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Executive Sunnary

iv

k

This study involved the analysis of two very different types of data —

simulated Thematic Mapper MSS data and dual-polarized X-Band Synthetic Aperture

Radar (SAR) data. The first phase of the research examined the impact of the

improved spatial and spectral characteristics of the Landsat-D Thematic Mapper

data on computer-aided analysis for forest cover type mapping. The second part

of the investigation examined, both qualitatively and gLantitatively, the value

of the SAR data for differentiating forest and other cover types, and assessed

the utility of pattern recognition techniques for analyzing SAR data.

The study site was located in Kershaw County, South Carolina, and

contained a variety of forest and other cover types, including pine, mixed

hardwood, tupelo, recently clearcut areas (coming back into mixed hardwood),

pasture, cropland, exposed soil, and water. Excellent quality, cloud-free TMS

(Thematic Mapper Simulator) data and color infrared photography were obtained

by NASA on May 2, 1979 and again on August 29, 1980 from 20,000 feet altitude,

thereby providing TMS data having a nominal spatial resolution of 15 meters.

The data were spatially degraded to produce data sets having 15 x 15 m

30 x 30,,m (to simulate Thematic Mapper data), 45 x 45 m, and 60 x 75 m (to

simulate Landsat data) spatial resolutions.

The first phase of the analysis examined the relationships between spatial

resolution and classification performance. This was followed by a sizable

effort directed at examining the relationships between the numbers of wave-

length bands used in classifications and the resulting classification

performance, as well as the importance of different wavelength bands or

portions of the spectrum on classification performance. The significance of 	
g ,

different methods for developing training statistics and the use of different ii
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classification algorithms were also investigated. A method for economically

developing a statistically reliable test data set was also defined during this

portion of the study. The final phase of the work with the TMS data involved

an evaluation of Principal Components Transformations as an alternative to
z

feature selection for reducing the dimensionality of the data.

The X-band SAR data were obtained by NASA on June 30, 1980 from an

altitude of 60,000 feet. The images were digitized at J.S.C. and the two

polarizations were digitally registered at LARS to produce a digital data set 	 s

suitable for quantitative analysis. Initially, a detailed qualitative study 	 #^

evaluated the characteristics of the data and the potential for identifying

various cover types on the dual-polarized (HH and HV) images. The final phase

of the research involved a quantitative analysis of the SAR data which included

computer classifications using both per-point (Gaussian Maximum Likelihood) and

contextual (Per-Field and SECHO) classifiers.

The results of the various classifications of both the TMS and the SAR

data are summarized in numerous tables and figures throughout the report. Four

appendices contain 118 tables showing the classification performance results

and the statistical evaluations of these results. The three major objectives

of this research, as well as the several minor objectives pursued, are defined

in Section II. In addition to the discussions and summarization of the

results and their significance that are contained in the body of the report,

Section VI contains a ccanplete summary of the results and some recommendations.

Results of this research that are of particular significance include the

followings
^F

tix

1. Use of h gbgr spatial resolution data resulted in lower overall
classification accuracies when the classifications were conducted
with the standard per-paint Gaussian Maximum Likelihood classifier
(i.e, 30 meter simulated Thematic Mapper data had lower overall
classification performances than 80 meter simulated Landsat data)



a

vi

2. Differences in spatial resolution caused much greater differences
in classification performance among forest cover types than among
agricultural cover types. (i.e., Per-point classifiers produced
similar classification performances in agricultural cover types for
the simulated Thematic Mapper and Landsat spatial resolution data
sets, whereas for forest cover types the classification performance
of the TMS data was much poorer than for the Landsat data. This was
due primarily to the increased spectral variability of the forest	 }'
cover types in the TMS data as compared to the Landsat data.)

3. Four wavelength bands provided the best combination.of good overall
classification performance and minimum computer time, although
slightly higher overall classification performances were obtained by
using all TMS wavebands available.

4. Overall classification performances of 85-95%, based on test data,
were obtained for both the 1979 and 1980 TMS data sets when four or
more wavebands were utilized in conjuilction with the SECHO
classifier.

5. Higher classification performances were achieved.for the TMS data
using a contextual classifier (SECHO) rather than Per-Point
classifiers (L-2 Minimum Distance or Gaussian Maximum Likelihood). 	 x

6. Principal components transformation of the TMS data did not result in
higher classification performance when using the SECHO classifier.

7. Deciduous and coniferous forest cover types can be easily differenti-
ated on the HH polarized SAR imagery, but not on the HV imagery.

8. Pine stands and pastures cannot be effectively differentiated on
either the HH or HV SAR imagery, in spite of the distinct differences
in physical characteristics of these two cover types.

9. Significant improvements in overall classification performance of the
SAR data were achieved using contextual classifiers (Per-Field and
SECHO) as compared to the GML per-point classifier.

i
10. Since only one wavelength (X-Band), represented by two channels (HH;

and HV polarizations) of SAR data were available for analysis,
overall classification performances ofonly about 65% were obtained
witYi the SAR data. It is believed that additional wavelengths of SAR
data would enable significantly higher classification performances to
be achieved.

11. SAR data to be used for computer analysis in future projects (e.g.,
multi-frequency, ,multi-polarization) should be obtained through an
all-digital pros m sing system in order to minimize between-channel

..	 spatial distortions in the final data seta
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Tremei.dous progress has been made over the past few years in demonstrating

the potentials and limitations for utilizing Landsat MSS data and computer-

aided analysis techniques for identifying and mapping various earth surface

features, including major forest cover groups (deciduous and coniferous) and,,

in some cases,, individual forest cover types. The Thematic Mapper scanner

system,, launched on Landsat-D in July 1982, has increased Qpectral and spatial

resolution, as well as an increase J.n the number of channels, which should

theoretically allow better and more accurate classification of ground features.

Past experience with aircraft, Landsat, and Skylab MSS data indicates that the

spectral characteristics (both location and width of the wavelength bands on

the Landsat -D Thematic Mapper system should allow more accurate identification

of forest cover types to be achieved using computer-aided analysis techniques

(Coggeshall and Hoffer, 1973; Hoffer and Staff, 1975; Hoffer et al., 1975).

The impact of the improved spatial resolution is not obvious, due to the

int^-,,l-action between the textural characteristics of some types of forest cover

(e.g. large-crowned mature deciduous trees) and the spectral response of

individual high resolution pixels (Kan and Ball, 1974; Sadowski and Sarno,

1,976). This investA gation was therefore directed at examining the impact of

the improved spectral and spatial characteristics of the Landsat-D Thematic

Mapper data on computer-aided analysis for forest cover type mapping.

A second major phase of this investigation involved X-band Synthetic

Aperture Radar (SAR) data. Radar systems have several unique advantages over

optical systems. Such advantages include the capability to penetrate clouds,,

to be operated day or night, and to obtain imagery in which the tone and

texture characteristics are related to the dielectric constant and physiognomic,
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properties of the cover types present. The side-look angle of radar systems

also produces characteristics in the data that are not found in data from

multspectral scanner systems. Because of the different and perhaps unique

characteristics of radar data, the question was raised as to whether X-band

radar systems could provide more effective data for differentiating forest

cover types and density differences than can be obtained using MSS data from

the optical portion of the spectrum. Earlier work in the mid-1960's with

K-band imagery showed that some vegetative cover types could be differentiated

and that differences were sometimes apparent . in dual-polarized data (Morain and

Simonett, 1966, 1967). However, these early studies did not involve X-band

data and did not indicate which polarization*provided the best capability for

discriminating among forest cover types. Further, none of the earlier work had

involved the utilization of computer-aided analysis techniques. Therefore, in

addition to the question concerning the value of radar data for differentiating

forest cover types and density differences, this investigation also was

directed at evaluating the potential for using "standard" computer classifica-

tion techniques, previously developed for multispectral scanner data, for

analyzing dual-polarized X-band radar data.

t
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II. OHJDGTIVES

This research involved three primary objectives:

1. To determine the impact of the spatial resolution characteristics

of the Thematic Mapper MSS data on classification of forest cover

types using computer-aided analysis techniques.

2. To determir^ the impact of the improved spectral characteristics

of the Thematic Mapper MSS data, as compared to Landsat I-III

data, on the capability to accurately and efficiently classify

forest cover types using computer-aided analysis techniques.

3. To evaluate the utility of dual-polarized, X-band synthetic aperture

radar data for identifying and mapping various forest cover types,

and for determining differences in density and condition of the

forest cover.

Each of these major objectives included several sub-objectives which can

be defined as follows;

la. To compare classification performance of 30 meter (simulated Thematic
Mapper) data to 80 meter (simulated Landsat) data, using a per-point
classifier.

lb. To compare classification performances, based on a per-point classi-
fier, using data of four different spatial resolutions (15 m, 30 m,
45 m, and 80 m)

lc. To evaluate the ithpact of spatial resolution on spectral variability
of different cover types, with special emphasis on both forest and
agricultural cover types.

ld. To evaluate the effectiveness of a contextual classifier (i.e.,
SDCHO) , as compared to per-point classifiers (L-2 Minimum Distance
and Gaussian Maximum Likelihood), for classifying data of relatively
high spatial resolution such as the 30 m data to be obtained by the
Thematic Mapper.

2a. To define the minimum number of wavelength bands needed to achieve

f,	 an acceptable classification result. 	 3
'	 r

2b. To evaluate the importance of the different portions of the spectrum
for accurately classifying the various forest, agricultural, and
other cover types.

i
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2c To determine whether different sub-sets of wavelength bands are
needed to classify different cover types, or if a single combination
of wavelength bands is adequate for all cover types.

2d. To evaluatethe impact of different methods of developing trainingpa
statistics on the classification results (both overall and for
individual cover types).

2e. To determine the impact of principal components transformations on ri
overall and individual cover type classification performances.

2f. To determine the minimum number of principal component channels
required to achieve satisfactory classification results.

2g. To evaluate the impact of different classification algorithms, using
30 meter simulated Thematic Mapper data, for both transformed and
untransformed data sets.

3a. To qualitatively evaluate -the potential for differentiating forest
n

and other cover types using dual-polarized X-band SAR data.

3b. To evaluate, qualitatively and quantitatively, the relationship
between radar look angle and magnitude of the radar return.

3c. To quantitatively determineB the potential for classifying forest and
other cover types using dual-polarized X-band SAR data and a
Gaussian Maximum Likelihood classification algorithm.

3d. To evaluate the impact of degrading the spatial resolution of SAR
data on classification accuracy.

3e. To determine the effectiveness of contextual classifiers (i.e., Per-
Field and SDCHO), as compared to a per-point classifier (Gaussian
Maximum Likelihood) for classifying SAR data.

3f. To compare the effectiveness of dual-polarized X-band SAR data to
that of ZMS data for purposes of classifying forest and other cover
types.

i
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The study site is located in Kershaw County in central South Carolina,

situated on the escarpment between the Piedmont platteau and the coastal plain.

The geographical location of the study site and the orientation of the flight

lines used are shown in Figure 3.1.	 The area changes from a distinctly
E

dissected region having moderate topographic variability in the north to a

!	 river bottom area of gently sloping terrain in the south along the Wateree
a

River.	 The soils of the northern area are acid clays of low permeability.

E	

These grade into 	 oanny sediments in the river bottom area to the south.	 The

more upland soils of the south are characterized by higher sand fractions. 	 The

geomorphological diversity of the area results in a wide variety of vegetation

cover classes, and there is also a considerable variability in spectral

characteristics associated with each cover class. 	 These complexities make the
7

area a prime choice for testing various remote sensing techniques. 	 The area
3

was selected by the U.S. Forest Service as one of two primary sites in the U.S.

to be used in testing various remote sensing techniques having potential use in

forest inventory operations.

The southeastern portion of the study area. has flat to very gently rolling

topography which provides a minimum of environmental variability, with the

result that single cover classes occupy large contiguous areas. 	 The exception

is water tupelo which requires a narrow range of water fluctuation levels and

therefore occupies rather restricted areas. 	 The major cover classes of the w

southern area are bare soil, pasture, crops, pine, pine-hardwood mix, hardwood

(both old age and second growth), water tupelo, clearcut areas, marsh
P

E
vegetation and water. 	 The bare soil areas are generally associated with

F agricultural activities or are areas of recent clearcuts.	 Areas in crops are

a
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associated with a wide variety of ground cover conditions, ranging from

primarily bare soil to closed crop canopies, depending on the amount of time

since planting. :Similarly, the clearcut areas vary in ground cover condition

depending on the length of the period since cutting. Areas of saturated soil

and standing water in some of the clearcuts increase the diversity of spectral

characteristics associated with that information class. A considerable

diversity in age classes exists for the pine stands and also for the

pine-hardwood mix, with consequent variations in canopy closures. The pine

stands are generally planted slash or loblolly pine. The hardwood (other than

the stands of tupelo) consist of mixtures of several species including

sweetgum, black willow, and sycamore. The water class is primarily contained

in the Wateree River, although there are also some spectrally distinct ponds

associated with a gravel mining operation in the southern portion of the test

site.

The northern area, being heavily dissected and having somewhat steeper

terrain, contains cover classes which generally do not occupy large contiguous

x	 areas. The major cover classes are bare soil, crops, pasture;, pine,

pine-hardwood mix, hardwood, clearcut, water, and urban. The pine areas vary

in crown closure more in the north than in the southeastern region. The

hardwoods are generally restricted to relatively narrow gully bottoms. Areas

in crop and pasture are generally very small due to the size of'areas suitable

for agricultural practices. Most of the surface area in water is in the

Wateree Reservoir, therefore providing a ratio of the frequencies of boundary-

to-nonh!,A;ndary pixels very different from that in the south.



A. Data Collection

1. TMS Data ^y

r_

The 1979 MSS data used in this study were collected by the NASA NS-001

Thematic Mapper Simulator (TMS) on May 2, 1979 as part of NASA Flight Mission

399. Table 4.1 shows the wavelength bands of the TMS scanner and the

corresponding Landsat-D Thematic Mapper bands. The TMS data were obtained in

mid-morning under cloud-free conditions from an average height above ground of

19,500 feet (5,944 meters). At this altitude, the 2.5 milliradian IFOV of the

NS-001 scanner provided a 15.3 meter ground resolution element at nadir.

Unfortunately, the 2.08-2,.35 um band (Channel 7) was inoperable at the time of

the flight mission, but all other instrumentation was functioning normally.

Color and color infrared photographs of excellent quality were taken at the

same time the scanner data were obtained. The photographs and documented
h

observations of ground conditions from visits to the study area provided the

reference data for the study, as discussed later.

In 1980, NASA attempted to obtain a near-simultaneous set of TMS and

Synthetic Aperture Radar (SAR) data to be used in the analysis of a combined

data set and also to provide a second set of TMS data for evaluating the-

repeatability and reliability of the results obtained with the 1979 data. NASA
r

Flight Mission No. 425 was flown on July 2 and 3 by the NC-130 aircraft to

obtain NS-001 TMS data. However., significant levels of cloud cover in key

portions of the flight lines caused the TMS data obtained to be of marginal

value. Consequently, on August 29 1980 NASA Flight Mission No. 430 was flown,

and resulted in a usable set of TMS scaruler data, and color and color infrared

photography. The data were obtained between 10:00 and 11:00 A.M. from an

l
3
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altitude of 21,000 feet (MSL) over the Camden test site. The data obtained

from this mission was essentially cloud free in the southern portion of Flight

Line 1 (south of Camden) but there were varying degrees of cloud cover in the

northern portion of Flight Line 1 and over Flight Line 2. As a result,

analysis of the 1980 TKS data was concentrated on the area in Flight Lire 1

south of Camden. All 8 channels of the NS-001 scanner functioned properly

during the August 29 mission. Flight lines were flown from north to south,

which simplified same of the subsequent data handling activities.

3
2.	 Reference Data

!#	 ^

r! On-site examinations of the study area were conducted three times
i

throughout the :,:udy.	 The first set of reference data were obtained from May

10-15 F 1979 in support of the ZMS data obtained on May 2, 1979. 	 ASC.S u

photography was obtained and used for this initial site visit. 	 The

characteristics of the cover type were docum rated at 84 locations throughout

the test site and these locations were .voted on the ASCS photos and USGS maps.

` Detailed information concerning ground conditions at the various locations ;	 3
3

visited throughout the study site are contained in the first quarterly progress

report (June 1, 1979 - August 31, 1979), LARS Contract Report 083179.

In addition to the 1:40,000 scale color and color infrared photography

obtained by NASA at the time of the NC:-130 flight missions, larger scale

photography (1;12,000 and some 70 mm 1:6,000 and 1:2,000 color transparencies)

were obtained from the USDAIA Rocky Mountain Forest and Range Experiment Station ti

courtesy of Mr. Robert Aldrich.	 These U.S. Forest Service photos were obtained
ct !r

in 1977 over selected portions of the study site and offered some information

} concerning the characteristics of the forest cover in the study area.

f L



A second site visit was conducted from July 1-3, 1980, in conjunction with

the radar mission on June 30 and the unsuccessful TMS data collection Effort of

July 2 and 3. The third visit to the test site was conducted from July 19-22,

1981, for the purpose of evaluating results of the TMS classifications and the

t	
radar imagery analysis. For this last site visit, a number of areas had been

defined Oiring the course of the analysis, and these were examined on the 	 {

ground to verify the cover type characteristics. Both the second and third

field trips included observation flights in a Cessna over the study area.

These "birds-eye" views of the study area were particularly useful, in that

some parts of the site were nearly inaccessible on the ground, and the aerial 	 j

vantage provided an effective method for quickly comparing several test site

locations in the data. These site visits also provided an opportunity for F„i

personnel working with the data to become reasonably familiar with the test

site and the characteristics of the cover'}ypes in the study area. Such site

tTi :MO'G nrca ahcnl i*nl y nnnnccarar in f-hi c i-crr-n nF	 n4: trennnnlro^



12

B. Iota &VWI'txt

1. Reformatting

The 1979 5MS data had been flown from south to north so part of the

reformatting process involved reversing both flight lines and individual scan

lines so that they could be displayed with north. at the top , of the image and

without a mirror image effect in the individual scan lines. Appropriate

ancillary data was also inserted into the header information for the data tapes

at the time of the reformatting.

2 Geometric Adjustment

The variation in viewing angle (i.e., ±50o from nadir) inherent in

aircraft scanner dataresults in.gecmetri:c distortions in the data which hamper

determination of in-place location and area estimates. The objectives of the

geometric adjustment were to 1) produce a data set which, corresponded

geometrically to the USES maps of the area and the aerial photography, in order

to facilitate the location and identification of training and test fields and

2) to provide a data set which would allow accurate area estimates to be

obtained from pixel summaries.

The criteria used in evaluating the quality of the geometric; adjustment

procedures were 1) whethr% the scale was consistent in each dimension

*.,, q

everywhere in the data set and 2) equivalency of scale between the two

dimensions (i.e., whether a fixed distance on the ground could De accurately

determined by a defined number of columns or lines of scanner data).

Note that the scale could be consistent in each dimension, but could still
f

be very much in error in terms of actual ground dimensions involved. For
s;

instance, the original scanner data had a considerable distortion in

equivalency of scale due to over-scanning. As a result, when each scan line 	
r

„j

{z,
y
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was displayed individually, dimensions along the flight line at nadir were

approximately twice what they were across the flight line.

The instantaneous field of view (IEUV) of the scanner, the average height

above ground of the aircraft, and the change in scan angle corresponding to the

analog signal sampling interval were employed to model the geometry that

resulted from the variable viewing angle of the scanner optics. 	 This provided

a means for adjusting the across track distortions in the original scanner

data.	 A program was written to adjust for the geometric distortions along each

scan line, and 14 pairs of control points we-re   established at random in the

data set to evaluate the effectiveness of the geometric adjustment program.

Both the consistency of scale in each dimension and the equivalency of scale

between dimensions (i.e., along track and across track) were evaluated by

superimposing the control points (which were located on a 1:62,500 USGS map)

onto the geometrically adjusted imagery using a Bausch and Lamb Zoom Transfer

Scope.	 The coincidence of all control points between the map and the scanner

data indicated that the geometric adjustment had been successful. 	 The details

of the geometric adjustment procedure are given in the second quarterly

progress report (Sq-t tember 1, 1979 	 P^ venber 30, 1979) , LARS Contract Report

120379, and in Latty (1981).

3.	 Radiametric Adjustment

Chanqes in viewing angle of the scanner relative to the angle of incident

E
radiant energy can provide a major source of variance in the spectral response

w' values recorded.	 Examination  of the 1979 scanner data indicated that there

appeared to be distinct changes in response levels along individual scan lines,
p

even though cover types did not change.	 These changes in reflectance

associated with changes in viewing angle were confirmed by plotting average

'. al
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reflectance values by column over data blocks containing the same cover type,

on a channel by channel basks. These plots showed that even though the cover

type was the same and there were no significant topographic effects in this

portion of the study area, the average reflectance values were considerably

different as a function of column in the data set (see Figure 4.1). These

differences were therefore ascribed to scanner look angle/illumination angle

effects. Software was then developed to radiometrically adjust the data in

order to remove or reduce the variance in reflectance caused by changes in

viewing angle which were extraneous to differences in cover types.

For the 1979 data, four areas in the data set which appeared to have no

across tracks stratification of cover type were identified, and a program was

developed which computed the average reflectance by column for each channel

over all of the scan lines in the designated areas. A regression analysis was

then run for each channel using- first, second and third degree polynomials.

Evaluation of these results indicated that a third degree polynomial- would

provide an adequate: fit to the data. Predicted reflectance values were then

computed for each column, ar- for each channel. The predicted reflectance at

nadir was divided by the predicted reflectance of each column, for each

channel, and the actual MSS response values were multiplied by this quotient

and these radianetrically adjusted data values were written onto another tape.

The second quarterly progress report contains a more detailed discussion of the

radianetric adjustment procedure, as well as a discussion concerning the

theoretical considerations involved in such radiometric adjustment procedures.

The method used to adjust the 1980 data set was somewhat different than

that used for the 1979 data. In 1979, homogeneous blocks covering the full

width of the scanner data which appeared to have no across-track stratification

of cover type were identified. However, data blocks which fully net this
1.

,,I
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6
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t

criterion could not be defined in the 1980 data seta Therefore a method was

devised which consisted of looking at homogeneous blocks of a single cover type

which were located at regular intervals across the flight line. A set of

columns, each of which was 20 pixels wide, was marked across the flight lime

and homogeneous blocks of old growth hardwood were located within each column

group (see Figure 4.2). Figure 4.3 shows the coincident spectral plots of the

old growth hardwood in the different column groups for each wavelength band,

prior to radiometric adjustment. This figure clearly shows that the variation

in spectral response as a function of look angle is much more important in the

near infrared than the visible portion of the spectrum, and of relatively

little importance in the middle or thermal infrared wavelengths. It also shows

some irregular shifts in radiometric response in certain columns, probably

caused by differences in the characteristics of the stands involved.

The .*.egression analysis was conducted using the same software that had

been developed for the 1979 data set, and the data were adjusted using the 	
j

empirically derived quotients. In evaluating the effectiveness of this radio-

metric adjustment procedure on the 1980 data, it was determined from the

regression analysis that as one moved across the flight line, the X-variable

(location across flight line) was not significant at an alpha level of 0.05.

This result indicated that the radiometric adjustment had been successful in

removing the effect of changes in view angle. Figure 4.4 shows an example of

the unadjusted 1980 MSS data and Figure 4.5 shows the same area after it had

been radiometrically adjusted. Details of the analysis of the 1980 radiometric

adjustment procedure were contained in the eighth Quarterly Progress Report

(March 1, 1981 - May 31 1981) 1, LARS Contract Report 053181.

4. Spatial Resolution Degradation
4

c	 Due to the 2.5 milliradian IEW of the NS-001 m 1tispectral scanner and	 #

the average flying height of approximately 20,000 feet (or 6,560 meters) above

Li
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ground, the original data had a nominal spatial resolution at nadir of

approximately 15 meters. Neighboring pixels of the 1979 data were averaged

together to provide data sets of approximately 30 x 30 meters (corresponding to

the proposed Thematic Mapper), 45 x 45 meters, and 60 x 75 meters (correspond-

ing to the current Landsat data). (The 60 by 75 meter data set is subsequently

referred to as "80 meter" data, implying a resolution approximating that of the

Landsat MSS.) The averaging was unweighted due to an insufficient number of

pixels to provide a continuous function required to sipulate the point spread

function of each of the respective spatial resolutions. A separate tape file

was constructed for each resolution from each flight line segment. Figures

4.6a, b, c, and d are illustrations of small portions of the greyscale imagery

in Channel 5 for each spatial resolution. These figures are rather dramatic

examples of the significance of spatial resolution on the charact" istics of

the data used to study and map earth surface features.

1
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C. Evzluation Qf Utial Resolution on Classification Performance

1. Development of Training Statistics

This phase of the research was conducted using the 1979 data. Training

statistics were developed using a supervised clustering approach. Two 512 x

512 blocks of the 15 meter spatial resolution data were displayed on the

OOMTAL Vision One/20, using data from channels 3, 4, and 5 (0.63-0.69 um,

0.73-0.90 )im, and 1.00-1.30 um, respectively). Areas representing each of the

eleven cover classes referred to in the test site description were identified

using the digital imagery and the 1:40,000 color infrared aerial photographs,

and the line-column coordinates were recorded. FORTRAN programs were written

to convert the line--column coordinates of the 15-meter spatial resolution

CCHTAL image into the 15, 30 1, 45, and 80 meter spatial resolution coordinates

of the MIST (Multispectral Image Storage Tape). A total of 224 training fields

were defined fs?r the analysis. Table 4.2 shows the number of training fields

identified in each cover class and the average number of pixels per training

field for each of the spatial resolutions.

The reduction in sample sizes for the coarser resolutions was regarded as

a natural consequence associated with coarser resolution data and, therefore,

no effort was made to compensate this effect by providing a proportionately

greater number of training fields for the coarser resolutions. The relatively

low number of pixels employed with the coarser spatial resolution data for

developing training statistics using the supervised training field technique

may have resulted in lower classification accuracies than would have been

achieved using other training techniques that had previously been shown to be

well suited for Landsat resolution data.1 However, using different techniques
i

VFleming (1977) examined several training techniques and found an
unsupervised clustering approach "multicluster blocks") particularly well
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Table 4.2. The Number of Training Fields Defined for each
Cover Class and the Average Number of Pixels per
Training Field for Each Spatial Resolution
(1979 TMS Data).

i

Spatial Resolution
i

Cover
Clam rZ^i^uLg

No. of
Fields

i5	 30	 45
Meter	 Meter	 Meter

80
Mp... ssa

Soil 35 223.0	 55.6	 25 11.0
Past ra 75.7	 19.4	 8.0 3.8
Crop 34, 168.6	 42.5	 18.4 8.9
Pine 16 204.4	 50.3	 23.1 9.8

Pihd 4 318.2	 78.5	 35.7 15.2

Hdwd 17 926.2	 235.1	 104.8 46.6

Sghd 16 557.7	 140.1	 60.9 28.8

Tope 17 82.0	 20.6	 9.1 4.1
Ccut 22 772	 194.4	 85.9 40.7

Mveg 2 596	 147.0	 65.0 28.0

Watr 10 182.7	 42.8	 20.3 11.1

Total ' 224 ' 303.6	 76.3	 33.7 15.5

k,
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to develop the training statistics would have added another variable to the

classification accuracy caq)arisons, which was not desirable.

The fields were grouped by cover class and each cover class group was

clustered separately for each resolution.2/ The cluster analysis resulted in a

total of thirty-three spectral classes representing the eleven cover classes.

Table 4.3 shows the spectral classes defined and the lumber of pixels clustered

into each spectral class, for the data of each spatial resolution. Pooling and

deleting of cluster, classes was avoided where possible to avoid introducing

different analyst effects in the spectral classes associated with the data of

each spatial resolution. One spectral cuss of water for the 45 meter data had

to be deleted from the training statistics due to an insufficient number of

pixels to compute the covariances. The pair-wise separabilities of the

spectral classes were examined across cover class, within each resolution.

Based on the class separabilities, the spectral classes were considered

appropriate for classification purposes.

-- - -

suited for developing training statistics in using Landsat data. In this
approach the analyst locates several blocks in the data. Each block contains a
multiple of cover classes and cover class conditions. The blocks are selected
with the intention of representing all of the cover classes, and the variation
of their conditions, contained in the area to be classified. The blocks are
then clustered independently, or in groups, depending on the size of the blocks
and the dimension restrictions associated with the clustering program. The
analyst then identifies the cover class corresponding to each cluster class.
Employing such a "multicluster blocks" technique with high resolution aircraft
data was expected to result in pixels from different cover classes being
clustered into common cluster classes due to spectral similarities among areas
within the different cover classes. A pilot clustering of blocks of data
containing several cover classes confirmed this expectation.

The convergence parameter was set to 98.5 percent, which means the
percent of pixels which are not reassigned in the last iteration of ;pixel
assignment to the nearest (Euclidean distance) mean is not less than 98.5
(Phillips, 1973).

3

g
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Table 4.3.	 E Number o	 ?ixels in each Spectral Class of each Cover
Class, by Spatial Resolution.

Cluster Spatial Resolution

Class 15 Meter	 30 deter 45 Meter 80 Meter

Tupe 1 511	 139 72 27

Tupe 2 452	 104 36 20

Tupe 3 403	 99 45 21

Mveg 1 658	 158 68 29

Mveg 2 534	 136 62 27

Crop 1 598	 130 58 28

Crop 2 2887	 746 312 152

Crop 3 1003	 266 127 65

Crop 4 1227	 299 126 54

Past 1 432	 112 37 18

Past 2 572	 164 70 61

Past 3 1154	 296 127 21
e	 i

Past 4 1233	 303 137 68

Past 5 419	 104 36 23

Soil 1 765	 375 184 83

Soil 2 1919,	 909 428 187

Soil 3 1366 	 662 259 114

Pihd 1 246	 72 28 16
Pihd 2 1015	 242 115 45 i
Hdvd 1 1159	 1319 693 335

Rdwd 2 1846'	 1701 656 268

Hdvd 3 1043	 955 418 189

Ccut 1 771	 714 335 157

Ccut 2 1480	 1294 582 285 1'	 41

Ccut 3 1414	 1445 634 280

Ccut 4

Sghd 1

666	 732

1597	 909

324

428

132

203

Sghd 2 1979'	 817 324 139

Sghd 3 757	 396 187 93

Pine 1 1244	 356 156 85

Pine 2 1946	 429 205 72

Watr 1 925	 215 *
11

Watr 2- 164	 39 121 53

*Spectral class was deleted due to an insufficient number of observations
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2. Development of Test Data Set (1979 TMS Data; Spatial Resolution Study)

A set of test areas were defined independent of the areas used for

training the classifier. Such a test data set provides an estimate of the

classification accuracies expected to be achieved with data of each spatial 	 '

resolution examined. Since the accuracy estimates were obtained in areas

selected independently from the training areas, the classification accuracy

estimates would apply to all pixels of the area classified which satisfy the

test pixel selection criteria, A method was developed which provided the test

pixels for all four spatial resolutions simultaneously, and which provided a

test pixel :election technique which avoided excessive analyst bias. 	 9

The method employed a line-column grid which was overlaid on the MSS data

using the CJOMI'AL image display (see Figs. 4.7 and 4.8). The use of such a grid

constituted a systematic sample based on line-column coordinates, with sampling 	 j

intervals of approximately 180 meters in the across-track dimensioni and 	 1

approximately 450 meters in the along-track dimension. Since the variables

being sampled (i.e., cover class and the assigned label) would not vary

systematically with respect to the MSS line-column coordinate relative to the

sampling interval, the estimates for the mean and variance provided by such a

systematic sample could be considered to be unbiased (see Cochran, 1963;

especially pages 206-230). The grid was constructed such that candidate pixels

located by the grid were mapped precisely between the different spatial

resolutions. This provided a means of developing test points for all spatial

resolutions simultaneously and avoided any identifications of test pixels in
F

P'

	 one resolution from involving more than one pixel in a lower. resolution. This

was achieved using the smallest grid spacing which was integer divisible by the

number of originate data pixels averaged to compute the data values for each 	 -

resolution (i.e., in the across-track dimension the number of pixels averaged

t-
n
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Figure 4.7. A OOMTAL Vision/One image of a portion of the flight line,
overlaid with the camputer-defined grid used to locate and
evaluate test f ieldt:.
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Figure 4.8. A magnification of a portion of the same image shown in
Figure 4.7. Magnification to this scale was used for most
of the interpretation and identification of test fields.



together were 2, 3, and 4; therefore, the smallest number for which each

resolution provides an integer quotient is 12). In the along -track dimension

the number of pixels averaged together were 2, 3, and 5, resulting in 30 being

the smallest value with an integer quotient. The grid spacing was therefore 12 	 ^.

columns by 30 lines. A FORTRAN program (GRID.FM) was modified to generate the

grid for display on the OOM'CAL. The areas specified by the grid and associated
's

with each resolution (the "candidate test pixels") were identified using 	 !

channels 3, 4, and 5 of the 15 meter spatial resolution data and the 1:40,000

color infrared aerial photographs. Only those candidate test pixels which

contained a single cover class, and which the analyst could locate and identify'

with a high level of confidence, were recorded as suitable test pixels. The
a

test pixels were then mapped into the 14IST coordinates of each resolution.

The grid spacing used provided 1428 possible test pixels for each flight

line. In the context of the anticipated frequency at which candidate test

pixels would fail the inclusion criteria, this candidate test pixel sample size

was considered sufficient to provide sensitive tests for classification

accuracy comparisons. A total of 523 test pixels were found to be acceptable.

3. Results of Spatial Resolution Evaluation
f

The first results to be discussed are based upon the training data rather

than the test data set. The reasons for this are that classification accuracy

estimates based on training field pixels provides a "first look" at expected

classification performance. High classification accuracies of the training

field pixels indicates that the spectral classes are generally:

1) statistically separable,

2) represent no more than one coven class, and

3) correspond to "natural" regions of concentration, in the
measurement space, associated with the spectral characteristics
of each of the cover classes in the training fields. 	 r

LA
a
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The classification results for the training data set are summarized in

Table 4.4 by cover class group and for each of the spatial resolutions. All

seven channels of data were used in these classifications. In order to.

evaluate the significance of possible differences in classification performance

as a function of spatial resolution, a technique had to be defined which would

adequately take into account the fact that there are different numbers of

pixels involved for each of the four spatial resolutions for each of the

different cover types. This was accomplished through the use of the harmonic

mean, which is a weighted average, where the weight is proportional to the

inverse of the relative magnitude of each element included in the average. The

harmonic mean is, therefore, a mean value of lower magnitude than the

arithmetic mean. in every case where the elements are not equal (the harmonic

mean equals the arithmetic mean where the elements are equal). The harmonic

mean is regarded as more appropriate than the arithmetic mean for estimating a

common variance among factor levels (e.g., each resolution) sampled at

different intensities, since the lowest sampling intensity has the greatest

weight in determining the mean.

The harmonic mean is computed by:

M
HM _ n4/r^

1 nr

y

[ where:

HK = harmonic mean

m = the number of elements included in the mean.

nr the number of pixels sampled in computing the

t	 proportion correctly classified using the r(th)

spatial resolution.

F

t

H
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Table 4.4. Statistical Evaluation of Classification Performances by
Cover Class for each Spatial Resolution (Training Field
Pixels, Per-Point GM Classifier, 7 Wavebands of TMS Data).

Spatial Resolution
e

Cover 15 30 45 80 Harmonic
Class Meter MetQr Meter - Meter __AQs_

Tupe 96.3a 98.9a 100.0a 100.0a 182.49

Mveg 94.7a 97.6a 99.2a 100.0a 150.64

Crop 94.8a 97.1a 98.1a 97.3a 771.28

Past 93.2a 95.6a 96.6a 97.4a 503.43'

Soil 94.9a 95.7a 96.7a 96.6a 1019.80

Pihd 83.7a 89.8b 91.6b 95.1b 146.22	 ,!

Hda.d 82.5a 88.5b 91.2 93.3d 2092.56

Ccut 79.3a 87.0b 89.7° 92.4a 2297.24

Sghd 72.9a 85.1b 91.3c 96.3a 1183.66

Pine 72.1a 81.1b 82.0 95.5c 420.12

Watr 79.1ab 74.8a 7.9.3ab 82.9b 232.17

Dissimilar superscripts within each particular cover class denotes a
significant difference at the a = 0.10 level of confidence based on
the Newman-Keuls' range test conducted on the aresin transformed
proportions. The proportions are the relative rates of omission in
classification.
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In Table 4.4, as indicated,.dissimilar superscripts within each particular

cover class denote a significant difference between the various spatial

resolutions at the a = 0.10 confidence level.

The POC (Percent Correct Classification) levels achieved with data of each

spatial resolution were not statistically different for water tupelo, marsh

vegetation, crop, pasture, of bare soil. The PCC levels achieved with data of

the different resolutions were statistically different for old age hardwood,

second growth hardwood, clearcut, and in some cases, for pine and pine-hardwood

mix.

The irregular classification accuracies associated with the water cover

class are believed to be due to the inclusion of the inundated surface mining

areas as water. These areas are borrow pits wiich contain ridges of spoil, and

the older spoil surfaces are covered with vegetation. The pixels corresponding

to these areas are consequently composite measurements of the spatially

weighted irradiances associated with each of the ground cover materials

actually present. Thus, varying levels of "contamination" of the spectral

characteristics of water with those of another cover class, is believed to be

I ,,, a

the factor responsible for the low classification accuracies achieved for

water. The fact that nearly all of the misclassified water pixels were 	 i
k
t

classified as a spectral class representing clearcut areas of inundated soil	 {

with standing vegetation tends to confirm the above scenario. It is of 	 }
F	 ^

interest, however, that classifications conducted with 80 meter spatial

resolution data appear to be more robust in the context of these levels of

contamination.

The greatest changes in PCC with, respect to spatial resolution occur with

the forest cover classes. The differences in PCC among all spatial resolutions

were found to be significant at the a = 0.10 confidence level for the old age



cation accuracy for these forest cover classes increases with decreasing

spatial resolution. While the pine-hardwood mix cover class ranged from 83,.7

to 95.9 percent correct classification with 15 meter and 80 meter spatial

resolution data, respectively, these differences were not found to be

significant at the a = 0.10 level of confidence. The low change in PCC with

respect to resolution for water tupelo as compared to that associated with

other forest cover classes is probably due to the very distinct spectral acid
S

spatial characteristics of the water tupelo.

The results shown in Table 4.4 are perhaps more easily seen in Figure 4.9,

which shows a response surface for each of the individual cover classes for

each of the four resolutions tested. As shown by this response surface, for

most of the forest cover types, classification performance tends to increase

rather dramatically with a decreased or larger spatial resolution. On the

other hand, mixed crop, pasture, mixed vegetation, soil, and tupelo have very

high classification performances at all four spatial resolutions. (In

considering the high classification performances shown here, one must keep in

mind that these results are for the training data only.) These results

indicate that agricultural cover types may not be significantly impacted by the

higher spatial resolution of Thematic Mapper data, but the classification

performance achieved for forest cover types using per-point classification

algorithms may be significantly (and adversely) affected by the higher spatial

resolution of Thematic Mapper type data.

Figure 4.10 illustrates the overall classification accuracies achieved

with the per-point GML classifier using data of each of the four spatial

resolutions. The differences between the overall classification accuracies.

h red .th 441 ;,4-- f	 t 1	 1 tCL ieV wi	 e	 o each spa .a reso u ion were found to Nz: significant
f

F

-	 a
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Figure 4.10. Overall Percent Correct Classification of Training Field Pixels
by Spatial Resolution (Per-Point ClL Classifier)
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sw..
at the a = 0.10 confidence level.I/ This ficuure represents one of the kev

results of this project in that it clearl̂i. 4shows that overall percent correct

classification (PCG) tends to decrease with improved spatial resolution. That

is, as the size of the area oia the ground corresponding to a single pixel

increases, overall classification accuracy is expected to increase.

Further evaluation of the data for the different spatial resolutions

indicated that the spectral variability from among adjacent pixels was much

higher with the higher spatial resolution data sets. Such variation in

spectral response level is clearly shown in Figure 4.11, which *depicts the

variation in spectral response for a single scan line in each of the spatial

resolution data sets.	 These graphs provide some insight as to why the

classification performance at the 15 .meter spatial resolution was sometimes

much poorer than at the Landsat spatial resolution. At the 15 meter spatial
	

2

resolution, pixels for a given cover type tend to have so much spectral.

variability that many pixels could be spectrally similar to a completely

different ever type. However, at the Landsat spatial resolution, the texture

in the data tends to be averaged out within a particular pixel and the

reflectance for that pixel.is a representation of the overall spectral response

within the pixel, area. This overall or averaged spectral response is often

sufficiently different for different cover types that pattern recognition

algorithms can be used to effectively differentiate between the cover types

involved. For example, the spectral response of Landsat resolution pixels of

hardwood is sufficiently different from pine to allow effective
I	 differentiation, whereas at the 15 m spatial resolution, some pixels within the

-- - - - -

I/This test for significant differences between, levels of percent correct
classification used the Newman-Keuls' range test employing the aresin transfor
mation of the percent of correctly classified pixels.
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hardwood area may actually fall partially on a shadow area between two tree

crowns, possibly resulting in a spectral response similar to that of

illuminated Aire crowns. In such a case, this pixel within the hardwood forest

area probably would be misclassified as pine. Thus, due to the greater

spectral variability found among the individual pixels in the higher resolution

data, many pixels are misclassified, particularly in the areas of forest cover
a

(where spectral variability is higher than in the agricultural cover types).

The effect of spatial resolution on overallpa	 performance and on classifica-

tion of the various cover types was next evaluated using the test data set.

Again, all seven wavebands were used for the classification.

The overall POC based on test pixels achieved using the "per-point" CkM

classifier with data of each spatial resolution are illustrated in Figure 4.12. 	 l

The differences between the POC levels achieved with data of each spatial

resolution were not found to be significant at the a = 0.10 level' of conf
9

Bence. The magnitude of the differences between classification accuraciF

achieved for training pixels and test pixels is much larger than the magnitude.

€

	

	 of the differences between PCC levels achieved for data of each spatial

resolution. This would indicate that the degree to which the training classes

represent the entire area to be classified is a more important determinant of 	 E

classification accuracy than is the resolution of the data with which the

classifications are conducted. However, the training field pixels are

considered to provide a more sensitive estimate of the comparative PCC levels

achieved due to either spatial resolution of the data or the classifier

employed, since the factors affecting the outcome are more nearly rc^itricted to

the "resolution" factor, or the "classifier" factor, than when test pixels are

used to conduct the comparison.

Ll
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Table 4.5 provides a summary of the statistical evaluation of the	 7

differences between data of each spatial resolution for each cover class. As

indicated, when the evaluation is based on test pixels, only the PCC obtained

for a subset of the cover classes characterized by large levels of spectral

variability across adjacent pixels (i.e., old-age hardwood and clearcut areas)

are significantly different at a 0.10 a- level. The relatively small numbers of

test pixels for some cover types, especially at the larger spatial resolutions,

and the large differences in classification performance between the training

data set and the test data set would suggest that the test data set was not a

sufficiently large sample in this case. Since the estimate of the variance of

the transformed proportions is a constant, inversely proportional to the number

of test pixels, the sensitivity to "real" differences between PCC is directly

proportional to the square root of the number of text pixels. The estimation

of PCC for the area classified is caught in the quandary of including a

sufficiently large number of pixels to provide a sensitive test for "real"

differences, and providing a sampling technique which assures that each test

pixel satisfies the "sample" criteria. Thus, further evaluation of techniques

for defining a test data set using appropriate statistical sampling procedures

was necessary.

Although these test data results were not as forceful as the results

obtained with the training data set, the same trends are present in both

is	 th	 tr	 data	 t	 1 t'	 1	 1	 numb	 f	 1"resul	 Since a wining	 represen re a ive y arge	 ers o pixe

of each cover type, it is thought that for the purpose of evaluating the effect

of different spatial resolutions on classification of known cover types, both

the test and training data sets provide a reasonable basis for, arriving at the 	 {

following conclusions:
a

1. The use of successively higher spatial resolution data resulted in	 I
lower overall classification accuracies when classifications were

w	 conducted with a ".per-point" GML classifier..
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Table 4.5. Statistical Evaluation of Percent Correct Classification
Performance by Cover Class for each Spatial Resolution
(Test Pixels, Per-Point GML Classifier).f

Spatial Resolution

Cover
Class

15	 30	 45
Mrr.	 ter	 Me

.. r

80
Meter

Harmonic
Mean.

ZVpe 66.7a	 55.6a	 55.6a 66.7a 9.0

Mveg 21.1a	 26.3a	 31.6a 31.6a 19.0

{

Crop 69.7a	 78.8a	 84.8a 82.1a 31.86
i

Past 86.7a	 92.9a	 92.3a 100.0a 13.52

Soil 87.5a	 85.9a	 81.7a 86.9a 62.97

Pihd 29.0	 35.5a	 25.8a 22.6a 31.00

Hdwd 72.4a	 77.6ab	 81.4b 81.4b 156.00
1

Ccut 77.5a	 76.1a	 81.7ab 88.4b 70.59

Sghd 66.7a	 72.4a	 69.4a 65.5a 121.49

Pine 36.4a	 27_.3a	 18.2a 36.4a 11..00
Ec

fi Dissimilar superscripts within each particular cover class denotes a
significant difference at the a = 0.10 level of confidence based on
the Newman=Keuls' range test conducted on the aresin transformed
proportions.	 The proportions are the relative rates of omission in
classification,

n a
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2. Higher classification accuracies were achieved with the "per-point"
classifier using 60 x 75 meter (as opposed to higher) spatial
resolution data in cover classes associated with relatively high
levels of spectral variability across adjacent pixels (i.e., old-age
hardwood, second growth hardwood, pine forest, and clearcut areas).

3. Differences in classification accuracies achieved with data of
different, spatial resolution were not significant (a = 0.10) for cover
classes associated with relatively low levels of spectral variability
across adjacent pixels (i.e., pasture, crops, bare soil,- or-marsh
vegetation) 1

In summary, although Thematic Mapper data will undoubtedly be better than

the current Landsat data from a mensurational standpoint, these preliminary

results, showing a decreased classification performance with higher (e.g.,

smaller) spatial resolution, tend to indicate that conventional per-point

classification technigles may not be effective when using higher resolution

data, particularly for areas involving classification of forest cover. Thus,

classification techniques such as "SECHQ" (which utilizes the spatial

variability in addition to the mean spectral response of an entire forest stand

or agricultural field), need to be tested and refined for potential use with

Thematic Mapper data.
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D. EmluationEvaluation of Di ffergat Numbers and Cgmbin ti = of WayeleMth Bad ,.0
lassification Performance

1. Introduction

As indicated previously, a major objective of this research was to

evaluate the effect of using different numbers or combinations of wavelength

bands on the classification results. With Landsat data only involving a
14

maximum of four wavelength bands, there has been a tendency on the part of many 	 n'
of

analysts to simply use all four channels in all classifications without 	 t	 '

worrying about the increase in computer time involved. However, with the

advent of the Thematic Mapper on Landsat-D, it is anticipated that more concern

will be expressed about the number of wavelength bands to be utilized, since

the classification time involved when using a Gaussian Maximum Likelihood

classifier has been shown to increase logrithmically with increasing numbers of
p

wavelength bands, with only a slight or perhaps no corresponding increase in

classification performance after the inclusion of four or five wavelength bands

(Hoffer and Coggeshall, 1973; Hoffer et al., 1975) . Figure 4.13 shows an

excellent example of these relationships.

With Thematic Mapper data, several questions can be raised concerning the

number and combination of wavelength bands to be used in a classification,

including:

(a) What is the minimum number of wavelength bands needed to achieve
a "satisfactory" classification resat?

(b) Are certain Portions of the spectrum more important than others
in accurately classifying a variety of cover tykes?

(c) Are certain particular combinations of wavelength bands more
k°	 important than others. in acc.- ately classifying a variety of
r` cover types?

(d) Will different sub-sets of wavelength bands be needed to classify 	 r
different cover types, or will a single combination of wavelength
bands be adequate for all cover types?

^	
r

..	 -	 L
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Figure 4.13. Overall classification accuracy and computer time required in
relation to number of channels used. 	 (from Coggeshall and
Hoffer, 1973)
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2. Transformed Divergence Evaluation Using the 1979 Training Statistics

The next major portion of this research project was directed at answering

the above questions. The first phase of this work involved the 1979 data set.

Supervised training fields were defined on the CONTAL Vision One/20 display, in

conjunction with the color infrared photography and the field notes. Once the

training fields had been identified, they were grouped according to cover 	 ^7

class. The cover class groups of training fields were then individually

clustered to resolve the cover classes into a set of spectral classes. This 	 !

provided training class statistic° corresponding to a set of spectral classes

associated with each cover class. Clustering at this stage provided a means of

defining training classes within each cover class that were bev.ed on the

spectral characteristics of the data rather than some descriptive parameter

that might be poorly correlated with the spectra, characteristics being	 j

recorded by the scanner.

The mean vector and covariance matrix computed for each of the spectral

classes define the individual statistical density associated with each

respective spectral class. A measure of statistical distance between all

pair-wise combinations of the spectral classes provides information on the

"separability" of these spectral classes. This "separability" represents an

Priori estimate of the probability of correct classification (wain, Robertson,

and Wacker, 1971) for measurements provided by each channel or channel

combination. Only pairs of spectral classes belonging to different cover

classes are of interest, since low separability between different spectral

classes of the same cover class does not affect classification accuracy.

Transformed divergence wag used to compute the separability. Divergence'

u	 is defined as
f^	 F

P1 (x)
h	 D j[pl(x) - p2 (x) ] to	 dx^1)

2

u	 ,.
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where: pl (x) = statistical density of

spectral class 1

P2 (x) = statistical density of
spectral class 2

 %.>or computationally, for the Gaussian multivariate case:

D = 2 tr [ (El - E2) (E11 - E21) ] + 2 tr [ (E1-1+ E2-1) (ml 	 )

(	 ny'1	 (2)

where: E is the covariance matrix and m is the
mean vector associated with the respective
spectral class, and

tr (trace) is the sum of the diagonal
elements.

Since divergence increases without bound as the statistical distance

between the two classes increases, a saturation transform is employed,

resulting in a measure (i.e., transformed divergence) which corresponds more

closely with percent correct classification. After a certain level of

statistical difference has been attained, virtually no confusion exists between

the two class densities, and percent correct classification "saturates" toward

100%. The resulting transformed divergence is provided by:	 y

TD = 2000 [1 e_xp(-D/8)]	 (3)

There are some disadvantages to the use of transformed divergence as a

measure of statistical difference between class densities, but because of

f

	

	 I/It should be pointed out that transformed divergence is not "metric" in
multivariate normal distribution functions of non-equivalent covariance
matrices (Wacker and Landgrebe, 1972). That is, a pair of class densities
having non-equivalent covariance matricies yet having equal new vectors could
have a transformed divergence value of zero. Also, there is no estimate for a
lower confidence limit for the regression relation between transformed diver-
gence and percent correct classification (Swain, Robertson, and Wacker, 1971).
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relative computational efficiency it is used in lieu of the alternative

measures.

Transformed divergence (TD) values were computed for each pair of spectral

classes representing different cover classes, for each channel and channel

combination. These mean pair-wise TD-values were then sorted for each set of

combinations involving the same number of channels. The seven channel

combinations providing the highest mean pair-wise TD-values were obtained.

Additional programs were written to generate summaries of the mean TD-values

for each pair of cover classes (i.e.,, over all spectral classes representing

the cover class pair) and each cover class (i.e., over all coyer class pairs

involving the jth cover class; j = 1,... 112) for these seven channel

combinations.

To define the optimum number of channels to use in a classification, the

relationship between cost of misclassification and the probability of error

must be determined. Otherwise there is no meaningful way to compare

classification cost to classification accuracy. It can be observed from Figure

4.14 that the increase in transformed divergence (the correlate to probability

of correct classification) drops off sharply after three channels, and very

little is gained by using more than four channels. This result is similar to

those obtained previously with the Michigan M-7, 12-channel scanner (Coggeshall

and Hoffer, 1973) , and the Skylab 13-channel S-192 scanner (Hoffer et al.,

1975) . The shape of the relationship shown in Figure 4.14 indicates that

transformed divergence increases logarithmically as the combination level

increases linearly.2 The spread of the points representing the five highest

x

1t

F 2/To simplify the following discussions, "combination level" will refer to	 ;!
a3	 the number of channels involved in any particular set of channel combinations.
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ranked channel combinations for each combination level represents the

difference between successively ranked averaged transformed divergence. As

seen in Figure 4.14, the mean difference between successively ranked mean

separabilities decreases logarithmically as the combination level increases

linearly. This implies that the rank of overall mean separability as a feature

.-selection  criterion decreases in value as the number of features comprising the

selected feature subset increases.

The best combined sources of information for distinguishing between

various cover classes need not have as a subset the best single source of

information. This is indicated in Table 4.6, which shows, for example, that,

the single channel having the highest mean TIC-value (i.e., channel 6) is not

included in the 2, 3, and 4 channel combination levels having the highest mean

TD-values. By comparing Table 4.6 with Table 4.7, it can be observed that the

best channel or channel combination for each combination level, on the basis of

mean overall separability, is not necessarily superior on a per cover class

basis.

Examination of the transformed divergence data indicated that the channel u

combination with the highest mean separability for a particular combination

level .goes not necessarily provide a greater separability for all cover class

pairs than channel combinations of a lower combination level, when the

combination of the lower level is ngt a subset of the combination of the higher
t

level. Examples of this relationship are: soil vs, water has a mean TD-value

of 1942 in channel 6 and a mean TD-value of only 1824 in channel combination

3,4; PIHD vs. CCUT has a mean TD-value of 1835 in channel 6 and a mean TD-value

of only 1641 in channel combination 3,4 PINE vs. MVEG has a mean TD-value of

f	 1424 in channel 1 (the channel ranked third on the basis of mean overall

TD-value) and the mean TD-value of 1182 in channel combination 3,4 (the number

-'.I
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Table 4.6. Channel combinations, ranked by overall mean TD-value for combing-
tion levels one through six.

COMBINATION LEVEL
7

1 2 3 4	 5 6

6 3,4 3,4,5 1,3,4,5	 1,3,4,5,6 1,2,3,4,5,6

3 3,5 30,4,6 3,4,5,6	 2,3,4,5,6 2,3,4,5,6,7

1 2,4 3,5,6 1,3,4,6	 1,203,415 1,3,4,5,6,7

5 2,5 2,4,5 3,405,7	 103,4,5,7 1,2,3,4,6,7

2 3,6 20,4,6 2,4,5,7	 3,4,5,6,7 1,204,5,6,7

4 4,6 2,5,6 2,3,,4,6	 2F4,5,6,7 1x2,3,4,5,7

7 1,4 1,3,4 1,3,5,6	 1,2,3,5,6 1,2,3,4,6,7

Table 4.7. Best channels and channel combinations by TD-value for each cover
class. TD-value is in parentheses.

COMBINATION LEVEL

1 2 3 4

soil 3(1820) 24(1941) 256(1987) 1346,2346,1356(1992)

past 6(1476) 35(1878) 345(1971) 3457(1987)

crop 3(1390) 34(1836) 345(1971) 1345(1991)

pine 2(1435) 34(1780) 3461912) 3456(1960)

pihd 2(1580) 36(1883) 356(1982) 3456(1997)

hdwd 3(1688) 34(1881) 134(1933) 2346(1952)

sghd 3(1691) 35(1933) 346(1960) 1345,1346,2346(1972)

tupe 6(1658) 34(1896) 245,345(1979) 2457(1942)

syca 5(1753) 35(1979) 345(1994) 1345,1346,1356(1999)

ccut 6(1329) 46(1707) 356(1889) 3456'(1947)	 1

mveg 4(1270) 14(1739) 134(1941) 1345(1990)

watr 5(1853) 25(1988) 246,256(1999) 1345,1346,1356(2000)

SOIL, bare soil; PAST, pasture; CROP, raw and cereal crops; PINE, pine forest;
PZFD, .Pine-hardwood mix; HIDWD, old age hardwood; SGHID, second growth hardwood;
TUPE, water tupelo; SYCA, sycamore hardwood; CCUP, clearcut areas; VtVEIG, marsh 	 )
vegetation; WATR, river water and quarry water.

{
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one ranked channel combination of all combinations involving two channels).

The same relationship holds for many other cover class pairs. Such a

relatioaship was not found when the lower level channel combination was a

subset of the higher level channel combination (as would be expected).

By increasing the combination level, the additional average separability

achieved for each cover class varies greatly between cover classes and

combination levels, but generally decreases logarithmically with increasing

combination level. Figure 4.15 can be thought of as a "separability response

surface." The apparent length of the lines connecting different combination

levels of the same cover- class is proportiona.l to the added separability

resulting from the information in the additional channel. Note that the

greatest increase in separability due to the addition of the second ,channel

occurs with second growth hardwood. As one would expect, the smallest increase

in separability occurs with that cover class with the highest single channel

separability (soil, in this case). It should be noted that the lira

connecting the different cover classes are present merely to indicate relative

differences of separability and in no way imply any functional relationship.

Figure 4.16 plots the maximum transformed divergence observed for each

cover class in each combination level. This displays the maximum separability

attainable for each cover class if the waveband combination were selected on

the basis of each cover class TD-value alone. As is clearly shown, the

specific waveband combination resulting in each particular TD-value for any

given waveband combination level is not constant over the different cover

cusses. In comparing Figures 4.15 and 4.16, it is apparent that the shapes of

the surfaces become more and more alike as waveband combination level is

increased, and are nearly identical in shape after combination level 4. This

indicates that the separability by cover class provided by the best Qvera11
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channel combination (Figure 4.15) is nearly identical to the separability by

cover class provided by the best channel combination for each individtal cover

class (Figure 4.16) beyond waveband combination levels of 4. Thus, the best

four waveband combination, based on overall transformed divergence, should

provide very close to the maximum classification accuracy for each individual

cover type. However, if one were interested only in a particular cover type,

high classification accuracy probably could be achieved using less than four

channels of data.

Based upon these results, therefore, one would not expect a computer-based

classification employing more than four channels to provide much improvement in

overall classification accuracy., The highest overall mean separability was

provided by channels 1, 3, 4, and 5 (0.45-0.52, 0.63-0.69, 0.76-0.90, and

1.0-1.3' um) --- two visible and two near infrared channels. Note however, that

this channel combination did not always provide the highest mean separability

by cover class nor by pairs of cover classes.

It should be noted that results such as these are highly data and

application dependent. A different set of cover classes, or even a subset of

the cover classes, could result in other channel combinations yielding higher
I

or lower predicted classification accuracies. For this reason, these results

were further evaluated by comparing them to results obtained with a different

set of training statistics developed by another analyst, which are discussed in

the next section. Furthermore, the results discussed thus far have involved

only predicted classification accuracies, based on the Transformed Divergence

Values of the training statistics. It was therefore important to evaluate

different waveband combinations using actual classification results, both for

r	 training and test data sets.

i

r	 LL

d
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3. Effect. of Different Numbers and Combinations of Wavelength Bands on
Classification Results

The next phase of the investigation '. kVf ',ved comparisons among a large

number of actual classification results using both the 1979 and 1980 data sets,

in which different numbers of and combinations of wavelength bands were

utilized. Classification of a second data set was desired in order to evaluate

the repeatability and reliability of the results obtained from the first data

training and test statistics were developed for the 1979 data, and another set

were developed for the 1980 data. Each set of test data was then used for all

waveband comparisons for the particular data set involved. Because the 1979

data had been obtained on May 2 but the 1980 data had not been obtained until

August 29, there were some significant differences in the vegetative condition

of the various cover types. It was thought that this might cause some

differences in the results between the 1979 and 1980 data for the waveband

evaluation ^rtion of the investigation, but the two data sets would also

pi:ovide some indication of the importance of the various wavebands, based upon

the repeatability of the results.

!t

seta In order to eliminate as many variables as possible, only the 30 meter

spatial resolution data set was used in these evaluations, and only the

Gaussian Maximum Likelihood (GML) algorithm was utilized.	 A single set of

a. Development of Training Statistics

For the results of this phase of the investigation to be valid, it was

important that an accurate, representative set of training statistics be

developed. Previous work had shown that the method used to develop training

statistics for Landsat data could cause differences in classification

performance by as much as 14%, based on evaluation test data (Fleming and

Hoffer, 1977) . _ In that study, the Multi-Cluster: Blocks technique was found to

Ai
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be the best for achieving the highest overall classification performance.

However, in the current study, it was important to evaluate the effectiveness

of various wavelength bands and spectral regions for specific cover types,

thereby indicating the need to use the "standard" supervised technique for
^r

developing the trai .rd.ng statistics. To provide an additional evaluation of the

different methods for developing training statistics, therefore, both t

techniques (i.e., Supervised and Multi-Cluster Blocks) were used and the

results were compared.

The training classes defined for this phase of the investigation and the

number of spectral classes correspaading to each cover class are shown in Table

4.8. Because the earlier work had indicated relatively small spectral

differences between old-growth and second growth hardwood, these categories

were grouped into a single "hardwood" category nor the reminder of the

investigation. Additionally, because the earlier work had resulted in only two

and four training fields being defined for mixed vegetation and pine/hard-wood

mix, respectively, and due to the difficulty of defining additional areas of

similar characteristics for use as test Yields these cover,	 type categoLies

were not used in the remainder of the study. Separability of the spectral

classes representing the different informational classes was verified by

histogram plots of the training data, and further checked using transformed

divergence values. The transformed divergence values indicated that in most

cases a very high separability could be achieved for most channel combinations

when utilizing three or more of the seven available channels of the 1979 TMS

data set (1980 had 8 channels). Sane potential difficulties did show up,

however, such as a relatively low separability between a spectral class of

f	 pasture and one of clearcut, but for most channel combinations of four or more

f'	 channels, even this confusion did not appear to be significant.
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Table 4.8. Description of the cover classes and number of spectral classes
within each cover class (1979 TKS data, waveband evaluation
study).

Cover
	

Number of
,%Wtral Classes	 Description of Cover Class	 q

Tupe
	

2	 Water tupelo; generally restricted to
remnants of narrow ox-bow lakes and other
areas of inundated soils.

Row crops and small grain crops in varying 	 a

stages of size, canopy density and
maturity.

Pasture and old fields; plant cover varies
from healthy,- improved pasture grasses
to senescent forbs and invader species.	 s

Bare soil areas_ associated with agricultural 	 -A
activities; varies in sand, clay, and
organic material content as well as
moisture content.

Middle to old age bottom-land hardwood;
mixed species, found in stands varying
from very dense to stands with large
inter-crown gaps.

Areas subjected to clearcut forestry prac-
tices; ground cover comprised of dry to
inundated soils with varying mounts of
residual or regeneration vegetation.

Pine forest plantations, primarily slash
and loblolly; evenaged stands at various
stages of maturity.

Watr	 4	 Water; includes the Wateree River, dark
marsh water, and water associated with
surface mining.

fi

pc

.	 e

Crop
	

2

Past
	

4

soil
	

4

Hdwd
	

2

Ccut
	

6

Pine
	

3.
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As mentioned above, in addition to the supervised training data set, a

second set of training statistic were developed using the Multi,-Cluster Block

(MCB) technique, in which several heterogeneous blocks of data are defined and

each is clustered into several (perhaps 15-25) spectral classes. The cluster

maps are then compared to the aerial photos and key spectral classes

identified, while others are merged or deleted, as appropriate. A "MERGE

STATISTICS" program is then used to combine spectral classes from the

individual cluster blocks, and a single set of training statistics representing
F

the entire study area is generated.	 This second set of training statistics

provided an excellent opportunity to evaluate the effect of the different

j	 techniques for developing training statistics on classifier performance.

b.	 Development of Test Data Sets

Four separate methods for developing test.data sets were evaluated during

this study -- one based upon an analyst-supervised set of test fields, and the

other three based upon a stratified sampling procedure incorporating a grid

system with dimensions of 50 lines by 50 columns.

The supervised test data set was selected by two analysts in such a

fashion as to represent all major cover types present in the study site, and to A
ag	 ;

obtain test data from throughout the study site in case there were any along or

across-track variations which might still have been present in the data, even a

subsequent to the radiometric corrections applied.	 Table 4.9 shows the number

of pixels for each cover class selected by this procedure.	 The major draw-back

of this approach is the possibility of analyst bias which may be involved due

to	 perhaps, an unconscious selection of only dense, homogeneous areas ofy

various cover types to use as test fields
w },

L_

r

an



Table 4.9. Comxrison among three techniques for defining a test data
set using the 1979 TMS data.	 rn

No. of _Test Pixels using Each TechnjWr.

Grid Intersection
Supervised With One Test "Sample Block

Cover Type Test Fields Field Test Data"

Tupelo 210 126 118

Crop 197 133 369

Pasture 124 4 350

soil 606 261 1006

Hardwood 3032 8181 7269

Clearcut 537 163 370

Pine 577 1299 775

Water 164 28 300	 1

Total 5447 10195 10557

Percent of
Total Flight Line 2.4% 4.5% 4.7%
Area

y.
H
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j

A procure was therefore developed to define a set of test fields in the

manner which was essentially free of possible bias introduced by the analyst

doing the selection. This procure involved a grid system having a sprucing of

50 lines and 50 columns, which was overlayed onto the TMS scanner data. Three

possible methods for defining test data sets based upon use of this grid were

examined.

For the 1979 data, the grid yielded 78 intersection points in the data.

The first method based on the grid involved use of a single pixel as a test

field at each of the intersection points. However, such a procedure would not

generate a suffi.riently large set of test data to provide an adequate

evaluation of the classification result. In addition, previous experience had

shown that precise location of a single X Y coordinate of MSS data on aerial

photos or vice versa is very difficult. For these reasons, this single pixel

technique was not given further consideration.

_	 11, 1

The second method based on use of the grid involved designating a test

field in the upper left corner of each grid intersectia.. Each test field

would be as large a sample as possible of the cover type occurring at the

intersection, up to a maximum.of 25 lines x 25 columns. A Bausch and Lamb Zoom

Transfer Scope (ZTS) was used to transfer the grid intersection locations to

the aerial photos in order to identify the cover types. Details of these

procedures were documented in the eighth Quarterly Progress Report (March l -

May 31, 1981), TARS Contract Report 053181. Implementation of this grid

technique in the 1979 data set could have resulted in a maximum of 78 test

fields, each 25 rows by 25 columns in size, or a total of 48750 pixels. This

maximum or best case situation would have resulted in 27.2% of the pixels in

the flightline being used az test fields._ However, any test field in conflict 	 ;x

u	 wr.th previously designated training fields or cluster blocks was reduced in	 s

u
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y

size until the conflict was removed, and, of course, most test fields did not

fall in a location where they could be designated as a full 25 x 25 pixel size.

A summary of the number of pixels for test areas in each cover class that

resulted from this procedure is shown in Table 4.9. As indicated, the actual

number of test pixels obtained using this technique was 10195, or 4.5 percent

of the total data. A significant problem with this procedure is indicated by

the fact that some cover types were poorly represented iii the test data set.

This problem indicated a need for a different method of selecting test data in

a statistically unbiased manner.

The method determined to offer the best solution to the problems

previously encountered in defining test data sets again involved the 50 line x

50 column grid, and has been designated as the "Sample Block Test Data"

technique. With this technique, a set of primary sample blocks, each of which

was 25 x 25 pixels in size, were designated in the upper left corner of the 50

line x 50 column grid. The analyst then defined one test field for each cover

type or information class present within Bach 25 x 25 sample block. Each test

field was defined so as to include the largest possible rectangle of the cover

type involved, regardless of the density, condition, or other variability of

the cover type present. It was believed that this procedure precluded most of

the potential analyst bias that may be present in using a straight "supervised"

approach, but wand provide a reasonable sample of all cover types present,

with the number of pixels representing each cover type, being approximately in

proportion to the area of that cover type present in the flight line. Table

4.9 shows the results of this approach for defining a test data set for the

E- 1979 data. Each cover type appears to be reasonably well represented.
F

However, it should be noted that because there is such a large amount of

°.. J

i
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proportion of the test data, and therefore the overall classification results

will tend to be dominated by the classification performance of the hardwood

cover type.

c. ' Classir is ation of the 1979 Training Data

After development of the training and test data sets, they were evaluated

using a Gaussian Maximum Likelihood (GML) classification and all seven wave-

length bands. The results for the training data, defined using the supervised

method are shown in Table 4.10. Such high classification performance indicates

that all cover types defined for the 1979 data set are indeed 'spectrally

separable. Note that such a conclusion is all that can be obtained from such a

table of training data results—such a table cannot be used as an indication of

overall classification performance throughout the entire flight-line. Table

4.11 shows the training data classification results using only four wavelength

bands (Channels 2, 4, 5, and 7). Use of only four bands still resulted in

highly accurate classification results, thereby confirming the results shown

previously in Figures 4.15 and 4.16`, which were based on Transformed Divergence

values of training data, and which had indicated that four wavebands should

result in accurate overall classifications as well as accurate classifications

of each of the individual cover types.

Classifications of the. training data using the Multi-Cluster Blocks

approach were obtained, but cannot be shown in tabular form because in this

technique each X Y coordinate within the cluster block is classified

independently. Flap printouts of the training blocks were compared to the

aerial photos, and appeared to provide highly accurate classifications.

However, only the results using test data sets will provide an effective

comparison between training techniques. Likewise, the results using the test
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data set must be used ta evaluate the effectiveness of using different numbers

of wavelength bands and different combinations of wavelength bands. Therefore,

the remainder of the classification results for the 1979 data are based only on

tabulation of the results for the test areas defined by the "Sample Block Test

Data" technique, described previously.

d. Classification of the 1979 and 1980 Test Data Sets

The waveband evaluation study was rather involved, due to the large

numbers of channel combinations we wished to evaluate in addition to the
	 3

desired comparison between two separate sets of training statistics. Table

4.12 is a summary table showing, the overall classification performance along

with the wavelength bands used for the various classifications. Since two sets

!	 of training statistics were involved, the feature selection algorithm often
i

indicated different combinations of wavebands as the "Best 2", "Best 3 11 , etc.

Thus, as shown in Table 4.12, there is considerable variation in the channels

defined as the "Best n" waveband combination for the two different sets of

training statistics. (This also tends to indicate the "data-dependent" nature
a

of these results.)

A complete set of the classification performance tables (or "confusion 	 s

matrices") and statistical summary tables for the waveband evaluation study are

shown in_Appendix. A of this report. The classification results tables (Nos.

2-28) are indicated by the table numbers shown in Table 4.12. Tables A-29-36
i

of Appendix A contain the statistical evaluation summaries for this waveband

r
	 evaluation study.

In order to provide some order in evaluating this mass of classification
t

results, the initial phase of this discussion compares the test results based

on the Supervised and MCB (Multi-Cluster Blocks) training statistics using all

ri
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Table 4.12. Summary table of overall classification results, table location,
and channel subsets of the 1979 Waveband Evaluation: GHL
algorithm, sample block test data.

GML

di 
m Statistics

WAVEB	 0.45- 0.52- 0.63- 0.76 1.00- 1.55- 10.4-MD 
CCMn tO`IM	 0.52 0.60 0.69 0.90 1.30 1.75 12.5 	 Supervised	 MCB

F

i

"Best 2"

"Best 3" <
"Best 4" <
"Best 5"

"Best 6"

All 7

Visible

Reflective IR

"Best 3 minus
Thermal IR"

"Best 3 minus
Middle IR" <
"Best 3 minus
Near IR" <
"Best 3 minus
Reflective IR" <
Simulated <Iandsat

Four channel

X X ,5i(Table 2 )L 81 .58(Table 15)

X

X

X

X X

X 8 .48(Table 3)

76.08 (Table 16)

X -

X

-	 - - X -

X

-% -

X

- - - B -

X

-

88.1t(Table 4)

-	 - -	 - 86.1! (Tanle 17)

X

X

X

X

X

X

X

X

X

X 88.39(Table 5)

87.68 (Table 18)

X

X -

X

- - - X -

X

X -

X

- X

X

- X -

X

X -

89.9% (Table 6)

- - - - - 87.48(Table 19)

X X X X X X X 90.7%(Table 7) 88.7%(Table 20)

X X X 81.08 (Table 8) 72.2i (Table 21)

r; x X 71.98(Table 9) 64.6i(Table 22)

X

X

X

X X

X 78.45 (Table 3)

76.0%(Table 16)

X - - -

x

- X -

X

- -

X

- X - - - -	 -

85.48(Table 10)

-	 - - _

76ACTable 3)

-	 - - - -

76.08(Table 16)

82.18(Table -

X	 X	 X

- - X -	 - - - - - -	 - - -

-

X	 X

X

-X

X

- X

X

-	 - - - - - - -	 - -	 -X

81 .08(Table 8)

-	 -	 - -	 - - 64.3 (Table 24)

X X X X 88„98(Table 12) 87.88 (Table 26)

X X X x 83 .48(Table 13) '85.38 (Table 27)
subsets with ane
channel from each

bwavelength region	 n

'/Table numbers refer to the classification performance tables in A^dix A of this report.
t

X X X' X .87.08 (Table 14) 86.48 ('table 28)

Et

r	 }fF

E

i a.
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1

seven channels of the 1979 CIS data. It was thought that this would provide a

"base-line" set of test results against which all other channel combination

sub-sets could be compared, and would also provide an initial basis for

comparing the two methods of developing training statistics. The remainder of

the discussion on waveband evaluation phase of this study is divided into

several sections as follows:

(a) Comparison of the classificationresults obtained with different
numbers of wavelength bands (i.e., the "Best" 2 through 7 bands).

(b) Comparison of different combinations of three wavelength bands,
based on the 1979 test data set.

(c) Comparison of different combinations of four wavelength bands,
based on the 1979 test data set. 	 J

(d) Evaluation of the classification results for the 1980 test data
set, using all eight and the "best 4 wavelength bands. i

d

Tables 4.13 and 4.14 show the results of classifying the 1979 test data

using all seven wavelength bands, based on the Supervised training statistics

and the Multi-Cluster Blocks training statistics, respectively. Since both

tables are based on all seven wavelength bands, they represent the best

possible classification accuracy one could expect using this data set and these

sets of training statistics. Because these tables are based on a statistically

defined set of test data, they can be considered to be representative of the

classification performance throughout the entire flight line area.

Conventionally, results are evaluated only on the basis of the relative
rate of omission. Instances of omission are the non-diagonal row elements of
the error 'matrix. Omission is of primary interest to those concerned with the
likelihood of an area "known" to be of the i(th) cover class being classified
as some other 'cover class. The commission error is equally a part of the error
frequency associated with a classification. Commission error is represented by
the non-diagonal column elements of the error matrix. This index of error is
of interest to those concerned with the likelihood of an area being classified

tt
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n.

As can be seen, both' sew: 'af training statistics resulted in highly

accurate overall classification results, although some of the individual cover

classes had surprisingly law classificatioa performance. Differences between
x

the two sets of training statistics resulted in distinct differences in

l	 classification performance for some.of the cover types, such as tupelo (67.8%
t

vs 83.9$), clearcut (64.9% vs 45.7%). and pasture (83.4% vs 61.4%). A

statistical comparison (Newman-Keels Multiple Range Test) indicated that the

overall classification performances were significantly different (a - 0.10) ,

and that among the individual cover types, only the pine and soil classes were

not st atistically different. However, because there is so much variability

from one cover type to another as to which set of training statistics provided

the best classification, it is not clear that either method of developing

training statistics is distinctly better than the other. Some cases where the

MCB approach was much better than the supervised,- such as tupelo and crops,

were quite surprising, and would seem to indicate that the supervised training

data had not been adequately representative of the spectral characteristics of

those cover t1 Lies.

A yomparison of classification results for the "Best n" (2 through 7)

channel combinations was a key element in the waveband evaluation phase of this

study. The "Best n" channel combination was based on the "Feature Selection"

algorithm, which was based on a divergence algorithm, as discussed earlier.

-- - - - - - -

as the i(th) cover class when actually the area is in some other cover class.
Both of these forms of misclassification constitute a legitimate error. The
problem of providing a meaningful index for evaluating a classification arises
when the evaluation is conducted Dy cover ass, since the use of either

a	 measure will result in the same computed "overall" classification performance, 	 u
;.	 The problem is most crucial when the two error components are poorly 	 u

correlated, which is often the case. Work is needed to determine a legitimate
and effective methodology for combining the two error components.

a



The analyst can use this divergence algorithm to def ire the "Best n" channel

combination based on the 'minimum divergence between any two spectral classes,

thereby helping to define a channel combination that will improve the classif i-

cation performance for those spectral. classes that are hardest to separate.	 41

The analyst could alternatively ask for the "Best n" channel combination based

on average divergence, which would indicate the channel combination that should

enable the best average classification to be obtained. After some initial

evaluations of the data, it was determined that several combinations of

channels often provided the same average divergence values (especially when

more than three channels were involved), so throughout this phase of the

research, the channel combinations used were defined on the 'basis of the

m ,)runum divergence values defined by the feature select processor.

Tables 4.15 and 4.16 show sLunaries of the results; by cover class as well

as overall and average performance percentages, for the "Best 2" through the

"Best 7" waveband combinations, for the Supervised and the MCB Training

Statistics, respectively. (These summary figures were obtained from Tables 2-7

and 15-20 in Appendix A.) As indicated in Table 4.15, the classifications with

only two or three channels were much lower in both overall and average

classification performance than when more than three channels were used. it is

also noteworthy that the feature _ selection algorithm defined a completely

different set of channels (or wavelength bands) as the "Best 3" than had been

defined as the "Best 2". Note also that when only two or three channels ara

used, the cl&ssification performance of some of the individual -cover types may

be considerably lower than when four or more channels are used. When more than

four channels are used, the classification (for individual cover types, as well

as overall and average) tends not to change very much, although the highest

accuracy is generally achieved when all seven channels are utilized.

t

r^,
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^+	 rn 0%Ln àa r	 o	 co r

k	 UO

44	 InrNl	 dP dP

	

01 ri 10 to 01 N r	 M. O
f	 ?1 r-1	 1^	 .	 •	 •	 •	 .	 .	 •	 •	 •

N	 M O 10 H Co 0;	 O	 O
4J	 01 D► w w O r 00 co'	 co 0:)

rn ►

NN N	 r.

i^ •rl	 ri
to
	

`r rN-1	 0	 L	 r	 rr i In	 10	 %o	 1d-4 n
0 0

)	

;

".

C U	
° rn Ln o o

NO r coo r-	
o r-

41
	 C

	1^ 
^	

H

W ( ►̂ 	 M •-^	 [^ 00 N 'r-i M to 00' O	 f.1	 rte{ rte-! r^i	 H
 dP dP

N lSS	 fA	 fit'r r-1 m N H m w	 co O	 A-A •n w w	 jtl^ A	 Gil	 Q1 r N 1G 10 tC 00 00	 r r	 • a •N •N	 Otc00

N•	

r

H M	 S	 4	 i

a	
r rat M	 Ln to	 0ko om °M^ON	 I Q m Lo m ko 

	

•	 •	 •	 •	 •	 •	 •	 s	 •	 •	 • • • • • • 4	 °.

U	 c c q	 Vim' ^ ko c	 co	 OOOOri Nri
z

4	 toNcnWb0o4wA 4J 	 in 10 R O O

4J
	 1	

Ln a% co 
cDr. N	 O	

O O O O r4 N r-i

=ca 
^	

E	 r N 1-4 cn m cn ^

ri

8 	 1 N	 v	 riNMgwLnkor
O U s.^

t
k	

oo
^	 CO's. - ^-1	 O- •̂ r1	 49	 GA3

^1 ^.

	

+

76



dP dPI^	 M ri 01 l^ ^f' 10 0 r	 r dr

f	
4	

m 0a1 w lw ^ 001 a1 aw0	 000 0000

Ea

In	 I

N	 Cl1 1^ CO u 1 O to 00 t`-	 q O
H C4 	 tO0 0r-1 w Oro	 co

CQ
k

N
O	 W

r	 N	 1	 0 H H O a1 M r	 1kp N
w 4)	 a1 r4 4 %^ 0 r4 L^	 O	 i

	

ES	 ^N	 ch co co Z In 81 a1 co	 co w

	

A(dj
	 C

C1^ r°

49 IM

	r .1	 r•i	 dP _ dP

	

011 s1' r C11 .0 N M en	 r-i co^++4j•	 •	 •	 •	 •
a	

a^	 ai co w v L m aai aaoo 	 000

o	 c'^3
JQ)

	

r+	 .

14 w	 M ^	 dP dP	 r	 Q;

44 In	 N	 LO r--I m M O O O O	 O co	 $4 O r-I .r- .r--1.,-I	 •	 • •	 •	 •	 •	 •	 •	 •	 •	 4J
fEn ^	 ^	 fh l0 CO O ^ O N kC	 lC CS	 rl -PA •rl cw^ $4
r0 U	 LA	

ao n dr M *v a1 a1 co	 %D	 •, o to 'i N

r-i
U 
	 5 5 z	 0

U)
ri
N	 NrT1	 dP dP	 NOmOOLnm

	

(^[{{	 QFa "ii	 -! a0 10 C'! C.1 O C^ M	 LO m	 ,^C	 LIZ lD kC Q1 M li • 	 #.

	

^1	 QJ	 •	 .	 .  	 .	 •	 •	 •	 •	 i+	 . . • . . • H
r	 U	 go 	 co co CV N L L a ^	 000	 O O' O O r N r-1

C	
U	

^	 InNM10000sr9	 drtn101- OO •.	 •	 . o
u r ► 	

'1, 

01 

co 

`Z' O a1 10	 r	 O O O D ri N ri
W a1	 ur	 r- ko r-I I,- to ko o	 Ln

O

l0

ra41
.{

r-I	

fT3	 ^ O o	 a!rq

k	 U	 a x	 U p^ U 
-

V^	 H

L

t,.



9

78

Table 4.16 shows the same trends and general results seen in Table 4.15,

although the overall and average classification performances are generally

lower %or the equivalent number of channels. (This comparison of overall

classification performances probably can be observed more easily using Table

4.12.) Table 4.16 also indicates that some individual cover types, notably

tupelo, were classified considerably better when at least five channels were

used.

i

	

	 As shown in Table 4.12 as well as in Tables 4.15 and 4.16, there appears

to be no definitive combination of wavelength bands that provides a

distinctively optimum classification, although there are observable differences

r '	 between the two sets of training statistics. For instance, use of the

f '	 Supervised training statistics resulted in the Thermal IR channel being used as
E

one of the "Best 4 11 , "Best 5", and "Best 6" channel combinations, whereas with

the MCB training statistics, the Thermal. IR channel was not included until the

"Best 6" channel combination was defined.

In summary, it woul d appear that a combination of four channels would

produce much better classification results, both overall and for the individual

cover types, than when three channels or less are utilized. Furthermore, if
i

more than four channels are used, there is no evidence to suggest that

significant improvements in classification performance can be obtained. These

'%,	 `R

Ft

^r

statements can be made nor both the Supervised and the MCB training statistics.

Such statements also support the previous results shown in Figure 4.15 and

4.16, even though those figures were obtained using an entirely different set

of training statistics.

The next phase of the wav f,"%and evaluation study involved classifications
Ii

f	 Ft based on various combinations of three channels of data. These results are

summarized in Tables 4.17 and 4.18. As shown in Table 4.17, the overall

1^	 w

{
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results are generally quite different, with the "Best 3" channels defined by

the Average Transformed Divergence having the best overall classification for

three channels. Table A-29 in Appendix A indicates that these overall

classification results for different combinations of three channels are all 	 = '',

significantly different. Table A--30 in Appendix A indicates significant

differences among the various combinations of three channels for individual,

cover types, and shows, for example, that without at least one channel in the

reflective infrared portion of the -spectrum, water is poorly classified,

whereas use of only the visible wavelengths enabled tupelo to be classified

with much higher accuracy than with any ether combination of three channels.

In fact, the use of only the visible charnels enabled tupelo to be classified

with essentially the same accuracy as obtained when all seven channels were g

used. Pasture was classified very poorly when only visible channels were used

but quite well when only the reflective infrared portion of the spectrum was 	 {

involved. Both the visible and near .infrared appear to be important in

obtaining a reasonably accurate classification of hardwood with this data set

and the Supervised training statistics.

When using the MM training statistics and different combinations of three

channels, the results obtained were very similar to those based on the

supervised training statistics, as shown in Tables 4.18, A-31 and A-32. One

notable result on Table 4.18 involves the water class, which has extremely poor

'	 accuracy unless a reflective infrared channel was used in the classification.

A similar result was shown for the supervised statistics, but it was not as

dramatic an example of the importance of particular wavelength regions for

accurate classification of some cover types.

The fact that both sets of training statistics produced similar classifi-

cation performances indicates that the results obtained are largely a function
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of the spectral characteristics of the various cover types rather than of the

training statistics.

The next phase of the study involved analysis of various combinations of

four wavelength bands. Tables 4.19 and 4.20 summarize the results obtained,

based on the Supervised and the MCB Training Statistics, respectively. Tables

A 33, 34, 35, and 36 in Appendix A show the four channel combinations that are

significantly different. Use of four channels produced rather accurate

classification results--much better than could be obtained with only three

channels in general. With both sets of training statistics, the four channel

combination that most closely simulates the Landsat wavebands provided the

highest overall classification, perhaps in part because this waveband

combination seemed to be particularly effective in classifying hardwoods, as

well as tupelo, pine, and exposed soil. Thus, these results do not suggest any

particular advantage to using wavebands in portions of the spectrum beyond

those to which Silicon detectors (used in Multi-Linear Array systems) are

sensitive, at least if the primary purpose is differentiation among, and

identification of, various vegetative cover types. However, if one is dealing

with vegetative stress conditions or other cover types, there may be distinct

advantages to using data from the Middle Infrared or Thermal Infrared portions

of the spectrum. It is simply a situation in which the condition of the

various cover types and the data involved in this study do not show any clear

}	 indications that the Middle or Thermal IR portions of the spectrum are more 	 a
5f

imicortant than the Visible and Near IR regions. However, it is noteworthy that

the wavelength bands on the scanner used in this study (and on the Thematic
r	 _	 r

`	 Mapper) in the Visible and Near Infrared regions are spectrally much narrower

F	 than the channels on the Landsat MSS scanners,. Therefore, the clas sification
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f,	 accuracy seen in these results may be due, at least in part, to the spectral

resolution of the data being used.

The waveband evaluation based on the 1980. data set was also conducted

using both Supervised and Multicluster Blocks (MCB) training statistics.

Initial classifications using all eight wavelength bands available and the

"best 4" wavebands produced results that were generally similar to those

obtained with- the 1979 data, although the classification accuracies were

generally somewhat lower. The overall classification performance based on test

fields was 88.5% for all eight wavebands and 82.8% for the "best 4" wavebands

1, 2, 3, & 6), using the Supervised training statistics, whereas with the MM

training statistics the results shcrwed 79.8% and 79.7% overall performance for

all eight and the "best 4" (1, 3, 4, & 5) wavebaands, respectively. The

performance tables for these four classifications are shown in Appendix B,

Tables 59, 62, 65, and 68. One of the most noticeable results using the 1980

data set involved the very low classification accuracies obtained for tupelo.

These ranged from only 17 .9% to 20.0%, even when all wavelength bands were

used, and for either set of training statistics. It is interesting to note

that with the Supervised training statistics, most of the misclassified tupelo

pixels were being identified as regenerating hardwood whereas with the MCB

training statistics the misclassified pixels were being identified as hardwood.

In either case, the poor performance for tupelo is -attributed to seasonal

changes in the spectral characteristics of tupelo as compared to other

p

k

^s

a

i

hardwoods. Early in the graying season, the tupelo has a distinct spectral

response (particularly in the visible wavelengths) that is quite different fro:J

other hardwoods, whereas later in the summer, the spectral response for tupelo

is similar to that of the other hardwood cover types. This difference- -or lack

thereof-between tupelo and the olt;ner hardwoods in the 1979 and 1980 data sets,
t
x
r	

t
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respectively, could be clearly seen on the color infrared photography that had

been obtained in conjunction with the 7M.S data.

Since the 1980 data showed generally similar results to those obtained in

1979 for the four channel, and the all channel classifications, further waveband

evaluation classifications were not obtained using the 1980 test data set.

The waveband evaluation results, based upon both sets of training

statistics as well as both the 1979 and 1980 test data sets can be summarized

as follows:

1. Use of four wavelength bands produced considerably better classifica-
tion results than when only two or three wavelength bands were
utilized.

2. Maximum overall classification performances were obtained when all
wavelength bands were utilized.

3. The increase in overall classification performance when more than four
wavelength bands were utiliz .-,d was minimal, therefore, indicating that
an appropriate set of four wavelength bands provides the best
combination of high classification accuracy and minimal computer time.

r

t'
}F

4. Various three and four wavelength band combinations using the 1979
data set indicated the importance of both the visible and near-
infrared portions of the spectrum for accurately classifying various
forest and other cover types.

5. These results, which were primarily focused on differentiation of
various types of healthy vegetative cover, did not indicate any
particular advantage for using wavelength bands in portions of the
spectrum beyond thoGe to which Silicon detectors (used inMulti-Linear
Array systems) are sensitive.

co uirzerent comoinations of tnree or tour wavelengtn oanas nausea
significant differences in classification performance of various
individual cover types, but overall classification accuracies did not
provide any distinct trends indicating that certain wavelength.bands
were superior to others. (e.g., when using four waveband conbina-
tions, several different combinations produced similar overall
classification performances.)

7. The Supervised method ofdeveloping training statistics provided
slightly better overall classification results than the Multi-Cluster
Blocks technique for both the 1979 and 1980 data sets. It would
appear that for situations where accurate, reliable reference data
(i.e., "ground truth") is available over the entire study area and for
data, having fine spatial resolution, the ;Supervised technique is
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generally best. It i,> particularly useful for waveband evaluation
studies involving different cover types.

8. Overall classification accuracies based on the "best 3" wavebands
defined by the average transformed divergence values were signifi-
cantly higher than those based on the "best 3" wavebands defined by
the mini= transformed divergence values.	 k

F



E. Cg=rison Among Three Massification AlaoritJW

The analysis results discussed thus far have primarily involved the 1979

TMS it",eta (untransformed, 30 meter spatial resolution) and the GML (Gaussian

Maximum Likelihood) classifier. The next phase of the study involved an

evaluation of the results obtained from the GML classifier as compared to the

L-2 Minimum Distance Classifier and the SECHO (Supervised Extraction and

Classification of Homogeneous Objects) classifier. Comparisons among these

three classification algorithms were again conducted using the untransformed

1979 IMS data, but in addition, the three classification algorithms were

applied to the •untransformed 30-meter 1980 TMS data set in order to evaluate
P

the repeatability. and reliability of the results obtained using the 1979 data.

One must keep in mind, however, that the 1980 data were obtained about two

months later in the growing season than the 1979 data (August 29, 1980 Ls June

30,j1979); and that all eight channels of the NS-001 scanner were functioning 	 E

satisfactorily when the 1980 data were obtained, whereas the 1.55-1.75 um

channel had not been functional at the time the 1979 data were obtained.
I

The L-2 Minimum Distance classifier is based on a relatively simple
1

classification algorithm and is much faster than the GML classifier. The SECHO 	 j

algorithm utilizes both the spectral characteristics and the spatial

variability in the data in making the classification decision. In view of the

results showing the decreased classification performance with smaller spatial

resolution data, it was thought that the SECHO classifier might provide a

distinct advantage over per-point classifiers (such as the L-2 and GML) when

working with the 30-meter TMS data.

In view of the previous excellent results obtained' using only four

tt
channels of data, it was 'decided to compare the classification algorithms using

`	 the "Best 4" wavelength bands. In addition, all seven (1979 data) or eight
i"



(1980 data) wavelength bands would be used to obtain additional insight into

the value of using all available wavelength bands as compared to a four channel

subset. It was also decided to use both sets of training statistics for all

comparisons as a further test of the repeatability of the results. 	 z ^^

Table 4.21 shows a summary of all 24 classifications conducted for this

phase of the research. Tables B-38-49 of Appendix B show the individual

classification performance results for the 1979 data, and Tables B-50-57 show

the statistical analysis results for tie 1979 data. Tables B-58-69 show the

classification results fcr the 1980 data, and Tables B-70-77 show the

statistical analysis results for the 1980 data.

In examining the results of these classifications, as summarized on Table

4.21, it is apparent that in all cases, the results obtained with the L-2

classifier are considerably less accurate than those obtained with either the

GMC, or the 0-&-M classifier, and that the GM'L results are less accurate than

those obtained with the SBC.HO classifier. Tables B-50, 52, 54, 56, 70 0, 72, 74,

and 76 indicate that the overall classification accuracies shown on Table 4.21

have statistically significant differences ( « = 0.10) between each of the

classification algorithms for every data set combination (i.e., every combina-

tion of wavelengths and training statistics, and for both the 1979 and 1980

data)! Thus, the SECHO classifier clearly provides significantly better

classification results than can be obtained with per-point classifiers. 	 -

Table 4.21 also shows that when classification results for the Supervised

and Multicluster Block training statistics for the same ry:mber of channels are

compared, the Supervised training statistics resulted in better classification

accuracies in all cases except for the 'SECHO classifier and the 1979 data.

These differences due to the training statistics used were greater with the L-2

classifier than with the GML or SEM classifiers.

r

r	 ^.



9

I'

ORIGINAL FACE 19

Of POOR QUAL"

Table 4.21. Summary table of overall classification results for
the L2, GML and'SDCHO classifiers. (Untransformed
1973 and 1980 TKS data, Supervised and MCB training
statistics, sample block test data).

90
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*1,.4

I) 1979 Untransformed TMS_Data

Training Statistics
and Channel Canbination

ryi Sed

Best 4 (CH'S 2,4,517)

All 7 Channels

Multicluster_ Block

Best 4 (CH'S 1,3,4,6)

All 7 Channels

L2	 S'^14_	 FE

	

81.8%	 88.1%	 90.0%

	

85.3%	 90.7%	 91.6%

	

77.4%	 86.1%	 90.6%

	

81.4%	 88.7%	 92.3%

II)	 1980 Untransformed 4MS Data

Training Statistics
and	 a Qgbinaltim Qwsifier

cwr.

a

Best 4 (CH e S 1,2y3,6) 75.3% 82.8% 85.9

All 8-Channels 77.5% 88.5% 89.6%

Multicluster Block h

Best 4 (CH'S 1,3,4,5) 67.6% 79.7% 84.6$

All 8 Channels 70.2% 79.8% 84.2%
rj

E }i
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It is also apparent in examining Table 4.21 that seven or eight channels

of data did enable more accurate classification results to be obtained than

when only four channels were used (except in the case of the 1980 data with the

Multicluster Blocks statistics and SEC HO classifier) .	 However, in many situa-

tions, the difference in performance due to the larger number of channels used

was only about 2$.

It would appear, in general, that the best overall results can be achieved

using the SECHO classifier. 	 However, the 1979 and 1980 results using the SDM

classifier do not indicate the same trends in relation to the method of

developing training statistics and the number of channels involved. 	 With the

 1979 data, the MCB method for developing training statistics was best, whereas x

_	 in 1980, the supervised method was best (particularly when all eight channels

were used).

The statistical analysis of results for individual cover types showed h

that, in general, there were significant differences between the L -2 and GML

and the L-2 and SBM classifiers, but that only the hardwood cover type 1	 j

consistently produced significant differences. between the GML and SDCHO

classifiers, for both the 1979 and 1980 data sets. 	 The tupelo generally had a a

much lower classification performance in 1980 than was the case for the 1979 Y

data, which we believe is due to phenological differences, with the tupelo

having a rather distjnct spectral characteristic in 1979 (which resulted in a

rather unique magenta appearance on the color infrared photos), whereas at the
x

time of year the 1980 data were obtained the tupelo was spectrally similar to

the other hardwoods.	 The claarcut areas (or regenerating hardwoods) were also

much more difficult to classify in the 1980 data than had been the case with a

the 1979 data set.,
a
i

i
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In summary, the results of the comparison among classification algorithms

indicated that:

1. The L-2 Minimum Distance algorithm produced significantly less
accurate classifications than were obtained using either the GML or
the SDCHO algorithms.

2. The SEM algorithm consistently resulted in higher overall classifi-
cation performances than were obtained with the GML algorithm,
regardless of the data set or training statistics being utilized.

3. Overall classification performances of 85-90% 1, based on test data
sets, were obtained for both the 1979 and 1980 ZMS -data when four
or more wavelength bands were utilized in conjunction with the
SDCHO classifier and either the Supervised or Multi:--Cluster Blocks
training statistics.

4. Phenological effects caused distinct differences in spectral response
for some cover types, especially tupelo, when comparing the 1979 and
1980 data.
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F. Effectiveness of the Principal C-oUEonents Transformation in Data Anal as

The next phase of this project involved the evaluation of the principal

components transformation on classification performance. Sometimes the

question has been raised as to why a "feature selection" procedure should be

used to reduce the number of wavelength bands for classifying a data set, as

opposed to simply using the first three or four principal components of the

data. Both "feature selection" and principal components are data dimension-

ality reduction techniques. The advantage of the principal components

transformation is that it is a very automatic procedure for reducing the

dimensionality of multispectral data. However, there are various methods

available for del'+ring the statistics used to calculate the principal component

transformations. This phase of the research was conducted, therefore, to

evaluate the use of principal component transformations, as compared to

selectedwavelength bands of untransformed data, for classifying forest and

other cover types, based on TMS data.

A Karhunen-Loeve or Principal Component Linear Transformation was applied

to the 1979 24,SS data set, using a 4% sample of pixels (every fifth line and

fifth column) to calculate the statistics, including a mean vector and

covariance matrix. The Karhunen-Loeve transformation then calculates the

eigenvectors (transformed components) associated. with this sample covariance

matrix, ordered in such a way that a maximum amount of data variability is

accounted for in descending magnitude along these components. One particular

advantage of the K-L transformation is that it uncorrelates the data in

N-dimensions, i.e., the transformed components are mutually orthogonal, so that

any redundancy of information caused by interband correlations of the original

channels is removed. Tables C-108 and 109 in Appendix C give the statistics of
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the original TMS data (sampled every 5th line and 5th column) and the resulting

eigenvectors (transformed components) and eigenvalues, respectively, calculated

from the covariance matrix of tl-,is sampled TMS data. The information content

associated with the ordered transformed components for the 1979 K-L transformed

data set is. shown in the form of a bar graph in Figure 4.17. As can be seen,

the first components alone contains over 50% of the variance or information

content in the data, and the first three components together contain 97.8% of

the variance.

A supervised se:: of training statistics was generated from the K-L

Transformed data and the same set of 19119 sample block test areas used

previously were again used in this phase of the study. The data were

classified using the 12, 01M, and SBCiO algorithms with the first 3 and 4 then

the first 4 components. Results from these classifications were compared to

those obtained from the "optimum" three and four channel subsets of the

original TMS data (as determined by *SEPARABILITY) and are summarized in Tables

4.22 and 4.23. Appendix C includes the classification performance tables

(Tables C-80-91) as well as tables of the statistical comparisons among the

results (Tables C-92-107).

In evaluating the results, it is apparent that the value of the K-L trans-

formation is strongly influenced by the classification algorithm used,

particularly when only three channels of data are involved. Table 4.22 shows

that when the L-2 algorithm is applied to the data, the classification

r	 performances were better for the transformed data, as compared to the
r

	

	 untransformea data, for all cover types except water. Table C--95 indicates

that these differences were statistically significant (a = 0.10) for all cover

types except tupelo and water. However, with the GML and SDCHO classifiers,

use of the transformed data resulted in significantly better classification
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Table 4.22. Canbined caq*parison table of the overall and individual cover
class classification performances between the ultransformed TMS
and the K-L transformed data for all three classifiers using
"optimum" three channel feature sets.

COVER DATA SET
CI,ASSIFIFI2

CLASS DESCRIPTION L2 (III, SEMD

Untransformed TMS (CH's 1,3 ,6) 76.9% 94.7% 96.5$
^PINE

K L Transformed Data (Caqponents 1,2,3) 89.0 90.1 91.2

69 .1 77.8 89.1 
HDWD Sane as above

80.9 85.9 91.3

45.8 21.2 22.0 ='
TUPE Sane as above

50..8 45.8 52.5

49.5 68.1 74.6
C7CUT Sane as above

61.1 47.8 50.8

43.4 62.3 68.3
PAST Sane as above

69.4 80.0 84.9
c

27.6 61.5

.

62.9
t	 CROP Same-as above

89.7 87.0 87.3

50.4 89.8 92.0 1
BOIL Same as above

75.2 74.3 70.6'

88.3 88.0 81.3

WATER Same as above
87.0 76.3 73.0

65.2 78.4 86.8 r
A,	 OVERALL Saiine as aWpe

80.0 82 .9 86.6

i,

e
a
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Table 4.23. Combined comparison table of the overall and individual qwr
class classification performances between the untransforntLW THIS

and K-L transformed data for all three classifiers using
max'"optimum" four channel feature sets.

cam DATA Srr
CLA.SSIFIF^t ,^,

CLASS DESCRIPTIM Li GML SSW

° Untransformed THIS (CH ' s 2,4,5,7) 85.5% 91.0% 92.9%
PINE

K-L Transformed Data (Caaponents 1,2,3,4 )	 89.2 92.0 92 .9

84.0 91.1 93.7

HOWD Same as above
86.1 88.7 92.4

55.1 58.5 57.6

j	 TUPE Same as above

63.6 36.4 28.8

68.6 60.5 58.9
OCUT Same as above

I
61.6 55.9 56.2

70.9 82.6 83.1

rAST Same as above
68.6 86.3 85.7

88.1 79.7 81.6
CROP Same as above

89.4 73.2 71.8

71.6 85.6 86.0
SOIL Same as above

75.5 69.9 69.7

85.7 78.7 79.7
3

WATER Same as above
87.0 81.0 81.0

81.8 88.1 90.0.
OVERALL Same as above

83.8 84.6 87.0
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performances for some cover types but. significantly worse classifications for

other cover types (see Tables C-97 and 99). Somewhat similar results were

found when four channels of data were used, as shown in Table 4.23, although

the differences between the untransformed and transformed performances

generally are smaller, particularly with the L-2 classifier.

The overall classification performances are compared in Tables 4.24 and

4.25. Table 4.24 shows that the transformed data resulted i* significantly

better performance Vian the L-2 classifier was used for both the three and four

channel situations. However, when the GML algorithm was used, the transformed

data had a better overall performance for the. three channel situation but the

untransformed data was better with four channels. For the SECHD classifier,

there was no difference for three channels and the untransformed data was best

when four channels were used. Table 4.25 shows that the differences between

classification algorithms generally were significant for either three or four

channels and with either the untransformed or transformed data sets.

Itese results could be summarized as follaws;

1. The K-L transformation (with 4 components) generally increased the
overall classification performance of the L-2 classifier, whereas the
overall classific-tion was significantly decreased for both the GML
and SECHO classifiers.

2. For individual cover types, the GML and SECHO performances tended to
be rather similar—both would either increase or decrease by a similar
amount for a particular cover class with a K-L transformation--whereas
the L2 classifier tended to react in the apposite way; i.e., when the
GML and SECHO classification cover class performances decreased with a
K-L transformation, the L2 increased, and vise versa (with the
exception of the CCUT and WATER categories).

3. The K-L transformation and the L-2 classifier improved all cover class
performances when using three channels (i.e., components) and most
cover class performances when using four channels.

-4. A K-L transformation and the GML classifier improved some (i.e., half)
of the cover class performances when using three channels
(components),, but when using four channels the classification
performances were often considerably better with untransformed data.

#6	 vi
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I Y 	 Table 4.24. Summary table of overall classification performances comparing the
untransformed TMS and the K-L transformed data sets for all three
classifiers.

Data Subset:	 "Best 3" Channels or 1st 3 Components #.

Untransformed TKS" Table K-L Transfonned Data Table
Ma-gsifiCZ (Channels 1.3.61 Location (CartcMMts 1 1 2.3) Location

12 65.2a (Table 80) 80.0%b (Table 83)

GML 78.4a (Table- 81) 82.9b (Table 84)

-	 SDCHO 86.8a (Table 82) 86.6a' (Table 85)

f

Data Subset:	 "Best 4" Channels or lst 4 Components

;.

tl

Untransformed TMS' / Table K-L Transformed Data Table
Classifier (Channels 2,4.5.71 cation Ca000nents 1 6 2.3.41 Location

12 81.8a (Table 86) 83,.8b (Table 89)

GML 88.1b (Table 87) 84.6a (Table 90)

SECHO 90.0 (Table 88) 87.0 (Table 91)

/Significantly different overall classification performances between the
untransformed and the K-L transformed data sets for each classifier is

f	 indicated by a different superscript (based upon a Newman-Keuls comparison
t	 with a = 0.10)

r

a

,t
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Table 4.25. Summary table of overall class performances for three algorithms (L2, GML,.
SW W) based upon four data sets.

Data Set Descri"ion
Overall Classification Performance

by Classifier (and Table Location)
M

L21-/ Q SF7M

3 Channels (1,3,6), Untransformed 65.2a (Table 80) 78.4b (Table 81) 86.8c (Table 82)

lst 3 Components, K-L Transformed 80.0a (Table 83) 82.9b (Table 84) 86.6c (Table 85)

4 Channels (2,4,5#,7), Untransformed, 81.8a (Table 86) 88.1 b (Table 87) 90.Oc (Table 88)

lst 4 Components, K-L Transformed 83.8a (Table 89) 84.6a (Table 90) 87.0b (Table 91)

Different superscripts between columns of the same row indicate significantly different
overall classification performances between classifiers (based upon a Newman-Keuls
comparison with a 0.10).
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5. In general, it appears that for classifications using fewer number of
channels (features) than is optimum for a particular data set (i.e.,
the intrinsic dimensionality of the data, which in this case is four,
a K-L tray-P. 	 will improve overall and most cover class
performances. However, if the number of channels is equal to the
intrinsic dimensionality of the data, the original untriansformed data
appears to provide- better class separability and subsequent
classification performance.

^.	 `-,4
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V SYNTHWIC APERTURE RADAR (STIR) DATA ANALYSIS

A. Data Collection

The second major phase of this research project involved the analysis of

the SAR data. The test site and the reference data used were the same as those

involved in the ZMS data analysis, and have already been described in Sections

III and IM.

Due to the aircraft schedules and equipment difficulties, we were

unsuccessful in obtaining radar data during the 1979 growing season. However,

Radar Mission No. 424 was successfully flown on June 30, 1980. This was the

first (and only) radar data obtained in support of this project. The sensor

used was the APQ--102 side-looking synthetic aperture radar, flown in the NASA

4B-57 aircraft at an average altitude of 60,200 feet MSG. Small scale

(1:120,000 scale) color infrared photography was also obtained of the study

site as part of this mission. The photography indicated that the area was

about 30-40% covered by cumulus clouds at the time the radar data were

d ^^a

obtained. It might be worth noting, however, that the radar data showed no

indication of the presence of clouds, thereby providing an excellent example of

the fact that radar does indeed provide effective penetration of clouds!

The APQ-102 side-looking radar is a fully focused synthetic aperture radar

imaging system. A horizontally polarized pulse of energy of 9600 MHz ±5 MHz

(Le.,, X-Band) was transmitted by the radar system, and the returning energy
k

K	 was recorded on separate holograms as horizontally (HH) and vertically (HV)
E

polarized responses. These holograms were then processed through an optical
t	 s

correlator by Goodyear Aerospace Corp. in Arizona, and the resulting images

recorded on positive film, which was the format in which the data were provided

by NASA to LARS.

yy

t
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The positive-image film was received at LARS on August 8, 1980. Black and

white negatives and positive prints were then made of the radar film for

handling and interpretation purposes.

Visual examination of the imagery indicated that there was a very distinct

dark band running the length of the imagery that was particularly distinct on 	 !
R

the HH polarization but also fairly noticeable on the HV polarization (see

Figure 5.1). It was also found that there was very little side-lap between

Flight Lines 1 and 2.. This lack of side-lap, in combination, with the image

quality difficulties, caused the analysis of the radar data to be confined to
d

Flight Line 1 for the area south of Camden along the Wateree River and to the

upland terrain in the region north of Camden. The radar data in these areas

were of satisfactory quality in both polarizations. In addition, the area

south of Camden corresponded very well to the area covered by the cloud-free

MSS data obtained in 1979 and again in August 1980.
9

Because of the problems with image quality and the lack of overlap between 	 j

flight lines, detailed analysis of forest cover as a function of look angle 	 4

(using the overlapping area of the two flight lines) could not be pursued with

the radar data set obtained for this study.

1

f

1
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Figure 5.1. Radar images of Flight Line 1 for the HH and HV polarizations.
The area for which MSS data were also obtained is outlined in
white.
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1. Digitization

To convert the radar imagery into a numwical format, the positive film

imagery was digitized using a mcrodensitoaeter. Both the HH and HV polariza-

tion images were digitized by the Lockheed Corporation at JSC.

'fihe parameters for digitizing the imagery were calculated using the

specifications of the radar system and an approximate scale of the imagery.

The scale was determined by making several measurements between points on the

radar imagery and USGS topographic maps. According to the characteristics of

the system, the ground resolution for both the across track and along track

resolutions was slightly less than 15 meters. This resolution performance was

therefore defined as the minimum allowable dimension for a ground resolution

element. Based on the 1:376,000 scale of the positive film image, it was

determined that an aperture setting of 40 um on the microdensitometer would

provide a digitized pixel having a spatial dimension of 15 meters, thereby

approxistin g the ground resolution of the SAR system. Both the sampling

interval and scan line spacing were set at 40 um to prevent any sidelap and

overlap of adjacent pixels, thus providing independence between pixels. If

there was any sidelap and/or overlap of the pixels, the variance between

adjacent pixels would have been reduced. This would not have allowed an

a

effective comparison among various classification algorithms, since some a

algorithms are 'more sensitive to differences in variance than others, and one

of' the basic assumptions of most algorithms is that the individual samples are

independent.	 {

Figure 5.1 shows the entire radar image of the test area for both the HH

and .'N polarizations. on the HH polarization there is a distinctive dark band'

j	 running through the entire flight line; covering approximately 30 percent of
b

E	 7

k

u
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the data set. The portion of the data covered by this dark band could not be

used, so the final area digitized was approximately 2.7 can x 11.7 can, which

represented an area of 6 miles by 27 miles on the ground. The 40 Um aperture

setting resulted in 674 samples per line and 2897 lines of data, for a total of

1,952,578 pixels.

2. Reformatting

The digitized radar data were recorded directly onto 7-track .apes, which

were later copied onto 9-track tapes in order to convert the SAR data into

LARSYS format. Some problems were encountered in the quality of the digitized

tapes because the same gain setting had been used to digitize both the HV and

HH polarizations, thereby causing the HH data to be saturated in response.

This was corrected by redigitizing the radar imagery, and in May 1981, the

final set of digitizedSAR data were received by LARS.

Since the HH and HV images were digitized independently, the data had to

be overlaid (i.e., share the same line and column-coordinates) before being

combined onto a single LARSYS data tape. Initial attempts were made to overlay

the entire flight swath of the two data sets using first and second order

polynomials. A set of 19 control points were identified, randomly scattered

throughout the data on each polarization using photo-interpretation techniques,

and were checked using an image correlation program. The overall results from

the models wereiven in terms of RMS (root meang	 square) error. 	 RMS errors

-- - - - -- -

'/The RMS error is an unbiased estimator of o 2 
for the model (Steel and Torrie,

1980). It is defined as:

n
RMq =	 E (li - L)2

i=1
where,,	 n-1	 ORIGINAL PAGE E3

L sample mean,	 Of POOR QUALITY

1. ith observation,
= total number of observations.

This expression defines the accuracy of a single observation.

*„d
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less than u.: ror oatn line ana column coorainates were consiaerea to give tie

accuracy needed for the image registration process (Smith, 1980). The results

of both the first end second order polynomials did not provide acceptable RMS

errors. Examination of the data indicated that a curvilinear orientation with

more than one inflection point existed in the along-track direction between the

data sets. This type of orientation may have developed through a combination

of variables such as caused by the dual receiving antennas of the APQ-102 radar

system and electronic equipment instabilities.

To compensate for the geometric variabilities, the data along the flight

line was divided into four separate blocks. Over 30 potential control points

were located in each block using the procedures previously mentioned. The

biquadratic transformation was applied to each block and RMS errors were

calculated. Table 5.1 gives the RMS errors for each block. These results

indicated that blocks Al, A2, and B1 could be overlayed to the desired level of

accuracy using their associated transfcrmations. Although block B2 did not

have an RMS error of less than 0.5, it was decided that the data in the block

would be overlayed using its derived transformation rather than divide the

block into smaller units or delete it from further analysis.l

To facilitate the development of the statistics for the SAR data, the

blocks of _overlayed data were combined into a single data set (i.e., to

simulate the original flight line)., The recombining of the blocks was

accomplished by visually locating overlapping points and reassigning the

starting line amp column locations.

'/After the data was overlayed, it was determined that the registration of
block B2 was extremely poor and at this point it was deleted from further
analysis.

.I

I `" 4

i
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Table 5.1. Results of the biquadratic transformation for the four blocks of
SAR data.

Number of
Maximum Acceptable Overall RMS Error Accepted

Block	 LiOeaE Error Lice	 Column CheckpQints

Al	 1.5 0.484	 0.487 20

`	 A2	 1.5 0.425	 0.491 20

BI	 1.5 0.486	 0.488 21
^a

B2	 1.9 0.639	 0.864 15

3.	 Geometric Adjustment

After the registration process, a second SAR data set was produced having

a reduced spatial resolution of 30 m. The purpose of this was two-folds	 1) to

match the spatial resolution of the simulated Thematic Mapper data set, and

2) to reduce the amount of speckle associated with the SAR data. 	 The spatial

resolution was degraded by averaging pairs of neighboring pixels together.

Since the original digitized SAR data set had a spatial resolution of approxi-

mately 15 m, the averaging of cells of four pixels produced a degradr.4 data set

having a spatial resolution of 30 m. A separate data tape was then constructed

for the 30 m SAR data set.	 The steps and considerations used to degrade the	 t

spatial resolution were similar to those used for the MSS data (batty, 1981).	 {
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C. Image Interpretation Results

Various forest cover types were identified on color infrared photography

taken at the same time the SAR data were obtained. The forest cover types

identified on the aerial photography included old growth mixed hardwood, second

growth mixed hardwood, water tupelo, and pine (primarily slash and loblolly

pine). In addition, there were areas where the forest had been clearcut, as

well as pasture areas, crop land, areas of exposed agricultural soil, and water

features that were identified on the photography.

Following the photo interpretation, stands of the various forest and other

cover types were located on both polarizations of SAR imagery. The two

polarized images then were analyzed to determine if tonal and/or textural

differences existed between the cover types, The tonal characteristics were

determined by evaluating the relative speckle for each cover type. The tonal

and/or textural differences between the HH and HV polarized images then were

compared and evaluated for each cover type. An attempt was made tai determine

why particular differences did occur.

The initial analysis of the SAR imagery depicted a banding effect which.

was particularly noticable on the HH image. A much more subtle tonal variation

that seemed to be related t:3 the range angle could be observed, particularly on

the HV image. Both of these effects can be observed in Figure 5.1, which shows

the data for both polarizations of the P Aire flight line. Both effects had a

significant impact on the ability of the interpreter to determine various cover

types using the radar imagery alone. Both the banding and tonal variation

effects were not due to any characteristics of the ground terrain, but were due

strictly to variables inherent in this particular data collection and

processing system. Both effects were also quite evident on several other data

sets obtained at the same time over the other flight lines. It should be

'-J
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pointed out that the overall lack of contrast in the HV imagery may have been

due to the parameters involved in obtaining and processing this particular data

set and not necessarily an inherent characteristic of HV polarized imagery..

Deciduous forest cover appears to have a characteristic light tone on the

HH image, whereas on the HV image these deciduous areas have a darker tone.

This was most evident in the area of the alluvial plain where dense deciduous

forest cover was located (see Figure 5.2). The dense deciduous forest stands

located in small ravines were identified on both polarizations due to tilieir

distinctive spatial patterns (see Figure 5.3). VA se patterns were highlighted

because of the high response given by the deciduous forest cover growing within

the ravines and perhaps also highlighted in part by the slopes of the ravines

pu § acting as angular reflectors. Due to the contrast difference between

the two polarizations these patterns were more distinctive on the HH image than

on the HV image.

One of the most distinct differences observed in the imagery was -a

difference between deciduous and coniferous forest cover that could be observed

as a function of polarization. As shown in Figure 5.2, there is very little

difference between deciduous and coniferous forest on the HV image, on the HH

image however, the deciduous forest cover has a distinct light tone whereas the

coniferous forest cover has a relatively dark tone. Thus, deciduous and

coniferous forest cover can be easily separated on the HH imagery due to the

distinctive tonal differences, even though these cover types are very difficult

to separate on the nJ imagery.

Other features such as older clearcuts and fields having emergent vegeta-

tion tend to look very similar in both tone and texture on both polarizations.

Although recent clearcuts are very dark in tone in both polarizations as



r^

tn
v

> r+
x •^

r M

v
w
w

b

O

.j:
In

Q%

Q1 .7

^ Q

4J

011.1

N O
—4 w
w

.-1

CL u
I	 4J

r-4 w

10 O
Uw

41

ul

0
^^3u

'D

N
to

ORIGIN,"'.'. PAGM i$

OF POOR QUALITY
u
a

^ U
C la

Q)	 $4	 v .^	 v ro
C	 'J	 > 4	 U v

k1	 N	 m 0	 v .^
r.	 to	 A to	 ►4 U

111

	 I

+^	 U
C	 vv
	

ro w	 i4
v	 ^w	 4-4	 b
t7+ to b w
	

^'1 O 'L7 C1
►, Q. v v
U O
	

0 U

41 U



URIGMAL PAGEIS
OF POOR QUAL ITY

W

11?.

',

ever	 4"10

 a

• • 
•2

immbh,,-

F41

O

^, ro
N

O

`^ o

. ter' ^ ^ ^ • .a! ►̂
,4'! _ ^ •^

i.

v

`8

t `j
v

x .-4
.4
F
M

Q) cA

N

I '°u ^
cn O v

O
vvUnro
cn `4 v ►a
C. U N
41 v O c

TI 44 •14

v
	 v .-4	 vr.	 ►4 11
	 C

ro O
a
	

L^ N

Ov 3
v ^v
X N
-^ ro
G .c:

Ln

v
►4

W
a^
	

w
^e
a



^ '-J

,113

coniferous and mixed cover types on the HV imagery. Water and smooth bare soil

features have a distinctive black appearance on both polarizations due to the

specmlar reflectance of the emitted radar signal away from the antenna.

However, by using the shapes and speckling characteristics of some agricultural

fields, water and fields with bare soil usually can be separated.

It should be noted that of the features identified on the color IR photo-

graphy, several could not be identified on the SAR imagery. Old growth and

second growth hardwood stands could not be separated. Water tupelo was very

easy to identify on the color IR photography because of its distinctive color,

but could not be identified at all on the SAR imagery. Table 5.2 summarizes

the tonal and textural characteristics of the various forest and other cover

types examined in this study. Examples of the tonal and textural character-

istics are illustrated in Figure 5.4. A more detailed characterization of the

appearance of the various cover types in each polarization is shown in Table

5.3. Table 5 .3 is an expanded version of the summary in Table 5.2, and

provides additional information concerning the variability in appearance of

some of the cover types.

In summary, the qualitative analysis of the . dual-polarized SAR imagery

showed that certain forest cover features are more easily identified in one

polarization than the other, while many non-forest features look very similar

in both polarizations. Discriminating betweein coniferous stands and deciduous

stands was easier on the HH image than on the HV image. However, this does not

of th t th TM 1	 ed '	 bett	 Th hadow d	 f	 dui er a	 e	 po Cu. e, image is 	 eL	 e s	 an edge of ect a to

extreme differences in vegetation height help delineate the boundaries of

clearcuts, and are much more prevalent on the HV image. Neither polarization

is consistently better for identifying the various forest cover types examined.

t'
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Table 5.2. Tone and texture characteristics of various cover types in relation
to polarization of the radar imagery.

Tone Texture2/

Cover Tvoe Im By Si IN

Hardwood white light gray grainy grainy

Pine dark gray gray speckled speckled

Mixed Pine-Hardwood dark gray gray grainy speckled

Clearcut dark gray dark gray grainy grainy

Bottomland scrub dark gray dark gray speckled speckled

Pasture dark gray dark gray grainy grainy

Emergent Crops dark gray dark gray grainy grainy

Bare Soil black black smooth smooth

Water black black smooth smooth

, `,4

1/Tone: (A) black; (B) dark gray; (C) light gray; (D) white

/Texture: (1) smooth; (2) grainy; (3) speckled

(These letters or numbers indicate the examples of these descriptions shown
in Figure 5.4)

The following points summarize the results obtained during the analysis:

1. Deciduous forest cover is easily identified on the HH image due to a
distinctive light tone, whereas on the HV image these areas have a
darker tone. (Figures 5.2 and 5.3)

2. Coniferous forest cover is dark in tone on the HH image and is some-
what lighter in tone on the HV ia-nage. (Figure 5.2)

3. Deciduous and coniferous forest cover are easily separated on the HH

image due to their distinctive tonal differences, but are difficult to
separate on the HV image. (Figure 5.2)

-3
4. Dense deciduous forest stands located in ravines are easily identified

on both polarizations because of the topographical pattern being high-
lighted by the response of the deciduous stands and partiallyhigh-
lighted by the slopes acting as angular reflectors. These patterns
are more distinctive on the HH image than on the HV image. (Figure
5.3)
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Table 5.3. Descriptions of cover types identified on X-Band SAR imagery.

Cover Type	 HH
	

HV	 Texture
	

Comments

!

Hardwood Shadow will appear to the vest of

1

Very light in tone; Medium In tone; Some speckle present
light gray to white gray on near look on HH; slightly stands and edge reflections will

,t
F

on imageryg	 y side	 light,	 g	 grey smooth to grainy.. In- appear on the east side of stands,
on far look aide crease in speckle if non-forested land is adjacent.

on HV. Most stands appear around drainage
ways, water ways or on bottom land.
Somewhat irregular in shape.

Regenerating Gray to light gray; Gray throughout Grainy to speckled If forested land is adjacent to the r
Hardwood some areas may area on both the HH and clearcut areas, the east side will I

appear almost white. HV images be in shadow while edge reflections r`,

will appear on west side. Usually
irregular in shape and may have a
roads leading to stands. Blocks
of trees may also be present within i
clearcut area.

F
A41

RRecent Dark in tone; dark Varies in tone; Grainy; may have re- Same as Regenerating Hardwood.
Clearcut gray on image dark gray (almost latively large white

black) to Sight patches within area.

Pine Dark gray; young Gray in tone; Speckled; similar on If non-forested land is adjacent to
t

stands and mature young stands both young and mature the clearcut areas, shadows will ''
stands similar in appear to be dark- stands. appear to the west of stands and
tone. er in tone than edge reflections will appear on the

mature stands. east side of stands. Usually irreg-
ular in shape and may have roads 1
leading to stands.

1

Pasture Dark gray through- Dark gray to gray Somewhat grainy on HH Somewhat regular in shape; if sur-
out field. in tone. to a more speckled rounded by forested land, the east

appearance or„ HV. side will be in shadow and edge re-
flections will appear on the west
side.	 Individual trees may be pre-
sent within the field.

t
Bare Soil Black to darkrag	 y Black to dark gray Fairly smooth. to somey Ae	 lar in shape. If surrounded bRegular	 p	 y

in tone. in tone. graininess; depends forested land, edge reflections
on rnw direction or, will appear on west side.

t emergence of crops.
^	 ^

t
E	 Crop Light gray to white Light gray to Smooth to ,grainy de- Same as Bare Soil. u

In tone. white in tone. pending on the amount
i of crop cover present.

3

Water Black in tone. Black in tone. Smooth. Irregular in shape (lakes) or very d

curvelinear (rivers). Edge reflec-
tion will appear on west border.

Urban Light gray with some Gray with some Very speckled which No definite boundary; many roads {
white splotches. white splotches. decreases as one converging in the same general t

moves away from the vicinity.
center of urban area.

a

Tone
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5. Older clearcuts and fields having emergent ve wjetation tend to look
very sbular in both tone and texture on both polarizations. (Figure
5.2)

6. Water and smooth bare soil features have a distinctive black
appearance on both polarizations due to the specular reflectance of
the emitted radar signal away from the antenna. (Figure 5.2)

7. Tupelo stands could not be distinguished from the surrounding hardwood
forest on either the HH or HV imagery.

8. Differences in stand density and size class of forest stands could not
be defined on either the HH or the HV polarization of the SAR data.

9. There is a distinctive banding effect on the HH image and a tonal
variation related to range angle on the HV image which impact the
ability of the interpretor to determine various cover types. These
effects were also evident on other data sets of different flight
lines. (Figure 5.3)

i

j
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D. Cl ` ssifiga4• ion Results

The next phase of the analysis involved computer classification of the SAR

data. It was hoped that such a quantitative analysis might allow differentia-

tion among cover types that could not be separated visually. Another objective

was to determine if computer-aided analysis techniques that had originally-been

developed for MSS data could be effectively utilized wither data. In

addition, the effectiveness of the SDCHO classifier was to be evaluated for

potential use with the SAR data, since this classifier utilizes both the

"spectral" and spatial (e.g., radar speckle) information content in the data.

Due to the unique characteristics of the SAR data (as evidenced in part by

the coherent speckle), a supervised classification was performed. In order to

compare the SAR results with a classification of the ZMS data, training and

test fields were identified in both data sets throughout the area south of the

city of Camden. On the 30 m data, this area consisted of 300 by 250 pixels,

representing an area of 6 by 5 miles.

Both the training and test field locations were identified using the

OOMTAL Vision/20 (a digital image display device) Zoo identify enough fields

throughout the data set, each training and test field was limited in size to

the "average" field size. The average field size wasdetermined for each cover

class by calculating the total area of each cover class and then determining

the number of tracts of land that were represented by that cover class.

After identifying fields within each cover class, the fields were randomly

divided into their training and test groups. The training fields were then

divided into spectral classes within each cover class, if possible, based on

i

e

71

n	 3

t-	 the tonal variation within each cover class. Histograms were developed to
s

determine if there were a sufficient number of training samples to accurately
f

represent each spectral class. Statistics (i.e., mean vectors and covariance

Ll
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matrices) were calculated for each spectral class for use by the classification

algorithms.

Since the SAR data had a distinct tonal variation across the flight line

on the HV image (due to system characteristics) , a statistical evaluation was

performed to determine if the SAP, training data should be separated into j

spectral classes based on the location of the individual fields across the j

flight line.	 To determine the significance of the tonal variation across the

flight line, the flight line was first divided into six discrete strips.

Fields of the dominant forest cover class, which was the hardwood class, were

identified within each strip and their means and standard deviations

calculated.	 Figure 5.5 illustrates the means and standard deviations for each

strip for both the HH and HV channels, 	 From this figure it is shown that the s

means are fairly uniform across the strips on the HH polarizatim, 	 However,

the means of the individual strips are increasing across the flight line on the

HV polarization, thus graphically illustrating the tonal variation previously

observed in the cross-track direction on the HV imagery.

An analysis of variance was performed on the data to determine the
9

significance of the tonal variation.	 The means of the strips for the HH image }

were found not to be significantly different at a = 0.05.	 However, the strip

means of the HV image were found to be significantly different. 	 Therefore, w
based on the Duncan's Multiple Range test, those fields which had column

coordinates less than 240 on the 15 m SAR data and 120 on the 30 m SAR data

were grouped into one set of "spectral" classes and those fields whose j
y

coordinates were greater were grouped into a second set of "spectral" classes. r

Table 5.4 shows, quantitatively, the differences in means and variances for the A

various cover types due to these look angle effects. 	 Table 5.5 lists the

----L_-	 _^	 w_^__^-_ten	
-'-----	 -'------^-- 	

--_cL	
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Table 5.4. Means and Standard Deviations for each cover class for both the
left and right portions (i.e., spectral classes) of the 1980 SAR
data sets.

15m 30m
HH W HH W

Cover C1WS Left _ Right Left Right Left Right eft _Wht

SOIL X 6.4 13.8 6.8 16.6 6.7 13.4 6.7 17.0
S 2.7 6.2 3.3 10.7 1.9 4.4 1.7 8.7

CROP X 22.1 14.6 26.9 18.1 21.9 15.4 26.3 19.0
S 11.4 8.4 17.3 14.4 7.6 6.6 12.3 11.1

IIDWD X 42.4 40.7 44.0 52.5 43.4 41.1 44.0 53.2
S 21.7 21.6 32_.6 38.1 15.0 14.1 21.5 25.1

FUM X 33.4 34.9 37.2 56.3 33.4 34.4 36.9 56.3
S 16.6 16.6 22.9 33.2 11.0 11.0 14.5 19.5

PINE X 10.4 14.4 19.4 39.1 10.8 14.6 20.0 39.2
S 5.3 6.9 11.8 23.1 4.2 4.7 8.2 14.1

PAST* X 13.4 42.2 14.0 ' 43.1
S 6.8 24.6 5.5 16.7

s
WATR X 38 4.3 6.2 6.9 46 5.0 6.4 7.5

S 1.3 2.0 3.8 2.4 2.6 3.0 3.0 1.9

*The pasture class only had representative fields on the right portion of the
flight swath.
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both sides of the flight line), and the mmibers of pixels involved in the
l

training and test data of both the SAR and MSS data sets.

The classification of the SAR data was, of course, limited to the two

channels of data available (i.e., the two polarizations). Three different

classification algorithms were tested — the GML (Gaussian Maximum Likelihood)
6

classifier, the Per-Field classifies:, and the SECHO (Supervised Extraction and

Classification of Homogeneous Objects) classifier. The latter two are both

contextual classifiers, in that they base the classification decision on both

the mean and the variance of the spectral response over an area (a training or

test field defined by the analyst in the case of the Per-Field classifier, or

the "Homogeneous Object" defined by the algorithm in the SECHO classifier). In

addition, both the 15 m and the 30 m SAR data sets were classified in order to

evaluate the effect of spatial resolution on the SAR data. The 30 m SAR
l

results were then compare. to 30 m ZMS data 'results in order to evaluate the

effectiveness of the SAR data as compared to the ZMS data.

	

The SAR ;15 m data was classified using each of the three classification	 j

algorithms, and the results are given in Table 5.6 below. Figure 5.6 	 1
3

graphically depicts the overall classification results for the three

classifiers. The overall differences between the three classifiers were

significantly different, and, as shown in Figure 5.03 , the classifiers that use

'

	

	 spatial as well as spectral information (i.e., the PER-FIELD and SECHO

classifiers) , increased; the overall classification performance l'yy a factor of

almost two as compared to the GML per-point classifier. However, the overall

performance for all three_ classifiers was rather law. On a class by class
i

basis, the results are rather mixed. Hardwood, regenerating hardwood

(previously clearcut areas),, crop and soil have much higher(P	 Y	 P	 g	 performances for

both the PER-FIELD and SECHO classifiers than were obtained using the GML

1
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Table 5.6.	 Test

A

field classificatipn results
`	 for the SAR 15 m data.

Cover Class

Classifier

QM,	 PER-FIELD SDCHO

Pine 45.7b	 37.4a 52.9c

Hardwood 37.2a	 93.6b 99.4c

Regen. Hdwd. 28.3a	 70.1' 57.9b

Pasture 25.1b	 48.8c 16.Oa

Crap 19.9a	 35.3b 33.4b

soil 50.1a	 93.6b 94.1b

Water 83.9b	 82.6b 58.0a

t	
Overall 35.7a	 68.4c 64.3b

J-/Different superscripts indicate significantly
different classification performances between
the classifiers, based on a Newwnan-Keuls
ccgwison with a= 0.10.

classifier. However, although the performance for hardwood and soil was very

high for both of the contextual classifiers, the performances for crop and

pasture were law. The other cover types had .nixed performances between the

classifiers, and their performances were generally very low. For pine and .

pasture, the poor performances were attributed to the fact they had very

similar radar returns and the classification algorithms could not discriminate

between these two classes. 	 This similarity can be seen in Figure 57, which

shows the mean ± one standard deviation of the radar return for each of

-- --

'/Appendix D contains performance tables showing commission and omission errors
between cover types for all data sets and classifier combinations discussed
in Section V of this report.
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Figure 5.6. Overall test field classification performances for three classi-
fiers using the 15 m SAR c;`ta,
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"spectral" training classes defined. Many "spectral" classes within a single

cover type, as well as different cover types clearly had very similar radar

returns in both polarizations.

The water class had fairly high classification performances for both the
n

GML and PER-FIELD classifiers, but a much lover performance for the SECHO

classifier. This poor performance by the SECHO classifier was due to the

algorithm,, 'and more specifically, the "moving window" portion of the classifi-

cation process. Since the majority of the water class was comprised of the

Wateree River and the river is approximately 70 m in width, then the width of
1

the river was represented by only six pixels for the SAR 15 m data set. The

moving window was three pixels wide and thus, many times included boundary

pixels. The resulting radar return recorded within the 3 pixel x 3 pixel

window could be similar to that of other classes, resulting in misclassifica-

tions.

After the 15 m SAR data had been classified, the same three algorithms

were used with the 30 m SAR data. Approximately the same areas in both data 	 3

sets were used for training and test fields. The test field performances of

the SAR 30 m data for the three classifiers are shown in Table 5.7 and in
	

1

Figure 5 . 8. These results show that both the SECHO and PER-FIELD classifiers

performed significantly better than the GML classifier. All three overall

classification performances were found to be significantly different from each

other.	 As seen in Table 5.5, the hardwood cover class had a very high

A	 performance for both the PER-FIELD and SECHO classifiers, and the hardwood, 	 a
^	 9^	 M

regenerating hars„ood, pasture, and crop classes all had much higher classifi-

cation accuracies- for both the PER-FIELD and SECHO classifiers than the GML
i

classifier. However, the pine coyer class had a very low classification

performance for the SECHO classifier,. This was attributed to the large number

5

YC

t



Table 5.7 . Test field classif icati n results
for the SAR 30 m data.

128

Cover Class GML

Classifier

SECHOPER-FIELD

Pine 65.5b 90.4c 53.8a

Hardwood 52.6a 93.3b 97.9c

Regen., Hdwd. 45.0a 66.1b 63.6b

Pasture 19.7a 41.9b 43.6b

Crop 85.8a 34.6b 50.9c-

soil 71.0b 46.4`i 65.Ob

Water 62.7b 70.8b 39.8a

Overall	 45.9a	 63..3b	 65.8c

/Different superscripts indicate significantly
different classification performances between
the classifiers, based on a Newman-Keuls
comparison with a = 0.10.

of pine test pixels that were classified as pasture (see Appendix D) . All

three classifiers performed poorly in discriminating pasture and pine from each
i

other, with the GML classifier having a particularly low accuracy for pasture. 	 j

Because the radar returns for the soil and water classes were very similar (as

shown in Fagure 5.9), there was considerable confusion between these two

classes. The low PCC performance for the water class using the SECHO
i

classifier was again due to the "window size" utiliz(-d in the SECHO classifier,
i

as well as the spatial resolution of the pixels. In cogmring' Figures. 5.9 and

5.7, it is clear that the degradation of the spatial resolution to 30 meters

caused a distinct decrease in the variance of the radar returns for most of the

"spectral" classes involved in these classifications, which should cause a

higher classification performance for the 30 m data when using the GML	
s!

algorithm.
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Figure 5 . 8. Overall teat field classification performances for three classi-
fiers using the 30 m SAR data.
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The overall POC performances for the 15 m SAR and 30 m SAR data using the

three classifiers are compared in Figure 5.10. The results of the statistical

evaluation between the data sets are given in Table 5.8. The overall classifi-

cation perf ormances between the two data sets were found to be signif icantly

different for the (III, and PER-FIELD classifiers, but they were not signif i-

cantly different for the SIXHO classifier.

For the GML classifier, these results show that overall performance tends

to increase by degrading the spatial resolution, as anticipated. This is

because the spectral variability associated with each cover class is reduced in

the 30 m data, and the amount of overlap between the "spectral" distributions

is therefore reduced, thus reducing the probability of misclassification.

ne comparison of the two data sets for the PER.-FIELD and SECBO classi-

fiers show that the overall results are rather similar, with the performance of

the 15 m SAR data set being slightly higher than the 30 m SAR data set when

using the PER-FIELD classifier. These results would tend to indicate that by

Table 5.8. Statistical comparison between the
overall classifications of the 15 m
and 30 m SAR data sets,f, each
classification algorithm.

_ Data Set

Classif *	SAR 15 m	 SAR 30 m

Cam,	 35.7a	 45.9b

PER-FIELD	 68.4b	 63.3a

SECM	 64.3a	 i5.8a

Different superscripts indicate significantly
different classification performances between
the data sets, based on a Newman Keuls
caparison with a= 0.10.
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degrading the spatial resolution, overall classification performances may not

increase when using contextual classifiers. However, because both contextual

classifiers performed much better than the GML classifier with either spatial

resolution data set, it would suggest that algorithms that incorporate both

spectral and spatial information in the classification decision will produce

significantly increased classification performances when using SAR data.

The classification performances by cover class for the three classifiers

examined and for both the 15 m and SAR 30 m data sets are shown in Figure 5.11.

The hardwood (HI=) class has a high classification performance for both data

sets using both the PER.-FIELD and Sc'X W classif iers. Also, the crop and

regenerating hardwood (RGHD) cover classes had nigher performances using either

of the textural classifiers than when the GML classifier was used. Such

results would be expected, since hardwood, regenerating hardwood, and crop

cover classes all had relatively large "spectral" variances in the SAR data (as

shown in Figure 5.7 and 5.9), and both the PER-FIELD and SECHO classifiers can

incorporate this information along with the spectral information to better

separate the "spectral" distributions.	 However, the classification

performances of the regenerating hardwood and crop classes were relatively low

for all three classifiers due to misclassification with other vegetation

classes having similar "spectral" distributions..

The cover classes pine, pasture, soil, and water had irregular patterns of

classification performances. As previously mentioned, pine and pasture had

similar levels and distributions of radar return, in _spite of the significant

physical differences between .these two cover types. The similar radar data

i

values caused considerable confusion and misclassification between these two

cover types for all three classifiers.
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100

CROP HDWD RGHD PAST PINE SOIL WATR
Cover Class

I _ G M L	 a - PER-FIELD	 I - SECHO

30 m SAR Data

CROP HDWD RGHD PAS1 PINE SOIL WATR
Cover Class

® -GML	 U - PER -FIELD	 8 SECHO

F-igure 5.11. Classification performances by cover class for the three
classifiers, and for both the 15 m and 30 m SAR data sets.
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For the 30 m data, soil had a somewhat higher classification performance

with the GML classifier than with either contextual classifier. However, when

using the 15 m data, soil had a much higher classification performance for the

Pat-FIELD and SECHO classifiers than the GML classifier. The pixel-to-pixel

variation in the 15 m data set was apparently very useful in helping the

contextual classifiers to identify bare soil correctly. By degrading the

resolution, the amount of pixel-to -pixel variation was reduced within each 30 m

pixel in the fields of bare soil.

The 30 m TMS data covered approximately the same area as both the 15 m and

30 m SAR data sets. The training and test fields were generated using

procedures that were similar to those used for the Std data and representing

the same cover types. Nowever, in some cases, the field locations for a

particular cover type were not the same between the SAR and `TMS'data sets due

to changes in the cover type (e.g., bare soil to crops) as a result of

differences in data collection dates (i.e.,, SAR =. June 30 versus TMS = August

29, 1980). Eight channels were available for classification; however, only the

best three channel combination was used in the classification. Channels 3, 5,

and 8 ( 0.63-0.69 um, 1.00-1.30 um, and 10.4-12.8 Pm, respectively) were

identified as the best three channel combination using divergence as the r

separability measure between all possible combinations for the given spectral.

classes.

The overall and cover type classification performances for the three

classifiers using the 30 m TMS data is given in Table 5.9. For all three

classifiers, the overall classification performances were greater than 90

percent and were found to be significantly different. These results indicate

that for a limited area and for the given cover classes, a reasonable classifi-

cation of the test could be performed using only three channels of TMS data,

l
m



I
Table 5.9.	 Overall and cover class classification

test performances for each classifier,
using the 1980 30 m Ms data (supervised
training statistics).

Cover Class	 GM

Classifier

PER-FIELD	 SECHO

Pine	 75.4a 73.9a	 75.4a

Hardwood	 91.2a
100..00 	 96.9b

Regen	 Hdwd.	 86.7a 89.6a	 89.1a

Pasture	 87.1a 94.1b	 91.5ab

Crop	 95.3a 100.0b	 95.1a

Soil	 99.3a 100.0b	 97.6a

Water	 94.8a 93.8a	 99.5b

Overall	 91.1%a 96.5%c	 94.3%b

11Different superscripts indicate significantly different
classification performances between the classifiers,
based on a Newman-Keuls comparison with a = 0.10.

136

.,. -A

a ~i 4

In addition, the overall classification performances for both the PER-FIELD and 	 s',
1

SECHO algorithms were significantly higher than the GML performance. This

again emphasizes the point that by using additional information (i.e, `u

texture), classification performances can be improved.

The overall classification performances for the 15 m SAR, 30 m SAR, and

30 m TMS data sets using the three classifiers are given in Figure 5.12. The

statistical comparisons, by cover type and for the overall classification

performances are given in Table 5.10. For all classifiers, the 30 m TMS data

set performed significantly better than either the 15 m or 30 m SAR data sets.
Y

This was found both for the individual cover types and for the overall

classification comparisons. However, in evaluating these results comparing SAR

and TMS data, one must 'keep in mind that the classification of the SAR data

It

ILI
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involved only two channels of data of a single wavelength. If SAR data from

one or two additional wavelengths were available, it is conceivable that the

SAR data could provide results as good as or better than those obtained with

the ZMS data.

The major results for the quantitative analysis of the SAR data can be

summarized as follows:

1. The HH and HV polarized data sets had independent geometric distor-
tions which required special preprocessing techniques to successfully
digitally overlay the two sets of data.

2. Significant improvements in overall classification performances were
achieved using both the PER-FIELD and SSM classifiers versus the GML
per-Faint classifier for both the SAR and TM.S data sets.

3. Pine and hardwood cover classes could be reliably differentiated on
the SAR (as well as the ZMS) data.

4. Pine and pasture cover classes, and hxxe soil and water cover classes
were consistently confused with each other on this X-band SAR data.

5. There were statistically significant differences in radar return
across the flight--lire due to look-angle effects for many cover types,
particularly in the HV polarized data.

6. Degrading the spatial resolution of the SAR data (from 15 m to 30 m)
caused the overall percent classification performance for the GMT,
per-point classifier to increase due to the better separation of the
probability density functions associated with some of the cover types.
However, degrading the spatial resolution, had either no effect or a
negative effect on the overall classification performance of the
contextual classifiers (i.e., P 	 FIELD or SECHO).

7. The various threshold parameters (i.e., window size, homogeneity, and 	 U
annexation) used in the SECHO classifier are data dependent and are
atr:ongly influenced by the size, shape, and textural characteristics
of the cover types being classified.

^R
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_..
VI. StIN1r1AFtY AMID RBOOMMENDATIONS: 	 .

A. Summary

During the course of this investigation, the qualitative and quantitative

analysis of both the Thematic Mapper Simulator (TMS) and the Synthetic Aperture 	 ~^

Radar (SAR) data produced a number of results and conclusions, which can be

summarized as follows:

Spatial Resolution ,Study,
r

1. The use of successively higher spatial resolution data resulted in
lower overall classification accuracies when classifications were
conducted with a "per-point" GML classifier.

2. Higher classification accuracies were achieved with the "per-point"
classifier when using 50 x 75 meter (as opposed to finer) spatial
resolution data in cover classes associated with relatively high
levels of spectral variability across adjacent pixels (i.e., old-age
hardwood, second growth hardwood, pine forest, and clearcut areas).

3. Differences in classification accuracies achieved with data of
different spatial resolutions were not significant (a = 0.10) for
cover classes associated with relatively low levels of spectral
variability across adjacent pixels (i.e., pasture, crops, bare soil,
or marsh vegetation)

,q
Kaveband B aluation S

1. Use of four wavelength bands produced considerably better classLfica
tion results than when only two or three wavelength bands were
utilized.

2. Maximum overall classification performances were obtained when all
wavelength bands were utilized.

3. The increase in overall classification performance when more than four
wavelength bands were utilized was minimal, therefore indicating that
an appropriate set of four wavelength bands provides the best
combination of relatively high classification accuracy and minimal
computer time.

4. Classifications using the 1979 data set and various three and four
wavelength band combinations indicated the importance of both the
visible and near-infrared portions of the spectrum for accurately
classifying various forest and other cover types.

5. These results, which were primarily focused on differentiation of
various types of healthy vegetative cover, did not indicate any

.r
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Particular advantage for using wavelength bands in portions of the
spectrum beyond those to which Silicon detectors (used in Multi-Linear
Array systems) are sensitive.

6. The Supervised method of developing training statistics provided
slightly better overall classification results than the Multi-Cluster
Blocks technique for both the 1979 and 1980 data sets. It would
appear that for situations where accurate, reliable reference data
(i.e., "ground truth") is available over the entire study area and for
data having fine spatial resolution, the Supervised technique is
generally best. It is particularly useful for waveband evaluation
studies involving different cover types.

7. Overall classification accuracies based on the "best 3" wavebands
defined by the average transformed divergence values were signifi-
cantly higher than those based on the "best 3" wavebands defined by
the ,minimum transformed divergence values.

Cowariz= Among Qlassificat m Algorithms

1. The SECHO algorithm consistently resulted in higher overall classifi-
cation performances than were obtained with the GML algorithm,
regardless of the data set or training statistics being utilized.

2. The L-2 Minimum Distance algorithm produced significantly less
accurate class t,cations than were obtained using either the GML or
the SECHO algorithms.

3. Overall classification performances of 85-90%, based on test data
sets, were obtained for both the 1979 and 1980 TMS data when four or
more wavelength bands were utilized in conjunction with the SEXW
classifier and either the Supervised or Multi-Cluster Blocks training
statistics.

4. Phenol.ogical effects caused distinct differences in spectral response
for some cover types, especially tupelo, when comparing the 1979 and
1980 data.

r "h

Principal Commnents or arhunen-Loeve (K-L)_Transformation of the TMS Data

1. The K-L transformation (with 4 components) significantly decreased the
overall classification performance for both the GML and SECHO
classifiers, but the overall classification for the L-2 classifier was
generally increased.

2. For individual cover types, the GML and SECHO performances tended to
be rather similar (both would either increase-or decrease by a similar
amount for a particular cover class with a K-L transformation) but the
L2 classifier tended to react in the opposite way; i.e., when the GML
and SECHO classification cover class performances decreased with a K-L
transformation, the L2 increased, and vice-versa (with the exception
of the CCUT and WATER categories)

)

I

a

,

f
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3 A K-L transformation and the 11-2 classifier improved all cover class
perf-ormances when using only three channels (i.e., components) and
most cover class performances when using four channels,

4. A K-L transformation and the GF L classifier improved some (i.e., half)
of the classification performances for the individual cover classes
when using three channels (components), but when using four channels
the classification performances iaere often considerably better with
untransformed data.

5. In'general, it appears that for classifications using fewer number of
channels (features) than is optimum for a particular data set (i.e.,
the intrinsic dimensionality of the data, which in this case is four),
a K-L transformation will improve overall and most cover class	 j
performances. However, if the number of channels used is equal to the
intrinsic dimensionality of the data, the- original untransformed data
appears to provide better class separability and subsequent
classification performance.

Qualitative Analysis of the SAR Data:
3

1. Deciduous forest cover is easily identified on the HH image due to a
distinctive light tone, whereas on the HV image deciduous forest cover
has a darker tone.

i

2. Coniferous forest cover is rather dark in tone on both the HH and HV
polarization imagery. Therefore, deciduous and coniferous forest
cover are easily separated on tae HH image due to their distinctive 	 t
tonal differences, but are difficult to separate on the HV image.

t

3. Dense deciduous forest stands located in ravines are easily identified
on both polarizations because the topographical pattern is highlighted	 i
by the response of the deciduous forest cover and also highlighted by
the slopes which serve as angular reflectors. These patterns are more
d stinctiva on the HH image than on the HV image.

4. Regenerating hardwood stands and fields having emergent vegetation 	 t
tend to look very similar in both tone and texture on both polariza- 	 o
tions.	 s

5. Pine stands and pastures are both rather dark in tone in 'both the HH
and HV polarizations and are therefore.very difficult to differentiate
on this X-band SAR data, in spite of the distinct differences in the
physical characteristics of these cover types.

b. Water and smooth bare soil features have a distinctive black appear-
ance on both polarizations due to the specular reflectance of the
emitted radar signal away from the antenna.

7. Tupelo stands could not be distinguished from the surrounding hardwood	 a
forest on either the HH or HV imagery.

8. Differences in stand density and size class of forest stands could not
be defined on either the HH or the HNr polarization of the SAR data.
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'E	 9. In the data set used in this study, there was a tonal variation
r related to range angle on the HV image and a distinctive banding

effect on the ELI image which impacted the ability of the interpreter
to reliably identify various cover types throughout the entire data

P.

	

	 set. These effects were also evident on data sets for other flight
lines.

F

Quantitative Analysis of the SAR Data:

1 The HH and HV polarized data sets had independent geometric distor-
tions which required special preprocessing techniques to successfully
digitally alerlay the two sets of data.

k

2. There were statistically significant differences in radar return
across the flight-line due to look-angle effects for many cover types,
particularly in the HV polarized data.

3. Since only one wavelength (X-Band), represented by two channels (HH
and HV polarizations) of SAR data were available for analysis, overall
classification performances of only about 65% were obtained with the
M data. It is believed that additional wavelengths of SAR data
would enable significantly higher classification performances to be
achieved.

4. Significant improvements in overall classification performances were
achieved using both the PER-FIELD and SECHD contextual classifiers
versus the GMh per-point classifiiar for both the SAR and TMS data
sets.

5. Pine and hardwood cover classes could be reliably differentiated on
both the SAR and TMS data.

6. Pine and pasture cover classes, and bare soil and water cover classes
were consistently confused with each other on this X-band SAR data.

7. Degrading the spatial resolution of the SAR data (from 15 m to 30 m)
caused the overall percent classification performance for the GML
per-point classifier to increase due to the better separation of the
probability density functions associated with some of the cover types.
However, degrading the spatial- resolution had either no effect or a
negative effect on the overall classification performance of the
contextual classifiers (i.e., PER-FIELD or SBCHO).

B. The various threshold parameters (i.e., window size, homogeneity, and
annexation) used in the SSCHO classifier are data dependent and are
strongly influenced by the size, shape, and textural characteristics
of the cover types being classified.

in conclusion, although, Thematic Mapper data will undoubtedly be 'better

than the current Landsat data from a mensurational standpoint, these
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preliminary results — which showed a decreased classification performance with
a

higher (e.g., smaller) spatial resolution — tend to indicate that conventional

per-point classification techniques may not be effective when using higher

resolution data, particularly for areas involving classification of forest

cover. Thus, classification techniques such as SSCHO (which utilizes the

spatial variability in addition to the mean spectral response of an entire

forest stand or agricultural field), need to be further tested and refined for

use with Thematic Mapper data.

The results of this investigation indicated that the Supervised technique

for developing training statistics and the Sample Block Test Data approach for

defining a statistically valid set of test data were effective, and that the

average Transformed Divergence — based on the "best" four wavelength bands —

defined by the Feature selection processor in LARSYS enabled an optimum sub-set
i

of wavebands to be defined. Use of fewer than four wavelength bands resulted

in significantly lower classification performances, while more _ than four

wavelength bands did not cause significant improvements in overall classifica-

tion accuracy. Likewise, a Principal Components transformation did not prove

useful for increasing classification performance when either the SDC:HO or GML,

classification algorithm were W.:ilized with four channels of data. Comparison

among different classification algorithms indicated that the SDCHO contextual

classifier provided the best overall classificationresults.

The SAR data could be used to separate some cover types with a high degree

of reliability, but other cover types could not be adequately separated, even

though they were physically very different. The value of multi ple frequenciesn	 .

(particularly the longer wavelengths) as well as multiple polarizations of SAR

data must be assessed in order to develop a better understanding of the true

capabilities and limitations of SAR data for mapping forest cover types and

LI
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their characteristics. 	 However, such studies should be conducted using

digitally—rather than optically	 processed SAR data..

B.	 Recommendations

1.	 Contextual classifiers (e.g.,, SnM) , must be more fully developed and
evaluated in order to assess the importance of such classifiers for
ffectively analyzing higher spatial resolution data such as that

G	 obtained by the Thematic Mapper. i

2.	 Additional evaluations of Principal Component Transformations should
be conducted with Thematic Mapper data in order to better assess the
potential	 advantages and limitations of such data processing
techniques in operational situations.

F

r
^

3,	 An effective and legitimate methodology for combining errors of
commission and errors of omission is needed in order to provide a more 1
meaningful measure of overall classification performance. 	 In "}
addition, a statistically valid but economically feasible methodology }

it
for defining test data sets (such as the "Sample Block Test Data"

'	 method developed in this study) needs to be tested and standardized
for use by different researchers using' computer-aided analysis
techniques.

4.	 Digitally processed SAR data of multiple wavelengths and polarizations
should be analyzed to better understand the capabilities and limita-
tions of the microwave portion of the spectrum for mapping forest

!	 cover types and characteristics.
^
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APPENDIX A (Tables 1-36)

1979 Waveband Evaluation Classification Results and

Statistical Analysis Tables
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"Best 2" <
"Best 3"

I

}	 "Best 4"

"Best 5"

"Best 6"

I	 All 7

Visible

Reflective IR

"Best 3 minis
Thermrsl IR"

l

"Best 3 minus
Middle IR"

"Best 3 minus
Bear IR'

"Best 3 minus
Reflective IR"<
Simulated
Land.^,at

Four channel
subsets with one
channel from each
wavelength region

(zX X 80.5% (Table 2)L 81 .58 (Table 15)

X X X 8.48 (Table 3)

X - -	 -	 - X - - - - X -	 -	 - - - -	 -	 -	 -	 - ?6.08 (Table 16)

X X X X 88.18 (Table 4)

X - - - - X -X - -	 - -- X - - - -	 - - - 86.18 (Table 17)

X X X X X 88.3% (Table 5)

X X X X- x 87.68 (Table l8)

X X X X X X 89.91(Table 6)
-

X
- r - - -

X
- -
X

- -
X

-	 -	 -
X

- -
X

- - - - - -	 -	 -	 -	 -
87.48(Table 19)

X X X X X X X 90.7% (Table 7) 88.78 (Table 20)

X X X 61.08(Table 8) 72.28(Table 21)

X X X 71.98(Table 9) 64.68(Table 22)

X X x -78 .48(Table 3)

X - - - - X - -	 - - X - - -	 - - 76.08 (Table 16)

X X X E5.48(Tab1e 10) _-

X

- -

X

- -	 -

X

- - - - -	 -	 -

76.08 (Table 16)

X X X 7848 (Table 3)

- -	 .	 -X % - - - -	 - -	 -X - - - - - ` 82.18 (Table n)

X X X 81.08 (Table 8)'

X - -	 .g - - - - _ _	 _ _ - -
X 64.38 (Table 24)

X X X X 88.98 (Table 12) 87.88(Table 26)

X X X X 83.48(Table 13) 85.3%(Table 27)

X' X X X 67.0% (Table 14)' 86.4%(Table 28)
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/Table numbers refer to the classification performance tables in Appendix A of this report. 	 1
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Table 1. Summary table of overall classification results, table locator and channel subsets
of the 1979 Waveband Evaluation: GML algorithm, sample block test data.

f^ 	 }1	 2	 3	 4	 5	 6	 7	 Training Statistics
i	 WAVEBW	 0.45 0.52- 0.63 0.76- 1.00- 1.55- 10.4-
i	 OXIBINATION	 0.52 0.60 0.69 0.90 1.30 1.75 12.5 	 Supervised	 MM

1.50
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Table 29. Statistical comparison among overall classification results for
the GML algorithm using various three channel subsets and based
upon the 1979 supervised training statistics and sample block
test data.

Channe12	 Table	 No. of	 Significant
Subset. and Location	 % Correct	 Samples	 Differences

(lr3,6)	 (Table 3)	 78.4

(1r2,3)	 (Table 8)	 81.0
Overall
Classification (4,5,6)	 (Table 9)	 71.9	 10r557	 All
Performance

(3,4,5)	 (Table 10)	 85.4

(2r4r5)	 (Table 11)	 86.9

1/Channel combinations which are significantly different are indicated based
upon a Newman-Keuls comparison with a = 0.10.

Description of the three channel subsets:

{1r3,6)	 = the "best 3" channel subset as determined by TD(MIN).

(2
best 3 - Thermal IR)
best 3 - Near IR)

r	 (12r3)	 = visible channels, and "Best 3" minus Reflective TR

(4,54)	 = reflective IR channels

(3,4,5)	 = "Best 3" cha►vtels minus Middle IR channels

(2r4,5)	 = the "best 3" channel subset as determined by TD(AVE).

i
1

7

l

4
J

178
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Table 30. Statistical comparison among classification results by cover

class for the GML algorithm using various three channel subsets
and based upon the 1979 supervised training statistics and
sample block test data.

Cover Channel	 Table	 No. of	 Significant'/
Class Subset and Location	 % Correct Samples	 Differences"

(1,3,6) (Table 3) 94.7 (3,4,5)/All
(1,2.3) (Table 8) 92.1 (4 ► 5 ►6)/(1,3.6)

PINE (4,5,6) (Table 9) 91.2 775 (1,2r3)/(lr3,6)
(3,4 1 5) (Table 10) 87.1
(2,4,5) (Table l) 91.2

(1.3,6) 77.8
(1,2,3) Same 84.6

FXND (4,5,6) as 69.5 7269 All
(3,4,5) above 88.6
(2.4.5) 91.7

(Ir 3 ,6) 21.2 (11,3.6)/(2.4.5);(3 ►4 ►5):
(1.2 .3) Same 66.1 (1,2,3)

TUPE (4,5,6) as 30.5 118 (4,5,6)/(3,4,5) &	 (1,2,3)
(3 14 1,5) above 58.5 (2,4j,5)/(3,4 ►5)	 &	 (1,2,3)
( 2 ►4r5) 34.7

(lr3r6) 68.1 (3,4,5)/All
(1,2,3) Same 47.6 (2,4,5)1(1,3r6)

CCUT (4,5,6) as 47.3 370 (4,5,6)1(1,3,6)
(3r4,5) above 36.5 (1,2,3)/(1,3,6)
( 2 ► 4 ► 5) 42.7

(1,3.6) 62_.3 (1 ►2 ►3)/All
(1,2,3) Same 38.0 (1,3,6)x'(4,5,6)	 &	 (3,41,5)

PAST (415,6) as 71.7 350 (2,4,5)/(4,5,6)	 &	 (3,415)
( 3 1 4,5) above 76.0
(2,4 ► 5) 64.0

(Ir3r6) 61.5 (1,3 ►6)/(4.5.6);(2 ► 4' ►5);
(1,2,3) Same 65.0 (3,4r5)

CROP (4.5,6) as 69.6 369 (1,2,3)/(3i4,5)
(3,40, 5) above 74.3
(2 ►4,5) 71.3

,.j

(1 ► 3 ► 6)	 89.8	 (2,4 ►5)/(3,4,5) & (1,3,6)
(1,2,3)	 Same	 86.3	 (415,6)/(3.4.5) & (1 ►3 ►6)

SOIL	 (4,5,6)	 as	 85.7	 1006	 (1.2.3)/(3.4,5) & (.1.3,6)
(3.415)	 above	 89.2

`	 (2 ►40,5)	 85.4

( 1 . 3 , 6 )	 88.0'	 {1,2,3)/All
(1,2,3)	 Same	 63.3	 0ICtGiNAL PACE 15

WATER (4,5,6)	 as	 84.0	 Of POOR QUALITY
(3,4,5) above 	87.7(2,4,5)	

85•0
t

'/Channel combinations that are significantly different are indicated based

LL
upon a Newman=Keuls comparison with a = 0.10.
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Table 31. Statistical :orVarison among overall classification results for the (ML
	

*-II

algorithm mssing various three channel subsets and based upon the 1979 MCB
training statistics and sample bloc  test data.

r
Channel	 Table	 No. of	 Significant
Subset and Location	 % Correct	 Samples	 Differences

(1,3 0,5)	 (Table 16)	 76.0	 (1,2.7)/(1,2,3):(1,3,5);
(2 ►3 ►6);(3r4,7)

(1,2,3)	 (Table 21)	 72.2
(4r5r6)/(1 ► 2,3); (1x3,5);

Overall (4,5,6)	 (Tarl,C 22)	 64.6	 (2,3,6);(3.4,7)
Classification 10,557
Performance (2,30,6)	 (Table 21)	 82.1	 (1r2 ►3)/(1 ►3,5);(2,3,6)

(1,2,7)	 (Table 24)	 64.3

(3 ►4r7)	 (Table 25)	 84.4
9

LChannel combinations which are significantly different are indicated based upon a
Newman-Keuls comparison with a = 0.10.

/Description of the three charnel subsets

(1,3,5)	 = the "best 3" channel subset as determined by TD(MIN); in addition
to the "best 3" channel subsets minus the Thermal IR and Middle IR
channels, respectively 	 a

(1, 2,3) Visible channels

(4,5,6)	 = Reflective IR channels

(2,3:,6)	 = "Best 3" channel subset minus the Near IR channels

(1,2,7)	 = "Best 3" charnel subset minus the Reflective IR channels y

(3,4,7)	 = the "best 3" channel subset as determined by TD(AVE)

"j

t

r 	 .



(ir3,5) (Table 16) 83,5 (1,2,7)/All
0,2,3) (Table 21) 90.7 (3,4,7)/A.l

PINE
(4,5x6) (Table 22) 93.8 775 (1r3r5)/AJ7,1
(2,3 1 6) (Table 23) 89.8 (2r3r6)/(4r5r6)
(lr2r7) (Table 24) 38.5 (,1,2,3)/(4,5,6)
(3r4r7) (Table 25) 64.1

(1,3,5) 76.1
(1 1 2,3) 74.9
(4,5x6)
(2,3,6)

Same
as

57.0
85.1 7269 All

(1,2,7) above 63.5
(3 1417) 87.9

(1,3 ,5) 48.3 (1r3r5)/(3i4,7); (lr2r7);
(1,2,3) 76.3 (1,2,3)

TAPE
(4,5,6) Sane 55.9

118 (4,5r6)/(1 ►2r7);(lr2r3)
(2,3,6) as 61.0 (2r3,6) /(lr2r3)
(1,2,,.7) above 72.9
(3,4 r7) 66.1

(lr3 r5) 30.3
(1,2,3) 35.4

CCUT (4,5,6)
( 2 1,3 r6)

Saone
as 116 1:

34.F3 70 None

(lr2,7) above 35.4
(3r4r7) 35.7

(1,3,5) 44.0 (1r2r3)/(4r5r6); (2x3.6);
(1 12,3) 40.0 (l,2r7); ( 3 r4r7)

PAST (4,5,6) Same 50.0
350 (1r3r5)/(2r3r6);(1r2r7);

(2,3,6) as 57.1 (3,4,7)
(lr2,7) above 69.4 (4,5r6)/(2,3r6): (1r2r7);
(3,4,7) 72.3 (3,4,7)

(2r3 ►6)/(l r2 ► 7); (314,7)

(1,3,5) 90.0 (1,2,3)/All
"1,2,3) 53.4 (1,2,7)/All

CROP (415,6) Same 97.3 369 (2,3,6)/All
(2x3 16) as 82.9 (113.5)/All
(1 12,7) above 68.$
(3r4,7) 98.4

l.^

Table 32. Statistical comparison among classification results by cover class
for the CHL algorithm us ng ' various three channel subsets and
based upon the 1979 MCB ,training stag stics and sample block test
data.

Cover Channel	 Table	 No. of	 Significant	 j
Class Subset and Location	 Correct Samples	 Differences"'	 ^.
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Cover	 Ch wml Table No. of Significant
Wass	 Subset and Location $ Correct	 Samples Differences

(1,3,5) (Table 16) 92.0 (2,3,6)/A11
(L 2 F 3) (Table 21) 85.3 (1.2,3)/All

SOIL	 (4,5,6) (Table 22) 96.4	 1006 (1r2j7)/(4r5r6)
('2,3,6) (Table 23) 79.2 (1,3,5)/(4,5,6)
(1,2,7) (Table 24) 51.0 (3,4,7)/(4,5,6)
(3x4.7) (Table 25) 92 09

(1,3,5) 86.0 (1,2,3)/All
(l r 2 ► 3 ) 18.3 (1,2,7)/All

WATER	 (4.5,6 11 Sane 45.3	 300
( 2 t 3 ►6) as 99.3
(1.2,7) above 63.0
(3,4,7) 85 .7

VChannel combinations that are sighificantly different are indicated based
upon a Newman Keuls comparison with a = 0.10.

L

t

i

i;	 C

i

F

f

4	

I

9

a
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Table 33. Statistical comparison among overall classification results for
the G.^SL algorithm using various four channel subsets and based

J	 upon the 1979 supervised training statistics and sample block
test data.

Chanml2-/ 	Table	 No. of Significant
Subset and Location % Correct Samples Differences

(2,4,5 1 7)	 (Table 4)	 8811

Overall	 (2r3,4r5)	 (Table 12)	 88.9	 All are
Classification	 10,557	 significantly
ierformance	 (3,5,6,7)	 (Table 13)	 83.4	 different

d

(2r4 ►6r7)	 (Table 14)	 87.0	 n a

Channel combinations that are significantly different are indicated 	 n ='
used upon aNewman-Keuls comparison with g?t = 0.10.

2/Description of the four channel subsets:

(2x4,5,7) = the "best 4" channel subset as determined by TD(MIN) x

(2x3,4,5) = Simulated Landsat channels

(3r5r6r7)	 Both are four channel subsets with one channel from
(2,4,6,7)	 each wavelength region

t
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Table 34.	 Statistical comparison among classification results by cover class for
the GML algorithm using various four channel subsets and based upon the
1979 supervised training statisti	 and sample block test data.

k1A	 ¢1V ,.,,.

Cover Channel Table No. of Significant
Class Subset and Location % Correct	 Samples DiffereZj/

k

(2,4,5,7) (Table 4) 1 91.0
PINE (2 1 3,4,5) (Table 12) 92.6 775 None°

a
(3,5,6,7) (Table 13) 89.5
(2.4.6.7) (Table 14) 92.3

(2,4,5,7) 91.1 (35?6,7)/All
EIDWD (2r3 ► 4r5) 91.8	 7269 (2,4 ►6,7)/(2 ►3 ► 4 ► 5)

(3 ► 5 ► 6 ► 7) above 85.7
( 2.4.6.7) 90.7

(2,4,5,7)
Same

58.5 (2.4,6.7)/(2.4,5,7)	 & (2,3,4r5)
TUPE (2'3,4,5)

as 78.0	 118 (3 ► 50,6?7)/(2,4r5117)	 & (21,3.4,5)
(3 '5 '6 '7) above 46.6 (2.4,5,7)/(2.3.4.5)
(2,4,6,7) 42.4

(2,4,,5,7)
Same 60.5 (2#,3,41,5)/ All

k

CCtIT (2 '3 '4 ' 5) 51.4 51.4	 370(3,5,6,7)
above

63.0
(2 ► 4 ► 6 ►7) 58 .6

(2,4,5,7) 82.6 (2,3,4,5)/(2,4,6,7)	 & (21,4,5 ►7)
PAST (2'3'4'5) as 71.1	 350 (3.5.6 ► 7)/(2.4 ►6,7) & (2,4r5r7)

(3 ► 5 ►6'7)
above 74.9

( 2 ► 4 ► 6 ►7) 82.3 F

(2,4,5,7) 79.7 (2,4,6,7)/(2.3.4,5) & (2.4.5.7)

i
F

CROP	 (2r3 4r5) Saasse 79.1	 369 (3 ►5r6 7)/(2 ► 3 ► 4 ► 5)
(3,5,6,7) above 73.7
(2 ► 4 ► 6,7) 71.5

(2,4,5,7) Same 85.6 (2,4 ►6 ►7)/Al1
SOIL	 (2'3'4'5) as 90.3	 1006 (3 ► 5 ►6,7)/(2.3 ►4,5)

(3,5,6,7) $4.2 (2.4,5r7)/(2 ► 3 ► 4 ► 5)(2,4,6,7) 81 . 081 . 0

(2.4,5.7) 88.1
(2 F 3 1 4,5)WATEt	 (3 ► 5,6,7) as 88.9

83.4	 10,557 All	 z

( ,', ,4,6 o,7) above
87.0

'/Channel combinations that are significantly different are indicated based upon a	 1
Newman-Keels comparison with a = 0.10.

a



w

Table 35. Statistical comparison among overall classification results for the
GML algorithm using various four channel subsets and based upon the
1979 MCB training statistics and sample block test data.

Channels	Table	 No. of	 Significant
Subset and Location % Correct Samples 	 Differences

(1,3,4,6)	 (Table 17)	 86.1	 (3,5,6,7)/All
(1,.3 ►4,6)/(2.3.41,5)

Overall	 (2,3,4.5)	 (Table 26 11	87.8	 (2j4r6 ►7)/(2 ►3.4,5)
Classification	 10,557
Performance	 (3,5,6,7)	 (Table 27)	 85.3

(2,4,6,7)	 (Table 28)	 86.4

Channel combinations that are significantly different are indicated based upon
a Newman-Keuls comparison with a 0.10.

VDescription of the four channel. subsets;

(1,3,4,6)	 the "best 4" channel subset as determined by TD(MIN)

(2,3,4,5) _ Simulated Landsat channels 	 s

(3,5,6,7)	 Both are four channel subsets with one channel from 	 i
(2,4,6x7)	 each wavelength region

1

,a

t^

a
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Table 36.	 Statistical comparison among classification results by cover class for
the GM algorithm using various four channel subsets and based upon the
1979 MCB training statistics and sample block test data.

Cover Channel Table No. of Significant

Differences]/Class Subset and Location $ Correct	 Samples ,

(1,3,4,6) (Table 17)- 91.9

PINE (2,3;4,5) (Table 26) 94.1	 775 Pone
(3r5i6r7) (Table 27) 93.7
(2r4r6r7) (Table 28) 92.3

(1,3,4,6), 88.4 (3,5,6.7)/All €.
IIDWD

(2r3r4r5) as 90.1	
7269 (2r4r6r7)/(2r3r4 ► 5)

(3r5'6r7)
above 86.4 (1,3.4.6)/(2r3 ►4r5) '•

( 2,4,6 r7) 87:9

(1,3,4,6)
Sam e

62.7 (1r3r4r6)/(2,4,6r7)	 & (21,3,4,5)

TUPE
(2r3r4r5)
(3,5,6 7)

x-2.2	
11871.2

(2r4f6r7)
above

79.7

(1,3,4,6)
Same 41.9

CCUT (2r3r415)
(3r5 '6 '7)

as 37.8	 370
41.4

None

(2,4r6r7) above 40.3 '}

(1,3,4,6) 51.4 (-2r3r4r5)/(3r5r6r7) & (2r4r6M
PAST ( 2r3r4r5 )^

(3'5,6,7)

Same
as 51 .1	 350

67.1
(lr3,4r'6)/(3r5r6 .r7) &	 (2r4r6r7)

above(2,4,6,7) 69.1

(lr3r4r6)
Same

99.2

CROP (2,3x4,5)
(3 5 6r	 r	 r7)

as 99.2
98 0-	 369 None

(24 ► 6 r7) above 98 .1

(lr3r4r6) Same
91.3 (2r4r6r7)/(2 ►3r4r5)

90IL (2r3r4r5) as 95.0	 1006 (3r5r6 7)/(2r3r4r5)
(3'5'6'7) above 90-.4 (lr3 r4r6)/(2r3r4r5)
(2,4 r6 r7) 90.4

(1,3 14,6)
Sam

87.3
WATER (2r3r4r5) 86.3	

300 None
(3 ' 5 '6 '7)	 above	

87.3
(2r4r6,7)	 85.3	 r

]/Channel combinations that are significantly different are indicated based upon a
Newman-Keuls comparison with a = 0.10.

FA
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Table 37. Summary table of overall classification cesults for
the L2,, GM and SEW classifiers. (Untransfomed
1979 and 1980 TMS data,, Supervised and MCB training
statistics ,, sample block test data).

".	 ",^ 4

1) 1979 Untransf!2rmed IMS Data

Training Statistics
and Channel Combination

Sanervised

Best 4 (CH'S 2,4,5,7) 81.8% 88.1% 90.0%

All 7 Channels 85.3% 90.7% 91.6%

Multicluster Block

Best 4 (CH'S 1 ?3,,4r6) 77.4% 86.1% 90.6%

All 7 Channels 81.4% 88.7% 92.3%

Ij	 11)	 1980 Untransformed M Data

Training Statistics
Dd Channel CcmbjMti!Dn

Supervised —LL—

Qassilier

GM RHM

Best 4 (CH'S 1r2,3j, 6) 75.38 82.88 85.9%

All 8 Channels 77.58 88.5% 89.6%

Multicluster Block

Best: 4 (CH'S 1r3j,4 F5) 67.6% 79.7% 84.6%

All 8 Channels 70.2% 79.8% 84.2%
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Table 50 Statistical prison among overall classification results for
all three algorithms (L2, tom, SDCHD) using the "best 4" channel
subset (2,4,5,7) and based upon the 1979 supervised training
statistics and sample block test data.

1
Table	 No, of	 Significant

Algorithm and Location $ Correct Samples Differences

L2	 (Table 38)	 81.8
Overall a
Classification	 GML	 (Table 39)	 88.1	 10,557	 All
Performance

SEKIM	 (Table 40)	 90.0

1/Classification algorithms which are significantly different are indicated
based upon ,a Newman-Keuls comparison with a = 0.10.
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Table 51.	 Statistical comparison among classification results by
cover class for all 'three algorit m 42, GML., SDCHO)
using the "best 4" channel subset (2,4,5,7) and based
upon the 1979 supervised training statistics and sample
block test data.

Cover Table No. of Significant
Class Algorithm and Location	 Correct Samples Differences-

L2 (Table 38)	 85.5 L2/GML
PINE Gib, (Table 39)	 93.0 775 L2/SBM

SECHO (Table 40)	 92.9

L2 84.0
HIMD G' as above	 91.1 7269 All

SECAO 93.7,

12 Saone	 55.1
TOPE GML 58.5

as above
118 None

SSM 57 .6

L2 Saone	 68.6 L2/GML
CCUT GML 60.5as above 370 L2/SDCHO

SE CM 58.5

L2 70.9 L2/GML
PAST GML as ameve	 82.6 350 L2/SDCHO	 1

SEM 83.1

L2 88.1 L2/GML
CROP GML 79.7as above 369 L2/SECHO	 1

SECHO 81-.6

12 71.6Same
L2/GML

SOIL GML 85.6as above 1006 L2/SDC:EiO
SEW 86.0

12 85.7 L2/GML
WATER	 GML	 as above
	 78.7 	 300	 L2/SDCHO

SECHO	 79.7

Classification algorithms which are significantly different are
indicated based upon a Newman-Keels comparison with a = 0.10.

1
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Table 52. Statistical comparison among overall classification results for
all three algorithms (12, GNP, SDCHO) using all 7 channels and
based upon the 1979 supervised training statistics and sample
block test data.

Table	 No. of	 Significant
Algorithm and Location % Correct Samples Difference;V

12	 (Table 41)	 85.3
Overall
Classification	 GML	 (Table 42)	 90.7	 10,557	 All
Performance

SDCHO	 (Table 43)	 91.6

l/Classification algorithms which are significantly different are indicated
based upon a Newman-Keuls comparison with a 0.10.

t
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Table 53. 5tati.r ical comparison among classification results by
cover class for all three algorithms (12, Gam, SECID)
using all 7 channels and based upon the 1979 supervised
training statistics and sample block test data.

Cover Table No. of Significant
Class Algorithm and Location Correct Samples Differences 

L

L2 (Table 41) 91.5 L2/GM
PINE GML (Table 42) 95.0 775 L2/SECSO

SECHO (Table 43) 94.7

12 88.2
END GML as above 93.2 7269 All

SSW 94.8

12
Same 68.6

TUPE Gam,
as above

67.8 118 None
SE KM 65.3

L2 Same 65.4
CUR GML

as above 64.9 370 None
SECHO 64.6

Same
L2/SECHOPAST GML

as above 83 .4 350
SECHO 84.6

L2
Sam

87.8 L210M
CROP GML

as above
81.0 369 L2/SKM

SECHO 81.0

L2
Same 73.2 L2/GML

SOIL GML as above 90.6 1006 L2/SEM
SECHO 90.6

Same : /SBMWATER GML as above 90.7 300 L2
SEC^'.O 91.6

I/Classification algorithms which are significantly different are
.na . tea ba d	 N	 -i_ Ica	 se upon a ewman Keuls comparison with a — 0.10.

1a

y

a
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Table 54. Statistical comparison among overall classification results for
all three algorithms (L2, G ffi r SEM) using the "best 4" channel
subset (1 13,4,6) and based upon the 1979 MM training statistics
and _sarmple block test data.

r

Table	 No. of	 Significant
Algorithm and Location % Correct Samples DifferencesV

L2	 (Table 44)	 77.4
Overall
Classification	 GML	 (Table 45)	 86.1	 10,557	 All
Performance

SDCHO	 (Table 46)	 90.6

"Classification algorithms which are significantly different are indicated
based upon a Newman-Keuls comparison with a = 0.10.

k

^t.

a

c
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k

'	 Table 55.	 Statistical comparison among classification results by
cover :crass for all three algorithms (L2, G Lj SEC HD)
using the "hest 4" channel subset (1,3,4,6) and based
upon the 1979 MC$ training statistics and sample block
test data.

C	 Cover Table	 No. of Significant
Class Algorithm and Location 	 % Correct	 Samples Differences

L2 (Table 44`)	 85,3
PINE GML (Table 45)	 91.9	 775 All

SBM (Table 46)	 94.8

L2
Sane	 76.8

I^WD GML as above	 88.4	 7269 All
SEC HO 94.7

12 Barrie	 47.5 L2/GML
TUPE GML

as above	
62.7	 118 MVSEC HD

SSW 40.7

L2 31.9Same L2/GML
CCUT GM 41.9	 370

as above
L2/SEW

sew 39.5

L2 50.6SamPAST GML
as above	 51.4	 350 None

SECS 47.4

L2 97.0
CROP GMT, 99.2	 369as above L2/GML

SECHO 98.6

L2 93.9
Saone

L2/GML
SOIL GML 91.3	 1006as above GML/SEC HO

SECHO 94 .7

L2 88.7
WAM GM 87.3	 300as above NoneSEW 89.0

LClassification algorithms which are significantly different are
:f	 indicated based upon a Newman-Keuls comparison with a = 0.10.

N,

i

R	 1
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Table 56. Statistical comparison among overall, classification results for
all three algorithms (12, GMLF SEUV) using all 7 channels and
based upon the 1979 MC8 training statistics and sample block
test data.

3

Table	 No. of	 Significant

	

Algorithm and Wcation 	 Correct Samples Differences

12	 (Table .47)	 81.4
Overall
Classification	 GML	 (Table 48)	 88.7	 10,557	 All
Performance

SSW	 (Table 49)	 92.3

I/Classification algorithms which are sign,, ficantly different are indicated
based upon a Newman-Keuls comparison with a = 0.10. 	 k

I

f

t
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Table 57.	 Statistical comparison among classification results by
cover class for all three algorithms (L2, GML I, SM10)
using all 7 channels and based upon the 1979 MCB
training statistics acid sample block test data.

Cover Table No. of Significant,/
Class Algorithm and Location % Correct	 Samples Differences

L2 (Table 47) 89.3 L2/GML
PI14E GML ;Table 48) 93.3	 775 L2/SBW

SEC HO (Table 49) 94.6

L2 Same 82.1
HMM GML as above 91.1	 7269 All

SECW 96.1

L2 58.5 L2/GML
TUPE GAB, as above 83.9	 118 L2/SBM

SECHO 79.7

^
Same

L2/SECHOCC UT
as above

45.7	 370
SHM 45.4

12 Saone 66.0
PAST GML ` above 61.4	 350 12/SECHO

SECHO 56.9

L2 Same 98.6
CROP GML as above 98.6	 369 None

SECW 97.6

12 87.1 L2/GML
SOIL GML Same

as above 90.8	 1006 L2/SMiO
SECHO 92.5

L2 Same 87.3
,TER

Gam' as above 86.7	 300 None
SEC M	 89. 0

1/classification algorithms which are significantly different: are
indicated based upon a Newman-Keuls comparison with a 0.10.

Is
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Table. 70. Statistical comparison among overall classification results for
all 3 algorithms (L2, GML, SEW) using the "best 4" channel
subset (1,2,3,6) and based upon the 1980 supervised training
statistics and sample block test data.

Table	 No. of	 Significant
Algorithm and Location % Correct Samples Differences

L2	 (Table 58)	 75.3
Overall
Classification	 GNP,	 (Table 59)	 82._8	 9667	 All
Performance

SDCHO	 (Table 60)	 85.9

VClassification algorithms which are significantly different are indicated
based upon a Newman-Reuls comparison with a = 0.10.

x
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Table 71.	 Statistical comparison among classification results by
cover class for all three algorithms (12, GML, SECHO)
using the "best 4" channel subset (1,2,3,6) and based
upon the 1980 supervised training statistics and sample
block test data,

Cover Table No. of Significant
Class Algorithm and Location	 % Correct	 Samples Differences

L2	 (Table 58) 66.2
PINE GML	 (Table 59) 72.5	 393 None

SECHO	 (Table 60) 71.5

L2
Same

3- _4

HTWD GML	 as above
90.8	 6584 All

SECHO 92.8

L2
one

22.8
7U-PE GML	 as above 19.3	 145 None

SEC'M . 19.3

L2 Saone 40.2
'	 AGHn GML as above 55.0	 458 All

SEM 72.9

L2 Same 63.2
PAST GML as above 48.5	 408 All

SECHO 40.4

L2	 SaJne 46.7
CROP GML	 as above 73.6.	 890 All

i
SEM 88.0

12 73.3 L2/GML
SOIL SameGML as above 78.6	 439 L2/SECH0

SEGO 78.6

L2 90.3 12/GML
WATER SameGML	 as above 74.6	 350 L2/SECHO

SECHO 74.6

'/Classification algorithms which are significantly different are
indicated based upon a Newman-Keuls comparison with a = 0.10.

' w.1

1

t
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n
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Table 72.
3

fication results for
8 channels and based
 and sample block

Table	 No. of	 Significant	 3

Algorithm and Location % Correct Samples Difference;V

Statistical comparison among overall ^classi
all 3 algorithms (L2, GML, SECHO) using all
upon the 1980 supervised training statistics
test data.

L2	 (Table 61)	 77.5	 -
Overall
Classification	 (M	 (Table 62)	 88.5	 9667	 All
Performance

SECW	 (Table 63)	 89.6

VClassification algorithms which are significantly different are indicated
based upon a Newman-Keuis comparison with a 0.10.

r

a
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Table 73. Statistical comparison among classification results by
cover class for all three algorithms (L2, GML, SEW)
using all 8 channels and based upon the 1980 supervised
training statistics and sample block test data.

G
!	 Cover Table No. of Significant

Class Algorithm and Location	 % Correct Samples Differences

L2	 (Table 61) 68.4 L2/GML
PINE GML	 (Table 62) 75.6 393 L2/SECHO a

SELM	 (Table 63) 75.1

L2 81.1
HIKM Gam'	 as above

92.8 6584 ^AI1
SECHO 93.9

L2 61.4 L2/GML
7UPE GML	 Same

as above 19,3 145 L2/SECH0
SECHO 19.3

L2 Same 17.7
}AHD GML as above 81.4 458 All

SECHO 89.5

L2	 am`'
81.4

EPAST GML as above 50.0 408 L2/SECHO
SECHO 50.2

L2 80.8 L2/GML
CROP SameGML	 as above 98.3 890 L2/SECHO

SECHO 98.9

I2 76.8 L2/GML
SOIL _ GML	

Sate
as above 92,7 439 L2/SDC'HA

SECHO 92.7

L2	 Saone 92.3 L2/Gtr

E	 WATER (M as above 73.7 350 L2/SECHO
r SECHO 73.7
rt	

Classification algorithms which are significantly different are
^

f	 indicated based upon << Newman-Keuls comparison with a = 0.10.

F

z	 ^

a
'3

LIJ LA
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Table  74. Statistical comparison among overall classification results for
all 3 algorithms (12, GM,, SDCHO) using the "best 4" channel
subset (1,3,4 1,5) and based upon the 1980 MCB training statistics
and sample block test data.

Table	 No. of	 Significant
Algorithm and Location % Correct Samples Differences

L2	 (Table 64)	 67.6
Overall
Classification	 GML	 (Table 65)	 79.7	 9667	 All
Performance

SDCW	 (Table 66)	 84.6	 j

VClassification algorithms which are significantly different are indicated
based upon a Newman-Keuls comparison with a = 0.10.

k

i
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Table 75. Statistical comparison among classification results. by
cover class for all three algorithm (L2, GML r SE)MO)
using the "best 4" channel subset (1.3,4 05) and based
upon the 1980 MCB training statistics and sample block
test data.

Cover Table No. of. Significant
Diffeience^VClass Algorithm and Location % Correct Samples

12 (Table 64) 79.4
PINE GC (Table 65) 82.2 393 None

SECHO (Table 66) 80.9

U Same 69.3
HEWD GML as above 83 . 1 6584 All

SECHO 90.9

L2 Sane 10.3 L2/GML
TUPE GML as above 17 . 9 145 L2/SBMO

SECHO 18.6

L2 Same 43.7 L2/GML
RGHD GML as above 68 .1 458 L2/SB=

SECHO 69.1

Scii1e
69.6 L2/GML

PAST GML as above 78.7 408 L2/SECW
SEW 78.9

U Same 57.8

CROP GML as above 60 . 3 890 None
SECHO 59.4

L2 Same 72.7
CYNTT GUT QC I Al 0 Ailas above

SBM	 79.7

L2	 94.3
WkTER	 GML	 Same	 94.9	 350	 Noneas above

SECHO	 94.9

2/Classification algorithms which are significantly different are
indicated based upon a Newman-Keuls comparison with a 0.10.

i	 1`^M1^
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Table 76. Statistical comparison among overall classification results for
all 3 algorithms (L2, G&I SDCAO) using all 8 channels and based
upon the 1980 MCB training statistics and sample block test data

a

Table	 No. of	 Significant.-
Algorithm and Location % Correct Samples Difference;V

L2	 (Table 67)	 70.2
Overall
Classification	 GML	 (Table 68)	 79.8	 9667.	 All
;Performance

Sam	 (Table 69)	 84.2

I/Classifl4mation algorithms which are significantly different are indicated
based upon a Newman-Keuls comparison with a 0.10.

F

r

^E	 ,
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Table 77.	 Statistical comparison among classification results by
cover class for all three algorithms (L2, GML, SECHO)
using all 8 channels and based upon the 1980 MCB

t
training statistics and sample block test

I
data.

Cover	 Table	 No. of Significant
Differencesa Class	 Algorithm and Location	 % Correct	 Samples

f
(Table 67)	 76.6	 393 L2/GML	 4

PINE	 GM	 (Table 68)	 82.7 L2/SEW	 s
SECHO	 (Table 69)	 83.7

12	 69.7SameHDO	 GML	 83.4	 6584as above All
SECHO	 90.2

L2	
Same	

35.2 L2/GML

TUPE	 GML .	 as above	 20.0	 145 L2/SECHO
SECHO	 19.3

L2	 Saine
	

58.3 L2/GML
BG^	 G'	 as above	 71.4	 458 L2/SECHO

SECHO	 70.7

L2	 72.1
Same

PAST GML	 76.0	 408as above None
SE^?0	 74.8

-a

L2	 72.6
Same

12/( M
CROP	 GML	 as above	 55.6	 890 L2/SDCH0

SECHO	 53.8

L2	 70.6
Same

L2/GML a

SOIL	 GML	 92.9	 439as above L2/SECH0
SECHO	 93.4

r

L2	 94.0Same

{

96=	 GML	 94.3	 350
as above

None
SECHO	 94.3

/Classification algorithms which are significantly different are
indicated based upon a Newman-Keuls comparison with « = 0.10.

v

J
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-, i
► Table 78. Summary table of overall classification performances comparing the

untransformed TMS and the K-L transformed data sets for all three
classifiers.

Data Subset:	 "Best 3" Channels or 1st 3 Cgota ents

cifer
Untransformed TM6"
(Channels 1. 3.6)

Table
Location

K-L Transformed Data
(_ Conents 1.2.31

Table
Location

12 65.2a (Table 80) 80.0%b (Table 83)

(ML 78.4a (Table 81) 82.9b (Table 84)

SECHO 86.18,a 82) 86.68 (Table 85)

Data Subset: "Best 4" Channels or 1st 4 Cau[ onents

Cl	 sifier
Untransformed TMSL
(Channels 2.4.5.7)

Table
Wcatign

K-L Transformed Data
(CUMpgnC	 s 1.2.3.4)

Table
Location

L2 81.8a (Table 86) 83.8b (Table 89)

GML 88 .1b (Table 87) 84.6a (Table 90)

SECHO 90.0b (Table 88) 87.0a (Table 91)

I/Significantly different overall classification performances between the
untransformed and the K-L transformed data sets for each classifier is
indicated by a different superscript (based upon a Newman-Keuls comparison
with a 0.10) .

j

,i

¢	
^55

9

i

3
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E
i;

4 Table 79. Summary table of overall class performances for three algorithms (L2, CML,
SECHO) based upon four data sets.

iY	 Overall Classification Performance M
Data Set Description	 _	 by Classifier (and Table Location)

L2"'	 C II,	 SEM
7

3 Channels (1,316`), Untransformed 	 65.2a (Table 80)	 78.4b (Table 81)	 86.8c (Table 82)

1st 3 Components, K-L Transformed 	 80.08 (Table 83) 82.9b (Table 84) 86.6c (Table 85)

4 Ctls (2,4,5,7), Untransformed 81.88 (Table 86) 	 88.1b (Table 87)	 90.Oc (Table 88)

1st 4 Components, K-L Transformed 	 83.88 (Table 89)	 84.68 (Table 90) 87.0b (Table 91)

Different superscripts between columns of the same row indicate significantly different
overall classification performances betweenclassifiers (based upon a Newman-Keuls-
comparson with. a = 0.10).

i

I
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ĵ

en ?#

O L d' O O O O q
f

co

E ,7 y^.^

HH

po
IV
1^

N

N

%D
In

0%
u1

V
ri

O O O
tt1

dP
co

•
t0

;.
?

Ln

N
co

ZHE
t11 r- O to M 41 O M 11 1

a

al N 6 ON1 coG coc f- %0 0

CN
O D•^

01

^€

r , O	 r 0 r0-I r LC)
t010 10O II

r4 .r4 r- N H m M M O In
LW 44 r-4 Cp

N t!1

ltl	 (0

Z

.'
U r-4

W

F11

g

N
co w

f

234



r

F	 235
ORIGINA - PACE IS

i	 Of POOR QUXUTY

	

C) o o 4w o o r-I	 ko
tzN

r.

i	
N r M O C^ C

	
1

r .	 in

cop
	

N	 M
M 44

	

Q̂Q	 N	 N

	

w U
	

CoH M 
^ M ^ N r-i rl M 

N	 dp

cri

ul

Lo
M O Ln O N N O	 m	 r

co	 co
co	 tn

U]	 inGO

C a
	

^

r p N	 O
$+	 M rl CD

rs •al	 ^^
w	 11

NN N
l^ r-I	

O O1 CO r-1 dr	 N O	 ^

V ON O O r^ Ol 
co p 	 ^^

U
?	 co	 1f1	 to	 r-I

	

s	
r.,

1A Ln W cc o Ln o c
	 u^	 i

44	 CJ QQ
	 ;

N ri

U
P4 a

C4	 W

LJ



ORIGINAL PAGE IS 	 236

OF POOR QUALITY

a o o n o o a a^

a
^.m

`	 U o 0 0
w

o o
r-4
oo

qr
r-4

to H N M
1

Ln

N n
H

Rp
ko in

op
W
N

H

WI.^	 y,J
3

QQ
N ,.

N
N

pp
i

ro '^
H Q^ H ^ n o r-4 o o N

N (n
tJj .,1 1

dP

l01̀-

ON
O

V
^) O M "V O N^ 1D

If1N01

tND Il
co

N
w
o

co v c o 0 0^
I .^

r	 y
co

H ^' Ln

tl^
++ rl 01 co co O O M M

n

tt//

y
]]

j

rg

a 
v

rn con a ^ o
a

o
►̂^,	 rNi

Ln

co
'

o	
^ ^

.
0

1 r-
o ^r ;, aNO

'W r en M M
H

O

oo•

a wo
w

.
r
g
yi ^ ts, a

7

s



ORIGINAL PAGE fS
OF POOR QUALITY

9	

1

CD	 O O O O O	 N
N

cn

	

O	 c O co N r•i	
M

t/
^ W

U)	 I	
N	 in

cn 00 M N N

	

bl ►̂^	 W N M
	 `r	

N	 00

0 al

^a
rn,^ r

N

UI	 dA

	

.,.i 44	 N

	

O	 •

	

N	 N -V 	 O N r'1 d	 w	 r
w	 11

co

wl

^j	 r4
r^N M co Q C) p CC)00 	 1D 0

	

v M	
^	

kO 1A

	4 -3
	

II	
rn

	

a)	 M

Q/	 toN M to CO 01 M l0 C>Ll

w

ti

W

O m Lo L 00 ^" n
rr	

C^7	 k

M
Y

al

a	 p	
^ W co o i

p w c
	 tr	

II W

4144	
N ^ ri M M M Q	 CW	 r-^

U U	 ^	 3
W

co

N	 ^	 1 W 
H W

f	 N
k



ORIGINAL PAGE IS
OF POOR QUALITY

F

O O O M O O O N p
c^V1j N

g	 M CD CD	 O O N	 ^

V^

	

	

,f
N

Y

O CD CD9
Lo M	 %c N Sn	 I

E.1	
O1

^	 ^ ^ ^ O ^ sr M t^ I ch

N

E

C4	 10

	

CSI	 to

+ ^

	 N	 h r-1 r-1 Ltl

\.^	 M .
	

CN
4044
\

to
N	 N	 a

y^ co 	 HO M	
O

FF^^	 H	 r i

	

c9	 ko	 II

(JJ,

W M
	 Lo	 So

O N	 N	 SodP

	

 'Lo-no-	
a,

I	 y.1O	 • O

	

Lh	 r"^	 r..{	 10

Lo
an O ri %D cn "I

	

	 M

co

	

lf1 t00	 OOD n CD

Lo
Lo

EE	 G''
E

o	 ^ C^° M^ C
	 Ln	 113

	

w •H	 •
to

co

d	 '^

^	 4©ay ^j	 ^	 1
_	

_	
QI	

w	

}	

3

u
s



ORIGINAL PAGE 19
OF POOR QUALITY

M O O rl O Cl O M	 IV
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Table 92.	 Statistical comparison among overall classification results for
all 3 algorithms (L2, CSI,, SECHO) using the first 3 components of
the 1979 K-L transformed TMS data and based upon the 1979
supervised statistics and sample block test data.

I

Table	 No. of Significant
Algorithm	 Location	 % Correct	 Samples Differences

J
1

L2	 (Table 83)	 80.0
Overall 3

Classification	 GM	 (Table 84)	 82.9	 10,557 All
Performance

SECHO	 (Table 85)	 86.6

'/Classification algorithms which are significantly different are indicated
based upon a Newman-Keuls comparison with a _ 0.10.
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Table 93.	 Statistical comparison among classification results by
cover class for all three algorithms (12, GM, SDCHD)	 z ^,
using the first 3 components of the 1979 K L transformed
TMS data and based upon the 1979 supervised training
statistics and sample block test data.

Cover Table	 No. of Significant
Class Algorithm Location	 % Correct	 Samples Differences

L2 (Table 83)	 89.0
PINE GML (Table 84)	 90.1	 775 None

SECW (Table 85)	 91.2

Same as	 85.9HDWD GML 7269above All
SEM 91.3

L2 Same as	 50.8TUPE GML 45.8	 118
above

None
Sam 52.5

L2 Same as	 61.1 MVL2
CCUT GML 47.8	 370above SSW/L2

SDCHO 50.8
a

w

I
&

L2	 69.4

PAST	 GNP	 Same as	 80.0	 350above

,
All

SDCHO	 84.9

L2	 89.7SameCROP	 GML	 aboveS	 87.0	 369 None
SECHO	 87:3

!a Same a	 75.2 SECH0/GML

[ SDIL	 GNP	 aboves	 74.3	 1006 SDCHO/L2
SEW	 70.6

L2	 87.0
WATER	

Same as SECHO/L2
GML	 76 .3	 300above G WL2
SECHO	 73.0

WClassification algorithms which are significantly different are
indicated based upon a Newman=Keuls comparison with a = 0.10.
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Table 94. Statistical comparison between overall classification results for the

	

L2 classifier for two dimensionality reduction techniques (Feature 	 ff
Selection,, K-L transformation) for the best 3 channel feature set
based upon 1979 supervised training statistics and sample block test
data.

Reduction	 Table	 No. of	 Significant
Technique' 	 Location	 % Correct Samples Difference?

Overall	 Feature Selection (Table 80)	 65.2
(Untransfomed)Classification	 10r557	 Yes

Performance K-L Transformed 	 (Table 83)	 80.0

J-/Feature selection optimum subset includes channels 1, 3, & 6 of the original 1979
M4S data set..

K-L transformation includes the first 3 components of the K-L transformed 1979
data set.

2-/Classification performance difference is based upon a Newman-Keuls comparison
with a 0.10.
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Table 95.	 Statistical cariparison between classification results for the

L2 classifier by cover class for two dimensionality reduction'
techniques (Feature Selection, K-L transformation) for the
best three channel feature set based upon 1979 supervised
training statistics and sample block test data.

Cover	 Reduction,/	 Table	 No. of	 Significant-,/
Class	 Techniqu	 Location	 % Correct.	 Samples	 Difference3

r rR
Feature Selection	 (Table 80)	 76.9

PINE	
(Untransformed)	 775	 Yes

i	 K-L Transformed	 (Table 83)	 89.0

Feature Selection	 69.1

HDWD	 (Untransformed)	 Same as	 7269	 Yesabove
K-L Transformed	 80.9

y

Feature Selection 	 45.8

TUPE	 (Untransformed)	 Same as	 118	 Noabove
K L Transformed	 50.8

n
Feature Selection	 49.5

MIT	 (Untransformed)	 Same as	 370	 Yesabove
K-L Transformed	 61.1

Feature Selection 	 43.4 f{

PAST	 (Untransformed)	 Same as	 350	 Yesabove
K-L Transformed	 69.4

Feature Selection 	 27.6

CROP	 (Untransformed)
	 Saone as	 369	 Yesabove

K-L Transformed	 89.7

Feature Selection	 50.4

SOIL	 (Untransformed)
	 Same 1006	 Yes]as `abovee f

K-L Transformed	 75.2

Feature Selection 	 88.3

WATER	 (Untransformed)	 Sane. as	 300	 No kabove
K-L Transformed	 87.0

J-/Feature selection optimum subset includes channels 1, 3, & 6 of the n
original 1979 7MS data set.

K-L transformation includes the first 3 components of the K-L
transformed 1979 data set.

2'/Classification performance differences are based upon a NewRnan-Keels
comparison with a - 0.10.



a

248

ORIGINAL PAGE IS
OF POOR QUALITY

Table 96. Statistical comparison between overall, classification results for the
GM classifier for two dimensionality reduction techniques (Feature
Selection, KL transformation) for the best 3 channel feature set
based upon 1979 supervised training statistics and sample block test
data.

Reduction	 Table	 'No, of	 Significant
TechniqueL 	 Location	 % Correct Samples Difference?

Overall	 Feature Selection (Table 81)	 78.4

Classification (Untransformed)	 10,557	 Yes
Performance	 K-L Transformed

	

(Table 84)	 82.9

LFeature selection optimum subset includes channels 1, 3 0, & 6 of the original 1979
TMS data set.

K-L transformation includes the first 3 components of the K-L transformed 1979
data set.

I/Classification performance difference is based upon a Newnan-Keuls comparison
with a = 0.10.

1

r
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Table 97. Statistical comparison between classification results for the
GHL classifier by cover class for two dimensionality reduction
techniques (Feature Selection, K-L transformation) for the
best three channel feature set based upon 1979 _supervised
training statistics and sample block test data.

Cover Reduction Table No. of Significant̂ 2^
Class TechniqueL Location $ Correct Samples Difference?"

Feature Selection (Table 81) 94.7

PINE (Untransformed) 775 Yes

K-L Transformed (Table 84) 90.1

Feature Selection 77.8

HMM (Untransformed) Same as 7269 Yesabove
K-L Transformed 85.9

Feature Selection 21.2

TUPE
(Untransformed) Same as 118 Yes

above
K-L Transformed 45.8

Feature Selection 68.1

GCU'P (Untransformed) Sane as 370 Yesabove
K-L Transformed 47.8

Feature Selection 62.3

PAST
(Untransformed) Same as 350 Yesabove
K-L Transformed 80.0

Feature Selection 61.5

(WP Same as 369369 Yes
above

K-L Transformed 87.0

Feature Selection 89.8

SOIL (Untransformed) Same as 1006 Yes
above

K-T. Transformed 74 3.

Feature Selection 	 88.0
WATER (Untransformed) 	 Saone as	 300	 Yesabove

K-L Transformed	 76.3

I/Feature selection optimum subset includes channels 1, 3, & 6 of the
original 1979 24S data set.

K-L transformation includes the first 3 components of the K-L
transformed 1979 data set.

Classification performance differences are based upon a Newman-Keuls
coamaarison with a = 0.10.
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Table 98. Statistical coupariscn between overall classification results for the
SD(HO classifier for two dimensionality reduction techniques (Feature
Selection, K-L transformation) for the best 3 channel feature set
based upon 1979 supervised training statistics and sample block test
data.

Reduction	 Table	 No. of	 Significant
Technique)	Location $ Correct Samples Difference'?

Overall	 Feature Selevtion (Table 82)	 86.8

Classification (Untransformed)	 10,557 35,

Performance	 K-L Transformed (Table 85)	 86.6

,1/Feature selection optimum subset includes channels 1, 3, & 6 of the original 1979.
TKS data set.

K--L transformation includes the first 3 components of the K-L transformed 1979
data set.

2/Classification performance difference is based upon a Newman-Keuls comparison
with a = 0.10.

k
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Table 99. Statistical comparison between classification results for the
SSW classifier by cover class for two dimensionality
reduction techniques (Feature Selection, K-L transformation)r	
for the best three channel feature set based upon the 1979
supervised training statistics and sample block test data.

f

Cover	 Reduction'/	 Table	 No. of	 Significant̂ 2^
Class	 Techniques	 Location % Correct Samples Difference?"

Feature Selection (Table 82) 96.5

PINE (Untransformed) 775 No

K-L Transformed (Table 85) 91.2'

Feature Selection 89.1

HUM (Untransformed) Same as 7269 Yes
above

K-L Transformed 91.3

Feature Selection 22.0

TUPE (Untransformed) Same as 118 Yes
above

K-L Transformed 52.5

V,eature Selection 74.6
CCU,r (Untransformed) Same as 370 Yesabove

K-L Transformed 50.8

Feature Selection 68.3
(Untransformed) Same as

PAST	 above	 350	 Yes

K-L Transformed	 84.9

Feature Selection	 62.9

CROP	
(Untransformed)	 Same as	 369	 Yesabove
K-L Transformed	 87.3

Feature Selection	 92.0

SOIL	 (Untransformed) 	 Same as	 1006	 Yesabove
F	 K-L Transformed	 70.6
i

Feature Selection	 81.3

x	 .;

R

t

	

WATER (Untransformed) 	 Same as	 300	 Yes
above

	

K-L Transformed	 73.0

'/Feature selection optimum subset includes channels 1, 3, & 6 of the
original 1979 TMS data set.

7

K-L transformation includes the first 3 components of the K-L
transformed 1979 data set.

2/Classification performance differences are based upon a Newman-Keuls
comparison with a _ 0.10-.
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Table 100. Statistical comparison among overall classification results for
all 3 algorithms (L2, CM,, SECHO) using the first 4 components
of the 1979 K-L transformed TMS data and based upon the 1979
supervised statistics and sample block test data.

Table	 No. of	 Significant

	

Algorithm Location 	 % Correct Samples DifferencesL

L2	 (Table 89)	 83.8	 L2/SE W
Overall
Classification	 GML	 (Table 90)	 84.6	 10,557	 {ML/SECHO
Performance

SEE	 (Table 91)	 87.0

Classification algorithms which: are significantly different are indicated
based upon a Newman-Keuls comparison with a 0.10.
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Table 101.	 Statistical comparison among classification results by
'. cover class for all three algorithms (L2, GM,, SECHO)

using the 1st 4 components of the 1979 K-L transformed
7MS data and based upon the 1979 supervised training
statistics and sample block test data.

Cover Table	 No. of Significant
Class	 Algorithm Location	 % Correct	 Samples Differences

L2 (Table 89)	 89.2 L2/GML
PINE	 GML (Table 90)	 92.0	 775 L2/SECHD

SECHO (Table 91)	 92.9

^ Same as 88.7	 7269HUM
above

All
SECHO 92.4

L2 Same as	 63.6 SECHO/L2
TUPE	 GML 36.4	 118

above
GML^L2

SECHO 28.8

L2
Same as	

61.6
CCUT	 GML, 55.9	 370above None

SECHO 56.2
,

^.
L2

Same as	 68.6 L2/SECHO
PAST	 GML

above	
86.3	 350 L2/GMj

SECHO 85.7
s

L2
Same as	

89.4 SECHO/L2

CROP	 GDIL 73.2	 369
above

GML/L2
SECHO 71.8 }

L2
Same as	

75.5 SECHO/L2
SOIL	 GML 69.9	 1006above GML,/L2

SECHO 69.7F

L2 Same as	 .87.0 SECHO/L2
WATER.	 GML

above.	
81..0.	 300_ GMT^/L2	 -

C
SECHO 81.0

Classification algorithms which are significantly different are
indicated based upon a Newman-Keuls comparison with a = 0.10.

i
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Table 102. Statistical comparison between overall classification results for the L2.
classifier for two dimensionality reduction techniques (Feature
Selection, K-L transformation) for the best 4 channel feature set based
upon 1979 supervised training statistics and sample block test data.

Reduction	 Table-	 No. of	 Significant
TechniqZV	Location % Correct Sampler. DifferenceW

Overall	 Feature Selection (Table 86)	 81.8
W ►.transformed)Classification	 10,r557	 Yes

Performance K-L Transformed 	 (Table 89)	 83.8

I/Feature selection optimum subset includes channels 2, 4,, 5,, & 7 of the original
1979 TMS data set.

K-L transformation includes the first 4 components of the K-L transformed 1979
data set.

VClassification performance difference is based upon a Newman-Keuls conparison
with a 0.10.

ri
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'	 Table 103.	 Statistical comparison_ between classification results for the
L2 classifier by cover class for two dimensionality reduction
techniques (Feature Selection, K-L transformation) for the
best four channel feature set based upon 1979 supervised
train	 statistics and samplef	 ^	 le block test data,P

Cover	 Reduction	 Table	 No. of	 Significant
Class	 TechniqueV	 Location	 % Correct	 Samples	 Bifference?V

`	 Feature Selection	 (Table 86)	 85,5

PINE	 (Untransformed) 	 775	 Yes
i

K-L Transformed	 (Table 89)	 89.2

Feature Selection 	 84.0

HDWD	 (Untransformed)	 Same as	 726-	 Yesabove
K-L Transformed	 86.1

Feature Selection	 55.1
APE	 (Untransformed)	 Same as	 118	 Noabove j

K-L Transformed 	63.6

Feature Selection	 68,6

CCUT	 (Untransformed)	 Same as	 370	 Yes a
above

K-L Transformed	 61.6

Feature Selection	 70.9

PAST
(Untransformed)	 Same as	 350	 No a

above
K-L Transformed	 68.6

Feature Selection	 88.1 i
CROP	 (Untransformed)	 Same as	 369	 Noabove

K-L Transformed	 89.4

Feature Selection 	 71.6

SOIL	 (Untransformed) 	 Same as	 1006	 Yesabove
K-L Transformed	 75.5

Feature Selection	 85.7

WATER	 (Untransformed)	 Same as 300	 Noabove j
K-L Transformed	 87.0 p

J-/Feature selection optimum subset includes channels 2, 4, 5, & 7 of the 1

or 	 1979 TMS data seta' j

K-L transformation includes the first 4 components of the K =L
{	 transformed 1979 data set, t

2/Classification performance differences are based upon a Newman-Keuls
comparison with a = 0.10.

a
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Table 104. Statistical comparison between overall classification results for the
GML classifier for two dimensionality reduction techniques (Feature
Selection, K-L transformation) for the best 4 channel feature set
based upon 1979 supervised training statistics and sample block test
data.

Redaction	 Table	 No. of Significance
Technic el/	 Location	 $ Correct Samp les Difference.

i

Overall	
Feature Selection (Table 87)	 88.1

Classification (Untransformed) 	 10,557	 Yes
Performance	 K-L Transformed 	 (Table 90)	 84.6

Feature selection optimum subset includes channels 2 4, 5, & 7 of the original
1979 TMS data set.

K-L transformation includes the first 4 components of the K-L transformed 1979
data set.

2/Classification performance difference is based upon a Newman-Keuls comparison
with_a 0.10.
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Table 105. Statistical comparison between classification results for the
tML classifier by cover class for two dimensionality reduction
techniques (Feature Selection, K-L transformation) for the
best four channel feature set based upon 1979 supervised
training statistics and sample block test data.

F Cover	 Reduction	 Table No. of Significant
DifferenrewClass	 Technique)	 Location	 $ Correct: Samples

Feature Selection 	 (Table 87) 91.0

'► PINE	 (Untransformed) 775 No

K-L Transformed	 (Table 90) 92.0

Feature Selection 91.1

E^WD	
(Untransformed)	 Same as

7269 Yes
y

above
K-L Transformed 88.7

e Feature Selection 58.5
f TUPE	

(Untransformed)	 Same as 118 Yesabove
K-L Transformed 36.4

Feature Selection 60.5
(Untransformed)	 Saone asCCUT 370 Noabove
K-L Transformed 55.9

Feature Selection 82.6
(Untransf ormed)	 Saone asPAST 350 No 1above
K-L Transformed 86.3

Feature Selection 79.7

CROP	 (Untransformed)	 Same as 369 Yesabove
K-L Transformed 73.2

_
Feature Selection 85.6

SOIL	 (Untransformed)	 Same as 1006 Yes ,
above

K-L Transformed 69.9

Feature Selection 78.7

WATER	
(Untransformed)	 Same as 300 Noabove
K-L Transformed 81.0

Feature selection optimum subset includes channels 2, 4, 5, & 7 of the
original 1979 THS data set.

K-L transformation includes the first 4 components of the K L
transformed 1979 data set.

Classification performance differences are based upon a Newman-Keels
comparison with a	 0.10.

Er
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Table 106.	 Statistical comparison between overall classification results for the
SECHO classifier for two dimensionality reduction techniques (Feature
Selection, K-L transformation) for the best 4 channel feature set based
upon 1979 supervised training statistics and sample block test data.

Reduction	 Table	 No. of	 Significant
Technique )	Location	 % Correct	 Samples	 Difference;V

Overall	 Feature Selection	 (Table 88)	 90.0

Classification 	 (Untransformed)	 10,557	 Yes
Performance	 K-L Transformed	 (Table 91)	 87.0

I/Feature selection optimum subset includes channels 2, 4, 5, & 7 of the original
1979 ZMS data set.

K-L transformation includes the first 4 components of the K-L transformed 1979
data set.

2/Classification performance difference is based upon a Newman-Keuls comparison
with a = 0.10.

l

r
7

S

d



k

(
a

ORIGINAL PAGE 13

OF POOR QUALITY	 259
}	 Table 107.	 Statistical comparison between classification results for the

SECHO classifier by cover class for two dimensionality
reduction techniques (Feature Selection, K-L transformation)
for the best four channel feature set based upon 1979
supervised training statistics and sample block test data.

Cover	 Reduction	 Table
Class	 Technique	 Location

No. of	 Significance
% Correct	 Samples	 Difference.

Feature Selection	 (Table 88) 92.9

PINE	 (Untransformed) 775	 No

K-L Transformed	 (Table 91) 92.9

Feature Selection 93.7

HOW	 (Untransformed)	 Same as 7269	 Yesabove
K-L Transformed 92.4

Feature Selection 57.6

TUPE	 (Untransformed) 	 Same as 118	 Yesabove
K-L Transformed 28.8

Feature Selection 58.9

CCU,r	 (Untransformed) 	 Same as 370	 Noabove
K-L Transformed 56.2

Feature Selection 83.1

PAST	 (Untransformed)	 Same as 350	 Noabove
K-L Transformed 85.7

Feature Selection 81.6

CPIJP	 (Untransforme .)	 Same as 369	 Yesabove
K-L Transformed 71.8

Feature Selection 86.0

SOIL	
(Untransformed) 	 Same as

1006	 Yesabove
K-L Transformed 69.7

Feature Selection 79.7

WATER	
(Untransform0 11	 Sane as

300	 Noabove
K-L Transformed	 - 81.0

I/Feature selection optimum subset includes channels 2, 4, 5, & 7 of the
original 1979 TJS data set.

K-L transformation includes the first 4 components of the K-L
transformed 1979 data set.

2/Classification performance differences are based upon a Newnan-Keels
comparison with a = 0.10.

it
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Table 108. Statistics from original 1979 TKS data (sampled every 5th line
and 5th column) used in calculation of`K-L transformation matrix.

Channel

1	 _2	 3	 4	 ^ _ .r6	 .__.Z__

	

Mean Vector	 59.8	 61.4	 44.8	 128.9	 113.4	 59.9	 78.1

Standard

	

Deviation	 12.0	 18.2	 23.2	 29.5	 24.5	 24.4	 30.6

Covariance

	

Matrix Diagonal 144.6	 330.9	 538.6	 868.6	 600.5	 596.7
	

935.1

Total Variance = 4014.90

Correlation
Matrix	 1.00

0.95 1.00
0.90 0.96 x.00

-0.02 0.01 -0.07 1.00
0.16 0.21 0.19 0.91 1.00
0.67 0.74 0.82 0.26 0.58 1.00
0.33 0.43 0.55 -0.10 0.25 0.73	 1.00

Covariance
Matrix	 144.6

208.5 330.9
252.3 404.8 538.6

E	 -5.9 3.7 -51.2 868.6
46.0 94.9 106.5 657.5 600.5

195.4 330.0 463.7 184.1 349.2 596.7
122.8 238.8 388.7 -87.8 185.7 543.2	 935.1

a
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Table 109. Summary of 1979 K-L Transformed TINS Data.

f	 Matrix of Eiger -tors

S^i..l. ^f12. S^^ S.Ei.^. Cf^ 5 S^i^t. CH7

(X	 ) Eigenvector 1	 0.18140 -0.09369 -0 .32157 -0.26026 0.69161 -0.29629 -0.47017

(. 2 ) Eigenvector 2	 0.30786 -0 .14271 -0 .43681 -0.36567 0.14429 0 .30636 0.66758

,) Eigenvector 3	 0.41710 -0.23906 -0.43389 -0 .02481 -0.62199 0.6217 -0.43505

4) Eigenvector 4	 0.21030 0.75156 -0.04241 -0.34249 -0.22526 -0.45783 0.10712

(X5 ) Eigenvector 5	 0.33933 0.50853 0 .09323 0.16958 0.20906 0.69222 -0.25674

(a 6 ) Eigenvector 6	 0.52169 -0.02982 -0.03139 0.71851 0.13918 -0.35212 0.25758

(Y Eigenvector 7	 0.51653 -0.29895 0.71137 -0.36826 -0.01282 -0.04145 -0.01657

Cumulative
Eiaenvalue Percent of Variance Percent MSE

'1 2069.27 51.54% 51.54% 48.46

x 2 1357.44 33.81 85.35 . 14.65

13 501.46 12.49 97.84 2 .16

X 4 58.19 1.45 99.29 0.71

5 14.06 0.35 99.64 0.36

f	 6 8.72 0.22 99.86 0.14

N7 5.77 0.14 100.0 0.00

{
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APPENDIX D (Tables 110-118)

1980 SAR and MSS Classification Results

Used in the Quantitative Evaluation of the SAR Data

and in the SARIMSS Comparison
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