their

simplest expression: transmission-receiving duplexing ;channel fil-

tering; oscillator frequency stabilization; transmission amplifica-

tion ., etc. This simplification effort is possible on condition of

appropriating relatively large frequency bands to these light systems.

8
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In addition, there can be much greater tolerance towards cutoffs

due to rain in subscriber networks:. The annual cutoff time target

will be several hours per connection, regardless of distance. Curve

d in Fig. 2 gives the maximum range of a microwave distribution line,

when an annual cutoff time of less than 8 hours (10 -3 of the year)

should be guaranteed for a connection with a system which has a 20

dB fading margin. Thus, the ranges are much larger for microwave

distribution, even with simplified equipment, than for microwave

beams.

Millimeter waves could rapidly appear to be particularly appro-

priate for microw e distribution in a country like France, where a

"frequency shortage" begins to be felt in the decimeter and even

centimeter wave range. Microwave transmission then will be divided

into three large techniques, each of which corresponds to an appro-

priate frequency area (see Fig. 2):

below 2 GHz. Radio communications. Single line connections,

essentially for mobile communication with possible occultation of

the radio path by obstacles;

from 2 to 20 GHz. Microwave beams. Multiplexed connections

at medium to long distance with visibility and a heavy infrastruc-

ture;

above 20 GHz. Microwave distribution. Lines from a point

(central) to several points (subscribers or groups of subscribers)

with visibility and a light infrastructure.

Microwave distribution now is a rapidly growing technique. Up

to now, subscriber connections by radioengineering line have been

made with 150 and 400 MHz single line equipment. More than a thou-

sand subscribers located in a mountainous zone and on coastal or

river islands have been thus connected to the PTT network. In addi-

tion, a complete microwave distribution system is in development at

1.5 GHz. It will permit connection of 15 subscribers by small groups

5
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with a single carrier, and with the telephone lines digitally coded

with multiple time distribution access (AMRT).

These various systems are especially appropriate for developing

countries,,where the subscribers frequently are very distant from

the telephone exchanges. On the other hand, their possibilities are	 ^*

limited in France, since the VHF and UHF bands are given priority

assignment to mobile communications.

For subscriber connections at a higher rate (new services at

64 kbit/s and below, video, etc.), higher frequencies must be re-

sorted to, and microwave distribution should be required for cable

distribution (optical fibers eventually) in the following cases: 	 M
m

subscribers located in zones which are difficult to reach;

temporary connections and special rapidly developing net-

works (extension of digital transmission networks by satellite, etc.);

subscribers for whom very good connection security must be

ensured (diverse routing).

3.2.1. Principal Characteristics of 31 GHz Microwave System

The first 31 GHz system is being developed [7, 81. It will per-

mit establishment of digital communications at a rate of 704 kbit/s,

and it will therefore be well adapted for connection of groups of

no more than ten subscribers.

The millimeter transmission-receiving structure is especially

simplified, some functions (transmission-receiving duplexing, the

frequency operating mechanism)having been shifted to an intermediate

frequency or to the base band.

This thus causes the use of a completely standard "millimeter

headset," which can be used for other applications such as Doppler

radar.

10
'Y
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OF POOR ALITY

The technical options are the following:

"s
a single oscillator for transmission and reception;	 a

direct frequency modulation of the oscillator;

frequency drift of the oscillator, which can reach 10 -3 in

the actual environment.

The oscillator is a Gunn diode oscillator tuned by a varactor to /39

which the modulation of the transmission is applied. The receiver

mixing circuit is distinct from the oscillator, and it includes a

single diode mixer. The oscillator and the mixer are coupled by a

circulator. The intermediate frequency amplified signal carries both

the transmission and receiving modulations. A circuit called "anti-

local" is located in the base band to cancel the transmission modula- 	 z

tion and reconstitute the digital signal received. Finally, an auto-	
i

matic frequency control circuit is set up at only one of the two

ends to stabilize the intermediate frequencies (Fig. 3).

------ -- --------
a OSCILLAIE I ,R	 r,
GUNN rVARACTOR

I
II

b C.AI

I
DEM000LAI10N

FM

r

C CODAGE MULTIPLEXAGE I
`1T--T-7-77

d VOTES TELEPHONIOUES

----------------^

TrWMO
DULATION

.OSCILLATEUR
NN VARACTOR

F--- -----------
II	 C COOAGE MULTIPI EXAGE

L^---1 T----^T--rr
d VOIES TELEPHONIOUES

a

Fig. 3. Block diagram of communication link.

Key. : a. Gunn oscillator + varactor
b. Automatic frequency control
c. Coding-multiplexing
d. Telephone lines
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Under these conditions, the millimeter headset is reduced to an

oscillator-mixer without a strong overvoltage cavity or millimeter

filter. Of course, such a solution can only be considered in the

case of low digital rates on the order of a few hundred kbit/s.

The transmitter-receiver is generally characterized numerically

by the gain of the system, which indicates the ratio of the transmis-

sion power to the threshold receiving power for which the error rate

exceeds the limiting error rate. This gain exceeds 90 dB from the

time when the noise factor is below 15 kB for a rate of 704 kbit/s.

Another important characteristic is the frequency band occupied

by a channel. For this system, with the two directional transmission

taken into account, it is on the order of 100 MHz, with allowance for

a maximum drift of 30 MHz of the' millimeter oscillators and the ne-

cessity for protecting reception against interference at the frame

frequency.

3.2.2. Lannion-Tredrez,Experimental Line

A 9.5 kilometer long experimental line was installed at Lannion

at the end of 1979. It permitted the ,joining of two subscribers to

the CNET exchange in actual traffic.

The millimeter amplifier of the subscribers, which includes all

the transmission and receiving circuits, was placed at the top of a

quite standard 12 meter high metal post. Under these conditions,

the isolation of the radio path from trees and structures is only a

few meters at several connection points, which is quite enough.

Antennas 30 centimeters in diameter with 35 dB gain were placed
at each end of the communication line. Aiming them was easy, and the

fading margin then was 18 dB. During nine months of measurements,

the cumulative cutoff time due to ,rain was 148 minutes, or less time

than the four hours anticipated for average climatic conditions, in

the Paris region for example.

q

i
i

i

i

S

p

`s
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bution of which is shown

3 minutes. Such cutoffs

time not too long, which

of transmission quality.

ORIGINAL PAQ[= j
OF POO§ 9VAhrrespon	 cutoffs, the duration distri-

in Fig. 4. The average cutoff duration is
are thus rarely repeated and at the same

should be favorable from the point of view

3. 2.3• Prospects of 31 GHz
$t em

15

This system operates at

a nominal rate of 704 kbit/s,

which corresponds to a digital /40

rate of the subscriber net-
io

work in the course of stan-

dardization.	 It can easily

be adapted to rates from a

hundred kbit/s to 2 Mbit/s at
S

least.	 Figure 5 shows the

area of use of this system.

Curve a corresponds to the

maximum range with 30 centi-

meter diameter antennas, for

Fig. 4.	 Histogram of Lannion-Tredrez
an annual cutoff rate of

-3.link cutoffs, 1980. 10For greater distances,

Key:	 a. Number of cutoffs
existing 2'-and 15 GHz sys-

b. Duration, minutes tems must be used.	 Curve b

gives the maximum range of a

digital transition over a conventional symmetrical paired cable

without intermediate repeaters.	 The addition of repeaters permits

an increase of this range (curve c with one repeater), but it makes

the installation and operating costs (remote power supply, etc.) in-

crease in a nonnegligib.le way.

This first 31 GHz millimeter system remains a point to point

system. To join several groups of subscribers in the same zone from

a central point such as a PTT tower, several millimter communication

lines can easily be installed at the same frequency, with angular

13

4

E

F

}



shielding from the antennas on the order of approlimately 30 decibels.

The time engineering which associates transmission and digital

concentration must quickly be resorted to. In particular, the time

distribution multiple access technique (AMRT) could be used. It is

already used for microwave distribution systems, at 1:5 GHz in France

and in a special band from 10.5 to 10.68 GHz in the United States, to

extend digital satellite transmission networks [g, 103.

4. Space Transmission

4.1. Evolution of Space Transmission

Satellite communications were first used for intercontinental

transmission of telephone lines and television channels. Their use

is now considered very broadly for data transmission and video trans-

mission to one or more countries in limited geographic areas [111.

The diversification of satellite communications has made neces-

sary the use of higher frequency bands than the 4 and 6 GHz bands
initially used. The 11 and 14 GHz bands have been the subject of

thorough experiment, especially within the framework of the European
OTS program. Several telecommunications networks have been defined

in this band (ECS-Telecom 1), and they should rapidly become opera-

tional.

The 20 to 30 GHz band then was the subject of experiments, but

numerous uncertainities delay its use.

4L2. Transmission at 20 and 30 GHz

The use of higher frequencies in microwave transmission is made
possible by shortening the microwave jumps.

In the area of space, from the time when geostatonary satellites,
there obviously no longer was the question of working on path length

The antenna gain must be increased to preserve the same trans-

14
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mission capacity.

d This increase in gain is
Dbbit
Mbiths calculated in Table II with -

10° the following hypotheses:

s	 \\	 y the type of trans-

mission (rate, modulation) is
oby t °° the same in different bands;

o

0,3	 + 	 °	 a... __^ the path considered

t	 oa
is the downward path, i.e., at

4s 11 and 20 GHz, since it is
^i generally the path most dis-

turbed by propagation fading.

o,ot These interfere at the same
Dtstnncc5_.__	

to	 IS	 Km time with the reception noise

temperature and losses in space;

Fig. 5.	 a.	 Range of 31 GHz link
(system gain 90 dB at 700 kbit/s);

the transmission	 Alb.	 Range of symmetrical pair
cable link without repeater; c. power aboard the satellite is
Range of cable link with one re- connected with the constraintspeater.

of dissipation and useful
Note:	 The direct line distance for charge consumption and not withthe cables is concerned	 i.e.	 0.66
times the actual length of the frequency.	 Under these condi-
cable. tions, it can be considered

Key:	 a.	 Millimeter that it is the same at differ-
b.	 Cable
C.	 Cable with repeater ent frequencies;

d.	 Rate, Mbit/s

the margin to be taken into account for propagation fading

due to rain depends at the same time on the reoFraphie location of

the earth station, the angle of inclination of the space path and

the cutoff time target, which becomes an important parameter of trans-

mission availability at elevated frequencies. Two extreme cases are

considered with an angle of inclination of approximately 30 degree s.

S
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ORIGINAL. PACE I-S'

OF POOR QUALITY
TABLE II

MR GI I 
u

a	 Trajet descendant I1.^IQG13z b	 Region C	 Littoral
1	 (Rcfcrencc t transmission 4. 0G1•Iz) parisien lie /5.10" 4 mcditcrraneen/l0 -4

do coupurc de coupurc

—	 puissance emission 	 d dBm — — -
-	 1 aetcur do hrui4 rcccptcur 	 e dB — 1 — 3 — 3
—	 Rapport signal a bruit	 f (113 — — -
-	 Perles espace fibre	 g d13 — 9 — 14 — 14
— Marge pour cvanouisscment do propagation h (113 — 3 — 8 — 23
—	 Gain do 1'an1cnnc de la station tcrrienne 	 i dB + 3 + 6 + 6

Wficit ;1 compenser par Paugmentation du gain do I'antcnnc
9	 satellite dB 11 22 37

Key:	 a. Descending path (reference f. Signal to noise ratio
4-6 GHz transmission) g. Open space loss

b. Paris region/5.3.0-	of cutoff h. Spread fading margin

c. Mediterranean coast/10 -4 of i. Ground station antenna

cutoff gain

d. Transmission power J. Deficit to be compensated

e. Receiver noise factor by increase of satellite
antenna gain

Dif Ictt
dB
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a^ 

o
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Fig. 6. Descending path def-:
icit to be compensated vs.
frequency.

Key: a. Unfavorable conditions
b. Favorable conditions

Compensation of additional

propagation losses by an increase

in gain of the onboard antennas

leads to a very strong reduction

of the radiation beams of the sat-

ellite. For a high capacity trans-

mission, an aperture:,angle of ap-
proximately 10 degrees must be al-

lowed in the 4/6 GHz band and an

angle of 0.6 degrees in the 20/30

GHz band. The area covered by a

beam with such an aperture angle

would be approximately 100,000 km2.

More than six beams would be re-

quired to cover all of France.

Putting narrow beam antennas into operation would normally lead

to the addition of supplementary circuits to the useful load of the
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satellite. Better antenna stabilization must first be bnsured, pos-

sibly by the addition of an automatic tracking circuit. Beam switch-

ing could then be introduced, which is of particular concern when the

number of beams is large.

The installation of a transmission power control circuit in

ground stations, which permits its reduction outside of fading pe-

riods, should turn out to be necessary to reduce interference between

systems. Finally, the diversity of locations, i.e., reception at two

neighboring ground stations situatdd at a sufficient distance apart,

would turn out to be of concern in the event of unfavorable condi-

tions (strong rainfall intensity, very severe cutoff time target).

4.3. Intersatellite Communications

In addition, the establishment of direct communications between

satellites is considered, in particular to suppress intermediate re-

flection on the ground in the case of communication established with

two satellites.

Millimeters waves are quite well adapted to this type of applica-

tion, when there obviously no longer is a question of absorption due

to rainfall in this case. The use of frequencies around 60 GHz was

formerly considered. Finally, during the last World Radio Communica-

tions Conference, it was decided to allocate, in addition to the 54
58 and 59-64 GHz bands, two lower frequency bands: 22.5-23.5 GHz
and 32-33 GHz. The production of transmission-receiving equipment

is easier in these last two bands. Meanwhile, it remains to be proven

that the division of these bands with ether services, radionavigation

in particular, does not create intersurmountable constraints.

5. Mobile Communications

5.1. The Principal Applications

Ground millimeter communications can only be short range com-

mucations, since they must only be accomplished with direct visibil

9
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ity :or under conditions very close to direct visibility.	 For this

reason, they are allocated to the case of steered moving vehicles,_

i.e., moving vehicles which should follow a determined course.	 This

is the case of trains, subway branches, motor vehicles on highways,

barges on the canals and ships in a channel.

Millimeter communication should permit the development of high

rate communications up to 1 Mbit/s and beyond, which hardly can be

achieved in VHF-UHF.	 To ensure continuous communications on a long

distance transport line, fixed transceivers must be laid out one to

two kilometers apart along it. 	 The radio beam in which the milli-

meter waves are concentrated is very narrow.	 Thus, a kind of milli-

"	 meter tube is obtained in which the moving vehicle travels.

In the millimeter wave range, it would appear that the effect

of multiple paths would be reduced and that propagation would remain

accurate, even in tunnels, on bridges, along real property, etc., not

only in a straight line, but also in the presence of some curves.

Several systems are being studied for continuous communications 	 /42
with trains at 30 GHz [12] and 60 GHz [131, as well as for point rf

communications at 60 GHz between cars and highway entrances [14]. h

5.2. Optimization of Frequency for Communication with Trains

The use of frequencies on the order of 60 GHz could present

several advantages over lower frequencies on the order of 30 GHz:

the effect of multiple paths would be less;

the absorption of 60 GHz waves by the oxygen of the air

greatly limits interference between two different sections; thus, it

is much easier to reuse the same frequency along a line, and fre-

quency stabilization of the millimeter oscillators could possible be

simplified;

the installation of a space difference system on the moving
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vehicle (30 centimeters phase difference at 60 GHz) would prove to be

easier.

These advantages obviously pay off in a large decrease in spacing
between two fixed transceivers 1131, which would be only 1 kilometer

instead of 2 kilometers at 30 GHz.

6. Conclusion

The development of millimeter waves for civilian communications

has been retarded up to now, especially because the needs of high

capacity transmission have not been strong enough to justify the in-

stallation of circular waveguides in a long distance network.

But this situation should evolve for 20 to 60 GHz transmission

in open space, which makes available great advantages:

tt is a question of available bands of sufficient width to

permit the relaxation of some constraints, such as frequency stabili-

zation and microwave filtration;

the equipment, the antennas in particular, can be compact,

which makes their installation easier, without a heavy infrastructure,

close to subscribers and even on moving vehicles;

interference between communications lines will be limited

for at least three reasons: the radio paths are close to the ground,

the attenuation of millimeter waves due to obstacles is large, and
the high directivity of the aerials restricts the radiation zones.

On the contrary, the range of horizontally propagated millimeter

!	
waves (or the coverage zone of space transmission) remains reduced,

because of attenuation due to rainfall and nearly optical visibility

without occultation is required.

Finally, all these elements, including the range limitations due
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to rain and the visibility constraints, except for some satellite

transmissions, contribute to research on so called "full broadcasting"

or "bottom of the range" applications, i.e., in the distribution net-

work for fixed or mobile subscribers.

Of course, there are still new technologies to be perfected,

the mo6t promising eventually being "monolithic integration," to ob-

tain large reductions in the cost of equipment and thus permit these

millimeter systems to be competitive.
5
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