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SHELL WITH DOUBLE CURVATURE(*) 

by 

F. Delale(**) and F. Erdogan 

ABSTRACT 

In this paper the crack problem of a shallow shell with two nonzero 
curvatures is considered. It is assumed that the crack lies in one of 
the principal planes of curvature and the shell is under Mode I loading 
condition. The material is assumed to be specially orthotropic. After 
giving the general formulation of the problem the asymptotic behavior of 
the stress state around the crack tip is examined. The analysis is based 
on Reissner's transverse shear theory. Thus, as in the bending of cracked 
plates,' the asymptotic results are shown to be consistent with that ob­
tained from the plane elasticity solution of crack problems. Rather 
extensive numerical results are obtained which show the effect of material 
orthotropy on the stress intensity factors in cylindrical and spherical 
shells and in shells with double curvature. Other results include the 
stress intensity factors in isotropic toroidal shells with positive or 
negative curvature ratio, the distribution of the membrane stress resultant 
outside the crack, and the influence of the material orthotropy on the 
angular distribution of the stresses around the crack tip. 

1. Introduction 

The crack problem in shallow shells by using a transverse shear 
theory [1,2] has previously been considered for cylindrical and spherical 
shells only [3-5]. The results given in [3-5] as well as those obtained 
from the classical shell theory (e.g., [6-8]) indicate that due to the 
curvature effects the stress intensity factors in shells may be consider­
ably higher than that in flat plates having the same crack length and the 
same thickness. Also, the results given in [5] and [8] show that, unlike 
the infinite plate problem, the material orthotropy may have a significant 
influence on the stress intensity factors in shells. Therefore, from the 
viewpoint of practical applications it does seem to be important to study 
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the problem for shell geometries other than cylinders and spheres and 
also to consider the effect of material orthotropy. 

In this paper the basic problem of a shallow. toroidal shell with 
two unequal and nonzero curvatures is considered. It is assumed that the 
material is specially orthotropic, the through crack is located in one 
of the principal planes of curvature, and the plane of the crack 'is a 
plane of symmetry with respect to loading as well as to the geometry of 
the shell. To remove the inconsistency in the asymptotic behavior of the 
bending and transverse shear resultants, a transverse shear theory is used 
in the analysis [1,2] (see the discussion given in [3-5] for shells and, 
for example, [9-11] for plates). 

2. The Integral Equations 

The geometry of the shallow shell under consideration is shown in 
Fig. 1. If the material is orthotropic (with Xl and x2 as the axes of 
orthotropy), the engineering material constants are defined through the 
following stress strain relations: 

(1) 

With the four independent material constants the differential operators 
arising from the formulation of the shallow shells do not seem to be 
factorable and consequently, the analysis becomes intractable. However, 
it can be shown that if the elastic constants are related through 

IE.jE2 
G12 = , 

2(1 +"'1 v2} 

then, with a simple coordinate transformation, the orthotropic shell 
equations may be reduced to essentially that of isotropic shells (see, 

( 2) 

for example, [8] and [3-5]). The factorization condition (2} implies that 
the shell has only three independent elastic constants. Such a material 
(in plate or shell form) is said to be specially orthotropic. If we now 
define 
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the stress-strain relations (1) become 

where E and v are the effective modulus and Poisson's ratio, c is the 
stiffness ratio, and from (2) and (3) it follows that in the specially 
orthotropic materials the measured shear modulus G12 is equal to the 
(calculated) effective shear modu1 us Gav • 

Referring to Fig. 1 and the normalized quantities defined in Appendix 
A, and to [3-5] for details, in terms ofa stress function ~ and the (out 
of plane) displacement component w the shell problem may be formulated 
as follows: 

v4 ~ _ ~ v2w = 0 , 
>.. Co A 

(5) 

v4w + A2(1_KV2)V~~ = 0 , (6) 

2 KV ~ - ~ - w = 0 , (7) 

(8) 

where 

( 9) 

(10) 

The shell parameters A1, A2, A12 , and K are defined in Appendix A, 
a and a are the ang1 es of rotation of the normal to the shell surface, x y 
and the curvatures of the shell are defined by 

1 a2z 1 a2z 1 _ a2z 
Rl = - ax2 ' ~ = - ax2 ' R12 - - aX1 aX2 ' 

1 2 

(11 ) 

where Z = Z(x1 ,x2) is the equation of the middle surface of the shell, 
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Xl and x2 being the coordinates in the tangent plane. The normalized 
stress, moment, and transverse shear resultants are given by 

where 
_ ~ + 1-v an _ a1/l 1-v an 

ax - ax K -2- ay' ay - ay - K -2- ax . 

(12) 

(13) 

(14 ) 

(15) 

The system of differential equations (S}-(8) may be solved by 
using the standard Fourier transforms. In this paper it is assumed 
that through a linear superposition the regular part of the solution 
has been separated and the problem is reduced to a perturbation problem 
in which the self-equilibrating crack surface tractions are the only 
nonzero external loads. Because of the assumed symmetry with respect 
to x2x3 plane in loading and shell geometry, the stress and moment 
resultants must satisfy the following symmetry conditions: 

NXY(x,y} = - Nx/ -x,y}, 

V x( x,y} = - Vx( -x ,y}, V y( x,y} = V (-x,y), y 

It is, therefore, sufficient to consider one half of the shell only. 
Thus, in addition to the regularity conditions at infinity, the problem 
must be solved under the following boundary conditions: 
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1 im Nxx{x,y) = Fl (y), Iyl < IC, u{+O,y) = 0, IC < Iyl <co , (8) 
x-M-{) . 

We note that the problem (for the half shell) is one of tenth 
order. By taking Fourier transforms in y it would give ten lIintegration 
constants ll which are functions of the transform variable and are unknown. 
Five of these unknowns must be zero because of the regularity conditions 
at X=co, three may be eliminated by using the homogeneous conditions (17) 
at x=O, and the two mixed boundary conditions (18) and (19) would give 
a pair of integral equations to determine the remaining two. We also 
note that the integral equations of this problem would be identical to 
those obtained in [5] for the spherical shell. In [5], even though 
Rl =~, because of the assumption of special orthotropy, the stiffness 
ratio C=(E1/E2)~ is not unity and consequently >"1 +>"2' which is also the 
case in the problem considered in this paper. Thus, by defining 

a~ u( +O,y) = G1 (y), a~ axe +o,y) = G2(y) , 

. from (18) and (19) it is seen that 

Gj{Y) = 0, Iyl > /C, (j=1,2) 

f
IC 

G . (y ) dy = ° , ( j = 1 ,2) 
-Ie J 

(20) 

(21) 

(22) 

Referring now to [5] for detail s the integral equations of the prob1 em 
may be expressed as 

Iyl < Ie, (23a,b) 

where the kernels kij are known bounded functions and are given in [5]. 
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3., The Stress State Around Crack Tips 

In the system of integral equations the interval (-IiC,1C) may be 
normalized by introducing the following change in variables 

t = t/liC, n = Y / rc, F, = xl rc, G j ( t) = g j (-r ) , ( j = 1 , 2 ) . ( 23) 

The integral equations may thus be expressed as 

-1 <n<l • 

The index of the singular integral equations (24) is +1 and their 
solution is, therefore, of the following form 

hi (or) . 
= , (1=1,2), -l<t<l, 
M 

gi (t) 

(24) 

(25) 

where hl and h2 are bounded functions. The system of integral equations 
(24) subject to the addi~ional single-valuedness conditions (see (22» 

fl gi(t)dt = 0, (i=1,2) 
-1 

may be solved numerically by using the related Gaussian quadrature 
formul as [12]. 

(26) 

After solving the integral equations (24) all the field quantities 
in the shell may be expressed in terms of the density functions gl and 
g2 as finite integrals [5]. In particular, the behavior of the stress 
state around the crack tips may be obtained by examining the corresponding 
integrals asymptotically. Referring to Appendix A, the normalized membrane 
and bending stresses are given by 

m b 12az m b aij = Nij , aij = -h- Mij , aij = aij +aij' (i,j) = (x,y) • (27) 

If we now define the polar coordinates (r,a) at the crack tip (F,=O,n=l) 
by 

F, = r sin a , n -1 = r co SF" (28) 
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the asymptotic stress state at the crack tip may be expressed as 
(see [5] for details) 

- hl (l)+zh2(l) 5 1 5 
r1 = - h- cos 28 

- 4 cos ~) , xx 212r 't c. 

r1yy ;;; - hl (l )+zh2(l) (l cos ~ + l cos 5
2
8) , 

212r 

- hl (l)+zh2(l) 1 . 1 5 
r1 = - (--4 sin 2s +4 sin~), xy 2& c. 

Note that the asymptotic behavior of the in-plane stresses given by 
(29) is identical to that obtained from the plane elasticity solution 
of a symmetric crack problem. The transverse shear resultant given 
by (30) represents Mode III cleavage stress which is nonsingular for 
the symmetric loading under consideration. 

Referring to Fig. 1, in this problem the Mode I stress intensity 
factor at the crack tip x2=a is defined as follows: 

From the definitions given by (23), (28) and Appendix A it can 
be shown tha t 

x 
tans = t; = 1_1_. n:T c x2-a 

(29a-c) 

(30) 

(31 ) 

(32) 

If we define the polar coordinates in the xl x2 plane (at xl=O, x2=a) by 

p sina = Xl' P COSa = x2 -a, (33) 

from (32) it follows that 

tana = c tans. (34) 
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Similarly, by substituting from (23), (28), and Appendix A into (29) 
we obtain 

x icos!_lcos 5a 
=_CEra[h (l)+2h (1)]_1_4 24 T. 
-r 1 a 2 .no ( 2 s,' 2 )~ p cos a + n

2 
a 

C 

Also if we express the (in-plane cleavage) stress all in the close 
neighborhood of the crack tip (x1=0,x2=a) or (p=O) in the following 
standard form 

_ kl (x3) 
all (xp x2,x3) = I2P fll (a) , 

(35) 

(36) 

with fll (0) = 1, from (35) and (36) the f'tbde I stress intensity factor k1 
and the function fll giving the angular distribution of the stress 
component all around the crack tip may be obtained as follows 

(37) 

, a = Arctan(~ tana) . (38) 

Sinrilarly if we let 

(39) 

from (29) we obtain 

lcos ~+lcos 5a 
f (a) = 4 2 4 ~ 
22 (2 sin2a)" ,cos a + 2 

c 

(40) 

4. The Results and Discussion 

The symmetric problem formulated by the system of integral equations 
(23) is solved under two sets of external loads, namely uniform membrane 
loading and uniform bending moment applied to crack surfaces. For the 
membrane loading it is assumed that 
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where am is constant. From (41) and the Appendix A the input functions 
in (23) may be expressed as 

Fl (y) = - arrlcE , F2{y) = 0, -Ie <y < Ie . (42) 

In this problem the corresponding flat plate stress intensity factor is 
kp = amra and from (37) the membrane and bending components of the stress 
intensity factor ratio kl {x3)/amra may be evaluated as follows: 

k CO) 
k = 1 = _ cE h (l) , (43) 

mm a ra 2am 1 
m 

kl (h/2) - kl ( 0) c E h 
kbm = = - 2a 2a h2(1) . 

a ra m m 

For the bending of the shell the external loads are 

-a < x2 < a , 

which give the input functions as follows: 

-le<y<lC, 

where ab is a known constant. For this loading condition the membrane 
and bending components of the stress intensity factor ratio may be 
defined as and evaluated from 

k (0) 
k = 1 = _ cE h( 1) , 

mb abra 2ab 

kl (h/2) - kl (0) cE h 
kbb = = - 2a 2a h2(l) . 

abra b 

(44) 

(45) 

(46) 

(47) 

(48) 

The calculated results for isotropic and specially orthotropic 
shells are shown in Figures 2-9 and Tables 1-11. Fig. 2 shows the com­
parison of the membrane component of the stress intensity factor ratios 
kmm in a cylindrical shell containing a circumferential or an axial crack 
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and a spherical shell containing a meridional crack subjected to uniform 
membrane stress 011 = om • For the same loading and curvature the MJde I 
stress intensity factor appears to be highest in sphere and lowest for 
the circumferential crack. Similar results may be observed from Fig. 3 
which shows an example for the membrane stress resultant Nll (O,x2) for 
x2 >a. After determining Gl and G2 Nll is obtained directly from (23a) 
by observing that (23a) gives the expression of Nxx(O,y) outside (i.e., 
for Iyl > Ie) as well as inside the crack. Fig. 3 also shows the flat 
plate solution. Note that even though near the crack tip the stresses 
in the shells are greater than that in the plate, because of their greater 
rate of decay, away from the crack region the shell stresses fall below 
the stress level in the flat plate. 

The resul ts showi ng the effect of the curvature ratio RllR2 on the 
Mode I stress intensity factor ratios kij , (i,j=m,b) defined by (43), 
(44), (47) and (48) in an isotropic shell are given in Tables 1 and 2. 
Table 1 shows the results for a positive curvature ratio Rl/R2 as, for 
example, in the case of outside surface of pipe elbows and barrel shaped 
toroidal shells. The results of an example for a negative curvature 
ratio Rl/R2 = -0.5 are given in Table 2. Fig. 4 shows the comparison of 
the stress intensity factors obtained from shells with positive and negative 
curvature ratios and from an axially cracked cylinder. Note that, as one 
might expect and consistent with the trends in Fig. 2, the stress intensity 
factor for Rl/R2 > 0 is greater and that for (Rl /R2) < 0 is smaller than the 
value for the cylinder (i.e., for Rl /R2 =0). 

The remaining results given in this paper deal with the specially 
orthotropic shells, that is, the orthotropic shells for which the measured 
in-plane elastic constants of the material approximately satisfy the 
factorization condition given by (2), namely 

- ~ G12 = = Gav . 
2 (1 +1"1 "2) 

(49) 

For example, consider two graphite-epoxy (fiber reinforced) laminates 
consisting of 0°, +45°, 90° unidirectional laminae. Laminate A has 20%, 
30%, and 50% of its laminae, and laminate B 20%, 50%, and 30% of its 
laminae oriented along 0°, +45°, and 90° directions, respectively. If 
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0° direction coincides with E1, the measured elastic constants of the 
two laminates are known to be 

E1(psi} E2(psi} "1 "2 G12(psi} Gav(psi} 

A: 6.9 xl 06 12.3 x 106 0.140 0.250 2.1x10 6 3.88 xl 06 

B: 7.1 x10 6 9 x 106 0.270 0.342 3.05 xl 06 3.06 xl 06 

where Gav is calculated from (49) by using the effective modulus and the 
effective Poisson's ratio. Thus, it is seen that the assumption of special 
orthotropy G12 ; Gav is valid for laminate B but not for laminate A. 
Table 3 shows the elastic constants of two orthotropic materials used in 
the examp1 es. The "mil d1y" orthotropic material is typical of roll ed 
sheet metallic materials. Usually strongly orthotropic structural materials 
are fiber reinforced composites. 

Tables 4-9 show the n~mbrane and bending components of the stress 
intensity factor ratio kmm and kbm defined by (43) and (44) for three 
symmetric crack geometries in cylindrical and spherical shells subjected 
to uniform membrane loading Nll = -No on the crack surfaces (Fig. 1). 
For completeness the results for isotropic cylinders are also given in 
the tables. Note that for these simple crack-shell geometries there are 
three length parameters, namely mean radius R, thickness h, and half crack 
length a. Therefore, the solution must contain two dimensionless parameters 
which in these examples are assumed to be a/h and A1 or A2 which contains 
a/1Rfi (see Appendix A). In the tables the she.11 is designated by E1/E2 
and the material is oriented in such a way that the crack is parallel to 
E2 axi.s, The two sets of orthotropic results given iin the same table 
correspond to a 90-degree material rotation. E1/E2 = 1 corresponds to the 
isotropic shell. These tables show that the influence of the material 
orthotropy on the stress intensity factors could be quite significant. 
A graphic demonstration of this effect in a cylindrical shell with an 
axial crack is shown in Fig. 5(*). It is seen that the membrane component 

(*)In Fig. 5 the shell parameter Ai = [12(1-"lV2)]!t; a/lFii is used as a 
basis in comparing kmm for different shells. For an accurate comparison 
one should have IVl v2 = v(isotropic) if Al is used, otherwise one should 
use a/lRh as a basis. The difficulty in such comparisons is compounded 
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of the stress intensity factor increases with increasing E1/E2• This 
effect is quite definite and, for higher values of E1/E2, is highly 
pronounced in cylindrical shells with an axial crack and in spherical 
shells. On the other hand in circumferentia11y cracked cylindrical shells 
the orthotropy effect seems to be rather insignificant. It should be 
pointed out that the effect of material orthotropy such as that shown in 
Fig. 5 is not confined to shells. For example, similar results are ob­
served in the plane elasticity solution of an orthotropic infinite strip 
containing a crack parallel to its boundaries [13]. In this problem if the 
stress intensity factor is plotted against a/H (2a and 2H being the crack 
length and strip width) with E1/E2 as the parameter, the result would be 
identical (in form) to that shown in Fig. 5, that is (in the terminology of 
Fig. 5) for E1/E2>1 k1 would be greater and for E1/E2<1 k1 would be 
smaller than the stress intensity factor for the corresponding isotropic 
plate. It should, of course, be noted that the stress intensity factor is 
a measure of the crack driving force in fracture analysis of the structural 
component. In comparing two materials (or two material orientations with 
respect to the crack p1 ane) one must a1 so consi der the fracture resistance 
of the material. For example, in fiber reinforced composites having a 
crack in E2 plane for E1/E2> 1 not only the stress intensity factor but 
also the fracture resistance of the material would be expected to be 
greater than the corresponding values for a 90° rotated material (i.e., 
for E1/E2 <1). Hence from the analysis alone it is not possible to infer 
the fracture strength of orthotropic plates and shells. 

In a mildly orthotropic shell the effect of material orthotropy on 
the distribution of the membrane resultant N11 (0,x2) outside the crack is 
shown in Fig. 6. Near the crack tip the results shown in Fig. 6 are con­
sistent with that of Fig. 5. However, as in Fig. 3, away from the crack 
tip the trend showing the effect of E1/E2 on the stress distribution is 

also by the fact that IVlV2 or venters into the shell analysis 
independently as well as tlirough Al. However, it has been shown that 
the effect of v on ~ is rather insignificant [4]. Also, for the 
three materials used in Fig. 5, name..!l. for (El /E2) =1, 1.38, 26.67 
the coefficient [12(1-vlv2)]~ of a/IRh in Al is 1.82, 1.84, 1.85, 
respectively. This means that in Fig. 5 even though the comparison is 
not made for shells with identical geometries, the error should not be 
very high and particularly the trend should be accurate. 
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reversed. 

From (36}-(40) it may be seen that not only the stress intensity 
factor but also the angular distribution of stresses around the crack 
tip is influenced by the material arthotropy. Fig. 7 shows an example 
for this effect in a strongly orthotropic material. Note that in isotropic 
materials the functions fij(a}, (i,j=1.2) (see (36) and (39}) giving the 
angular distribution of stresses under Mode I loading condition are 
independent of the elastic constants (and are obtained from (36) and 
(39) by letting c=l). In the specially orthotropic materials f ij seems 
to depend on the stiffness ratio C=(El /E2}!t;. 

Tables 4-9 show the stress intensity factors for shells under 
membrane loading only; i.e., for N11 (0,x2} = -No' ~1(0,x2} =0. For 
orthotropic shells subjected to bending on the crack surfaces (i.e., for 
Nll (0,x2) = 0, Mll (O,x2) = -Mo)' the stress intensity factor ratios kbb and 
kmb defined by (47) and {48} do not seem to differ significantly from the 
corresponding results for the isotropic shells which are given in [3]-[5]. 
The results are, therefore, not tabulated in this paper. Some sample 
results are, however, shown in Figures 8 and 9 for a cylindrical shell 

. containing an axial or a circumferential crack. The results for spherical 
shells may be found in [5]. 

Table 10 shows the principal stress intensity factor ratio kbb for 
a plate under bending. In addition to the relative crack size a/h, the 
table shows the effect of the Poisson's ratio in isotropic plates and 
the stiffness ratio El/E2 in specially orthotropic plates. Since the 
relative influence of the material constants on kbb in plates and shells 
is roughly the same, these results may be used with the isotropic shell 
results given for a fixed Poisson's ratio (e.g., v=0.3 in most cases) to 
estima~e the values of the kbb for the isotropic and orthotropic shells. 

The effect of material orthotropy on the stress intensity factor 
ratios kij , (i,j=m,b) defined by (43), (44),' {47} and {48} on a shell with 
principal radii of curvature Rl and R2 is shown in Table 11 which also 
includes the isotropic results for comparison. Note that the results given 
in Table 11 have the same trend as that shown in Fig. 5 with regard to the 
variation of the principal stress intensity component kmm for the shell 
under membrane loading. 
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Appendix A 

The dimensionless and normalized quantities used in the analysis 

Nxx = Nll/Ehc, Nyy = cN22/Eh, Nxy = N12/Eh ; 

_ 2 _ 2 2 
Mxx - Mll / Ech , Myy - cM22/ Eh , Mxy = M12/ Eh ; 

Vx = Vl/hBIC, Vy = V2IC/Bh ; 

. Ai = 12(l-v2}a4c2/h2Ri, A~ = 12{1_v2)a4/c2h2R~ , 

42422 
A12 = 12{1-v }a /h R12 , 
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(A.l) 

{A.2} 

{A.3} 

{A.4} 

(A.5) 

{A.6} 

{A.7} 

{A.8} 



Table 1. Stress intensity factor ratios in an isotropic shell with 
double curvatur~ under un~form membrane load Nll = No' ~1 • 0, 
(kmm,kbm) or umfonn bendlng moment ~1 =Mo' Nll =0, (kbb,kmb) 
(the crack in the Rz plane, \I = 0.3, a/h = 10) 

Rl a/thRz 

Rz 0.1 0.25 0.50 0.75 1.0 1.5 2.0 

krrm 

0.2 1.040 1.216 1.681 2.246 2.854 4.145 5.556 
1/3 1.025 1.141 1.471 1.897 2.378 3.434 4.590 
0.5 1.018 1.100 1.349 1.686 2.078 2.969 3.965 
2 1.005 1.035 1.130 1.277 1.460 1.917 2.471 
3 1.004 1.027 1.101 1.219 1.368 1.740 2.195 
5 1.003 1.021 1.078 1.168 1.286 1.577 1.934 

kbm 
0.2 0.046 0.134 0.199 0.142 -0.038 -0.742 -1.899 
1/3 0.034 0.109 0.188 0.181 0.081 -0.392 -1.221 
0.5 0.028 0.092 0.174 0.189 0.132 -0.207 -0.843 
2 0.015 0.055 0.123 0.163 0.166 0.062 -0.182 
3 0.013 0.050 0.112 0.153 0.161 0.084 -0.104 
5 0.011 0.045 0.102 0.142 0.153 0.097 -0.044 

kbb 

0.2 0.641 0.615 0.555 0.495 0.441 0.356 0.293 
1/3 0.643 0.621 0.566 0.508 0.455 0.368 0.305 
0.5 0.644 0.624 0.573 0.516 0.463 0.377 0.313 
2 0.645 0.630 0.586 0.532 0.480 0.393 0.331 
3 0.645 0.630 0.587 0.535 0.482 0.395 0.334 
5 0.645 0.631 0.589 0.536 0.484 0.397 0.336 

kmb 

0.2 0.011 0.033 0.064 0.086 0.100 0.115 0.122 
1/3 0.008 0.026 0.054 0.074 0.089 0.104 0.111 
0.5 0.006 0.022 0.047 0.066 0.079 0.095 0.102 
2 0.003 0.013 0.030 0.044 0.055 0.067 0.073 
3 0.003 0.011 0.027 0.040 0.050 0.061 0.066 
5 0.003 0.010 0.024 0.037 0.045 0.054 0.058 

-17-



Table 2. Stress intensity factors in a saddle-shaped shell under uniform 

membrane loading Nll = No' Mll = 0, (kmm,k bm)· or uniform bending 

~l =~, Nll =0, (kbb,kmb ) (the crack in Rz plane, R1/Rz=-0.5, 
al h = 1 0, ,,= 0.3) 

all~h 0.1 0.25 0.5 0.75 1.0 1.5 2.0 

kmm 1.014 1.079 1.261 1.480 1.699 2.098 2.455 

kbm -0.015 -0.045 -0.066 -0.039 0.025 0.195 0.335 

kbb 0.645 0.633 0.594 0.546 0.498 0.414 0.353 

kmb -0.003 -0.011 -0.019 -0.020 -0.016 -0.004 0.006 

Table 3. Elastic constants of the orthotropic materials used in the 

exampl es ("1 IEl = "2/E2' Gav = E/2(l +,,), E = IEl E2, ,,= Ivl "2) 

El N/m2( psi) 

E2N/m2(psi) 

"1 

"2 
G12N/m2(psi) 

GavN/m2( psi) 

Mildly orthotropic 
material (titanium) 

1. 039 x lOll (1. 507 x 107) 

1.434 xl011 (2.08 xl07) 

0.1966 

0.2714 

4.675xl010 (6.78 x t06) 

4. 930 x 1010 (7. 15 x 1 06) 

-18-

Strongly orthotropic 
material (graphite-epoxy) 

1. 034 x 1010 (1. 5 x 1 06) 

2.758 xl 011 (4 xl 07 ) 

0.0075 

0.2000 

2.758 xl010 (4.0 xl06) 

2.572 x1010 (3.73 xl06) 
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Table 4. Stress intensity factors in a mildly orthotropic and in an isotropic cylindrical shell containing 
an axial through crack and subjected to uniform membrane loading Nll = No (v = 0.3 for the isotropic 
shell Al = [l2(l-}}]!t; a/lRh, v = {vl v2) 

a/h 10 5 2 1 

EJIE2. _ 0.725 1.380 1 0.725 1.380 1 0.725 1.380 1 0.725 1.380 1 
. - - -- _ ... - --- - --

~ k 
---_. 

0.0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
0.5 1.048 1.064 1.057 1.048 1.065 1.057 1.049 1.066 1.058 1 .051 1. 069 -- 1. 061 
1.0 1 .171 1.226 1.199 1.172 1.228 1.200 1.178 1.236 1.208 1.197 1.261 1.233 
1.5 1.341 1.442 1.394 1.344 1.446 1.398 1.362 1.468 1.420 
2.0 1.539 1.687 1.618 1.545 1.695 1.625 1.580 1.738 1.668 
3.0 1.976 2.213 2.105 1.991 2.230 2.122 
4.0 2.430 2.748 2.603 2.458 2.780 2.634 
5.0 2.887 3.283 3.096 2.934 3.338 3.146 
6.0 3.347 3.827 3.580 
8.0 4.327 .. - - - A.5].5.. - ----

kbm 
- -

0.0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
0.5 0.041 0.051 0.054 0.042 0.052 0.055 0.044 0.053 0.057 0.046 0.056 0.060 
1.0 0.095 0.113 0.120 0.095 0.112 0.119 0.098 0.113 0.121 0.102 0.117 0.124 
1.5 0.138 0.158 0.167 0.137 0.154 0.164 0.137 0.150 0.160 
2.0 0.168 0.185 0.194 0.164 0.176 0.185 0.159 0.165 0.175 
3.0 0.186 0.184 0.189 0.173 0.159 0.166 
4.0 0.154 0.117 0.116 0.127 0.073 0.076 
5.0 0.076 -0.008 -0.014 0.034 -0.073 -0.070 
6.0 -0.041 -0.183 -0.187 
8.0 -0.388 -0.634 
0.0 --- --- -1 .183 -----
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Table 5. Stress intensity factors in a strong1y.orthotropic and in an isotropic (v = 0.3) cylindrical 
shell containing an axial crack and subjected to uniform membrane loading N11 = No . 

a/h 10 5 2 1 

E1/E2 0.037 26.67 1 0.037 26.67 1 0.037 26.67 1 0.037 26.67 

A1 knvn 

0.0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
0.5 1.012 1.238 1. 057 1.012 1.238 1.057 1.012 1.242 1.058 1.012 1.253 
1.0 1.043 1.714 1.199 1.043 1.717 1.200 1.045 1.736 1.208 1.048 1.795 
1.5 1.093 2.244 1.394 1.093 2.252 1.398 1.047 2.298 1.420 

, 

2.0 1.155 2.779 1.618 1.156 2.794 1.625 1.164 2.877 1.668 
3.0 1.309 3.826 2.105 1.313 3.865 2.122 
4.0 1.490 4.852 2.603 1.498 4.955 2.634 
5.0 1.686 3.096 1.699 3.146 
6.0 1.891 3.580 
8.0 2.311 4.515 
0.0 2.737 5.422 

- ---- ----

kbm 

0.0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
0.5 0.008 0.075 0.054 0.008 0.075 0.055 0.009 0.075 0.057 0.010 0.077 
1.0 0.023 0.150 0.120 0.023 0.145 0.119 0.024 0.139 0.121 0.027 0.137 
1.5 0.039 0.186 0.167 0.040 0.172 0.164 0.042 0.153 0.160 
2.0 0.0.56 0.175 0.194 0.056 0.148 0.185 0.059 0.105 0.175 
3.0 0.089 0.017 0.189 0.088 -0.045 0.166 
4.0 0.117 -0.287 0.116 0.115 -0.395 0.076 
5.0 0.141 --- -0.014 0.136 --- -0.070 
6.0 0.158 --- -0.187 
8.0 0.169 --- -0.634 

1 0.0 0.148 --- -1.183 
- ---

1 

1.000 
1.061 
1.233 

0.000 
0.060 
0.124 
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Table 6. Stress intensity factors in a mildly orthotropic and in an isotropic cylindrical shell 
containing a circumferential through crack and subjected to uniform membrane loading 
Nll =No' {v =1/3 for the isotropic shell, A2 = [l2{1-v2}]~ a/lRh, v= IVlv2} 

a/h 10 5 2 1 
-
El/E2 0.725 1.380 1 0.725 1.380 1 0.725 1.380 1 0.725 1.380 

A2 knvn 

0.0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
0.5 1.012 1.012 1.012 1.012 1.012 1.012 1.013 1.013 1.012 1.013 1.013 
1.0 .1.047 1.047 1.048 1.047 1.047 1.048 1.049 1.049 1.050 1.053 1.053 
1.5 1.100 1.099 1.102 1.101 1.100 1.103 1.105 1.104 1.108 
2.0 1.164 1.164 1.168 1.166 1.165 1.169 1.174 1.173 1.179 
3.0 1.308 1.308 1.314 1.312 1 .311 1.317 
4.0 1.457 1.456 1.462 1.462 1.461 1.467 
5.0 1.599 1.598 1.604 

- --- - --------------- ~----------~--. -----

kbm 
0.0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
0.5 0.036 0.036 0.041 0.036 0.036 0.041 0.038 0.038 0.043 0.040 0.040 
1.0 0.081 0.082 0.092 0.081 0.081 0.092 0.082 0.082 0.092 0.084 0.083 
1.5 0.110 0.111 0.123 0.108 0.109 0.119 0.104 0.105 0.114 
2.0 0.115 0.117 0.125 0.110 0.111 0.119 0.100 0.101 0.107 
3.0 0.072 0.075 0.071 0.059 0.062 0.057 
4.0 -0.009 -0.006 -0.024 -0.026 -0.024 -0.042 
5.0 -0.100 -0.096 -0.126 -- -- -- --------

1 
-----

1.000 
1.013 
1.055 

0.000 
0.044 
0.093 
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Table 7. Stress intensity factors in a strongly orthotropic and in an isotropic (v=1/3) cylindrical 
shell containing a circumferential crack and subjected to uniform membrane loading Nll = No . 

a/h 10 5 2 1 

E1/E2 0.037 26.67 1 0.037 26.67 1 0.037 26.67 1 0.037 26.67 

>'1 kl1iJ1 

0.0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
0.5 1.012 1.011 1.012 1.012 1 .011 1.012 0.013 0.012 0.012 1.013 1.012 
1.0 1.046 1.046 1.048 1.047 1.046 1.048 1.049 1.047 1.050 1.056 1.048 
1.5 1.097 1.095 1.102 1.099 1.096 1.103 1.105 1.097 1.108 
2.0 1.159 1.157 1.168 1.162 1.157 1.169 1.175 1.161 1 .179 
3.0 1.302 1.299 1.314 1.307 1.300 1.317 
4.0 1.450 1.446 1.462 1.458 1.448 1.467 
5.0 1.593 1.588 1.604 

kbm 

0.0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
0.5 0.028 0.028 0.041 0.029 0.028 0.041 0.030 0.029 0.043 0.033 0.030 
1.0 0.066 0.065 0.092 0.066 0.065 0.092 0.067 0.065 0.092 0.069 0.066 
1.5 0.090 0.091 0.123 0.088 0.089 0.119 0.084 0.087 0.114 
2.0 0.096 0.101 0.125 0.090 0.099 0.119 0.080 0.090 0.107 
3.0 0.065 0.077 0.071 0.051 0.067 0.057 
4.0 0.001 0.019 -0.024 -0.017 0.004 -0.042 
5.0 -0.072 -0.050 -0.126 

1 

1.000 
1.013 
1.055 

0.000 
0.044 
0.093 
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Table 8. Stress intensity factors in a mildly orthotropic and in an isotropic (v = 1/3) spherical shell 

contai ni ng a meri diana 1 crack and sUbJected to uni form membrane 1 oadi ng N11 = N 
2 1 a 

(A2 = [12(1-'.1 )]" a/ 1Rh, '.1= 1'.11 v2) 

a/h 10 5 2 1 

E1lE2 0.725 1.380 1 0.725 1.380 1 0.725 1.380 1 0.725 1.380 1 
--------- ----- --- .-~ - -

A2 kmm 
0.0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
0.25 1.016 1.021 1.018 1.016 1.021 1.018 1.016 1.021 1.019 1.017 1.022 1.019 
0.50 1.060 1.077 1.069 1.060 1.077 1.069 . 1.062 1.079 1.071 1.065 1.084 1.076 
0.75 1.129 1.164 1.149 1.130 1.165 1.150 1 .135 1.171 1.156 1.148 1.187 1.173 
1.0 1.220 1.276 1.252 1.222 1.279 1.255 1 .232 1.291 1.268 1.262 1.327 1.305 
1.5 1.450 1.555 1.512 1.456 1.561 1.519 1.486 1.596 1.556 
2.0 1.733 1.891 1.828 1.744 1.903 1.841 1 .807 1.976 1 .918 
2.5 2.056 2.270 2.186 2.076 2.291 2.208 
3.0 2.415 2.685 2.579 2.446 2.718 2.615 
3.5 2.806 3.132 3.004 2.852 3.183 3.058 
4.0 3.226 3.611 3.460 3.296 3.687 3.539 

- ----- -- -------~----

kbm 

0.0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
0.25 0.025 0.029 0.033 0.026 0.030 0.034 0.027 0.031 0.035 0.029 0.033 0.037 
0.50 0.065 0.073 0.084 0.066 0.074 0.084 0.068 0.075 0.086 0.071 0.079 0.090 
0.75 0.104 0.115 0.130 0.104 0.115 0.130 0.106 0.115 0.130 0.109 0.118 0.133 
1.0 0.135 0.148 0.165 0.134 0.145 0.162 0.133 0.142 0.158 0.134 0.141 0.157 
1.5 0.165 0.175 0.187 0.158 0.164 0.174 0.145 0.146 0.155 
2.0 0.146 0.145 0.142 0.129 0.121 0.117 0.099 0.083 0.077 
2.5 0.077 0.054 0.031 0.047 0.015 -0.010 
3.0 -0.044 -0.099 -0.146 -0.090 -0.158 -0.206 
3.5 -0.219 -0.317 -0.390 -0.283 -0.398 -0.471 
4.0 -0.448 -0.602 -0.701 -0.533 -0.709 -0.807 

~-- --
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Table 9. Stress intensity factors in a strongly orthotropic and in an isotropic (v = 1/3) spherical 

shell containing a meridional crack and subjected to uniform membrane loading Nll = No • 

a/h 10 5 2 1 

El/E2 0.037 26.67 1 0.037 26.67 1 0.037 26.67 1 0.037 26.67 

>'2 krrm 

0.0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
0.25 1.006 1.073 1.018 1.006 1.073 1.018 1.006 1.074 1.019 1.006 1.075 
0.50 1.024 1.250 1.069 1.024 1.251 1.069 1.024 1.255 1.071 1.026 1.267 
0.75 1.051 1.491 1.149 1.052 1.493 1.150 1.053 1.504 1.156 1.059 1.540 
1.0 1.089 1.767 1.252 1.090 1.771 1.255 1.095 1.794 1.268 1.108 1.863 
1.5 1.190 2.377 1.512 1.193 2.387 1.519 1.207 2.445 1.556 
2.0 1.318 3.030 1.828 1.324 3.050 1.841 1.354 3.165 1.918 
2.5 1.470 3.713 2.186 1.480 3.748 2.208 
3.0 1.643 4.423 2.579 1.658 4.484 2.615 
3.5 1.835 5.164 3.004 1.857 5.·271 3.058 
4.0 2.044 5.948 3.460 2.075 6.145 3.539 

kbm 

0.0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
0.25 0.012 0.037 0.033 0.012 0.037 0.034 0.013 0.038 0.035 0.014 0.040 
0.50 0.033 0.088 0.084 0.033 0.087 0.084 0.035 0.087 0.086 0.038 0.089 
0.75 0.055 0.133 0.130 0.056 0.130 0.130 0.058 0.126 0.130 0.061 0.125 
1.0 0.076 0.165 0.165 0.076 0.158 0.162 0.077 0.147 0.158 0.079 0.141 
1.5 0.104 0.172 0.187 0.101 0.151 0.174 0.096 0.114 0.155 
2.0 0.111 0.084 0.142 0.103 0.041 0.117 0.091 -0.035 0.077 
2.5 0.099 -0.108 0.031 0.085 -0.179 -0.010 
3.0 0.069 -0.404 -0.146 0.048 -0.510 -0.206 
3.5 0.022 -0.804 -0.390 -0.006 -0.957 -0.471 
4.0 -0.041 -1.314 -0.701 -0.074 -1.538 -0.807 

1 

1.000 
1.019 
1.076 
1.173 
1.305 

0.000 
0.037 
0.090 
0.133 
0.157 



Table 10. The stress intensity factor ratio kbb in isotropic and 
specially orthotropic plates under bending (the crack along 

the x2 axi s, ,,= 1"1 "1 ' El/E2 = 1. 38, 0.725 for ti tani urn, 
El/E2 = 26.67, 0.037 for gr~phite epoxy) 

El/E2 \I a/h = 10 a/h = 5 a/h = 2 a/h = 1 

1 0 0.598 0.613 0.651 0.702 
1 0.1 0.616 0.631 0.669 0.719 
1 0.2 0.632 0.647 0.685 0.734 
1 0.3 0.644 0.662 0.699 0.747 
1 1/3 0.652 0.667 0.704 0.752 
1 0.4 0.661 0.675 0.712 0.760 
1 0.5 0.673 0.688 0.724 0.771 

0.725 0.231 0.632 0.651 0.691 0.742 
1.38 0.231 0.634 0.650 0.687 0.735 
'0.037 0.037 0.615 0.635 0.686 0.751 
26.67 0.037 0.599 0.611 0.639 0.677 
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Table 11. Stress intensity factor ratios in an isotropic and in a specially orthotropic shell with 
principal radii of curvature Rl and R2 having a through crack in A2 plane (material: titanium, 
Rl /R2 =1/3, a/h=1/l0, for the isotropic shell ,,=0.3) 

a/IR2h 

El/E2 0.1 0.25 0.50 0.75 1.0 1.5 2.0 

0.725 1.022 1.122 1.412 1.795 2.233 3.210 4.294 
kmm 1.38 1.029 1.159 1.521 1.981 2.492 3.604 4.824 

1.0 1.025 1.141 1.471 1.897 2.378 3.434 4.590 

0.725 0.027 0.089 0.165 0.177 0.118 -0.233 -0.893 
kbm 1.38 0.032 0.102 0.178 0.175 0.085 -0.367 -1.177 

1.0 0.034 0.109 0.188 0.181 0.081 -0.392 -1 .221 

0.725 0.632 0.613 0.566 0.514 0.464 0.381 0.319 

kbb 1. 38 0.634 0.614 0.564 0.510 0.459 0.376 0.314 
1.0 0.643 0.621 0.566 0.508 0.455 0.368 0.305 

0.725 0.006 0.021 0.045 0.064 0.078 0.095 0.103 

kmb 1.38 0.007 0.024 0.050 0.071 0.085 0.102 0.109 

1.0 0.008 0.026 0.054 0.074 0.089 0.104 0.111 
-
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Fig. 1 The geometry and the notation for a cracked shell 
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Fig. 2 The comparison of the membrane components of the stress intensity 
ratio klTlTJ = knl0mra for a cylindrical shell with a circumferential 
or an axial crack and a spherical shell with a meridional crack 
all under uniform membrane stress om. 
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Fig. 3 Distribution of the membrane resultant Nll outside the crack in 
isotropic spherical and cylindrical shells and flat plates 
v=O.3, a/h=5, A= [12(l-i}]~ a/IRh=1.5 in shells and A=O 
in plates. 
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Fig. 4 Influence of the curvature ratio Rl/~ on the membrane component 
of the stress intensity factor in isotropic shells; (crack in 
~ plane, a/h=lO, v=0.3) 
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Fi g. 5 The inf1 uence of material orthotropy on the membrane component 

of the stress intensity factor in a cylindrical shell containing 

an axial crack; (a/h = 10, v = 0.3 for the isotropic shell) 
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Fi g. 6 The infl uence of the materi al orthotropy on the di stri bution of 

membrane resultant Nl1 (0,x2) outside the crack in a cylindrical 

shell containing an axial crack; (a/h=5, >"1 =1.5, ,,=0.3 for 

the isotropic shell) 
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Fig. 7 The influence of the material orthotropy on the angular distribu­
tion fll(a) of the stress component all for Mode I loading 
condition (the crack lies along the x2 axis) 
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Fig. 8 The influence of the material orthotropy on the membrane and 
bending components of the stress intensity factor in a cylindrical 
shell containing an axial crack and subjected to uniform bending 
~l (0,x2) = -Mo on the crack surfaces; (a/h = 5, v = 0.3 for the 
isotropic shell, A = [12(1-})]!t; a//Rh) 
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Fig. 9 Same as Fig. 8 for a cylindrical shell with a circumferential 
crack; (a/h = 5~ \I = 1/3 for the isotropic shell) 
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