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V1tEFACE

A brief summary of the research carried out under the NASA Grant

NSG 3212 during the six-month period ending December 31, 1952, is described

in this report.

Section 1 reports on the progress made in developing a computer code

for solving the parabolized Navier Stokes Equations for internal flows.

Efforts made toward understanding and overcoming oscillations that develop

in the calculation procedure take much of the discussion.

Section 2 contains a summary of the measurements being made in the

hub- and annulus-wall boundary layers. This section traces the flow in

the hub wall boundary layer, starting ahead of the inlet guide vanes to

the inlet of the rotor.

B. Lakshminarayana

Principal Investigator
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NOMENCLATURE

C Root blade chord of the inlet guide vane

D
i

Resultant flux at the present step

F Jacobian of the convective flux vector in the normal direction

H Jacobian of the streamwise flux vector

q
J

Solution vector

F	
Aq4 Delta difference of the solution vector

R Radial distance normalized by the tip radius 	 }^

SF Shape factor, a /e
i

W Axial velocity normalized by the blade tip speed

Ark Normal grid step size	 !F

A9 Streamwise grid step size

S Displacement thickness

A Momentum thickness

Subscripts

b boundary point

1 first interior point from the boundary point b

2 second interior point from the boundary point b 	 a

i
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1. A SPACE MARCHING SOLUTION TO THE NAVIER-STOKES EQUATIONS

The semi-annual progress report [1] for the first half of 1982 described

the formulation of the space marching algorithm and its implementation.

Problems encountered in implementing the scheme were mentioned. Aspects

of the algorithm that required further study were the following:

1. Oscillations that developed in the solution as the calculation progressed

downstream.

2. Determination of the pressure at a solid boundary.

This section of the report describes the progress made towards the

solution of these problems and the status of the computer code.

1.1 Discretization of the Convective Terms

The two problems mentioned above are inter-linked and can be traced

to the manner in which the first derivative terms (convective terms) were

discretizei in the equations. A centered difference approximation for the

first derivative over three grid points involved only the outer two points

and excludes the center point, the point at which the derivative is being

sought. The result of this exclusion is the development of phase errors

in the calculations that lead to oscillating solutions. The development

and propagation of these errors have been discussed by Fromm [2]. Further, 	 A

Leonard [3] shows that any such centered difference approximation for the

first derivative provides no damping to damp out the errors generated,

leading to growing error solutions. The suggestion by both the authors,

from their studies, is the use of higher order difference schemes for the

convection terms in the equations.

A different perspective to the problem is in the work of Barnett,

Davis, and Rakich [3]. Consider the simple differential equation

1

1



z

ddx
 . 

f (X)	 (1)
0

If we discretize the derivative in equation (1) with a centered

difference approximation, we get

yi+l - i-1 = f	
(2)

i 

Equation (2) can be solved for all of the odd-numbered grid points

by stepping from the initial condition at y l . Similarly, we can solve

for all of the even-numbered grid points by stepping from the grip point

Y2' However, a missing element in determining the even-grid point

solution is a proper transference of the initial condition from y  to

Y2' If this extra numerical condition is not imposed, the odd- and

"	 even-grid point solutions decouple and lead to oscillating solutions.

Barnett, et al. [3] have called these extra numerical conditions as

"connection" conditions and have reported considerable success from their

use in eliminating oscillations.

From the above discussion we can arrive at the following conclusions

in adopting a discretization for the convective derivative.

1. The commonly used centered difference approximation can lead to

a decoupling of the solution at the odd- and even-grid points

and subsequently lead to oscillations.

2. The use of any centered difference approximation for the first

derivative provides no damping to any oscillations that may

develop from the above errors.
li

3. Proper coupling must be provided between the odd- and even-grid

points to the boundary grid points which carry the boundary condition

information.
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Many workers in the field have used a one-sided difference scheme

to overcome some of the above problems. The scheme, while it does

overcome some of the problems, is first order accurate and introduces

dissipation into the scheme that is of the same order as the viscous

dissipation. As shown by Leonard [2] this can lead to large errors

in calculating viscous flows and should be avoided. The fourth order

scheme suggested by Leonard [2] provides accurate solutions with no

oscillations. The discretization can be written as

r

8 _	 -^i+2+8^i+1 8^i-1+'i-2^i+2-4^i+1+6^i-4^ i-lei-2
8x sgn(u)	 12Ax	 +	 12Ax	 (3)

where sgn(u) is the sign of the velocity that convects the first derivative.

The first term in equation (3) is a centered fourth order accurate discret-

ization of the first derivative. As mentioned above, the centered deriva-

tive provides no damping to any errors that may develop in the calculation.

The second term in equation (3) provides this damping and is a fourth

order derivative. Its effect is to eliminate the extreme point of the

difference cell on the left or right, depending on the direction of the

convective velocity, and to introduce the center point of the cell into

the discretization. The overall scheme is fourth order accurate and has

the same order discretization error as the error in the viscous terms.

The use of equation (3) on the explicit side of the LBI scheme poses

no difficulties and with little increase in the computational effort.

However, using the scheme on the implicit side results in a block penta-

diagonal system that requires a considerably greater amount of computation

than the inversion of a block tridiagonal system presently in the LBI
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algorithm, For this reason we have decided to retain the block tridiagonal

system but implement some form of "connection" conditions, as suggested

by Barnett, et al. (31, to prevent solutions on the odd- and even-grid

points from decoupling. This problem is acute at a solid boundary where

rapid changes in the variables occur. The dominance of the second

derivative viscous terms in the vicinity of a solid surface effectively

"'connect" all three points of the difference cell and need no further

condition. It is the first derivative pressure terms that tend to decouple

at the odd and even points and need further consideration. This implies

consideration of the method by which the boundary conditions on the

pressure are imposed at a solid boundary.

1.2 Boundary Conditions tor the Pressure at a Solid Boundary

Imposing boundary conditions at a solid boundary poses no problems

as far as the three velocity components are concerned. A further condition

on the pressure (internal energy) is required to complete the specification

of the boundary conditions. In a delta formulation of a numerical scheme,

like the LBI scheme, this occurs as the delta change of the pressure on

the boundary along the marching coordinate direction. This change of the

pressure can be obtained from one of two equations, the streamwise

momentum equation or the normal momentum equation at the boundary. The

commonly used method is to use the normal momentum equation, neglecting

the viscous terms as small. The simplified normal momentum equation, then,

is that the normal derivative of the pressure is zero and the pressure on

the boundary could be found by extrapolation from the :inner pressure field.

.	 We have encountered the problem of a growing boundary pressure from this

extrapolation and is possibly due to the following reasons.
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As mentioned above, the use of a centered difference for the first

derivative can lead to a decoupling of the solution of the odd- and even

grid points. Thus, the first point away from a solid boundary, an even

point, tends to develop a solution that is not constrained by the boundary 	 ,.

value. After the inversion step, the pressure on the boundary is extrapo-

lated from the erroneous pressure at the first even point resulting in

erroneous boundary pressures. The error tends to be cumulative since

the boundary pressure, due to the decoupling, cannot strongly influence
k
w

the pressure at its neighboring even point.
4

The second option available to calculate the boundary pressure is to

use the streamwise mumentum equation. The use of this equation has the

advantage that the pressure drop due to the shear stress at a solid

boundary can be incorporated into the :a1culation scheme. The addition

of this equation does not affect the eigenvalues of the streamwise flux

vector and can be coupled to the implicit calculation scheme. However, the

use of this equation on the implicit side of the calculation only decouples

further the boundary grid point and the first even grid point away from it.

The result is an-acceptable solution on the odd 3rid points and a seemingly

independent solution on the even grid points.

1

	

	 The strategy to overcor,:e the problem, clearly, is to introduce some

form of coupling between the odd- and even-grid points. This is the idea

f	 of using a "connection" condition as suggested by Barnett, et al. [3]. For
f

this purpose we use the normal momentum equs ,,tion discietized mid-point between

the boundary point and the first inner point. This equation is used in

addition to the equations generated at the first inner point from a three

point centered discretization in the LBI scheme. This additional equation

is solved for the delta difference of the pressure on the boundary in terms
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of the variables at the first inner point and is substituted for in the

block tridiagonal system generated by the centered three point scheme.

The normal momentwn equation used as a "connection" equation can be written

in the form

Hb (Agb) + H 
1 

(Aql) - j Fl (Agl) - Fb(Agb) . A^ Dl ( q) + Db(q)	
(4)

2	 2	 An	 2

The centered difference of this equation at the grid point 1 can be

written in the form.

	

AE F
2 (Ag 2)	 F,/Aqb)

Hl (Agl) - 2	 2An 

^	
s AE D

1
 (q)

For simplicity we have shown only the convective terms on the left-hand

side of equations (4) and (5). The boundary point solution, Aq b , can be

eliminated in equation (5) using equation (4). This elimination of the

boundary point also "connects" the boundary point to the first interior

point. After the inversion step is completed, the boundary pressure can

be found by using the streamwise momentum equation, thereby incorporating

the viscous pressure drop into the calculation procedure. Further,

the fourth-order scheme in equation (3) can be used on the explicit side

of the calculation. This provides further transfer of information between

neighboring points in the difference cell.

In summary, the scheme is implemented as follows:

1. Use a fourth-order difference scheme for the first derivative

(equation (3)) on the explicit side of the algorithm.

2. Use a centered three point difference approximation on the implicit

side of the algorithm along with a "connection" condition at the

boundary provided by the normal.. momentum equation.

1W

(5)

4

J
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3. After the inversi',s^a step, use the streamwise momentum equation to

calculate the pressure on the boundary.

1.3 Results
4

Modifications to the computer code to incorporate the techniques

discussed in the previous sections have been completed and are currently

being tested. Figures 1-through 5 show the secondary flow pattern develop-

ment in a curved duct [aj. The overall development of the pattern is

predicted well, but local regions of the flow need better prediction,

particularly near the galls and in corners. Further refinement of the

scheme to improve this aspect is needed and is currently being completed.

1.4 Status

It would appear at this stage that major aspects of the code develop-

ment and debugging are complete. Some refinements need to be made to

improve predictions in local regions of the flew. The need for further

refinements will become apparent as test cases are run and analyzed. A

variety of test cases will be attempted so that all aspects of the code

are tested.

A
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2. WERIMENTAL DATA

2.1 Hub Wall Boundary . Layer Measurement

The growth of the boundary layer from upstream of the IGV to the in7:-t

of the compressor rotor was investigated. All the measurements reported

were carried out in the axial flow compressor facility. A miniature

stationary five-hole probe was used for these measurements.

The radial variation of the axial velocity at different axial locations

is shown in Figure 6. The variation of displacement thickness (rS )

momentum thickness (8) and the shape factor (SF) in the axial direction

are shown in Figures 7, 8, and 9, respectively.

The flow downstream of the IGV is purely axial. This is because the

turning and stagger angle of the blades at the hub are both zero. From

Figures 7 and 8 it can be seen that there is a negligible boundary layer

inside the IGV passage. This might have been caused by the

`	 favorable pressure gradient across the passage. The boundary layer grows

gradually downstream of the IGV and reaches its maximum at about four

chords away. This is similar to the boundary layer developing on a flat

plate without the pressure gradient.' . But just upstream of the rotor,

(about 1-1/4") both the displacement and the momentum thicknesses show a

decreasing trend indicating the influence of the rotor. It seems obvious 	 4

that the rotor drags the incoming boundary layer and energizes the low

momentum fluid in its vicinity.

2.2 Status of Laser Doppler Velocimeter

A single channel Laser Doppler Velocimeter set-up for measurements

'	 in the compressor rotor has been completed. The set-up utilizes a TSI

Model 9100 single-channel velocimeter with a 4W argon-ion laser. The



..

9

velocimeter is mountel on a traverse table that allows three degrees of

linear traverse along with provision to tilt the entire assembly. Data
I 

from the velocimeter is fed into a TSI Model 1990 counter for measurement

of the Doppler Frequency. Output from the counter is led to a HP 2100 Data

Processing System for data logging and processing. An on-line data

logging and pr.oc.essing program is in place on the HP 2100 to handle these

tasks. The program allows for data logging using the Direct Memory Access

facilities on the HP 2100 for high data transfer rates. The data processing

segment of the program performs tasks like ensemble averaging of the data,

data management, and also aids in proper set-up of the system for measure-

men a Preliminary measurements using the system are now underway.

1
i}

C

I^

?F
k

4
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