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Abstract 

In this paper, the general problem of a shell containing a 
through crack in one of the principal planes of curvature and 
under general skew-symmetric loading is considered. By employ-
ing a Reissner type shell theory which takes into account the 
effect of transverse shear $trains, all boundary conditions on 
the crack surfaces are satisfied separately. Consequently, 
unlike those obtained from the classical shell theory, the angu­
lar distributions of the stress components around the crack tips 
are shown to be identical to the distributions obtained from the 
plane and anti-plane elasticity solutions. Extensive results are 
given for axially and circumferentia1ly cracked cylindrical shells, 
spherical shells, and toroidal shells under uniform in-plane 
shearing, out of plane shearing, and torsion. Taking advantage 
of the fact that the problem is formulated for "specially" ortho­
tropic materials, the effec"t of orthotropy on ttie results is 
also studied in some detail. " 

1. Introduction 

In recent years, a great d"ea 1 of effort has been devoted to 
the study of cracked plates and shells. The reason for this 
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by NASA-Langley under the Grant NGR 39-007-011 

** After September 1, 1981, Drexel University, Dept. of Mechani-
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· stems from the fact that a great variety of advanced structures 
such as aerospace vehicles, pipelines, different components of 
nuclear reactors, etc. are designed from the viewpoint of frac­
ture mechanics. The early studies of cracked shells· employed 
the so-called "classical" shell theory. This· is an eighth order 
theory, and consequently can accommodate only four boundary con­
ditions on each crack surface. To make the number of.unknown 
functions arising from the solution of the differential equations 
compatible with the number of independent boundary conditions, 
.the transverse shear and the twisting moment are combined as the 
"effective transverse shear" which in turn is used to satisfy the 
boundary condition regarding the transverse.shear. (See, for 
example [1-7], and for review and references [8]). The short­
comings of the classical shell theory are well-known from the 
plate and shell solutions. The angular distributions of the 
moments around the crack tips do not conform to those obtained 
from the plane elasticity solution and the transverse shear has 
a strong singularity of order of -3/2 which is not physically 
acceptable. It has been shown that in plates, if one uses a 
Reissner type plate theory [9-12] which adequately incorporates 
the effect of transverse shear strains, then ~he angular dis­
tributions become identical to those obtained from the plane 
and anti-plane elasticity solutions [13-18]. Motivated by the 
success achieved in solving the plate problems, in recent years 
a Reissner type shell theory [19-20] has also been applied to 
cracked. shells [21-26]. However, in all these studies, the 
loading is syinmetric (i.e., the cracked shells are either 
under tension or bending).. In practice skew-symmetric 
loading is also very important. Considering also the fact 
that the existing solutions are limited, the need for a 
refined solution and additional reliable results does not 
need elaboration. In this paper the general problem of cracked, 
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thin and shallow s"hells under s~ew-symmetric loading will be 
formulated by using .a Reissner type" shell theory. After 
analyzing the asYmptotic behavior of the stress "resultants 
around the crack tips, extensive results for circumferentially 
and axially cracked cylinders, and spherical and toroidal shells 
under general skew-Syn1112tric loading wfll be given. The effe"ct 
of material orthotropy on the results will "also be studied. 

2." Formulation of" the" Prob1 em 

The problem under consideration is that of a shell of 
thickness h containing a crack of length 2a in one of "the princi ... 
pal planes of curvature and subjected to skew-symmetric loading. 
The problem is formulated under the following assumptions: a) the 
shell is shallow and thin; b) the effect of transverse shear 
strains is included, and c) the material is "specially" ortho­
tropic, i.e. the elastic constants are related as follows: 

where 

= E 
(1+,,) 

E = IE1E2 ' ""= {"1"2 

(2.1 ) 

Condition (2.1) wi 11 enable us to factorize the differential 
equations. Referring to figure l for the geometry of the shell 
and notation, the equilibrium equations can be written as: 

N.. . = 0 
,J ,J 

M.. . - "V,. = 0 (i,j == 1,2) 
'J,J 
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where the indicia1 notation and the summation convention are 
used, and Nij, Mij' Vi (i,j=1,2) denote the stress, 
moment and transverse shear resultants, respectively. q(Xl,X2) 
is the load normal to the X1-X2 plane, and Z(Xl ,X2} is the equa­
tion of the shell. Let Ui' Wand l3i (i=1,2) be respectively the 
displacement components and the angles of rotation of the normal 
to the shell surface. Using the generalized Hook1s law, in terms 
of the displacement derivatives, the strains are obtained as: 

e: .. = a· 'k1Nk1/h = .1- CU .. +u .. +Z,. W .+Z,. W,.J Ci,j = 1,2) lJ lJ ~ "1 ,J J ,1 1 ,J J 1 

(2.5) 

Defining a stress function F by 

(2.6) 

eik being the permuation symbol, the equilibrium eqs. (2.2) 
are satisfied identically. Eliminating Ul and U2 and substituting 
(2.6) into (2.5), we obtain: 

(2.7) 

For "specially" orthotropic materials satisfying condition (2.1), 
the strain-stress resultant relations may be expressed as: 

:... 1 (N" /c2 N) - l+v N " " - 1 (2N" N) " e:11 - hE 11 -v 22 ' e:12 - hE" 12' E22 - hE c 22-v 11 

(2.8) 
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(2.9) 

(2.10) 

where c = .(E1/E2)k. 

Using the relations· (2.8)-(2.10), the nonna1ized quantities 

·defined in Appendix A, the curvatures defined by .. 

and the following new functions, 

= asx _ ~ 
n(x,y) ay ax' 

as as 
1/I(x,y} = IC(..2. + .=l.} - w , . . ax ay 

equations (2.7), (2.3) and (2.4) become: 

. 2 2 2 
v'+·w + A2(1-ICv2)CA12 a~2 - 2A122 a!ay + A22 aax2 ) cjI 

= A4(l-iCV2} ~ q. 
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(2.12) 

(2.13) . 

(2.14) 

(2.15) 

. (2.16) 

(2. 17) 



The problem is thus reduced to the· solution pf the differential 
eq"uations (2.14). ~ (2.17) under the boundary conditions as yet 
to be specified. 

For the crack problem the transverse load q=O, and noting 
that the crack is along a plane of principal curvature the 
shell parameter A12 = O. Further it is assumed that through a 
proper superposition; the problem is reduced to a perturbation 
prob 1 em \'/here the only external loads are those acting on the 
crack surfaces~ 

Defining 

'il2 = A 2 a2 
+ A 2 a2 

A 1 ay2" 2" ai2" (2.18) 

eqs. (2.14) and (2.15) yield: " 

(2.19) 

Now assuming ~ in the following form, 
co 

~(~,y) = i~ J g(x,a)e~iya da (2.20) 
" -co 

and using the regularity condition at x=+cc" (2.19) gives: 

r· 4 · . m·x f Rj(a)e J , x > 0 
g(x,a) = < (2.21) [8 m.x 

~ Rj(a)e J , x < 0 

Rj , (j=1, ... ,8) are unknown functions and ml, ••. ,m8 are the 
roots of the fo11owi~g characteristic equation: 
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m2 = p. + a 2 

p4" _ K A24 p3 + (2KA12A22a2 - 2K~24ci2 + A24)p2 

+ (2KA 2A 2a2 - KA 4a2 - KA 4a2 + 2A4 - 2A12A22)a2p· " 1 2 2· 1 2 

(2.22) 

such that, 

Re(mj) < 0 , mj +4 = -mj j =1, ••• ,4 " (2.23) 

Similarly assuming, 

w(x,y)" = i~ f~f(x,a)e-iya da (2.24) 

~ 

n(x,y) = 2~ f h(x,a)e- iya da (2.25) 

~ 

w(x,y) = i~ f e(x,a)e-iya da (2.26) 
-~ 

and substituting into (2.15)-(2.17) we obtain: 

f(x,a) = (2.27) 
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J Al (a) 
rlx 

, x > 0 e 
h(x,a) = -rlx (2.28) l A2(a) e , X < 0 

and 

4 R.(a)p.2 m.x t! J ~ e J , X > 0 (KPj-l){A2 mj2-A12a2) 
e(x,a) ~ (2.29) 

[A2 i Rj (a)p:_4 m.x 
(KPj-l){A2~mj2-A12a2) e J ., X < 0 

where 

(2.30) 

Considering the symmetry of loading and geometry with respect 
to the y-axis, the stress resultants satisfy the following sym­
metry conditions: 

Nxx(X'Y} = -Nxx(-x,y} , ~XyCX,y) = Nxy{-X,y} 

Mxx(X·'Y) =? -Mxx( -x,y) .' MXY(X'Y) = Mxy( -x,y) 

Vx(x,y) = Vx(-X,y) (2.31) 

In solving the problem, it is therefore sufficient to consider 
the x>O portion of the shell only. The boundary conditions of 
the problem can then be expressed as follows: 
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-co < y < co 

-co < y < co 

-Ie < y < Ie 

v(O,y) =0 Iyl > Ie 

!~+ ~Xy(x,y) = F2(y) 

Sy(O,y) = 0 

-Ie < y < Ie 

Iyl'> Ie 

-Ie < y < Ie 

w(O,y) = 0 Iyl > C 

(2.33) 

t 
J 

(2.34) 

l 
J 

(2.35) 

t 
J 

(2.36) 

where F1(y), F2(y), F3(Y) define the loading on the crack sur­
faces and are known functions. USingeqs. (2.6), (2.8)-(2.10), 
(2.12), (2~13) and (2.20)-(2.30) the stress resultants may 
be expressed as: 

(2.37) 

(2.38) 

(2.39) 
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00 

1 a -v -1 a . ¥2 f r1x. 
- 21T tv:'+ K ar1A1(a)e e y da (2.40) 

-00 

+ 2~ h~4 K (12v)2 fOOa r1A1(a)er1x e- iya da (2.41) 
-00 

m.x . 
e J e -1yada 

(2.42) 
-00 

(2.43) 
-00 

(2.44) 
-00 

Application of boundary conditions (2.32)-(2.36) would lead to a 
system dual integral equations. However, if one defines a set 
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of new functions in terms of displacement and rotation deriva­
tives, the problem can also be reduced to the solution of three 
simultaneous singular integral equations. 

Let, 

a .. A 2 
Gl(y) = lim .3...._ lim (2.) y aw (2.45) 

x~+ ay x-+-Q+ A· ay 

G2(y} = lim ~ (2.46) 
x-+-Q+ ay 

G3(y) = lim ·aw (2.47) 
x-+-Q+ ay .. 

Using the basic equations resulting from the formulation of the 
problem, the new unknown functions may be expressed as: 

. . 
1 .Ioo 

'+ . . • 
Gl(y) = - E m. 2R.(a}e-1ya da 

2'lT 1 J J 
-00 

00 . . R () 2 
- i I 2 '+ j a Pj -iya G3(y} - - -2 A a E A 2m 2-A 2 2 e da 

'IT 1 2·· 1 a . 
-00 J 

The homogeneous boundary conditions (2.32)-(2.33) and the 
inversion of (2.48)-(2.50) give: 

'+ 
E R. (a) = 0 
1 J 
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(2.49) 

(2.50) 

(2.51) 



1+ R.(a)p.2 
2 J J ._. () 

A a L A 2m 2-A 2 2 - , q3 a 
1 2 j 1 a 

where . 
Ie 

q1(a) = f G1(t)eiat dt 

-Ie 

f
ie . t 

q2(a) = G2{t)e,a dt 
-Ie 

f
ie .. t 

q3(a) = G3{t) e,a dt. 

-Ie 

(2.53) 

(2.54) 

(2.55) 

(2.56) 

(2.5]) 

(2.58) 

By solving the system of eq·uations (2.51)-(2.55) one can easily 
determine the unknown functions R1(a), ••. ,R4(a), A1(a) in terms 
of G1{y), G2{y), G3(y). The remaining mixed boundary conditions 
{2.34)-{2.36l give the following. equations: 

. IIXI 1+ m.x -iYa ( .) 
lim+ -' a L m.R:{a)e J e da = Fl Y x-.o 21T 1 J J . 

-IXI 
-IC < y < rc (2.59) 
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-Ie < y < Ie (2.60) 

co 

- lim . l-v 1 f () rlx -iya ( ) 
x~+ 0' K 2 21T a Al a e e da = .F3 ~ 

-co 

-Ie < y < Ie (2.61) 

The integrands in (2.59)-{2.6l) are bounded for every value of 
a except when lal~ and y~t. Therefore one must extract the 
singular parts of the integrals when lal~. The functions Rl{a), 
... , R4 (a), Al (al may be wri tten in the following fonn

o
: 

Rj{a) = i[Qj{a)ql{a) + Nj {a)q2{a) + Mj {a)q3{a)] 

(j = 1,. o •• ,4) 

Al{a) = Bl{a)ql{a) + B2(a)q2{a) + B3{a)q3{a) 

(2.62) 

(2.63) 

The functioons Qj{a), Nj{a), M/a), (j=1, .•• ,4) and Bi{a), 
(i=1,2,3) are known from the solution of the system of equations 
(2.5l)-(2.55). Now using the a~ymptotic expansion ofOmj , 
(j=l, .•• ,4) and rl for large val ues of I al 
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p. p. . 
m.(a) = -lal(l + 3-2 - ~8 + ••• } , (j=1,.~.,4) 

J a a 
(2.64) 

(2.65) 

after some lengthy analysis, the singular parts of the inte­
grals which appear in (2.59)-(2.61) can be separated and we 
obta in: 

f
ie G (t) 3 fie . 

~_y dt + .: k1j (y,t)Gj (t)dt 
-Ie J 1. -Ie 

= 2'ITF1(y) , -Ie < y < Ie (2.66) 

1-,,2 fie G2(t) . 3 fie 
~ t-y dt + .E k2j (y,t)Gj (t)dt 

-IC J=l -IC 

-IC < y < Ie (2.67) 

(2.68) 

The kerne1skij (y,t) whic.h appear in equations (2.66)-(2.68) 
are given in Appendix B. 

To complete the formulation of the problem, one must also 
impose the sing1e-va1uedness conditions for the displacements 
and for the rotation of the normal, which are: 
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(2.69) 

.JIC G3(t)dt = 0 , . 
-IC " 

(2.70) 

(2.71) 

The problem is thus reduced to the solution of the singular 
integral equations (2.66}-(2.68) under the single-valuedness 
conditions (2.69}-(2.71). 

3. Solution of the integral equations 

Once the system of integral equations (2.66)-(2.71) is 
solved, then all field quantities can easily be computed in 
term~ of the functions Gl(y), G2(y}, G3(y}. To do this, first 
the equations are normalized by defining: 

t = IC 1" , -IC < t < .;c, -1 "< 1" < 1 , (3.1) 

y = IC n , -IC < y < IC , -1 < n < 1 (3.2) 

x = IC ~ , 0 < ~ , x < ~ (3.3) 

Gi(1C 1") = Hi (1"} , (i = 1,2,3) (3.4) 

The functions H;(1"}; (i=1,2,3) are singular at L=+l. Therefore, 

let h. (L) 
H.(L) = ' , (i=1,2,3) (3.5) 
, (-r+1}a(1-1"}B 
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where h.(T) are bounded and Holder~continuous in -1 < T < 1. 1 . . 

Noting that the index of the problem K= (a+S) = 1, and using 
the function-theoretic method described in [27] and [28], we 
have a = S = J. Then, the integral equations can be solved 
numerically by using a Gaussian quadrature type formula [29-31]. 

4. Asymptotic behav~or around the crack tips •. 

As stated earlier, one of the main objectives of this 
study is to show that by using a shell theory which adequately 
takes into account the eff~ct of transverse shear strains, one 
can remove tne discrepancy t~at exi~ts between the classical 
shell theory and the elasticity solutions regarding ~he angular 
distribution of the stresses. Using the expressions given by 
(2.64) and (2.6S}, and the relation [28] 

1 

I hh) eiST dT = ( 7r )~{h(l) exp[i(s _!. S )] 
~ 2Ti3f 4 TIT 

-1 

around n=l and ~=O, the asymptotic expressions for the stress 
. . 

resultants are found to be: 

~h (1) JCXI I 
N ;; 1. IS e-S ~I cos[S(l-n) - -47r]de 

xx 212iT" . (4.2) 
o 

N -_- hl(l) ICXI e-sl~1 cos 7r 
[S(l-n) - 4]ds . yy 12iT. IS 

o 

(4.3) 
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(4.4) 

M ;;; ~ (1-,,2)" 2 rs e-sl~1 cos[S(1-n) - 1T]dS ~h (1) Ico 

xx hA 212;" 4 " 
o 

(4.5) " 

If we now define the new coordi nate"s, 

~ = r sine, n-1 = r cose ( 4.10) 

and use the following expression [32] 
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00 

(5 > a , p > 0) , (4.11) 

eqs. (4.2)-(4.9) become: 

- h1(l) [ 1 . 8 1 . 58] 
N = - - -4 51n -2 + 4" S1n "2 xx . 212r" (4.12) 

N =. h1 (1) [ 7 . 8 1 . 58] (4 .. 13) - - . - 4 Sln 2" - 4" sm "2 , yy 212r 
_ h1 (1) 

[ ~ cos .! + 1 cos .§.! ] (4.14) N =- , 
xy 2ffr 4 2 4 2 

r~ .:: h h2 (1) [ 1 . a 1 . 58 ] 
xx - - 12a 212r - 4 sm 2" + 4 Sln "2 (4.15) 

- h h2 (1) [ 7 . 8 1 . Sa ] 
M = - - - -4 S1n -2 - -4 Sln -2 ' yy .12a 212f (4.16) 

. - . h h2 (1) [ 3 8 1 58 ] 
MXY = .- 12a 2t2r 4 cos 2" + 4" cos"2 ' (4.17) 

h (1) 
V ; - 3 .cos ~ , 
x I2r 2 

(4.1a) 

V ; h3(1} sin ~ 
Y.12r 2 

( 4.19) 

It should first be noted that the new coordinates defined by 
(4.10) are not polar coordinates for "specially" orthotropic 
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materials. For isotropic materials it is seen that the dis­
tributions given by (4.12-4.19) are identical to those obtained 
from the plane stress and anti-plane elasticity solutions [18], 
[33]. 

5. Results and Discussion 

After solving the system of equations (2.66)-(2.71), the 
. . 

discrete values of the unknowns G1(t), G2(t), G3(t) can be used 
to deter~ine any desired field quantity in the shell. The 
~ode ~r and mode ~~I stress intensity factors are· defined as: 

(5.1 ) 

(5.2) 

Using expressions (4.l2)-(~.19) and those given in Appendix A 
with 9=0, the· stress intensity factors can easily be expressed 
in terms of the end values of the unknown functions. In the 
examp1e·s given·, three types of loading are considered. 

a)· In-p~ane· uniform shear loading : 
. . 

If om denotes the magnitude of uniformly distributed. 
s~ear stresses· through the thickness, the external loads can 
be expressed as: " 

M12(0~ X2) = ° , 
Vl (0, X2) = 0, -a < X2 < a . tS.3} 
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Using the dimensionless quantities defined in Appendix' A, the 
--

functions Fl' F2, F3 that appear in (2.66)-(2.68) are found 
to be: 

-1 < n < 1 . (5.4) 

In this case the stress intensity factors will be normalized 
with am/ia. Thus, we have: 

k2 (0) hl (1) E . 
k = =- 2 a' 

mm am/ia m 
(5.5) 

(5.6) 

k3 (0) 3 B 
k = = - - - Ie h (1) • 

sm a /ia 2 am . . 3 
m 

(5.7) 

. b} Uniform Twisting Moment ' .. 

Let at denote the maximum of linearly distributed shear 
stresses through the thickness. Then, the external loads are: 

. N12(O, X2} = 0 , 

. h2 
M12(O, X2) = -M12 = -'6 at ' 

Vl(O, Xz) = 0 , -a < Xz < a , (5.8) 

or 
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-1 < n < 1 (5.9) 

Normalizing the stress intensity factors with respect to 0t~ , 
we obtain: . . 

(5.10) 

(5.11) 

(5.12) 

c) Uniform Transverse Shear Loading: 

If as denotes the maximum of the parabolically distributed 
transverse shear stresses, the external loads can be expressed 
as: 

or 

• I 

" . 

N12 (0, X2) = 0 , 

M12 lO, X2} = 0 , 

Vl(O, X2) = -Vl = - ~ h as ' -a < X2 < a 

F1 C Ie n) = 0, F2 ( Ie n) = 0, F (rc n) = _ ~ as _1 , 
3 3 B Ie 

-1 <n< 1. 

-21-
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In this case, normalizing the stress intensity factors with 
respect to 0slia , we obtain: 

k2(h/2)-k2(0) 

(jSfa 

, 

k:3(0) 3 B 
k = = - -2 Ie - h3(1} ss fa "as 

as" 

(5.15 ) 

(5.16 ) 

[5.17) 

The stress intensity factor ratios are calculated for different 
shell geometries. The following examples are considered: 

a) a cylindrical shell with an axial crack, 
b) a circumferentially cracked cylindrical shell, 
c} a spherical shell with a meridional crack, and 
d} a toroidal shell containing a crack at different locations. 

In all these examples, the material ;s assumed to be isotropic, 
with v=0.3. To give also some idea about the effect of ortho­
tropy on the results, an example is considered for an axially 
cracked cy1inde"r. The elastic properties of titarlium used in 
these calculations are as follows: 

El = 1.039 x 1011N/m2 , 

E2 = 1.434 x 1011N/m2 , 

v1 = 0.1966, 

v2 = 0.2714, 
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G12 = 4.675 x 1010 N/m2 

, " '10 
,Gave = 4.956 x 10 N/m2. 

The results are given in tables 1-34. Some of the results are 
also displayed in figures 3 and 4. First, it must be pointed 
out that for toroidal shells, according to the crack location 
A12 or A22 are taken as negat1ve to describe negative curva­
tures. Secondly, as A1 or A2 approach zero, the results given 
in the tables approach those obtained for flat plates [18J. 
From tables 1-34 and figures 3-4 the following trends can be 
observed: 

- If the crack surfaces are loaded with in-plane shearing 
forces, the coupling stress intensity factor ratios ktm and 
ksm are small compared to kmm • As A2 increases, i.e. as the 
curvature increases, kmm also increases. On the other hand, 
a/h which expresses the thickness effect, does not affect the 
results significantly. 

- Under uniform twisting moment applied to the crack sur­
faces, the stress intensity ,factor ratio, ktt becomes dominant, 
and the other two components kmt and kst are small in compari­
son. In this case, however, ktt does not vary significantly with 
A2' and takes smaller values as a/h increases. 

- For uniform transverse shear loading, the stress intensity 
factor ratio kms is very small, however, kts is no longer 
negligible. For this case also, the dominant stress intensity 
factor ratio is kss . The stress intensity factor ratio kss 
does not vary significantly with curvature however, and decreases 
as the thickness of'the shell increases. 
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- Figure·3 shows the comparison of kmm for three shell 
geometries. kmm assumes its· smallest values for a cylinder 
with an axial crack, and assumes'larger values for a circum­
ferentially cracked cylindrical shell. The results for a 
spherical shell are even larger. 

- The results given in tables 28-31 for toroidal shells show 
the same trends for the stress intensity factors as .the cylin­
drical shells. It must be pointed out that, for this case, the 
component ktt remains almost unaffected of the locatlon of the 
crack. 

- The effect of orthotropy on the results is given in 
tables 33-34 and figure 4. As it may be observed, kmm is the 
component that is affected most by material orthotropy. If the 
axes of orthotropy are subjected to a 90 0 rotation, the results 
change significantly. For example, for El/E2 < 1 kmm are 
smaller than those obtained for isotropic materials, whereas 
for El/E2 > 1, are larger than the isotropic results. 
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Appendix A 

Dimensionless quantities used in the derivation: 

, X, . ,X2 X3 
x = - - , y = rc - , z = - CA. , ) rc a a a 

U, 1 U2 W 
u = rc -a ' v = - - , w = - (A.2) rc a. a 

(A.3) 

{A.4} 

{A.5} 

(A.6) 

(A.7) 
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Appendix B 

Expressions of the kernels which appear in the in~egral equations: 

(B.1) . 

ClO 

k12(y,t) = -f 2ia i mjNj(a)sina(t-y)da (B.2) 

o 
ClO 

k13(y, t) = -2f a i mjMj (a}Cosa(t-y)da (B.3) 

o 

(B.4) 

(B,6) 
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-; K (li v ) a B1(a)]cosa(t-y}da . (B. 71 

(B.8) 

l-v ( ) + K 2"" a B3a - l]s;na(t-y)da (B.9) 
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Table 1 .. Stress intensity factor ratios kmm for an iso~ 
tropic cylinder containing an axial crack, v=O.3. 
(Uniform in~plane shearing) 

-
Al a/h=l a/h=2 a/h=3 a/h=4 

-
0.0 . 1.000 1.000 1.000 1.000 

0.25 1.003 1.003 1.003 1.003 

0.50 1.012 1.011 1.011 1.011 

0.75 1.026 1.024 1.024 1.024 

1.0 1.040 1.039 1.039 

1.5 1.078 1.076 1.075 

2.0 1.114 1.113 

3.0 1.182 

Table 2. Stress intensity factor ratios ktm for an iso­
tropic cylinder containing an aXlal crack, v=O.3. 
(Uniform in-plane shearing) 

Al a/h=l a/h=2 a/h=3 a/h=4 

0.0 0.000 0.000 0.000 0.000 

0.25 -0.005 -0.002 -0.001 -0.001 

0.50 -0.012 -0.005 -0.002 0.000 

0.75 -0.018 -0.007 -0.001 0.003 

1.0 -0.006 0.003 0.008 

1.5 0.002 0.017 0.027 

2.0 0.037 0.051 

3.0 0.103 
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Table 3. Stress intensity factor ratios ksm for an isotropic 
cylinder containing an axial crack, v=O.3. (Uniform 
in-plane shearing) 

Al a/h=l a/h=2 a/h=3 a/h=4 

0.0 0.000 0.000 0.000 0.000 

0.25 0.005 0.004 0.003 0.003 

0.50 0.020 0.014 0.012 0.011 

0.75 0.042 0.030 0.026 0.024 

1.0 0.051 0.043 0.039 

1.5 0.101 0.086 0.078 

2.0 0.137 0.124 

3.0 0.222 . 

Table 4. Stress intensity factor ratios kmt for an isotropic 
cylinder containing an axial crack, v=O.3. (Uniform 
twisting moment) 

Al . a/h=l a/h=2 a/h=3 a/h=4 

0.0 0.000 0.000 0.000 0.000 

0.25 -0.001 -0.001 -0.001 0.000 

0.50 -0.004 -0.002 -0.002 -0.001 

0.75 -0.007 -0.004 -0.003 -0.002 

1.0 ';'0.005 -0.004 -0.003 

1.5 -0.007 -0.005 -0.004 

2.0 -0.006 -0.005 

3.0 -0.005 
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Table 5. Stress intensity factor ratios ktt for an 
isotrqpic cylinder containing an axial crack, 
v=O.3. (Uniform twisting moment) 

Al a/h=l a/h=2 a/h=3 a/h=4 

0.0 0.523 0.354 0.274 0.228 

0.25 0.523 0.354 0.274 0.228 . 

0.50 0.522 0.353 0.274 0.227 

0.75 0.521 0.353 0.274· 0;227 

1.0 .0.353 0.2i4 0.227 

1.5 0.352 0.273 0.227 

2.0 0.273 0.227 

3.0 0.226 

Table 6. Stress intensity factor ratios kst for an isotropic 
cylinder containing an axial crack, v=O.3. (Uni­
form twisting moment) 

Al a/h=l a/h=2 a/h=3 a/h=4 

0.0 -0.070 -0.092 -0.094 -0.091 

0.25 -0.070 -0.092 -0.094 -0.091 

0.50 -0.070 -0.091 -0.094 -0.091 

0.75 -0.069 -0.091 -0.094 -0.091 

1.0 -0.091 -0.093 -0.091 

1.5 -0.089 -0.092 -0.090 

. 2.0 -0.091 -0.089 

3.0 -0.087 
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Table 7. Stress intensity factor ratios kms for an iso­
tropic cylinder containing an aXlal crack, v=O.3. 
(Uniform transverse shear loading) 

Al a/h=l a/h=2 a/h=3 a/h=4 

0.0 0.000 0.000 0.000 0.000 

0.25 -0.005 -0.005 -0.006 -0.007 

0.50 -0.021 -0.021 -0.024 -0.028 

0.75 -0.045 -0.045 -0.052 ~0.061 

1.0 -0.076 -0.088 -0.103 

1.5 -0.149 -0.174 -0.204 

2.0 -- -0.264 -0.310 

3.0 -0.495 

Table 8. Stress intensity factor ratios kts for an iso­
tropic cylinder containing an aXlal crack, v=O.3. 
(Uniform transverse shear loading) 

Al a/h=l a/h=2 a/h=3 a/h=4 

0.0 0.47 1.26 2.12 . 3.03 

0.25 0.47 1.26 2.12 3.03 

0.50 0.46 1.26 2.12 3.03 

0.75 0.46 1.25 2.11 3.02 

1.0 1.24 2.10 3.00 

1.5 1.19 2.04 4.93 

2.0 1.95 2.81 

3.0 2.52 
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Table 9.' Stress intensity factor ratios kss for an isotropic 
cylinder containing an axial crack, v=0.3. (Uni­
form transverse shear loading) 

Al a/h=l a/h=2 a/h=3 a/h'=4 

0.0 1.68 ,2.34 2.98 ' 3.62 

0.25 1.68 2.34 2.98 3.62 

0.50 1.67 2.34 2.98 3.62 

0.75 1.66 2.33 2.98 3.61 

1.0 2.32 2.96 3.,60 

1.5 2.28 2.92 3.54 

2.0 2.84 3.46 

3.0 3.24 

Table 10. Stress intensity factor ratios kmm for a cir­
cumferentially cracked cylindrical shell. 

A2 a/h=l a/h=2 a/h=3 a/h=4 

0.0 1.000 1.000 1.000 1.000 

0.25 1.003 1.003 1.003 1.003 

0.50 1.013 1.012 1.012 1.012 

0.75 1.031 1.027 1.026 1.026 

1.0 '1.047 1.045 1.045 

1.5 1.104 1.097 1.095 

2.0 1.165 1.159 

3.0 1.320 
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Table 11. Stress intensity factor ratios ktm for. a cir­
cumfer~ntia1ly cracked cylindrical shell. 

A2 a/h=l a/h=2 a/h=:3 a/h=4 

0.0 0.000 0.000 0.000. 0.000 

0.25 -0.005 -0.002 0.000 0.001 

0.50 -0.014 -0.003 0.002 0.006 

0.75· -0.023 -0.002 0.010 0.017 

1.0 0.004 0.023 0.035 

1.5 0.030 0.068 0.092 

2.0 0.139 0.178 

3.0 0.437 

Table 12. Stress intensity factor ratios ksm for a cir­
cumferentia1ly cracked cylindrical shell. 

A2 a/h=l a/h=2 a/h=3 a/h=4 

0.0 0.000 0.000 0.000 0.000 

0.25 0.014 0.010 0.008 0.007 

0.50 0.056 0.038 0.032 0.028 

0.75 0.125 0.084 . 0.070 0.062 

1.0 0.148 0.123 0.109 

1.5 0.328 0.272 0.242 

2.0 0.479 0.426 

3.0 0.949 
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Table 13. 

A2 

0.0 

0.25 

0.50 

0.75 

1.0 

1.5 

2.0 

3.0 

Table 14. 

A2 

0.0 

0.25 

0.50 

0.75 

1.0 

1.5 

2.0 

3.0 

Stress intensity factor 'ratios kmt for a 
circumferentially cracked cylindrlcal shell. 

a/b=l a/b=2 . a/b=3 a/b=l • 

0 .. 000 0.000 0.000 .0.000 

-0.002 -0.001 ~0.001 -0.001 

-0.005 -0.003 ... 0.002. -0.002 

-0.009 -0.005 -0.004. -0.003 

-0.007 -0.005. -0.004 

-0.012' . -0.008 -0.006 

-0.011 -0.008 

-0.012 

Stress intensity factor ratios ktt for a cir­
cumferentially cracked cylindrical shell. 

a/b=l a/b=2 . a/b=3 a/h=4 

0.523 0.354 0.274 0.228 

0.523 0.354 0.274 0.228 

0.522 0.353 0.274 0.227 

0.521 0.353 0.274 0.227 

0.352 0.273 0.227 

0.351 0.273 0.226 

0.272 0.Z26 

0.225 
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Tabl e 1·5. 

A2 

0.0 

0.25 

0.50 

0.75 

1.0 

1.5 

2.0 

3.0 

Table 16. 

A2 

0.0 

0.25 

0.50 

0.75 

1.0 

1.5 

2.0 

3.0 

Stress inten~ity factor ratios kst for a cir­
cumferentially cracked cylindrical shell. 

a/h=l a/h=2 a/h=3 a/h=4 

-0~070 -0.092 . -0.094 -0.091 

-0.070 -0.092 -0.094 -0.091 

-0.070 -0.091 -0.094 -0.091 

-0.070 -0.091 . -0.094 -0.091 

-0.091 -0.094 -0.091 

-0.091 -0.093 -0.091 

-0.093 ... 0.091 

-0.091 

Stress intensity factor ratios km for a cir­
cumferentially cracked cYlindrica~ shell. 

a/h=l a/h=2 a/h=3 .a/h=4 

0.000 0.000 0.000 0.000 

-0.016 -0.015 -0.017 -0.020 

-0.063 -0.061 -0.068 -0.078 

-0.133 -0.133 -0.149 -0.172 

-0.221 -0.251 -0.291 

-0.387 -0.462 -0.546 

-0.595 -0.722 

-0.753 
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· . 

Table 17. Stress intensity factor ratios kts for a cir­
cumferentia11y cracked cy1indtfca1 shell. 

- I 
"2 a/h=l a/h=2 a/h=3 a/h=4 

0.0 0.47 1.26 2.12 3.03 
- 0.25 0.46 1.26 2.12 3.03 

0.50 0.46 1.25 2.11 3.01 

0.75 0.43 1.22. 2.07 2.97 

1.0 1.15 . 1.99 .2'.86 

1.5 0.92. 1.67 2.46 

2.0 1.24. 1.89 

3.0 0.93 

Table 18. Stress intensity factor ratios kss for a cir­
cumferentially cracked cylindrical shell. 

"2 a/h=l a/h=2 a/h=3 a/h=4 

0.0 1.68 .2.34 2.98 3.62 

0.25 1.67 2,34 2.98 3.62 

0.50 1.65 2.33 .. 2.97 3.60 

0·.75 1.58 2.28 2.92 3.55 

1.0 2.17 2.81 3.44 

1.5 1.77 2.40 3,00 

2.0 1.84 2.35 

3.0 1.24 
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Table 19. ·Stress intensity factor ratios kmm for a spheri­
cal shell with a meridional crack. 

A2 a/h=l a/h=2 a/h=3 a/h=4 

0.0 1.000 1.000 1.000 1.000 

0.25 1.006 1.006 1.006 1.006 

0.50 1.026 1.024 1.023 1.023 

0.75 1.058 1.051 1.049 1.048 

1.0 1.086 1.082 .. 1.081 

1.5 1.172 1.162. 1.158 

2.0 .. 1.252 . . 1.244 

3.0 1.418 

Table 20. Stress intensity factor ratios ktm for a spheri­
cal shell with a meridional crack. 

A2 a/h=l a/h=2 a/h=3 a/h~4 
. . ... 

0.0 0.000 0.000 0.000 0.000 

0.25 -0.009 -0.004 -0.002 -0.001 

0.50 -0.021 -0.005 0.003 0.008 

0.75 -0.030 -0.001 0.016 0.025 

1.0 0.011 0.037 0.052 

1.5 0.056 0.105 0.136 

2.0 0.205 0.254 

3.0 0.581 

-40-



Table 21. 

A2 

0.0 

0.25 

0.50 

0.75 

1.0 

1.5 

2.0 

3.0 

Table 22. 

. A2 

0.0 

0.25 

0.50 

0.75 

1.0 

1.5 

-2.0 

3.0 

Stress intensity factor ratfos ksm for a spheri­
cal shell with a merid-ionar crack. 

a/h=l a/h=2 a/h=3 a/h=L. 

0.000 -0.000 0.000 0.000 

0.014 0.010 0.009 .. 0.008 

0.077 0.053 0.045 0.040 

0.169 0.115 0.096 0.086 

0.200 0.166 .. .0.149 

0.436 0.361. . .0.322 

0.626 .0.558 

.1.209 

Stress intensity factor ratios kmt for a spheri­
cal shell with a meridional crack. 

a/h=l a/h=2 a/h=3 a/h=4 

0.000 0.000 0.000 0.000 

-0.003 -0.002 -0.001 -0.001 

-0.008 -0.004- -0.003 -0.002 

-0.012 -0.007- -0.005 -0.004 

-0.010 -0.007 -0.005 

.,.0.014 -0.010 -0.008 

-0.012 -0.009 

-0.012 
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Table 23. Stress intensity factor ratios ktt for a spheri-. 
cal shell with a meridional crack. 

A2 a/h=1 a/h=2 a/h=3 a/h=:4 

0.0 0.523 0.354 0.274 0.228 
.. 

0.25 0.523 0.354 0.274 0.227 

0.50 0.521 0.353 .0.274 0.227 

0.75 0.519 0.352. .0.273 0.227 

1.0 0.351 0.273. 0.227 

1.5 .0.35.0 0.272 .0.226 

2.0 .. 0.271 0.226 

3.0· 0.226 

Table 24. Stress in~ensity factor ratios kst for a spheri­
cal shell with a meridional crack. 

a/h=1 a/h=2 a/h=3 a/h=4 

-0.094 -0.091 

. -0.091 
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Tabl e 25 ... Stress intensity factor ratios kms for a spheri­
cal shell with a meridional crack. 

A2 a/h=l . a/h=2 a/h=3 a/h.=4 

0.0 0.000 0.000 0.000 0.000 

0.25 -0.023 -0.022. -0.025 -0.029 

0.50 -0.085 -0.083 -0.094 -0.108 

0.75 -0.173 -0.175 ..,.0.199 . -0.230 

1.0 -0.282. ..,.0.325. .. -0.379 

1.5 -0.465. · .. -0.563 -0.669 

2.0 -0.691 -0.844 

3.0 -0.843 

Table 26. Stress intensity factor ratios kts for a spheri­
cal shell with a meridional crack. 

A2 a/h=l a/h=2 a/h=3 a/h;:.4 

0.0 0.47 1.26 2.12 3.03 

0.25 0.46 1.26 .2.12 3.03 
>. 

0.50 0.45 1.25. 2.11 3.00 

0.75 0.42 1.20 2.05 2.94 

1.0 1.12 .. · . 1.95 2.81 

1.5 0.86 · .. ·1.58 2.35 

2.0 1.15 1.76 

3.0 0.84 
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Table 27. Stress intensity factor ratios kss for a spheri­
cal shell with a meridional crack. 

A2 a/h=l a/h=2 a/h=3 a/h=4 

0.0 1.68 2.34 2.98 3.62 

0.25 1.67 2.34 2.98 3.62 

0.50 1.64 2.32 2.96 3.60 

0.75 1.55 2.25 2.90 3.53 

1.0 2.12 ... 2.77 .3.39 

1.5 1.70 2.32. .. 2.90 

2.0 1.75 .. .. .2.25 

3.0 1.17 

Table 28. The stress intensity factor ratios for the crack 
configuration shown in figure (2.a). Toroidal 
isotropic shell, with v=O.3. 

a/h=l a/h=2 a/h=3 a/h=4 

Al=0.575 }.1=1.150 Al =1. 725 A1=2.300 

A2=0.257 A2=0.514 A2=0.771 A2=1.028 
.. 

k 1.019 1.063 1.116 1.170 
mm 

k
tm 

-0.017 -0.001 0.047 0.117 

k 0.040 0.103 0.180 0.260 sm 

kmt -0.006 -0.007 -0.007 -0.007 

ktt 0.521 0.352 0.273 0.227 

kst -0.069 -0.090 -0.092 -0.089 

k -0.044 -0.156 -0.345 -0.596 ms 

kts 0.46 1.21 1.93 2.54 

kss 1.67 2.28 2 .. 79 3.18 . 
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kmm. 
ktm 

ksm 

Table·29.· The stress intensity factor ratios for the crack 
configuration shown in figure (2.b) .. Toroidal 
isotropic shell, with v=0.3. 

a/h=l a/h=2_ a/h=3 a/h=4 

Al=0.257 Al:::0•514 Al =0.771 Al =1. 028 

A2=0.575 >'2=1.150· Az=L725 Az=2.300 
• • • •• J'" 

1.021 . . 1.073 .. . ·1.146 . . 1.231 

-0.019 · . 0.011. · . 0.107 0,269 

0.079 .. 0.208 .... ·0.384 .... 0.604 

kmt· -0.007 · ...... 0.009 .. · ... ...0.010 ... .-0.010 

k tt 

kst· 

kms 
kts 

kss 

kunn 
ktm 

ksm 

lcmt 

ktt 
kst 

lcms 
kts 

kss 

0.521 .. 0.352· . .. 0.272 . .. 0.225 

-0.070 ... 0.091 . · .. ..... 0.093 ..... .. ...0.091 

. -0~087. . . .... 0.291. .. -0.561 .. -0.802 

0.45 1.09 .1.47 .. .1.53 

1.63 · .. .2.06 · . 2.14 1.95 

Table 30. The stress intensity factor ratios for the crack 
configuration shown in figure (2~c). Toroidal 
isotropic shell, with v=0.3. 

a/h=l a/h=2 a/h=:3 a/h=4 

Al"70.575 Al =1.150 Al =1. 725 Al=2.300 

. A2=0.332 A2=0.664 A2=0.996 A2=1.328 

L012 1.039 1.071 1.105 

U.UUH U.006 0.003 0.007 

-U.UU.i -u.ouu 0.U11 .0.032 

0.003 0.003 0.002 0.001 

U • .5ZZ 0.352 0.274· 0.228 
-u.06~ "-u.u~u . -0.091 "-0.088 

-U.UUl -0.006 -u.u29 -0.084 

U.4b loZZ 1.95 2.55 

1.67 2.29 2.81 3.17 . 
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kmt 
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kss 

Table 31. The stress intensity factor ratios for the crack 
configuration shown in figure (2.d). Toroidal 
isotropic shell, with v=O.3. 

a/b=l a/h=2 a/b=3 a/b=4 

A1=0.332 A1=0.664 A1=0.996 A1=1.328 

>"2=0.575 A2=1.150 . A2=1.725. A2=2.300 

1.014 1.049. 1.100 1.164 

0.012 -O.Oll -0.084 -0.207 

-0.065 -0.170 -0.312. -0.488 

. 0.004 0.06 0.007 0.008 

0.522 0.352 0.273. 0.227 

-0.070 -0.091 -0.093 -0.090 

0.073 0.247 0.485 0.700 

0.45 1.11 1.50 .1.57 

1.64 2.08 2.18 1.99 

Table 32. The stress intensity factor ratios for the crack 
configuration shown in figure (2.e). Toroidal 
. t . h 11 °th 0 3 1S0 r OP1C s e , W1 v= . . 

sillntfrr 10K 
kabuk 

R1/R2= 1/5 R1/R2= 1/12 R1/R2= 1/20. R1/R2= ~ 
A2=0.514 A2=0.332· A2=0.257 .A2=0 

1.063 1.056 1.054 1.051 

-0.001 -0.003 -0.003 -0.004 

0.103 0.081 0.074 0.065 

-0.007 -0.007 -0.006 -0.006 

0.352 0.352 0.352 0.352 

~0.090 ~o.o~m -0.090 -0.090 
-

-0.156 -0.122 -0.112 -0.097 

1.21 1.22 1.23 1.23 

2.28 2,30 2.31 2.31 
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·Table 33. Stress intensity factor ratios for an orthotropic 
(titanium) axially cracked cylindrical shell. 
(a/h=3, E1/E2=0.725, AO= [12(1-v2)]1/4 aIIR1h) 

k1IllI1 k tm k k
mt 

k tt k sm st 

1.000· . 0.000 . 0 0.000 0.000 0.274 -0.091 

1.002 -0.001 .0.003 ",:,0.001 0.274 .-0.091 

1.010 ";0.003 0.011 -0.002 0.273 -0.091 

1.021 -0.002 0.022 ",:,0.003 0,273 0 -0,091 

1.034 0.001 0.037 -0.004 0.273 -0.090 

1.067 0.012 0.074 -0.005 0.273 -0.090 

1.103 0.029 0.118 -0.006 0.272 -0.088 

k kts . 00 
k ms ss 

0.000 2.07 2. 92
1 

-0.005 2.07 2.92

1 
-0.020 . 2.07 2.92 

-0.043 2.06 2.92 1 

, 

-0.074 2.05 2.91 

-0.149 2.00 2.87 

-0.230 1.93 2.81 
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Table 34. Stress intensity factor ratios for an orthotropic 
·(titanium) axially cracked cylindrical shell. 
(a/h=3, E1/E2=1.380,. AO= [12 (l-v£)]l (4 a//Ri:h) 

k k . k kmt k tt . kst mm . tm sm 

1.000 -0.0.00 0.000 . 0.000 0.260 -0.098 

1.003 -0.002 0.004 -0.001 .0.260 -0.098. 

1.013 '-0.002 0.015 -0.002 0.260 -0.098 

1.027 -0.000 0.031 -0.003 0,259 -0,098 

1.045 0.006 0.051 -0.004 0.259 .-0.097 

1.085 0.023 0.101 -0.006 0.259 ~0.096 

1.126 0.047 0,158 -0.006 0.259 -0.095. 
L- _________ 

~--- ---

.. 
k k ts 

k 
ms ss 

. -0.000 2.11 3.08 

-0.007 2.11 3.08 

-0.026 2.11 "3.07 

-0.056 2.10 3.07 I 

-0.095 2.08 3.05 

-0.184 2,01 3.00 

~0.274 1.91 2.91 
- ----- -



Fig. 1. Geometry of the cracked shell 
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Fig. 2. The crack configurations in toroidal shells 
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Fig. 3. Comparison of the stress intensity factor ratios 
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Effect of orthotropy in an axially cracked cylindrical shell. 
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