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THE CRACK PROBLEM IN A SPECIALLY ORTHOTROPIC
SHELL WITH DOUBLE CURVATURE*)

by
F. Delale**) and F. Erdogan

ABSTRACT

In this paper the crack problem of a shallow shell with two nonzero
curvatures is considered. It is assumed that the crack lies in one of
the principal planes of curvature and the shell is under Mode I loading
condition. The material is assumed to be specially orthotropic. After
giving the general formulation of the problem the asymptotic behavior of
the stress state around the crack tip is examined. The analysis is based
on Reissner's transverse shear theory. Thus, as in the bending of cracked
plates, the asymptotic results are shown to be consistent with that ob-
tained from the plane elasticity solution of crack problems. Rather
extensive numerical results are obtained which show the effect of material
orthotropy on the stress intensity factors in cylindrical and spherical
shells and in shells with double curvature. Other results include the
stress intensity factors in isotropic toroidal shells with positive or
negative curvature ratio, the distribution of the membrane stress resultant
outside the crack, and the influence of the material orthotropy on the
angular distribution of the stresses around the crack tip.

1. Introduction

The crack problem in shallow shells by using a transverse shear
theory [1,2] has previously been considered for cylindrical and spherical
shells only [3-5]. The results given in [3-5] as well as those obtained
from the classical shell theory (e.g., [6-8]) indicate that due to the
curvature effects the stress intensity factors in shells may be consider-
ably higher than that in flat plates having the same crack length and the
same thickness. Also, the results given in [5] and [8] show that, unlike
the infinite plate problem, the material orthotropy may have a significant
influence on the stress intensity factors in shells. Therefore, from the
viewpoint of practical applications it does seem to be important to study
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the problem for shell geometries other than cylinders and spheres and
also to consider the effect of material orthotropy.

In this paper the basic problem of a shallow. toroidal shell with
two unequal and nonzero curvatures is considered. It is assumed that the
material is specially orthotropic, the through crack is located in one
of the principal planes of curvature, and the plane of the crack is a
plane of symmetry with respect to loading as well as to the geometry of
the shell. To remove the inconsistency in the asymptotic behavior of the
bending and transverse shear resultants, a transverse shear theory is used
in the analysis [1,2] (see the discussion given in [3-5] for shells and,
for example, [9-11] for plates).

2. The Integral Equations

The geometry of the shallow shell under consideration is shown in
Fig. 1. If the material is orthotropic (with Xy and Xy a5 the axes of
orthotropy), the engineering material constants are defined through the
following stress strain relations:

B 1
e = f]("n"’]"zz) s> €y = 52("22"’2"11) >
€12 = 912/2615 » V/Ey = vp/E, (1)

With the four independent material constants the differential operators
arising from the formulation of the shallow shells do not seem to be
factorable and consequently, the analysis becomes intractable. However,
it can be shown that if the elastic constants are related through

"EE,
12 2(1+/57%,)
then, with a simple coordinate transformation, the orthotropic shell
equations may be reduced to essentially that of isotropic shells (see,
for example, [8] and [3-5]). The factorization condition (2) implies that
the shell has only three independent elastic constants. Such a material
(in plate or shell form) is said to be specially orthotropic. If we now
define

G (2)



E= VG . v= Ry, Gy T E200) L o= (B/E)Y,  (3)

the stress-strain relations (1) become

£ =]—(c”-vo) € =l(c20 - Vv0qq) € =U]2 (4)
11 " E j;? 22/ » %22 T E 22 117 * =12 ?E;;

where E and v are the effective modulus and Poisson's ratio, c is the
stiffness ratio, and from (2) and (3) it follows that in the specially
orthotropic materials the measured shear modulus G]2 is equal to the
(calculated) effective shear modulus Gav'

Referring to Fig. 1 and the normalized quantities defined in Appendix
A, and to [3-5] for details, in terms of a stress function ¢ and the (out
of plane) displacement component w the shell problem may be formulated
as follows:

e - Lvdw=0, (5)
A

v + AZ(I-sz)viqa =0, (6)
-y -w=0, (7)
|<'|2-v VZQ-Q=0, (8)

where ) )

2
2 2 3 ) 2 3

Vo= A - 2x + A s (9)

A M ;Z 12 axay ~ "2 2

38, 9B 3B, 9B

¥(x.y) = K(gix + 3;y) -woaloy) =5t -5 (10)

The shell parameters x], Aps Aps and « are defined in Appendix A,

Bx and By are the angles of rotation of the normal to the shell surface,
and the curvatures of the shell are defined by

2

22 v %7 1 . %1 an

=.8Z2 1 _ 372 1
2 ]

1
Ry % Ry axg Rig  3%yaxy °

where Z==Z(x],x2) is the equation of the middle surface of the shell,
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X9 and Xs being the coordinates in the tangent plane. The normalized
stress, moment, and transverse shear resultants are given by

2! 2 2!
Nex = : 70 Ny = . g Ny ="5i3 ’ (12)
3 a8 a8 9
M = .4 ?B_x+ \)—y) s M =8 ( __X+_Ey) ,
XX hA4 X oy W X a3y
98 98
__a I-vfx_ "y
" T T2 (y +8><) ’ (13)
Ve =ax t B Yy =gyt By (14)
where
AP O 1] S 1-vae
By =ox T X7 3y* ByT3ay %7 3 - (15)

The system of differential equations (5)-(8) may be solved by
using the standard Fourier transforms. In this paper it is assumed
that through a linear superposition the regular part of the solution
has been separated and the problem is reduced to a perturbation problem
in which the self-equilibrating crack surface tractions are the only
nonzero external loads. Because of the assumed symnetry with respect
to XpX3 plane in loading and shell geometry, the stress and moment
resul tants must satisfy the following symmetry conditions:

Nex (3] = N (=xay) - Ny (6y) = =N (=x0y),

Nyy(xsy) Nyy('xs.Y)’ Vx(x9.Y) =‘VX('X,.Y)’ Vy(xs.y) = Vy("xs.y)’

M (Xo9) = M (-xay), Mo O6y) = M (-xy)s M (%y) = =M, (-x,y), (16)

It is, therefore, sufficient to consider one half of the shell only.
Thus, in addition to the regularity conditions at infinity, the problem
must be solved under the following boundary conditions:

ny(o,y) =0, Mxy(O,y) = 0, Vx(O,y) = 0, =o<y<=m, (17)



Tim N (x,y) = Fi(y), |yl </, u(+0,y)

Tim N 0, Jc<ly|<~, (18)

Tim Mxx(x,y) 0, /J<ly|<=. (19)

Faly)s [yl </c, 8,(+0,y)
x>0

We note that the problem (for the half shell) is one of tenth
order. By taking Fourier transforms in y it would give ten "integration
constants" which are functions of the transform variable and are unknown.
Five of these unknowns must be zero because of the regularity conditions
at x==, three may be eliminated by using the homogeneous conditions (17)
at x=0, and the two mixed boundary conditions (18) and (19) would give
a pair of integral equations to determine the remaining two. We also
note that the integral equations of this problem would be identical to
those obtained in [5] for the spherical shell. 1In [5], even though
R1==R2, because of the assumption of special orthotropy, the stiffness
ratio c==(E]/E2)% is not unity and consequently A]=kA2, which is also the
case in the problem considered in this paper. Thus, by defining

5 ur0.y) = &), 5 8,(+0,) = Gy(y) (20)

- from (18) and (19) it is seen that

GJ(.Y) = 0, l.Y' >/C_s (J=1s2) (2])
i
[ 6;()dy = 0, (§=1,2) . (22)
-/c

Referring now to [5] for details the integral equations of the problem
may be expressed as

I»/E 6 (t) f/E 2

e dt + _/E]Z ky(¥st)G5(t)dt = 2nF (y), |y| </C,

2./c G,(t) /c
]'X J 2 dt + J
& Y

2

h
A ] kpglyst)6y(t)dt = 2x 3 Fp(y)s Iyl </C, (238.)
where the kernels kij are known bounded functions and are given in [s].
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3. The Stress State Around Crack Tips
| In the system of integral equations the interval (-v/c,/c) may be

normalized by introducing the following change in variables

T=t//e, n=y/, g=x/Ve, Gi(t) =g5(),  (3=1,2) . (23)
The integral equations may thus be expressed as
f] Z[-14Ll + K; (n,r)]g (t)dr = f.(n), (i=1,2), -T<n<l. (24)

11

The index of the singular integral equations (24) is +1 and their
solution is, therefore, of the following form

hy(a)
(i=1,2), =l1<t<1, (25)

gi(T) =
T-t
where h] and h2 are bounded functions. The system of integral equations
(24) subject to the additional single-valuedness conditions (see (22))

1
[ gjxae =0, (i=1,2) (26)
-1

may be solved numerically by using the related Gaussian quadrature
formulas [12].

After solving the integral equations (24) all the field quantities
in the shell may be expressed in terms of the density functions 9 and
g, as finite integrals [56]. In particular, the behavior of the stress
state around the crack tips may be obtained by examining the corresponding
integrals asymptotically. Referring to Appendix A, the normalized membrane
and bending stresses are given by

o..=-]—hlz-M o'..=orp.+cl.).

m . - -
ij ~ it %ij ij* %93 = 943 toqye (1,3 = (xy) . (27)

If we now define the polar coordinates (r,8) at the crack tip (£=0,n=1)

by
£ =r sine, n-1 =r cosg, (28)



the asymptotic stress state at the crack tip may be expressed as
- (see [5] for details)

btz (1) 5 g S0,

Oy e 7 €0 5 -7 COS 3

%y = - hl(l;::_:z(” (% cos %"’7];' cos 576) ,

Iy = h](]:::_:Z(]) (--}1- sin %"’211‘ sin §26-) . (29a-c)
vy = [-f h](])kzkg-bhz(l)]m sins cos%. (30)

Note that the asymptotic behavior of the in-plane stresses given by
(29) is identical to that obtained from the plane elasticity solution
of a symmetric crack problem. The transverse shear resultant given
by (30) represents Mode III cleavage stress which is nonsingular for
the symmetric loading under consideration.

‘ Referring to Fig. 1, in this problem the Mode I stress intensity
factor at the crack tip Xy=a is defined as follows:

Xo+a
2
From the definitions given by (23), (28) and Appendix A it can

be shown that

e 1K
tane ey sz-a' (32)

If we define the polar coordinates in the X1Xo plane (at x]=0, x2=a) by
p sina = Xy, .p cosa = X, -2, (33)
from (32) it follows that

tane = ¢ tane. (34)



Similarly, by substituting from (23), (28), and Appendix A into (29)

we obtain

5 8 1
4 COS 5 - 4cos—2— (35)
2.\
V2p (cosza + s1n2 a)
c
Also if we express the (in-plane cleavage) stress 11 in the close
neighborhood of the crack tip (x]=0,x2=a) or (p=0) in the following

standard form

cEva

]](x]sxz:xs) = - [h](]) +'—'h2( )]

( ) ](X3)
[+) X,X,X = eme———
11271272273 N
with f]](0)=], from (35) and (36) the Mode I stress intensity factor k]
and the function f11 giving the angular distribution of the stress
component 3 around the crack tip may be obtained as follows

fy(a) s (36)

g (xg) = S5 [ (1) + 22 hy (1)1, (37)
5 8 1 56
2 C0S 5 -7 COS 5
fii(a) = 4 2 4 2 , 0 = Arctan(l-tana) . (38)
N 2 s1n2a % ¢
cos a+ 5 )
c

Similarly if we let

Ky (%4) Ky (xa)
2 fpla)s ayplxganpexg) 2 -2

0'22()(-' ,X2,X3) = f]z(a)’ (39)

p
from (29) we obtain
2cosg lcos%? ls1ng+]s1n%?
foola) = — 5 fy,(a) = (40)
22\¢ 2 si 2 \k 12 2 2 \
cos a+7——" g cosle +5iN 2
\ c c?

4. The Results and Discussion

The symmetric problem formulated by the system of integral equations
(23) is solved under two sets of external loads, namely uniform membrane
loading and uniform bending moment applied to crack surfaces. For the
membrane loading it is assumed that
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N”(O,Xz) ="No =‘h°m, M]](O,XZ) = 0, -a<X2<a [ (4])

where O is constant. From (41) and the Appendix A the input functions

in (23) may be expressed as
Fily) =-o/cE, Fply) =0, -f<y</k. (42)

In this problem the corresponding flat plate stress intensity factor is

kp==om¢5 and from (37) the membrane and bending components of the stress

intensity factor ratio k](x3)/omﬁi may be evaluated as follows:

k, (0)
1 cE

=-z= h;(1), (43)
mm om/a- 20‘m 1

k](h/Z) ‘k](o) E l

Kk, = == Ly (). (44)
bm °m’5 Zcm 2a 2
For the bending of the shell the external loads are
2
N]](O’XZ) = 0, M]](O,X2) '-""Mo =-'6'10b [ -a<X2 <a 'Y (45)
- which give the input functions as follows:
g .
Fly) =0, Fyly) =-gx, -/C<y<r, (46)

where o is a known constant. For this loading condition the membrane
and bending components of the stress intensity factor ratio may be
defined as and evaluated from

k. (0) '
1 cE
k., =——==-2= h(1), (47)
mb o\ 5 9
k.(h/2) -k, (0)
1 1 . ¢cE h
kbb = ob/5 = ~_;B ?3'h2(]) . (48)

The calculated results for isotropic and specially orthotropic
shells are shown in Figures 2-9 and Tables 1-11. Fig. 2 shows the com-
parison of the membrane component of the stress intensity factor ratios

kmm in a cylindrical shell containing a circumferential or an axial crack

-9-



and a spherical shell containing a meridional crack subjected to uniform
membrane stress 91 %% - For the same loading and curvature the Mode I
stress intensity factor appears to be highest in sphere and lowest for
the circumferential crack. Similar results may be observed from Fig. 3
which shows an example for the membrane stress resultant N1](0,x2) for
Xo>a . After determining G, and G, N, is obtained directly from (23a)
by observing that (23a) gives the expression of Nxx(o,y) outside (i.e.,
for |y| >/c) as well as inside the crack. Fig. 3 also shows the flat
plate solution. Note that even though near the crack tip the stresses

in the shells are greater than that in the plate, because of their greater
rate of decay, away from the crack region the shell stresses fall below
the stress level in the flat plate.

The results showing the effect of the curvature ratio R]/R2 on the
Mode I stress intensity factor ratios kij’ (i,j=m,b) defined by (43),
(44), (47) and (48) in an isotropic shell are given in Tables 1 and 2.
Table 1 shows the results for a positive curvature ratio R]/R2 as, for
example, in the case of outside surface of pipe elbows and barrel shaped
toroidal shells. The results of an example for a negative curvature
ratio R]/R2==-0.5 are given in Table 2. Fig. 4 shows the comparison of
the stress intensity factors obtained from shells with positive and negative
curvature ratios and from an axially cracked cylinder. Note that, as one
might expect and consistent with the trends in Fig. 2, the stress intensity
factor for R]/R2=>0 is greater and that for (R]/Rz) <0 is smaller than the
value for the cylinder (i.e., for R]/R2==0).

The remaining results given in this paper deal with the specially
orthotropic shells, that is, the orthotropic shells for which the measured
in-plane elastic constants of the material approximately satisfy the
factorization condition given by (2). namely

5 E; (49)
Gy, s —mm—=G_,, . 49
]2 2(]+ ,_ml\)z aV
For example, consider two graphite-epoxy (fiber reinforced) laminates
consisting of 0°, #45°, 90° unidirectional laminae. Laminate A has 20%,
30%, and 50% of its laminae, and laminate B 20%, 50%, and 30% of its
laminae oriented along 0°, +45°, and 90° directions, respectively. If
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0° direction coincides with E], the measured elastic constants of the
- two laminates are known to be

ET(psi) Ez(psi) 2 Vo GTz(psi) Gav(psi)
, 6 6 6 6
A: 6.9x10° 12.3x10° 0.140 o0.250 2.1 x10® 3.88x10
B: 7.1 x10° 9x10® 0.270 0.32 3.05x10° 3.06x10°

where Gav is calculated from (49) by using the effective modulus and the
effective Poisson's ratio. Thus, it is seen that the assumption of special
orthotropy G]2 ;Gav is valid for Taminate B but not for laminate A.

Table 3 shows the elastic constants of two orthotropic materials used in

the examples. The "mildly" orthotropic material is typical of rolled

sheet metallic materials. Usually strongly orthotropic structural materials
are fiber reinforced composites.

Tables 4-9 show the membrane and bending components of the stress
intensity factor ratio ko and ky . defined by (43) and (44) for three
symmetric crack geometries in cylindrical and spherical shells subjected
to uniform membrane loading Ny, =-N, on the crack surfaces (Fig. 1).

For completeness the results for isotropic cylinders are also given in

" the tables. Note that for these simple crack-shell geometries there are
three length parameters, namely mean radius R, thickness h, and half crack
length a.. Therefore, the solution must contain two dimensionless parameters
which in these examples are assumed to be a/h and A\ or Ao which contains
a//Rh (see Appendix A). In the tables the shell is designated by E,/E,
and the material is oriented in such a way that the crack is parallel to
E, axis, The two sets of orthotropic results given in the same table
correspond to a 90-degree material rotation. E]/E2==1 corresponds to the
isotropic shell. These tables show that the influence of the material
orthotropy on the stress intensity factors could be quite significant.

A graphic demonstration of this effect in a cylindrical shell with an
axial crack is shown in Fig. 5(*) It is seen that the membrane component

1
()1, Fig. 5 the shell parameter Aj = [12(1-vjv,) 1% a//Rh is used as a
basis in comparing kyp for different shells. For an accurate comparison
one should have vVjvp =v(isotropic) if A; is used, otherwise one should
use a//Rh as a basis. The difficulty in such comparisons is compounded
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of the stress intensity factor increases with increasing E]/Ez. This
effect is quite definite and, for higher values of El/EZ’ is highly
pronounced in cylindrical shells with an axial crack and in spherical
shells. On the other hand in circumferentially cracked cylindrical shells
the orthotropy effect seems to be rather insignificant. It should be
pointed out that the effect of material orthotropy such as that shown in
Fig. 5 is not confined to shells. For example, similar results are ob-
served in the plane elasticity solution of an orthotropic infinite strip
containing a crack parallel to its boundaries [13]. In this problem if the
stress intensity factor is plotted against a/H (2a and 2H being the crack
length and strip width) with E]/E2 as the parameter, the result would be
identical (in form) to that shown in Fig. 5, that is (in the terminology of
Fig. 5) for E1/E2>'] k1 would be greater and for E]/E2'<1 k] would be
smaller than the stress intensity factor for the corresponding isotropic
plate. It should, of course, be noted that the stress intensity factor is
a measure of the crack driving force in fracture analysis of the structural
component. In comparing two materials (or two material orientations with
respect to the crack plane) one must also consider the fracture resistance
of the material. For example, in fiber reinforced composites having a
crack in E2 plane for E]/E2>-1 not only the stress intensity factor but
also the fracture resistance of the material would be expected to be
greater than the corresponding values for a 90° rotated material (i.e.,
for E]/E2 <1). Hence from the analysis alone it is not possible to infer
the fracture strength of orthotropic plates and shells.

In a mildly orthotropic shell the effect of material orthotropy on
the distribution of the membrane resultant N]](O,xz) outside the crack is
shown in Fig. 6. Near the crack tip the results shown in Fig. 6 are con-
sistent with that of Fig. 5. However, as in Fig. 3, away from the crack
tip the trend showing the effect of E!/E2 on the stress distribution is

also by the fact that v v, Or v enters into the shell analysis
independently as well as tﬁrough A1. However, it has been shown that
the effect of v on k, is rather insigniflcant [4]. Also, for the
three materials used in Fig. 5, namely for (E]_/E )=1, 1.38, 26.67
the coefficient [12(1-vyv, )Y5 of a/v/Rh in A, is 1.82, 1.84, 1.85,
respectively. This means that in Fig. 5 even though the comparison is
not made for shells with identical geometries, the error should not be
very high and particularly the trend should be accurate.
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reversed.

From (36)-(40) it may be seen that not only the stress intensity
factor but also the angular distribution of stresses around the crack
tip is influenced by the material arthotropy. Fig. 7 shows an example
for this effect in a strongly orthotropic material. HNote that in isotropic
materials the functions fij(a), (1,3=1,2) (see (36) and (39)) giving the
angular distribution of stresses under Mode I loading condition are
independent of the elastic constants (and are obtained from (36) and
(39) by letting c=1). In the specially orthotrop1c materials f, j seems
to depend on the stiffness ratio c =(E /E2)

Tables 4-9 show the stress intensity factors for shells under
membrane loading only; i.e., for N]](O,xz) =-Ng > M]](O,x2)==0 . For
orthotropic shells subjected to bending on the crack surfaces (i.e., for
N]](O,x2)==0, M]](O,x2)==-M0), the stress intensity factor ratios kbb and
kmb defined by (47) and (48) do not seem to differ significantly from the
corresponding results for the isotropic shells which are given in [3]-[5].
The results are, therefore, not tabulated in this paper. Some sample
results are, however, shown in Figures 8 and 9 for a cylindrical shell
. containing an axial or a circumferential crack. The results for spherical
shells may be found in [5].

Table 10 shows the principal stress intensity factor ratio kbb for

a plate under bending. In addition to the relative crack size a/h, the
table shows the effect of the Poisson's ratio in isotropic plates and
the stiffness ratio E]/E2 in specially orthotropic plates. Since the
relative influence of the material constants on kbb in plates and shells
is roughly the same, these results may be used with the isotropic shell
results given for a fixed Poisson's ratio (e.g., v=0.3 in most cases) to
estimate the values of the kbb for the isotropic and orthotropic shells.

The effect of material orthotropy on the stress intensity factor
ratios kij’ (i,j=m,b) defined by (43), (44), (47) and (48) on a shell with
principal radii of curvature R] and R2 is shown in Table 11 which also
includes the isotropic results for comparison. Note that the results given
in Table 11 have the same trend as that shown in Fig. 5 with regard to the
variation of the principal stress intensity component kmm for the shell
under membrane loading.
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Appendix A

The dimensionless and normalized quantities used in the analysis

X = x]/a/E, y = xZJEYa » 2= X502 (A.1)
u-= u]VEVa s V= uz/a/E, w=ugfag . (A.2)
B, = 81/, B, = 8/, 4(xay) = Flxq.xp)/Ena’ 5 (A.3)
Oy = o”/Ec » Oy = I c/E, Oy = 915/E 3 (A.4)
Nex = Npa/Enc, N = cNpo/Eh s N = Npo/Eh s | (A.5)
M. = M /Ech®, M. =cM,/En®, M, =M /En®; (A.6)
XX 11 Yy 22 Xy 12

V, = V/hBYE, V= Vy/E/Bh; (A.7)
2= 120 A)ateimiE, g = 12018t Pn?R

a1, = 1200-8)athiRE, At = 2(1-8)af P, ko= et (A.8)
E=VEE,, v= Ay, (%/E = v/E), B = 5E/12(1+) . (A.9)
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Table 1. Stress intensity factor ratios in an isotropic shell with
double curvature under uniform membrane load Nyj =Ngs My =0
(kmm’kbm) or uniform bending moment M]

]:

M.,
o}

(the crack in the R, plane, v=0.3, a/h=10)

11 =05 (kypskpp)

R] a//hR2
R2 0.1 0.25 0.50 0.75 1.0 1.5 _2.0
kmm
0.2 1.040 1.216 1.681 2.246 2.854 4,145 5.556
1/3 1.025 1.141 1.471 1.897 2.378 3.434 4.590
0.5 1.018 1.100 1.349 1.686 2.078 2.969 3.965
2 1.005 1.035 1.130 1.277 1.460 1.917 2.47
3 1.004 1.027 1.101 1.219 1.368 1.740 2.195
5 1.003 1.021 1.078 1.168 1.286 1.577 1.934
kbm -
0.2 0.046 0.134 0.199 0.142 0.038 -0.742 -1.899
1/3 0.034 0.109 0.188 0.181 0.081 -0.392 -1.221
0.5 0.028 0.092 0.174 0.189 0.132 -0.207 -0.843
2 0.015 0.055 0.123 0.163 0.166 0.062 -0.182
3 0.013 0.050 0.112 0.153 0.161 0.084 -0.104
5 0.011 0.045 0.102 0.142 0.153 0.097 -0.044
Kbb
0.2 0.641 0.615 0.555 0.495 0.441 0.356 0.293
1/3 0.643 0.621 0.566 0.508 0.455 0.368 0.305
0.5 0.644 0.624 0.573 0.516 0.463 0.377 0.313
2 0.645 0.630 0.586 0.532 0.480 0.393 0.331
3 0.645 0.630 0.587 0.535 0.482 0.395 0.334
5 0.645 0.631 0.589 0.536 0.484 0.397 0.336
kmb
0.2 0.011 0.033 0.064 0.086 0.100 0.115 0.122
1/3 0.008 0.026 0.054 0.074 0.089 0.104 0.1
0.5 0.006 0.022 0.047 0.066 0.079 0.095 0.102
2 0.003 0.013 0.030 0.044 0.055 0.067 0.073
3 0.003 0.0 0.027 0.040 0.050 0. 061 0.066
5 0.003 0.010 0.024 0.037 0.045 0.054 0.058
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Table 2. Stress intensity factors in a saddle-shaped shell under uniform

membrane loading NH =No, M” =0, (k

mm’kbm)‘ or uniform bending

M” =My N” =0, (kbb’kmb) (the crack in R2 plane, R]/R2=-0.5,
a/h=10, v=0.3)

a//th 0.1 0.25 0.5 0.75 1.0 1.5 2.0
kmm 1.014 1.079 1.261 1.480 1.699 2.098 2.455
kbm -0.015 -0.045 -0.066 -0.039 0.025 0.195 0.335
kbb 0.645 0.633 0.594 0.546 0.498 0.414 0.353
kmb -0.003 -0.011 -0.019 -0.020 -0.016 -0.004 0.006

Table 3. Elastic constants of the orthotropic materials used in the
examples (v-l/E-I =v2/E2, GaV=E/2('I+v), E=»’E]E2, v= t’v-lvz)

Mildly orthotropic
material (titanium)

Strongly orthotropic
material (graphite-epoxy)

E,N/n”(psi)
EZN/mz(psi)
1
V2
6, N/ (psi)
GavN/mz(psi)

1.039 x10' (1.507 x107)
1.438 x10' 1 (2.08 x107)
0.1966
0.2714
4.675 x10'0 (6.78 x10%)
4.930 x10'0 (7.15 x10%)

1.034 x10'9 (1.5 x105)
2.758 x10'! (4 x107)
0.0075

0.2000

2.758 x10'0 (4.0 x109)
2.572 x10'0 (3.73 x10%)
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Table 4. Stress intensity factors in a mildly orthotropic and in an isotropic cylindrical shell containing

an axial through crack and subjected to uniform membrane loading N]] =N0 (v=0.3 for the isdtropic
shell A [12(]-\:2)]"‘ a//Rh, v=»N ]\)2)

a/h 10 5 2 1
EJ/EZ 0.725 1.380 1 0.725 1.380 1 0.725 1.380 1 0.725 1.380 1
J\] kwn
0.0 1.000 1.000 1.000 ] 1.000 1.000 1.000{1.000 1.000 1.000 1 1.000 1.000 1.000
0.5 1.048 1.064 1.057 | 1.048 1.065 1.057 | 1.049 1.066 1.058 [ 1.051 1.069 1.061
1.0 1.171  1.226 1.199 | 1.172 1.228 1.200 { 1.178 1.236 1.208 [ 1.197 1.261 1.233
1.5 1.341 1.442 1.394 | 1.344 1.446 1.398 | 1.362 1.468 1.420
2.0 1.539 1.687 1.618 { 1.545 1.695 1.625 | 1.580 1.738 1.668
3.0 1.976 2.213 2.105 | 1.991 2.230 2.122
4.0 2.430 2.748 2.603 | 2.458 2.780 2.634
5.0 2.887 3.283 3.096 | 2.93¢ 3.338 3.146
6.0 3.347 3.827 3.580
8.0 4.327 4.515
kbm
0.0 0.000 0.000 0.000 | 0.000 0.000 0.000} 0.000 0.000 0.000 ; 0.000 0.000 0.000
0.5 0.041 0.051 0.054 | 0.042 0.052 0.055 | 0.044 0.053 0.057 | 0.046 0.056 0.060
1.0 0.095 0.113 0.120 | 0.095 0.112 0.119 | 0.098 0.113 0.121 | 0.102 0.117 0.124
1.5 0.138 0.158 0.167 | 0.137 0.154 0.164 { 0.137 0.150 0.160
2.0 0.168 0.185 0.194 | 0.164 0.176 0.185 | 0.159 0.165 0.175
3.0 0.186 0.184 0.189 | 0.173 0.159 0.166
4.0 0.154 0.117 0.116 | 0.127 0.073 0.076
5.0 0.076 -0.008 -0.014 | 0.034 -0.073 -0.070
6.0 -0.041 -0.183 -0.187
8.0 -0.388 -0.634
0.0 -—- -~ -1.183




Table 5. Stress intensity factors in a strongly orthotropic and in an isotropic (v =0.3) cylindrical
shell containing an axial crack and subjected to uniform membrane loading Nn==N0

-02—
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a/h 10 5 2 1
E]/E2 0.037 26.67 1 0.037 26.67 1 0.037 26.67 1 0.037 26.67 1
A] kmm
0.0 1.000 1.000 1.000 | 1.000 1.000 1.000 | 1.000 1.000 1.000 | 1.000 1.000 1.000
0.5 1.012 1.238 1.057 | 1.012 1.238 1.057 | 1.012 1.242 1.058 | 1.012 1.253 1.061
1.0 1.043 1.714 1.199 | 1.043 1.717 1.200 | 1.045 1.736 1.208 [ 1.048 1.795 1.233
1.5 1.093 2.244 1.394 | 1.093 2.252 1.398 | 1.047 2.298 1.420
2.0 1.155 2.779 1.618 [ 1.156 2.794 1.625 | 1.164 2.877 1.668
3.0 1.309 3.826 2.105 { 1.313 3.865 2.122
4.0 1.490 4.852 2.603 | 1.498 4.955 2.634
5.0 1.686 -—- 3.096 | 1.699 -— 3.146
6.0 1.891 -— 3.580
8.0 2.311 -—- 4.515
0.0 2.737 -—— 5.422
kbm
0.0 0.000 0.000 0.000 | 0.000 ©0.000 0.000 | 0.000 0.000 0.000{ 0.000 0.000 0.000
0.5 0.008 0.075 0.054 | 0.008 0.075 0.055 | 0.009 0.075 0.057 | 0.010 0.077 0.060
1.0 0.023 0.150 0.120 | 0.023 0.145 0.119 | 0.024 0.139 0.121 | 0.027 0.137 0.124
1.5 0.039 0.186 0.167 | 0.040 0.172 0.164 | 0.042 0.151 0.160
2.0 0.056 0.175 0.194 | 0.056 0.148 0.185 | 0.059 0.105 0.175
3.0 0.089 0.017 0.189 | 0.088 -0.045 0.166
4.0 0.117 -0.287 0.116 | 0.115 -0.395 0.076
5.0 0.141 --- =0.014 | 0.136 --- =0.070
6.0 0.158 -—-  =0.187
8.0 0.169 --- =0.634
0.0 0.148 --- =1.183
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Table 6.

Stress intensity factors in a mildly ofthotropic and in an isotropic cylindrical shell
containing a c1rcumferent1a1 through crack and subJected to uniform membrane loading

Npp =Ngs (v=1/3 for the isotropic shell, A = [12(1-v )]1 a//Rh, v-/v] v,)
a/h 10 5 2 1
E]/EZ 0.725 1.380 1 0.725 1.380 1 0.725 1.380 1 0.725 ].380 1
A2 kmm
0.0 1.000 1.000 1.000{1.000 1.000 1.0001{ 1.000 1.000 1.000 1| 1.000 1.000 1.000
0.5 1.012 1.012 1.012 { 1.012 1.012 1.012 { 1.013 1.013 1.012 | 1.013 1.013 1.013
1.0 1.047  1.047 1.048 | 1.047 1.047 1.048 | 1.049 1.049 1.050 | 1.053 1.053 1.055
1.5 1.100 1.099 1.102 | 1.101 1.160 1.103 { 1.105 1.104 1.108
2.0 1.164 1.164 1.168 |{ 1.166 1.165 1.169 | 1.174 1.173  1.179
3.0 1.308 1.308 1.314 ] 1.312 1.31 1.317
4.0 1.457 1.456 1.462 | 1.462 1.461 1.467
5.0 1.599 1.598 1.604 '
kbm
0.0 0.000 0.000 0.000 | 0.000 0.000 0.000 ) 0.000 O0.000 0.000 | 0.000 O0.000 O0.000
0.5 0.036 0.036 0.041 0.036 0.036 0.041 0.038 0.038 0.043 %} 0.040 0.040 0.044
1.0 0.081 0.082 0.092 0.081 0.081 0.092 0.082 0.082 0.092 { 0.084 0.083 0.093
1.5 0.110 0.1 0.123 | 0.108 0.109 0.119 ] 0.104 0.105 0.114
2.0 0.115 0.117 0.125 |{ 0.110 0.1N 0.119 | 0.100 0.101 0.107
3.0 0.072 0.075 0.0 0.059 0.062 0.057
4.0 -0.009 -0.006 -0.024 |-0.026 -0.024 -0.042
5.0 -0.100 -0.096 -0.126
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Table 7. Stress intensity factors in a strongly orthotropic and in an isotropic (v=1/3) cylindrical

shell containing a circumferential crack and subjected to uniform membrane loading N1 =N, -

a/h 5 2

E,\/E, 0.037 1 .037 26.67 .037 26.67 1 0.037 1
M

0.0 1.000 1. 1.000 | 1.000 1.000 1 1.000 1.000 1.000 | 1.000 1.000

0.5 1.012 1. 1.012 | 1.012 1.011 1. 0.013 0.012 0.012 | 1.013 1.013
1.0 1.046 1. 1.048 | 1.047 1.046 1. 1.049 1.047 1.050 | 1.056 1.055
1.5 1.097 1. 1.102 ) 1.099 1.09% 1. 1.105 1.097 1.108

2.0 1.159 1. 1.168 | 1.162 1.157 1. 1.175 1.161 1.179

3.0 1.302 1. 1.314 | 1.307 1.300 1

4.0 1.450 1. 1.462 | 1.458 1.448 1

5.0 1.593 1. 1.604

0.0 0.000 0.000 { 0.000 0.000 .000 0.000 0.000 | 0.000 0.000

0.5 0.028 0.041 | 0.029 0.028 .030 0.029 0.043 | 0.033 0.044
1.0 0. 066 0.092 | 0.066 0.065 .067 0.065 0.092 | 0.069 0.093 .
1.5 0.090 0.123 | 0.088 0.089 .084 0.087 0.114

2.0 0.096 0.125 | 0.090 0.099 0.080 0.090 0.107

3.0 0.065 0.071 | 0.051 0.067 .

4.0 0.001 .024 {-0.017 0.004 -0.042

5.0 -0.072 -0.126
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Table 8. Stress intensity factors in a mildly orthotropic and in an isotropic (v=1/3) spherical she]l
containing a meridional crack and subjected to uniform membrane loading N]] N
(Az []2(] -V )]'z a/v/Rh, v= n/\).l 2)
a/h 10 5 2 1
E]/E2 0.725 1.380 1 0.725 1.380 1 0.725 1.380 1 0.725 1.380 1
2 mm
0.0 1.000 1.000 1.000} 1.000 1.000 1.000 1} 1.000 1.000 1.000 1} 1.000 1.000 1.000
0.25 1.016 1.021 1.018 | 1.016 1.021 1.018 | 1.016 1.021 1.019{ 1.017 1.022 1.019
0.50 1.060 1.077 1.069 | 1.060 1.077 1.069 | 1.062 1.079 1.071 ) 1.065 1.084 1.076
0.75 1.129 1.164 1.149 | 1.130 1.165 1.150 | 1.135 1.171 1.156 | 1.148 1.187 1.173
1.0 1.220 1.276 1.252 | 1.222 1.279 1.255 ) 1.232 1.291 1.268 | 1.262 1.327 1.305
1.5 1.450 1.555 1.512 | 1.456 1.561 1.519 | 1.486 1.596 1.556
2.0 1.733  1.891 1.828 | 1.744 1.903 1.841 { 1.807 1.976 1.918
2.5 2.056 2.270 2.186 | 2.076 2.291 2.208
3.0 2.415 2.685 2.579 { 2.446 2.718 2.615
3.5 2.806 3.132 3.004 | 2.852 3.183 3.058
4.0 3.226 3.611 3.460 | 3.296 3.687 3.539
bm
0.0 0.000 0.000 0.000 | 0.000 0.000 0.000 | 0.000 0.000 0.000 { O.000 0.000 0.000
0.25 0.025 0.029 0.033 | 0.026 0.030 0.034 { 0.027 0.031 0.035 | 0.029 0.033 0.037
0.50 0.065 0.073 0.084 | 0.066 0.074 0.084 | 0.068 0.075 0.086 { 0.071 0.079 0.090
0.75 0.104 0.115 0.130 { 0.104 0.115 0.130 | 0.106 0.115 0.130 | 0.109 0.118 0.133
1.0 0.135 0.148 0.165 | 0.134 0.145 0.162 { 0.133 0.142 0.158 | 0.134 0.141 0.157
1.5 0.165 0.175 0.187 | 0.158 0.164 0.174 | 0.145 0.146 0.155 :
2.0 0.146 0.145 0.142 | 0.129 0.121 0.117 | 0.099 0.083 0.077
2.5 0.077 0.054 0.031 | 0.047 0.015 -0.010
3.0 -0.044 -0.099 -0.146 {-0.090 -0.158 -0.206
3.5 -0.219 -0.317 -0.390 |-0.283 -0.398 -0.471
4.0 -0.448 -0.602 -0.701 {-0.533 -0.709 -0.807
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Table 9. Stress intensity factors in a strongly orthotropic and in an isotropic (v=1/3) spherical
shell containing a meridional crack and subjected to uniform membrane loading N]] =NO

a/h 10 5 2 1
E]/E2 0.037 26.67 1 0.037 26.67 1 0.037 26.67 1 0.037 26.67 1

A2 kmm
0.0 1.000 1.000 1.000 | 1.000 1.000 1.0001{ 1.000 1.000 1.000 | 1.000 1.000 1.000
0.25 1.006 1.073 1.018 {1.006 1.073 1.018 | 1.006 1.074 1.019 | 1.006 1.075 1.019
0.50 1.024 1.250 1.069 | 1.024 1.251 1.069 ; 1.024 1.255 1.071 | 1.026 1.267 1.076
0.75 1.0517 1.491 1.149 | 1.052 1.493 1.150 { 1.053 1.504 1.156 | 1.059 1.540 1.173
1.0 1.089 1.767 1.252 | 1.090 1.771 1.255}11.095 1.794 1.268 { 1.108 1.863 1.305
1.5 1.190 2.377 1.512 | 1.193 2.387 1.519 | 1.207 2.445 1.556
2.0 1.318 3.030 1.828 | 1.324 3.050 1.841 | 1.354 3.165 1.918
2.5 1.470 3.713 2.186 | 1.480 3.748 2.208
3.0 1.643 4.423 2.579 | 1.658 4.484 2.615
3.5 1.835 5.164 3.004 | 1.857 5.271 3.058
4.0 2.044 5.948 3.460 | 2.075 6.145 3.539

kbm

0.0 0.000 0.000 0.000 | 0.000 0.000 0.000 | 0.000 0.000 0.000 | 0.000 0.000 0.000
0.25 0.012 0.037 0.033 ) 0.012 0.037 0.034{ 0.013 0.038 0.035} 0.014 0.040 0.037
0.50 0.033 0.088 0.084 | 0.033 0.087 0.084 | 0.035 0.087 0.086 | 0.038 0.089 0.090
0.75 0.055 0.133 0.130 | 0.056 0.130 0.130 | 0.058 0.126 0.130 | 0.061 0.125 0.133
1.0 0.076 0.165 0.165 | 0.076 0.158 0.162 | 0.077 0.147 0.158 | 0.079 0.141 0.157
1.5 0.104 0.172 0.187 | 0.101 0.151 0.174 | 0.096 0.114 0.155
2.0 0.111 0.084 0.142 | 0,103 0.041 0.117 | 0.091 -0.035 0.077
2.5 0.099 -0.108 0.031 | 0.085 -0.179 -0.010
3.0 0.069 -0.404 -0.146 | 0.048 -0.510 -0.206
3.5 0.022 -0.804 -0.390 {-0.006 -0.957 -0.471
4.0 -0.041 -1.314 -0.701 |-0.074 -1.538 -0.807




Table 10. The stress intensity factor ratio kbb in isotropic and
specially orthotropic plates under bending (the crack along
the x, axis, v=/\W, E]/E2=1.38; 0.725 for titanium,
E]/E2==26.67, 0.037 for grgphite epoxy)

E]/E2 v a/h=10 a/h=5 a/h=2 a/h=1
1 0 0.598 0.613 0.651 0.702
1 0.1 0.616 0.631 0.669 0.719
1 0.2 0.632 0.647 0.685 0.734
1 0.3 0.644 0.662 0.699 0.747
1 1/3 0.652 0.667 0.704 0.752
1 0.4 0.661 0.675 - 0.712 0.760
1 0.5 0.673 0.688 0.724 0.7
0.725 0.231 0.632 0.651 0.691 0.742
1.38 0.231 0.634 0.650 0.687 0.735
0.037 0.037 0.615 0.635 0.686 0.751
26.67 0.037 0.599 0.611 - 0.639 0.677
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Table 11. Stress intensity factor ratios in én isotropic and in a specially orthotropic shell with‘
principal radii of curvature R] and R2 having a through crack in R2 plane (material: titanium,
R]/R2=l/3, a/h=1/10, for the isotropic shell v=0.3)

- gz-

a//RZh
E]/E2 0.1 0.25 0.50 0.75 1.0 1.5 2.0
0.725 1.022 1.122 1.412 1.795 2.233 3.210 4.294
kmm 1.38 1.029 1.159 1.521 1.981 2.492 3.604 4.824
1.0 1.025 1.141 1.47 1.897 2.378 3.434 4.590
0.725 0.027 0.089 0.165 0.177 0.118 -0.233 -0.893
kbm 1.38 0.032 0.102 0.178 0.175 0.085 -0.367 -1.177
1.0 0.034 0.109 0.188 0.181 0.081 -0.392 -1.221
0.725 0.632 0.613 0.566 0.514 0.464 0.381 0.319
kbb 1.38 0.634 0.614 0.564 0.510 0.459 0.376 0.314
1.0 0.643 0.621 0.566 0.508 0.455 0.368 0.305
0.725 0.006 0.021 0.045 0.064 0.078 0.095 0.103
kmb 1.38 0.007 0.024 0.050 0.07 0.085 0.102 0.109
1.0 0.008 0.026 0.054 0.074 0.089 0.104 0.111




Fig. 1  The geometry and the notation for a cracked shell
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Fig. 2 The'cohparison of the membrane components of the stress intensity
ratio kmm==km/om/5 for a cylindrical shell with a circumferential
or an axial crack and a spherical shell with a meridional crack

all under uniform membrane stress e
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in plates.
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Fig. 4 Influence of the curvature ratio R]/R2 on the membrane component
of the stress intensity factor in isotropic shells; (crack in
R2 plane, a/h=10, v=0.3)
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The influence of material orthotropy on the membrane component
of the stress intensity factor in a cylindrical shell containing
an axial crack; (a/h=10, v=0.3 for the isotropic shell)



Fig. 6

Xp/a

The influence of the material orthotropy on the distribution of
membrane resultant N]](O,xz) outside the crack in a cylindrical
shell containing an axial crack; (a/h=5, N =1.5, v=0.3 for
the isotropic shell)
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Fig. 8 The influence of the material orthotropy on the membrane and

bending components of the stress intensity factor in a cylindrical
shell containing an axial crack and subjected to uniform bending
Mn(o,xz) =-M, on the crack surfaces; (a/h=5, v=0.3 for the
isotropic shell, A= [12(1-\)2))% a/vRn)
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