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ABSTRACT 

This paper p rese llt s t\le des l gn and cons truc ti on 0 a ra kct-bo rn e. 

e l e trl f l e ld met r t o measu r e the a t mosp he r e ' s elec trl fie ld .l nd con-

du tlvit y In th middle a tm s~herL. The 0pe r a tlng haracte ristics of the 

Inst rument a r e disc ussed a nd u proposed f li ght config uration i s given. The 

cons tru tion a nd t es tin~ of the pro t o t ype a re des ribed a nd s u'ges tions 

given for fu r the r improvements. 
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1. INTRODVCrION 

1.1 Global Atmoaphel'ia EZeatl'iaaZ Syutem 

It has been known for over two hundred years that a vertical potential 

gradient of about 100 Vim exists in the lowest atmosphere under fair weather 

conditions. It hns been known for about one hundred years that the 

atmosphere has a finite r.Qnductivi~y: the time constant for loss of charge 

from a conductor is about 10 min. The potential gradient and conductivity 

lead to the conclusion that there is a current flowing down throu[lh the 

atmosphere and into the ground which has a density ranging from about 

-12 2 over the oceans to about 1 x 10 Aim in ~ities (the 

difference resulLs from the variability of conductivity associated with 

atmospheric pollution). Direct measurements confirm the exir,tence of the 

current. 

The origin of this current was first explained by Wilsan (1920). He 

sugges ted tl' 'storms as the electrical generators of a global atmospheric 

electrical system. This idea has been developed over the years and, until 

recently, has not met with serious objection. Critical experiments supporting 

the theory include the observation by Mauahly [1923] that the diurnal 

variation of potential gradient over the oceana followed Universal Time rather 

than local time. Subsequently Whipple and Sal'ase [1936] showed that the 

diurnal variation of thunderstorm activity is in phase with that of potential 

gradient. In another important observation Gish and Wait [1950). using 

conductivity and electric field instruments in an aircraft flown over thunder-

storms, determined tc·at the electric current at the generator was of the 

magnitude required by the theory. 

The analysis of the global atmospheric electric system has been refined 
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and the present situation is best represented by the work of 

f/aya and RobZe [1979] and RobZa and !laye [1979]. Their model is illuutrated 

in Figure 1.1. In this figure Region "0" is i: lo\~er boundary of the sys tem 

with local variations in atmospheric conductivity and with the varying height 

of the land surface included. Region "I" i.nc1udes the thunderstorms as 

e1ect.rical genel:ators. Regi.on "2", above the thunderstorms, is considered 

not to have any dr~"'ing forces and to have c conductivity which is isotropic. 

At higher altitudes the conductivity is anisotropic and, in addition, small 

electric fields are generated in the ionosphere and the magnetouphere. 

The general acceptance of a global atmospheric electricity system has 

been complicai;ed by recent observations of electric fields in the middle 

atmosphere which are greater than theory predicts. This report concerns the 

development of £In instrument to be included in a rocket payload with the 

objective of establishing the existence of these anomalous electric fields. 

1.2 MiddZe Atmosphere EZectrodynwnicB 

The electrical conductivity of the atmosphere increases rapidly with 

height. T'NO main factors are involved. One is the increasing mobility of 

the charged particles associated with the decrease of atmospheric (neutral) 

density and, above 60 kin, the presence of free electrons. CoZe and Pierce 

[1965] calculated the conductivity in the altitude range 0 to 100 kin. 

Similar, more recent calculations by Reid [1979], are shown in Figure 1.2. 

The difference between polar and equatorial values of conductivity at 

altitudes below 65 kin is the rer.ult of the reduced flux of cosmic rays at 

low latitudes. 

A high conductivity implies low values of electric field, provided 

that the current is constant. For cr = 10-9 mho/m, as near 60 kin, the 

electric field for a current density of 2 x 10-12 A/m2 is 2 mV/m. For 
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Figure 1.1 Schematic diagram of the ~loba1 model of atmospheric 
electricity. The vector B illustrates the earth's 
geomagnetic fj.e1d line [Hays and RobZe, 1979]. 
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-6 o = 10 mholm, at 70 km, the electric field would be 2 IlV/m. 

Bmgin et aZ. [1974] and TYlfti» [1976] have reported the results of 

rocket flights whi"h indicate vertical electric fields, in the altitude range 

of 50 to 70 km, which nre much greater than expect>!d. A maximum value of 

14 Vim was observed at an altitude of 57 km. !laZe and Croaky [1979] and 

!laZe a't aZ. [1981] found evidence of a high electric field near this altitude 

on one rocket flight during quiet auroral conditions though it was not present 

on a similar flight under disturbed conditions. 

Subsequent launches at middle and at high latitudes have sometimes 

supported the existence of the anomalous fields: Pfaff at aZ. [1980]; 

Maynar·d cot aZ. [1981]; Maynard ai; aZ. [1982]. On the other hane, KaZZay at 

aZ. [1982] showed that, in their own experiment, the anomalous electric field 

was apparently spurious, and they doubt the existence of high ele:tric fields 

in the middle atmosphere. 

If the phenomenon is real then the most obvious explanation is that it 

results from a lower-than-normal conductivity. However low conductivity 

values are not supported l'y direc t observa tion [HaZe at aZ., 1981] and, in 

any case, this explanation would exchange one anomaly for another. 

Apart from the intrinsic interest these high electric fields near 60 km 

are important as a transport mechanism for ionization and must be investigated. 

Two substantially different types of instruments are avaj.lable for 

measuring electric fields in the atmosphere. In regions of high conductivity 

(as in the ionosphere and, magnetosphere) the double floating probe (for 

example, Mozer [1971])has proved effective. The potential difference between 

two probes is measured by a circuit which is, in effect, a high impedance 

voltmeter. \,'ith a known dis tance separating the probes the elec tric field 

is simply derived. 
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HheL·e the conductivity is low (as 1n the troposphere and stratosphere) 

the probe-type e~periment cun be used although the conductivity adjacent 

to the probe must be artHicla.1 q ilH'r~as(>d, generally by lise of a radioactive 

sourcc. This approach is not suitable for un ueroplane or rocket and the 

preferred cechnique uses electrostatic induction, rather than electrical 

conduction. This type a': instrument is commonly known as n field mill. 

In the altitude rang'" of particular interest here (50 to 70 km) both 

types of instrument are possible tho~gh both arc at the limit of their useful 

rang~ ·Jf altitude. The instrument used by Bragill et aZ. [1974) and Tyutin 

[1976J l1pp~ars to b~ a composit~ of the two types, "hich mokes the inter-

pr~tation of the data ruther l·omplex. 

The recent rocket flights of MaynQ1~d at a1. (1982) and of KeZZey e'c aZ. 

(1982) have used the double-probe technique with no clear confirmation of 

the existQnce of high middle-atmosphere electric fields. Since this may be 

a limitation by the experiment it is planned La measure the middle-atmosphere 

electric field using an induction type of instrument. 

1. 3 Out Zina of Repol't 

The preceding sections have given a discussion of mesospheric electric 

fields and explained why an a;.ternative method of measuring electric fields 

is desirable. Each of the follO\~ing ports of this report deals with a 

specific aspect of the electric field meter. Chapter 2 contains a theoretical 

discussion of the experiment followed by a general description of the system. 

ChEpter 3 contains a detailed description of the electronic circuits used to 

implement the electric field meter while Chapter 4 discusses the mechanical 

desl.gn of: the system. This chapter also specifies the power requirpnlents 

and the proposed flight configuration, Testing and calibration are described 
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in Chapter 5. This chapter also serves as an operator's manual. 

contains suggestions [or future improvements. 
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2. DESIGN GONSIDERATIO~S 

2. J TheoreticaZ AnaZysis 

The electric field meter is designed to operate in the middle 

atmosphere where the conductivity of the medium cannot be ignored, an.'. 

in fact, can usetully be measured. This is accomplished in the instrument 

by separately sensing the displacement current and the conduction current 

into the sensor. 

Equation (2.1) gives the surface charge density (G/m 2) of a metal plate 

in an electric field E (Vim) 

where E 
o 

a ; -e E 
o 

-12 ; 8.85 x 10 F/M. 

The charge Q (G) on a plate of area A (m
2

) is thus 

Q ; -E EA 
o 

(2.1) 

(2.2) 

In the electric field meter the plate (stator) is cyclically covered and 

uncovered by a grounded plate (rotor) so that the exposed area of the st~tor 

is a function of time A(t). Then the induced charge is also a function of 

time 

Q(t) ; -E EA(t) 
o 

The stator is connected to a current-measuring device. The current, 

which is a displacement current, is 

(2.3) 

i (t) ; ~ ; -2 E dA(t) (2.4) 
d dt 0 dt 

If the ambient medium has finite conductivity then there is also a 

conduction current into the stator 

i (t) ; A A(t)E (:.5) 
c p 

where Ap is the polar conductivity for positive or negative ions (for positive 

" ":.-
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or negative electric fields, respectively). 

Since it is desired to measure both the displacement and conduction 

currents, and since the displacement current is proportional to the derivative 

of the area while the conduction current is directly proportional to the area, 

a sinusoidal arel! function allows the two components to be separated using 

phase-sensitive detection. 

Letting the area function be 

A(t) = A (1 + sinwt) 
o 

where A is a constant (equal to half of the maximum exposed area of the 
o 

stator),one obtains conduction and displacement currents varying at the 

(2.6) 

same frequency. Substituting equation (2.6) into equations (2.4) and (2.5) 

and performing the derivative operation in equations (2.4), one obtains 

i (t) 
d 

i (t) = A EA (1 + sinwt) = i (1 + sinwt) cpo cm 

Combining equations (2.7) and (2.8) an equation which relates the total 

current to the ~tmosphere's conductivity and electric field is derived 

i(t) = id(t) + i (t) = id coswt ~ i (1 + sinwt) c m em 

The circuit measures the AC component of this current 

i (t) = id coswt + i sinwt 
ae m em 

Using the identity 

Ncos(wt - $) " Ncoswt cos$ + Nsinwt sin$ 

(2.7) 

(2.8) 

(2.9) 

(2.10) 

(2.11) 

where N is a constant, and then comparing equations (2.10) and (2.11) one sees 

that 

i = Nsin$ 
Col 

(2.12) 

(2.13) 

.; 
.0 

-~ 
" 

i , 



ORIGIW,L pJ\GE 1'3 
OF POOR QUALITY 

If the magnitude (M) and phase (</» of the ac current into the 

10 

stator are measured, then the magnitude of the conduction current (i ) and cm 

the displacement current (idm) Can be obtained from equations (2.12) and 

(2.13). Once i dm is determined the electric field is calculated using equation 

(2.7) 

E = -i
d 

/E A w moo 

where E: , A , and ware known constants. 
o 0 

Knowing both id and i ,equation (2.8) is used to obtain the polar m cm 

conductivity 

l = ilEA = 8 w(i Ii 1 
p em 0 0 em r!m 

2.2 ImpZementation of SinusoidaZ Area Funatioll 

The pre\'ious section presented a method by which one can obtain the 

(2.14) 

(2.15) 

.tmospheric electric field and the conductivity; a method which relies on using 

a sinusoidal varying area function. In this section, the design of the rotor 

and stator to implement this sinusoidal variation in area is discussed. 

It is assumed that the rotor sweeps out an area defined by a rotating 

radius from its center. This is actually the edge of a sector in the rotor. 

Then, in polar coordinates the area swept out by the rotor is given by 

A(e) =r ~ 
2 de r 

0 

(2.16) 

Let the radius be 

r = R'!sin ce (2.17) 

where R is a cons':ant, actually the maxImum stator radius, and C i.s 

equal to the number of segmentfl. The drea function becomes 

f
e 2 

A(a) = ~ R sin ca de 
o 

(2.18) 

____ I 
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On integration, and ignoring the minus sign, one finds 

A(e) = (R2/2C)cos co (2.19) 

A modification which must be taken into account arises from the fact 

that the rotor shaft must pass through the stator. Equation (2.17) implies 

that the radius is zero when CO is equal to zero, but, since the center of the 

stator is, in practice, occupied by the rotor shaft, the radil.s cannot be 

zero. To overcome this, the radius function must be greater than or equal 

to a constant determined by the radius of the rotor shaft. This may be 

accomplished by modifying equation (2.17) to 

~2sin CO + r . 2 
m~n 

r = (2.20) 

where r i is the minimum radius of the stator and R is a new constant. 
In n 

The area of an individus1 segment of the stator is then equal to the 

area bounded by the outer radius, given by equation (2.20), and the inner 

radius, the radius of the hole made for the rotor shaft. The segment area 

is thus 

A(e) = r -li 
o 

This simplifi.es to 

A(e) = Je -li R2sin ce de 
o 

which is the same as equation (2.18). 

-r -li 
o 

2 
(r i )de m n 

(2.21) 

(2.22) 

The limits of integration are now set such that the integration is per-

formed over the positive half of the sine function: ce = 0 to ce = rr. This 

corresponds to the times when the area function goes from a minimum to a maxi-

mum; the time during which the stator is completely shielded by the rotor to 

the time when the stalor is fully exposed. As CO goes from rr to 2rr, the area 
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function sinusoidally decreases as the rotor begins to cover the stator. 

The total area of one segment of the stator is, thus, 

(2.23) 

The to tal area of the stator is I.he number of segments, e, multiplied 

2 2 by the area one segment, R Ie, and is therefore equal to R. The value of R 

is now de~cLved as follows. Given the maximum allowable radius of the stator, 

r ,and the minimum 1:adius, r i ' one can use equation (2.20) to determine max m n 

R. From this equation r occurs when co is equal to zero. Thus 
max 

r max 

which, on rearranging, gives 

R2 ~ r 2 
max 

2 
- r min 

(2.24) 

(2 (5) 

This equation shows, interestingly, that the total stator area (R2) is a 

function of rand r i but not a function of e, the number of segments. 
max m n 

In summary, to obtain an area function of the form 

A = A (1 + sinwt) 
o 

the radius of the stator, as a function of rotation angle, is 

r = ;; 2 2 2 (r - r i )sin CO + r i 
max mn mn 

(2.26) 

(2.27) 

where r is the maximum radius of the statoL, r i is the radius of the hole 
max m n 

in the stator to allow for rotor shaft clearance, and e is the number of seg-

ments. 

Table 2.1 presents a program for a TI-58 hand-held calculator which can 

be used to plot equation (2.27) and also calculate the stator area, given 

values of r max ' rOlin' and e. Table 2.2 gives the operating sequencp of this 

program. 
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Table 2.1 '1'1-58 program to calculate the stator radius in 
polar cO-Clrdinntes and to calculate the total 
stator area. 

Hemory location 00 

Hemory location 01 

Hemory location 02 

Hemory location 03 

Hemory location 04 

r ,maximum allowable stator radj,us max 

STEP 

000 
001 
002 
003 
004 
005 
006 
007 
OOB 
009 
010 
011 
012 
013 
014 
015 
016 
017 
018 
019 
020 
021 
022 
023 
024 
025 
026 
027 
028 
029 
030 
031 

r i minimum radius of stator m n 
C, number of segments 

R2, total stator area 

0, in degrees 

KEY KEY CODE 

s'ro I,Z 
04 04 I 
RCL 43 
00 00 
X2 33 

75 
RCL 43 
01 01 
X2 33 
= 95 
STO 42 
03 03 
RCL 43 
04 04 
x 65 
RCL 43 
02 02 
= 95 
2nd sin 38 
x 65 
RCL 43 
03 03 
+ 85 
RCL [,3 
01 01 
X2 33 
= 95 
r- 34 
R/S 91 
RST 81 
LRN 
RST I 

._-'. - __ - h_. _ 

Cmll-IENTS 

Store 0 

Compute stator area 
Using equation (2.25) 
and store result 
in location 03 

Compute r using 
equation (2.27) 

Display 1 

.! 
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2. 

3. 

4. 

5. 

6. 

7. 

, 
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'fable 2.2 Operating sequence for running 
the stator-radius program. 

Enter program as listed in Table 2.1 

Store r mnx in memory location 00 

Store r i in memory location 01 n 

Store C in memory location 02 

Enter 0 in degrees. Press Rls key. Calculator 

Repeat step 5 for different values of a 

Stator area is stored in memory location 03 

14 
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Figure 2.1 shows the four-segment stator used in the instrument. The 

total area is 13.3 cm2 with r = 1 15/32 in. (37.30 mm) and r i ~ 5/16 in. max m n 

(7.94 mm). 

The finished transducer is shown in Figure 2.2. 'l'he rotor and stator are 

visible at the top of the instrument. 

2.3 Genel"aZ DesOl'iptioll of Syatcm 

The field mill transducer produces a sinusoidal variation in the exposed 

area on the stator. The signal developed on the stator is amplified, and as 

indicated in Figure 2.3, the magnitude and phase of the signal are determined 

separately. 

The arrangement of the instruTlen: is shown in more detail in Figure 2.4. 

A chopper disc and optical sl'litch are uscd to generate a phase reference 

signal. The figure also includes a speed control for the motor. This was 

initially considered desirable but was not implemented when it was found that 

the measurements are not sensitive to motor speed variations, 

The transducer, shown in Figure 2.2, houses the preamplifier, the motur 

all.:! the optical switch. The other parts of the system are contained in the 

signal processing unit. 

Connections between the field mill transducer and the signal processing 

unit are made possible by an eight-line cable originating fr.om the former. 

This cable terminates on the top side of the signal processing unit. Two of 

the three circuit cards, the magnitude detector and the phase detector circuits, 

are contained in this unit together with the voltage regulators. 

The systel.l produces two outputs representing magnitude and phase. Both 

signals are conditioned to fall in the range 0 to 5 V in order to be compatible 

wi th the FM/FM telemetry sys tern of the payload. 
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Figure 2.1 Prototype stator designed from equation (2.27) with 
rmax • 37.30 n~. rmin· 7.94 mm and C • 4. The stator 
is constructed on a printed c ircuit boaLj. 
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Figure 2.2 The tr3nsdu er showing the r o t o r an ! ! tator . Excluding 
the r o t or the overall leng th i s 5 1" . (127 mrr.). 
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Figure 2.3 Block diagram showing the interrelati.onship between the stator, 
preamplifier, magnitude detector and phase detector. 
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Figure 2.4 Block schematic of the electric field meter including 
an optional speed control. 
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The magnitude of the RC signal into the stator is determined, after 

s'jfficient amplification, by rectification. The dymanic range of the 

instrument is extended to four decades by logarithmic compression of the signal. 

The phase output is also designed to respond to signals which vary in 

magnitude over four decades. The phase difference between the two signals is 

then determined using a six-state asynchronous sequential network. 

The details of these circuits are given in subsequent chapters. 

2.4 System Specifications 

2.4.1 AZtitude range. In the lowest atmosphet:e because of the low value 

of conductivity the conduction current is negligible compared with the dis-

placement current. At a sufficiently great altitude the conduction current 

is equal in magnitude to the displacement current. The two "('"'ponents of 

the current do, however, differ in phase by 90 0 which allows them to be 

measured separately. In fact it would appear possible to detect ~ displacement 

current which is somewhat smaller than the conduction current. 

The upper limit of altitude at which the induction type of field meter 

can be expected to give useful informat~on will now be derived. From equation 

(2.7) the peak value of the displacement current is 

id = e EA ul (2.28) moo 

Also, from equation (2.8) the peak value of the ac component of the conduction 

ct~rrent is 

i = >. T;A cm p 0 
(2.29) 

The ratio of the magnitudes is 

id Ii = e wi>' m cm 0 p (2.30) 

The conductivity near the ground, in unpolluted regions, is about 2 , 0-14 
x ~ 

mho/m so that the polar conductivity is about 1 x 10-14 mho/m (the, 
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tnobilities of the positive and negative ions are nearly equal). Thus for 

measurements in the lower atmosphere the conduction curren .. is less than 

the displacement current by a factor of about 106 , fox an operating frequency 

of 100 Hz. 

For the same operating frequency the ratio has the value unity for 

h = E OJ = 6 x 10-9 mholm 
p 0 

(2.31) 

From 1.2 the two components are thus equal in magnitude at an altitude 

of about 64 km. It is reasonable to expect that, under favorable conditions, 

phase detection would allow measurement of a displacement curr.ent smaller 

than the conduction current. Taking 0.1 for the eatio id Ii ,the polar m cm 

conductivity, from equation (2.30) is 6 x 10-8 mho/m. This ocr..urs at an 

altitude (again using Figure 1.2) of about 67 km. Thus the experiment is 

valid for altitudes up to 67 km. 

2.4.2 Magnitudes of aurrents. 2 Using a stator area of 13.3 cm and an 

operating f.requency of 100 Hz the peak value of the displacement current is, 

from equation (2.28), 

i
dm 

= 3.7 x 10-12 E (2.32) 

Thus the peak displacement current is 3.7 pA for an electric field of 1 Vim. 

It is desired to measure electric fields of the order of 1 Vim so that, as 

an absolute minimum, the displacement current should be measured to an 

accuracy of 1 pA. 

Measurement of such a small ac current presents considerable experiment a: 

difficulty but, as will be seen later, a practical system can be built. It 

is likely that even smaller electric fields can be measured with further 

refinements in the system. 
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2.4.3 Configuroation. The signal to be measured is proportional to the 

area of the stator. Thus the largest possible area should be used for 

maximum se'1sitivity. The size is, however, limited by the payload into 

which the instrument will be incorporated. To allow for the possibility 

of flight in a 6.5 in (165 mOl) diameter payload (as for a Nike Apache) the 

overall length of the transducer is set at 5 in (127 0101). With this 

dimension the maximum diameter of the stator is 3 in ('160101). This leads 

2 to 13.3 cm as the maximum stator area for the sinusoidal area function 

(section 2.2). 

2.4.4 Operoating froequency. The amplitude of the displacement current 

is, from equation (2.7), proportional to the frequency of the ac signal. 

This, in turn, is established by the motor rotational speed and the number 

of segments in the stator. It is advantageous to increase the operating 

frequency to the maximum practical value; this increases the magnitude of the 

displacement current. 

The number of stator segments was chosen to be four. A larger number 

could be used, perhaps up to eight, but a study would be necessary of the 

limitation placed by edge effects (fringing fields). 

The motor chosen for the prototype instrument has a no-load speed of 

5250 rpm at the working voltage of 12 V. Thus, at the maximum motor speed, 

the operating frequency is 350 Hz. In order to conserve power the operating 

speed was finally chosen to be 100 Hz. 

It will be seen later (section 5.1.2) that R limitation is placed on 

the ability to measure small cur Lents by the modulation of rotor-stator 

capacitance. This gives rise to an unwanted signal, another I\C displacement 

current, which has an amplitude proportional to the operating frequency. 
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Thus, although the preamplifier requirements would be considerably eased by 

use of a higher operating frequency of, say, 1 kHz, there would be no 

improvement in the limit of detectability of the ambient electric field. 
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3. ELECTRONIC CIRCUITS 

3.1 Pl'caJllplifiel' 

The preamplifier is a critical component in the electric field meter. 

It i& required to convert ac currents in the range 1 pA to 1 nA to voltages 

in the raage 5 mV to 5 V. Figure 3.1 is a block diagram of the preamplifier 

which contains three operational amplifiers. 

The sensitivity of the preamplifier is largely determined by the first 

stage. This uses thl' AD5l5J, a precision, low-power, FE'f-input electrometer 

operational amplifier. Among the more prominent characteristics of the 

device are: 

Input bias current: 0.3 pA, maximum 

Inpu t curren t noise: 0.01 pA rms fOI' ] 0 Hz to 10 kHz 

Input offset voltage: 3 mV, maximum; 0.4 mV, typical 

Input offset voltage drift: 50 ~v/oc, maximum 

Referring to Figure 3,2, since the inverting input is at virtual ground, 

the input current (I) flows through the feedback resistor R10l to the output 

producing an output voltage given by 

v = -lR10l (3.1) 

The feedback resistor is chosen to be 109 n so that the sensitivity of the 

stage is 1 mV/pA. C10l is used to stabilize the op amp and also set a high 

frequency cutoff: 

(3.2) 

Letting C10l equal 1 pF, the cutoff frequency becomes 160 Hz, 60 Hz above 

the operating frequency of 100 Hz, 
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Figure 3.1 Block schematic of the preamplifier. 
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RI04 
51kil 

-15 +15 

f 

R105~ ~RIOG 
15kil> $15kil 

+15 +15 

Preamplifier 
Output 

00 
.,,~ 

"lIi5 
0-
0% 
~l! 
.g~ 
~G) 
rom 
~ii 

'" 0> 

! 
a 
" 

1 

3 , , 
"I 

I 
""'--__ " ___ "_ " ... ___ .. _ .. "_._ .. _ .. ......... ..._ . "'_ .. .. ..... ___J 



, , 

· .. -...... -.. -~-... --.-,.'".-. --'~--'-~'~-'~."."""~." .".- ." '"' 

27 

The current-to-voltage converter is followed by n voltage follower. A 

second AD515J operational amplifier is used. 

The output of the voltage follower is connected to an amplifier by 

capacitor CI02. With RI03 thiLl gives n lower 3 liB frequency of 50 Hz, blocking 

the dc component of the conduction current and improving the signal-to-nuise 

ratio in the system. 

The amplifier is used to boost the signals appearing at test point 1 into 

voltages suitable for the magnHude and phase detector circuits: mainly 

2. mV " V -' 15 V (peak values). A National Semiconductor LF157 is used in an 

inverting configuration. The particular device is chosen primarily for its 

small input offset voltage (1 mV), and secondarily for its low input-noise 

voltage (12 nV/{HZ) and low input-offset-voltage temperature drift (3 UV/oC). 

Although the picoampere-to-voltage converter is designed to operate with 

inputs in the range of 1 pA to 15 nA, corresponding to outputs, of that stage, 

in the range of 1 mV to 15 V, setting the gain of the LF157 at five has a 

definite advantage. 'l'he 1 mV output of the picoampere-to-voltage converter 

is increased to 5 mY, a voltage which falls in the acceptable input voltage 

range for the magnitude and phase detector circuits. The additional gain 

reduces the maximum input signal that can be accommodated to 3 nA. However 

this is of no consequence for the expected range of electric field values 

in the middle atmosphere. 

Using a calibration procedure to be described later (section 3,5) 

it is verified that there is a linear relationship between input current 

and output voltages. The theoretical relationship is 
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(3.3) 

As illustrated in Table 3.1 the actual output voltages ore 10 percent 

larger than the theoretical values. 'rhls is attributable to component 

tolQrancc: no attempt was made to set the gain to a precise value. 

3.2 M1Jld tude Pc tc.,t<.il' 

3,2.1 Illtl'oductioll. The magnitude detector of the electric field 

meter is designed with the following constraints: 

1. The input is a sinusoidal signal with a frequency of 100 Hz. 

2. The input voltage range is S mV to lS V (penk value). 

3. The output voltage range is 0 to S V. 

The circuit implementation of the magnitude detector is divided into 

three main parts: a RMS-to-dc converter, a log amplifier and an Lutput 

amplifier, shown in Figure 3.3. The complete circuit is shown in Figure 3.4. 

3.2.2 RMS-to-dc aOlluel'tel'. The Rl'IS·-to-dc converter is the Analog 

Device ADS36A. The output voltage of this device is the true Rl'IS value of 

the input voltage and it can ~e used with any type of input signals; 

sinusoidal. triangular. or even romp functions. CI03 (Figure 3.4) at pin 4 

of the device is the averaging capacitor. Chosen for the operatIng frequency 

of 100 Hz, this 1 pI' capacitor ensures that the dc output error is less than 

O.S% of the reading. Moreover, the device has n two pole active filter on 

the output to reduce the ac ripple on the output. Choosing CI04 and CIOS to 

be 2.2 pI' and RI07 to be 24 kn, the ac peak-to-peak ripple is reducec: to 

approximately O.OS% of the output reading. Testi,ng the circuit with n 100 Hz 
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Table 3.1 Calibration of the preamplifier for a 
100 liz sinusoid. Currents aad voltages 
nre peak vnlues. 

Theoretical Actual Ratio 
In~ut (oA) Vn Vn Act/Th 

1 .005 - -
3 .015 .Ol.6 1.1 

6 .030 .033 1.10 

10 .050 .055 1.10 

30 .150 .165 1.10 

60 .300 .333 1.11 

100 .500 .552 1.104 

300 1. 500 1. 650 1.100 

600 3.000 3.300 1.100 

1000 5.000 5.4BO 1.096 

3000 15.000 16.450 1.096 
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Figure 3.3 Block schematic of the magnitude detector. 
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Figure 3.4 Circuit of the magnitude detector. Dotted line indicates that portion 
of the circuit which is enclosed within the temperature-regulated cavity. 
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sinusoid~l. input confirmed these claims. 

3.2.3 Loaaritlvnic amp Zifi CJr. 'rhe output of the RMS-to-dc converter js 

connected to the logarithmic amplifier. Referring to Figure 3.4 a vol~l!i\e 

at test point 3 creates a current through resistor Rl09 (the inverting input 

of the operational amplifier is nt virtual ground). 'rhls current then flows 

through one of the diodes in the feedback loop (which diode depends On the 

polarity of the signal). The base-emitter junction of ~N929 transistors is 

used as diodes since they provide smaJ.l reverse leakage curr.ents (2.5 pAl and 

low noise operation. It was found that the logarithmic amplifier had a more 

nearly linear response when the collector junction of the transistors was 

left open compared with the usual practice of tying the collector!.! the b~se. 

The diode equation is 

1 = I (eVIVT - 1) (3.4) 
o 

where 10 is the reverse leakage current and VT = kT/q. Both 10 and V
T 

vary with temperature. In order to remove this temperature dependence 

in the logarithmic amplifier the unit is sealed in a temperature-regulated 

cavity which is set to operate at 150 of (340 0 K). For this temperature 

V1'~29.2mV. 

Rearranging equation (3.4), one gets an expression relating the voltage 

across the diode to the current flowing through it 

v = V~ In[(I - I )/1 1 
• 0 0 

(3.5) 

Sinc~ ! equals the voltage at test point 3 (Figure 3.4) divided by RI09 

6 (10 n), one ultimately gets an expres~ion relating the input voltage to the 

output voltage of the logarithmic: amplifier. Note that the output voltage 

will be inverted since the inverting input of the operation amplifier is 

used. 
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Using V
T 

= 0.02 Q ? ',' and 10 = 2.5 x 10-
12 

A one thus obtains for the 

transfer characteristic of the log electrometer 

6 V
OUT 

= - 0.0292 Zn[(lO V
IN 

- 2.5)/2.5] 

Table 3.2 gives a theoretical calibration for the logarithmic amplifier 

operatiag at 150"P. 

The sensitivity oE a logarithmic amplifier is limited by the leakage 

current oE the feedback diodes and/or the bias current of the operational 

amplifier, whichever is greater. An Analog Device AD5l5J operational 

(3.6) 

amplifier was selected since it has an input bias current of 0.3 pA. Thus 

the sensitivity is here lil"lted by the leakage current (2.5 pA) of the 

feedback diode, 

Capacitor Cl06 (Figure 3.4) in the feedback loop is used to stablize the 

~ircuit's operation, The capacitor was experimentally chosen to be 470 pF 

to prevent oscillations. A thermal test chamber was then used to observe 

the logarithmic amplifier's performance at various temperatures; the test 

data are pre~ented later (section 3.6), 

As previously mentioned, the unit is set to operate at l50"F, 

This temperature was chosen for two reasons. First, since it is simpler to 

heat a temperature regulated cavity (using a power resistor) than to cool it, 

a high temperature should be selected. Second, the operating temperature 

should be set well above ';~e maximum temperature the device could reach. For 

example, if the payload is left on a launch pad Ear an extended period of time, 

the temperature might exceed the preset operating temperature - li1Us defeating 

the purpose of the temperature regulated cavity. For these reasons, the 

temperature was selected to be 150 "F (65.6"C) since this is well above the 

expected temperature range and below the maximum operating temperature of the 
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Table 3.2 Theoretical calibration of the logarithmic 
nlnplifier for n temperature of 150°F. 

VIN (V) VOUT (V) 

10.000 -.444 
6.000 -.1,29 

3.000 -.409 
1. 000 -.377 

0.600 -.362 
0.300 -·342 
0.100 -.309 
0.060 -.295 

0.030 -.274 
0.010 -.242 
0.006 -.227 
0.003 -.207 
0.001 -.175 
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cperntionnl amplificr and the tt'(Insistors. 

3.2./, 7'CIIII'CI·.ltZIl'C 1·,'tllllatcd "'Wt'ty. The tcmperntuL'c regulnted cnvity 

along with thc associated l!1e"tronic's :ts shown in Figure 3.5. An nlulldnum 

cavity Wus made to covc'l' the operational nmpl:l.f:tcr, the feedback diodes, the 

fecdback capacitor und nn Analog Device AD590 (n two terminnl IG tcmperature 

transduc,er). Thts last d,'vIl'l' has a lIl1l'ar oUlput of J \lV/OK as sh",m In 

I'l.gUI·C 3.6. 

A voltnge is produced at invertIng input of ti,e comparntor (A16) by 

routing this current through resistor R128 (Figurc 3.5). ClIO Is placed In 

parallel with tllis resistor for stability. At the non-inverting Input of 

the cOllllHlrntllr :ls Ll rl!fercncc voltago \Y'hich sets the I:empcrnturc of the cavity. 

tellllH'rnture of l50 0 p (:J1,()OK) yJehlll " ,'ul'n'nl 'If j/,() ~IA [rom the 1\0590. 

ThIs current r 100's through resIstor RU8 y.l('ldl.nf~ a voltD!1C' (wl11eh 

WDS mensurcd to bc 3,49 V) at the inverting input of 1\16. Therefore, to 

regulatD the temperature to 1500 p one needs a stable voltage of 3.49 V 

at the non-inverting input o[ the comparator, Tills voltage is obtained by 

the circuit in Figure 3.5. The 3.9 V zener diode eJ.iminates the possibil:l,ty 

that fluctuations on the 15 V supply line "ill .. Qach the compUL'ntor. A IN757 

diode is used to reduce ti,e zener Voltage to the required 3.49 V. The 

resistor R129 is tied bet"cen the non-invel'ting input of the comparator and 

ground to provide a path for CUl'rent to Llo" through the diode. 

The comparator used is the Data Acquisition DA'i62 operationnl amplifier, 

This device provides the necessary sensitivity and output driving requirements 

needed. The output of the DA462, "hich 8,,1ngs [rom +J.2 V to -12 V. is 

limited by u IN914 diode to prolect the driving transistor QI03 from n 
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Ikn 

IN914 
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2N2102 

Figure 3.5 Schematic of circuit used to regulate the temperature of the 
temperature-regulated cavity. 
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Figure 3.6 Plot of the output current V8rsus temperature for the Analog 
Device AD590: two-terminal temperature transducer. 
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large base-to-emitter reverse voltnge. A 1 kl"l resistor is connected to the 

base to limit the base current to 10.84 mA. 'rhe driving transistor ~s a 

2N2102 NPN silicon transistor with a maximum collector current of 1.0 A and 

a minimum j3 of 10. 'I'he transistor used had a a of npproximntely 24 giving a 

maximum collector current of 260 mAo The maximulJI power dissipated in 

resistor Rl31 is 6.76 W, slightly greater than the rated 5 watts. Although 

this created no problems in the prototype circuit after several hours of 

testing, it is recommended that the heater resistor be replaced by n 10 W 

resistor In the flight instrument. 

3.2.5 Gain c.lllplificl'. The third part of the magnitude detector is n 

gain amplifier. A National Sem~':onductor LH201 operational amplifier crnnected 

in the inverting mode is used tc provide the necessary gain. With Rl12 and 

R1l3 (Figure J. 4) set equal to 10 kl1 and 100 kl"l, respeo tively, the gain of 

the amplifier is equal to 10. An additional resistor, Rl16, is placed in 

the output line to protect the operational amplifier from short circuits. 

The overall performance of the r.lIlgnitude detector is presented later (section 

3.6). Figure 3.7 is R picture of the magnitude detector as impl'Omented on a 

printed circuit card. 

3.3 Pilase DetectOl' 

3.3.1 Intl'odllction. The phase detector circuit for the electric field 

meter consists of three main parts: a zero crossing detector, an optical 

switch and an asynchronous sequential network, as indicated in Figure 3.8. 

'l'he unit is designdci to accept no signals in the voltage range of 2 mV to 

18 V (peak), and produce an output voltage of 0 V or 5 V in the form of 

a train of pulses containing the phase information. It should be noted that 

the input signal range of the phase detector circuit is similar to that of 

the magnitude detector circuits: both circuits are useful over four decades 
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implemente d o n a printed c ircui t ca rd, 
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of ac input voltages. In addition, both units can accept any periodic no. 

input signal; thus, design changes in the preamplifier or even the J:otor-

stator combination present no difficulties. 

3.3.2 Zero crossing detector. 'rhe schematic for the zero-crossing-

detector circuit is shown in Figure 3.9. 'rhe first operational amplifier 

is connected in the non-inverting mode and set to have a gain of 100. This 

gain essentially sets the hysteresis value of the following LM239. Using 

the recommended circuit presented in the National Semiconductor Linear Data-

book, the LM239 circuit has a hysteresis value of to.2 V; 1. e., once the unit 

is LOW it takes a VIN greater than +0.2 V to change it to HIGH, With the 

gain of the LM201, this ±0.2 V is reduced to ±2 mV. 

In testing it was found that the LM201 produc~d a slight do. offset 

r.leasured at the output. To alleviate this problem, capacitor C109 

is used to block any do. component, while resistor R120 is used to 

bleed off any do. voltage on the capacitor (refer to Figure 3.9). The 

c.omparator A9 (a 741 01' amp) is used to buffer the LM239 from the rest 

of the circuit. In order to make the signal compatible with TTL gates, a 

5.1 volt zener diode is used in the output circuit of the 741. 

From Figure 3.9 one sees that the output is labeled TPS STOP. The 

leading edge of this signal provides one of the two inputs needed by the 

phase comparator. 

3.3.3 Reference signaZ. A chopper blade on the motor shaft and a 

Monsanto MCASl optical switch produce the reference signal needed by the phase 

comparator. The output transistor of the MCASI is ON when the infrared light 

beam is uninterrupted, Figure 3.10. In this state, the transistor sinks 

current from a Schmidt trigger NAND gate (SN74132) causing its output to 

go to HIGH. Similarly, when the chopper blade blocks the light beam, the 
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Figure 3.9 Circuit of the zero-crossing detector used in the phase detector. 
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+15 D~""'" Start 
l.-.-/b-----.signal 

74132 
~----- ---------------- ------~ 
I MCA 81 4 I I Anode 0----, ~--o Collector i 
I II LED Phototronsistor 
I I 
I 2 3 I 
I Cothode 0---' '---0 Emitter I L_____ _ _____ ~_________ _ _____ ~ 

RI25 
470n 

Figure 3.10 Circuit used to generate the phase reference START 
signal. The opticlll switch is the HOllsnnto HCA81. 
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output transistor of the optical Bwitch is OFF and the output of t.he Schmidt 

trigger NAND gate goes LOW. Since the switching time of the NCA81 is 200 us, 

the unit can be operated safely at 100 liz. Capacitor C1l7 is necessary to 

supress noise spikes which may cause the circuit to operate incorrectly. 

3.3.4 Phaso comparator. Using the START signal generated by the phase 

reference and the STOP signal generated by the transducer the phase difference 

is obtained in an asynchronous sequential net'·ork. The logic of the 

phase comparator will now be described. 

The O-to-l transition of the START signal sets the output of an 

asynchronous sequential network HIGH. The O-to-l transition of the STOP 

signal sets the output of the seq',,'.ntial network LOW. Since the START 

signal has a O-to-l transition every 360°, the time that the output is 

HIGH in relation to the total time between consecutive O-to-l transitions 

of the output determines the phase angle of the input wave relative 

to the reference. Furthermore the time between consecutive leading edges of 

the sequential network's output gives a measllrement on the operating speed 

of the motor. For the operating frequency of 100 Hz the time between 

the leading edges is 10 ms. 

Another point of concern is the sign of the input sinusoid. Arbitrarily 

choosing 0° to correspond to a positive electric field producing all dis-

placement current and no conduction current, one can expect the following 

phase angles for conditions when conduction current is significant: 

0° ~ ~ ~ 90° for positive fields 

180° ~ ~ ~ 270° for negative fields. 

These follow from the considerations of section 2.1 and are illustrated in 

Figure 3.11. One can see that for a positive electric field producing only 

a displacement current the resultant phase angle ~ is 0°. Noreover, [or a 
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1
'----.1...---L----'-----..L.----I-----. Phase Reference 

• Start Signal 

IL---_+---~--_+---+---_+---T" .. i d(tl j Positive 
Electric Field 

I---)~--~--__i!---+_--__J!---+_-__I .. ic (t) i Positive 
Electric Field 

l---~--~---+_--+--____t~-.....l\-l. id(t); Negative 
Electric Field 

1------\,--__ + __ ---\,--__ + __ ---\ ____ +_---'. ic (t) j Nega ti ve 
Electric Field 

Figure 3.11 Relative phases of displacement current and conduction 
current for positive and negative electric fields compared 
with the phase reference START signal. 
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positive electric producing only n conduction current the phase angle is 90·. 

In 11ke mannar, for nagativ," e.LectrIc fIelds 4' 1s equol to 180· [o~ displocc-

ment current only, and to 270· fOL' conduc tlon ',urren t' only. Hhen both con-

ductlon curreltt and dlsp],ucement currvnt :Ir~ prCHPnt iL Is evidenl tllat for 

positive electric fields 0· ~ • ~ 90· und for negatIve field 18· ~ • ~ 270·. 

An asynchl'onous sequential network hos been designed to indl.cate the 

phose of the input since no cOllllllerciolly av::ilobl e IC phase ~omparator was 

found to per[orm the desired function. At first it "as thought that 0 four-

quodrunt detectur WOllld work, but U[tQf [urtller investigation It wns found 

that the unit responded incorrectly to certain input patterns. 

In designing the sequentinl netlwr" l.t wos round that six states nre 

necessary even though two of the sIx nrc dUlIlmy states. The meaning of 

these states (lnbeled A, B, C, D, E, and F) arc given In Table J.l. The two 

dummy stutes, E und F, ore necessary to prevent rocing. For cXDulple (refer 

to Figure 3.12), if one is in stn!:e A with inputs (START, STOP) equal to (0,0) 

and the i"tputs change simultaneously to (1,1) the sequential network could 

possibly vim, the inputs momentarily as (0,1) in which case the net"ork would 

race through states C and E and then stop in state B :Instead of renchIng the 

desired state D. 

Using the state assignments shown in Table 3.3, the network "as designed 

using S-R flip-flops, as discussed by Mw.'oga [1979]. Table 3.4 shows the 

desired state-output table which curresponds to the state transition diagram 

(Figure 3.12). Table 3.5 is the input-output relationship of an S-R [11p-

flop which is used along with the stato-output table to form the desired 

excitation and output tables (Tables 3.6 and 3.7). 

Since S-R flip-fl",ps were readily available, the network was designed 

for S-R Clip-flops and then the logic functions [or S mod R were complemented . 

. ' 



'I'able 3.3 State assignments for the phase-
comparator sequential network. 

A: Looking for leading edge of START; START low (000) 

B: Looking for leading edge of START; START high (001) 

c: Looking for leading edge of STOP; STOP low (100) 

D: Looking for leading edge of STOP; STOP high (110) 

E: Dummy state to prevent racing (101) 

F: Dummy state to prevent racil1g (010) 
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Figure 3.12 State transition/output diagram of the phase 
comparator used in this phase detector. The 
significance of the six states is given in 
Table 3.3. 
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Table 3.5 Input-output relationship of an S-R flip-flop. 

INPUT OUTPUT 

Y Y S R 

a a a d 

a 1 1 a 
1 a a 1 

1 1 d a 

d don I t care. 
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Table 3.6 Excitation tables for S-R flip-flops used in the phase comparator. 

(START, STOP) 

00 01 11 

A 000 a a a 
B 001 0 a a 
F 010 ~-----------I 1 1 J. 

all I d d d 
L.! ___________ 

C 100 d a d 
E 101 a a a 
D 110 r-----------I d d d d I 

111 Id d d d 
~--------------~ - --

Sl ~ Y2 V Y3 START STOP 

(Yl ' Y2' Y3) (START, STOP) 

00 01 11 10 

A 000 a a 

~ 
a 

B 001 a a a 
F 010 d d d 

all d d d d 
C 100 0 a a a 
E 101 a a a 0 
D 110 a d d a 

111 d d d d 
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Table 3.7 Output table of the asynchronous sequential 
network used in the phase comparator. 

A 000 
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011 
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D 110 
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00 01 
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d d 
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d d 

11 10 
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d d 
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d 1 
d d 
1 1 
d d 
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l'he logic functions for the three S-R flip-flops are shown in Table 3.8. 

Figure 3.13 shews the schematic of the resulting asynchronous sequential 

network as designed using NAND, NOR and NOT gates. Figure 3.14 is a picture 

of the phase detector as constructed on a printed circuit card. 

3.4 DigitaZ P/wse DispZay 

The digital phase display is designed to accept the output from the 

phase detec:tor circuit and to display the phase angle. The phase angle, .p, 

is defined in terms of the ratio of the time the phase output remains HIGH 

to the time between consecutive leading edges of the phase output. Referring 

to Figure 3.15 

The nominal value of ttl for the electric field meter is 10 ms. From to a 

equation (3.71 it is seen that thigh is 27. 78 ~s per degree of phase 

difference so that thigh divided by 27.78 ~s yields the phase angle .p in 

degrees. In order to implement this, a 555 timer running in the asynchronous 

mode at 36 kHz (a period of 27.78 ~sec) is ANDed with the phase output. A 

SN74143 is used to count the number of 555 pulses passed by the AND gate, the 

number of pulses being equal to the phase angle .p. The scbematic for the 

digital phase display circuit is illustrated in Figure 3.16. A trim 

potentiometer (RD5) is used to fine tune the 555 to 36 kHz. A picture of 

the finished cl.rcuit is shown in Figure 3.17. 

The timing signals are shown in Figure 3.18. It will be seen that the 

phase display is updated every 20 ms. It should also be noted that the digital 

pha~e display is not part of the rocket payload. The display is to aid in 

the testing and calibration of the completed field meter. 

i '. 
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Table 3.8 Logic functions for the S-R inputs to the 
flip-flops used in the phase comparator 
circuit. 

<p output = Y
l 
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Figure 3.15 Typical phase detector output signal showing the relationship 
between thi hand ttotal as referred to in equation (3.7). 
The time be~ween consecutive leading edges of this signal gives 
a measurement on the period of the input sinusoid and, hence of 
the motor speed. 
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The dc motor used in the system requires a separate voltage regulator I , 
~ 

3.5 Motor VoZtage ControZ 

in order to achieve the desired operating spe<:d. Figure 3.19 shows this 

voltage regulator: an LM317 adjustable positive regulator. A 22 n ~ W) 

resistor is placed on the input uf the regulator in order to reduce the power 

dissipation in the regulator. The motor speed is controlled by R132, chosen 

to be 10 kn. This produces the output voltage of +5.5 V needed to drive the 

motor at 1500 rpm. If a different motor is substituted for the motor 

currently in the system, the necessary driving voltage is available from 

this regulator by adjusting R132. 

3.6 Cirouit Test and SimuZation 

Testing the electronic circuits is must easily accomplished by use of 

the nine test points shown earlier in Figures 3.2, 3.4, 3.5, 3.9, 3.10, 3.13, 

and 3.16. With reference to these test pOints, a signal applied at a t.ast 

poinl implies that the circuit preceding that test point is disconnected. 

3.6.1 Preamp li. "ier. Test point 1, Figure 3.2, is a point at which the 

output of the picoampere-to-voltage converter can safely be measured. By 

applying a triangular waveform through a 10 pF capacitor to the input of the 

preamplifier one sees the response of the circuit to a square-wave current 

input (n displacement current). At an input frequency of 100 Hz 

(3.8) 
1 
.' 

The time consta.nt of the converter, dc·cermined by R10l and C10l, can be mea-

sured at test point 1. This can conveniently be done at the same time that 

the gain of the converter is measured. The time constant is measured to be 1 

ms with the RlOl - C10l feedback elements yielding a cutoff frequency of 160 

Hz. The gain of the current-to-voltage conne"to, is found to be close to 
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Figure 3.19 Circuit of the voltage regulator used to supply the 
motor. R132 adjusts th2 output voltage and therefore 
the motor speed. 
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9 1 mVlpA, corre·sponding to the 10 fl feedback resistor. 

Applying a signal applied at test point I, the output ot the gain 

amplifier is measured at test point 2. Using a 100 Hz sine-wave input, the 

gain is found to be 5.2. 

Figure 3.20 shows the input current versus the output voltage for the 

preamplifier. From these data it is evident that the preamplifier has a 

gain of 5.49 mV/pA. Moreover the system will operate for input currents in 

the range of 4 pA to 2.24 nA. 

3.6.2 Magnitude de~eotoT'. Test points 3 and 4 in Figure 3.4 are used to 

evaluate the performance of this circuit. As has already been noted (in 

section 3.2.2) the AD536 proved to be very accurate and therefore no further 

calibrations were necessary. 

The logarithmic amplifier was tested in a temperature-controlled oven 

from 70°F to 160°F. A dc signal was applied to cest point 3 and the output 

voltage was then measured at test point 4. Figure 3.21 is a graphical view 

of thes" data at various temperatures. It should be noted thac the accuracy 

of the temperature in Figurp. ~.2l is approximately ±2°F due to the coarse 

temperature scale readings cnable from the thermometer on the temperature 

regulated oven. Figure 3.22 is a plot of the same logarithmic amplifier input 

voltages versus the magnitude detector output voltages. By using this graph, 

one is able to access the operating temperature of the logarithmic amplifier. 

This is done by applying a calibrate signal of +5.0 V at test point 3, Figure 

3.4, and observing the magnitude output. This calibrate signal is applied by 

an electronic switch on the magnitude PC card. Figure 3.23 is a plot of the 

zener voltage, used to generate the +5.0 V signal, versus temperature. The 
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Figure 3.22 Temperature dependence of magnitude detector output voltage versus 
logarithmic amplifier input voltage. 
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Figure 3.23 Plot of voltage of the zener diode (used as a 
+5.0 V reference signal) versus temperature. 
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zener voltage is relatively independent of temperature and can be assumed to 

be cons tan t. 

Once the 10garitlunic amplifier temperature curves are plotted, one is 

able to check the temperature of the temperature regulated cavity. With the 

logarithmic amplifier placed inside the cavity, the calibration procedure was 

repeated. First, a plot of the logarithmic amplifier input voltage versus 

output voltage was made, Figure 3.24. Figure 3.24 also shows a theoretical 

plot of the logarithmic amplifier input voltage versus output voltage predicted 

by equation (3.6). Comparing Figures 3.24 and 3.21 it is clear that the 

temperature regulated cavity held the temperature at lS0'F. Second, a plot 

of the logarithmic amplifier input voltage versus magnitude detector output 

voltage was constructed, Figure 3.2S. Finally, a 100 Hz sinusoid input 

was applied to the input of the magnitude detector and a plot of this input, 

in RMS volts, versus the magnitude detector output was made, Figure 3.26. The 

linearity of the syste~~over four decades of input voltage is clearly seen . . ~\ . 
Another check on .the operating temperature is to measure the voltages 

at test points Sand 6, Figure 3.S. One is able to obtain the actual tempera-

ture of the cavity by measuring the voltage at test point 6 and recalling that 

the ADS90 has an output of 1 ~V/'K. Taking this voltage and dividing it by 

Rl28 (10.3 kn) one can get the output current of the ADS90. Dividing this 

current by 1 ~V/'K one gets the cavity temperature in 'K. 

The theoretical operating temperature of the cavity is found by measuring 

the reference voltage at test point S and following the same procedure men-

tioned above. During testing, these voltages were both found to be 3.49 volts 

which corresponds to 340'K (ISO'F). 

3.6.3 Phase detector'. The front end of the phase detector circuit is 

a zero crossing detector with hysteresis. Applying a sinusoidal input to 
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versus output voltages. Theoretical plot is predicted by equation (3.6). '" '" 
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Figure 3.25 Logarithmic amplifier input voltage versus magnitude detector output voltage when 
operated in temperature regulated cavity (T = 150°F). 
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this circuit, Figure 3.9, one is able to measure the hysteresis of the system 

at test point 7. With the resistor values set as in Figure 3.9, the hysteresis 

of the systems is ±2 mY; 1. e., the input must be greater than +2 mV to switch 

the output HIGH and less than -2 mV to switch it L0\1. If the noise levels of 

the system warrant more or less hysteresis, Rl19 should be increased or de-

creased by the appropriate amount. 

The output of the zero crossing detector, which swings from +13.5 V to 

-13.5 V, is made TTL compatible by the circuits between test points 7 and 8, 

Figure 3.~. The best way of testing the zero cross:lng detector is to apply 

a sinusoid input to the detector and to one channel of a dual trace 

oscilloscope. The output of the detector, test point 8, should he applied 

to the second scope channel. By varying the magnitude of the input sinusoid 

and adding either a dc offset or a noise signal, one is able to check the 

zero crossing detector. The output of this detector provides the STOP input 

to the phase detector; the START input is provld"d by a phase reference signal. 

The phase reference START signal is generated by a chopper wheel passing 

through an optical switch. The output of this switch is made TTL compatible 

by a Schmidt trigger. NAND gate (74132). Figure 3.10 illustrates this circuit 

and labels its output as test point 9 START. When operating correctly, 

the START signal should be a square wave with a frequency of four times the 

frequency of the motor shaft due to the four segments of the chopper blade. 

The logic portion of the phase detector circuit, Figure 3.13. has two 

inputs: test point 8 STOP and test point 9 START. This circuit can be 

tested using debounced toggle switches at these two test points and observing 

the output either on an oscilloscope or the LED connected to the output. 

As previously discussed the circuit sets the outDut high on the leading 

edge of the START signal and sets it Iowan the leading edge of the STOP 
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signal. Table 3.8 gave the logic expressions for the S-R inputs of the three I 
flip-flops. The circuit built had no problems during testing and performed 

, 

as expected with boch simulated inputs from debounced switches and actual 

circuit inputs from the optical switch and the zero crossing detector. 

3.6.4 DigitaZ phase dispZay. 'fhe digital phase display, Figure 3.16, 

has only one adjustment. The 555 must be adjusted so that its frequency is 

360 times the frequency of the input sinusoid to the preamplifier. Assuming 

the input frequency to be 100 Hz the 555 needs to be set to 36 kHz. This 

enables the unit Co display the phase referenee output in degrees. R135 is 

used to adjust the 555 to the desired frequency, Figure 3.16. 
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4. FLIGIIT INS'fRUMENTATION 

4.1 MaahaniaaZ Daaig'; 

The electric field mete.: is divided into two separate units: the 

transducer and the signal processing un'.t. The transducer contains 

the mechanisms needed to produce a sinusoidal stator area function as 

well as the electronic.s that condition the input signal. This signal 

is further processed by the magnitude and phase detector circuits located 

in the signal processing unit. 

The mechanical arrangement of the transducer is shown in 

Figure 4.1. There are two internal cavities. One houses the motor whose 

speed determines the frequency of the input sinusoid. For the four-segment 

rotor the motor speed is 15 f (rev/min), where the desired operating frequency 

is f (liz). Thus to operate at 100 liz, the motor s!,eed should be 1500 rpm. 

A Japanese SerlO Company DL30S-001 dc motor was selected for its low 

81ectrical noise level, high operating speed, and low operating voltage. 

The second cavity houses the preamplifier, the optical switch and chopper 

blade used to generate the referenee signal, a coupling between the rotor 

shaft and the motor shaft, and an assembly to ground the rotor shaft. The 

preamplifier is placed in a separate cavity in order to shield it from 

electrical noise. Furthermore, the preamplifier is located as close as 

possible to the stator to minimize stray capacitance. 

Due to the sensitivity of the pream~lifier, the coupling between the 

motor and rotor shafts, and the rotor shaft grounding assembly warrant some 

discussion. In the preliminary stages of the design, it was thought that a 

metal coupling of meshing teeth not only provided a means of secu::ely coupling 

the shafts but it also created a ground path for the rotor. This path had 

three branches: one through the bearings near the rotor; one through the 
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bearings near the motor (via the metal coupler) and one through the motor 

shaft (which was thought to be at ground potential). Upon testing the unit, 

it was discovered that b.~ meshing of the coupler teeth prcduced more noise 
" 

than was permissible. The cause of this n0ise, whether it was created by an 

inconsistent ground path, static from the actual meshing of the coupler 

teeth, or other sources, was not irvestigated since it was obvious that the 

coupler could not be u&ed. 

In order to achieve the same goals, i.e., the rotor securely fastp.ned 

to the motor and a well grounded rotor, a second coupler was tested. Composed 

of an insulating material cylindrical in shape, t.his coupler erased the 

possibility that static on the motor shaft was reaching the roter. Since two 

of the three grounding paths were removed by using an insulating coupler, an 

additional grounding assembly for the rotor was added. This assembly, shown 

in Figure 4.1, consists of two grounded carbon brushes rubbing on the rotor 

shaft. These grounding brushes, together with the insulating coupler, provided 

the best means of achieving a securely fastened, positively grounded rotor. 

The effectiveness of this assembly has been confirmeJ. 

The phase reference signal is generated by a four-segment chopp~r blade 

located on the motor shaft. The signal is generat.ed when the chopper blade 

disrupts the optical switch which is attached to the aluminum wall separating 

the two cavities, as can be seen in Figure 4.2, which is the transducer with 

the cover removed. On the external surface of the transducer head is th8 

stator. The statLr, a PC card with the desired area function laid out on 

it, is countersunk so that it is flush with rim of the transducer. This 

enables the device to be placed in a payl0ad in a manner which least disturbs 
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the electric field. While the electric field transducer is to be flush 

mounted on the payload with only the surface of the transducer head exposed, 

the signal processing unit is designed to be internal to the payload. 

The signal processing unit, Figure 4.3, is a typical electronic box 

designed by the Aeronomy Laboratory for use in payloads. The box has room 

for three 50-lead PC cards although the field mill sensor uses only two 

cards: a magnitude detector card and a phase detector card. Two external 

connectors are available on the box. One 15-pin connector is used to inter-

face the field mill sensor with the payload, while the second 15-pin connector 

is used to interface the field mill transducer and the signal processing unit. 

The box is designed to hold the PC cards rigidly in flight and also to 

allow easy access during testing. 

4.2 Packaging and Power Requirements 

The electric field meter is divided into two modules: the· 

transducer and Lhe signal processing "<lit. The preamplifier and the phase 

reference signal generator, located in the transdu"er, at" connected 

to the signal processing unit via a Cannon DA15P connector. A Cannon DA15S 

is located on top of the signal processing unit to r~ceive these transducer 

outputs. Table 4.1 lists the pin numbers and their associated signals under 

th" column "Top Connector" for this bus. 

These signals are directly connected to a 50-line ribbon cable inside 

the signal processing unit. This ribbon cable makes it possible for any or 

all of PC cards to t!:ansmit signal.s to or receive them from the 

transducer, other PC cards, or thE! rail in the payload. Table 4.1 lists 

the pin number of the used ribbon cable lines and their corresponding signals. 

It should be pointed out that the PC cards in the signal processing unit 

provide a means of connecting different ribbom cable lines. For example, 
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Table 4.1 Pin connections for rail connector, 
ribbon cable and top connector. 

1 

2 

RAIL CONNECTOR 

-28 V 

+28 V 

3 +28 V 

5 Circuit ground 

6 Hotor and heater 
ground 

9 Calibrate signal 

10 Hagnitude output 

14 Phase output 

15 +28 V (heater) 

RIBBON CABLE 

2 Circuit ground 

4 +15 V 

6 Phase output 

8 +28 V (heater) 

30 -15 V 

32 +15 V 

34 Circuit ground 

36 Hotor (+) 

38 Preamplifier output 

40 Hotor and heater 
ground 

42 Phase reference 

44 Circuit ground 

46 Hagnitude output 

48 Calibrate signal 

50 +5 V 

2 

4 

TOP CONNECTOR 

+15 V 

Circuit ground 

6 Hotor (+) 

8 Preamplifier output 

9 Hotor ground 

10 -15 V 

11 Phase referer."" 

12 Co-ax ground 

1 
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~ 

, 
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line #4 of the ribbon cable is the true +15 V line but a jumper on the 

magnitude detector PC card makes line #32 of the ribbon cable +15 V also, 

Therefore, Table 4.1 dep-:.ribes the situation only when the magnitude or 

phase detector printed circuit card is in place. 

The transducer is connected to the payload by a second Cannon DA15P 

connector located on the b~ck of the signal processing unit. This connector 

interfaces with the rail (wiring conduit) in the l'ayload which requires 

that the rail connector pins (Table 4.1) be labeled in accordance with the 

existing payload lines. Table 4.2 lists the direct interconnection of the 

three signal buses with each other. These three buses (from the transducer 

to the signal processing unit, inside the processing unit, and from the 

siBna1 processing unit to the rail) all have unused lines which makes future 

improvem~.-:rs easy to accommodate. 

There are four operating voltages in the electric field meter: +28 V, 

+15 V, -15 V, and +5 V. These voltages are used to power the logarithmic 
, 
,l 

amplifier's heating resistor (+28 V), the operational amplifiers (±15 V), 

and the TTL circuit (+5 V). In addition, a separate voltage source is needed 

to run the motor. Table 4.3 lists the supply voltages and the current drawn 

from each. 

In order to reduce the number of supply lines required by the circuit, 

only +28 V, -28 V, power ground, and signal ground are used to connect the 

electric field meter. These four lines, which are available on the rail 

connector, are subsequently used to derive the necessary supply voltages using 

National Semiconductor 78XX and 79XX voltage regulators. These regu1a.tors, 

which are uttached to the walls of the signal processing unit, are ca'?ab1e 

of supplying 1 A each. Referring to Table 4.3, it is evident that no 

-, 
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Table 4.2 

SIGNAL 

Circuit 

Hotor and heater 
ground 

Calibrate 

N"gnitude o .. tpur 

Phase outpu.t 

+28 V (heacer) 

+15 V 

Notor (+) 

Direct interconnections betwaen rail connector, 
ribbon cable and top connector. 

RAIL CONNECTOR 

Pin 5 

Pin 6 

Pin 9 

Pin 10 

Pi.n 14 

Pin 15 

RIBBON CABLE 

Pins 34, 44, 

Pin 40 

Pin 48 

Pin 46 

Pin 6 

Pin 8 

Pin 32 

Pin 36 

2 

TOP CONNECTOR 

Pins 4, 12 

Pin 9 

Pin 2 

Pin 6 
Preamplifier output Pin 38 Pin 8 
-15 V Pin 30 Pin 10 
Phase reference Pin 42 Pin 11 

. . ,.J/. 
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Table 4.3 Power requirements from individually 
regulated sources. 

,. 

HEATER ON HEATER OFF 

REGULATOR VOLTAGE CURRENT (rnA) POWER (W) CURRENT (rnA) POWER 

+28 V (heater) 280 7.84 0 0.0 

+15 V 390 5.85 390 5.85 

-15 V 26 0.39 26 0.39 

+5 V 78 Q.39 18 0.39 

+5.5 V (motor) 290 1. 60 290 1. 60 

Table 1,.4 Payload power requirements. 

HEATER ON HEATER OFF 
I 

SUPPLY VOLTAGE CURRENT (lilA) POWER (W) CURRENT (rnA) POWER 

+28 V 755 21.14 480 13.44 

-28 V 30 0.84 30 0.84 
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regulator is being overloaded as all the supply currents are under I A. Tabl,; 

4.4 lists the power requirements of the +28 V and -28 V supply lines from the 

rail. 

As previously mentioned, the system used tw~ grounds; a power ground and 

a circuit ground. The circuit ground, as the name implies, is used for all the 

electronic circuits while the power ground is used by the de motor and the 

logarithmic amplifier heating resistor. Use of two grounds reduces noise in 

the system and prevents any single ground wire from carrying excessive currents. 

4.3 FZight Configuration 

In order to measure the atmosphere's electric field, two or more electric 

field meters will be needed. This is due to the possible charge on the rocket 

causing its potential to be different from ambient. One practical configura-

tion [or the placement or two independent electric field meters is illustrated 

in Figure 4.4. Electric field r.eter #1 is located at the front of the rocket, 

on the nose cone, while electric field meter 112 is placed on the cylindrical 

section. Since the rocket is spinning in flight, this second electric field 

meter can be modeled as two diametrically opposed units. 

With the information provided by the two field meters, one can calculate 

the (vector) ambient electric field and the charge on the rocket. However, 

due to the irregular shape of the rocket, this calculation is difficult. 

An estimate of the effect of the shape can be accomplished by modelling the 

rocket and payload as an ellipsoid. In this model, with the electric field 

meters positioned on the major and minor axes, one can make use of existing 

solutions for the purely electrostatic case. Exact soluti0ns are also 

possible which account for finite conductivity. 

A second approach is to build a mock-·up payload (in lightweight 

metal or metal-covered plastic) and calibrate the 3ystem in '~he lower 
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i 
4 atmosphere. This approach should prove to be more acceptable since the 

actual shape of the rocket is taken into account. Once this calibration 

is completed, one can model the payload as an ellipsoid to get a check on 

the accurac), of the first approach by comparing the results. Jr, either 

case, a scale model would be needed. 
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5. TEST AND SIMULATION 

5.1 E~aotrio ~ie~d Meter 

5.1.1 Introduotion. The instrument can be tested for response to 

electric fields by applying such a field to the exposed surface of the trans-

ducer. This is accomplished using a parallel-plate arrangement with a hole 

cut in one plate to accommodate the transducer, as shown in Figure 5.1. A 

known voltage, V, j.s applied between the plates. With a separation distance, 

d, between the plates the electric field at the stator, neglecting a correction 

due to edge effects, is given by 

E = V/d (5.1) 

In the system shown in Figure 5.1, the separation is 25.4 mm. 

5.1. 2 PreampUfier noise. Initial tests 01 the field meter 

using the parallel-plate arrangement revealed an important, but unwanted, 

component of the signal at the input. The output of the preamplifier is, as 

expected, a sinusoidal signal at 100 Hz, with no dc offset. When first turned 1 
on and with no applied field (i.e., V = 0 in equation (5.1» the peak voltage 

at the preamplifier output was 465 mV, corresponding to 85 pA at the input. 

This noise level existed when the stator was connected to the preamplifier. 

With the stator disconnected ehe unwanted signal was reduced to 5.5 mV at the 

output, (1 pA at the input). 

It was also founr, that the unwanted signal (with the stator reconnected 

to the input) could be reduced below that of the ullconnected preamplifier by 

applying a voltage -0.38 V to the parallel-plate test fixture. This last 

test showed that the unwanted signal ia a displacement current. 

The origin of the unwanted signal ill the varying capaci tance between 

rotor and stator when there is a voltage between the two. There are two 
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FJ ~ure 5 . 1 The transdu er o. the electric field meter on the 
pacallel-plote t est fix ture. 
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principal Sl)urces of this voltage. One is the input offset voltage of the 

first operational amplifier. This is already small in the AD5l5J (3 mV, 

maximum; 0.4 mV, eypical) and can be nulled by external adjustment. The input 

offset voltage drift is 50 ~v/oc so that some residual effect must be 

anticipated. It can be noted that the AD51.<;!( has superior specifications 

for input offset voltage: 1 mV maximum, 0.4 mV typical !lith 15 ~v/·c drift. 

There is a second source for the voltage between rotor and stator .. It 

is the difference in work function of the two adjacent surfaces. If the 

work function of each was constant over the surface then the input offset 

voltage of the operational amplifier (AD5l5J) could be adjusted to give zero 

signal at the input of the pream~lifier. The limiting factor is the unifornlity 

of work fut!dion over the surface since the movnment of one plate over the 

other exposes different areas of surface. 

The magnitude of the displacement current caused by the varying 

capacitance can be estimated. The capacitance of the rotor-stator assembly 

has a maximum value (when the stator is fully covered) 

c = 20 A ID 
moo 

2A is the total area of the stator (13.3 cm2) and D is the distance 
o 

(5.2) 

between rotor and stator. This distance is not precisely defined (or even 

precisely constant) in the present instrument but a value of i nun is typical. 

The ilue of C is thus about 6 pF. 
m 

Since the capacitance is proportional to the area covered 

C = (Cm/2)(l + coswt) (5.3) 

With a fixed voltage difference V between rotor. and stator the displacement 
c 

current due to varying capacitance is 

i dc = V dC = -V (C /2)w sinwt 
c .dt c m (5.4) 

I / 
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which hilS a peak value 

id = V C w/2 
em em 

For an operating frequency of 100 Hz the pea:. displac.emeflt current is 

i dcm 
= 2 x 10-9 V 

c 

(5.5) 

(5.6) 

Thus a potential difference of 1 mV gives ::i.P," to a displacement current of 

2 pA at the input to the preamplifier. 

The varying capacitance is the practical factor limiting the sensitivity 

of the electric field meter. Using the input offset voltage null adjustment 

of the first operational amplifier allows the unwanted signal to be reduced 

to 4 pA. Further reduction, if desired, could be ac~omplished by increasing 

the separation of rotor and stator (C would decrease) and by carefullj 
m 

treating the surfaces of rotor and stator by, for example, plating with gold or 

by coating with Aquadag (colloidal graphite). Also the temperatUl'e dependence 

would be reduced by substituting the AD5l5K for the AD515J as the first 

operational an,plifier. 

The preseut system is capable of detecting the anomalous electric fields 

of the middle atmosphere (>0.1 Vim). However, if it is deGired to improve 

the sensitivity of the electric field meter the unwanted signal at the input 

of the preamplifier will be the major problem to be addressed. 

5.1. 3 System adjustment. Hith the field mill transducer connected to 

the signal processing unit, it is possible to test the entire system. First, 

the motor speed should be 1500 rpm which corresponds to an input frequency 

of 100 Hz. This can be checked by monitoring the phase reference signal, 

test point 9 Figure 3.10, on an oscilloscope or frequency counter. Alternately, 

one could monitor the output of the zero crossing detector, test point 8 

Figure 3.9. 
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The position of the chopper blade on the rotor shafr. is important since 

it is the means by which the phase angle is derived. The easiest method of 

positioning the chopper blade is to monitor both the phase dete(;tors START 

signal and STOP sig1.\1; test points 8 and 9 Figures 3.10 and 3.9. A O· phase 

angle corresponds to when the leading edges of the pulses found at these test 

points occur concurrently. If the unit is operated on the ground (or in a 

laboratory) where the conduction current is negligjble, the chopper blade 

should be positioned such that the phase angle is zero when operated in a 

positive electric field as the input current would essentially be all displace-

ment current. If a dual trace oscilloscope is not available, one may use a 

single trace oscilloscope and monitor the phase output signal. This signal 

should be constantly LOl~, corresponding to O· or constantly HIGH, corresponding 

to 360·. 

Once the chopper blade is correctly positioned, the digital phase display 

beard can be calibrated. With its input connected to the phase detector out-

put, R135 of Figure 3.16 should be adjusted so that the display reads 0·. 

One may check the operation of the phase detector by introducing a con-

auction current at the input. If the conductivity between the parallel test 

plates is increased, the phase angle displayed on the digital phase display 

board should read between O· and 90· for positive electric fields and between 

180· and 270· for negative electric fields. The conductivity could be increased 

by using a radioactive source to ionize the air between the plates. In this 

case, both conduction currents and displacement currents will be present at 

the preamplifier input. 

Once the phase detector has been tested and calibrated, the magnitude 

detector should be examined. To begin with, the temperature regulated cavity 
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should be brought up to operating temperature, 150·F, approximately five 

minutes. To be sure the cavity is up to its operating temperature, the voltage 

at the output of ope.:ational amplifier A16, Figure 3.5, should be measured. If 

the voltage is +15 V, the heater is still on. A voltage of -15 V means the 

cavity has reached its operating temperature. At this point, a calibrate signal 

of +5.0 V &hould be applied to the inpllt of the logarithmic amplifier, Figure 

3.4. The actual operating temperature of the device can be found f.:om Figure 

3.22 by noting the resulting magnitude output and finding the appropriate 

temperature curve. This curve should be the single curve shown in Fj.gure 3.25. 

After the logarithmic amplifier's temperature has been verified to be 

l50·F, one can use Fi~ure 3.26 as the transfer function of the magnitude 

detector circuit. This graph was obtained by placing sinusoid inputs into 

the magnitude detector (operating at 150· F) and measuring the resulting output 

voltage. 

The next step is to get a transfer function for the preamplifier -

neglecting the phase of the input. If the stator is disconnected and a ~'ine 

wave is fed to the input of the preamplifier through a capacitor, one obtaills 

a known inpu t curren t to the preampli.fier 

with 

gives 

i = CdV 
in dt 

V = V sinwt 
a 

(5.7) 

(5.8) 

(5.9) 

With an input capacitor of 10 pF and an operating frequency of 100 Hz this gives 

= 6.3 x 10-9 V 
o 

coswt (5.10) 
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Using known input voltages, and therefore known input currents, one is 

able to derive an expression relating the input current (pA RMS) to the pre-

amplifier output (V I.MS); Figure 3.20. This expression combined with the 

magnitude detector's transfer function yields a. plot of input current (100 Hz 

sinusoid, pA RMS) versus magnitude output (volts dc); Figure 5.2. 

Reconnecting the stator to the preamplifier, one can use Figure 5.2 to 

determine the input current induced by an electric field by knowing the output 

voltage of the magnitude detector circuit. Once the input current and the 

phase angle, ~, are known, equations (2.14) and (2.15) can be used to determine 

the atmosphere's conductivity and electric field. 

5. 2 Pay~oad System 

This section deals w~th the basic tests needed to confirm proper opera-

tion of the electric field meter installed in the payload. 

The unit should be placed on external power for at least ten minutes to 

allow the temperature-regulated cavity time to reach its operating temperature. 

While still on external power, the calibrate signal should be applied. With an 

input of +5.0 V to the logarithmic amplifier, Figure 3.22 can be used as a 

check on the operating temperature by noting the magnj,tude of the output 

voltage. If the unit is operating at the desired 150°F, this output voltage 

should also fallon the curve in Figure 3.25. After the operating temperature 

has been verified, the next task is to check the operating frequency. 

If further tests are desired one can apply a test input to the preamplifier. 

Recalling that the stator is connected directly to the preamplifier input, a 

current input can be iqjected to the preamplifier as discussed in section 3.5. 

Clamping one lead of a capacitor to the stator, a voltage applied across the 

other lead and ground produces an input current predicted by equation (5.',). 
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Under this test condition, the rotor should be stopped so thaI: the opeJ.'ator 

knows that the input current is comprised cnly of the current. paso;ing through 

the capacitor and not conduction or displacement currents induced by the 

rotor-stator pair. Knowing tIl!' input current in pA RMS and measuring the 

corresponding magnitude output voltage, the operator can get a check on the 

validity of the data in Figure 5.2. 

Fat launch, the unit should be placed on internal power and the heater 

supply voltage turned off (pin 15 from the payload rail). This step reduces 

the current drawn by the electric field meter by 275 rnA (refer to Table 4.4). 

The foam encapsulat:'on of the instrumentativn will keep the temperature of 

the cavity constant (at l50·F) for the duration of the fl tght (less than ten 

minutes). To check this, the calibrate signal should be applied just before 

take-off and shortly before landing to verify the cavity telloperature. 

Finally, since this unit is a prototype electric field meter, further 

insight into its performance would be desirable during the first flight test. 

To this end, it is recommended that the output of the preamplifier (test 

point 2, Fi.gure 3.2) and the phase reference ,,;1.gnal (test point 9, Figure 3.10) 

be transmitted in addition to the magnitude detector output and the phase 

detector output. 
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6. SUGGI~STIOi~S FOR FU'rURE WORK 

'rho design, construction, and testing of the prototype electrie field 

meter have been carried out :In conjunction with constant evaluation of the 

system. Although the unit operat"s with adequate s("1sitivity it is b<!liev<!d 

that the syst<!m can be improved with respect to sensitivity and in other 

ways. 

'fhe de motor (DL30S) used to drive the rotor cO,!ld be replaced by the 

DL40S; a motor made by the some company but one which offers more torque. 

Also, the DL40S operates from 24 V, compared to the 12 V needed by the DL30S; 

chus the current drain from the payload batter,es would be reduced. 

A hybrid phose-locker, loop (I'I'L) svstem could also be implemented to insl.re 

the rroper rotor speed. 'rhe phase referemce pulse, available at test point 9, 

Figure 3.10, could be used as one .i.nput to the I'I'L, with an ind,"pendently 

gcn"rated 100 Hz signal acting as a r~ference. 'rhe automatic gain ..,ontrol of 

the 1'1'[, could then be used to adjust the motor supply voltage to obtain the 

dcs:l red speed, as indicated in Figure 6.1. 

An alternative to the de motor with a phase-locked loop feedback system is 

to use a stepping Illotor. The motor cO'Jld then be driven at the desired speed 

by a sequence of digital pulses derived frolll a fixed frequency source. With 

a rotor speed of 1500 rpm, the cboppy Illation of the motor should be 

illsignificant. 

'rhe bearings used to position the rotor shaft proved to be a source of 

noise. For this reason, further inveutigtltion into thc selection of be:trings 

is warranted. Also, since the bearings do not provide a definite ground pnth 

for t:he rotor, one might explore the possibility of insulating the bearings 

from the rest of the unit thus rel.ying on the brushes for gl"ounding. 
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Another useful modification would be to implement an electronic method 

of adjusting the phase reference signal. Although one can adjust this 

signal by repositioning the chopper blade on the motor shaft, an electronic 

adjustment would be qUicker and simpler. One proposed mclnod is to use an 

R-C network at test point 9 in Figure 3.10. The voltage at test point 9, 

rising exponentially, is compared with a reference voltage by a simple 

compar.:tor, as shown in Figure 6.2. The R13S - C1l6 pair should be chosen 

such that the rise time is approximately 5 ms for the operating frequency of 

100 liz. In addition, the R-C pair must be compatilJle with the output source 

current and output sink cunent of t.le 74132. 'rhe diode in para11"l with 

the resistor Rl38 is a means by which capGcitor C1l6 can be ciischargeci between 

cycles. By changing the reference voltage at the im'erting input of the 

comparator, one essentially selects a different point on the expopertial 

voltage curve at the non-inver input, thus changing the time the phase 

reference signal occurs, tes t l _Ht 9. 

Another mechanical improvement would be to extend the transducer head 

further into the protective metal case. Then, additional screws could be 

used to hold the transducer head to the case; refer to Figure 4.2. Presently, 

the transducer ana plate are held in place by standoffs extending from the 

cavity separation wall which, in turn, is held to the case by eight screws, 

seen in Figure 4.1. The additional screws would net onl.y reduce vibrations 

and add support, but also, they would make a more positive ground for the 

transducer head. 

Shjfting the attention to the rotor and stator, it has been found that 

the present combination produces a slight dc offset voltage at the input to 

the preamplifier. This offset is attributed to a difference in work function 

bet,,·eep. the stainless-steel rotor and the tin-plated stat"r. An obvious 
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solution is to gold plate the rotor and stator, thus largely removing the 

work function difference in addit:lon to protecting the surfaces from 

oxidation. 

Equations (2.4) and (2.5) predict that the magnitude of the conduction 

current and the displacement current arc linearly dependent on the arca of 

the stator. Therefore, in order to achieve PT9ater sensitivity and obtain 

strongcr input signals, the area of the stator should be as large as 

permissible. This is, llowever, a consideration involving the size of payload 

in which the instrument will be flown. 

The preamplifier of the electric field meter might be improved by slight 

revisions in the picoampere-to-voltage converter: the AD5l5J in Figure 3.2. 

An appl.ications note for the AD5l5J offers several suggestions. Fj,rst, the 

"p';!) ,( ",,,,al amplifier should be ab close as possible to the signal source. 

In addition, the PC board should be laid out in a manner which makes use 

of the AD5l5J's guard pin, pin #S. Analog Devices also recommends that the 

device be placed in a teflon IC socket in order to reduce leakage currents. 

Findlly, the device shouLd be well cleaned and operated in an environment 

of low humidity. 

If the AD515J proves to be too insensitive for small signals, 

the unit could be replaced by the Analo" Device model 3l0J: an ultra-low-

bias-current varactor-bridge operational amplifier. Having a guaranteed 

-14 
input bias current of 10 amps or less, this modular unit can be connected 

in the same configuration as the AD515J. However, it shOuld be pointed out 

that the present system has noise levels which render the added 6e!1Sitivity 

of the AD3l0J useless. Therefore, it is essential that the noise in the 

present system be reduced before one can justify the alternat{"e of the 

AD310J. 
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One n,ethod of reducing the noise inherent to the system is to replace 

the rotor hearings, as has I'een mentioned. Another method is to 

install a bandpass filter following the preamplifier. At the start of the 
" 

single IC chip, which can be conp.ected to function as numerous filters, was 
,J 
'i 
l 

proj ect, e National SemiLllnductor LF100-C was used as such a i'Hter. This 

connected as a bandpass filter with a center frequency of 100 Hz and a Q of 

2. This would block the high frequency noise as well as block any dc signals 

on the preamplifier output. Upon further investigation, the LF1GO-C proved 

to be inadequate for two reasons. First, the phase shift of the devir.~. was 

not uniform over the range of expected input voltages. Second, the device 

rlid not function at signal levels in the vicinity oi 2 mV, a voltage which 

was expected to be encountered in normal circuit operation. Therefore, the 

bandpass filter waslmitted from the circuit. An alternate approach to the 

problem would be t:> design a bandpass filter using a high-pass filter followed 

by a low-pass filter. The two filters, acting as a bandpass filter, could 
j 
'! be made from operat.innal amplifiers that would function over the desired , 
~ , 
• signal range of 2 mV to 18 V. 
j . 

One final suggestion d~als with the gain amplifier following the 
, 
, , 

}, . j 
logarithmic amplifier, Figure 3.4. As shown in Figure 3.24, the output 

of the logarithmic amplifier has the range -500 mV to -200 mV. By placing 

a constant voltage of -200 mV on the non-inverting input of the gain 

amplifier, the LM201, the output of the logarithmic amplifier could essentially 

be viewed as having a range from -300 mV to zero. In this case, the gain of 

the LM20l could be increased from 10 to 16, giving the system a somewhat 

better resolution on the magnitude of the input signal, Presently, the 

magnitude output falls in the range 2 V to 5 V. If the offset is applied to 
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the gain amp, the magnitud~ output uses the full range (0 to 5 V) of the 

tel~metl'Y sys tern. 
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