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PREFACE

To respond to the national needs for improved productivity in engineering
design and manufacturing, a NASA supported joint industry/government project is
underway denoted Integrated Programs for Aerospace-Vehicle Design (IPAD). The
IPAD project objective is to improve engineering productivity through better use
of computer-aided design and manufacturing (CAD/CAM) technology. It focuses on
development of technology and associated software for integrated company-wide
management of engineering information. The IPAD project is carried out primar-
ily through a contract to The Boeing Commerical Airplane Company under the guid-
ance of an Industry Technical Advisory Board (ITAB) composed of representatives
of major aerospace and computer companies. Results to date are believed useful
to a broad segment of both aerospace and nonaerospace organizations concerned
with computer-aided design and manufacturing (CAD/CAM) technology. To broaden
awareness of this technology, a summary of IPAD project accomplishments and
plans, as well as industry activities to exploit the technology, was presented.
Program papers summarized IPAD project work to define a future company-based
CAD system, developments underway to address the critical CAD issues of handl-
ing company-wide engineering information, aerospace and computer industry exper-
iences and plans for exploiting IPAD technology, and closely coupled IPAD-
related activities underway through such efforts as the Air Force Integrated
Computer-Aided Manufacturing (ICAM) prodgram. This Symposium was cosponsored
by the NASA Langley Research Center and the Industry Technical Advisory Board
(ITAB).

This document contains the manuscripts of the presentations and the pre-
pared comments of the panel discussion. Use of trade names or names of manu-
facturers in this report does not constitute an official endorsement of such
products or manufacturers, either expressed or implied, by the National Aero-
nautics and Space Administration.
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IPAD PROJECT OVERVIEW

Dr. Robert E. Fulton
NASA Langley Research Center
Hampton, VA

SUMMARY

To respond to national needs for improved productivity in engineering
design and manufacturing, a NASA supported joint industry/government project
is underway denoted Integrated Programs for Aerospace-Vehicle Design (IPAD).
The objective is to improve engineering productivity through better use of
computer technology. It focuses on development of technology and associated
software for integrated company-wide management of engineering information.
The project has been underway since 1976 under the guidance of an Industry
Technical Advisory Board (ITAB) composed of representatives of major engineering
and computer companies and in close collaboration with the Air Force Integrated
Computer-Aided Manufacturing (ICAM) program. Results to date on the IPAD
project include an in-depth documentation of a representative design process
for a lTarge engineering project, the definition and design of computer-aided
design software needed to support that process, and the release of prototype
software to integrate selected design functions. Ongoing work concentrates
on development of prototype software to manage engineering information, and
initial software is nearing release. This paper provides an overview of the
IPAD project and summarizes goals, plans, and progress to date.

INTRODUCTION

The national need for improved productivity has become increasingly
apparent with recent statistics of zero or negative growth in gross national
product. Significant improvements in aerospace productivity are believed
possible through effective utilization of current and future CAD/CAM technology
(figs. 1 and 2). A joint NASA/industry $15M project, Integrated Programs for
Aerospace-Vehicle Design (IPAD), has been underway for several years and is
making significant progress in advancing integrated CAD/CAM technology. The
project goal is to increase U.S. aerospace industry productivity through applica-
tion of computers for integrated company-wide management of engineering data.

In the early 1970's, NASA-funded feasibility studies (refs. 1 and 2) showed
that dramatic increases in engineering productivity were feasible through the
automation of routine information handling tasks. These results, which were
extensively reviewed by the aerospace and computer industry (refs. 3 and 4),
showed that such automation would directly decrease cost and flow time in the
product design process and would improve the competitive position of the U.S.
aerospace industry. Based on these and other results, NASA began the IPAD



project in 1976 to develop the appropriate technology and associated computer
software. Work under the IPAD project is being done principally through a
NASA prime contract to The Boeing Commercial Airplane Company supported by
appropriate subcontracts and under the guidance of an Industry Technical
Advisory Board (ITAB) composed of members of aerospace and computer companies
(fig. 3). The ITAB concept provides an innovative and effective management
approach for a joint industry/government high technology R&D effort (ref. 5).
(See Appendix A for a summary of industry involvement in IPAD).

IPAD software development is closely coordinated with the U.S. Air Force
Integrated Computer-Aided Manufacturing (ICAM) program, and several IPAD/ICAM
cooperative activities are underway or planned. (See, for example, refs. 6
and 7). NASA management of software development is supported by continuing
independent evaluation of software performance carried out through a contract
to Information Research Associates (ref. 8). While IPAD software is being
developed primarily for use by the aerospace industry, it should be useful
in support of other complex processes such as large civil engineering projects,
shipbuilding, automotive design, electronics, and engineering education (refs. 9,
10-13). Representatives from several non-aerospace organizations serve as
observers to ITAB and regularly participate in the review and critique of
ongoing work (fig. 3).

DEVELOPMENT PLAN

A fully operational IPAD capability of the future (fig. 4) would be
composed of system software including executive, data management, and geometry/
graphics software, together with disciplinary technical programs installed in
IPAD to implement its integrated design features and project data. The IPAD
project focuses on developing prototype system software and would use available
technical programs and data for software evaluation and demonstration. It
would also take advantage of the capabilities of the host computer interactive

operating system.

Major IPAD project tasks during FY 1976-82 (see figs. 4 and 5) dinclude
(1) definition of a computer-aided design system of the future denoted Full IPAD;
and (2) development of First-Level IPAD software principally composed of a proto-
type engineering data management software system operational on CDC and IBM
computers supported by geometry and graphics software operational on a DEC VAX
minicomputer. IPAD software development is being carried out through a careful
step-by-step process encompassing aerospace design process definition, system
requirements definition, software design, and software development (fig. 6).
The schedule in figure 5 indicates that the Full IPAD design has been completed;
work is well into the CDC development with geometry/graphics software released;
data management software is nearing release; and planning for IBM implementation
is underway. The following sections provide further details on the description
of a future Full IPAD, as well as on progress and plans toward developing a
First-Level IPAD software capability.



DESCRIPTION OF A FUTURE FULL IPAD SYSTEM

IPAD project results to date (see refs. 14-24) indicate that a Full
IPAD system of the future should be basically a general-purpose interactive
computer-aided design system developed to support engineering design processes.
Its primary function would be to handle engineering data associated with the
design process. IPAD software would be installed by each company on its
computers and used in a manner similar to vendor-supplied operating system
software. The IPAD software would augment, rather than replace, existing
operating system software. It would support the continuous design activities
of a typical company mix of multiple development projects. The IPAD system
would serve management and engineering staffs at all levels of design
(conceptual, preliminary, and final) and aid in the assembly and organization
of design data for manufacturing processes.

The IPAD system would support generation, storage, and management of
large quantities of data. Its capacity would only be Timited by the computer
hardware configurations selected by each company. The system would be used in
a distributed computing environment having one or more central host computing
systems and many remote computing systems. One such arrangement of Full IPAD
components is given in figure 7. The number of terminals might be several
hundred or more and may be distributed across the host and remote systems.

The IPAD software would function on the computer complexes in use today by
aerospace corporations, but would achieve its full potential on the computers
in the next decade.

The functions of the three major IPAD software components illustrated
in figures 4 and 7 are (1) executive software to control user-directed processes
through interactive interfaces with a large number of terminals in simultaneous
use by engineering and management personnel and to provide communications between
computer hardware within and outside the IPAD distributed computing system;
(2) data management software to provide a comprehensive, versatile capability
for efficiently storing, tracking, protecting, and retrieving exceptionally
large quantities of data maintained on multiple storage devices; and (3) geometry
and graphics utility software to provide a wide range of capabilities for
information and geometry creation, manipulation and display functions including
design/drafting and interactive and display graphics.

Libraries within the data bases might include analysis/design computer
programs utilized by various disciplinary specialists and extensive quantities
of data. The analysis/design computer programs would not be part of IPAD, but
would be provided by each company to form the complete design-software system;
selected publically available technical programs might be included in IPAD
releases to demonstrate capabilities. The data in the data base would include
all official project information defining the characteristics of current
baselines and alternative designs and their performance, as well as archival
"handbook" information forming the technology base for company designs.
Simultaneous access to the same baseline design information by all disciplinary
groups would thus be possible. Temporary storage for design information being
actively used by individuals or teams would also be provided.



A Full IPAD system would not be a hands-off "automated design" system
and would not constrain company design methods. The quality of future
aerospace designs generated in an IPAD environment would depend on the same
primary factors as in today's design environment: creativity of designers,
quality of technical staff, quality of analysis tools and design data, and
coordination of design and manufacturing information. IPAD should also be
a tool to improve manufacturing direct access to engineering data. While
support for the manufacturing process is not a specific requirement for the
Full IPAD system, it is believed that many manufacturing needs are met by
the resulting system design. Continuing collaboration between the Air Force
and NASA should insure compatibility between future IPAD and ICAM capabilities
so that manufacturing users can more readily take advantage of the design and
data management features of IPAD and can have better access to design information.

In summary, the key results to date in defining a future full IPAD
system include:

1. Comprehensive description of a future representative aerospace-
vehicle design process and its interface to manufacturing
(fig. 8, refs. 14-20).

2. Requirements and preliminary design of a future IPAD software
system denoted "Full IPAD" to integrate engineering activities
of an aerospace company having several products under simul -
taneous development (fig. 7, refs. 21-24).

FIRST-LEVEL IPAD SOFTWARE DEVELOPMENT

An initial set of IPAD software denoted First-Level IPAD is now under
development. This software is a meaningful subset of the Full IPAD system
and, in accordance with ITAB guidance, is focusing on critical technology
issues associated with managing engineering data. It provides a significant
step toward development of a future integrated computer-aided design capability
operational on a network of computers of different manufacture. Key require-
ments driving software development include numerous interactive terminals,
voluminous quantities of data (fig. 9), and extensive consideration of geometry

(fig. 10).

In progress to date, major technology issues have been addressed, design
of a prototype engineering data management system completed, software development
progressed substantially, some initial software released, and a major capability
nearing release. The result has been identification and implementation of
appropriate geometry/graphical software (fig. 11, ref. 25), and the design and
substantial progress toward development of an innovative approach to integrated
company-wide management of engineering data for a future distributed computer
complex (fig. 12, refs. 26-30).



A11 IPAD technology, software, and supporting documentation is being
supplied to industry as it is developed. (See, for example, refs. 30-35).
The software development plan provides for release of incremental capabilities
implemented for the CDC/DEC and IBM computing systems. These incremental re-
leases will permit each company to incrementally install and evaluate the
software and associated technology and, as appropriate, undertake a gradual
transition from the current computing environment to a future IPAD integrated
environment at a pace appropriate for the company.

During the balance of 1980, work is focusing on coding the engineering
data management software and developing demonstrations of integrated design/
manufacturing activities to validate the software and its fundamental concepts.
An initial engineering data management capability will be operational in late
1980 and future development, together with demonstrations, will continue into
mid-1981. Plans for 1981 and beyond are to implement the engineering data
management software on a second computer of different manufacture (IBM), to
enhance performance of software, to expand software to respond to manufacturing
data management requirements, and to examine the technology challenges of
computer-aided design/manufacturing on networks of computers (fig. 13). Close
collaboration will be maintained with the Air Force ICAM program to insure
that the joint IPAD/ICAM programs best respond to the combined technology needs
of design and manufacturing.

In summary, First-Level IPAD software produced to date or planned
into 1982 include:

1. Release in October 1979 of IPAD Integration Prototype Software
operational on a CDC/DEC computer complex which integrates
through an experimental relational data management system
the functions of design, drafting, geometry, graphical dis-
play, structural and thermal analysis/design, and N/C path
generation (fig. 11, ref. 25).

2. Release in July 1981 of a prototype instrumented engineering
data management system based on a multi-schema concept which
is operational on a CDC computer and provides the capability
to integrate company-wide design data (fig. 12, refs. 26-30).

3. Release in July 1982 of the prototype engineering data
management system operational on an IBM computer complex.

4. Continued documentation of scenarios of representative
engineering design activities which serve to control software
development, insure requirements are met, and serve as 2
basis for software demonstration.



APPENDIX A

INDUSTRY INVOLVEMENT IN IPAD DEVELOPMENT

The definition of IPAD has evolved over many years from a study and
critique process that included extensive aerospace industry involvement. Two
in-depth studies of the feasibility and possible forms of an IPAD system were
carried out by The Boeing Company and General Dynamics/Convair (see ref. 1,2).
The total cost of these studies over a 17-month period was $611,000. Each
study contractor undertook a careful dissection of the vehicle design process
to delineate those functions and tasks that can be beneficially supported by
computer hardware and software and then defined the format and elements of a
software system that could substantially improve the design process. They
also assessed the impact of this IPAD system on company computer hardware
requirements and on the performance of company staffs and evaluated its cost
and benefit potential.

One company examined these questions in the context of design of three
kinds of vehicles--a large subsonic transport, a supersonic transport, and a
hydrofoil--and developed a comprehensive, detailed picture of the design process
as a multilayered network of functions. The other examined intensively the
tasks and interfaces of individual designers and groups and analyzed carefully
the information flow in design. They considered the effects of the detailed
constituent parts of the design process and extrapolated their experience with
existing software systems to arrive at computer requirements, costs, and
benefits of IPAD software. Both concluded that IPAD is feasible and will fit
on existing computers. They arrived at software systems that differed in detail,
but exhibited the same general characteristics and order-of-magnitude costs.
Projected benefits included 25-90 percent time and 20-60 percent cost savings
in design, better management visibility, and reduced risk and cost resulting
from greater depth in early trade-offs, on-time designs, and fewer design
changes during production.

Results of these studies were presented in four oral reports that were
well attended by representatives of industry; for example, 83 industry repre-
sentatives attended the final oral presentations. Following completion of the
studies, the results were critiqued by teams from McDonnell Aircraft Company;
Lockheed-Georgia Company; Grumman Aerospace Corporation; Rockwell International,
Los Angeles Aircraft Division; Control Data Corporation; IBM Corporation; and
Sperry Univac. These firms examined such questions as completeness of the
studies, credibility of the proposed systems and projected development parameters,
user acceptance, and government and industry roles. They expended significant
effort over four months, employing 31 team members and about 100 part-time
consultants. The critique reports (ref. 3) reveal a wide spectrum of views,
but strong consensus that IPAD development should proceed, should not include
technical modules development which should remain ltargely the prerogative of
industry, and should provide early delivery of software and user involvement.
Because of the inevitable budget Timitations, it was recommended that NASA
limit its specific objective to production of a truncated, but "working", system.
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Other evaluations of IPAD include an Army-funded study by McDonnell
Douglas Astronautics Company of its benefit potential for missile design
(ref. 4) and a small NASA-funded study by Battelle Columbus Laboratories of
its potential for non-aerospace application (ref. 9). In addition, the NASA
Research and Technology Advisory Committee (RTAC) on Materials and Structures
sponsored a colloquium of high-level aerospace managers at MIT on January 30-31,
1974, at which IPAD was examined and discussed. NASA prepared an IPAD
"Prospectus" in February 1975 which set forth the plan for development,
initial maintenance, and release of IPAD; for an Industry Technical Advisory
Board (ITAB) to advise the IPAD contractor; and for a user-controlled organiza-
tion to accept maintenance responsibility for IPAD software. NASA then conducted
a survey of 41 aerospace companies seeking their commitment to become a member
of ITAB during IPAD development; to evaluate IPAD software before it is generally
released; and to financially support, in the context of a.user-controlled
organization, maintenance and improvement of IPAD software after its value to
their company had been demonstrated. Two messages of a general nature were
apparent in the company responses. First, support for the IPAD concept and
willingness to provide advice and counsel through the ITAB was very good from
the large and medium airframe companies for whom IPAD would be primarily
tailored. Second, most companies prudently preferred to defer hard commitments
beyond ITAB participation until they had a chance to assess results. A few
companies specifically declined commitments to participate in the IPAD project,
and these fell in two categories - either IPAD did not appear to meet the needs of
their particular design process, or they saw IPAD aimed at design problems
larger than their company activity. Several such companies wished to remain
informed on IPAD progress with an opportunity to re-evaluate their position later.

Based on industry willingness to support the IPAD project, an Industry
Technical Advisory Board (ITAB) was formed by the development contractor soon
after contract initiation to afford industry the maximum opportunity for in-
fluencing the course of IPAD development. ITAB consists of members and observers
representing major U.S. aerospace and computer companies and meets periodically.
ITAB activities include review of planning and technical documents, critique of
key development decisions, ranking of IPAD requirements, identification of
demonstration programs, and evaluation of software. As the IPAD software is
released, ITAB member companies and other potential IPAD users will be aided in
its evaluation and use. More details on ITAB ongoing operation and activities
are given in reference 35.
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GOVERNMENT INVOLVEMENT NEEDED TO ACCELERATE DEVELOPMENT OF NEEDED
CAD/CAM TECHNOLOGY

- HIGH RISK LONG-TERM DEVELOPMENT OUTS IDE NORMAL
AEROSPACE COMPANY PRODUCT LINE

- HIGH RISK DEVELOPMENT FOR A SMALL COMPUTER COMPANY
MARKET ’

- REQUIRES UNNATURAL COOPERATION AMONG COMPUTER VENDORS
- UTILIZES SCARCE RESOURCES MORE EFFECTIVELY
PROVIDES BASIC TECHNOLOGY NEEDED FOR DOD CAD/CAM PROGRAMS

BENEFIT NASA MISSIONS AND PRODUCTS

Figure 2.- Reasons for NASA development of CAD/CAM technology.
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Figure 3.~ Industry technical advisory board (ITAR).
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DISSECTED ASSESSED MANAGEMENT IDENTIFIED
DESIGN g OF PRODUCT DEVELOPMENT \ /DESIGN/MFG INTERACTIONS
PROCESS [E —— J

o T __ ¥ * K’

v
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DESIGN DATA DESCRIBED
2 4 DES IGNER
[]10° ] 10® []10 CAD NEEDS
Y * ¥

ESTABLISHED IPAD
REQUIREMENTS

REQT
TEST

| iPAD PRELIMINARY DESIGN |

|at—]

[ SOFTWARE DEVELOPMENT J

Figure 6.- Approach to IPAD software development.
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Figure 7.- Arrangement of full IPAD system components.
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500 - 1000 SIMULTANEOUS USER TERMINALS
LARGE, RAPID ACCESS DATA VOLUMES TO SUPPORT VEHICLE DESIGN

ON LINE 10 MINUTE
DATA AVAILABILITY
10° WORDS 10° WORDS
10 PRELIMINARY DESIGNS 1.7 -
10 SUSTAINING DES IGNS 78 15.7
2 DETAIL DESIGNS 2.5 32
12,0 189

Figure 9.- Key IPAD performance requirements driving software design.
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Figure 10.- Geoametry permeates the design process.
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INDUSTRY INVOLVEMENT IN IPAD
THROUGH THE INDUSTRY TECHNICAL ADVISORY BOARD

Warren E. Swanson
Chairman, ITAB

SUMMARY

In 1976 NASA awarded The Boeing Company a contract to develop
IPAD (Integrated Programs for Aerospace-Vehicle Design). This
contract included a requirement for Boeing to form an Industrial
Technical Advisory Board (ITAB), with members representing major
aerospace and computer companies. The purpose of this board was
to guide the development of IPAD.

The specific goal of IPAD is to increase United States
aerospace industry productivity through the application of
computers to manage engineering data. This goal clearly is
attainable; in fact, IPAD's influence can reach beyond the
aerospace industry to many businesses where product development is
based on the design~building process. An enhanced IPAD,
therefore, is a national asset of significance. The role of ITAB
in guiding the development of this system is the subject of this
paper.

INTRODUCTION

When the IPAD concept was introduced in the early 1970's,
many industry people were skeptical. They envisioned a program
that would be too large and costly, in terms of overhead, to be
programmable on present-day or even future computers. At the time
it seemed that there would be far too much data to be processed
efficiently by such a system; for example, an estimate was made
that some four billion bits of information would have to be stored
and recovered in an interactive atmosphere—-an inconceivable
achievement. (Although still not entirely feasible, this
requirement now appears reasonable in the light of ITAB's
continuing review, study, and assignment of priorities.) Another
concern was that IPAD would be meaningful only to very large
aerospace programs and that individual companies would not be able
to operate on an IPAD-type system. There was also some
apprehension on the part of industry that an IPAD-type apptroach
might actually dictate the future of the computer industry to suit
its own purposes.

In retrospect, it is now clear that industry failed to
appreciate fully the IPAD concept, which was to start by
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developing potentially feasible data managment requirements on.the
assumption that concurrent advances being made thoughout the
computer industry would produce new computers and storage devices
that would eventually support these emerging requirements. As
indicated above, this is proving to be the case, largely as a
direct result of the relationship between the IPAD program and the
Industry Technical Advisory Board.

THE STRUCTURE OF ITAB

The NASA contract with Boeing called for this board to be
composed of prospective users of the system, that is,
representatives of aerospace and computer companies. Industry's
response to the Boeing invitation to serve on the board was
amazing: Boeing was besieged with requests for membership. These
requests came from almost every segment of these industries and
immediately necessitated limiting the total number of members in
order to stay within funding limitations. A decision was
therefore made to establish a maximum of 20 voting memberships,
with support to be provided by 60 to 70 advisory members. This
organizational structure seemed to offer the best promise of
fulfilling the ITAB charter, which was to provide advice to
Boeing, in the development of IPAD, that would be independent of
Government direction and separate from The Boeing Company.

ITAB's members have come from data processing companies,
computer manufacturing firms, and aerospace manufacturers--both
airframe and engine producers. They are industry specialists who
are expert in the computing field. Interestingly enough in view
of their diversity, many are top-level management personnel.

The structure of ITAB is illustrated in figure 1. The 20
voting members formulate recommendations for IPAD's development
after listening carefully to discussion and suggestions from the
nonvoting advisors. These recommendations constitute the basic
ITAB "product" and ensure a continuous flow of informed guidance
to Boeing. It is the interplay of these ITAB recommendations and
Boeing responses that determine the program's direction. The
communication channels for the flow of ITAB recommendations are
depicted in figure 2.

BENEFITS GAINED FROM THE IPAD-ITAB RELATIONSHIP

From the outset, the contractual basis of ITAB ensured
vigorous industry participation, for it was evident that industry
would be the free recipient of any useful information that might
be generated by the IPAD program. Fears about the future being
dictated by IPAD gradually diminished as the computer companies
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began to see the influence that their representatives were
exerting on the IPAD program as well as the value of the
information being received in return.

Early in the study phase of IPAD's development, a set of
requirements was established as a baseline reference for the
design process. It was interesting to note that this design
process development could be used by all of the ITAB member
companies, including the observers, and that it has since proved
helpful to them in their various efforts to develop suitable
equipment to meet the demands of emerging requirements. Although
agreement on appropriate processes to meet these requirements has
by no means been unanimous, there has developed a widespread
appreciation of the technigques that have evolved for putting the
design process on paper. As a result, each company has been able
to take this formatted design and lay it out in a manner that
suits its own unique circumstances. This aspect of the ITAB
experience alone has been of national benefit in simply describing
for a particular company how to go about defining its design
process. ITAB involvement is shown in figure 3.

It has also become clear that IPAD is capable of developing a
single data management system adaptable to the needs of many if
not all companies, thereby offering them efficient data management
procedures without the necessity of individually developing such
systems. The advantages of this capability are obvious to any
manager who has ever struggled with the data management problem.

During the past few years there has been a growing awareness
of a dangerous reduction in American industrial productivity. In
many U.S. factories productivity has decreased significantly,
especially when compared with that of Japan and West Germany. In
the course of ITAB meetings, participating members have come to
appreciate that IPAD can exert a substantial influence on the
improvement of productivity. Some studies show a ten-to-one
improvement in producing engineering data; others demonstrate that
using companies should experience a minimum throughput improvement
of six to one. Although IPAD has not yet reached its full
development or demonstrated its future potential, these

.projections are verifiable, and productivity improvement through

the use of IPAD principles can become. of great benefit to the
nation.

CONCLUDING REMARKS

Attendance at ITAB meetings has been consistent over the
years, and participation has been enthusiastic and effective.
Nonvoting advisors, many of them from companies for which IPAD was
not specifically designed, have shown appreciation for the
potential benefits of the system for all of American industry and
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have made many important contributions through their advice and
suggestions. Twelve meetings of the Industry Technical Advisory
Board have been conducted over the years, and from these meetings
160 recommendations have been submitted to Boeing. Of this
number, only 25 remain as open items to which Boeing has not yet
made response. As a result of these meetings and through the
exchange of communications such as are afforded by this symposium,
a broader knowledge of IPAD and its resources for improving
national productivity are certain to emerge.
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INTEGRATION OF DESIGN INFORMATION

Gordon L. Anderton
Boeing Commercial Airplane Company

SUMMARY

This paper discusses the overall concepts of the integrated
programs for aerospace-vehicle design (IPAD) from the user's
viewpoint, provides a top-level view of what the user requires
from such a system, and describes the interactions between the
system and user. The four major components discussed are design
process; data storage, management and manipulation; user
interface; and project management.

Although an outgrowth of aerospace production experience, the
basic concepts discussed--and especially their emphasis on
integration--are considered applicable to all problem solving.
Thus, these concepts may offer a broad base for exploitation by
industry in general.

This is the first in a set of three papers, the other two
being "Future Integrated Design Process," by D. D. Meyer, and
"Requirements for Company-Wide Management of Engineering
Information,” by J. W. Southall. 1In addition to tying the three
together, this paper will discuss in detail how project management
can be handled in a computing environment and also the user
interface needs.

INTRODUCTION

The Integrated Programs for Aerospace-Vehicle Design (IPAD)
is a computer-based system designed to assist the engineer in
performing his tasks. It is based on five years' experience with
the NASA-~funded IPAD development contract. The principal
underlying feature of this system is integration: integration of
data and application programs, integration of application
programs with each other by utilizing design process definitions,
and integration of computing jobs with project management (cost
and schedules).

The second feature of the IPAD system is the user interface
and user assistance. These include uniformity of user language,
assistance in using the system, machine independence, special
utilities for frequently used applications, geometry definition
and creation, and graphics.
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The third feature of the IPAD system is information
management through an engineering and manufacturing-oriented data
base, data integrity and security, data manipulation and query,
and application program library.

This is the first in a set of three papers which will
describe IPAD from the point of view of the user. This paper
presents an overview of the integration characteristics together
with a detailed description of the project management and user
interface requirements.

ENGINEERING DATA CHARACTERISTICS

Engineering design of a product can be described as locating,
creating, modifying, reporting, storing, controlling, and
protecting the information that describes the end product, its
functional environment, and its performance boundaries. The
character of the information is varied and may be analytic or
geometric, textual, numeric, or graphic; and it may be either
structured or unstructured.

Locating data occupies a large portion of an engineer's time.
It is complicated by consideration of the data's currency and
quality.

The engineer applies certain source data concerning a product
to known physical behavior and thus produces engineering design
data that defines the end product in geometric, material, and/or
functional terms. In IPAD, this activity is labeled "job" (fig.
1).

If all the jobs were in series, linked together like chain
links by common data, then total computerized design would be
possible. This, however, is not the nature of aerospace-vehicle
design, nor is it an intended goal of IPAD. 1IPAD is a tool aimed
at enhancing today's methods through improved data management and
through the automatic coupling of computer programs and their
associative data. In cases where several activities (which may be
performed by computer programs) can be linked for convenience, the
automatic coupling of programs can be specified as a linked
activity. 1In such cases, the total activity is still called a
job.

The nature of aerospace-vehicle design is better captured by
figure 2, which shows end data influencing source data. This
necessitates an iterative procedure that usually converges rapidly
to meet the applicable design criteria.

This iterative characteristic results from the large number
of influencing parameters and the complex nature of their
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interactions. At the highest level, the total product is part of
this iterative cycle and is broken down into a progressively more
detailed and accurate description of the product through different
phases such as configuration design, preliminary design, and
detail design.

DATA MANAGEMENT

The iterative nature of design imposes some special and
hitherto unigque requirements on data management. It must be
possible to identify data by a unique name plus a version number
and to provide qualifying labels relative to data quality. In
addition, data-user relationships must be known. The data and its
creator must be recognized by the system in order to establish the
correct modify and update security. (Only the data owner can
modify data.) The data users must be recognizable by the system
so that they can be informed when later versions of data are
available.

The large number of users and user groups in an aerospace
design organization, each with specialized interests in the data,
implies a need for breaking down the data base into a number of
data bases called data areas. Data management is covered in
detail in a companion paper.

DESIGN PROCESS

All jobs combined, whether simply linked or iterative,
comprise the work items that produce the product design, see
figure 3. The linking together of jobs through the commonality of
shared information can be defined as a design process. This
definition implies a chronology for performing jobs, multiple path
choices involving engineering expertise, and a possible basis for
optimizing the design process. A top level view of the design
process is covered in a companion paper.

WORK ELEMENTS

The following terms are used in IPAD for describing work items.

Subtask: Work performed by one employee that contributes to
the lowest element of work defined by the WBS at which cost
accounting is collected, see figure 4.
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Task: Work performed by a group of employees that contributes
to the lowest level of WBS at which cost accounting is monitored;
a sequence of subtasks accomplished by a group and representing a
milestone in the project plan, see figure 4.

Work Breakdown Structure (WBS): A structured index to all
elements of work and all items produced by a product program, see
figure 5.

Subtask and task are methods of breaking work into packages
assocliated with people, and the WBS is a means of breaking work
into packages associated with elements or components of the
product. The tying together of subtask, task, and WBS provides a
structure that permits the integration of project management with
job.

PROJECT MANAGEMENT

Project management can be described by the six activities:
planning, organizing, staffing, directing, coordinating, and
controlling. Component elements of organizing and controlling,
essential to the integration process and lending themselves most
readily to a computing environment, are the following:

1. Developing a work breakdown structure (WBS) and technical
plan to describe work and expected results of work

2. Developing a business plan and scheduling the time placement
of resources required to accomplish the technical plan

3. Assigning work and allocating resources

4. Monitoring tasks and subtasks — supporting reports such as
resources (budget/actual) late milestones, milestones due the

following week or month, etc.

Structuring Project Management Data

As in the design process description the job is the basic
building block of project management. Figure 5 illustrates how
the building blocks are arranged to support a WBS, which is a tree
structure with each lower level describing the product in greater
detail. This procedure is terminated at a level where the work
required can be performed by a team of people. The work performed
by a single employee is called a subtask, and the completion of a
subtask 1s achieved by the completion of a number of jobs.
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Budget manhours are estimated and actual manhours are
collected at the subtask level and then rolled up to higher WBS
levels.

The running of the first jobs in a WBS can be considered the
starting schedule event for that WBS. Similarly, the release of
the end data for the last job in a WBS can be considered the
ending schedule event. Project design is concerned with the
information resulting from a job; project management, on the other
hand, is concerned with information about that information, which
for convenience, will be called header information, see figure 6.
In addition, header data will contain other information about the
data (e.g., identification of the creator). This information will
address such things as scheduled start and end dates.

IPAD Requirements For Project Management

Data and computer-program-related requirements coming under
the project management activity are described in detail below.
IPAD will provide the means whereby managers can plan the tasks
defined by the design process networks.

"Plan" in this sense, includes scheduling, assigning manpower
and computer resources to tasks and subtasks, and indicating the

dependency of tasks on each other, see figure 3.

The system will provide the means to name subtasks and tasks
by project, to address various levels of planning, and to enable

the planner to assign task and subtask dependency (design process
definition).

The planner will be able to assign budget and estimated
manhours, and computer resources to named tasks and subtasks
together with information on scheduling. Review of manpower and
computer resources, both actual and estimated, will be available
(a) at the terminal using the query processor or (b) offline by
hardcopy reports. The input will consist of project, WBS, task,
or subtask name and a selection of any combination of schedule,
manpower, computer resources, and dependency. A method of
selecting special display formats (e.g., bar chart or other
graphical representations) will be available. A standard set of
symbols will be available to denote key events and activities and
will include start/complete project; complete key tasks; decision
milestone; and begin milestone/end milestone. The planning
information will be stored along with the "header" that applies to
all data and programs.

To assist in planning work activities, IPAD will provide the
means to query the program headers to determine the planning,
status, and other information about any subtask, task, or WBS
item. Mahagers will require control room type information
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reflecting cost and schedule status for each discrete task from a
computer—-based master schedule.

A master schedule must be developed initially to represent
the project activities, their flowtimes, and their
interdependencies and costs. When the starting date is
established, the critical path(s), slack times, and completion
dates can be computed. The system must accept status and cost
reports from the users to maintain the master schedule.

Responsible managers in all project design disciplines must
have the capability to evaluate and report progress on their
activities and must be informed of exceptions to the existing
master schedules when their schedules are impacted. The system
will have the capability to limit Jjob execution based on subtask
schedule.

Each discipline in the project design community, beginning
with preliminary design, either develops data for its own or for
other disciplines' use or depends on data from other disciplines.
It may also be involved with a combination of these situations.
The master schedule that has been developed is assumed to prevail
unless an exception has been posted (e.g., a missed milestone, a
report that an activity will be completed, or other notification
that information will be available late). 1In case of an
exception, the system will analyze the impact of the exception and
print out a report for distribution to each affected organization.
It is then the responsibility of each organization to develop a
workaround or to confirm the impact. Any changes to the master
schedule will be reported to the system.

The interactions with the master schedule will be extended to
manufacturing users of IPAD having the same capabilities that are
available to the design users.

Manufacturing data is provided to project designers on a
committed basis, just as design information is provided to

manufacturing organizations. This begins in preliminary design
and extends to formal engineering releases and to the support of
design changes during production and test phases. The
manufacturing user will get the same systems support as do the
designers.

USER INTERFACE

The IPAD user interface involves the following basic
elements: people (users), tools (application programs, utilities

and the system executive), product (information), reports
(communication).
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IPAD Users

There are seven categories of IPAD user: companies, design
and manufacturing engineers, technical managers, application
programmers, data base administrators, system administrators, and
secretaries. Each of these categories has its separate concerns
that must be addressed if IPAD is to be accepted as a product
design tool. 1In addition, there are some general needs that
affect all users.

The IPAD system will permit a smooth transition from the
existing product design environment into the IPAD environment,
permit individual company flexibility in selecting priorities for
incremental implementation wherever possible, and provide

parameters that can be varied to tune the system to suit
individual company needs.

Individual users need a way to store information and have it
readily accessible and presentable in either report format or
through use of graphic utilities. The user needs to be able to
transform known information (input) into desired information
(output), either by editing (human action) or by use of a computer
program or a linked chain of computer programs. The user should
not need to change the input in order to make it acceptable to the
computer program; computer programs and data must be integrated.
The data owner needs to have confidence that while he is creating
his data it will be free from interference by other users unless
such interference is knowingly permitted by the owner. When the
data is of acceptable quality, the owner may make it available
for all users to read through a release procedure. In addition to
having design application programs, a user needs some special
general application programs or utilities, such as an editor.

IPAD will provide a learning capability supported by tutorial
texts, programmed learning utility, and example problems. In
addition, the system will provide "real time" assistance in using
IPAD and will address variations in user skill level,
psychological factors involving user confidence, and minimization
of user frustration in the use of the system.

Through company-wide involvement., users with all kinds of
skills and levels of computing expertise will be involved in the
use of IPAD. The system must be able to recognize the user's
skill level by the manner of his responses to the system requests
and will supply him with appropriate IPAD diagnostics, prompts,
defaults, and abbreviations.

IPAD requires little or no user awareness of computer
hardware. The user interface will appear essentially the same no
matter which computer is being used.

IPAD monitors all instances of data and computer program
access and provides a history of all such transactions, recording
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the data, who accessed it, and the time of access, thus enabling
the system to inform the appropriate user when data changes occur.

Doing Work: User requirements relative to solving work
problems are discussed below. A convenient breakdown of these
requirements, describing the work process as "prepare," "solve,"
and "report," has been selected.

Preparing To Solve Problems: The design process can be a
useful tool in preparing to solve engineering problems. The
activities describing the design process can be linked to a work
breakdown structure on the one hand and to pertinent supporting
information on the other. Such supporting information will
include selection and display of the appropriate data definitions
and computer programs. IPAD will provide the user with assistance
in creating new computer programs or data in IPAD.

Debugging needs for online programming will be available.
These include the ability to (1) determine the value of any
program variable, (2) change program parameters while the system
is running, (3) determine the status of the data base, (4) change
the data base as the system runs, (5) stop the action and then
proceed, and (6) execute stepwise.

The system provides a way for the user to assemble data and
programs into a desired arrangement which a subsequent IPAD
activity might require. Features will be provided that perform or
at least facilitate linking computer programs with each other and
that enable a user to check the consistency of data and the
compatibility of data flow among programs in sequence. The system
will permit a user to create and modify definitions applicable to
data in the data base.

On request, IPAD will provide the user with the
classification for accessing and manipulation of data assigned to

him.

Solving Work Problems: The system provides a means of
assisting a user 1in running a job, which, in this context, may be
part of a computational task and may involve more than one
computer program linked in sequence. The following are examples of
activities that will be available while running a job: reviewing
intermediate results, overriding pre-established sequences,
reviewing final results, selecting final results, and comparing
the results of two or more programs or data sets and inform the
user of differences with meaningful diagnostic messages.
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A job may be run in an interactive mode or submitted for
batch processing, or it may be interrupted in the interactive mode
and submitted for batch processing at the point of interruption.

Once a job is executing (online or batch), it will be
possible to monitor progress as well as to view the output in
progress.

Reporting: Reporting refers to the set of activities that
assist the user to make existing data visible to members of the
IPAD community or to system users. Reporting information is an
essential part of the product design communication process. Some
of the major needs to be addressed are:

1. A general reporting capability for use in documentation,
regular reporting, and real-time displays

2. An English-like display capability for use by nonprogrammers
to form visual displays for online reports

3. Timely transmittal of designs created at an iteractive
console to more precise computerized drafting machines

4, Conversion of numerical data into graphic format such as
multiple x~y plots, bar charts, contour plots, and carpet
plots

5. Aids for project management including displays of task

assignments, progress, resources expended and available, and
milestone schedules

6. Automatic reporting of such things as data due in the data
base to meet a schedule date and data that is overdue in the
data base

On request IPAD will provide the user with a report on the
current status of his computer resource account.

IPAD will also enable the creator or modifier of data, when
storing such data, to qualify it for the benefit of other users.
The appropriate qualifying label will appear on each page of data
printed or displayed. The number and character of the gualifier
will be optional in order to satisfy individual company
regquirements.

Exit IPAD: After completion of a work session and prior to
discontinuing computéer contact, use of the command EXIT will cause
the system to perform the following activities:
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1. A report on the status of the data or programs affected by
the current work session will be available (printing
optional).

2. If the status report shows a need for action on the user's
part prior to the end of the session, the system will
indicate a command mode situation following the status

report.

3. If the user's message file contains any messages, a suitable
reminder (e.g., MESSAGE ON FILE) will be displayed.

4. A report on resources used during the session will be
available but optional.

Special Human Requirements

This section discusses requirements exceeding the normal user
needs as previously described. This includes needs of special
interest users interfacing uniquely with the IPAD system as well
as special needs of the normal user for reinforcing 'his system

support.

Data Base Administration: The IPAD system must accommodate
the special requirements of data administration. The data base
administrator is a person or organization responsible for
exercising control over IPAD data. This control applies to
content, access, storage, definitions, inactive status, integrity,
etc. The system must recognize the authority of the data base
administrator(s) to access the system and must allow him to
perform his functions.

Both system and manual procedures must be developed for the
data base administrator, who must be able to access the IPAD
system even more quickly and easily than the normal user. The
system must recognize his authority and allow him to perform tasks
that other users cannot. The written procedures must fully
describe the functions and authority of the data base

administrator(s).

Secretarial: IPAD will provide a complete capability to
enter, maintain, and print documents.

System and Personal Messages: The IPAD system will support
both system and personal messages from one user to another.
System messages will be displayed automatically at the time of
access, and messages concerning impairment of data will be
displayed at the time the impairment is discovered. Personal
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messages will be retained in the user's personal message file,
which may be accessed at any time in the command mode. The user

is warned by an increasingly annoying warning that messages are in
his personal file.

Conference Viewing of Data: IPAD will provide for multiple or
conference viewing of data. To this end, concurrent display of
data at more than one terminal will be available. 1In addition,
members of the conference can selectively edit the data being
viewed.

User Tools (Utilities)

A number of utility modules will be available to perform
services for IPAD users. The utility programs are part of the
IPAD system and will be accessible via the IPAD command language.
At least the following set of utilities will be available:

Executive and display language processors
Geometry generating utility

Graphic aids

Tutorial aids

Text editing

Menu builders

Project management aids

Report generating

Message processor

Data transfer aids

Usage statistics

Software maintenance

Accounting programs

Arithmetic and logical operations
Computer-aided learning

Program development

Interfacing and integrating computer programs

CONCLUDING REMARKS

This brief description of the engineer's views of IPAD
started with a discussion of creating design information using
"job" as a building block. "Job" is not an IPAD creation; it is
how design work is done with or without computers. To fully
appreciate the advantages of implementing "job" in an IPAD

environment, one needs a more structured view of how engineers do
their work.

The four major IPAD components were described with brief
descriptions of the design process and the need for an information
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processor to support that process. Design project management was
described in some detail; because IPAD is computer-based, it is
necessary to interface the user with that system. Figure 7
depicts the four major components of the IPAD system as they
relate to an individual job execution.
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DESIGN PROCESS DEFINITION
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Figure 3.- Design process time slice.
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Figure 4.- Job/people relationship.
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FUTURE INTEGRATED DESIGN PROCESS

Donald D. Meyer
Boeing Commercial Airplane Company

SUMMARY

The design process is one of the sources used to produce
requirements for a computer system to integrate and manage product
design data, program management information, and technical
computation and engineering data management activities of the
aerospace design process. Design activities were grouped
chronologically and explored for activity type, activity
interface, data quantity, and data flow. The work was based on
analysis of the design process of several typical aerospace
products, including both conventional and supersonic airplanes and
a hydrofoil design. Activities examined included research,
preliminary design, detail design, manufacturing interface,
product verification, and product support. The design process was
then described in an IPAD environment--the future.

INTRODUCTION

A modern aerospace vehicle is a complex integration of
sophisticated technical systems precisely designed and
manufactured for safety, economy, and mission performance. The
complexity of these vehicles, their processes, and their design
and manufacture has increased steadily over time. The design and
manufacture of more advanced vehicles are limited by the
technology and methods available to develop and manage these
processes. Traditional design distribution and automation
constrain the technology that can be designed into advanced
vehicles. Further, the productivity limitations of traditional
design methods increase the manpower required to produce and
manade the enormous volumes of necessary information during a
reasonable flow time.

Computer-based technology applications have brought about
significant improvement in engineering productivity. However,
these improvements, by focusing largely on isolated elements of
the vehicle design and manufacturing process, have only partially
exploited the potential for computational efficiency and automated
data communication. There remains the need to provide for
expansion and interface to all aspects of design, analysis,
testing, in-service monitoring, and manufacturing in order to
lower aerospace vehicle development cost, shorten development
flow time, and produce a competitive vehicle.
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During the late 1960's the use of computers for integration
of design and its interfaces evolved as a basic concept. In 1973,
a NASA-funded feasibility study of Integrated Programs for
Aerospace-Vehicle Design (IPAD) indicated that individual
productivity increases through automation and computer support of
routine information handling are feasible. Such automation will
decrease cost and flow time in the design and production processes
and improve the competitive position of the U.S. industry.
Consequently, the aerospace and computer industries became deeply
involved during the IPAD feasibility studies and continue to guide
and critique the program development.

The IPAD obijective is to develop a computer-based technology
for integration of the design process into a forceful engineering
tool with interfaces to manufacturing computerized methods in
order to favorably influence aerospace-vehicle performance,
development cost, and flow time. To understand this objective,
one must understand the design process.

This paper describes the objectives, results, and efforts
involved in documenting the design process (ref. 1), manufacturing
interfaces with design, (ref. 2), design information processing
(ref. 3), needs of the designer (ref. 4), and--looking at the
future--integrated design.

The work was done as part of the IPAD program currently under
way at the Boeing Commercial Airplane Company.

THE DESIGN PROCESS DEFINITION

The design process (ref. 1) was documented as part of the
IPAD task. IPAD, an acronym for Integrated Programs for
Aerospace~-Vehicle Design, has as its keywords "integrated" and
"design." These terms must be defined to ensure that the work
direction is effective and to the point.

Design (noun): A planned scheme or arrangement of things or
activities leading to a desired end result. The design process is
the procedure involved in creating a design.

Design (verb): To create a design where the task is defined (with
1ts environment, restraints, and freedoms) and the best or
accepted solution is developed during the available time span with
minimum task compromise.

Integrate (verb): Make whole by bringing all parts together.

To make IPAD an effective tool in the design process, it is
necessary to describe the design process as a reference, define
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the needs of the designer, then harness the computer to help with
the job.

DESIGN PROCESS DESCRIPTION

A total design complex consists of research, preliminary
design, and product activities. These can be expanded (for
convenience) into nine activity levels:

Continuing research:

Level I Research

Preliminary design:

Level IX Design criteria selection

Level III Design sizing

Level IV Design refinement

Level V Design verification
Product:

Level VI Detail design

Level VII Product manufacture

Level VIII Product verification

Level IX Product support

It should be noted that, although nine levels are described,
their boundaries are nebulous and, in practice, arbijitrarily
labeled. Figure 1 is an overview of these design process
activities.

Each element in figure 1 is displayed in a symbol.
Rectangles indicate activities and diamonds indicate decisions.
Arrows, of course, indicate direction of the activity's flow.

Continuing Research

The first activity level, continuing research, is in an arena
by itself. 1Included are research activities of a long-term nature
involving a search for new materials, configurations, and
procedures applicable to many design disciplines. The results are
documented for future use. Today they are stored in a filing
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cabinet; tomorrow they will be stored in a computer data base for
quick and easy access.

Preliminary Design

The second group, preliminary design activities, is divided
into four levels: design criteria selection, design sizing,
design refinement, and design verification. This group has a goal
and a time schedule, both of which become more realistic as the
task evolves. The early iterative nature of these levels narrows
to a single concept when the last level, design verification,

takes place.

The goal of the first of the preliminary design levels is to
determine the design criteria (level II) that will result in a
product that meets the greatest need and, therefore, has the
greatest sales potential. An IPAD-influenced design complex with
a dynamic and well-fed data base will define (or provide data to
define) the market environment features of existing vehicles and
existing and potential route structures, as well as give
visibility to configuration combinations of airframe and
engineering parameters, computer performance, and design trade
data. Such a data base will also define (or provide data to
define) airplane economic analysis for selecting the configuration
with the best characteristics and will show relative cost data,
expected operating costs, route applications, and forecast fleet
economics.

The design sizing activity (level III) attempts to size
several potential designs to the criteria established in level II
and to select candidate designs for further refinement. These
design iterations and analysis computations, while deeper than
level II, are all limited in detail and broad in scope but are
essential for narrowing the design field. 1In an IPAD environment,
geometry is easily calculated, and once it is established,
performance calculations are readily made using parametric data
for weight and balance, cruise and low-speed performance, costs,
and market suitability. 1If the configuration warrants, structure
sizing takes place using a range of configurations from
conventional (tried and true) to innovative. Using the candidate
structural arrangements, weights are calculated, the structure is
sized for static loads, thermal effects, strength, and fatigue.
The configuration is examined for flutter and noise footprints
using established parametric data. Studies are summarized for
performance, finance, and market suitability, which are compared
to the mission; then the configuration is accepted, rejected, or
modified. In an IPAD environment, parametric data is applied in
all discipline areas: geometry, weights, vehicle performance,
structure loads and strength, noise, and costs; and application
programs are arranged to give data needed for decision making.
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The design refinement activity (level IV) is accomplished by
applying more powerful analysis capabilities in previously
represented technologies and investigating more areas within a
given discipline. This reduces risk quickly by more thoroughly
analyzing major design areas or controversial design innovations
in specific areas.

The goal of verifying the design (level V) is to investigate
all phases of the project--design configuration, cost, market, and
finance~-to facilitate a go~ahead decision that involves minimum
risk. This verification is accomplished by exceptionally thorough
and vigorous analysis and testing.

A management decision either to proceed with production or
to extend design investigation falls between preliminary and
production design activities. This decision is crucial. From
this point on the expenditure of effort and money will accelerate;
if subsequent configuration changes become necessary, these
expenditures will be lost, with consequent schedule and cost
penalties and customer dissatisfaction.

Product

In the design progression, the third group of activity levels
is product-oriented. Detail design (level VI) is oriented to one
product.. Manufacturing's target (level VII) is to build that
product.. The product is verified (level VIII) to comply with the
designs and their governing regulations. Product support (level
IX) is chartered.

Detail design (level VI), using preliminary design layouts,
defines. and records every part, assembly, and installation that
make up the product.

The drawings and data produced for a part must be in
sufficient detail to enable any manufacturer to produce a part
that is identical (within specified tolerances) to that built by
another manufacturer (i.e., the produced parts must pbe physically,
functionally, and structurally interchangeable within specified
tolerances). In today's environment, this involves drawing and
dimensioning pictures to define each part, gathering geometry from
the loft or other layouts, and producing drawings that interface
with or contain the needed information. In an IPAD environment,
the needed data is in the data base. The part is developed to
match, fit, or clear an approved geometry or part by a specified
value. Pictures are constructed from the data base from any
desired point of view. True dimensions are available between any
points by query. Where today the data is delivered by hard copy
(drawings and data), the IPAD system will deliver data to anyone
as hard copy and data (or as an authorized link to the data base)
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so that hard copy and data can be produced, tools made, and
cutting tools directed to produce parts.

Detail design involves three phases: (1) layout, (2)
evaluation, and (3) preparation and release of formal drawings and

data. A brief description of these phases follows.

1. Layout: The layout phase involves extending the preliminary
design layouts by refinement or additional layouts so that
they are sufficiently complete for a draftsman, engineering
aide, or engineer to produce a complete formal definition of
the part or parts desired. This activity involves deeper
investigation of the concept, loads imposed, joints, and
required part sizing.

2. Evaluation: A second phase involves reviewing and evaluating
the design layout for function, cost, and producibility.
Evaluation may require the use of a configuration model.

When the design represented by the layouts is accepted, it is
prudent to order any construction materials that are not
readily available.

3. Drawings and Data: The production of formal drawings and
data involves producing the part description in such a
manner that it is as directly useable by manufacturing as
possible. The draftsman must know how the part is to be
produced, what type tools are to be used, and what assembly
procedures are involved. For example, in today's design
environment, the drawing and data for a sheet metal part
usually consists of the flat pattern, the bend lines, inner
and outer mold lines, lengths of flanges, and flange angles.
By contrast, in an IPAD environment, programs stored within
the data base would prepare the data to develop and depict
the flat pattern of the sheet metal part, needing only such
additional inputs as gage, bend radii, and flange lengths.
It is conceivable that the program would also indicate when
and where flange reliefs might be required when the bend line
radius is too small for the flange length. Similar program
tools will be available for other design disciplines.

Product manufacture (level VII) is the area occupied
primarily by the production activities using detail design data
produced in the previous activity level. Computer-aided
manufacture is a major entity encompassing five general areas and
subareas of data handling: (1) production engineering (involving
manufacturing plans, tools, quality, and manufacturing standards);
(2) fabrication shops (involving product manufacture, product
test, product documentation, and product inventory); (3) status
and schedules reporting (involving schedule maintenance,
forecasts, inventory control, inventory status, and requirements);
(4) material procurement (involving vendor selection, purchased
material, receiving and inspection, and inventory maintenance);
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and (5) accounting (involving cost accumulation and accounting
report generation).

During the manufacturing activities, design engineering is
available to assist manufacturing by interpreting designs,
modifying designs to ease manufacturing activities, refereeing
inspection problems, etc.

Product verification (level VIII) concerns the testing of
components and completed products in accordance with design
engineering direction. The actual testing is performed by
manufacturing personnel, who document test applications and
results. In an IPAD environment, the data will be put in the data
base and extracted as required for reports, background for design
revisions, and future designs (levels I, IV, V, and VI).

Product support (level IX) is involved throughout the design
activities and continues until the product is no longer in
service.

Service history influences new design. Present service
activities trigger design improvements and, if done with the
customer in mind, assist in selling current and future products.

GATHER INFORMATION

In documenting the design process it was apparent that it
follows an iterative sequence: action-evaluation-decision, action-
evaluation~decision, until the decision is made to accept,
redirect, or stop the design. This iterative sequence came to
light in examining the first activity undertaken to perform a

task: the "gather information" activity. ©Not only is this the
first design task, but it occupies from half to three-guarters of
the design engineer's effort. This step follows the above

described iterative pattern (action-evaluation~decision) to define
the task; evaluate the description; and decide to accept, reject,
modify, or quit. Figure 2 illustrates several variations of the
"gather information" activity. Each element in figure 2 is
displayed in a symbol; rectangles indicate activities and diamonds
indicate decisions.

The following description of figure 2 is oriented toward
airplane structural design; however, the activities and decisions
are applicable to any design field. The activities are numbered
for identification.
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G-1l. Identify Task Required

"What is the task?" is the first question to be answered. If
the task is not defined, this is a gather information task in
itself. To identify a particular task related to design project,
the designer must:

1. Read the description of the structural element to be designed
2. Read the design requirements and objectives documentation
3. Read the design criteria document

4. Read applicable design guides

5. Review structural arrangements and layouts developed in
earlier tasks

6. Read applicable rules and regulations

7. Read schedule and evaluate manpower requirements

G-2. Specify Information Required

Having identified the task, it then becomes necessary to list
what is needed to begin design. Any or all of the following items

(and/or others) may be required:

Surface definitions: external and internal contours
Location of adjacent structure and interface
Location of systems provisions and interfaces

Loads and load cases

Structural element and joint concepts

Approved fastener lists and standards

Material allowables and strength data

Process and fabrication specifications

Finish and sealing documents

G-3. Review Data Base

Search data base contents for all information specified
above. This information is usually project-dependent as well as
general in nature, and it may be found in both group and private
files.

G-4. Data Base

This file (information processor) is for retention of both
general and specific information of interest to engineering. It
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consists in particular of that which is necessary for new product
development:

Fixed types of information:

Unit conversions
Material allowables
Process specifications
Environmental conditions
Structural properties

General types (less static than fixed types, above):

Design criteria
Design guides
Standard parts

Relatively specific but frequently changed types:

Configuration loft geometry
Structural arrangement
External loads

Structural concepts

Systems requirements

G-5. Information Available?

Determine the availability of each piece of information
required. If it is available, select it; if not, it must be
generated.

G-6. Identify Source

For each information item or category identified as
available, the source must be identified.

G-7. Retrieve Information

Search the data base at sources indicated in G-4 above for
the specified information.

G-8. Display Information

Display information formatted to provide the best
understanding of the task at hand. Combine alphanumeric and
graphic displays as required.
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G-9. Evaluate Information

Review each information item retrieved from the data base for
completeness, accuracy, and appropriateness.

G-10. Information Correct?

For each piece of information evaluated, determine whether it
is correct or at least sufficiently accurate for use in the
design. Does it have a sound basis for credibility, and does it
satisfy the needs of the design problem?

G-11. Save Information in Private (or Subtask) Data Area.

Retain the information selected or generated as part of a
local file for future use in development and synthesis of the
design.

G-12. Informatjon Complete?

Determine whether all of the information required to develop
the design has been collected.

G-13. Start Design

At this point, all of the information is available and the
design task can start. This symbol (G-13) is any "do" task in any
network requiring such action items as develop, draw, calculate,
update, etc.

G-14. Repeat?

Determine whether another information item, similar to that
just generated, should be selected or generated exactly in the
same manner as the last information item. When it is decided that
more information is required using the same methods, the
progression is to G-15, where the choice is made.

G-15. Select or Generate?

The choice made here is automatic, since it parallels the
method used to secure the last information. If information was
selected, the procession is to G-7, "Retrieve Information," and if
the method used was generation, then the progression is to G-17,
"Method Available?"
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The progression continues until all generated and/or selected
information has been gathered and accepted; then the task begins
(G-13).

THE FUTURE INTEGRATED DESIGN PROCESS

An Overview

The design process of the future will be fundamentally the
same as that of today: an iterative process that produces designs
progressively closer to the design target until an acceptable
compromise between quality, time, and money is reached. The
primary differences between today's design process and that of the
future will be found in the tools used, the quality of design, the
ease of data distribution, and the swiftness of accomplishing the
design task.

The IPAD design tools of the future that will contribute most
to the enhancement of this process are a well-filled, current, and
easily accessed data base; a dynamic and graphic geometry
generation, storage, and display capability; and the integration
of these tools with computer programs for effective problem
solving.

Improved Productivity Through More Efficient
Use of Design Time

To be competitive, each new generation of a given product
should perform better, weigh less, cost less, last longer, require
less maintenance, and be produced more rapidly than its
predecessor or its competitors. These are all functions of
design.

As design time is used and allocated today, a very large
portion (as much as 75 percent) of the designer's time is
necessarily devoted to what may be thought of as routine and
repetitive activities such as querying the data base and
extrapolating existing design detail into new configurations.
Into the remaining 25 or so percent of available design time, all
of the nonroutine portions of the task--the innovative, unique,
original, and sophisticated elements of the creative process--must
be compressed. To achieve optimum skill utilization and
consequent improvements in quality and productivity, the relative
amounts of time devoted to these design process elements (i.e.,
routine and nonroutine tasks) should be reversed.

In an IPAD environment, the routine design elements will be
grouped, integrated, programmed, and accomplished in about one-
third of the time now required. This means that the remaining
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two-thirds of the designer's time will be saved. 1In other words,
two-thirds of the 75 percent now used for routine design details
(or 50 percent of total design time) will be added to the 25
percent that is now normally reserved for unique design functions.
By this shift, the designer will at last be free to concentrate on
those areas where the big payoffs can be expected--the weight,
cost, and maintenance reductions and the durability and
performance improvements--in short, on the areas where major
productivity gains can be realized. (See figure 3.)

The Visual Advantage

Among the most difficult tasks of the designer--and the most
critical from the standpoint of the product producer--are the
determination of the precise description of a part and the
establishment of its spatial location in relation to other
components. The geometry capability of IPAD is, therefore, one of
the system's greatest benefits to both the designer and the
product-producing organization, for it exposes from every
viewpoint the physical shape of an object (the part) as well as
its fits, interfaces, and clearances. With IPAD, both the
designer and the builder of the future will have rapid access to a
complete visual and dimensional description of the part via the
geometry data base.

CONCLUDING REMARKS

Future uses of the computer in the design process will allow
more in-depth design interations over a given period by providing:

1. A data base with capability for almost instant answers to
queries for a greater number of designs

2. Geometric capabilities for rapid spatial configuration with
unlimited viewpoints to verify shapes, clearances, and fits

3. Rapid and accurate transfer of data to and from interfacing
designs to accommodate interfaces and eliminate interferences

4, Manufacturing data on capabilities, techniques, and costs in
the fabrication of designs and the procurement of materials

5. Integration of computer programs for solving intricate
problems
6. Visibility of designs at desired scales on hard copy and

scopes at any time
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7. Manufacturing data that can be fed into numerically
controlled machines for producing parts or tools.

This paper has attempted to reveal some potential gains, from
a designer's viewpoint, that will be achieved in the future
through integration of information with activities (i.e., data
with the design process). Achievement of these potentials will
depend, to a considerable extent, on the individual and on the
direction, assistance, and freedom that is afforded by the system.
Designers of the future will benefit from a future integrated
design process to the extent that they are able, willing, and free
to use it.
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REQUIREMENTS FOR COMPANY-WIDE MANAGEMENT
OF ENGINEERING INFORMATION

John W. Southall
Boeing Commercial Airplane Company

SUMMARY

Computing system requirements were developed for company-wide
management of information and computer programs in an engineering
data processing environment. The requirements are essential to
the successful implementation of a computer-based engineering data
management system; they exceed the capabilities provided by the
commercially available data base management systems. These
requirements were derived from a study entitled "The Design
Process," which was prepared by design engineers experienced in
development of aerospace products.

INTRODUCTION

Engineering data processing has been in a continuing state of
evolution that has seen the use of computers expand from problem
solving to very large interdependent processing systems. Each new
aerospace product line is more complex than its predecessor, and
this results in increased specialization and complexity among the
engineering disciplines and a greater need for precise
communication and comprehensive methodology integration.
Computer-based systems have been used successfully to support
integration of some design and analysis functions. These systems
support data communication between a limited set of related
internal functions but are developed with little consideration for
management, communication, or control of information outside of
the system. Current practice in handling the total engineering
data communications relies mainly on human intuition and knowledge
resources. However, as the volume of data increases, so do the
skills and resources required for maintaining reliability and
control of data, and these become a significant cost factor.

Thus, the critical items in communication are (1) the volume of
information being managed, controlled, transmitted, and
interpreted and (2) the effect of the increasing volume of
information on cost, response time, and integrity of information.

The solution to the data communication problem will use
computerized methods for more effective management of the
engineering design information. It is expected that this will
have productivity benefits comparable to those achieved by using
the arithmetic computational power of the computers in engineering
work. While the computational benefits can be realized within
isolated subprocesses, the benefits of computerized data
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management will materialize only if all data (or at least all
major subsets of related data) are managed in a consistent,
comprehensive way. Through such integrated management of the
engineering processes and their data, the computer will become a
more effective engineering design support tool. The IPAD system
is being developed to support this capability.

The IPAD requirements for process integration and management
of engineering design information are described in this paper.
They are derived from analysis of engineering design processes
(ref. 1), interaction with manufacturing processes (ref. 2), and
management systems used to direct engineering design processes
(ref. 3). This analysis produced two distinct sets of
requirements. The first set (ref. 4) describes needs to support
integration of engineering processes that produce the technical
description of a product. These needs fall into four areas: (1)
design process support, (2) project management support, (3)
information management, and (4) computer programs (software)
management. The second set (ref. 5) describes the needs of
individual users (engineers, managers, and others) who use
computing systems in their daily activities. These needs fall
into two principal areas: (1) the user interface with computing
systems and (2) the execution of computer programs as user jobs.
Figure 1 shows an overview of these requirement areas as they
relate to one another. The user interface, project management
support, and design process support sections are described in
companion papers (refs. 6 and 7). The general characteristics for
management of engineering data were presented in a previous paper
(ref. 8). This paper describes the IPAD requirements for company-
wide management of engineering information in the areas of
integration support, information management, and computer program
management.

INTEGRATION SUPPORT

The IPAD requirements cover a wide range of diverse user
activities. Some examples are (1) simple editing of a text file,
(2) creating complex geometric surface models of physical objects,
and (3) maintaining an information bank of engineering data
(including geometry) in a change-controlled engineering
environment. In addition, all of these functional capabilities
must be supported in an interactive conversational mode with a
common interface language functioning across multiple processors.

A critical aspect of the requirements is the blending of the
engineering technical processes and the project management
processes into an integrated working environment. This
environment must provide semiautomated bookkeeping of project data
so that the source, status, and quality of the data developed and
used by a design project are identified and readily updated in a
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change-controlled data base. This feature must be adequate to
relieve the engineer from the routine burden of tracking data.
The following subsections describe integration capabilities that
must be supported.

User Access

The system must support interactive terminals and provide
multiple-user access to all system capabilities through an
engineering~oriented language. Tutorial aids must be available to
answer user questions. The user interface must identify each user
and maintain a user profile data base that provides the primary
security control function in the system. User interface commands
must also be available to users in the batch mode for such
activities as inputting large quantities of bulk data from
external sources or executing complex analyses that require
extensive computations.

User Control

The capability is required in both interactive and batch
modes to execute utility and application programs using procedures
initiated, controlled, and terminated from the user interface
language. In addition, a high-level terminal session management
function is required to provide the engineer with continuity in
day—-to-day work. It is necessary to allow the user to build up
and modify the contents of a private data base over many terminal
sessions. These private data bases, identified as subtask data
areas, are logically part of an overall information bank but
remain private until the user takes action to release the data to
a released data area. Released data must be accessible to all
approved users, depending on the security assigned to the data.
Control functions such as the following are required to support
the subtask user:

Change Subtask.-Allows the user to switch to a new subtask
from the current subtask without exiting IPAD and logging on again
under the new project/task/subtask.

Pause.~Allows the user to halt an IPAD procedure at the next
job step. This gives the user the ability to check results at any
given point or even step away from the terminal for short
interruptions (15 to 20 minutes) and begin again at a logical
point.

Suspend."Allows the user to halt an IPAD procedure, place the
activity and corresponding data into storage for periods of 20
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minutes to 24 hours, and then resume the application at the point
of suspension.

Resume.-Allows the user to return to a terminal session at
the point where the subtask was interrupted by a pause or suspend
command.

Stop.-Allows the user to halt the session, analyze
intermediate results, and back up to a previous job step when it
is obvious that the application is beginning to break down.

Quit.-Allows the user to abort the session. This terminates
and cleans out all work accomplished with no recovery options.

Process Integration

Capabilities are required for integration of user systems
into the IPAD framework. These capabilities will support
planning, development, documentation, and maintenance of the
processes used by engineering. It is important to be able to
describe the interfaces between various engineering disciplines
and between the engineering department and other organizations
such as finance, marketing, and manufacturing. This relational
description must be supported in sufficient detail to identify the
data exchange required during the discrete phases of the
development cycle of a product. The description must also
identify the preferred and optional computer tools available to
perform each activity. The data interface description and the
input/output required for the computer tools form the basis by
which the required data bases can be designed and developed. (See
data definition and program integration below.)

Communications

Communications are required for the operation of engineering
computing facilities so that data and processing capabilities are
(1) readily available throughout the geographic locations occupied
by engineering organizations, (2) responsive to user needs, (3)
cost effective, and (4) compliant with security requirements.

Data {(online and archived) and processing capabilities must be
adaptive and allow migration of both hardware and software as the
computing technology evolves new capabilities.
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Engineering Support Functions

Capabilities are required to display engineering data
(including geometry) and to support engineers in theilr creative
day~to-day work associated with the engineering design process.
The product geometry description provides a common reference for
all engineering disciplines involved in the design process.
Therefore, a key feature of IPAD will be the capability to
describe physical objects in three-~dimensional space and to
transmit the description of such objects between the various
engineering disciplines as well as between engineering and
manufacturing processes. To accomplish this, IPAD must provide a
standard geometry format and a set of standard utility programs
which are state-of-the-art capabilities in such areas as graphics,
design drafting, and finite-element modeling. These utilities
will be supported by the IPAD system in a manner that provides a
unified CAD/CAM capability in which a design may be created,
analyzed, and released to the applicable manufacturing process.
The standard CAD/CAM utility will enable the user to construct,
modify, display, and manipulate geometric definitions. These
geometry definitions must be in a form suitable for manufacturing
to develop tool path definitions. Figure 2 illustrates some
hardware components that are typical of the types required for a
computer-aided design work station. It will be possible to
display menus on the graphics terminal or on a slave text
terminal, as illustrated, and to implement menu selection with
function buttons, light pens, or data tablet and menu overlay.
The system will access geometry definition for both cut and
surface extractions needed for detail parts. Retrieval will be
accomplished rapidly in an interactive mode using a language
comfortable to the user, such as "DISPLAY REAR VIEW AT BODY
STATION 960."

The integration support described in this section must
provide a working environment that shifts the computing aspects of
engineering design from programmer-oriented languages to
engineering-oriented languages. The burden of tracking data and
programs must also be shifted from the engineer to the computing
support systems. These factors, together with ready access to
programs and up-to-date information, will increase the
productivity of engineers and improve the quality of solutions.
In addition, the engineer will be able to respond to required
changes resulting from the normal iterative nature of design by
using data change-control features. The following sections
present an overview of the requirements for management of
information and computer programs that form the basis for
development of the integration support presented in this section.
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INFORMATION MANAGEMENT

Capabilities are required to administer information as a
company-wide resource and to make it possible to blend the
engineering and project control processes into a common working
environment. An information bank must support schedules, manpower
assignments, resource assignments, and critical path definitions
as well as provide the repository for design, analysis, and
geometry data associated with a project. IPAD must assist
engineers in identifying and retrieving information. The engineer
will have the ability to request data by name (e.g., wing aspect
ratio, engine bypass ratio, cruise Mach number, part number) or to
browse through the contents of an information bank by specific
disciplines such as configuration design, wing design, loads,
stress, hydraulic systems. The following subsections describe
information management capabilities that must be supported.

Data Storage and Control

Two modes of data storage and retrieval are required. The
first is essentially a file management mode in which IPAD stores
and retrieves blocks of data but generally cannot manipulate the
contents of the data block. The second is the element management
mode, in which IPAD stores and retrieves elements and supports
further manipulation of the contents of complex elements, which
are arrays with individually accessible items. (See data
definition below.)

Data Set

All engineering technical data will be collected by users in
units of data called data sets which will be identified and used
for change control. Two types of data sets must be supported by
IPAD: defined and undefined. Both types require the maintenance
of security, version control, source information, quality, and
release status in header-like records. The header for each data
set includes the unique identification of the data set. Such
identification may consist of a descriptor (e.g., finite-element
model input), qualifying name (e.g., 727-200 wing box), and
version number (e.g., number 4). Thus, the complete data set
identification would be "finite element model input, 727-200 wing
box, version 4." An undefined data set is known to IPAD only by
its header data, i.e., its contents are not defined and it is
treated by IPAD as a file. A defined data set is known to IPAD
both by its header and its data definition.
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Data Definition

A dictionary-type data definition capability is required to
support definition of data elements and relationships between
elements of defined data sets. The definition for each data
element must identify the name, any synonyms, units, and an
optional abstract describing the meaning of the data element. The
data definition language should be easy to use, and, as a minimum,
the following data types must be supported:

Text

Real scalars

Integer scalars

Logical scalars

Dates

Arrays with individually accessible items

Arrays accessible only as complete units

Geometric entities (point, line, curve, and surfaces)

Information Bank

An information bank is required to collect data sets into
supersets identified as data areas. The data areas are collected
in data bases comprising the information bank. Two types of data
areas—--subtask and release--must be supported by IPAD. Both types
require security and access to the contents of the data areas.

A subtask data area is logically a named private working data
base associated with an individual. It is related to an
engineering task that, in turn, is related to a design project.
The contents of a subtask data area are usually built up by a user
over one or more terminal sessions and are logically continuous
from initiation to termination. It is essential that the data
base management system support the ability to restart a session
previously terminated using the subtask control features described
above. Subtask data areas are part of the data base; however,
they are private and subject to project control until user action
is taken to terminate the subtask or release the data generated
during the subtask.

A released data area is a group of data sets that have been
released and are under version control. Each released data area
is named and may be divided into subordinate data areas having a
hierarchical structure that may resemble the structure of the
engineering organization that owns the released data. The
structure is equivalent to a table of contents and can be used in
a browsing mode to access data within the information bank. This
organization concept is illustrated by figure 3.
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Header Data

Header data 1is required to identify the source and status of
data sets and support change control by identifying versions of
data sets. Header data contains items such as data set name,
version, owner ID, creation date and time, security, retention
information, and processing histories. These items allow the user
to examine the contents of the data base without listing the data
set itself. The contents of header data are defined to IPAD.

Data Release Mechanism

A data release mechanism is required to logically transfer
data sets from a subtask data area to a released data area. The
mechanism logically resembles the release procedures used by
engineering to release drawings, documents, memos, and
coordination sheets between organizations and departments within
the company. The working security imposed by the release
mechanism on released and subtask data sets 1is illustrated by
figure 4. The data release mechanism requires two parts. The
first part is the data release process itself. This process
involves the act of "signing off" the contents of a data set and
may require several levels of signature. The second part of the
data release mechanism is the processing actions to be performed
on a data set once it is released and includes changing its
resident data area's identification and the security locks on the
data set.

Security

Security must be provided by user profiles that selectively
restrict access to logical portions of the information bank model
and by security locks at the data area and data set level. 1In
addition, permission codes associated with users must support
selective restriction of IPAD commands.

Backup and Recovery
Integrity must be provided by backup and recovery
capabilities of data bases and by logging of transactions

sufficient to restore the data base in the event of hardware and
software failure.

Data Manipulation
The data manipulation language should be easy for engineers

to understand and use. The following four levels of data
manipulation are required:
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Level 1: Information Bank Operations

Catalog information bank
Combine data areas into logical structures
Modify data area combinations

Level 2: Data Area Operations

Find data area
Catalog data area
Archive daka area
Purge data area
Distribute data area

Level 3: Data Set Operations

Find data set

Display data set
Enter/modify data set
Set default values
Audit data set

Copy data set

Share data set
Archive data set
Associate data sets
Purge data set

Level 4: Data Element Operations (defined data set only)

Find data element

Display data element
Enter/modify data element
Copy data element

The information management capabilities described in this
section must provide the basis for integration of engineering
processes into a common working environment that provides access
to a company-wide single-source information bank. The environment
must support the multiple views of data required by people and
computer programs. It will be possible for data administrators to
maintain efficient data storage structures without the need to
revise the procedures and computer programs used by engineers.

COMPUTER PROGRAM MANAGEMENT

Capabilities are required to manage the software tools used
by engineering. Program management must be similar to the
information management described in the previous section. IPAD
must provide the engineering user with access to a company-wide
application program library. These application programs will be
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readily available for execution as jobs that are the tools
developed by each company, which have been installed in the IPAD
program library. The engineer will have the ability to request
job execution by name or to browse through the library by specific
discipline and by key words. The following subsections describe
software management capabilities that must be supported.

Program Development and Installation

Programs developed within IPAD or suitable existing programs
may be installed in the IPAD program library. Application
programs conforming to the IPAD installation standard are
installed as one or more operational modules. A procedure is used
to execute a selected set of operational modules as a job. Naming
conventions must result in unigque names for all modules and
procedures in the program library and must be suitable for use as
primary keys for program management. The construction of jobs
from modules and the type of administrative information that must
be supported by IPAD are illustrated by fiqure 5. The modular
program library must make both source and object modules available
to a wide range of users and reduce the need for duplication. Any
set of source code in common use should be entered only once as a
source language module and should be made available as an object
module to the user community. The IPAD program library must
provide management of the following module types and execution

procedures:

1. A source language module (SLM) will consist of a collection
of symbolic source codes meeting the IPAD program library
standard for SLM's. Each SLM may contribute to one or more
operational modules. An SLM and its corresponding object
module must have the same name. These modules must be
subject to version control.

2. An operational module (OM) will consist of an executable
collection of object modules contributing to one or more user
jobs that may be executed under IPAD procedure control. Each

OM will be named and subject to version control.

3. An IPAD procedure will provide the capability required to
control execution of one or more OM's as a job. A procedure
will be named and subject to version control; it will be
possible to nest procedures.

Program Integration
Program integration into IPAD will support linking programs

to the data within the information bank and to other programs as

determined by program use within the design process and the
corresponding definition of data flow. This definition will
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identify source and destination of all input/output and provide
for job-to-job communication. Any required data reformatting or
translation identified by this data flow definition will be
supported. The source and destination definition will be suitable
for mapping storage and retrieval data flow between the process
and the information bank and between related activities defined in
the process. Both types of data sets will be accessible by
programs, as in the case of (1) undefined data sets where IPAD
manages data at the level of sets and does not know the contents
of the set and (2) defined data sets where data elements within a
set and relationships between elements are defined and IPAD
manages data at the level of elements. Programs using defined
data sets will work on logical views of the data and be indepenent
of the physical structure of the data.

Programming Aids

These are required to support creation, maintenance, and
integration of application programs and include on-line utilities
for program text editing, debugging, and update.

CONCLUDING REMARKS

The computer program management capabilities described in the
preceding section will make computing tools readily available for
execution by engineers. These tools will be accessible from a
company-wide computer program library that supports development of
integrated engineering processes.

The integrated computing environment represented by the
requirements described in this paper will provide the framework to
greatly increasing the productivity of engineers. An engineer
will minimize routine efforts of tracking data and programs and
will increase time available for creative activities and
judgmental decision making. Using a single-source company-wide
information bank will enhance a company's ability to transfer data
within an engineering discipline, between engineering disciplines
and between engineering and other departments of the company.
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PRELIMINARY DESIGN OF A FUTURE INTEGRATED DESIGN SYSTEM*

Ralph M. Diggins
Boeing Computer Services Company

SUMMARY

IPAD is a system of computer programs and data supporting the
aerospace-vehicle design process by providing a set of services to
aid in the management of a design project, project technical work,
and project support work. Its purpose is to integrate people,
programs, and data jinto a unified aerospace-vehicle design system.
All project-management and technical data, together with certain
standard data, are stored in a data base. The IPAD functions
allow project personnel to query the data base and to perform
operations on the data. This permits the orderly sequencing of
the task elements of a complex operation and provides common
access to a single data base by various participating groups who
otherwise would require many separate files. These capabilities
will be provided on a single host computer or across multiple
heterogeneous computers on a distributed progress basis.

INTRODUCTION

This paper is intended to provide an overview of the
preliminary design of full IPAD--a future integrated design
system. It presents the level II design, the component functional
capability, and a subset of full IPAD, including its hardware and
software architecture.

IPAD is being developed by The Boeing Company under contract
to NASA Langley Research Center. The five~-year contract was
awarded in December 1975, and work commenced in April 1976.

The IPAD preliminary design is a direct response to the
requirement specifications that were developed by The Boeing
Company with the advice and concurrence of ITAB and NASA. The
preliminary design, as it exists today, portrays an evolutionary
state-of-the-art system structured to support the engineering
design process in all its complexity and sophistication as shown
in figure 1.

* Summary of design response to the level II IPAD requirements set
forth by NASA contract NAS1-14700.
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IPAD is the key component of a computer-based engineering
complex (CBEC). It controls and provides all of the essential
services of the complex and, when combined with a company®s
application programs and appropriate computers, forms an advanced
system to support engineering design (ref. 1).

A company may configure a CBEC using many combinations of
components. A CBEC may consist of one or more processing elements
(PEs) . It more than one PE is used, a local network is required.
Tne PEs may be any computing system containing IPAD together with
tne required local network interface hardware and software
compenents. ‘The PEs need not operate with the same IPAD software
configuration (except for a minimum IPAD), a feature that permits
dedication of certain PEs to specific tasks such as data
management, dgraphics functions, user interface functions,
application programs, software development, etc.

Two or more CBECs may be comnnected over distances ranging
from a few feet to hunareds of miles and will communicate using an
IPAD protocol. Communication between CBECs will be handled at low
to medium data transfter rates by the host computing system
teleprocessing tacilities.

A CBLC has access to a data base under the management of an
IPAD data management system. Access to this daata base is only
possible through this data management system; however, local data
bases not under IrPAD data management control can be used by the
PEs.

IPAD 1s being developed as a distributed computing system
capable of operating in many contigurations, including single-
processor configurations. The IPAD functional components may be
placed on the PEs within the CBEC to best suit the needs of the
complex. The local network proviaes the data transmission medium,
when required, between IPAD functions.

IPAD operates under the control of a host computer operating
system as a batch system, an interactive system, or both. The
primary mode of operation will be interactive, provided the host
system supports interactive processing (ref. 2).

Input and output devices will be attached to a host computing
system. Actual device input and output are accomplished by the
nost, while IPAD performs input and output with virtual devices.
IPAD resolves any inconsistencies between host device-dependent
irnput/output and IPAD device-inaependent input/output.

Other programs may operate on the same PE with IPAD. These
programs and 1PAD may be completely independent, or they may
communicate indirectly with each other, allowing applications
programs not integrated into IPAD to use certain IPAD facilities.
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LEVEL II IPAD SYSTEM DESIGN

At level II the system design is presented independent of
any particular host computing system. Later this paper will
describe modeling the design to multiple host computing systems
(ref. 3). '

System Components

IPAD is composed of six sets of major components (shown in

figure 2), which are: (1) The IPAD executive (IPEX), (2) a set of
system functions, (3) the user interface, (4) the IPAD data
management system (IPIP), (5) a set of user functions, and (6) a
set of application programs installed by each company.

General Descriptions

IPAD Executive (IPEX).- The IPAD executive provides a standard set
of services to the other major components, completely isolating
them from the host computing system and providing internal
functions and data needed for the distribution of IPAD functions,
data, and application programs.

The standard services provided by IPEX are process control,
input, output, file operations, interprocess communication, and
access to certain host resources and services. These services are
provided by IPEX through standard calling sequence to the
subprograms in a service library. This interface is the same on
each host computer, thus ensuring a high degree of portability of
the major components (ref 4).

IPEX isolates the other major tasks from the host computing
system and provides standard interfaces to all of its services.
It makes the transformation between IPAD pseudo-input and -output
devices and the software drivers for real input and output
devices. It maintains information on the actual location of all
IPAD-controlled data.

IPEX also provides the internal functions and information
needed for the distribution of functions and data. The computing
systems selected to host IPAD do not support distributed
computing; therefore, this capability has been incorporated into
IPEX. The major IPAD components, the users, and the host computer
operating system are not aware of the configuration of the IPAD
distributed computing system; only IPEX needs this information.

IPEX is implemented on every PE (host computer) in a CBEC.
The control of the complex is replicated in each copy of IPEX.
Timely data is maintained on the configuration of the complex, the
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status of that configuration, and the location and status of IPAD-
controlled files. This data is maintained and used by IPEX to
control the distributed computing system (ref. 5).

System Functions.- The system functions provide internal services
to 1IPAD functions such as the collection of performance data,
putting such data in files for later processing, collecting user
data, etc.

User Interface.- The user interface handles all of the dialogue
between the system and the user except when the user is
interacting with a user function of an application program. It is
the first component to interact with the user when the user enters
IPAD and the last before the user leaves 1IPAD. 1t prompts the
user, reads and interprets commands, executes executive-level
commands, aids the user, maintains a profile of the user, controls
access to 1IPAD, provides usage statistics, handles certain
abnormal situations, and terminates the user upon request.

The user interface may be installed on one or more PEs in the
computer-based engineering complex. It provides the user a view
of IPAD that is the same on every PE.

Data Management System.- The 1IPAD information processor (IPIP) is
divided into two sets of functions: (1) the data definition, data
manipulation, query, and precompiler functions; and (2) the data
management system. The first set is implemented as user

functions. 7The data management system is implemented as a

separate major component. Together, these two sets of functions
provide controlled access to IPAD data to users, to IPAD components,
and to application programs. The data management system operates on
logical files and logical data distribution. It requests
operations on files from IPEX, and only IPEX knows the actual
location of IPAD data.

User Functions.- The IPAD user functions provide support to the
design process. These include functions for project management,
design, training, data definition, data manipulation, query,
precompilation, application program development, and document
preparation. Each function contains its own user interface.
Functions are selected by users while in the executive command
mode. A function returns control to the user interface upon
request from the user. In certain abnormal cases, the system
takes control from a user function. User functions may be
installed on any of the Pus in a CBEC, and a specific user
function may be implemented on several PEs.
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Application Programs.— A company may extend the set of standard
IPAD user functions by installing its own application programs.

An application program must contain its own user interface and is
selected by a user while in the executive command mode. An
application program returns control to the user interface upon
request from the user. In certain abnormal cases, the system
takes control from an application program. An application program
may be installed on any PE with which it is compatible and may be
installed on several Pks.

Access Relationships Between Users, IPAD Tasks, Data, and Host
Operating System (0S) .~ The user interface, user functions, and
application programs are directly available to users through user
languages. The system runctions, IPAD executive, data management
system, host operating system, and IPAD data are not directly
accessible to users. These relationships are illustrated in
figure 3. (The access relationships shown in figure 3 are not to
be confused with actual system interfaces described later in this
paper.)

COMPONENT FUNCTIONAL CAPABILITY

This section contains the functional design capabilities for
each of the major IPAD camponents. This includes interfaces,
output, input, functions, and considerations for the effects of
function and data distribution on design.

IPAD Executive (IPEX)

Interfaces.— Major 1IPAD components with which IPEX interfaces
incluae system functions, user interface, data management system,
user functions, and application programs. IPEX also interfaces
with the host computer operating system (0S). It is the only IPAD
component that has a functional interface with the 0S. IPEX
receives control from the host OS upon its initiation and returns
control to the host 0UOS on normal termination of IPAD operation.
It handles all data flowing between the major components as well
as data flowing between IPAD and the host 0S. An exception is
an application program that is only partially integrated into
IPAD, which may interface directly with the host US to obtain
certain services and resources,

Output.- Output from IPEX is directed to the host 0S and to each
of the major IPAD components. These outputs are classified
according to their destination.
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Qutput to the host operating system:

Task control information

Requests for service
Gutput from major components destined for user terminals

Output from major components destined for files
Messages to other major components

OQutput to major IPAD camponents:

Status and error codes returned in response to requests
for service

Sexrvice completion block (SCB) returned in response to a
request for service

Data from a file obtained by a service request to IPEX
A message from another IPAD component

Output to other IPEXs:

Messages to 1PEX on another computer in the CBEC

Input.- Input to IPEX is received from the host 0OS and from other
major IPAD components. These inputs are classified according to

their origin.
Input from the host 0S:

1/0 completion signals

A terminal comnnect signal

An abort signal

Task status information

Error codes

Responses to service requests
Data frcm files

Data from user terminals
Messages from other components

Input from major IPAD components:
Requests 1or service
Messages to other components
OQutput to user terminals
OQutput to files

Input from other 1PEXs:

Messages itrom IPEX on another computer in the CBEC
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Function.—- The IPAD executive provides other major components with
standard services including process control, input, output, file
operations, interprocess communication, resource utilization data,
and access to certain host resources and services. IPEX also
provides the internal functions and data needed for the
distribution of IPAD functions, data, and application programs.

Upon receipt of a request for service from a major component
IPEX, checks the request and, if it is correct, locates the
service and forwards the request to the site of the service via
some host computer in the network. It resumes the operations of
compeonents that correctly request available asynchronous services
and leaves suspended those that correctly request available
synchronous services. Requested services include terminal input,
terminal output, file operations (open, close, read, write), send
a message, receive a message, and initiate a task.

System Function Interfaces

The system functions interface directly only with IPEX. They
are initiated, controlled, and normally terminated by IPEX, and
they obtain all services and resources from IPEX. All data flows
between the system ftunctions, and other major components are
handled through IPEX. Through IPEX, the system functions
may interface indirectly with all of the major IPAD components.
They provide a special set of services to the other components.

User Interface

The user interface communicates directly only with IPEX. It
is initiatea, controlled, and normally terminated by IPEX, and it
obtains all services and resources from IPEX. All data flowing
between the user interface and other major components are handled
through 1PEX (refs. 6, 7, and 8).

The user interface indirectly interfaces with all major
components and obtains special services from the system functions.
Through IPEX, it initiates the user functions and application
programs and obtains data management services from the data
management system. Upon normal termination, the user functions
and application programs return control to the user interface.

Output.- Output from the user interface is directed to IPEX. This
output consists ot pseudo user-terminal output, messages to other
components, and requests for service.

Input.- Input to the user interface is received from IPEX. It
includes pseudo user-texminal input, messages from other
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components, status and error codes, and results of service
requests.

Function.- The function of the user interface component is to
provide an interface between the user and IPAD. It is the first
and last component with which the user interacts. The user
communicates with IPAD using the IPAD command language. The user
interface prompts the user for input, interprets that input, and
performs the requested function. The user interface determines
the authority of users to access 1IPAD. It provides aids to the
user, maintains a profile for each user, and keeps data about a
user session.

The specific functions of the user interface component are:

Prompt user

Read terminal input

Interpret input

Log authorized users onto IPAD

Maintain a user proifile

Establish user'"s terminal environment
Log user ofx 1IPAD

Provide assistance to user

Execute commands

Pass control to requested user functions
Pass control to application programs
Collect data on user session

Proviade reports to user on resource usage

Data Management System

The data management system interfaces directly only with
I1PEX. It is initiated, controlled, and normally terminated by
IPEX, from which it obtains all services and resources. All data
that flows between the data management system and other major
components is nandled through IPEX.

The data management system interfaces indirectly with, and
provides data management services to, all major components.

Output.- Output from the data management system is directed to
IPEX and includes requests ftor service, data to be stored in
tiles, and messages to other components.

Input.- Input to the data management system is received from IPEX
and includes data from files, messages from other components,
status and error codes, and results of service requests.
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Function.- The function of the data management system is to
provide access to 1IPAD data as well as control over such data. -
There are several modes of access to data via IPIP as well as
various levels of control. IPAD data falls into four major
categories:

1. Data generated by users or user programs where the data type
is known to IPIP (i.e., the data itself is described to IPIP
by means of a data definition language)

2. Data generated by users or user programs where the type of
data is not known to IPIP (files for which a data description
of the contents does not exist)

3. Source and object programs

4. IPIP system data that describes user data

Access and Control.- IPIP allows access to all types of data
described above. However, access is restricted to some of the
IPIP system data tor control purposes. Data categories 1 and 2
may be accesseda directly by users via an end user query facility
or by application programs. Programs are stored into and
retrieved from the IPAD data base via a user query facility. All
communications (requests, data) are channeled through IPEX.

The aata management system provides control over the data in
the 1PAD data base. This control falls into three major
categories:

1. Security--I1IPIP imposes restricted access to both user data
and the IPIP system data.

2. Configuration control--IPIP possesses special capabilities,
enabling it to provide configuration control over the data.
(IPIP monitors to determine who modifies what and when.)

3. Backup and recovery--1PIP provides mechanisms to recover from
system software or hardware crashes and user errors.

The functions provided by 1PIP are available in a centralized
or distributed environment.

User Functions

The user functions interface directly only with IPEX. They
are initiated, controlled, and normally terminated by IPEX, and
they obtain all services and resources from IPEX. All data that
flows between the user functions and other major components is
handled through IPEX.
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The user functions interface indirectly with the system
functions, tnhne user interface, and the data management system.
They obtain special services from the system functions, are
activated by request of the user interface, and, upon normal
termination, return control to the user interface. They obtain
data management services from the data management system.

Application Programs

The application programs interface directly only with IPEX.
They are initiated, controlled, and normally terminated by 1PEX;
and they obtain all services and resources from IPEX. All data
that flows between application programs and other major components
are handled through IPEX.

The application programs interface indirectly with the system
functions, the user interface, and the data management system.
They obtain special services from the system functions. They are
activated at the reguest of the user interface, and, upon a normal
termination, they return control to the user interface. They
obtain data management services from the data management system.
Application programs that are only partially integrated into IPAD
may interface directly with the host 0S to obtain certain services
and resources.

The Effects of FPunction and Data Distribution on Design

From the foregoing it is apparent that the user has no direct
interaction with ILPEX, the system functions, or the data
management system. I1IPEX affects the flow of control between the
host and the IPAD components and among the IPAD components.

It is important to note that thexe are no direct interfaces
between the major IPAD components (system functions, user
intertface, data management system, user functions, and aprlication
programs) . An indirect interface is provided through IPEX. To
understand the reasons for this, a review of the IPAD system
architecture is necessary.

1PAD was designed as a distributed computing system, as
evidenced by the following:

1. There are several interconnected hardware elements.

2. IPAD components may be distributed over processing elements
(PEs) .

3. IPAD-controlled data may be distributed onto storage devices
attached to several PEs.
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4. Control of the IPAD system is replicated on each PE.

An installation may distribute functions, application
programs, and data to best suit its needs.

Since IPAD components can be distributed throughout the
system in various confiqurations, there can be no direct control
or data interfaces between them. These interfaces must be
provided indirectly by the operating systems on the PEs. The
operating systems for the computing systems selected to support
IPAD do not support distributed computing. These functions must
be provided by IPAD as an extension to the host 0S. IPAD has been
designed so that these functions can later be assumed by the host
0OS with minimal changes to all components except IPEX. Figure 4
shows IPAD on two interconnected PEs.

The IPAD components depicted by A, B, C, D, and E of figure 4
have been loaded onto PE 1, and components F, G, H, I, and J have
been loaded onto PE 2. These represent system functions, user
interface, data management system, user functions, and application
programs. Many other cambinations of these components are
possible on the PEs. To ensure maximum flexibility of IPAD, an
installation must be free to distribute components to best satisfy
its requirenents; therefore, the components cannot expect to find
each other on specific PEs, which makes it impossible to establish
direct interfaces between such components.

The software components in a computing system are either
eiements in a sequence of operations, or they provide services to
each other. 1In nondistributed camputing systems, these components
are usually linked together to torm a contiguous block of
instructions and data. The various components (main program and
subprograms) are executed through a series of subprogram "calls"
and "returns." They pass data among themselves using parameter
exchanges by calling sequences, accessing global data areas, or
auxiliary storage devices.

IPAD components must interact with each other through IPEX,
which alone has access to the information concerning the location
of programs and data. This information is kept in the system
configuration tables.

Assume that in figure 4 the letters represent the following
IPAD components:

LETTER COMPONENT
A System functions
B User intertface
C Text editor
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Data base querxry

ATIAS

System functions

Data management system
Data definition function
FORTRAN precompiler
Design drafting function

CHIZTORED

The system configuration tables reveal the actual location of
these components and are accessible by IPEX on each PE.

Obvicusly, from an internal systems viewpoint, distributed
computing produces higher overhead costs than do nondistributing
systems. The performance oi a properly configured distributing
computing system, as perceived by a user, may be far superior to
tiiat of a simple system when both have many users and are
providing equivalent services.

The need to aistribute the major IPAD components over the set
of PEs in a distributed computing system also suggests that the
major IPAD camponents be implemented as separate tasks under the
host OS.

Implementation Alternatives for Multiple-Host Systems

As previously noted, an appreciation of IPAD as a multiple-
user distributed computing system requires an understanding of the
scheme for implementing IPAD on each host computing system (ref.
9).

As a tully distributed computing system, IPAD is based on a
direct data transter bus-type network. Data is passed directly
between network computers, and network control is distributed
throughout the network. A “kernel" network control function,
which handles the distribution of functions and data, is
replicated on each network computer.

In any computing system, computing tasks request services and
resources, which are provided through the host operating system.
They include input, output, and file operations; process control;
intertask communication; etc. In single-host computing systems,
all of the services and resources are locally available. 1In
distributed computing systems, they are supplied by computers
throughout the network. The computing tasks in such systems
request services and resources just as they do in nondistributed
systems, and these requests are made using the same interface on
any computer in the network. It 1is the responsibility of the OS
on each computer to obtain requested services and resources
regardless of location. The configuration of the distributed
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computing system and the location of services and resources must
be transparent to the computing tasks.

Figure 5 shows two interconnected host computers. Task A
requests a service. The local US, to which task A makes the
request (line 1), interprets the request, determines that task B
provides the service, locates task B, packages the request, and
sends it (line 2) to the computer that contains task B. The 0S on
host 2 receives the message from host 1, acknowledges receipt,
recognizes the request for a service provided by task B, saves the
location of task A, and passes the request to task B (line 3).
After completing its work, task B requests that results and status
be returned to task A (line 4) . The local OS interprets the
request, recalls the location of task A, and packages and sends
the results and status to the computer containing task A (line 5).
The OS on host 1 receives and acknowledges the message containing
results and status, interprets the message, and passes it to task
A (line 6).

A fully distributed system also provides for the distribution
of data. The location of files is kept in the system
configuration tables. Tasks request the desired operations on the
data base from the data management system, using logical file
names. The data management System processes these and requests
the 0S to perform the desired operations on these logical files.
The OS maps the logical file name, locates the file, and initiates
the sequence of operations required to perform the file operation.
1f the file is local, it will initiate the appropriate file
operation; otherwise, it formulates a message containing the
request and follows the scenario previously described.

The preceding scenarios specify functions that must be
provided by the 0S in a distributed computing system, together
with data needed by the system and certain system attributes.

Each OS in a distributed computing system must receive and
interpret requests for services; locate services; package regquests
into messages; send, receive, acknowledge, and interpret messages;
and direct messages to the appropriate tasks.

Locating a sexvice (and files) requires access to timely
information giving the location ot all functions and data. This
information must be updated whenever an event occurs that changes
the configuration of the network or the status of functions and
data. Each 0S must have access to this information and provide
information on the status of its functions and data when requested
and when the status changes.

Operating systems in distributed computing systems must be
able to communicate with each other. This requires a standard
communication protocol for messages and data. Since computers in
a distributed computing system may use different representations

87




for internal data, each must provide translators to and from the
network standard data format. Each OS must receive and recognize
requests for services provided throughout the distributed
computing system. The interface to these services (calling
sequence and return) must be identical on each computer.

None of the IPAD host computing systems are distributed
computing systems. The IPAD implementation alternatives are
concepts for providing the necessary services. Three major
implementation concepts were considered.

1. Incorporate the functions necessary to provide distributed
functions and data into each host computer O0S:

Case A: I1Implement all major IPAD components as a single task
unader the control of the 0S.

Case _B: Implement the IPAD components as individual tasks
under the control of the O0S.

2. Implement IPAD as a single task under the control of the 0S
(including IPEX and the other major components) and develop
IPEX to provide the functions and interfaces necessary for
distributed computing.

3. Implement each major IPAD component (including IPEX) as
individual tasks under the control of the 0S and develop IPEX
t0 provide the functions and interfaces necessary for
distributed computing.

PRELIMINARY DESIGN AND FUTURE DIRECTIONS

The content of this paper has retlected full IPAD level 1I,
at the time it was presented to NASA and ITAB during preliminary
design review (PDR) in September 1978. Subsequent to this
evaluation, it was decided by NASA and 1TAB that specific areas of
the technology covered during the PDR be further developed. This
meant a reduction of effort in the following components: IPEX,
user intertace, user functions, and graphics. With the major
thrust then to be directed toward the development of a prototype
IPAD (first level) specifically in the area of data management and
1pIP, the IPAD data base management system.

A discussion of the effort, which has extended since
September 1978 until the contract termination date of February
1981, is included in proceedings and papers presented at the IPAD
National Symposium held in Denver, Colorado, September 17-19, 1980
(rets. 10, 11, 12, 13, W, and 15).
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CONCLUDING REMARKS

The preliminary design of full IPAD has proven that the
complexities of managing an engineering design project can be

greatly enhanced by the use of a comprehensive user-oriented
computer system.

The capabilities and functions provided to the design
engineer within a CBEC are wide and varied, thus allowing both
technical and project management within the engineering complex.

From a technical standpoint, the state of the art in
computing is pressed to the limit in all areas of functionality to
support the man/machine dialog necessary to promote and increase
productivity throughout the engineering design process. See
figure 6.
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EXECUTIVE AND COMMURICATIONS SERVICES TO
SUPPORT THE IPAD ENVIRONMENT

J. G. Tanner, b. M. Kirkwood, F. M. Ives
Boeing Computer Services Company

SUMMARY

The principal purposes of the prototype executive software
are to provide a system independent interface to the underlying
host system and to allow for extension to full IPAD executive
services as descrlibed in the prelminary design. A basic set of
functions is included in the prototype to meet the requirements of
the other camponents oxr the prototype, principally IPIP, the IPAD
data management system. The functions were chosen so that they
would be readily built on any of the proposed host systems with
minimal redesign and execution overhead. The functions fall into
five categories: access to host data, access to data files,
access to communication services, data transformation, and
instrumentation for performance measurement.

Communication services provide message delivery between
processes in a network of heterogeneous computers. Data
transformation serxrvices and communication services ensure data
type validity and daata integrity of messages exchanged between
processes.

In the prototype, communication services use a high-speed
local network to connect the conputers; this does not preclude the
use ot other communication subnets such as a public packet-
switched network. Ixtendability is important for both executive
services and communications services.

INTRODUCTLON

The following discussion is necessarily limited to a brief
overview of the IPAD system and IPAD executive (LPEX) design; for
a more extensive description, the reader is referred to the IPAD
Level Two Design document (ref. 1) . Initially, we are building a
prototype system that is a subset of the preliminary desiqn review
(PDR) concept and concentrating effort in the areas of data base
management, geometry, and communications. This section also
discusses the strateqgy tor making the transition from the
prototype to full 1PEX. The remaining sections discuss the
prototype design in more detail and explain the use ot a high-
order language (HUL) in the design and implementation ot the
prototype system.
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IPAD System Overview

The principal purpose of the 1IPAD system is to support
integration of enyineering and project management activities for
large engineering projects. The system is made up of (1) a user
interface, (2) a data base management system, (3} an executive, (4)
system functions, (9) user functions, and (6) application programs.

Geometry is an integral part of IPAD. Geometry manipulation
ana display capabilities are produced by a combination of data
base management functions, user functions, user interface, and
graphics.

Engaineering regquirements for the system are aimed at
designing and building a tool that will increase the productivity
of the engineers and managers on such projects (refs. 2, 3, and
4) . Most of the requirements affected the design and
implementation cf the executive software either directly or
indirectly. Some requirements that directly affect executive
software are the roliowing:

1. The system shculd be built with tew or no modifications to
the host operating system(s) .

2. The software shouid run in either a single or multiple host
environment.

3. The multiple host system could and probably would be a
multiple manufacturer system.

4. The system arcnitecture and the nature of the host(s) in the
system snoula be transparent to the user (e.g., a uniform
accounting system} except for considerations such as the
precision and accuracy of mnumerical results.

5. The nonexecutive 1PAD software should be as portable as
possiple, with a minimum of host system dependencies.

6. Wherever and whenever possible, national and international
standards should be adherea to.

7. The system should support communication with non-IPAD systems
and permit access to design data under IPAD control from non-
IPAD systems.

8. The system should permit transter of program modules and data
between 1PAD installationms.

9. The system should provide controlled access to resources and

data by processes within and outside an IPAD installation
based on a user's capabilities.
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As a consequence of these reguirements, the IPAD executive
(IPEX) is designed as a subsystem to support IPAD activities and
tasks in a distributed, heterogeneous environment. IPEX will also
function in a nondistributed, or homogeneous, environment. The
logical view of IPAD components is shown in figure 1, and the
relationships of IPADL components to each other and to the host
operating system are shown in figure 2.

IPEX Design Uverview

IPEX is designed to provide a uniform view of the underlying
computer system(s) to the other components of IPAD. In addition,
it provides controlled access to resources inaependent of the
location of the requestor and resource (ref 5).

Requests are made of IPEX by building a service request block
and asking the host operating system to pass this block to IPEX.
IPEX assigns a request process ta this service request block, and
when the request has been processed, IPEX asks the host operating
system to pass a sService completion block to IPEX. IPEX assigns a
request process to this service request block and, when the
request has been processed, 1PkX asks the host operating system to
pasSs a service completion block to the task that requested
service. This process is depicted in figure 3.

Internally, IPEX is orxrganized as a group ot independently
scheduled cooperating processes that fall into one of three
groups: request processes, server processes, or function
processes.

There is a request process for each request made of IPEX.
The request process decoaes the request and generates the
necessary internal requests to other IPEX components, such as
server and function processes. The relationships between internal
processes, a requestaing task, and the host operating system are
shown in figure 4.

In most cases the internal requests generated by the request
process are sent to server processes. These processes interface
with the host system to accomplish such host-dependent activity as
file access, 1/0 device access, and task control. The reason for
dividing request servicing in this manner is that the host system
involved in servicing the request may not ke the host on which the
reguest was made. Request processes interface with the requesting
task, and server processes intertace with the target host.

1PEX, as described above, was removed from the system when we
decided to build a reduced-function prototype. We then had to
design operating system interiace software that would satisfy a
subset of the full 1PEX functions and evolve into the full IPEX
daesign.
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Strategy of Evolution

One ot the primary concerns in defining the prototype was
that it had to be built within time and money constraints. This
coricern led to limiting the design to the solution of a subset of
the problems aadressed by the full IPAD design. To concentrate
our etforts still furthexr, we focused our attention on the areas
or (1) data base management, (2) geometry, and (3) data
communication.

Regardless oi other design choices for the prototype, it is
important to insulate the user and nonexecutive 1PAD software from
changes in the lower-level support software. This approach also
allows some or all of the identified IPEX functions to migrate
into the host system software, which is vendor-supplied and
-maintained. The miyration process will not affect the user's
view of the system. Some of the major considerations in the
design of the executive soitware were the following:

1. A uniform user interface must be established.

2. The evolution trom the prototype software to full IPEX should
be transparent to the user.

3. IPEX would not exist as a separate task and address space.

4. The system should provide some torm of task-to-task
communication.

5. Functions and resources would not be implicitly or
transparently distriputed.

6. The system contiguration would consist of two nodes: CDC
CYBER 172 (NOS) and a DEC PDP 11/70 (IAS) . These systems
were later changed to a CLC CYBER 720 (NOS) and a DEC
VAX11/780 (VMS) .

7. The design should not preclude software migration to an 1BM
host.

1n the design ior full 1PAD, system services (e.g., file
access) are to be proviaed by a central IPAD executive (IPEX), to
be shared by all users; but, for the prototype IPAD, system
services will be provided by multiple copies oif IPEX service
routines (1PSRs), one set to each task. These IPSKs will combine
the functions of the request processes, server processes, and
function processes ot 1PEX.
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IPEX SERVICE RUUTINES

The 1PSRs are the 1PAD application®s and 1IPIP programmer's
views of the host system enviromment. The functions available
constitute a subset of the functions provided by the host system.
-They are a subset because they form an intersection of
capabilities of the possible host systems. No function or
capabiliity is provided in 1IPSRs that is not mapped easily to
existing host system sexrvices.

First Stage of Ekvolution

The IPSRs will reside in the same address space as the requesting
task and fall into these functional categories:

File 1/0

Network 1,/0

Access to task and host data

Task control

Instrumentation primitives for gathering performance data

Device 1/0 was not considered for the prototype, and terminal
1/0 is supported adequately by the programming language. In
addition, data transtormation software is used in conjunction with
network 1/0 to maintain data compatibility between processes.
Because the 1IPSRs reside in the same address space as the users
software, access tu host system services occurs by calls and not
by passing request blocks to 1PEX.

This first stage o1 evolution provides access to local host
system resources. Access to remnote system resources must be done
explicitly by using network 1,0 tacilities and therefore assumes a
knowledge of resource location.

The Migration Path

The move from the prototype IPSRs to full IPEX will be a
stepwise process, the first step being the building of the IPSks
for the prototype. The next step is to build a basic version of
the central shared IPEX as designed at PDR. Internal elements of
this basic version will include the control loop and the request
processes. Migration will proceed by adding server and function
processes to IPEX to support the tunctions currently supported by
IPSRs. During this migration stage, 1PSR-supported functions and
IPEX-supported functions will coexist.

Once support tor all the prototype functions has been assumed
by 1PEX, experimentation with new functions and capabilities can
be done by adding server and function processes to IPEX. One of
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the primary areas of interest is resource sharing and access to
remote resources. In general, we are interested in the
distribution ot poth data and functions in a heterogeneous
computer network.

The basic Divisions of Service

There are rive basic divisions ot service supported by IPSKs,
and these are the fundcamental functions needed by IPAD
applications and IPIP. We emphasized the three areas of file I/0,
network 1/0U, and instrumentation primitives, because these were
cousidered most critical to the aevelopment of other IPAD
components. The two cthers--(1) task control and (2) access to
task and host data—-—-are provided but not supported to the same
extent as the three primary areas. All the areas are discussed
brietly in this section, and detailed discussions of file 1,0,
network 1,0, data transtormaticn, and instrumentation and
performance measurement occur in later sections of this paper.

IPAD Host Access System (IHAS) .- The 1PAD host access system
(1BAS) must provide identical host computer access/control
services to any 1PAU task executing on any of the host computers
in the IPAD computing complex. To do this, IHAS provides a set of
routines (1PSRs) that enable an IPAD task to access and control
1ts underlying host computer system. 1HAS functions allow an IPAD

task to:

1. Obtain host system characteristic data

2. Determine its own execution status

3. Suspend its own execution

4. Set its own conaitions for continuing execution

5. Obtain time and date

An IPAD task would invoke the HSTDATA function to determine
which ot the host computers in the 1PAD computing complex it is
executing on. it will use these host-characteristic data to set
up file record lengths and extents, character set usage, word
size, etc.

The IPAD task can suspend its own execution with the TSKSPND
function atter aetermining its execution status with the TSKSTAT
function. 1f an error occurs during its execution, the IPAD task
can handle this itself with the TSKEKRR tunction.
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Time and date maintained by the underlying host computer®s
operating system are accessible through the HSTTIME and HSTDATE
functions.

IPAD File Control System (IFCS) .- 1IFCS maps its host—-independent
functions onto those of the underlying host operating system.
Using these functions, an IPAD task may create new files; extend,
shoxrten, or delete existing files; and read, write, and update
records within a file. IFCS is discussed in more detail in a
following section, and figure 5 summarizes functions and their
parameters. '

Network Services.- Network services provide the IPAD task access
to all available communications services. For the prototype, this
consists of a high-speed local network of two computers. Network
runctions allow an 1IPAD task to connect to and disconnect from the
network and to send and receive messages to and from other tasks
connected to the network.

Network services are discussed in more detail in a later
section of this paper, and figure 6 summarizes trunctions and their
parameters.

Data Transformation.- Data transtormation services facilitate
process-to-process communication in a heterogeneous environment.
Functions provide both item and record transformations between
machine representation and standara representation. Data
transformation sexvices and standard representation are discussed
in more detail in a later section of this paper.

Instrumentation and Performance Measurement .- Instrumentation is
extremely important in tracking and altering the performance of a
computing system, especially a new system. In addition, it helps
verify the model of the system. The verified model can then be
used with greater contidence to predict the performance results of
a change to the system. Functions exist to record counts and
times and to trace data at several levels ot detail.

1PaD FILE CONTROL SYSTEM (IFCS)

The IPAL control system (1FCS) must provide identical file-
type services to any IPAD task executing on any of the host
computers in the IPAD computing complex. To do this IFCS provides
a set of routines (IPSKs) that enable an IPAD task to access IPAD
tfiles using the facilities of the host computer system it is
executing on. IFCS enables an IPAD task to:
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1. Create new tiles
2. kxtend, shorten, or delete existing files
3. Read, write, and update recoras within a file

Through tile access functions and their associated
parameters, an IPAD task transmits file access commands to the
underlying host computer system and receives completion status
information and data in return.

With IFCS, ftiles are constructed as a one—dimensional array
(or sequence) of records. 7This is achieved through exclusive use
of the host conputer®s "airect" form of file organization. A
sequential or tape-like form of file organization is not used.
The access methods supported by IFCS are sequential and random.

IFCS File Attributes

Lach IFCS tile nas certain logical and physical
characterastics. In tnie IPAD prototype environment, some of these
characteristics, ur attributes, are tixed. Files created by 1IFCS
have the following restricted set of attributes:

1. All IPAD files reside on direct-access storage devices
(disks) . They are organized as a physical structure, wherein
1FCS cunsiders the file to be a one-dimensional array of
tixed-size records. An access index is associated with each
record in the file and has values ranging from one to the
total number oi records in the file.

2. A record is the fundamental unit of information in an IPAD
file. IFCS provides access to recoxds in tiles put does not
support an awareness of lcgical relationships among
records/information in IPAD files or any knowledge of record
content. Each record is processed as a single, indivisible
unit ot data whose size is an integer multiple of the size of
the host systen's storage device block. Each time a record
is accessed, this many blocks are transferred. IPAD tasks
buila indivadual recoras and pass them to 1FCS for storage in
an IPAD file or issue requests for IFCS to retrieve records
from an 1PAD ftale.

3. Each file has a unique name, which is used by the underlying
host computer's file access method to identify the file in
its directory. The file's name is codea in the host's
character set and 1s thereiore host-dependent.

4, All records in an IPAD file have the same fixed length, which
may be diiterent on ditferent hosts due to the different
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characteristics of the host computer®s direct-access storage
device.

5. IPAD files have a maximum size, depending on the host
computer system.

6. Read-only access can be detined for an IPAD file.

-IFCS File Access

An IFCS file can be accessed either randomly or sequentially.
Random access is achieved by specifying the record's access inaex;
then an individual record can be either read, using the READ
function, or completely replaceda, using the WRITE function.

The sequential access mode is used to build an IPAD file using the
WRITE ftunction and to access it using the READ function without
needing to specify the record's index. Records are accessed in
tne order in which they were placed on the file; however, by using
the POSITION function, the record to be next accessed can be other
than the one next in sequence. This function can specify relative
positioning (forward space and packward space) and absolute
positioning (rewind to load point and space to a record specified
by its index). An IPAD file can be made smaller either by
positioning the file to the last meaningful record or by
specitying the index ot the record and then executing the TRUNCATE
function. An I1IPAD file can be extended by using the POSITION and
WRITE functions.

To access an existing 1PAD file, an IPAD task must first
connect to it using the OPEN function. An IPAD file can be
created by using the OrEN function to define the file's attributes
and to signal the creation of a new file. This causes the
underlying host operating system to create an entry for the new
file in its directory, allocate space, and position the file to
the beginning ot the allocated space. Repeated use of the WRITE
function will then add records to the new file.

When file building or accessing is complete, the IPAD task
disconnects from the tile by using the CLOSE tunction.

An IPAD file can be removed from the host conputer system's
directory by using the DELETE function. At this time, allocated
space may be returned to the host system for reuse.

Figure 5 summarizes the 1FCS functions and their parameters.

103

id
NE%
S
>
y




NETWORK SERVICES

Network services provide communication between processes in
the 1IPAD system. This is done in a unitied way with a combination
of hardware and software subsystems. The communications system is
designed to interface with a variety of communication subnets
while Kkeeping the communications interface to the user constant
and uniform. This approach is in keeping with the philosophy of
insulating users from changes in the mechanics of communications
ana permits taking advantage of new communication networks and
changing communication technology.

Communications Axrchitecture

To further insulate ourselves trom changes, we adopted the
layered architecture proposed by the American National Standard
for Intormation Interchange (ANSI1) and the International
Standards Organization (iSO). The proposed architectural model
contains the rollowing seven levels (or layers) of control:

Level 7. Process controel
Level b. Presentatiorn contrcl
Level 5. Session control
Level L. Transport control
Level 3. Network control
Level 2. Link control

Level 1. Physical control

The communications subnet supports physical and link control
functions as well as some network control functians. The
comuunications control program (CCP) software supports session,
transport, and the remaining network control functions. The
relationships between these layers and among their peers are
depicted in tigure 7.

Network control is transport control's interface to the
communications subnet hadware. The network control interface
supplies functions, status, and operational pehavior
characteristic of this type of network. This isolates transport
control from knowleage of hardware details, thus freeing it to
concexrn itselr with functions common to all networks. Some of
these functions are routing, flow control, end-to-end
acknowledgements, segmentation, blockingy, and message
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retransmission. Transport control handles external communications
or internode data transfers.

Session control handles internal communications or intranode
data transfers, pexrforms initial routing to determine if it
requires the services of transport control or if it should handle
the transter itselt, and interfaces with the user process to move
messages to and trom other processes (e.g., other user processes
Oor server processes) .

Server processes provide special functions or services and
are usually associated with a particular resource or resource
class. Data transfer between sessions is transparent, which
implies that session control and lower levels of the architecture
transmit the data without interpretation. Session control and
lower levels may add protocol information in the form of header
data, but they do not analyze or alter data from a higher level.

Presentation services are primarily concerned with
transformation of data between a machine-and-language-dependent
representation and a machine-and-language-independent (or
standard) representation. These services are described in detail
in a later section ot this paper.

We adopted a layered architecture to insulate the user from
changes in lower-level functions and communications technology. To
minimize the effects of expansion and contraction of the network
and changes in its topology, we adopted a three-level heirarchical
addressing scheme to name processes in the network. The network
is viewed as a four-level heirarchy consisting ot (1) processes,
which reside on (2) nodes, which are grouped into (3) clusters,
which are interconnected to form the (4) network.

This is a conceptual framework and is not intended to specity
the physical interconnection of tne hardware making up the
network.

The name by which a process is known in the network is called
its network name and consists (1) a cluster name, identifying the
cluster containing the process, (2) a node name, identifying the
node containing the process, and (3) a process name, identifying
the process within the node.

This addressing structure is analogous to a telephone number
containing an area code, an exchange code, and a four-digit
subscriber code. An example or process addressing in a three-
cluster network is shown in figure 8.

It is cobvious that within the node, a process name must be
unigue; within the cluster, the node name must be unique; and
within the network, the cluster name must be unique. In order
that special processes can pbe contacted without knowing their
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specitic nodaes or clusters, Some process names are unique within
their entire cluster or within the entire network. Each process
name has a specitied degree of uniqueness indicated by its class.
The process name classes are (1) node class (the process name is
unigque within the node), (2) cluster class (the process name is
unique within the cluster), anda (3) network class (the process
name is unigue within the network) .

There is more discussion of process name classes and
addressing processes in a later section of this paper.

Hardware Environment

The communication subnet is a bus architecture network
consisting cof two microprocessor-based network adapters connected
by a standard coaxial cable trunk. The network adapters interface
a host computer channel with up to four trunks. Adapters transfer
data over any cone trunk at a rate of 50 megabits per second. This
data rate can be maintained in a l16-adapter configuration with
maximam trunk lengths of 1000 feet. Data rates decrease as the
number of aaapters or cable lengths increase.

This is a local high-speed network operating at channel
rates. As a consequence, this network supports communication with
peripheral devices as well as other CPUs. Our network is not
configured to do this, and currently our software dces not support
this feature. Our current hardware configuration is shown in
figure 9 and includes a CDC CYBER 720 running NOS and a DEC VAX
11/780 running VMS. These two sSystems are connected by two
Network Systems Corporation (NSC) network adapters (Hyperchannels)
and a single coaxial cable trunk (Hypertrunk).

Software knvironment

The logical organization or communications architecture has
been described already. Physicaily, the software is organized
into two components. Network I/0 services are part ot the userts
address space ana execute when called by the user at various
tunctional entry points. The communications control program (CCP)
occupies a separate address space and executes as a separate
process, asynchronous to the user's process.

The network 1/0 services maintain the user interface to
session control, the highest layer of the architecture that
concerns the software. The network I/0 services, in combination
with the CCP, provide communication between processes within the
network. As such, the primary services are those that allow one
process to send a message and another to receive it. The sending
process is sometimes reierred to as the source process and the
receiving process as the destination process. A process sending a
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message must be able to specity the destination. A process
willing to receive a message must be able to specify which process
Oor processes it will accept as sources. For this reason all
processes wanting to communicate over the network must have names
that are known to the network. The form of network names has been
discussed under architecture.

A process network name is associated with the process when it
connects to the network. Until a connect operation is performed,
the process is not known to the network software and cannot use
any of the network facilities. A process can terminate its
connection with the network software by a dissconnect function.

Unce connected to the network software, the process may send
and receive messages. These two operations are the main purpose
ot the software. The remaining services (check, wait, and cancel)
are merely for the purpose of augmenting the operation of sends
and receives. Send and receive operations may be performed
synchronously (in which case the process is suspended until the
operation has completed) or asynchronously (in which case the
process is allowed to continue with other work while the network
sotftware does the opexation).

In the procedure descriptions in the next section, reterence
is made to incomplete requests. A request is an operation
requested by a process and is incomplete as long as the network
software maintains intormation on the request. Synchronous
requests are generally completed before the requesting process is
reactivated. The only way tor a process to complete an incomplete
request is to determine when the network software is ready to
complete the request and, at that time, reissue the request,
perxhaps with different parameters. The check and wait operations
can pe used to ascertain whether a request is ready to complete.
One ot the parameters in the send and receive requests determines
whether the request is new or an attempt to complete an old one.
The cancel command can be used at any time to cancel an incomplete
request (or for that matter, to cancel all incomplete requests at
once) .

The one case in which a synchronous operation can be
incomplete when control is returned to the process is when a
process asks to receive a message of length n and a message of
length m (m>n) is sent. In this case the first n units of the
message are delivered, the process is reactivated, and the request
is incomplete. The process can then decide whether to reissue the
request for the remainaer of the message or cancel the request.

The remaining terms to be discussed in this section are port
number and time cut. When a process sends a message, it specifies
both the network name of the destination process and a port
number. Conceptually, each port number represents a potential line
of communication with the destination process, and several
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communications can be carried on in parallel if they are addressed
to separate parts. The port number allows the receiving process
to be selective about which messages it receives. It may specify
that it is only willing to accept messages from a certain process
Oor group of processes by the way it specifes the source process
network name, or it can specify that it is only willing to accept
messages sent to a specific port, or it can combine these
selective capabilities.

Tune out refers to the situation in which a request has not
been satisfied within some time limit specified by the requesting
process. When this happens the request "times out,"™ that is, the
network software terminates processing of the request and either
completes the request (synchronous requests) or marks the request
as ready for completion (asynchronous reqguest) . When the request
completes, an appropriate error code is returned to the user.

When called, the network 1/0 services, in the user’'s address,
package requests and pass them to the CCP for service. Network
control, transport control, and the remaining session caontrol
functions are impiemented in the CCP. The organization of the CCp
and its relationship to the user processes, the node, and the
communications subnet are shown in figure 10.

Network 1/0 Interface Procedures

Connect to Network

This procedure establishes (1) the process as a network user
and (2) its network name.

escnet (name, class, return code)

name This reters to the name by which the process is known
within the network. OUnly the process name is specified
by the user; the network software will f£ill in the
cluster ana node iielas. The user can request that the
network sottware also fill in the process field with a
noae-unique name by leaving that tield blank.

class Refers to one of network, cluster, or node class. A

process must have special privileges in oraer to specify
cluster or network class.

Disconnect From Network

This procedure removes the process as a network user. The
network will terminate any incomplete requests involving this
process, as either source or destination, with appropriate error

messages.
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esdnet (return code)

Send a Message

This procedure sends a message to a destination process. It
the request is synchronous, the process suspends until the network
software is satisfied that the destination process has received
the message ar until an error condition is detected or until the
request times out. When the process is reactivated the request
will have been completed. I1If the request is asynchronous, it will
complete only i1f the message can be delivered immediately (i.e.,
if there is a receive pending tor the message and the entire
message can be delivered without further action on the part of the
receiving process) . 1f the asynchronous send request is not
immediately satisfiable, the network software establishes it as an
incomplete request and returns an identifying number to the
calling process.

The above specifies the function of the send procedure if the
id parameter is 0, indicating a new request. 1f the id is not
zero, then this is a reissued request for the incomplete send
identified by that a1d, in which case the network software checks
the current status of the incomplete request and, depending on
whether the incomplete request is ready to complete and the
reissued send is synchronous or asynchronous, proceeds as
speciftied above.

essend (name, port, units, length, message, mode, id, time,
return code)

nane Name specifies the destination process. The process
field must be the process name of the destination
process. The cluster and node fields may contain names
or the word ™local"™ or blanks. The implications of the
variocus combinations are:

Cluster Node Implications

blank biank the process name is network unique

blank “local"® not allowed

blank name not allowed

"local" bl ank same cluster as sending process
process name is cluster unique

“"local" “ijocal"® same node as sending process

"locali" name same cluster as sending process

name bl ank name is cluster-unigue

name local not allowed

name name complietely specified name

The senda request causes the actual cluster and node
names oi the receiving process to be filled in if the
fields contain blanks or the word "local."®




port

units

length

message
mode

id

time

Port is the port number the message is being sent to.
Unless the sender and recelver have agreed to some cother
port nuuber by convention or negotiation, the standard
port number is 1.

The number of bits per message unit

The length of the message in units. The number of bits
in a message is computed by length x units.

The message to pe sent
synchronous oOr asynchronous

Zero (0) implies this is a new request. If the send
request has not completed when send returns, this
parameter contains the id of the incomplete request.
Nonzero implies that this is a reissued request (an
attempt to complete the incomplete send request
identified by id).

The taime (in seconas) before this request should time
out. If the reguest is not satisfied within the
specitied time limit, the request will time out. This
parameter is ignored on reissued requests.

Receive a Message

This procedure receives a message from a source process.
There are three nodes tor receive requests:

synchronous Wait for the request to be satisfied

(or time out or error) before returning
t0O user process.

asynchronous 1f the request 1s immediately satisfiable,

perform it, otherwise establish it as
an incomplete request and return.

conditional 11 thie request is immediately satisfiable,

perform it. Otherwise return without doing
anything.

The reissued torms oOof these requests (id parameter nonzero)
behave pretty much as the initial request, except that they
reference an incoinplete request. Since reissued requests
reference already established incomplete requests, a reissued
conditional receive is identical to a reissued asynchronous

receive.

Receives are unigue in that they may be partially satisfied
if the message sent is longer than the length specified in the
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receive. 1In this event (for all three modes, in both the initial
and reissued request cases), the procedure aelivers the portion of
the message specified by length, establishes the request as an
incomplete request (if it is not already), and returns to the
calling process. The process now has the option of using reissued
request (s) to pick up the remainder of the message or cancelling
the request.

esrecu (name, port, units, length, message, node, ia, time,
return code)

name Name specifies the acceptable source processes. The
fields may contain valid names, blanks, or the wora
"local." The implications of the various combinations are:
cluster node process meaning
blank blank blank any process
biank blank name any process with specified

process name
name blank blank any process in specified cluster

name blank name any process in specifed cluster
with specited process name

name name plank any process on specited node
name name name completely specified name

"jocal," useua in place of a cluster name means "the
cluster containing the calling process.®

®local," used in place of both the cluster and node
names, means "“the node containing the calling process."™

Other combinations are invalid. The receive procedure
replaces blank and ®“local"™ fields by the actual cluster,
node, and/or process names of the source process.

port The port number at which a message will be received; it
is a further constraint on acceptable messages.
Specitying a port numoer ot 0 (zero) indicates the
process will receive at any port. In this case, the
actual port number to which the message was sent is
returned by the receive procedure.

units The number of bits per message unit

length The length of the message in units. The number of bits
in a message is computed by length x units.
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message the received message
mode synchronous, asynchronous, or conditional

ia Zero (0) impliies that this is a new request. If this
request is established as incomplete when the receive
procedure returns, the receive procedure places the id
ot the incomplete request in this parameter. Ncnzero
implies that this is a reissued request (an attempt to
complete thie incomplete receive request identified by
id) .

time The time in seconds perore this request should time out.
I1f the request is not satistied within the specitied
time iimit, the réguest will time out. (This parameter
is ignored on reissueda requests.)

Check an Incomplete Reguest

This procedure checks to see it a specified incomplete
request is ready to complete.

eschek (id, return code)

id the id or an incomplete send or receive request
return indicates whether the specitied incomplete

code request 1S ready to complete

Wwait for a Request to Become keady to Complete

This proceaure waits for a specified request to be ready to
complete and waits only for a specitied time.

eswait (id, time, return code)

id Zero (0) means wait for any incomplete request to become
ready to conplete. If one does within the specified
time limit, its id is returned in this parameter.

Nonzero means wait tor the incomplete request identiried
by tnis 1d to become ready to complete.

time 1t the speciried incomplete request (or any if none was
specified) does not become ready to complete within
this time limit, stop waiting.

return indicates whether wait was successful or timed out
coae
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Cancel a Request

This procedure cancels an incomplete request.
escncl (1d, return code)

id Refers to id of the incomplete request that is to be
cancelled. If id is zexo, all incomplete requests
issued by this process are cancelled.

DATA TRANSFORMATION

Data transformation is the translation of data values from
one representation to another. In a heterogenecus environment
such as the 1IPAD local network, data transiormation is necessary
for accurate communication of data values. The following sections
discuss the need for data transformation, the nature of the data
transtormation problem, the general approach to a solution adopted
on the IPAD project, and the specific IPAD software developed to
handle data transformations.

Information Transfer in a Heterogeneous Network

In an integrated system, various parts of a problem are
worked on by different processes that must coordinate their
activity. (A process is the execution of a program.) This
coordination usually involves information (such as the IPAD data
base) that is available to all of the processes and manipulated by
many of them. In addition, some information is transferrea
between concurrently executing processes. This active transfer of
information is represented by the interprocess communication
(network) soitware in IPAD.

Transfer of information between processes in the IPAD system,
whether through the data base or interprocess communication, is
complicated by the heterogeneous nature of 1IPAD. The IPAD local
network interconnects a variety of computers. While the IPAD
system software is implemented in one language, the user programs
being inteqgrated into IPAD are not constrained to this language.
Thus, a process that produces a given data value may be
implemented in a aitferent language ana may run on a different
machine than one tnat needs to access that value.

The representution of a given data value or group of data
values will vary ftrom machine to machine. Even on a given machine
different compilers choose ditferent ways to represent a given
data value. 1f IPAD software is to gquarantee that a data value
produced by one process is correctly presented to processes
needing to access that value, IPAD software must perform
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translation between the representation used by the creating
process and the various representations expected by the
referencing processes.

The unacceptable alternative is that all programs agree on
some machine-independent representation of data values to be
transferred between processes. Since this representation would be
incompatible with the machines' instruction sets (or at least most
of them), manipulation of these values would have to be software-
implemented and inefficient. An example would,be comparing two
integers received from another process in the standard form. This
comparison would have to be handled by a subroutine call instead
of by using a simple comparison expression, because the expression
evaluation would use machine instructions, which expect the
integers to be in machine format.

Variation in Data Representation

Most machines and compilers distinguish between the basic
data types—--integer, floating point, character, and logical--and
allow the programmer to access and manipulate these types
individually or in arrays and records. Data transformation
software is concerned with translating data values of these types
between the representations of each of the machine and compiler
combinations. The following paragraphs discuss the ways in which
these representations vary.

Integer values are usually stored as binary numbers. The
number of bits used is a function of the word size of the machine.
Some machine architectures allow for more than one size of binary
integer. The main variation other than the number of bits is the
method of representing negative integers. The most prevalent
methods are ones complement and twos complement.

Floating point ("real") values are generally of the form
m x b®, where m is a signed integer or fraction, e is a signed
integer, and b is the base. The representation involves an
encoding for e and m. The base is understood, although the value
of the understood base may vary between machine architectures.
Bases of 2 and 16 are common. The representations of the exponent
e vary both in the number of bits and in the method of
representing the signed value of e. Generally the method of
representing e is independent of the method chosen for
representing integer values on the same machine and has been
selected in conjunction with the design of the floating point
hardware. On some machines m is an integer value, on others it is
a fraction. The method for representing negative values for m
also varies between machines and need not be consistent with
representation of negative integers. Finally, the number of bits
used to represent m varies between machines, with the total number
of bits for m and e being a function of the machines word size.
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Most machine architectures allow for more than one size of
floating point wvalue.

The primary encoding for characters is ASCII. Machines that
have adopted this representation usually use eight bits to encode
a character. CDC representation is called display code and uses
six bits per character. IBM uses EBCDIC, which is an eight-bit
encoding that differs markedly from ASCII. There is no simple
transformation that maps any one of these encodings into the
other.

Logical (Boolean) values are perhaps the simplest in that the
only possibilities are true and false. One bit is adequate to
represent a logical value. The representation of logical wvalues
is usually compiler-dependent rather than machine—architecture-
dependent.. Variations include positioning of the logical value
within the machine word, the number of bits used to represent the
value, and how true and false are represented (usually a question
only if more than one bit is used).

Record and array structures vary due to word sizes and
alignment requirements on different machines. Compilers usually
allow (or make) different choices as to how Boolean and character
values are to be packed within addressable memory units.

In general, there are few similarities between machine
repesentations. Transformation to (from) a host machine's -
representation from (to) a foreign representation invariably
requires treating the foreign representation as a bit string and
disassembling (assembling) that representation at the bit level.

Network Standard Representation

One of the earliest decisions concerning data transformation
in IPAD was that every transformation between machine
repesentations would be performed as a two-step process. The data
is first translated from the source machine representation into an
intermediate form called network standard representation (NSR).
This transformation is performed on the source machine. The data
is then translated on the destination machine from NSR to
the destination machine representation. The alternative,
translating data directly between source machine representation
and destination machine representation, would require two sets of
transformation routines for each of the n(n-1) pairs of
representations in a network with n machine types. Adding an
n+lst machine type would require writing 2n new sets of
transformation routines. If an intermediate representation is
used, only 2n sets of transformation routines are required for all
transformations, and adding an n+lst machine type only requires
writing two new sets of transformation routines, one set
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for transiating from the new machine representation to NSR and one
set for translatiny tfrom NSR to the new machine representation.

Having settled on a standard representation, the next
decision was on the form of this standard. Arguments can be made
against using one of tne machine representations as a standard,
and this is a tempting choice if one of the machine types plays a
central role in the current network contiguration. The strongest
argument is the loss of information that could result in
translating througi such an NSR. A value that is representable in
both the source ana destination machine representations may not be
representable in the chosen standara. There is no one machine
representation that is a superset of all the others in terms of
representable values. Sufficiency, then, is a reqirement which
must be met by the NSR. Any value representable on one of the
machines in the network must be representable in the standard.

Two other desirable characteristics of an NSR are compactness and
ease ot conversion to and from the chosen representation.

The NSR designed for 1PAD has variable-length integer and
real representations, which provides poth for compactness (since
it need only have enough bits tor the desired precision) and for
suffticiency (since it can have as many bits as necessary to
achieve the precisiocn ot future machines added to the network).
Character values are represented in eight-bit ASCII. This was
chosen for the sake ot sufficiency. There was no choice that
would provide foxr ease ot transtormation between the various
character representations. Logical values are represented by a
single bit tor the sake of compactness. The NSR representation of
each of the basic data types is given in the following text.

BASIC DATA TYPES

The basic data types are real, integer, character, and logical.
In SR (standard representation), each of these is parameterized.
Data types, representations, and parameters are presented below.

Integex
characteristics:

used to represent integer values in the range -2P«< i<:2p
parameters:

P

representation:
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SR tor integers uses ones complement binary notation. The
all-ones bit pattern (-0 on some machines) is not used in SR.

size:
P + 1 bits

Real

characteristics:
Used to approximate real values. The actual values
represented are a p bit ftraction in the range .5< £< 1, a
sign, and an integer exponent in the range -2'¢ e < 29, a

value of zero is the only value for which £< .5.

parameters:

q
P

representation:

The exponent is represented by using ones complement binary
notation. The sign (of the tfraction) is represented by one bit
(0=+, 1=-), and the fraction f is represented by p bits. Except
for a value of £=0, the first fraction bit is always 1 (f is a
normalized fraction). The value of zero is represented by all
bits ot the SR equal to zero.

size:
e g+1 bits
sign 1 bit
t p bits
Logical

characteristics:

used to represent true/ifalse values
parameters:

n the nunber or true false values represented
representation:

one bit per value

0 = false
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1 = true
size:

n bits

Character
characteristacs:

used to represent character information
parameters:

n the number of characters
representation:

8-bit ASCII is used to encode characters
size:

8n bits

Bit
characteristics:

used to pass intormation without translation
parameters:

n numoer of pits

representation:

bits are copied directly from MR (machine representation)
into SR and from SR into MR

size:
n bits
Recoras, Lescriptors, and Field Modes
While there are data transitormation routines that translate
individual data items, most transformations are performed on

records containing several data items of possibly different types.
A machine record is a set of data in some machine-dependent
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representation. A standard record is a set of data in the machine-
‘independent NSR.

In order to perform a translation, it is necessary to know
{1) the location of the source and target records, (2) what data
types the records contain, and (3) their actual or intended
representation (ir tnat data type allows choices). This
description of a record'®s contents is contained in any array of
integers ana is called a recoxd descriptor.

Sending a messaygye from a process on machine A to a process on
machine B would usually require the following steps:

1. The originating process would pass the message and a record
descriptor to the data transformation software, which would
return the message in a standard record.

2. The originating process would then send this standard record
to the destination process, using the network I/0 routines.

3. The destination process would use the network I/O routines to
receive the standard recora ana would then pass the standard
record and a record descriptor to the data transformation
software, which would return a machine record containing the
message in machine representation ftor machine B.

1t shoula be notea that, in this example, both processes
needed to know in advance the appropriate record descriptor, i.e.,
the destination process had to know the format ot the message. It
'ls reasonaple that, in some applications, the two processes would
have a protocol for passing the record descriptor as part of the
standard record. 1f such a protocol were used, the destination
process would translate the descriptor first and then translate
the rest of the record using this descriptor. The data
transtformation software allows such translation ot partial
records.

A record descriptor contains, for each field in a record, a
field descriptor specifying the ftieid type, any parameters
associated with the machine, and standard representations of that
fieid. To a large extent, a record descriptor is machine-
independent, except that it is itself in a machine representation
and that the parameters associated with the machine
representations of a given field may vary from machine to machine.
Usually, machine representation parameters can be chosen so that
one record descripgtor detines both the standard and machine
representation on both the source and destination machines. To
prevent the descriptor from being excessively large, there is a
repeat field descriptor that indicates when a given field or set
of fields is repeated. A record containing 100 (or 1000) real
values requires only tour tield descriptors.




In early use of the data transformation software, it was
discovered that it is occasionally desirable for certain fields to
be extracted from the machine (stanaard) record and translated to
form a smailer stanaard (machine) record. The reverse process of
breaking a record up and inserting it piecewise into a larger
record during translation is equally desirable.

The data transformation routines view the record descriptor
as a description ot a general record, certain fields of which may
be missing from either the source or target record. Field masks
are requirea for both the machine and standard records to specify
which tields are present in those records. If no extraction or
insertion is to be performed, both field masks would indicate that
all fields are present.

Kecoras, recora descriptors, anda field masks are the main
entities involved in data transformation. A record descriptorx
and two tield masks provide the data transformation routines with
all of the information necessary to completely determine the
representation or a given set of values in either machine or
standard representation. This information and a machine
(standard) record permit the creation of the selectea fields of
the corresponding standard (machine) record.

Data Transformation Software

Tnis section includes aetinitions of data transformation
terms and descriptions of the individual data transiormation
routines.

Defiritions .- Data transformation terms used in this paper are
definea belcw.

Standard representation_ (SR): A machine-independent method of
encoding intormation when messages are sent between machines in
the network

SR record: A bit string containing one or more items of
information encodea in SR (may wegin and end on any bit boundary)

Machine representation (MR) : The machine- and compiler-dependent
encoding of information; ditfers for each machine architecture and
compiler

MR record: Group of intormation encoded in MR. Ekach item in an
MR record is on an «ppropriate boundary for that type of item on
that machine. MR records begin and end on machine-addressable
boundaries. '
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Record descriptor: A specitication of the contents of a record.
For a given sequence of values, the record descriptor uniquely
determines both the SR record format and the MR record format for
tnat set of values. Record descriptors are used to guide
translation between MR records and SR records.

Field mask: A specification of the presence or absence of fields
in an MR or SR record, permitting data transformation routines to
extract a set of fields trom, or insert a set of tields into, a
record

SR _routines: A set of routines (subset ot IPSR) for translating
between MR and SK, grourped under the following headings:

Record translation routines
Item translation routines

SR_map: A specitication of the beginning bit positions and bit
lengths of the fields in an SR record

MR map: A specification of the beginning word position and length
in words ot the fields in an MR record

Module Specification.- Since MRs are both machine- and compiler-
dependent, most of the modules below exist in multiple versions.
The names of the modules include a letter to indicate (1) which MR
the routines are designed tor and (2) which language they are
designed to be called txom. This position in the module name is
indicated by a small x in the fullowing documentation. The actual
replacement for this x would be:

ple Calling L.anguage MR

P PASCAL PASCAL
F FORTRAN FORTRAN
X FASCAL FORTRAN

The module nalies are given below with their descriptive
titles. These routines require the bit manipulation routines.

Record-oriented routines:

ESZxMX translate SR record into MR record
ESZxSX translate MR record into SR record
ESZxSM produce SR map from record descriptor and field mask
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ESZxMM produce MR map from record descriptor and field mask

Item-oriented routines:

ESZixS1 Translate integer value from MR to SR

ESZxSR Translate real value from MR to SR

LSZxSC Translate cnaracters from MR to SR

ESZxSL Translate logical values from MR to SR

ESZxMI Translate integer value from SR to MR

ESZxMR Translate real value from SR to MR

ESZxMC Translate characters from SR to MR

ESZxML Translate logical values from SR to MR

ESZxSD Provide bat length of SR for a specitied type
LSZxMD Provide alignment anu size for specified MR type

Record—-oriented routines (module description}:

ESZxMX: Translate fram standard record to machine record

Inputs: standard record
record descriptox
field mask for standard record
tield mask tor machine record

Outputs: machine record
lengtn of standard record processed (in bits)

return code

ESZxSX: Translate trom machine record to standard record

inputs: macnine record
record descriptor
field mask for machine record
tiela mask tor standard record

Outputs: standard record

length oi standard record produced (in bits)
return code
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ESZxMM:

Inputs:

Outputs:

ESZxSM:

inputs:

Outputs:

Item-oriented routines (module description) :

Produce an Mk map

record descriptor

field mask for machine record
mode flag

MR map (if mode flag=0)

length of machine recourd (in memory units)

Produce an SR map

record descriptor

field mask for standard record
mode flag

SR map (it mode flag=0)

length or standara record (in bits)

ESZxSI:

inputs:

Outputs:

ESZxMI:

Inputs:

Qutputs:

ESZxSRk:

Inputs:

Translate integer from MR to SR

bits of precision in MR value
integer in MK
bits oi precision in SR value

integer in Sg&
length ot SR (in bits)
return code

Translate integer from SR to MR

bits ot precision in MR value
integer in Sk
bits or precision in SR value

integer in SR
length of SK (in bits)
return codae

Translate real from MR to SR
MR precision (in bits)

real in MR
SR exponent precision (in bits)
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Outputs:

ESZXMR:

Inputs:

Outputs:

ESZxSC:

Inputs:

vutputs:

wSZPxMC:

Inputs:

Outputs:

ESZPxS1:

Inputs:

Outputs:

ESZPxXML:

inputs:
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SR fraction precision (in bits)

real in Sk
length of Sk
return coaqe

(in bits)

Translate real from SR to MR

MR precision (in bits)

real im SR

SR exponent precision(in bits)
SR fraction precision (in bits)

real in Mk
length of SR (in bits)
return code

Translate characters ftrom MR to SR

mode, selects from possible machine
characters in Mr
number ot characters

characters in SR
length ot SR (in Dits)
return code

Translate characters from SR to MR

mode, selects from possible machine
characters in SR
nunber of characters

characters in MR
length ot SR (in bits)
return codce

Translate iogical values from MR to
mode, selects from possible machine
logical values in MR

number oi logical values

lJogical values in SK

length of Sk (in bits)
return code

Translate loyical values from SR to
Moude, selects trom possible machine

logical values in SR
number or loygical vaiues

representations

representation

SK

representations

MR

representations



Outputs: logical values in MR

length of SK (in bits)
return code

ESZxMD: Provide information about MR for item

Inputs: type ot item

modifier, selects froum possible machine representations
n, number or values for character or logical types

Transput: index into record (ESZxMD aligns it)

Output: size or MR (in memory units)

ESZxSD: Provide iuformation about SR for item

Input: type of item

P1,P2 = parameters for type

outputs: size of SK (in bits)

INSTRUMENTATION AND PERFORMANCE MEASUREMENT

Overview

A performance data-gathering facility is provided so that

IPAD and the host computer it runs on can be instrumented to
collect performance data. When reduced, this performance data can
be used to answer critical pertormance questions such as:

What is IPAD's response time or, alternatively, how fast does
IPAD run on this particular host computer system?

Why does 1IPAD execute the way it does on this host?
What has to pbe done to change the way IPAD executes?

A two-part data-gathering facility is provided. One part

collects IPAD-related performance data that is used to:

1‘
2.
3.

u.

Provide program daiagnostic trace information
ldentity component usaye and system bottlenecks
Optimize the internal design of IPAD components

Relate a component !s use of host system resources to its
oreration

Provide response times
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The other part oi the data-gathering rfacility operates :
independently to collect host system execution data that provides
a measure ot the 1PAD host system®s ability to process the IPAD

workload.

These data-gathering elements generate streams of performance
measurement data, which are recorded for later analysis.

Finally, collected IPAD performance data containing execution
traces, component internal data, host system resource usage data,
and host system execution data are reduced and performance reports
are generated. Reduction can be performed on any host.

IPAD's Use of Data Gathering

IPAD uses the data-gathering facility (IDGS) to enable IPAD
and application programs to determine their resource usage and
performance. These uses are described in the following
subsections.

Evaluation of System Response and Performance.- IPAD designers

use the IDGS trace ftacility as a diagnostic tool to track a
transaction®s progress through 1IPAD. This feature is particularly
useiul when mnultiple transactions are being processed by the IPAD
relational uata base system. After separate processing, a printed
record of each transaction's progress through the various IPAD
components is produced. If thie recording ot time has been
requested, the amount of time a transaction spends in each
component can be determined. This enables processing bottlenecks
to be identified so that remedial development and optimization
actions can be taken. Also, the effect of a particular module's
agesign on 1IPAD's uverali performance can be evaluated.

A component's trace and resource usage data can be allocated
to itself and its designatea internal blocks through the technique
of bracketing. By this means measurement data can be grouped into
a hierarchy of levels whereby the stream of low-level measurements
is assigned to uesignatea components and component blocks of the
IPAD task. With this information, higher-level events can be
constructed from lower-level events by the performance data

analyzer.

The amount of aata collected at each level may differ,
permitting the capture of only the most useful data and with only
the level of detail required.

IPAD Structure Optimization.- Component frequency-of-use
statistics can be developed from the trace data. These statistics
provide component locality maps for analyzing the structure of
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overlay trees in those 1PAD hosts that do not have automatically
paged (virtual) memories.

Component Optimization.- IPAD components can collect
internal data for the development and optimization of component
pexrtformance.

The resource manager function of the IPAD data manager can be
used as an example of the kina of task-specific data that might be
collected. Components of the data manager requiring file access
will use the record manager, which, in turn, will use the IPAD
file control system. A representative action might be to satisfy
a request to add a data record to a named file. 7o do this, the
record manager examines a table resident in main storage to obtain
the tile address of a physical block containing sufficient free
space for the new recurd. The record manager then calls the
bufter manager to access the block.

Data Needed: For this representative action to be optimized, the
following kinds of data are needed.

1. Disk access: The number ot disk accesses needed to satisfy a
request for a given-size block

2. Size of requestea blocks: The size of the blocks requested
by the various components of the IPAD data manager

3. Free space available: A record of the amount of free space
available in the accessed plocks of the file

g, Locking interval: The length of time a working storage
bufter or file buffer remains locked

Data Analysis: This kind of component intermal data can be used
to optimize component parameters such as:

1. The relationship between the size of the record to be
inserted in a4 file block and the extent of the free space
range. (A distripution of record sizes will enable the
boundaries o1 the free-space ranges to be chosen so as to
enclose naturally occurring clusters of record sizes.)

2. The size of the record to be inserted in a file's block
versus the amount of free space remaining. (This will
provide an indication of the fragmentation of available free
sSpace.)

3. An evaluation or the number of tree-space chains versus the

number of blocks accessed (i.e., the extent of relinking
needed) .
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Data Recording: Task-specific data need not be recorded as it is
generated. Composite records ot timing, storage and event data
can be accumulatea until the end of the component?®s processing. An
example of this kind of data is the IPAD data manager activation
record, which will be generated by the IPAD data manager scheduler
component .

Resource Characterization of IPAD Jobs.- IPAD components can
capture their use oi host system resources. With this
information, IPAD designers can associate transaction complexity
with resource usage and create data to be used for component and
system optimization. More directly, a designer can see which
components act as bottlenecks in restricting system flow.

Aggregate consumption of host system resources represents the
task's accumulated use of the host system; it is combined with
resource usage data from many other IPAD jobs to develop a concise
description of the I1IPAD job mix. This characterization of IPAD
jobs permits the identitication ot the resocurces needed by 1PAD on
a host system.

Evaluation of a Host as an IPAD Processor.- The IPAD data-
gathering facility captures host system data that, when analyzed,
is used to establisin performance of an IPAD host computer as a
processor oif the IPAD workload. The host®s ability to process
IPLD jobs establishes its throughput rate ana IPAD responsiveness
to user actions. A host's job processing ability is governed by
both its hardware characteristics (CPU speed, I/0 channel
capacity, aud device access times) and its operating system
software (maximum multiprogramming level, job priority assigned by
class, etc.).

The performance data collected will be used in the IPAD
performance model, & queued network of servers representing
components of the host system (CPU, 1/0 devices, etc.) and their
associated queues. The ability of these components to process work
is their service rate, which is derived from the measured host
system statistics (host capability aata).

Collection ot 1P&D Performance Data

Data Gathering Design and Function.- Due to its need for computing
gower, IPAD will operate on multiple, interconnected, and possibly
ditferent host computers. This means that I1PAD software should be
as host-indepenaent as possible. For the 1IDGS function, host
independence is ootained throuyh use of a two-layer interface: a
host-independent part, with which IPAD components commuanicate, and
a host-dependent part, which communicates with the host and is
tailored to the characteristics ot each host.
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IPAD performance measurements are collected with a two-part
data-gathering facility. The first part is a passive subroutine
attached to the IPAD task, components of which control their own
data gathering and collect performance data through calls to this
data-gathering subroutine. They are provided with the ability to
(1) start and terminate the IDGS gathering operation; (2) globally
set the amount of detailed data to be gathered; (3) enable blocks
ot code to be bracketed for hierarchical data grouping; (4) enable
local setting of data volumes; (5) within a bracketed code area,
record occurrence of designated events; and (6) record a
component *s self-yenerated internal data.

The second part operates indepenaently of IPAD to collect
execution and resource data for all jobs processed by the host
system. This job is performed by a highly host-dependent data
gatherer, which periodically samples key host system performance
variables.

Types ot Data Collected.— The periformance data collected from IPAD
components (as aistinguished rtrom host system data) fall into
three types. The trirst is trace data, which records the internal
execution of an IPAD component. The second type is camponent-
specific data, which is generated internally by the IPAD
component. Its format and meaning are specified by the component
and can represent loop counts, storage used, and timing data. The
third type represents actual usage of the resources of the host
system, which include CPU time, number of 1,/0 accesses, and amount
of main storage occupied.

Format of Collectea Data.- Each measurement generates a specific
group of data elements. Bach group is of varying length,
consisting of an identitying header and a variable-length data
component, depending on the event and level of detail requested.
Each group- 1s appropriately identified by 1DGS and, depending on
the level ot detail requested, may contain event time and CPU
time. 1f generatea by a host interface routine, detailed host
data will be present in adaition.

The IPAD performance data measurements are purposely
generated in a host-independent format to ensure that the
reduction function on one host can process the performance
measurements coliectea by another host of different
characteristics. ‘This is further ensured through the use of a
standard data format and data type.

Collection of Trace Data.—- An IPAD component®s trace data is
generated by the component and i1ts host interface routines, as
they execute, through subroutine calls to 1IDGS. The amount of
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trace uata generated by each component can be controlled by the
component, depending on the expected use of the data.

Four levels of data-gathering detail are provided. At the
rirst leveli, the trace contains only a record of the calls to the
data-gathering facility, including both the implicit trace
generated by the host interface routines and the explicit trace
generated by the event and bracket commands. At the second level,
each trace event is time stamped (i.e., the current value of wall
clock time is added to the trace's measurement dgroup). At the
third level the accumulated CPU time consumed to that point by
each IPAD task (accumulated by the host system and accessed
through host system services) is added to the measurement group.
At the tourth and final level, special-purpose detailed data is
added. Tuis data, consisting of time stamps, 1/0 device
identification, and physical record counts, is obtained only from
the specially moditied IPAD development host®s operating system.

Collection of Frequency-of-Use Statistics.-— Component frequency-
of-use statistics can be gathered by instrumenting each component
or component block of interest with a call to IDGS to create an
event denoting its execution.

Collection of a Component®s Internal Data.- To collect this type
of data, 1PAD component aesigners examine the function or service
of their component and identify tuose features that characterize
Oor govern its performance. These features probably will be unigque
for each component.

The kinds of information to be gathered to characterize the
orperation and performance of the component are typically:

Timing: Timing data can be captured through the recording of
events such as termination of a major loop or how long another
comporient takes to provide a service for this component. An IDGS
function will supply wall clock time.

Storage: Kecording gueue lengths and the size of working or I/0
buffers facilitates determination of the relationship between a
record's size and the sizes ot available free space, or the amount
of free space available for allocation. The data-gathering
facility can measure the amount of storage occupied by the IPAD
component only when it is executing, and then only in terms of the
component's data structures. 1t can do this by recording the
size, units, and numbers of instances of these structures.

Activity counts: These can be simple recordings c¢f component-
maintained counts ot various kinds of events that are meaningful
to the task. For example, how many elements does a queue have
now? How many calls to the resource manager have to be made to
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access a B-tree page? What is the number of scheduler cycles
needed to process a request?

When paranieters specifying the internal performance of the
component have been identified, the designer®s next step is to
specifiy numerical values and identification codes. These timing,
storage, and activity measurements are accumulated by the
component in an array, with a format determined arbitrarily by the
component*s designer, and then output through subroutine calls to
IDGS.

Collection of Host Resource Data.- Access to host resource usage
data is accomplished primarily through host system services.

These services usuaily supply accounting—-type data of the host
resources consumea by each host, whether IPAD or other. An IPAD
jobts use 0of host system resources, independent of those collected
by the host system accounting functions, is collected by the data-
gathering facility, either during its operation (through tracing,
as previously mentioned) or at the end of its execution. The
resource use measurenents are placed at the end of the task's data
stream,

Collection of Host System Measurements.- Host system processing
capability data will be collected by a data—-gathering tacility
that is hooked into the host computer's operating system. It
collects the following types of key host operating system
information (expressed in CYBLR host terminology) :

1. Number of concurrent users by job class (number of control
points executing IPAD jobs)

2. CPU and 1/0 busy times (measurements of the "busyness*"™ of the
CPU and 1/0 channels of the host system)

3. Number of completea jobs

4. Number or coamnpleted operations per device (total number of
reads and writes transterring physical blocks of data)

5. Total number of 1/0 operations (number of 1/0 operations for
each device calculated for all 1/0 devices, including
terminals)

6. Measurement interval (time interval over which the
measurements are made)

7. Job execution status (breakdown of the execution status of
the jobs being multiprogrammed in the system)
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Reduction of 1PAD Pertormance Data

Data Reduction Report.— The IPAD pertormance report first presents
the IPAD task's resource usage in the form of a matrix, with
resource types (e.g., CPU time) as columns and component or block
identifiers as rows. Another column shows the level of data
gathering specified tor each block. These and the block listings
will show the hierarchy specified by the instrumentation
bracketing. If the 1PaD task was not instrumented for resource
measurements by individual components, there will be a single row
showing only the task's accumulated use of host system resources.

The second section presented in the trace report details
events (i.e., designer-defined happenings in a component, recorded
by a call to the IDLS subroutine). Events are listed by
identitier and ordered by time of their occurrence.

The thixd section of the trace report lists the measurements
generated internally by the IPAD task or its component parts.
These measurments are peculiar to the program generating them,
except for their standard but variable-length format of length,
identifier, and the data. 1In the absence of a decoding template,
such as a data structure, a default listing of one recording
instance per row will be generated. Kows will be ordered by the
time of theixr occurrence.

Reduction ot Trace-Type Data.— Trace-type measurements are
generated by the execution of the various components of each IPAD
task. These measurements appear as a string of identified groups,
each consisting of lengtl, identifier, and aata, which are scanned
to extract pasic pertormance information for presentation in the
report.

Reduction ot Frequency-of-Use Data.—- Component freguency-cf-use
data are reduced to generate overlay tree map data, each branch of
which is identified along with its use count.

Reductaion ot Component Internal Measurements.- The performance
measurements generated internally by an IPAD component have
meaning only to that conmponent. 7The content of the measurement
(timing, storage, and counts) is generated dynamically by a
component 's operation ana depends on the tlow of execution.

These measurements nave a comuwon format; their presentation in an
IraD performance report will require special-purpose processing
defined by the conponent®'s designer.

keduction ot Job Characteristic Measurements.- IPAD usage
statistics will be reduced to produce measures of the host system
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resources used by each 1PAD job, such as elapsed time, CPU time,
amount of memory occupied, number of 1/0 accesses made, and number
ot files accessed.

Processing will involve cluster analysis and scaling
techniques, in which the collected resource information is grouped
and averaged to produce repesentative job descriptions. In
addition, reduction produces job resource usage inputs for the
IPAD gueued network performance model. These inputs consist of
elapsed time, CPU time, I/0 activity, and storage requirements for
each job.

Reduction of Host Characteraistic Measurements.- The following
kinds of performance model parametric data are produced from
collected host-speciftic data:

Multiprogramming level

CPU service time by job class

I/0 device service time Ly job class

Host system component routing frequencies

Jop swapping activity

Job residency times

Summary of 1IPAD Performance Measurement and Reduction

The intent of the data gathering part of this paper has been
to provide an operationally oriented, comprehensive description ot
the total IPAD IDGS facility. The presentation was mentioned in
three major sections: performance data use, performance data
collection, and periormance aata reduction.

IPAD'*s use of 1IDGS was considered tirst. This showed how the
various types of measurement data were used to measure IPAD's
actual pertormance and use ot host computer resources.

Described next were (1) a description ©of the IDGS software,
(2) the types of performance measurements gathered, and (3) the
mechanisms by which the measurements were collected.

The last section briefly described the performance report
format and outlined the processing of the measurement data.
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SYS3TrM DEVELOPMENT USING A HIGH-ORDER LANGUAGE (HOL)

More and niore, high-order languages (HOLs) are being used to
design and build programming systems both large and small.
Etticient use of CPU and memory resources when building
progranming systems, although important, is now less critical
because of more etfficient object code output by compilers, the
developments in increased machine speed, more sophisticatea
machine architecture, and larger and cheaper memories. 1t makes
good sense to choose a progranming language best suited to solve
thé proplem at hana. For example, most programmers would agree
that muuerical algorithns are best represented in an HOL such as
FORTRAN and not in assenbly language or an HOL like SNOBOL ana
especially not in assembly lanyuage. The same arguments for HOL
use in applications are being used to justify the use of HOLs in
designing and building system sottware.

Pascal as the HOL

In the early stages ot the project, a study was periormed to
select a programming language ftor implementing the IPAD system
(reft. 6). From an initial 1list ot 15 languages, five were chosen
for detailed evaluation. These were AED, FORTRAN, LITTLE, Pascal,
and Assembly Language with Macros.

The languages were evaluated on 20 different weighted
criteria, among which were degree of standardization, portability,
object code efficiency, support of complex data structures, and
support of structured design and programming. As a result, Pascal
was selected as the system design and implementation language.
Our discussion of Pascal's advantages and disadvantages is in the
context of its use 1n aevelopment of operating system interface
and network software.

Advantages

The aavantages Pascal affords the designer and developer of
system sottware are those that it provides any programmer. Some
of those advantages are:

Very well structured control statements

Supports a wiace variety of data structures

Recursive

Extensive type checking

Portability
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Optional rum time error checking

The structured control statements, wide variety of data
structures, and extemsive type checking have aided in the top-
down, fully specified approach we have taken with our software
design and devlopment. The data structures and type checking have
forced us to think through and precisely define our data
structures and module interfaces. These language features, along
with our software standards (ref. 7), have resulted in well
documented and maintainable software. The optional run time error
checking allowed us to thoroughly check out our programs and then
to turn off checking in production code releases for better
performance.

Disadvantages

Some of our problems with rascal are general, others are
perhaps unique to the development of system software. Some ot the
problems we encountered were:

Weak 1,0 facilities

Type checking sometimes too restrictive
Variable-length arrays not generally supported
No explicit data initialization statements

Too much run time environment required

No "own® type variables (as in ALGOL)

Heap allocation not optimal

When developing a general set ot service routines,
particularly 1/0 routines, it is not possible to preaict all of
the forms that the data in the 1/0 butfer will take. Length is
also an unpredictabtle variable for a data buffer. Type checking
and the lack of variaple-length (contormable) arrays forces the
systems prograumer to compile the service routines externally.
fach applications programmer must then define his own procedure
declaration with the proper buffer type. These buffer types will
generally ditfer, which seems inconsistent with the intent of
Pascal's type-checkina mechanism. Such problems are
implementation-dependent. One daifficulty is the lack of Pascal
standards for extermal compilations and for modularizing large
systems. 1n fact, if such a standard existed and wexre universally
or generally implemented, the "tricks" employed to avoid type
checking would no longer work. This shouid happen, and when it
does a more comprehensive solution to the "unknown cata type"
problem will be necessary.
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Compiler implementations are also inconsistent in their type
checking. Some require structural equivalence; others require
name equivalence; still others use declaration egquivalence, which
is slightly less stringent than name equivalence. (Our compiler
enforces declaration equivalence.) The programmer is generally
able to initialize variables at compile time but only global
variables in the main program. Another very useful compiler
feature that is generally lacking is the use of expressions in
defining constants. An absolute requirement, which is provided by
most compilers, is the support of packed data structures.

The Pascal run time environment assumes that a procedure or
function is being called from the context of another Pascal
program. This assumption makes it difficult to use Pascal to
define interrupt handling procedures or any procedures which
execute asynchronously. In building general-service software, it
is useful if not mandatory to have a way to define static
variables that are not part of the stack structure and therefore
remain defined between calls.

General Experience

Coming from many years of experience in designing, building,
and maintaining system software using assembly language and macros
on a variety of machines, some assembly-language-oriented system
programmers had a difficult time making the transition to
Pascal, where accessing a bit in a byte or word for the first time
proved to be a frustrating and agonizing process. An example of
accessing fields in a system control word using Pascal is shown in
figures 11 and 12. One of the major benefits has been
productivity. In a relatively short time (6 to 12 months), a
group of three or four people has developed executive and network
software that is easier to debug and maintain than its assembly
language equivalent. Ease of maintenance is an important benefit;
maintenance runs from 70 to 85 per cent of the cost of software
over its life cycle.

On balance, our experience with Pascal has been a good one.
Its use has forced a more disciplined and rigorous approach to the
solution of problems. Assembly language still has its place in
the development of software that must inteface with the operating
system and machine hardware, but it is hard to imagine returning
to assembly language as a vehicle for building general system
software.
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CONCLUDING REMARKS

Complete host system independence is a desirable goal for
IPAD software components. We have achiewved this independence to a
high degree, but at the expense of not using or granting access to
useful host system services that are unique to some systems. This
method of isolating 1IPAD software components from the host system
has minimized host system dependent code. What dependencies exist
are localized in a small number of modules.

Writing executive and communication software in a high-orxder
language has been challenging and, generally, successful. We have
experienced high productivity and have been able to concentrate on
the important problems of design and implementation. Most of the
problems we encountered were not with the Pascal language but with
the implementation of the compiler and the run time subsystem.
Lack of computer vendor support for one of our Pascal
implementations was a problem. More vendor support may have meant
a compiler and run time subsystem that was better integrated with
system architecture and system services.
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Figure 2.- Physical relationship of IPAD components.
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Figure 4.- IPEX internal design model.




PARAMETERS
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| U|U|C|H|A|Y|T|N|C R | E
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N|A|L E|R|S]|]C |TI]JEI}I AlS
A|IDI|IE[(S|E|W|H|U | X|O|T/1
M N| S R S N |E {2
FUNCTIONS D
o OPEN X X X| X[ X X | X
® CLOSE X X | X X
® TRUNCATE| X XXX
o DELETE X X} XX
® READ X| XX X[ X | X
® WRITE X | X | X X[ X[ X
® POSITION X X | X| X]|X
o WAIT X X
e CHECK X X
Figure 5.- File I/O functions.
PARAMETERS
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# S T A S U
H G S
FUNCTIONS E
| & CONNECT X X X
® DISCONNECT X
e SEND X X X X X X X X X
e RECEIVE X X X X X X X X X
| @ CHECK X X
o WAIT X X X
X X

e CANCEL

Figure 6.— Network I/O functions.
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PROCESS CONTROL

-————1  PROCESS CONTROL
PRESENTATION CONTROL - ———— PRESENTATION CONTROL
SESSION-TO-SESSION
SESSION CONTROL =~ f—=———- SESSION CONTROL
INTRA MACHINE TRANSFER | oo cce -0 bpoiees
TRANSPORT CONTROL [————4 TRANSPORT CONTROL
NODE-TO-NODE
NETWORK CONTROL [——=—~ NETWORK CONTROL
HARDWARE INTERFACE
NETWORK ADAPTER |- ————1 NETWORK ADAPTER

HARDWARE LINK

————— PROTOCOL EXCHANGES IN THE FORM OF HEADERS
—————ACTUAL DATA PATHS

Figure 7.- Logical layers of communication.
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Figure 8.- Addressing in a three-cluster network.
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Figure 9.— Local network configuration.
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Figure 10.- Communication system components.
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59 36 35 24 23 1817 14131211 65 43210

| R JRR
RESERVED SYSTEM (24) _| J
RESERVED INSTALLATION (12}

WORD COUNT (6}

RESERVED CDC (4)

DON'T TERMINATE IF ERROR —

DON'T WAIT IF SUBSYSTEM IS BUSY —

ERROR CODE (6)—J

RESERVED (2)—-J

SUBSYSTEM NOT DEFINED (1)
SUBSYSTEM BUSY (1) ——J

SUBSYSTEM NOT RUNNING (1) J

COMPLETE BIT (1)—J

Figure 11.~ Typical system control word format.

BIT=0..1;
ETTCWD = PACKED RECORD

RSVDSYS : PACKED ARRAY [1..24] OF BIT :

RSVDINST : PACKED ARRAY [1..12] OF BIT ;

WORDCNT : 0..7B :

RSVDCDC : PACKED ARRAY [1..4] OF BIT :

NOTERM : BOOLEAN :

NOWAIT : BOOLEAN :

ERRSTAT : PACKED RECORD :

ERROR : 0..77B :

RSVD : PACKED ARRAY [1..2] OFBIT ;

NOTDEFND : BOOLEAN :

BUSY : BOOLEAN :

NOTRUN  : BOOLEAN .

END ;

COMPLETE  : BOOLEAN .

END ;

Figure 12.- Pascal description of a word.




AN ENGINEERING DATA MANAGEMENT SYSTEM FOR IPAD

H. R. Johnson, D. L. Comfort, D. D. Shull
Boeing Computer Services Company

SUMMARY

This paper presents an overview of the capabilitjies and
software architecture of the IPAD information processor (IPIP).
IPIP is a state-of-the-art data base management system that
satisfies engineering requirements not addressed by present day
commercial systems. It also significantly advances a number of
capabilities that are offered commercially. IPIP capabilities
range from support for multiple schemas and data models to support
for distributed processing, configuration control, and data
inventory management.

IPIP exploits semantic commonality in features offered in
various forms at different user interfaces in today's commercial
systems. An integrated software architecture supports all user
interfaces: programming languages, interactive data manipulation,
and schema languages. This approach promotes simplicity and
compactness in software and permits features to be offered
symmetrically across all appropriate user interfaces. Thus, more
functionality is provided for the user in a more uniform and
usable fashion.

DATA MANAGEMENT REQUIREMENTS

IPIP was originally envisioned as a data manager to support
the design process for aerospace vehicles. Consequently, an
experienced team of Boeing engineers assigned to the IPAD program
conducted industry-wide surveys and interviews to determine
engineering design requirements. These are documented in
references 1 and 2.

Since that time, the importance of data sharing and
continuous flow of data between the engineering and manufacturing
processes has come to be more fully recognized. The conclusion has
been that IPIP should support both computer—-aided design
and computer-aided manufacturing. This requirement was reflected
in a resolution passed by attendees at the the ICAM/COCAM Data
Base Workshop in Dallas in April 1979 to the effect that IPIP
should be used to support ICAM data base management. Currently,
an IPAD team is working with Boeing manufacturing to assess IPIP
requirements in relation to manufacturing requirements.
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Engineering Requirements for Data Base Management

The DBMS requirements discussed in this section were derived
from the IPAD system requirements specified by the IPAD
engineering team. These were identified through the use of both
industry-wide surveys and on-site interviews with representatives
from the U.S. aerospace industry. This effort resulted in the
formulation of the following categories of DBMS requirements:

1. Multiple views of data

2. Multiple levels of data description
3. Dynamic data definition

4, Distributed data (base) processing
5. Extendible data types

6. Geometry processing

7. Configuration control

8. Data inventory management

Each of these categories will be discussed in some detail
below.

Multiple Views of Data.- A characteristic of the data bases found
in this environment is that they are typically on the order of
billions of bits in size. Because of their large size and
inherent complexity, users will process subsets of the data base
at one time (i.e., no one user will have the need to process the
entire data base at any given instant); this requires the DBMS to
support the definition and manipulation of subsets (e.g., sub-
schemas or logical schemas) of a more global view of the data
base. Furthermore, one finds upon investigation of the type of
data processed that there is a need and desire to organize the
data into logical structures such as hierarchies and networks;
however, a large portion of the data used in the design process
lends itself to being organized into tables or relations. Thus we
see the need for not only supporting the viewing of portions of a
data base but for organizing these portions into different formats
(hierarchies, networks, relations) of data. Stated more
explicitly, IPIP must be able not only to support subsetting of
the data base into comprehensible partitions for users, but also
to do this in the form of multiple data models. The data models
supported by IPIP are discussed in a later section of this
article. These different views of data may be processed by
FORTRAN application programs, Pascal application programs, ad hoc
interactive users, and complex graphics software.
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Multiple Levels of Data Description.-—- The ability to localize the
impact of change to data definition is referred to as data
independence. To provide the data independence required to
accommodate the aerospace design environment, multiple-level
arrangements of schemas must be supported in such a way that the
impact of change to any one schema is insulated with respect to
other schemas and applications. IPIP supports a schema-
application environment (or data architecture) that permits very
flexible configurations of schemas and applications. The IPIP
data architecture provides for muliple levels of schemas. To
enhance performance in this multilevel data architecture and
minimize the need for recompilation, IPIP supports facilities for
binding applications to data definitions at various times,
independent of the compilation process.

Dynamic Data Definition.- Preliminary investigations into the
record types and relationships needed to support the aerospace
design environment have shown that it is impossible to develop a
complete, correct definition of the total data base during the
initial phase of schema development. The size and complexity of
the data dictate that the development of the schemas must be an
evolutionary process. Data administrators of IPIP data bases will
need to be able to dynamically modify the data base description
without having to recompile existing schemas and application
programs (except under circumstances where definitions are removed
from the schemas); i.e., it must be possible to enhance schemas as
knowledge of record types and relationships becomes known through
experience.

Additionally, users may wish to define new and/or modify
existing data definitions (schemas) in their programs to create
"temporary" data bases comprising new record types and new data.

We categorize the dynamic modification of schemas, whether by
data administrators or users, as "dynamic data definition."

Distributed Data Processing.- All types and sizes of computer
hardware are used in a typical aerospace engineering firm. With
the increasing demand for the sharing of data between different
computers within a firm, we find computer networks involving
heterogeneous computers. In these configurations there are
collections of both large-scale mainframes and minicomputers, and
there is a need to share data between them. These machines may be
connected via local high-speed communication links (50
megabits/sec) and/or global low-speed links (300-9600 bits/sec).
Figure 1 depicts a sample hardware configuration for a distributed
environment.

A user residing at sites A, B, and C will process his own
data locally and require local data management services but will

147




also need to access data on different computers at different sites
using data management capabilities. Therefore, there must be IPIP
functionality not only at a single site but at multiple sites as
well. Ideally, users will not need to know the physical location
of the data, so the DBMS must be able to determine the site at
which data resides or is to be stored.

In order to provide IPIP data management functionality at
multiple sites, IPIP must be resident at some sites and accessible
to all sites. How multiple IPIPs would communicate with each
other is beyond the scope of this paper.

Figure 2 shows a sample configuration of multiple sites with
multiple IPIPs available to users. The residency of an IPIP DBMS
at a site is not a prerequisite for the availability of data
management services at that site. Users at site A could use data
management services at site B through IPAD network services.

Extendible Data Types.— IPIP must accommodate definition of new
and different data types (IPIP must be extendible) as needs arise.

Geometry Processing.- Amid the complex data bases in the
engineering world is found a characteristic not present in
business data management: the need to define and manipulate
geometric entities. This geometric capability places special
requirements on the data management system. The system must
manage geometry, enforce constraints, maintain continuity, and
track associations of entities. It must also allow the
manipulation of geometry data at the entity level. These
requirements have resulted in some unique facilities in IPIP.

Configuration Control.- During the design of an airplane, hundreds
of engineers will create (and store in a data base) hundreds of
versions of wings, fuselages, engines, etc. There is an
administrative need for each engineer to maintain control over his
data during a given phase of the design process, and this
translates into a need to permit only the responsible engineer to
have modification rights until the design of the aircraft
component has reached a certain phase. At this point, a
particular design is designated as being officially released, and
no further updates may occur thereafter on this data; however,
when modifications of the official version are required, these
changes will result in the generation of new versions of the
existing data. IPIP must control access to the data during both
phases of design, and be able to process the data base (and
portions thereof) by versions. The configuration control of the
design data base is under absolute control of the engineering data
base management system. Associated with each engineer's data must
be a "header" describing the source and quality of the data. This
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header will include such items as author's name, creation date,
version of the data, and various other attributes. All of this
identifying data must be maintained by IPIP.

Data Inventory Management.- This requirement is primarily a result
of the five requirements previously discussed. It is best
described as the need for IPIP to manage its own data about the
user data. This system data (or "metadata," as it is sometimes
called) consists of the following: '

1. Compiled multiple schemas and the mappings between them
2. The configuration control data (headers)
3. Security information about who is processing the data base

4. A dictionary of allowable data types (e.g. points, lines,
matrices, etc.)

5. Directories indicating the location of data which is
distributed over a computer network

These include functions performed by data dictionaries (including
commercial data directories), but additional capabilities are
required to handle some of the metadata. More importantly, this
inventory facility must be an active (as opposed to passive) part
of IPIP in order to perform its functions correctly.
Specifically, it should be an integrated part of the data
management system.

Manufacturing Requirements for Data Base Management

Currently, an IPAD team is working with Boeing manufacturing
to assess manufacturing requirements for data management. To
date, this group has observed that, in general, engineering
requirements cover manufacturing requirements, although relative
emphasis on particular requirements may differ between the two
environments. Multiple views and concurrent access with heavy
update are very important in manufacturing data processing.

IPIP CAPABILITIES

Data Architecture

A schema is a valid sequence of statements that describe
data. IPIP supports a multiple-schema data architecture that
generalizes the two-schema architecture proposed by the
ANSI/X3/SPARC Data Base Study Group. (See reference 3 for a

149



description of the ANSI data architecture.) The IPIP data
architecture offers a number of advantages including the ability
to vary data independence according to cost/benefit trade-offs for
specific situations.

The ANSI data architecture includes three mandatory levels
and types of schemas:

1. Conceptual schema--a schema that describes logical data
structures for an entire enterprise, i.e., an entire data
base

2. External schema~-a schema that describes logical data

structures derived from the conceptual schema. An external
schema tailors the description of a portion of a data base to
the needs of a class of applications.

3. Internal schema-—-a schema that describes physical data
structures to support the logical data structures of a
conceptual schema

Figure 3 illustrates the essentials of the ANSI three-~schema
architecture. The notation "m:n" in this figure indicates that m
of the upper applications or schemas may be associated with n of
the lower schemas. Figure 4 illustrates the hub-and-spoke
arrangement of schemas and applications in the ANSI environment.
The term application here refers to either an application program
or an interactive (or query) session that includes data
manipulation commands against a schema and hence against the data
base.

In the ANSI environment, one or more internal and external
schemas may be associated with a single conceptual schema. An
internal or external schema is associated with exactly one
conceptual schema. Interschema mapping statements are contained
in internal and external schemas. An application references
exactly one external schema.

The IPIP data architecture includes a variable number of
levels of schemas of three types:

1. Logical schema--a schema that describes logical data
structures for a collection of data

2. Internal schema--a schema that describes physical data
structures to support logical data structures in a logical
schema. A logical schema supported directly by an internal
schema is called a base-level logical schema.

3. Mapping schema--a schema containing statements that map data

structures of a logical schema onto data structures of one or
more underlying logical and/or internal schemas
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Figure 5 illustrates the IPIP data architecture. The _
notation "n:n" in this illustration indicates that n of the upper
applications or schemas may be associated with one of the lower
schemas. The segmented diamond represents a mapping schema that
is implicitly defined by constructs in data manipulation statements
within an application. One logical schema is required. The
dotted loop indicates that, optionally, additional logical schemas
may be included. Figure 6 illustrates some of the arrangements of
applications and schemas that are possible in the IPIP
environment. '

In the IPIP data architecture there is only one type of
logical schema instead of two as in the ANSI data architecture.
Interschema mapping statements appear only in mapping schemas, not
in internal or logical schemas. Applications may reference one or
more underlying logical schemas at any level in the architecture.
An application may not, however, reference two logical schemas,
one of which is defined directly or indirectly in terms of the
other. A logical schema 1s associated with exactly one underlying
mapping schema and thereby with one or more underlying logical or
internal schemas. An internal schema is associated with exactly
one mapping schema and hence with exactly one logical schema.

The IPIP internal schema corresponds to the ANSI internal
schema. An IPIP base-level logical schema corresponds most
closely to an ANSI conceptual schema. However, unlike the
conceptual schema, a base-level logical schema can be referenced
by an application, and a logical schema need not define the entire
data base for the enterprise.

Informally, we define data independence as the insulation of
change to data definition within a data architecture. Thus, for
example, in the ANSI architecture, programs and the conceptual and
external schemas need not be changed when a change is made to an
underlying internal schema. Programs may also be preserved in the
face of certain changes to the conceptual schemas by altering
mapping statements in external schemas. Generally speaking, data
independence is a linear function of the number of levels of
schemas used. The use of two levels of IPIP logical schemas
affords the same amount of data independence as the ANSI data
architecture. The use of one level of IPIP logical schema
provides less data independence; the use of more than two levels
of logical schemas provides more. Thus the IPIP data architecture
allows the data administrator to make trade-offs between the
benefits of data independence and the overhead of schema
maintenance and binding by choosing the appropriate number of
levels of logical schemas. The more levels of schemas, the higher
this overhead. As discussed in a later section, IPIP binding
options permit all binding overhead to be incurred prerun-time for
precompiled applications. These options also permit most binding
to be performed prior to run-time for interactive applications.
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By separating mapping statements from the internal and
logical schemas, the IPIP data architecture provides more data
independence. For example, it is intended, in future releases,
that mapping statements may span several underlying logical or
internal schemas. Thus a mapping statement might choose between
several underlying schemas based on the value of an item, e.g.,
schema S1 if the value is in range R1l, schema S2 if the value is
in range R2, etc. In the IPIP environment, this mapping statement
may be ammended to include additional underlying schemas or to
remove them without impacting existing logical or internal
schemas. This is useful in distributed processing situations
where nodes are to be added to or removed from the network over
time.

A base-level logical schema may describe the entire data base
for an enterprise as does an ANSI conceptual schema, but it does
not necessarily have to. The description of the data base may be
partitioned into several base-level logical schemas on a
functional or geographic basis or according to the structure of a
corporate organization. Thus, for example, given four departments
within a manufacturing organization, there might be four base-
level logical schemas describing data local to a department and
one or more base-level logical schemas describing data shared by
departments. This partitioning of metadata allows each department
a degree of autonomy over its own metadata. This is in keeping
with departmental attitudes within an organization and the growing
awareness of the value of metadata as a resource.

It is not unusual for separate but related data bases to be
created within a corporation. For example, these might be
parallel design data bases for two or more product lines. The
IPIP ability to tie logical schemas together with other logical
schemas or applications facilitates the coupling of these existing
data bases with minimal disruption, thereby providing more data
independence. The decision to couple data bases might be an
afterthought. For example, headquarters decides that it must
evaluate corporate impact or relative merits of coexisting product
lines. Or the decision to so couple data bases might be a
strategy at the outset to provide for flexible evolution of data
bases within the corporation. Reference 4 discusses the coupling
of logical schemas and application of other features of an IPIP-
like data architecture in a distributed data management
environment.

The flexibility of the IPIP data architecture in configuring
schema arrangements supports organizational practices of
delegating authority. Consider the ability to define multiple
levels of logical schemas. Suppose that a data administrator
receives authority to read a logical schema, define logical
schemas in terms of it, and delegate authority. He might then
define several logical schemas based on the original, each

152



corresponding to the general data requirements of a sub-
organization. Following that, he might delegate authority to a
data administrator within each suborganization to read the
appropriate logical schema and define logical schemas in terms of
it. In this way, the first data administrator may concern himself
with the overall data requirements of his organization and not be
concerned with detailed requirements of users within the
suborganizations. His subordinates may define one or more logical
schemas, based on the one given them for this purpose, but they
need not see the original logical schema. They need not cope with
data that is not relevant to them. This simplifies their jobs and
avoids potential security problems.

Subordinate administrators might be given authority to
delegate authority. Thus several levels of logical schemas might
be built up, depending on the structure of the organization.

IPAD requirements include provisions for delegating
authority; however, the first release of IPAD will not offer
authorization mechanisms.

Schema and Data Manipulation Languages

IPIP schema and data manipulation languages exhibit a high
degree of integration and compatibility with anticipated
standards.

There are a single logical schema language supporting multiple
data models, multiple programming languages, and interactive
applications; a single internal schema language sharing many
constructs with the logical schema language; a single mapping
schema language supporting mappings between logical schemas and
between logical and internal schemas; and a single data
manipulation language that may be used by both application
programs and interactive applications. Thus we use the term
interactive applications rather than query sessions to reflect the
similarity in data manipulation capabilities in the two
environments.

In some systems one might encounter one or more conceptual
schema languages as well as a distinct external schema language
and data manipulation language for each combination of data model
and programming language supported. In addition, one or more
query languages might be provided for interactive applications.
By contrast, there are relatively few languages for the IPIP user
to learn; for example, he need not learn one data manipulation
language to access the data base interactively and another to
access it via programs.

Informally, a data model is a style of defining and
manipulating data. IPIP takes an integrated approach to data
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modeling; i.e., a single family of schema and data manipulation
languages supports both the network and relational data models or
a mixture of the two. The functionality of the hierarchical data
model, being subsumed by that of the two other data models, is

supported by IPIP.

The logical schema language contains a DATA MODEL clause to
specify which data model is being used. This clause governs which
constructs may be used in the schema. For example, CODASYL sets
may be declared in network schemas but not in relational schemas.
Conversely, foreign keys may be declared in relational schemas but
not in network schemas.

The DATA MODEL clause does not distinguish between data
models for constructs that are traditionally associated with one
data model but could just as well be used with the other. For
example, the domain construct has historically been associated
with the relational model but is a useful extension to the CODASYL
network model. Thus the IPIP logical schema language permits
domain declarations for either data model. Historically,
interrecord operations are expressed in terms of data item
comparisons in the relational data model but not in the CODASYL
network data model. (This is the basis for expressing the
relational join operation.) The IPIP logical schema language
permits data manipulation involving item comparison regardless of
which data model is specified in the logical schema.

In some systems, only one data model--say the relational
model--may be used at the conceptual schema level, while two or
more data models may be used at the external schema level.
Support of an essentially network modeling environment in such a
system would require that someone understand the relational data
model and mappings between the two data models so that a
relational conceptual schema could be developed. Not so in the
IPIP environment, where all schemas may be network; likewise, all
schemas in IPIP may be relational, or some schemas may be of one
data model and some of the other, or some schemas may use
constructs from both of the data models. Thus the data
administrator has broad flexibiity in using data models.

Similarly, there is a host language clause in the schema
language governing whether naming conventions and data item
descriptions within records or relations conform to FORTRAN or
Pascal syntax for declaring variables. Data item syntax of the
CODASYL data definition lanquage will be supported in future
releases. Either host language may be used in any internal or
logical schema. Thus with IPIP it is not necessary for someone in
a FORTRAN shop to learn a second data item sublanguage in order to
write a conceptual schema. Administration is simplified in the
situation where applications in multiple host languages are to be
supported, because a single framework is used for schemas,
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irrespective of host language. Schemas differ by host language
only to reflect essential differences in the host languages.

To summarize, IPIP offers a number of features that simplify
the data definition/data manipulation task. This is especially
important for the individual who must deal with all aspects of the
process, i.e., both defining and manipulating data bases.

The IPIP logical schema language is based on a subset of the
schema language being considered for standardization by the
ANSI/X3/H2 committee. This language is a subset of the schema
language developed by the CODASYL Data Description Language
Committee and documented in the committee's 1978 Journal of
Development (ref. 5).

The IPIP data manipulation language is based on the data
manipulation language specified by the CODASYL FORTRAN Data Base
Committee (ref. 6).

The IPIP logical schema and data manipulation languages are
compatible, syntactically and semantically, with subsets of their
CODASYL counterparts. The IPIP languades contain extensions to
enhance functionality or usability; however, where IPIP and
COoODASYL functionalities coincide, CODASYL syntax should be wvalid
IPIP syntax, and semantics and status return code should be
identical.

IPIP compatibility with anticipated standards has several
advantages. In the long term, many systems will conform to the
standard. IPIP compatibility with standards will facilitate
coexistence with, and migration from, these systems. IPIP
compatibility with standards will facilitate incorporation of IPIP
extensions for engineering and manufacturing into products based
on standards and incorporation of these extensions into the actual
standards.

Logical Schema Language.- An IPIP logical schema describes logical
data structures for a collection of data. A logical schema is
written using the logical schema language and is compiled by the
logical schema language compiler. The compilation process results
in validity checking of the source schema, error reporting, and
entry of an encoded representation of the source schema into the
data inventory management subsystem (DIMS) data base.

A logical schema models an enterprise in terms of logical
data structures. Thus the IPIP logical schema language contains
facilities for modeling (1) objects dealt with by the enterprise,
(2) attributes of these objects, and (3) relationships between
these objects. 1In this connection, the logical schema language
contains facilities for describing comparability of attributes and
constraints on and between objects. The logical schema language
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provides for the declaration of named keys (composed of one or
more attributes) that figure in the declaration of uniqueness
constraints and in data manipulation. The logical schema language
also provides for the declaration of structures composed of
objects and relationships that may be used (along with mapping
schema declarations) to describe objects in other logical schemas.
In future releases, these structures may be referenced in IPIP
data manipulation commands.

Examples of objects modeled by a logical schema dealing with
airplane design include (1) airplane performance, (2)airplane
configuration, (3)planforms, (4) engine characteristics, and (5)
engine performance.

Figure 7 is a data structure diagram that represents these
object types by rectangles and relationships between them by
arrows. Figure 8 includes occurrence diagrams that describe
occurrences of the PERFORMANCE CRITERIA and CONFIGURATION
PARAMETERS objects. Rows in a table represent individual objects.
Columns in a table represent attributes of these objects. The
intersection of a row and a column (a field) contains the value of
an attribute for a particular object. An arrow in a data
structure diagram represents a relationship between one object of
the type at the head of the arrow and one or more objects of the
type at the tail of the arrow. The AIRPLANE-CHARACTERISTIC
relationship of figure 7 is such a l:n type of relationship
between PERFORMANCE CRITERIA and CONFIGURATION PARAMETERS objects.
Figure 8 illustrates this relationship between one STOL type of
airplane and one STOL airplane (STOLl) and between one CTOL type
of airplane and two CTOL airplanes (CTOL1l,CTOL2).

The IPIP logical schema language supports both the network
and relational data models and, functionally, the hierarchical
data model. The principal difference between the network and
relational data models is the style used to describe and
manipulate data for the purpose of modeling the enterprise. For
example, in the CODASYL network data model, object types are
modeled through "record" declarations, and l:n relationships
between "owner" and "member" records are modeled through "set"
declarations. One speaks of objects as record occurrences and
groups of objects related to each other by a set as set
occurrences. Two set occurrences are illustrated in figure 8, one
corresponding to airplane type STOL and one corresponding to
airplane type CTOL.

In the relational model, there are various terminologies
used. For example, object types are modeled through "relation" or
"table" declarations. Objects are referred to as "n-tuples" of
the relation or rows of a table. IPIP languages use the term
"relation" and treat it as a synonym for "record". Traditionally,
relationships between object types are uniformly perceived in the
relational data model in the implicit fashion of comparing values
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of objects with comparable attributes. Thus relationships are not
explicitly declared or named.

Airplane-characteristic relationships in figure 8 are
determined by corresponding values of attribute AIRPLANE TYPE for
PERFORMANCE CRITERIA and CONFIGURATION PARAMETERS in either data
model. The difference is that, in the network data model, the user
traditionally perceivepg relationships as something, formally
declared and named in a schema, that relates the two attributes;
whereas, traditionally in the relational data model, the user
perceives only an implicit relationship between objects that is
determined by values of comparable attributes. And,
traditionally, interrecord data manipulation commands in the
network data model reference sets and corresponding commands in
the relational data model compare attributes directly.

It has been recognized that there are constraints associated
with the network set construct that should be expressible in the
relational model. These include l:n-ness and whether or not an
owner must exist when a member is created. It has also been
recognized that named structures, such as connected record set
paths, facilitate perception of relationships and expession of
data manipulation statements. Reference to one named structure in
a data manipulation command can be much simpler than stating the
conditional expression defining the structure. Thus IPIP takes
the relational concept of foreign key that deals with l:n-ness and
provides for declaration of named foreign keys that can be
referencéd in data manipulation statements. The semantics of the
network schema set construct are embodied in the semantics of a
schema foreign key construct using syntax that highlights parallel
semantics (as a convenience to those who must deal with both data
models). The IPIP data manipulation language permits reference to
foreign keys.

On the other hand, the ability of relational data
manipulation languages to perform interrecord operations in the
absence of predeclared relationships is recognized to be very
useful. Hence in future releases, the IPIP data manipulation
language will permit interrecord operations through comparison of
attributes as well as through reference to sets. That is, one
might select object occurrences via the AIRPLANE-CHARACTERISTIC
set or foreign key or, equivalently, where AIRPLANE TYPE OF
PERFORMANCE CRITERIA EQUALS AIRPLANE TYPE OF CONFIGURATION
PARAMETERS.

IPIP also provides for the declaration of domains that are
offered by some relational systems to establish comparability of
attributes. (Some relational systems base attribute comparability
on data type comparability.)

The IPIP DATA MODEL schema clause governs whether the schema
is network or relational or a mixture of both. If NETWORK is
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specifed, then the foreign key construct may not be declared. 1If
RELATIONAL is specified, then the set construct may not be
declared. Domain declarations are allowed in either case.
Interrecord operations based on attribute comparison are permitted
in either case. RECORD and RELATION are synonyms and may be used
interchangeably.

Attributes are modeled through data item declarations in the
IPIP logical schema language. The data type of a data item may be
declared directly in a data item declaration or indirectly through
reference in the data item declaration to a domain declaration.
Naming conventions and syntax for data item declarations conform
to the programming language specified in the schema HOST LANGUAGE
clause.

The IPIP logical schema language provides for the declaration
of named logical keys composed of one or more data items. Keys
may be declared to be unique, although enforcement of this
constraint is deferred to a future release. Data manipulation
commands may reference keys by name, or may reference data items
that are contained in a key declaration. Key jitems must map to
key items in underlying logical or internal schemas. In this way,
data manipulation commands are restricted to items that are
supported by indexes specified in an internal schema.

The IPIP logical schema language provides for the declaration
of structures composed of objects and relationships (records and
sets). Mapping schema facilities may be used to map a logical
schema record onto a structure-declared record in an underlying
logical schema. 1In future releases, logical schema structure
declarations may be referenced by IPIP data manipulation commands.

Logical schema structures, a general-purpose modeling
facility, were included in early releases of IPIP to satisfy
geometry processing requirements. For example, a SEGMENT logical
record in a geometry-oriented schema is mapped to one or more
occurrences of related vector and vertex records (and others) in
an underlying logical schema. This technique allows a base-level
logical schema model of geometry that will eventually support a
variety of logical views through interschema mappings. Also,
since an occurrence of a user-visible record corresponds to
several occurrences of underlying records, a single user-specified
data manipulation command against the former is translated into
several commands against the latter. More work is performed per
user command against the higher-level objects. User productivity
and system performance are enhanced accordingly. (See reference 7
for a more detailed discussion of the use of structure for
geometry processing.)

Early releases of IPIP software will process structure- and
nonstructure-defined records separately. Structure-defined record
processing provides some features not provided by nonstructure-
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defined record processing. For example, structure-defined record
processing supports the CODASYL SOURCE facility for derived items
and propagated deletion of records. In keeping with IPIP
philosophy, future releases will integrate software and
functionality for structure and nonstructure processing.

Future releases of the IPIP logical schema language will
provide for declaration and enforcement of constraints on and
between objects.

Internal Schema Language.— An IPIP internal schema describes
physical data structures to support the logical data structures of
a logical schema. An internal schema is written using the
internal schema language and is compiled by the internal schema
language compiler. The compilation process results in validity
checking of the source schema, error reporting, and entry of an
encoded representation of the source schema into the DIMS data
base.

The internal schema language overlaps that of the logical
schema language to the greatest practical extent to minimize the
amount of IPIP schema language with which the administrator must
deal. Thus the logical and internal schema languages use the same
language constructs to declare physical or storage records
(relations), data items, domains, and keys.

Constraints and relationships are not declared in an internal
schema. Domain declarations are used only to facilitate data item
declaration. The comparability semantics of the domain construct
do not apply in the internal schema language. Key declarations
are limited to one data item in the internal schema language.

The internal schema language also includes facilities for
declaring and configuring storage areas and for mapping them onto
operating system files. Block sizes for storage areas may be
declared along with the initial number of blocks and expansion
factors. Also included are facilities for mapping internal schema
records (relations) and data item indexes and other supporting
physical structures to storage areas.

Mapping Schema Language.- An IPIP mapping schema contains
statements that map data structures of a logical schema onto data
structures of one or more underlying logical and/or internal
schemas. A mapping schema is written using the mapping schema
language and compiled by the mapping schema language compiler.
The compilation process results in validity checking of the source
schema, error reporting, and entry into the DIMS data base of
bindings of upper schema constructs to lower schema constructs.
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The mapping schema language includes facilities for mapping
(1) records/relations to records, relations, or structures; (2)
sets/foreign keys to sets or foreign keys; and (3) data items to
data items.

The names of records, relations, sets, foreign keys, and data
items may differ between upper and lower schemas. Similarly, the
host language may differ. The data model may differ between upper
and lower logical schemas.

Data Manipulation Language.- IPIP data manipulation commands are
expessed in statements of a single data manipulation language that
may be used either in application programs or in interactive
applications at a terminal.

Data manipulation commands in an application program are
processed by a data manipulation precompiler. The precompilation
process results in validity checking of data manipulation
statements, error reporting, conversion of source data
manipulation statements into comments, and generation of host
language assignment statements and call statements. The
precompiler also generates host language communication area
declarations corresponding to record and item declarations in the
schemas invoked by the program. The precompiler enters into the
DIMS data base a binding of the data manipulation command to the
schema against which it is written.

The precompiled program is then compiled using the host
language compiler. Data manipulation commands within the program
will be fully bound to the internal schema before their execution.
Binding options provided by IPIP are discussed in a later section
of this paper.

Data manipulation commands in an interactive application are
processed by the IPIP query processor. This processing results in
validity checking of data manipulation statements, error
reporting, full binding of the data manipulation command to an
internal schema, and then initiation of command execution.

The IPIP data manipulation language provides the following
facilities:

1. INVOKE (or signify) one or more logical schemas against which
other commands are written

2. OPEN schemas against which commands are to be executed
3. CLOSE schemas

4. ACCESS (or lock) record types, data sets, and their
intersections for retrieval or update operations
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5. FIND (or locate)record occurrences using various selection
criteria

6. GET (or retrieve) a record located by a previous FIND command

7. FETCH (or locate and retrieve) a record as in a FIND/GET
combination

8. STORE a record

9. MODIFY a record or multiple records, as specified by a
selection expression

10. DELETE a record or multiple records, as specified by a
selection expression

11. REMOVE (or delete) a record or multiple records as specified
by a selection expression with restricted propagation of
deletion. (REMOVE 1is restricted to structure-defined records
in early releases.)

12. COPY a record producing another which is identical except for
unique key values. (COPY is restricted to structure-defined
records in early releases.)

CODASYL currency indicators are maintained to support
traditional CODASYL style network traversal. Most CODASYL options
are supported for the FIND, GET, STORE, DELETE, and MODIFY
operations. The FETCH operation is an IPIP extension to CODASYL.
The multiple record options for the MODIFY and DELETE operations
are IPIP extensions to CODASYL. Multiple record retrieval
operations are intended for future releases.

Another IPIP extension to CODASYL is the provision for
multiple cursors. Upon execution of a location command
(FIND/FETCH) in which a selection expression (WHERE, USING, or KEY
phrase) is specified, a find file is constructed and associated
with the cursor number specified in the user command. The find
file contains locators for qualifying record occurrences.

Location operations without selection criteria cause repositioning
within the find file associated with the cursor number in the user
command. Retrieval operations (GET/FETCH) cause the currently
identified record occurrence within the find file associated with
the cursor number in the user command to be delivered to the
application. The multiple cursor capability permits more than one
find file to be maintained concurrently for a single record type.
This is very useful in applications such as the parts explosion
application, where there is recursive processing on the same
record type.

The IPIP data manipulation language supports interrecord
operations in the CODASYL network style of referencing sets which
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relate records. 1In future releases, the data manipulation
language will support interrecord operations via the relational
style of comparing data items. In the examples shown in

figures 7 and 8, one might select record occurrences via the
AIRPLANE-CHARACTERISTIC set or foreign key or, equivalently, where
ATRPLANE TYPE OF PERFORMANCE CRITERIA EQUALS AIRPLANE TYPE OF
CONFIGURATION PARAMETERS.

Integration of Functionality and Software

IPIP stresses integration of functionality in terms of (1)
uniformity of user languages, (2) commonality of capabilties
offered at different user intefaces, and (3) an integrated
software architecture. As discussed in previous sections, user
languages reflect integration through the unified approach to data
models and host languages, a single logical schema language, a
single mapping schema language, a single data manipulation
language, and commonality between the internal and logical schema

languages.

Much of this functional integration is based on the
observation of the commonality in functions offered at different
levels in multiple-level data architectures. This commonality is
obscured in most systems by the use of different languages at each
level, e.g., three-schema languages and various data manipulation
languages. Also, a particular capability may be found at selected
levels in one system and at different levels in another system.

The example of figure 9 illustrates functional commonality
across the IPIP data architecture. This commonality is exhibited
by the storage schema/schema/subschema/ DML data architecture of
CODASYL. At each level of rectangle, including that of data
manipulation (application), a record is declared. And at each
level of diamond, including that of data manipulation, the same
type of mapping (projection) is used.

Record EP2 at the base logical level is the ENGINE
PERFORMANCE record of figure 8. It is the projection of data
items 3, 4, 5, 6, 7, and 8 of record EP]1 at the internal schema
level. MNote that EP1l contains two implementation-oriented data
items (RECORD CODE and RECORD LENGTH). Similarly, record EP3 is
the projection of data items 1, 2, 3, and 4 of EP2. And, at the
application level, a data manipulation command requests data items
l, 2, and 4 of EP3. This is equivalent to implicit declaration of
a record, EP4, which is the projection of data items 1, 2, and 4

of EP3.

It is usually the case, as in this example, that a function
available at one level of the data architecture is useful at the
others. IPIP takes symmetry of functional capabilities across the
data architecture, to the extent useful, as a principal objective.
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Functional symmetry promotes convenience, because the user does

not remember which functions are available at which interfaces.
Functional symmetry offers other advantages. For example, it

would have been possible to obtain EP4 through a projection of data
items of EP2. However, through the use of projection between
logical schemas, the person developing the application is shielded
from unnecessary details (a simplification) and potential security
problems are avoided.

IPIP takes advantage of functional symmetry through use of a
highly integrated metadata data base (the DIMS data base) and
software architecture. The software architecture is described in
a later section of this paper. Figure 10 presents a simplified
abstraction of the DIMS data base to illustrate IPIP gtrategies for
functional and software integration.

In figure 10 we see in the top row of circles that the
declarations of records EPl, EP2, EP3, and EP4 are represented in
DIMS in exactly the same way. The dotted circle for EP4 indicates
that in the first release IPIP constructs the metadata describing
the declaration of EP4 but does not store it on DIMS. Metadata in
the first row is generated through compilation of an internal or
logical schema or by the processing of a data manipulation command
by the precompiler or query processor. Since the metadata is
identical in each case, common semantic routines are used by the
internal and logical schema compilers, the precompiler, and the
query processor to support declaration.

The second row of circles illustrates metadata that links or
binds adjacent levels in the data architecture. (The example of
figure 9 is used here.) The dotted circle in the second row
indicates that this binding information is never actually
constructed. Circles in the second row are generated by
compilation of a mapping schema or by the processing of a data
manipulation command by the precompiler or query processor. Since
this binding metadata is the same in each case, common semantic
routines are used by the mapping schema compiler, the precompiler,
and the query processor to support mapping.

The circles in the third row represent binding information
identical to that in the second row. Circles at this level
represent the composition of two adjacent mappings and therefore
bind alternating levels in the architecture. Binding software
merges two second-level circles to obtain a third-level circle.
All third-level circles are built by the same binding routines.
Similarly, the same binding software is used to produce the
binding information in the fourth row.

The use of common semantic routines and common binding

routines promotes compactness in the IPIP software supporting an
ANSI-like three-schema data architecture, while providing support
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(through repeated application) for the generalized n-level IPIP
data architecture.

The uniformity of DIMS tables permits the use of common
software for other functions. For example, software that reports
where a declaration at level m in the architecture is used at
level m+l may be used for any two adjacent levels. This is true
even for the application level if application metadata is stored
in DIMS.

Reference 8 discusses integration of functionality and its
application to design of software for data base management
systems.

Binding

In a multiple-level data architecture, a data manipulation
command must ultimately be resolved in terms of underlying schema
declarations before it can be executed. One may think of the
process of binding as one of recursive substitution of
declarations. Binding of a data manipulation command against a
logical schema record to an internal schema permits translation at
execution time of this command into one or more operations against
internal schema records.

As discussed in the previous section, the circles in rows 2,
3, and 4 (fig. 10) represent DIMS metadata binding together
different levels of the data architecture. The second and third
rows represent bindings of adjacent and alternating levels,
respectively, in the architecture and are called partial bindings.
The circle in the fourth row represents metadata that fully binds
a data manipulation command to an internal schema. The previous
section describes the use of common software for generating
binding metadata.

Binding in a multiple-level data architecture is expensive.
Therefore, IPIP supports several binding options. IPIP permits
partial or full binding and run-time or prerun-time binding and
combinations thereof,. EP3 could be bound to EPl prior to
developing the application that includes EP4. If EP4 is issued
interactively, the rightmost binding circle at the second level
would be generated and merged at run time with the leftmost circle
at the third level to fully bind EP4 to EPl. If EP4 is in an
application program in test mode, the same strategy might be used.
If the application program is in production mode, the data
administrator would probably fully bind EP4 to EPl before program
execution.

Note that given prerun-time binding of the uppermost logical
schema to the internal schema, full run-time binding of the data
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manipulation command is a two-level operation, regardless of how
many levels of underlying logical schemas there are.

IPIP SOFTWARE ARCHITECTURE

IPIP prototype software is a collection of software
subcomponents designed as a nucleus around which the full IPAD
data management functions can be built. This section of the paper
discusses the IPIP software architecture and traces a user data
manipulation command through the system.

There are three major sets of software subcomponents in the
architecture: IPIP user interfaces, stubs, and IPIP data manager.
IPIP user interface subcomponents are used by end users when
defining data structures and when formulating commands against the
data base. These subcomponents include the query processor,
precompiler, logical schema compiler, internal schema compiler,
and mapping schema compiler. IPIP data manager subcomponent
routines execute end user redquests against the data base and
provide services supporting IPIP user interface subcomponents.

The stubs subcomponent is linked to user interface subcomponents

and to all user data management application programs. Figure 11
shows diagrammatically how the various subcomponents fit in the data
management architecture.

Some of the subcomponents in the diagram (i.e., the prototype
implementation of the IPAD executive (IPEX) routines) are not
discussed in this paper. For purposes of this paper, these
subroutines are broken into two groups, the first group providing
network services and referred to as the IPSR routines, the second
referred to as the IFCS routines and providing a host-independent
file system to IPIP. A complete discussion of their design can be
found in reference 9.

Before the IPIP software modules are described in more
detail, several features of the software architecture should be
mentioned. The features listed below have had a direct influence
on software and on the software architecture. Features fitting
into this category include multi-user/multithread processing, data
set processing, versioned data processing, recursive data
dictionary (DIMS), and adaptability of code to different types of
machines.

The following is a brief description of the various software
subcomponents in the IPIP software architecture.
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IPIP User Interface Subcomponents

Precompilers.- The precompilers convert programs containing
embedded data manipulation commands into programs containing host-
language-compatible requests to the data manager. The conversion
process utilizes the data inventory management subsystem (DIMS)
data base in the editing, validation, and generation of requests
to the data manager. The prototype precompilers generate code for
FORTRAN and Pascal programs as well as declarations of
communication areas for staging records invoked by the program.

Query Processor.- Like the precompilers, the query processor
accepts data manipulation requests and produces requests for data
from the data manager. However, the query processor is used only
for interactive requests, thereby eliminating the need for source
code generation. The query processor performs syntactic checks on
the request and transmits it to the IPIP data manager, where the
command is checked semantically and then bound and executed. Upon
completion of the processing in the IPIP data manager, the query
processor displays the results on the user's terminal, a local
file, a line printer, or a combination of the three. With a
couple of minor exceptions, the data manipulation language
processed by the query processor is identical to that used by
application programs.

Compilers.- The logical, internal, and mapping schema compilers
all perform the same functions but for different languages. The
compilers perform syntactic checking of source schema declarations
and send encoded versions of them to the IPIP data manager. When
the IPIP data manager completes the processing of a declaration,
it returns status to the compiler, which passes it back to the
user.

IPIP Data Manager Subcomponents

The IPIP data manager subcomponents comprise the portion of
the data base management system that carries out data
manipulation, binding, and semantic processing actions requested
by users. The IPIP data manager contains ten subcomponents: the
scheduler, message procedure interface processor (MPIP), common
semantic processor (CSP), data base control subsystem (DBCS), data
manipulation subsystem (DMS), record translator, binder,
presentation services, access module (AM), and resource manager
(RM). Each of these subcomponents is discussed briefly.

Scheduler.~ As the name implies, this component schedules requests
for execution or restarts requests that were suspended before
completion. Other functions performed by this component include,
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but are not limited to, initialization of IPIP, defining Pascal
work areas for each thread, and ensuring that the proper code is
in memory when switching between threads.

Message Procedure Interface Processor (MPIP).- The major function
of this subcomponent is to unpack incoming user requests and to .
package outgoing messages for shipment across the network.
Incoming messages are routed to either the DBCS or the CSP
routines, depending on function codes sent with the message. MPIP

requests a binding record identified by the encoded version of a
user command.

Common Semantic Processor (CSP).- The common semantic processor
performs all semantic actions requested by the precompiler, query
processor, and the schema compilers. The CSP is invoked by MPIP
and recursively calls IPIP for its data management needs. Common
routines within the CSP perform equivalent semantic processing
across compilers.

bata Base Control Subsystem (DBCS).- The major function of the
DBCS is to process user-level data manipulation requests. The
DBCS receives an encoded version of the user request in the form
of a binding record and converts this request into primitive
operations provided by the binder, DMS, record translator,
resource manager, and presentation services. The DBCS supports
the retrieval, storage, and update of data through the use of a
single data manipulation language, which provides network
facilties (CODASYL based) and relational facilities. The data
manipulation language also supports the manipulation of geometric
entities such as lines, points, composite curves, and surfaces.
Inputs to the DBCS consist of a binding record, which is the
encoded data manipulation command including attendant meta
information, and a job status record, which contains the current
execution status of the user making the request.

Data Manipulation Subsystem (DMS).- The DMS contains a set of
primitives that operate on internal-schema-defined data records.
It is these primitives to which each user-level data manipulation
command is decomposed. DMS is another subcomponent that makes
user-level data manipulation requests to IPIP for some of its run-
time data.

Record Translator.- This subcomponent converts records from
logical views to internal representations and vice versa. These
conversions include changes in both the position of fields within
the records and changes of data types and sizes of fields.
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Binder .- This subcomponent reconciles differences between multiple
views of the data. In other words, it creates metadata (binding
records) specifying how to translate from a user operation on a
logical data structure to one or more internal requests on the
physical data structures described by an internal schema. The
binder can be invoked either prerun-time or when the command is
executed (run—-time). The binder may bind either a logical schema
or a program or query to an underlying internal schema.

Presentation Services.- In prototype IPIP, the only function of
this routine is to log IPIP errors on a system log. As

development continues, the set of routines will be expanded to
include screen formatting logic for various types of terminals.

Access Module.- This subcomponent creates and maintains B-trees
used to index physical data files. The access module performs B-
tree look-up to satisfy all user requests for data.

Resource Manager.- This subcomponent provides service routines
used by all IPIP data manager subcomponents for resource-related
services. Routines are provided to perform buffer management,

record management, and file management services.

Stubs.- This subcomponent provides service routines that link users
with IPIP. All user programs and the IPIP user interface
subcomponents have a copy of these routines linked to them. Stubs
packages and unpackages information to be transmitted or received
via communications software and calls IPSRs to initiate

communication.

Trace of User Query

The following is a high-level trace of a user query through
the data base management system. A STORE command was chosen
because it shows the processing flow of a representative user-

level request.

The following assumptions should be noted before reading the
example:

1. Internal data manipulation requests will be identified but
not traced.

2. Logical and internal schemas have been defined and are mapped
to each other.

3. All IPIP initjialization has been completed.
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4, The user has opened and locked the record type to be stored.
5. This command is the only one executing in IPIP.
6. MPIP is ready to receive the message.

The process starts when the query processor recieves a
command from a user. The query processer performs syntactic
checking on the command and breaks out individual item or record
names within it. These names are sent through stubs, the IPAD
data manager, and network services to the CSP routines in the IPIP
data manager. (The mechanisms of this network transfer are
discussed below.) The CSP performs semantic checking to validate
the command. During this process a binding record is built
linking the DML command to the correct logical schema. After the
validation has been completed and the binding record built, status
information is sent back to the query processor through the
network. The query processor receives this status information
and, assuming the request was valid, builds a collection of tables
that contain information from the user request. Stubs is then
called to transmit these tables to IPIP and, using IPSR data
translation routines, requests that these tables be converted from
a machine representation to the network standard representation.
After the translation has been completed, the network IPSR
routines are called to send the tables across the network to the
IPIP data manager.

MPIP reads this message from the IPSR routines and decodes
the control information associated with the command. Again using
the IPSR routines MPIP then translates the tables into IPIP
standard form. After the data has been translated, the binding
record created during semantic validation by the CSP is augmented
with run-time information supplied in the command.

The binding record is now in a form that can be processed by
the DBCS and lower-level routines. However, before the DBCS is
called, the job status record (JSR) is retrieved. This record
contains the current status of the user and is used extensively by
the DBCS. This JSR record is retrieved by MPIP using a user-level
data manipulation request.

Upon receipt of the binding record and job status record, the
DBCS begins processing the request, determines if binding has
been completed, and, if not, calls the binder to complete the
binding process.

The binder accesses binding records associated with this
request and creates a binding record that fully binds the user
command to an internal schema. Having completed its processing,
the binder returns this binding record to the DBCS, which can now
continue processing. Space is allocated, using resource manager
routines, for the internal record (or records) that is to be added

169



to the data base. The record translator is called to create an
internal record (or records) from the user—-supplied external
record in the space allocated above. After creation of the
internal record, the data manipulation subsystem is called to

add the record (or records) to the data base. Before the record
(or records) is added, the open status of the data files is
verified. This verification is performed by making user-level DML
requests to the DIMS tables containing authorization information.
If the user passes these checks, the DMS calls the record manager
routines in resource manager to add the data to the data file and
to add other information to other data base files. The resource
manager calls the IFCS to perform the physical write. DMS then
calls the access module to update indexes on the keyed fields in
the record. These indexes are represented using B-tree data

structures.
The data has now been added to the data base; all that

remains is to return through the routines and return status
informing the user of the successful completion of his command.
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Figure 2.- Multipie IPIPs in a distributed configuration.
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PERFORMANCE CRITERTA (PC)H
AIRPLANE | PAYLOAD |RANGE CLASS| DESIGN DESIGN GROWTH GROWTH | PASSENGER
TYPE TYPE PAYLOAD PAYLOAD PAYLOAD | PAYLOAD WEIGHT
PASSENGERS |  CARGD | PASSENGERS|  CARGO ALLOWANCE
1AT1) (IPT1) (IRC1) (DPP) (DPC) (GPP) -~ (6PC) (PWA)
PASSENGER/
STOL SENG! SHORT 135 5000 170 10000 165
cToL PASSENGER MEDIUM 175 5000 10000 225 205
cToL PASSENGER LONG 200 5000 250 10000 225
CONFIGURATION PARAMETERS (CP)
MODEL AIRPLANE PAYLOAD ]RANGE CLASS] NUMBER OF | ENGINE ENGINE MARKET | CUSTOMER
NUMBER TYPE TYPE ENGINES MODEL LOCATION | CATEGORY
NUMBER
(MN5) (1AT5) (1PT5) (IRC5) (NE) (IEMNS) (IEL) (IMC) (1¢)
STOL1 sToL PAVANGER/ | sHORT 2 CF6-50A WING TRANSPORT USAF
cToL1 cToL PASSENGER MEDIUM 2 CF6-6D BODY DOMESTIC UAL
TNTER -
CTOL2 cToL PASSENGER LONG 4 JT90-3 WING NATTONAL JAL
ENGINE PERFORMANCE (EP)
ENGINE RATING | CONTINUOUS ] CONTINUOUS |  CRUISE CRUISE
MODEL ALTITUDE |  THRUST SPECIFIC THRUST SPECIFIC
NUMBER FUEL FUEL
CONSUMPT ION CONSUMPTION
(1EMNA) (RA) (cT) (CSFC) (CRT) (CPFC)
CF6-6D 35000 9700 .639 9060 .631
CF6-50A 35000 11500 .664 10800 .654
CF6-50A 0 48400 .389 42200 .386
CF6-6D 0 39300 .354 37500 .351
Figure 8.-— Record occurrences.
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Figure 9.- Symmetry across IPIP data architecture (projection).
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AN APPROACH FOR MANAGEMENT OF GEOMETRY DATA

R. Peter Dube, Gary J. Herron,
Jean E. Schweitzer, Erich R. Warkentine
Boeing Computer Services Company

SUMMARY

This report describes the strategies for managing IPAD
computer-based geometry. The computer model of geometry is the
basis for communication, manipulation, and analysis of shape
information. IPAD's data base system makes this information
available to all authorized departments in a company.

A discussion of the data structures and algorithms required
to support geometry in IPIP (IPAD's data base management system)
is presented. Through the use of IPIP's data definition language,
the structure of the geometry components is defined. The data
manipulation language is the vehicle by which a user defines an
instance of the geometry. The manipulation language also allows a
user to edit, query, and manage the geometry.

The selection of canonical forms is a very important part of
the IPAD geometry. IPAD has a canonical form for each entity and
provides transformations to alternate forms; in particular, IPAD
will provide a transformation to the ANSI standard. The DBMS
schemas required to support IPAD geometry are explained.

INTRODUCTION

One of the objectives of IPAD (Integrated Programs for
Aerospace Design) is to develop a computer-based engineering
complex which automates the storage, management, protection, and
retrieval of engineering data. This complex serves as the central
communijcation integrator for a large number of designers
conducting a broad range of design tasks. The cornerstone of the
IPAD concept is its information processor (IPIP). 1IPIP is a data
base management system (DBMS) that manages the data required by
and produced during the design process.

The design process, as well as interaction with maufacturing
and other organizations, has been defined (refs. 1 and 2). It is
within this design process that existing computer-aided design
(CAD) systems create a machine-readable data base of design
information. This data base normally includes not only the
specification of geometry but also such information as object mass
properties and dimensions. From the sparse definition of objects
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for aerodynamics and finite-element analysis to the detail design
of parts, geometry is the continuing theme.

Unlike other systems in which geometry information is
contained in files accessible only through a aesign drafting
system (or other specialized computing system), the main
repository of all information (including geometry) within IPAD is
IripP, the DZMS. With this approach, all tasks, including analysis
and design, have access to all of the required data. While a
specific CAD/CAM system would nominally be used to create design
information, other systems will have controlled access to that
data as well (fig. 1).

The principal advantage of the IPAD approach is that the data
base management system can support a unified description,
manipulation, and management of the data of the organization. The
result is a reduction in the auplication of design data, which
minimizes problems in maintenance oi data base consistency and
update efficiency. The shared aata base provides a common
interface, which aids the integration of various design activities
and computer-based support systems. While performing its
information storage and retrieval functions, the system can also
maintain data base integrity and entorce organization security
rules.

The processing and management of geometry in IPAD has
resulted in some unigue ftacilities in IPIP. The system must
manage geometry, entorce constraints, maintain continuity, and
track associations at the primitive level. It must alsc allow
manipulation at the primitive, composite, and object levels of the
geometry hierarchy (fig. 2). The system described in this paver
satisfies these requirenents.

The strategies employea make avallable to the user data
structures that support the management of geometry. In many cases
the data structures are independent of the type of geometry being
used ana, hence, may be employea with ditferent mathematical
representations. When IPIP facilities are useda with geometric
representations (other than 1IPAD gecmetry), the manipulation
capabilities will pe restricted. With the appropriate schema,
however, geometry described with & different mathematical form may
still be managed at the entity level. The remaining sections of
the paper will aevelop 1PAD geometry, geometry data management,
and supporting schema developnient.
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IPAD GEOMETRY

Geometry information is stored as collections of components
in the adata base. An individual component is called an entity.
The description of a geometry entity in IPIP is composed of four
parts:

Name of entity

Detining values

Mathematical process that produces a shape
Association between entities

The defining values depend on the mathematical form. IPIP
uses values directly related to the shape of an object, i.e.,
positions, tangents, and higher-order derivatives. When that type
of data is not available for a specific mathematical form, related
coefficients are used.

The mathematical process is a rule explaining how the valiues
are to be used. This rule indicates how to interpret the data;
for most representations, however, it is a mathematical function
that produces a shape. The definition of this process is not
contained in IPIP but is implied by the IPAD canonical form.

The last part of the representation serves to identity the
association between entities. In most cases, the dependencaies
are tracked implicitly by the data structure constructs in IPIP.

The base level building block for the description of geometry
in the data base is the vector, e.g., x, ¥, 2. 7The vectors are
found on the terminal nodes of the geometry hierarchy (tig. 2).
Entities in the hierarchy are classified as primitive or
composite. The primitive entities contain geometry presently in
use: points, lines, cubic and conic segments, surface patches,
surface of revolution, lofted surface, etc. These pieces of
geometry, incluuing composite entities, may then be grouped into
objects.

IPAD geometry uses bounded geometry in parametric iform. The
general form of a geometric entity is given by

X = (Fl(tl,...,tk), cee s Fn(tl,...,tk)).
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For n=3 and k=1, X is a space curve:
X = (F1(t)), Fplty), Falty))  tye[asb]
when X is a surface, n=3 and k=2:
X = (Fl(tlstz)’Fz(tl,tz)s F3(t1’t2))
tIE[a,b] and tze [c,d] .

Each function Fy is defined by user specified values. The
meaning of these values in the context of Fj is determined by the
IPAD standard form, which was chosen to facilitate management of
the geometry entity. 1n general, the values required for each
entity are directly related to the geumetry of the entity, e.g.,
position, tangent, etc.

IPAD Canonical Form

A canonical form, in the IPAD context, is the standard form
that the IPAD data management system understands and uses to
manage geometry information. The IPAD canonical form is based
on parametric representation with a two-point Taylor expansion
(also referred to as parametric Hermite interpolation). We now
consider the general theory of Hermite interpolation and
parametric representation.

Parametric curves and surfaces lead to powerful models that
may be used in a computer-aided design system. By parametric
representation we mean that each coordinate of a position on a
piece of geometry is represented as a function of one or more
independent parameters. For example, a curve of one parameter has
its position vector on the curve iixed by one parameter. I1If the
parameter is taken from the interval (a, b) and the curve is in
space, then the locus of points on the curve, C1, is given by

1= [(x,y,Z):x=f1(t),y=f2(t),z=f3(t): te[a,b]]
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General theory of Hermite interpolation involves mathematical
functions which capture positions and higher-order derivatives at
the ends or corners of the pieces of geometry. These tormulae are
found in Davis (ref. 3).

The canonical ftorm for each I1PAD entity can be found in the
IPAD documentation. We now give an example of one entity, the
cubic segment, using the Hermite strategy. The defining values of
the cubic cuxve P(u) = (x(u), y(w, z(u)), are P(0), P(1) (values
at the end points) and DP(0), DP(1) (end tangent vectors). The
canonical form is given by

Pw) = [« u®u1] b [P0
P(1)
DP(0)
DP(1)

where 2 -2 1 1

0 0 1 0
1 0 0 0

If the matrix multiplication is performed from left to right, the
result is the Hermite representation:

[Ao(u) AL(u) BO(u) B1(w)][ P(O)
P(1)
DP(0)
DP(1)

Only the values P(0), P(1), DP(0), DP(1), along with the
parametric space intormation, are stored in the data base. Most
ot the basic enities for both curves and surfaces are handled in
a similar manner.

ANSI Communication Standard

The proposed ANSI Y14.26.1 standard, "Digital Representation
ot Physical Object Shapes,"™ addresses the problem of machine-to-
machine dialogue. Its purpose is to facilitate the communication
of object shape description messages between data bases of the
same company or between intercommunicating companies. The ANSI
standard assumes the existence of a geometric shape and proposes
standard formats for communicating that shape.

The work of the ANSI committee is and will continue to be an
important factor in the definition of IPAD geometry. In some
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cases, the IPAD representation of geometry will differ from that
of ANSI. This difference is due largely to the fact that IPAD is
involved with the management of geometry rather than
communication. The 1PAD geometry representation contains
continuity constraints, association between elements, and other
design-related information that will be included in the IPAD
format.

1PAD supports the geometry entities found in the ANSI
standard. The choice of the detining values for some geometry
entities differs from those proposed by ANS1. The system,
however, provides transformations to interchange its defining
values with those ot the ANSI standard.

GEOMETRY DATA MANAGEMENT

This section outlines the approach used in the application of
data base management to geometry. This discussion emphasizes
features of the IPIP data manager that were developed to support
geometry data management requirements. A more general discussion
of IP1P is found in the proceedings.

The approach used in the present system differs from that
which has peen utilized to date. For example, one mechanism for
providing geometry data management is to build a set of procedures
on top of an existing data manager. This approach was used
successtully to construct the IPAD prototype geometry data
managers. However, this removes integrity enforcement from the
data manager, requires a fixed data format for geometry data, and
allows no mechani sm to extend the types of geometry that may be
stored in the aata base.

The approach used in the present system allows the user to
define a geometry model by writing a schema. The operations and
constraints on the geometry are driven by the schema detinitions
themselves; thus constraint checking is done within the data
managyer. The records used by application programs or CAD/CAM
systems are defined by logical schema definitions; thus their
format may ke changed by the data base administrator (DBA). The
schema is extendable, so0 new types of geometry may be added to the
system by new scnema entries.

The types of schemas necessary to define geometry are
determinead in part by the data architecture of the IPIP system.
First, an internal schema is detined, specifying the organization
of data as stored on physical 1I,0. Second, a base-level schema is
required, describing the data of the entire organization (e.g.,
the IPAD geometry torms used by all the applications of the
company) . ‘ldhird, upper-level schemas are defined, providing views
of the data necessary for access from application programs or
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query users. Data in each schema is related to other schemas
using mapping statements in the mapping schema definition
language. The data base administrator (DBA) may define an upper-—
level schema on top of another upper-level schema, thus making n
levels ot schema definition possible.

The approach used ftor IPAD/IPIP geometry data management may
be summarized as follows:

1. The defining data for the IPAD canonical forms is described
in a base-level logical schema.

2. Associations between data items of different records are
defined explicitly in the schema.

3. The records of the base-level logical schema are grouped by
an explicit schema construct called a "structure®.

4. Access and manipulation of a geometric entity are maae by DML
operations on an upper-level schema record that is mapped
from a base-level schema structure.

5. The mapping schema proviaes the correspondence between items
in an upper-level schema and items within record occurrences
of the structure.

6. Constraints on the data items and their associations are
defined in the schema and enforced during data manipulation.

7. DML, on upper schema records mapped from structures has
semantics that are consistent with requirements for geometry
data management and reflect the underlying structures.

8. DML processing directives are used to direct command-specific
semantics.

9. Additional user features are incluaded within the system to
aid the eftfective use of the system ana decrease the
probability ot errors.

Each ot these nine concepts is expanded in corresponding
sections below.

1. Base-Level Schema Records

The records of the base-level schema contain all the data
necessary for the information processing needs of the
organization. Nominally, one intermnal record type exists for each
base-level schema record. This internal record has a format
describing the way in which the base-level schema record is
stored.
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While application programs require the geometric entity to be
viewed as a unit, with all defining data grouped into a single
record, this type of grouping is not suitable for the base-level
schema. In the base-level schema, geometric entities are composed
of records divided (normalized) to provide the minimum amount of
data redundancy. This normalization is achieved in our geometry
schemas by placing indirect references to data in place of actual
values when those values appear in more than one record type.

(See reference 4 for a more detailed description of the
normalization process.)

2. Data Associations

Given a set of base-level schema records containing geometry,
the IPIP system provides a set of tools that allows the user to
describe the relationship of data items occurring in different
records. The most important concept used to define these
relationships is the CODASYL set construct, which allows the data
base designer to specify l-to-n associations between record types.
(A set occurrence is an association of one owner record occurrence
with n member record occurrences.) This association is made by
specifying matching set selection items in each record.

The integrated data modeling approach within the IPIP system
allows the designer to specify these associations using the
network or relational style of data modeling. 1In the network
style, associations are described using the CODASYL set construct.
In the relational style, the designer can equivalently use the
foreign key declaration.

3. Structure Definitions

The structure definitions of the IPIP data base system
provide the mechanism for grouping a collection of record types
(and occurrences) that are to be accessed and modified as a unit.
The structure defines an ordered path through the records that is
used by the data base system to process each data base request.
This path is based on the associations (sets) that have been
defined in the schemas. The first record of the path is called a
root record, and it determines a structure occurrence.

The inclusion of the structure facility permits the query or
batch user, with one command, to access data within records linked
together in complex data structures. The structure facility
provides the system with a mechanism to allow an upper-schema
record to be composed of items from several lower-schema records.
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4, Upper-Schema Records

The upper schema is a description of the data as seen by the
application (or CAD/CAM) systems wishing to access the data.
These records are stored so that a single DML command may store,
modify, or retrieve a geometric entity as a unit. Thus, the user
(a CAD/CAM application program or a query user) may access a
geometry entity without performing a series or DML commands.

5. Mapping Base-Level to Upper-Level Schemas

The schema-mapping facilities within IPIP that are used to
map items ot the upper-schema records from items of records in a
structure provide a facility not found in most data base
management systems .

The DBA may speciiy a mapping not only from an item within a
record type, but also a mapping from an item of a particular
occurrence of a record within a structure occurrence. This allows
the user to map an item of the external record from an item in an
occurrence of a record within a structure (e.g., the first
occurrence of an item within a structure).

6. Constraints

The constraint processing of geometry entorces geometry data
integrity, which means that the system does not allow (1) ill-
defined geometry to be stored and (2) changes to existing data
that result in ill-defined geometry. Such control in existing
systems is usually difficult. First, geometric entities are
usually composed ot multiple record types containing mulitiple
record occuirences. Since it is not possible to store these
entities with a single data base command, storing single data base
records will leave tnhe system with invalid geometry aata. Second,
leaving the enforcement of data integrity to the application user
ot the D8MS can result in the storage of invalid geometric data,
since constraints exist as to which stored data items constitute
valid geometric entities.

The constraints to be entorced during the DML operations
defined above are aefined in the schemas. These constraints are
checked whenever a structure occurrence is about to be updated.

The majority of constraints used to ensure geometry data
integrity are based on data associations defined in the schemas.
Whether the DBA chooses to use CODASYL sets or foreign keys to
describe associations, the schema language allows him to impose
constraints between the records of the association. Other
constraints may restrict the types of operations that can be
performed on record types; e.g., the MEMBERSHIP DEPENDENT
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constraint reguires that an owner record exist before any member
recorda is stored.

Another type of constraint, called a key constraint,
restricts the values of items used to identify records. The two
constraints used in geometry schemas are DUPLICATES NOT ALLOWED
and NUL4, NOT ALLOWED.

The UBA may choose to restrict operations allowed on records
ot a schema so that unauthorized modifications may be prohibited.
Such a restriction is necessary in cases where read access may be
desirable on the individual records of a structure but where
structure modification must always be performed as an indivisible
operation.

7. DML Operations

Operations available to the user to access structures are the
same as those availiable to the system as a whole: STORE, DELETE,
MODIFY, FETCH, FIND, GET, COPY, and REMOVE. While the IPAD
canonical geometry forms are always containea within a structure
definition, this does not exclude nongeometry users from using
these facilities to access, store, or retrieve data.

Operations that access structures do so by following their
specified paths and by performing the actions dictated by the
constraint options on the sets and on the operation itself.

8. DML Processing Directives

The schema contains options to control the processing of DML
operations on recoras in the aata base. One important directive
is the SOURCE statement, in which changes to the owner (foreign
xey) record items are propagated to member (foreign) records. The
DLLETE MEMBERS IF DELETE OWNKR directive activates the deletion ot
member records when their set owner is deleted. The COPY MEMBERS
IF COPY OWNLR directive calls for a copy of members when an owner
is copied. ‘the DeLETE OWNER IF S&ET EMPTY directive provides for
the deletion of owners when the last member record of the set is
deleted.

9. User Features

Several features exist within the system to provide the user
with a more user friendaly way of storing geometry. First, the
system has the ability to assign system—-generated names to items
used to show record associations; thus, the user does not have to
give these names explicitly in DML commands that store the data.
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Second, the DBA may choose to assign default values to items so
that items not stored may be assigned values by the system.

GEOMETRY SCHMA DEVELOPMENT

The mathematical representations of geometry entities to be
used in 1PAD geometry data base management have been presented.
For a DBMS to control and provide access to these entities, the
geometry data must be organized into schemas. This section
describes the schemas developed for IPAD geometry and the
capabilities for geometry manipulation provided by the IPIP DML.

The following levels ot schemas were defined to support data
definition and manipulation of geometric entities:

1. An internal schema to specify the storage organization of the
data

2. A base-level logical schema to describe the detining data of
the entities

3. Upper-level logical schemas to support record-at-a-time DML
commands on the entities

The intermal schema will consist of internal copies of the
record types from the base-level logical schema. The mapping ot
structures to the internal level is not valid in the current
implementation.

The Geometry Base-Level Schema

The aefining values for each entity, as given by its
canonical form, are contained in a base-level schema. Along with
the mathematics to produce the shape, this information is
sufficient to allow reconstruction of the entity.

The hierarchical relationship between entity types was used
in organizing the aefining data items for the entities into record
types and structures; thus associations between entities are built
into the schema. The associations are further specified using
such DDL constructs as CODASYL sets (foreign keys) with constraint
options, source declarations, and key constraints. The integrity
of these associations is maintained by the system by enforcing the
constraints during DML processing.

The entity types selectea for this schema were OBJECT,
COMPOSITE SURFACE, PATCH, COMPOSITE CURVE, SEGMENT, VERTEX, and
VECTOR. Other entities may be addaed to the schema and associated
with the ones already declared. Figure 2 showed the hierarchical
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relationship between these entities. Each entity may be detined
in terms of its component entities, as shown in the hierarchy.
Thus, a segment is composed of its two end vertices, and a
composite curve is composed of a list of its segments. These
relationships are the foundation for organizing record types in
the base-level schema.

We take the approach that an entity is stored by referencing
its component entities. Thus, a segment is stored in terms of its
two end vertices rather than the values for its end points and
tangents. This will pemmit the sharing of vertices or points by
segments. Thus, a modification of point values will affect all of
the segments to which the points belong.

The base-level schema is declared by definition of recoxd
types, associations, constraints, structures, and DML directives.

Detinition of Record Types.- The methodology used in defining
record types ror the geametry base-level schema is outlined

below:

1. Data items are aetermined ftrom the defining values of each
entity, as given by its canonical torm.

2. An identitier composed of one or more data items is
getermined ror each entity type. Data items whose values are
uniquely determined by the entity identifier are grouped into
a record type with that identifier as a unique key. However,
an item having several values for a given entity may belong
in another record type with the identifier for the entity.

3. if a one-to-many association exists between an entity and its
components, the identitier of the entity is placed in a
recoxd type tor which the identifier of the component is a
unique key. If a many-to-many association exists between
entities, a separate record is usea to model the association.
The identitiers would comprise a two-item unique key.

These considerations will be elaborated ana illustrated in
the following description of the base-level schema for geometry.

Each of the defining values in the canonical forms of the
entities 1is represented by a data item. For example, the position
and tangent vector values in a segment vertex are represented by
the item XYZ in the record VECTUR. The parameterization of a
segment is represented by the item FLOW in the record type
SEGLIST.

The entity name is used as the identifier for record
occurrences which contain data items to define the entity. This
identifier is a key item with the constraint DUPLICATES NOT
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ALILOWED. The record types CCLIST, SEGMENT, and VERTLIST have
unique keys CCID, SEGID, ana VERTID and contain unique occurrences
tor each of the entities of types COMPOSITE CURVE, SEGMENT, and
VERTEX, respectively. These records contain data items that are
uniquely determined by the entity identifiers.

The association of an entity with its components is one-to-
many and perhaps many-to-many, as previously described. We hnave
chosen to allow a maximum flexibility of entity associations for
1pPAD geometry and, therefore, we have chosen a record
configuration that allows many-to-many relationships between
entities. This requ1res that the entity identifier and component
identifer be items in some common record type.

A possible way to define record types to associate the entity
with its component entities is to have one record for the entity
type with items to identify the components. (See figure 3.) One
occurrence of record SEGMENT would identify the two end vertices.
‘This configuration has limited flexibility, since the maximum
number of component entities is fixed by the number of record
items. The number or vertex components needed varies with the
type of vertex: one ftor LINEAR, two for CUBIC, three for QUINTIC.
Thus, some items will be null for many record occurrences, or
separate record types would be reguired for the vertex types. The
addition of a vertex type that requires more derivatives anaq,
hence, more components would require a change in the schema.

The number of associations (CODASYL sets or foreign keys)
required depends upon the number of component entities; for
example, two assocliations are required to link the SEGMENT record
with the VERTEX record.

The schema that we actually constructed provides a
configuration of record types for which the number of component
entities may vary (fig. 4). The items END and COMP sexrve to
order and thus identiiy the relationships of the components to the
entity. For example, a segment has a vertex corresponding to the
first flow parameter (END = 1) and a vertex corresponding to the
second (END = 2Z). kach vertex in the example in figure 4 is
CUBIC, but if a QUINTIC were required, a second derivative could
pe added as a component to the vertex by adding another occurrence
in the VERTVECT record and with no change in the record
declaration.

Only one associatiaon is required between record types with
this configuration. There is, however, the disadvantage of more
record occurrences, and the trade-off must be considered. Some of
the record types and associations in the base-level schema are
shown in figure 5.

Composite entities are detined by a list of primitive
entities. Thus, a composite curve consists of a list of segments.
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The record types to represent composite curves are CCLIST and
CCSEG, as shown in figure 5. Here SEGID in CCSEG references a
segment that is identified by SEGID in SEGLIST.

Associations.- As described in a previous section, the
associations between record items may be explicitly defined using
CODASYL sets oxr foreign keys. 1he arrows in the figures point
from owner to member and constitute a one-to-many relationship.
Thus, a particular composite curve has one or more segments
associated with it via SET3, and a vertex may belong to one or
more segments via SET6.

Constraints.- Constraints on the associations between entities
serve to specity the exact relationship requirea by the entities.
Eniorcement of these constaints will ensure that only valid
geometry is stored in the data base. Constraints may be added to
these associations to specitfy allowable values for the number of
members. For example, a segment must have exactly two vertices; a
composite curve might be regquired to nave at least one segment
and, at most, 20 segments. A particular segment might be allowead
to belong to no more than one composite curve. This constraint
may be declared using the NUMBER specification in the CODASYL set
or foreign key declaration. For example, SET5 should have
NUMBER=2.

The constraint requiring tiiat the two end vertices must exist
if a segment is to exist is specified using the MEMBERSHIP
DEPENDENT option on the set linking SEGVEKRT and VERTIST, SET6.

Structures.- The structures defined in the geometry base-level
schema correspond to the entity types and contain records to be
stored or retrieved togethexr. Some structures we have defined are
shown in figure 6. A segment to be retrieved may be identified by
a value for SEG1D in SEGLIST, which is the root of structure
SEGMENT. Then all of tne record occurrences related via the sets
in the structure to the root occurrence for that segment will be
retrieved. (See figure 4.)

DML Directives.- 1he data definition language constructs directing
tlie processing through the multiple record structures representing
geometry entities were described previously. Here we will show
how they aid the manipulation of geometry entities and help to
preserve titie integrity of the data.

The integrity of data shared between record types may be
maintained automatically by using the SOURCE construct described
in a previous section. CCID in record CCSEG is declared as source
from CCID in record CCLiST via SET3. A modifiction of CCID in
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CCLIST will result in the change to CCID in CCSEG. However, a
change only in the value of CCID in CCSEG would mean that the
segment is to be associated with a different composite curve.
Since SET3 is also MEMBERSHIP DEPENDENT, the curve identified by
the new CCID value must exist in CCLIST.

The schema directives for multiple record processing are used
to define the propagated DELETE, REMOVE, MODIFY, and COPY to
allow update on an entire entity in one command. For example, the
directive DELETE MEMBER IF DELETE OWNER on SET5 would cause the
delete to be propagated from SEGLIST to SEGVERT in order to delete
all the appropriate record occurrences for the segment being
deleted. DELETE OWNER IF SET EMPTY on SET6 would cause the
vertices to be deleted along with a segment unless MEMBERSHIP
DEPENDENT prevents the deletion of a vertex used on another
segment.., Similarly, COPY MEMBER IF COPY OWNER will propagate the
copy process from SEGLIST to SEGVERT via SET5.

Upper-Level Schemas and DML

Figure 7 shows some upper-level schema records developed to
support IPIP DML on IPAD geometric entities. Each primitive
geometric entity (e.g., VECTOR, VERTEX, SEGMENT, and PATCH) is
represented in an upper-level schema record. The relationships of
the entities that were defined in the base-level schema must be
represented here as well. Their associations are shown by the
CODASYL set (foreign key) definitions connecting the records in
figure 7.

Each record for a primitive entity contains the items
required to define and manipulate the entity. Because a record
for a primitive entity contains all the defining data, only one
DML command is required to access and update the entity.

Each of the composite entities is represented by two or more
records. One record contains a unique occurrence for each entity
of that type; the others associate the composite entity with its
component entities in a many-to-many relationship. For example, a
composite curve is represented by records CCURVE and CCSEG.

An upper schema could also be written to represent another
type of geometry such as the ANSI communicaton standard. This
geometry view could be mapped from the IPAD geometry base-level
schema. These mappings require transformation between LaGrange
and Hermite mathematical representations. The mapping schema
would contain a definition of a many-to-many item transformation.
For example, the four points representing a cubic curve in ANSI
would transform to the two points and two tangents of an IPAD
cubic curve. The next section will discuss the relationship of
IPAD to ANSI geometry and schemas.
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ANSI Standard in IPAD

IPAD supports the ANSI standard for communication of physical
oLjects by means of a logical schema mapped from the 1IPAD base-
level logical geometry schema. '

The ANSI logical schema captures the ANSI standard as much as
possible py using a record type for each ANSI structure type.
(The ANSI structure type is not to be confused with the IPAD
structure.) The actual conversion between the ANSI standard in
the ANSI schema and the IPAD representation in the logical schema
is specified in the mapping between the two schemas.

This approach leads to several complications. Most ANSL
structure types can map to several IPAD geometry entities (e.g.,
the CUB structure type can be eithexr a cubic curve or a cubic loft
surface) ; conversely, an IPAD entity can map to one of several
ANSI tyves (e.g., a bilinear patch could be mapped to the ANSI LIN
structure or to the rigid body translation). To avoid confusion,
each IPAD logical record type contains a field that is used to
specify the ANS1 structure type to which a record occurrence maps.
When an entity is stored through some other schema, this field
will be set to a predetermined value to indicate an ANSI structure

type.

A second compiication arises from the disparate way each
logical schema derines geometric entities in terms of lower-level
entities. Situations can arise where the modification of a value
ot an ANSI schema entity requires a cascading series of changes to
values of other entities in order to retain integrity. 710 prevent
such nonintuitive side effects, manipulation of ANSI external
schema is limited to storage and retrieval commands only. This is
not considered a severe restriction, since the ANSI standard is
designed to be a communication standard, not a design standard.

Functional Capabilities of IPAD Geometry and IPIP DML

The functional capabilities of 1PAD geometry in terms of  the
IFiIp DML may be summarized:

STORE: Allows the. creation ot all entities, both primitive and
composite, and the addaition of entities to composite
entities. Continuity constraints may be specified when
appropriate.

MODIFY: . Proviaes for the modification of any defining attribute
of an entity. Names and values may be changed.
Continuity constraints may be checked.

COPY: Creates a duplicate and disjoint entity.
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DELETE: Deletes an entity from a composite entity.

REMOVE: Disassociates entities from a composite entity.

FETCH: Locates and retrieves entities.
FIND: Locates one or more entities.
GLRT: Retrieves the entity located in the most recent command

other than a store.

These interpretations depend on the usage of the command with
the appropriate record type. The record CCURVE, for example, is
used with STORE when initiating a composite curve, e.g., when
creating a composite curve with no segments. The record CCSEG is
used with STOKRE to add segments to the composite curve. CCURVE
would be used to DELETE or COPY a composite curve, while CCSEG
would be used to REMOVE a segment from the curve or to FETCH a
segment in the curve. A MODIFY on CCSEG could change the defining
vaiues of a segment or determine to which composite curve the
segment belongs.

The following examples serve to illustrate the use ot the L[CML
commands on the 1IPAD upper-level schema to pertorm these geometry
capabilities. A more complete and detailed description of the DML
and its semantics and how they may be applied to geometry will
appear in the IPAD user documentation.

1. To initiate a composite curve:
STORE CCID=%®CC1®* IN RECORD CCURVE

2. To create a segment using previously defineda vertices and add
it to a composite curve:
STORE CCID=*CC1t,
SEGID=*S£G1*,VERT 1=*VERTEX1? ,VERT2=*VERTEX2* IN RECORD
CCSEG

FLOW will be assigned the value (0, 1) by default.

3. To extend a composite curve to contain a new segment whose
second vertex is given by position and tangent values
(fig. 8):

STORE CCID=*'CC1', SEGID='SkG2!, VERT1=‘VERTEX2',
POS2='POINT3*, PXYZ2=(4,6,-1),TXY22=(~-1,1,0)
IN RECURD CCSEG

4. To add an existing segment to a composite curve and join it
to a segment with CO0 continuity (fig. 9):
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STORE CCID=°*CC1*,SiGID=*SEGG3*,END=*1*,TOSEGID=*SEG2*, TOEND=*2*%
IN RECORD CCSLEG CONTINUITY CO

To change the value of an endpoint of a segment:

MODIFY PXYZ1=(2,3,7) IN RECORD SEGMENT
WHERE SEGID='SEG2*%

To delete a segment:

DELETE RECORD SEGMENT
WHERE SEGID='SEGZ2*

The segment will be deleted unless it is in a composite cuxve

Oor an object. Each vertex will be deleted unless it is in another
segment or object.

7.

To remove a segment from a composite curve:

ReMOVE RECORD CCSEG
WHERE CCID=*CC1* AND SEGID=*SEG2?

The segment will not be deleted.
To copy a segment:
COPY SEGID=*SEG4" IN RECORD SEGMENT

WHERE SEGID='SEG1*

The segment SEG4 will be stored with the flow, enda position,

and tangent values of SEG1 but with new identifiers for each
vertex, position, and tangent vector.

9.
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To retrieve a segment in a composite curve:

FETCH FIRST RECOKD CCSEG
WHERE CCID=ftCC1*

The first segment in CC1 will be retrieved.




CONCLUDING KEMARKS

The work presented in this paper is the result of a team
effort. IPAD's engineering group has supplied to the development
team the requirements for managing geometry. The development
team, including members ifrom the DBMS, geometry, and scientific
programming areas, has developed the strategies to manage the
geometry data. One important factor in this solution is that the
constructs, data structures, constraints, and mathematical
proceaures are defined through IPIP's data definition language.
This allows each group using IPIP to customize the required data
structures.

Schemas presented in this paper aim at supporting 1IPAD
geometxy. By adding more record types, all data necessary to
support the geometry-related applications and other engineering
tasks will be available from one source. With this approach, a
truly integrated engineering data base can be achieved.
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VERTEX VERTID POSITION TANGENT
vert 1 pos 1 tan 1
vert 2 /pD' tan 2

Xyz

VECTOR VECTID VALUES
pos 1 {x1,y1, z1)
pos 2 (x2, y2, z2)
tan 1 {x3, y3, z3)
tan 2 (x4, y4, 24)

component entities fixed.

SEGLIST
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Figure 4.- Record configuration (number of

SEGID
seg 1
SEGID END VERTID
seg 1 1 vert 1
N 14-2/ vert 2
VERTID
vert 1
vert 2
VERTID comP VECTID
vert 1 1 pos.1
vert 1 2 tan 1
vert 2 1. pos 2
vert 2 2 tan 2
XY 2
VECTID VALUES
pos 1 (x1, y1, 21)
pos 2 (x2,y2, 22)
tan 1 (x3, y3, z3)
tan 2 (x4, y4, z4)

component entities may vary.
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STRUCTURE OBJCC: STRUCTURE SEGMENT:
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Figure 6.~ Base-level schema structures.
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Figure 7.- Upper-level schema record types.
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Figure 8.- Extending a composite curve.
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USER INVOLVEMENT IN IPAD
SOFTWARE DEVELOPMENT

Walter A. Bryant and Harold A. Crowell
The Boeing Company

SUMMARY

Since the contract go—-ahead for the IPAD (Integrated Programs
for Aerospace~Vehicle Design) system, there has been extensive and
effective user involvement in support of the system requirements
and software development. Through the selection and development
of demonstration modules with supportive application programs, the
user involvement continues to test and evaluate the prototype
software. The feasibility of follow-on development can be
established on the basis of the documentation and demonstrations
in conjunction with informal information that will be available
from the user representatives at the time of final contract
delivery.

INTRODUCTION

The papers presented previously in this symposium have
described the aerospace design environment and the associated
information processes that must be supported by IPAD. System
components have been described by those responsible for IPAD
design. These discussions have addressed the requirements and
capabilities of a "full" IPAD system, as well as some aspects of
the prototype components.

This paper addresses the extensive user involvement in the
software development of IPAD and the functionality of the IPAD
prototype as viewed by the user. Although not a production system
that can support an ongoing design process, the IPAD prototype is
useful for the potential user as well as the interested system
designer and is an essential tool for the companies committed to
the use of the IPAD system. 1In this paper "user" refers to the
engineer or manager responsible for the design, manufacture, or
maintenance of a product, together with those supporting these
functions. (Developers of software systems are users in another
sense but are not included in this discussion.)

Representatives of the User Community

Immediately following the introduction, this paper describes
the broad base of user representation that exists in support of
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the development of the IPAD system. The engineering staff
represents various functional backgrounds and has access to the
experience of a broad spectrum of users through an advisory
council, members and observers of the Industrial Technical
Advisory Board (ITAB), and staff members of the IPAD Program
Office (IPO) at NASA Langley.

User Involvement

The next section describes the roles and interactions of the
various user groups, a process that remains much as it has existed
from the beginning of the contract and is expected to continue, in
some form, even beyond the software delivery. The daily
interaction between the engineering and computing staffs becomes
more rigorous as the time for software delivery approaches. The
usefulness of the scenario as a communication tool is described.

User Evaluation of the Prototype

Finally, the paper evaluates the functionality of the IPAD
prototype from a user's viewpoint. Demonstrating the prototype to
the user community is the responsibility of the engineering staff.
The demonstrations applied have evolved from the scenarios. These
demonstrations and the application programs being developed to
support the demonstration process are described. In support of
the demonstration planning, a matrix was developed to map the
prototype capabilities against the demonstration requirements.

The matrix has also provided useful visibility of the prototype
and the development that follows.

REPRESENTATIVES OF THE USER COMMUNITY

The interests of potential users of the IPAD system are being
well served by a broad base of experienced representatives of the
user community who have been involved since the contract go-ahead
in April 1976. Results of earlier feasibility studies have also
been incorporated, to the extent practical, to provide user
information. Functional groups represented, as well as their
applicable experience, are described below. Figure 1 depicts the
user representatives and their relationships.

IPAD Engineering Staff
The IPAD engineering staff was organized at contract go-ahead
and remained static in size and personnel for the first three
years., It consisted of a manager and four engineers. The manager

and one engineer were from structures; the others represented
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preliminary design, structural design, and operations technology
(computer—aided manufacturing). Of this staff, two members had
been involved in the feasibility study (one full time), and three
had been involved with the contract proposal. The initial effort
required a temporary buildup of several engineers from weights
technology, computer—aided design, manufacturing, tooling, and
quality assurance, among others. Last year, the basic makeup of
the group changed somewhat. The manager was named IPAD Assistant
Program Manager, one of the engineers was made Engineering
Manager, and another moved to a Boeing organization that was
formed to implement IPAD. Subsequently, three engineers have
joined the staff from within the company, one from structures and
two from manufacturing engineering. An engineering aide completes
the present staff. Whereas at contract go—ahead the engineering
staff was close to the size of the computing staff, it is now
outnumbered by nearly seven to one.

Boeing Advisory Council

An advisory council was organized early in the program to
support the efforts of the engineering staff. The council was
made up of Boeing managers and engineers from various
organizations, including technical staffs, design projects, and
manufacturing. The council was directly involved with IPAD during
the first year, but as development progressed, its role became
that of keeping abreast of the systems status.

Industrial Technical Advisory Board (ITAB)

ITAB was organized to support the User Involvement Plan
(Boeing document D6-IPAD-70000-P). Its membership has been fairly
static, consisting of 20 representatives of aerospace companies,
engine manufacturers, and computer firms. The number of observers
has varied, averaging 40 representives of aerospace and other
industries, academic institutions, and Government agencies such as
the Air Force ICAM program. Formal meetings occur on a quarterly
basis, but other interactions can take place at any time.

NASA IPAD Program Office

The NASA-IPO staff monitors IPAD development, approves
documentation and plans, and generally acts as the IPAD
contracting agent. Acting as individuals with experience in
engineering and computing science, IPO members contributed
critiques and recommendations in the user community interests.
The next section discusses how these various groups interact.
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Consultants

Independent consulting firms have been placed on contract to
support the IPAD development process.

USER INVOLVEMENT

The intensive user involvement in the software development of
IPAD is best described by the interactions between the various
user groups and by their interfaces with the IPAD computing staff.
The following sections describe major program milestones and the
user groups involved.

Definitions and Requirements

The initial period after contract go-ahead saw an intensive
effort by the engineering staff to develop definitions and
requirements. Defined were (1) the design process, (2)
manufacturing interactions with the design process, and (3)
management systems. Based on these definitions, the system and
user requirements were developed. These were given to the
advisory council in the forms of presentations and drafts for
their critiques. Many of their recommendations were incorporated,
and the revised documentation was issued to NASA-IPO for review
and approval. Then followed an iteration to review and
incorporate these comments as applicable. Concurrently ITAB was
involved in the review process, first as an audit team, then as a
full board review. This effort was in the form of five different
documents, so the review process took place over several months.
Figure 2 shows the evolution of the documentation.

The engineering staff was also involved with the development
of the technical plan, management plan, documentation plan, and
user acceptance plan during the initial period of the contract.

System Specifications and Preliminary Design

The computing staff developed a set of IPAD requirements
based on the engineering definitions and requirements. The
preliminary design of IPAD then got underway- The engineering
staff now became the reviewers and critiqued computing
documentation that described the various IPAD components. The
preliminary design material was also monitored by NASA-IPO and
presented at ITAB meetings. The culmination of this effort was
reached at the critical design review in September 1978. This was
combined with an ITAB meeting in Seattle. Engineering and
computing presented various aspects of the program status. This

206



review resulted in the approval of preliminary design and a go-
ahead for detail design and coding.

Prioritization of Requirements

In order to select a subset of requirements to be supported
by the first-level prototype, the full set had to be prioritized.
ITAB and NASA-IPO were called upon to support this effort. The
feedback indicated the requirements determined to be mandatory,
with the others weighted according to their needs.

The results of this exercise were used to prepare the IPAD
User Requirements Implementation documents. Volume 1 of Boeing
document D6-IPAD-70016-D-1 explains the requirements for first-
level IPAD, volume 2 for second-level, and volume 3 for third-
level. First-level IPAD is the prototype built for the current
contract, while the others are intended for future follow-on
contracts.

Requirements Update and Enrichment

The interaction between the engineering and computing staffs
has continued throughout the program. One concern has been
supporting the engineering interpretation and computing
implementation of the requirements. A procedure called
Interpretation and Implementation (I&I) is being used to control
this interchange. The I&I forms become informal documentation
based on either a request from computing for engineering support
in the interpretation of a requirement or an input to computing by
engineering when it is felt that engineering requirements are
being overlooked or misinterpreted.

Formal changes to the requirements documentation are accom-
plished through the Configuration Change Board, in accordance with
the Configuration Control Plan (Boeing document D6-IPAD-70005-P).

Scenario Process

Another informal process that evolved to meet the need for
communication between the user and the computing staff is the
scenario process, which is based on scenarios that depict various
aspects of the design process and its interfaces. Using a
modeling technique called SAMM (Systematic Activity Modelling
Method), activities and data flow were selected from various
design levels and presented to computing staff representatives
each week. Computing would then respond in reference to IPAD
support for the scenario based on full IPAD and the prototype. A
new scenario package was presented each week, and the ensuing
discussions clarified many points for both engineering and
computing. This process provided the basis for detail design
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changes and has provided the computing staff with a greater
appreciation for engineering activities.

Figures 3 and 4 show the scenario contents and interactions
with the ITAB applications subcommittee. This subcommittee was
formed to work with IPAD on performance estimates for pre-IPAD
engineering performance that will be compared to the performance
using IPAD. The scenarios have been used for software design
evaluation and demonstration development.

Information Surveys

Application Programs: ITAB and NASA were called upon to provide
information in addition to the requirements exercise. In 1977
they were asked to identify application programs in the public
domain as candidates for use with the prototype for
demonstrations. They also provided other information concerned
with the demonstrations that helped the engineering staff in its
planning.

Geometry: In 1979 ITAB and NASA were requested to reply to a
geometry questionnaire that asked how and what geometry was used
in their constituent organizations. This information was used in
support of the IPAD geometry software development and the IPAD
geometry standard reseach that the engineering staff documented.

Demonstration Process

The demonstration process has included the selection and
planning of demonstration packages from the scenarios that
represent the design process and its interface with manufacturing.
The demonstration package has been described to ITAB and NASA for
their review. The demonstration package is described in the next
section.

ITAB Visitations

Several ITAB companies have sent teams to visit the IPAD
contractor to monitor progress and exchange ideas for IPAD
development. and implementation. The engineering staff
participated in dialogues with these teams and realized benefits
from these user exchanges.

Consultants

lNotable among outside consultants that have contributed to
the IPAD development is Information Research Associates.
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Engineering scenarios have been used by this company to model the
software design and measure performance of the IPAD system
components.

USER EVALUATION OF THE PROTOTYPE

This section discusses the IPAD first-level prototype from
the user's viewpoint. The discussion is based on the experience
of the engineering staff in support of demonstration planning.
The engineering staff is responsible for demonstrating the
prototype to the user community. In addition to describing the
use of the prototype in conjunction with a demonstration package,
the section generally describes how full IPAD utilization would
differ from the prototype experience.

Demonstration Planning

Engineering scenarios were developed with the dual purposes
of communicating engineering needs to the computing staff and
providing a basis for demonstration planning. Excerpts were
selected from the scenarios to provide a continuous subset of
activities that would begin in preliminary design and proceed
through detail design to the interfaces with manufacturing. This
would form a demonstration package made up of modules that can be
demonstrated as individual sessions at a terminal. The criteria
for selecting demonstrations are shown in figure 5.

To provide visibility for demonstrating planning, a matrix
has been developed to map the IPAD prototype capabilities against
the demonstration requirements. The matrix is also useful as a
picture of the prototype and as a base for planning follow-on IPAD
levels. The matrix indicates the requirements to be supported by
the prototype (level I) and follow-on (levels II and III) stages.
The demonstrations are mapped against these, indicating
requirements used by each. The prototype capabilities are mapped
against these requirements and the phased releases are reflected.
If demonstration requirements are not supported by prototype
capabilities, the need for an application program is indicated.

Application Programs

In order to support the demonstration effort, computing has
established an application programming group. This group is
responsible for evaluating the engineering specificaton of each
demonstration for IPAD capabilities and for providing a computing
interpretation of the specification along with resource flow times
and milestones. In each demonstration, applications programs will
have to be written or, in some cases, converted to permit the use
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of IPIP. There are two ways to integrate applications programs
into IPAD, one is fully integrated and the other interfaced.
Fully integrated programs make direct calls to IPIP (IPAD
information processor), where the interfaced applications require
pre- and postprocessors to take advantage of IPIP capabilities.
Both aspects of integration will be shown in the demonstration
package.

To develop the best possible demonstration package, a
procedure was established for design reviews and walkthroughs as
each demonstration is developed. A diagram depicting this
activity and the current status of each demonstration is indicated
in figure 6.

Demonstration Package

Demonstration modules to be developed and attendant
application programs have been scheduled and numbered in a
sequence based on the availability of prototype capabilities. The
modules in the sequence to be used during the demonstration are
described below and illustrated in figure 7.

Step 1. Project Management (Demo Module 3): This demonstration
provides work breakdown structure, task and subtask
definitions, and associated management data such as cost
and schedule data, loads the data base with IPAD actual
project data, and provides management reports through
interactive query of the data base.

Step 2. Configuration Parameters (Demo Module 1l): Parameters in
the data base are initialized to characterize the
airplane body, wing, empennage, power plants, and
landing gear. The data is used by the configuration
designer to develop a specific configuration.

Step 3. General Arrangement (Demo Module 2): The configuration
designer develops discrete characteristics of the
configuration. A wire diagram representing the general
arrangement of the airplane is created.

Step 4. Structural Arrangement (Demo Module 6): The 3-D
geometric model of the general arrangement is expanded
using geometric entities to develop the structural
arrangement, again represented by a wire diagram. A
general structural model is created for use by staffs
(structures, weights, etc.).
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Step 5. Structural Analy51s (Demo Module 7): The general
structural model is interrogated to construct a finite-
element (FE) analysis input file. The output of the FE
analysis 1is then reviewed through a formatted
presentation.

Step 6. Frame Design (Demo Module 8): Using frame contours from
Module 6 and internal and external loads from Module 7,
the designer reviews and evaluates the structural
concept by determining whether the concept will
adequately handle the loads developed in Module 7,
then creates a detailed design of a body frame.

Step 7. Manufacturing Interaction—--Indentured Parts List (Demo
Module 4): Using the frame drawing from Module 8,
the demonstration will interactively accomplish two main
things: (1) create an IPL and (2) interrogate the
PL/IPL. Other capabilities that will be demonstrated

are:
Graphic IPL format
Error messages and tutorial
Record types for PL data :
Interrupt capability including "skip-through” menus
English~like menu for PL/IPL interrogation
Step 8. Manufacturing Interaction--Geometry (Demo Module 5):

This module will show that the geometry, as it exists in
the data base, can be configured to meet manufacturing
requirements through: (1) multiple views, (2) direct
transfers of geometry to apt source statements (with
preprocessor to AD2000), and (3) the geometry/parts list
relationships.

Step 9. Data Base Administration (Demo Module 9): This
demonstration includes miscellaneous data base
administrator activities based on IPAD requirements.

Integrated Demonstration Package: The complete demonstration is
processed with the final software release.

The total package above represents a flow of data through the
design process and its interface with manufacturing. (See figure
7). The package will demonstrate the many IPAD capabilities in an
integrated environment. Since the demonstrations are to exercise
the IPAD capabilities and not to provide sophisticated production
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systems, basic geometry and subsets of other types of data were
used. Thus, this package demonstrates the data integration
capabilities of IPAD in the engineering environment.

Using The IPAD First-Level Prototype

The majority of the user interface with respect to the
demonstration package will be through each application program.
This is representative of any prototype application; however
several exceptions will be discussed in this paper.

Loading Data into IPIP.- As with any other data base management
system, different data-loading techniques are available. The IPAD
information processor (IPIP) is an engineering data base
management system and therefore must serve the needs of the
engineering community. This includes scientific data storage
(which can be voluminous at times), geometric data descriptions
requiring data structure to be associated with each entity type,
manufacturing information, and accounting and managerial data.
IPIP is being developed to support all facets of engineering.
Because of this diversity in processing, a general-user data
manipulation language (DML) has been developed that will support
these engineering needs. The description of the DML can be found
in the report describing the impact on application programs using
IPIP, which is available upon request.

There are two ways of loading data into the IPIP data base:
(1) through the gquery processor, and (2) through an application
program. There will be logical schemas associated with each of
these that describe the user's view of the data.

Manipulating Data.- There are two methods of manipulating data:
through application programs and by QUERY processor; both use the
data manipulation language (DML) for IPIP. When accessing data
via applications, the user can be guided through record
relationships of the data base without extensive knowledge of the
DML or the data base. However, once a user becomes familiar with
IPIP DML and related concepts he will be able to traverse the data
base freely and will thus enjoy greater flexibility in making data
inquiries. A sample query session is shown in figure 8.

Creating Geometry.- There are three ways to create geometry in
IPAD: (1) AD-2000, (2) geometry display utility, and (3)
application programs.

The primary source of interactive geometry construction is
AD-2000, a computer-aided design drafting system that has been
interfaced with IPIP by a pre- and postprocessor. The
preprocessor allows access of IPAD geometry from IPIP for use in
the drafting system, and, conversely, the postprocessor converts

212



geometry created in AD-2000 to the IPAD canonical forms for
storage in IPIP.

The geometry display utility has been developed to allow
users to combine existing geometry to create new geometry
configurations and to provide a general viewing capability.

Application programs use general purpose graphics system
(GPGS) calls for display of geometry, both as it is generated in a
construction mode and after retrieval from the data base. IPAD
also supports ANSI Y14.26.1 geometry formats for communication.

User Interface.- The prototype presents constraints to the user
that full IPAD will not. For example, in the creation and use of
geometry to support the demonstration, while the initial geometry
for the general arrangement is developed with the application
program, the structural arrangements and detail frame design are
accomplished using AD-2000. The drafting system is on the DEC VAX
11/780, while the application programs are on the CYBER 170/720.
The creator of geometry using AD-2000 must file his work, then log
off the VAX and log onto the CYBER and run the postprocessor to
convert and store the geometry. Conversely, to access IPAD
geometry for use with AD-2000, he must run the preprocessor on the
CYBER, send the converted geometry to be filed on the VAX, and
then get on the VAX to use AD-2000. On full IPAD, these would be
direct calls on an integrated computer-aided design (CAD) system.
During actual demonstrations, other differences will be apparent
to viewers.

As IPAD is enriched, the pre-~ and postprocessors will become
integral parts of AD-2000 as imbedded applications that make
direct calls to IPIP through the communication control program
(CCP) facility available for high-speed network communications.

Prototype Testing and User Acceptance

The computing staff has the responsibility to integrate and
test the prototype components for response time, throughput,
usability, extendability, etc. By the time the engineering
demonstration packages are run, this type of testing will be
complete. The actual testing by the user starts in the scenario
presentation phase and is concluded when the demonstration
documentation has been completed and delivered.

Computing staff personnel also establish acceptance criteria
for their testing. The user establishes acceptance criteria in
the comparison of actual performance with estimated performance
values. This is but one measure. He will also compare the IPAD
prototype with other systems he is familiar with for parameters
such as response time, user interface, etc. The final user
acceptance will be by the total user community based on the
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demonstration and other documentation (and preferably with some
hands-on testing), but it must also be based on what an expanded
usable system, employing prototype design concepts, can be.

CONCLUDING REMARKS

This paper can be summarized by reemphasizing the user

involvement in the development of the IPAD software:
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User involvement has been extensive and effective throughout
the IPAD program. The design process has been the support
objective and there have been many checks to ensure that the
objective is met.

The scenario process has proven effective for communications
and as a check to ensure that development has been on target.
It should have been introduced earlier, during the
requirements definition phase, for a stronger impact.

The demonstration package, as designed and developed to be
run on the prototype software, illustrates the intent of a
full IPAD system. The design concepts have been established
and can now be projected. Thus, the matrix reflects a
program foundation that goes beyond the prototype and
encompasses the full IPAD concept.

The feasibility of follow-on development can be established
on the basis of the demonstration package and by
documentation in conjunction with the information released
throughout the development program.
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IPAD PRODUCTS AND IMPLICATIONS FOR THE FUTURE

Ralph E. Miller, Jr.
Boeing Commercial Airplane Company

SUMMARY

Although the IPAD system takes its name from the aerospace
industry where it was developed, it is actually directed toward
the universal goal of human problem solving. This presentation is
concerned with the solution of design and manufacturing problems.
It specifically addresses the betterment of productivity through
the improvement of product quality and the reduction of cost.
Productivity improvement is sought through (1) reduction of
required resources, (2) improved task results through the
management of such saved resources, (3) reduced downstream costs
through manufacturing-oriented engineering, and (4) lowered risks
in the making of product design decisions.

It is the view of this presentation that productivity has
reached a plateau due to the stagnation of computer utilization in
 the current product design and manufacturing processes. The
hypothesis is formulated that the quest for new and higher
productivity plateaus can only be achieved by large scale
information integration. Large scale information integration
needs new software such as the IPAD system and its products.
These IPAD products are the consequence of solving five key
problems relating to the integration of information with
production activities: (1) very large numbers of human
participants and specialized tasks directed toward a common
objective (the "lots of" problem), (2) collection of pertinent
information in distributed or centralized data bases, (3) data
sharing and communication capabilities, (4) essential standards
for effective communication, and (5) integration of user
application programs.

The IPAD products are both hardware architecture and software
distributed over a number of heterogeneous computers in this
architecture. These IPAD products are described in terms of
capability and engineering usefulness.

The future implications of state-of-the-—-art IPAD hardware and
software architectures are discussed in terms of their impact on
the functions and on structures of organizations concerned with
creating products.
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IPAD OBJECTIVES

The IPAD products have evolved from examination and analysis
of the problem-solving environment, which consists of (1) humans
joined in a common endeavor, (2) their computers, (3) information
essential to their endeavor (data), and (4) the problems they must
solve. To perform such an examination and analysis, it was
necessary to determine the roles, relationships, and processes of
all elements making up the environment and to seek ways to improve
the problem-solving process.

During the evolution of product data, the prime objectives of
its developers are to improve the quality of the product and
control its cost. Figure 1 shows the two levels involved in the
creation of product data. First, at the idea level, the primary
concern is with conceptual events: preliminary design, detailed
design and analysis, and product definition. Second, at the
product level, the concern is with production processes: the
release of parts, the planning of manufacturing operations, the
development of tooling, and the manufacturing event itself.
Throughout both of these levels, many participants are involved,
thousands of labor hours are consumed, and constant review by
management is required. In anticipation of this massive organized
effort, the objective of IPAD is to facilitate the activities of
each level and to provide for a powerful interaction between the
two levels to the end that improvement in product quality and cost
control will result.

PRODUCTIVITY IMPROVEMENT

The basic resources for problem solving are cost and
flowtime, and the consequences of applying these resources are
evidenced by results from the tasks to which they are applied.
Productivity improvement can be manifested as (1) a reduction in
one or both of these resources with no change in task results, (2)
an improvement in task results with no change in resource
requirement, or (3) a combination of these two benefits, figure 2.

The primary method of improving productivity is through
reduction in required resources. The introduction of new methods
results in less expenditure of cost and/or flowtime when
performing a given task. Benefits from the use of new methods are
as illustrated by the examples in figures 3 and 4 (ref. 1).

The second form of productivity improvement is achieved by
managing the utilization of some of the resources saved by the uss
of new methods. Figure 5 shows that, by re-investing some of the
saved resources in a carefully disciplined and managed process,
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new plateaus of improved task results can be attained, and an
improved level of productivity can also be obtained.

The third area of productivity improvement is reducing
downstream costs. Figure 6 illustrates that, in a typical product
development activity, a relatively small change during the
engineering design can cause a magnified effect on the subsequent
manufacturing operation. Thus, new methods that permit rapid
engineering evaluation of design changes can reduce downstream
operations--particularly out-of-sequence events in manufacturing--
and thus enormously reduce total production costs. Figure 7 shows
some examples of the potential for a typical 300-airplane subsonic
transport program.

The final area of opportunity for productivity improvement is
in the reduction of corporate risks. Figure 8 illustrates the
impact of decision making on program cost, with preliminary design
highlighted as the critical phase in this process. By the end of
this phase even though only four percent of the total product cost
has been incurred, about 70 percent of the decisions have been
made; thus it will be seen that preliminary design represents a
period of tremendous risk. The introduction of new methods and
tools which optimize the quality of the engineering work performed
through preliminary design reduces the risks inherent in the
commitments made to this point.

[

PRODUCTIVITY STAGNATION

Even though nationwide efforts toward improved productivity
have diminished considerably over the past 20 years, computers
have contributed to notable successes in some industries (ref. 1,
2, and 3). However, many of these efforts have concentrated on
specific tasks within a larger problem-solving environment and
thus have exerted only limited influence on productivity in the
broad sense. To illustrate this point, figure 9 shows relative
amounts of computer program development at Boeing in the
application areas of (1) technical analysis, (2) design, and (3)
business systems. Shaded portions of each bar indicate the
proportion of these computer programs that are integrated for
optimum utility throughout the problem-solving environment.
Despite 25 years of experience and effort with program integration
at Boeing, broad utilization of this information integration
technique is still very low. This small degree to which
information is integrated within problem solving processes is
evident fairly generally throughout American industry and is one
of the primary causes of productivity stagnation.
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NEW PRODUCTIVITY PLATEAUS

"Hard" Versus "Soft" Information

To date the search for productivity has concentrated on
individuals, their tasks, and certain crucial physical work space
and equipment considerations. These may be thought of as the
"hard” information elements of the problem-solving environment for
they are visible, tangible, and concrete. They possess simple
data characteristics such as geometry topology, quantity,
location, etc. They are, therefore, easily managed.

In contrast, there are certain "soft" information elements
that are characterized by abstract qualitities; they are
invisible, theoretical, and complex. These soft information
elements must be represented by equations, mathematical symbols,
and logic. Soft information is visible abstractly in drawings,
analyses, computer printouts, and electronic displays. Obviously,
it is vastly more difficult to manage soft than hard information,
especially because of its volume and complex computer structures
and relationships. As a consequence, there are few in-place
computer programs that deal adequately with soft information.

Although it is understandable--as well as demonstrable--that
industry has concentrated up to now on dealing effectively with
hard information, it is essential, if we are to achieve new
productivity plateaus in the future through large-scale
information integration, that we also concentrate on handling soft

data.

Data Base and Work Relationships

In the complex process of integrating information and work
performance, the key entities are the product organization, its
tasks, and the data base. The most crucial challenge is the
construction of an effective interrelationship between these
entities. Figure 10 shows this relationship and makes the
particular point that both hard and soft information must be
integrated on a total organizational basis. The IPAD system
recognizes that it must be concerned not only with the specialized
information needs of individuals and subgroups but with all of the
varijious participating functional organizations that contribute to
product creation. The common resource for implementing the
relationship between work and information is the data base, and it
is through this repository that all of the diverse activities--
construction, display, execution, modification, and disposition of
work~-have common access to required information.
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Action and Information

In evaluating total organizations and their tasks, IPAD is
obliged to provide an environment where action can be integrated
with information, for these are the basic elements by which human
participants must be represented. Figure 11 shows that the user
is found at all levels of activity within an organizational
structure. Questions of "what" pertaining to that user's
activities are primarily concerned with information in the
organization, whereas questions of "how" relating to the
organization's activities are essentially concerned with the
actions of the user.

Figure 12 lists the five key problems to be solved if
successful integration of action with information is to be
achieved: (1) large numbers of people and specialized tasks (the
"lots of" problem); (2) data bases, both distributed and unified;
(3) data sharing and communication capabilities; (3) communication
standards; and (5) integration of user application programs.

IPAD PRODUCTS

One unique accomplishment of the IPAD program has been the
establishment of generic hardware and software architectures that
address these key integration problems. As a consequence, these
architectures provide for (1) multiple computer systems to ensure
adequate capacity and reliability; (2) heterogeneous computer
manufacturers and vendors to provide cost-effective matching of
tasks with computer devices as well as competitive procurement;
and (3) a hierarchy of communication capability, with special
emphasis on channel speed levels to ensure effective data- and
program-sharing.

As a consequence of this approach, the IPAD computer
laboratories have been developing three different software
implementations (fig. 13) for three different manufacturer's
computers. The three computers are connected together by high-
speed communications, thus providing megabit speed communication
between these heterogeneous machines. Figures 14 and 15 show the
detailed architecture of these software implementations. In these
diagrams, a high degree of symmetry is apparent in the software
capability existing across the three machines, thus ensuring
integrity of user data regardless of the application location on
any of the three machines.

In some implementations, these architectures permit the data
management function to be placed in, and to function from, one
machine only, regardless of the machine in which the application
program resides.
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IPAD priorities and funding limitations have dictated the
sequencing of developmental activities; consequently, the greatest
capability currently resides in the CYBER architecture, with some
lesser concentration in the VAX. In 1981, much of this capability
will also be implemented on the IBM 4341 machine.

IPAD documents have been created in the areas of (1) the user
task environment and (2) a future "full IPAD" concept, as
reflected in the preliminary design phase. In the case of the
user task environment, documentation covers (1) reference design
process, (2) interaction between design and manufacturing, (3)
project management processes, and (4) data flow and data sizes
consistent with the reference design process environment.
Preliminary design documentation (reflecting future full IPAD)
covers (1) "IPAD System Design Overview," (2) "User Interface
Preliminary Design," (3) "IPAD Evaluations and Alternatives," (4)
"IPEX Preliminary Design,” (5) "IPIP Preliminary Design," (6)
"IPAD Graphics," (7) "IPAD Geometry," (8) "User View of IPAD," and
(9) "IPAD Level 2 Design." (Boeing documents D6-IPAD-70036-D,
Volumes 1 through 9.)

Phase I, a subset of full IPAD design, has been developed.
Figures 16 and 17 list the various software modules of this phase
I development and indicate the engineering uses and capabilities
of each.

ORGANIZATIONAL IMPLICATIONS

The emergence of large-scale integration of information and
action, as discussed above, will affect not only the hardware and
software architectures-—-the machines and the procedures for their
use--but even more dramatically the organization and utilization
of people as well. Present IPAD state-of-the-art developments
have very broad implications for engineering and product-creation
organizations. These organizations now face revolutionary
guestions with respect to the processes and resources of product
creation in an integrated environment. These processes will have
to be established, defined, and appropriately reoriented to
capture the productivity improvement opportunities this integrated
environment affords.

FEach organization will need to review all the resources at
its disposal. These include the people resources: engineers,
programmers, and managers; the mechanical resources: computer
hardware, both local and remote; the data resources: paper and
electronic media; and the communications resources, both human and
electronic.

The critical question that must be asked is: How shall we
organize? Should we continue to be discipline- and action-
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oriented (as is commonly the case)? Or should we reorganize to be
task-, process-, and information-oriented? How can we best align
these resources to control and direct them toward product creation
at a higher level of productivity?

Figure 18 shows the most probable structure of an
organization featuring integrated action and information. Most
corporate product organizations are headed by a high-level
executive charged with profit center responsibility for that
particular product line. Given the state-of-the-—art in computer
hardware and software, it now appears very cost effective to
combine the information resources with the people resources in an
organization such as the one shown here.

CONCLUDING REMARKS

From the foregoing, it will be seen that productivity gains
have resulted from the introduction of computer tools, albeit of
limited information integration capability. However, if we are to
meet the great productivity challenge of the 1980's, further
progress toward new plateaus will depend on what can be achieved
through large-scale information integration (LSII). This implies
the further integration of hardware and software architectures,
advanced IPAD-like system software, heterogeneous distributed
processing with megabit communications, and application programs
integrated within these architectures.

Organizational, engineering, and management philosophies and
concepts are changing. Information will be a powerful new
resource to be integrated with the usual people and machine
resources. The implementation of these new concepts must be
controlled and applied with utmost management skill if we are to
achieve productivity improvements necessary to exploit the
opportunities that will face us in the decade we have now entered.
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CASE STUDY ~ LOCKHEED-GEORGIA COMPANY INTEGRATED DESIGN PROCESS

C. Thurman Waldrop
R&D Staff Engineer
Lockheed-Georgia Company

SUMMARY

This paper presents a case study of the development of an Integrated
Design Process at the Lockheed-Georgia Company. There has been a continu-
ing growth of computer-aided design and analysis resulting in improvements
in efficiency and capabilities but there are also problems such as sub-
optimization within each discipline, data handling, and data concurrency.
The approach taken in preparing for the development of an integrated design

process includes some of the IPAD approaches such as developing a Design Pro-
cess Model, cataloging Technical Program Elements (TPE's), and examining

data characteristics and interfaces between contiguous TPE's. The imple-
mentation plan is based on an incremental development of capabilities
over a period of time with each step directed toward, and consistent with,
the final architecture of a total integrated system. Because of time
.schedules and different computer hardware, this system will not be the
same as the final IPAD release; however, many IPAD concepts will no doubt
prove applicable as the best approach. Full advantage will be taken of
the IPAD development experience. This case study, which includes forsee-
able problem areas, represents a scenario that could be typical for many
companies, even outside the aerospace industry, in developing an integrated
design process for an IPAD-type environment.

INTRODUCTION

The Lockheed-Georgia Company has been in operation since 1951 in a
facility largely owned by the U. S. Air Force. The work force has ranged
from 10,000 in 1958, up to 33,000 in 1969, and back down to approximately
10,000 at the present time. The Company is the prime contractor for the
C-5, C-141 and C-130 military transports, JetStar business jet and numer-
ous smaller projects. It has various modification projects and is a sub-
contractor for other Lockheed Companies and other aerospace manufacturers.
Computers support all the basic operations, such as preliminary design, de-
sign analysis, production design, testing, tooling, fabrication, assembly,
purchasing, product support, finance, and personnel. This paper is limited

to the evolution of computer usage in the design process.

Lockheed-Georgia has steadily applied more sophisticated computer
techniques to the analysis and design of aircraft systems as offered by
the advances in computer technology. The engineering design and analyses
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functions were initially conceived as a process of independent computations
by each technical discipline. As design requirements have become more
stringent, these independent computations have grown more detailed in
scope, have required more input data, and have produced more output data.
This growth in specialization and in the amounts of data generated have
produced superior designs, but the management of this data has become
costly and difficult. Over a period of time, the individual computer pro-
grams have been suboptimized for faster execution, and, in some cases,
interface problems have been encountered. The means of handling data
among the hundreds of individual computer programs in a design-analysis
cycle is a major source of calendar time delays. As a result, Lockheed-
Georgia has attempted to minimize the delays by optimizing the total engi-
neering analysis cycle time rather than any one discipline methodology or
computer program. Further, more extensive use was made of computer real-
time access and data file management for communication of data, improved
visibility, and ease of management across each discipline.

One example of progress in this effort is represented by the Integra-
ted Structural Analysis System development. This operational system pro-
vides computer applications for more timely transfer and control of struc-
tural analysis data across the technical interfaces from aerodynamics
through basic loads, dynamic response, flutter, and margin of safety analy-
ses. This system substantially reduces the calendar time for a thorough
structural analysis thereby reducing development costs. Another example
is the ongoing project, Interactive Computer Program for Aircraft Prelimi-
nary Design Integration. However, these efforts represent only a small
part of the job of integrating the total engineering design. Thus, a
genuine need exists for a top-level integration of the overall design pro-
cess to ensure timely and comprehensive control of the computerized design
process at its many interfaces. The NASA IPAD program is a start in this
important area, but the industry recipient must implement a comprehensive
companion program to reconcile IPAD with his particular product line and
approach to the design process. In preparation for taking full advantage
of the IPAD Program products, Lockheed-Georgia initiated the Integrated

Design Process Project.

INTEGRATED DESIGN PROCESS DEVELOPMENT

The first step was the development of a design process model for a
thorough understanding of the interrelation and the sequencing of func-
tions performed by the various disciplines involved in the design process.
A multi-discipline team was established to assure that all disciplines were
adequately considered and appropriately integrated into the overall pro-
cess. Design, flight sciences, structures, avionics and information pro-
cessing are represented by permanent members on the team; others are avail-
able on an ''as required" basis. The design process model was developed
graphically as a wall-sized display in a "Design Process Integration Con-~
‘trol Room" as shown in Figure 1 so that it can be readily reviewed and
discussed simultaneously by an appropriate group. This proved to be an
excellent tool for showing the expert in a particular discipline how he
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relates to the other disciplines and how his work fits into the overall
design process.

This design process model was tailored after the model developed by
the Boeing IPAD Team which is documented in IPAD Report D6-IPAD-70010-D.
The IPAD model is divided into nine levels of activity as shown in Figure
2 for a commercial transport aircraft. The first stage, continuing re-
search, is described as activity Level I. The long-term research stage
continually provides new design procedures, technical analysis capabili-
ties, and data for the design of aircraft. The second stage, preliminary
design, is divided into four activity levels: design criteria selection
(Level II), design sizing (Level III), design refinement (Level IV), and
design verification (Level V). The third stage, product development, is
divided into four activity levels: product detail design (Level VI),
product manufacture (Level VII), product verification (Level VIII), and
product support (Level IX).

The conversion of the IPAD model to apply to a military program pro-
cess required a correlation of these nine levels to the program phasing
required by the latest DOD System Acquisition Process reflected in DOD Di-
rectives 5000.1 and 5000.3 and OMB Circular A-109. The basic difference
exists in that many of the nine levels of the TPAD process are overlapping
activities wherein the DOD program phasing represents an end-to-end ar-
rangement of activities with a decision milestone between each phase be-
fore the next phase can proceed.. This is reflected in Figure 3 with an
approximation of the relative correlation between the two types of pro-
grams.

Another major difference between the two types of programs is the
timing of the first flight test of the aircraft. This point usually oc-
curs in the military program during the Demonstration and Validation
Phase (Block C of Figure 3) at which time the presently popular prototype
flight test programs are conducted. This can be in the form of a com-
petitive fly-off or a non-competitive proof of a previously selected air-
craft before committing to a full-scale development and production pro-
gram. The current high funding required for this approach is prohibitive
for the civil sector to absorb, and, as a result, the first flight of fu-
ture commercial aircraft usually will not occur until the first production
aircraft. Other changes were required to the IPAD process in several areas
to expand the process to show more of the significant functions and to re-
flect more complete interface of test requirements and results with the de~-
sign functions. Additionally, extra routines were incorporated in the
appropriate places for the consideration of load alleviation and flutter
suppression features.

The IPAD design process reflected no wind tunnel test support for
Level IV, design refinement. The only wind tunnel tests were shown as
Level V, design verification, an after-the-fact effort. Therefore, Level
IV was expanded by showing the earliest point in the design process when
configuration development allows meaningful wind tunnel models to be de-
signed and tested followed by the point when the wind tunnel test results
are needed in the design process. Wind tunnel tests to support the design

237



process have always been a pacing factor, but reducing the cycle time
through the integrated design process makes this pacing factor even more
crucial. This highlighted the need to significantly reduce -the time span
from wind tunnel model design through test data reduction. As a result,
a program was initiated for reducing this time span through computer
graphic design, numerical control fabrication of the model, and improve-
ments in data reduction techniques. This effort resulted in an ideal
pilot program not only for integrating the design functions but also for
demonstrating the feasibility of the automated transfer and use of data
across the design/manufacturing interface.

The design process development was documented as a logic diagram
with each function and decision point described by a narrative discus-
sion. In addition, the logic diagram was computerized on the Applicon
machine which is normally used for circuit-board logic design. This
allows automatic printout and easily incorporated revisions. The design
process was generalized to some degree as applicable to a generic sub-
sonic military transport aircraft with a wing of moderate aspect ratio
and with two to four engines located in conventional arrangements.

With the use of the Applicon machine, the appropriate revisions can be
quickly and easily incorporated to apply to a specific aircraft or to add
special design features.

The (computer) application programs or Technical Program Elements
(TPE's) required to perform each of the design functions in the design
process have been identified. These TPE's are cataloged and classified
as follows:

1. Operational - indicates that the program is in current use or
has been used even though it may need some modification to apply
to a particular model aircraft.

2. 1In development - indicates that the program is being developed
but is not yet operational.

3. Not developed - indicates that a new program is desired but is
not currently being developed.

The input and output requirements were recorded to aid in establish-
ing data compatibility of contiguous TPE's to perform the functions. As
a result, several activities were initiated to develop a run-stream of
programs in various areas of the process. Also, a special effort was di-
rected toward the interfacing of various geometry modeling programs such
as GRADE, CADAM C) , Loft, 2-D and 3-D structural analysis models, and
pressure distribution models in order that a more common geometry data
base could be developed for all users. GRADE is the Lockheed-Georgia
developed program, Graphics for Advanced Design, that enables the prelimi-
nary designer to perform his current drawing board task on a graphic display

() Registeréd Trademark, Lockheed Corporation
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coupled with the full power of automation. As designs are generated, the
program will automatically develop a mathematical model of the surface

envelope. CADAM, Computer-graphics Augmented Design and Manufacturing, is
a Lockheed-California developed program for design and drafting functions.

Another task was the definition of the features and requirements for
those computing systems needed to handle all of Lockheed's engineering
projects through 1985. The major task was to determine the existing ma-
chine dependency and geographical distribution of ongoing engineering
computer aided operations and then define the needed changes in system
features. A large part of the results of this task were incorporated into
the update of Lockheed's computer capabilities.

The pattern of functional machine dependency and geographical distri-
bution existing at Lockheed in 1979 is shown in Figure 4. The mainframe
computers are all co-located in a central computing facility area, but are
not directly coupled for any exchange of data. The work station for ex-
ternal remote processing is located about two miles away in an engineering
facility area. The minicomputers are scattered throughout many different
electronic and test laboratories. They are used for data acquisition and
analysis in wind tunnels, full-scale static and fatigue tests, acoustic
tests, and flight tests. Several minicomputers may be directly coupled in
the same lab but none have networking features to other labs or to the cen~
tral mainframes. Functionally, the engineering operations shown are ma-
chine dependent to a large degree. The various vendor computers have dif-
ferent word lengths and different intermnal character representations.
Double precision is often required for accuracy on the 32 bit word IBM
computer, sometimes on the 36 bit word UNIVAC, and rarely on the 60 bit
word CDC computers.

The pattern of functional machine dependency and geographical distri-
bution that Lockheed plans to have implemented in 1982 is shown in Figure
5. There are three major changes being implemented: (1) the mainframe
computers and selected minicomputers will be interconnected for computer-
computer data transfers, (2) the graphics scopes will be removed from the
mainframe and remoted on minicomputers, and (3) array processors will be
provided for rapid calculations. The major thrust of these changes is to
provide for hardware integration and rapid data transfers between the vari-
ous engineering disciplines and wide spread locations. The communications
concentrator added to the mainframe computer was a major need defined in
this study. These changes will also take more advantage of the newer,
more powerful and lower-cost minicomputers. Several minicomputer vendors
supply the required software for their machines to network and transfer
data to other machines.

The long range goal of this system is to permit an orderly implemen-
tation of Lockheed's engineering computer aided operations and the IPAD
software. The data base management system software could be implemented
on one of the mainframe host computers and one of the minicomputers in
each major lab installation. The data management software system will pro-
vide for the integration of design data as required. Thus, by 1982, major
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improvements in design integration will have been achieved which will in-
crease engineering productivity, reduce errors, add operational flexibil-
ity, and greatly reduce RDT&E costs in the design and testing processes.

Two specific areas within the design process have been identified as
candidates for initial data base implementation. These areas are reli-
ability/maintainability analysis and aeroelastic loads analysis.

The reliability/maintainability analysis area was chosen because of
the extremely large volume of data involved and the necessity of automat-
ing the management of this data. Only one organization is involved in the
preparation and use of this information. One important characteristic of
this data is that it is fairly well structured and the data base can be
implemented using the techniques associated with existing commercial data
base systems.

The aeroelastic loads analysis area was selected because it is repre-
sentative of the types of data and interfaces which a technical data base
system should accommodate. The volume of data is large, the type and
structure of the data is quite varied, and several different organizations
interface with the data base.

Since no technical data base management system currently exists from
which to gain expertise in defining technical data base characteristics,
formal training in the area of logical data base design for commercial
systems has been undertaken. The reliability/maintainability data base
closely resembles a commercial data base and, therefore, its design can
be initially modeled after a commercial system.

The risk involved in the application of IPAD is recognized. An IPAD
which meets all expectations of performance, ease of installation, sim-
plicity of interface between man and computer, and capability of support-
ing a totally integrated interactive design system, may founder in a par-
ticular installation if the proper environmment and planning are not pro-
vided. This becomes particularly significant with the magnitude of the
task to adapt a large existing design system to the organization and su-
pervision of IPAD.

The Lockheed independent development of an integrated interactive de-
sign system must take full advantage of the benefit of IPAD, especially in
the areas of data management and distributed computing with high-speed
networks. Even though the distribution executive and the three-schema
data base managers are desirable, the great generality afforded by the
IPAD approach may result in performance degradation unacceptable in the
Lockheed system. For these reasons, the progress of the IPAD Program is
being closely monitored to assure that the future Lockheed efforts are
commensurate with taking maximum advantage of any IPAD output. Plans are
to participate in any IPAD user training, testing, and evaluation offered
by the IPAD Program. Coordination will continue with computer equipment/
software vendors to properly plan future needs.
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The implementation of an integrated design process at Lockheed will
be an incremental development of capabilities over a period of years.
The development plan will be phased to progressively build the desired
capabilities consistent with the availability of IPAD software. Since
the data base management system is the heart of an integrated design pro-
cess, the primary efforts will be in this area starting with the develop-
ment of a data file management capability which will be designed to be
compatible with an eventual evolution into a more sophisticated IPAD-type
data base management system. An operational capability is expected by
1983. Further development of an integrated program and conversion of TPE's
will provide an operational project capability of an integrated system by
mid-1985.

SUMMARY OBSERVATIONS

Significant improvements in design productivity can be realized with
the more efficient methods and operations offered by an integrated design
process. This improved productivity can be manifested in a number of
different ways. The most important is the reduction in design errors.
Reductions in the design time span allows more iterations for design re-
finement within an allocated time period. The engineer is relieved of
mundane tasks providing more time for creative work. Another significant
advantage is that everyone uses the same current data base. Also, the
appropriately planned and designed integrated design process provides the
foundation for supporting computer—aided manufacturing operatiomns.
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Figure 1l.- Design Process Integration Control Room.
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INTEGRATED CAD/CAM:
PROBLEMS, PROGNOSIS, AND ROLE OF IPAD

Dr. Edwin N. Nilson
Pratt & Whitney Aircraft Group

SUMMARY

Major technology problems impede the development and evolution of totally
integrated interactive CAD/CAM systems. IPAD is playing an important role in
the identification of these problems and is contributing significantly to their
solution. It is the purpose of this presentation to examine some of these
issues, look at the prognosis of obtaining effective solutions, and point up
some of the past and expected contributions of IPAD to this technology.

INTRODUCTION

The acronym CAD/CAM for Computer—Aided Design/Computer-Aided Manufacture
means many different things to different people. For some it covers the total
application of computing to design and manufacturing and others it means
something of much more recent vintage and in particular is associated somehow
with interactive computing. Without attempting to resolve this debate, we use
the term Integrated Interactive CAD/CAM to denote a special form of computing
process in support of design and manufacturing in which:

(1) the description of a part and its properties are built up step-~by-
step in a common data base.

(2) this data is accessed and/or contributed to by all groups in
Engineering and Manufacturing who are directly concerned with the design,
manufacture, and quality assurance of the part.

(3) the process is continuous, beginning in Design and extending through
Manufacturing and Quality Control.

(4) the fundamental mode of computing is interactive.

There is implicitly contained here the suggestion that such a system for
the present deals only with technical computing in design and manufacturing
as opposed to management and other supporting information systems., This
connotation is intentional. Certain auxiliary information systems are usually
required and are considered to be included; but it is strategically
advantageous to establish first the level of integration indicated before the
move is made to integrate the total computing effort—--marketing, financial,
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work scheduling, inventory control, product support, as well as engineering
and manufacturing technical computing.

FUNCTIONAL DESCRIPTION OF I.I. CAD/CAM

In such a system, the integrated data base in a host computer or in a
network of computers serves as the basis of communication. The schematic in
Figure 1 represents the relation to users of such a shared data base,
indicated by the long horizontal bar. Active portions of this data base are
kept on-line and available for interaction by groups in both design and
manufacturing.

By proceeding from preliminary design through mechanical design, design
analysis and drafting, geometric descriptions of parts and their properties
as well as those of subassemblies and assemblies of components are gradually
developed in the common data base. Those elements of data required by
Manufacturing from Engineering are available in the data base to manufacturing
groups involved: process planning, tool design/make, numerical control (N/C)
programming. These groups, however, not only interact with the design data
in the data base, but build up their own data there for their own use and for
communication among themselves. Automated inspection compares measured
dimensions against design data and reports deviations therefrom.

It is in this way that the common data base becomes the fundamental
medium for communication of technical information within and among design and
manufacturing engineering groups as well as providing the working space for
interactive computing.

The drafting process indicated will evolve over time. Initially, the
drafting operation will continue to produce drawings with dimensioning and
tolerances using information previously introduced into the data base,
adhering to this traditional design-manufacturing communication for much of
design. Ultimately this communication will be implemented essentially via
the design data base. The role of drafting will change, possibly always
completing dimensioning and adding tolerances, but now to input these into
the computer instead of producing drawings per se. In the interim, drafting
will probably continue to operate in both modes: inputting into the computer
so that the part or object can be inspected by three-dimensional graphics,
for example, and producing the conventional drawing as well.

The schematic in Figure 2 represents the interactive aspect of the
operation. The user selects the appropriate deck or system to be used from
the library of application programs (modules). Appropriate input will be
called in from the data base, processed by the deck or program, the results
displayed on a scope for the engineer's decision and subsequent action, and
the final results stored back in the data base as required.

Other important elements appear here. 1In addition to the integrated
data base and interactive interface with the user just described, integrated
interactive CAD/CAM requires a computer executive structure by means of which

248



such a user interface, the data base interface, and indeed the integration of
the entire structure can be effected. It is particularly important that the
user interface be "friendly", that the computer command structure be
convenient and easy to use, and that the response of the computing system be
very fast.

There is one additional facility implied in the schematic. This is the
library of interactive computing programs and modules available. These
consist not only of specific applications programs employed in the design/
manufacturing process but general facilities as well. Thus it might include
finite element systems with preprocessotrs and post-processors for design, and
N/C graphics programming modules and machine post-processors for manufacturing.
It will include, as well, geometric modeling and graphics capabilities,
systems to permit interactive drafting, for example, or sketching by the
designer, or the modeling of a machining process by a process planner. It will
include conventional N/C programming tools and post-processors for these.

TECHNOLOGY SUPPORT FOR INTEGRATED INTERACTIVE CAD/CAM

There is a great deal of perplexity as to what is required to build an
integrated interactive CAD/CAM (I.I. CAD/CAM) system and how to go about
this. This issue is further complicated by the rapid proliferation of
turnkey interactive graphics drafting systems like ComputerVision, Applicon,
Gerber, CAIMA, etc,, many of which are purchased under the impression that they
constitute, or form the basis for, an integrated CAD/CAM system.

These mini-computer-based IGDS's (Interactive Graphics Drafting Systems)
are moving into a vacuum created by the lack of I.I. CAD/CAM structural plans
and technical requirements in addition to the dearth of suitable computer
operation systems, data base management systems (DBMS's), geometric modeling
systems.

During the late 1960's and early 1970's, guidance and support by the
large computer vendors for integrated interactive CAD/CAM have been conspicuous
in their absence, and interested customers for the most part have not known
which way to turn. It was to provide the missing technology and structure
that NASA introduced IPAD in the middle 1970's and the NASA/Boeing IPAD project
was initiated in early 1976.

We would like to examine some of the specifics of this picture, to
indicate what we see as the major technology problems remaining, to comment
upon the prospects for their solution, and in this framework to point up what
we see as IPAD contributions to date and to be expected in the near future.

We shall consider three problem areas which admittedly may be neither mutually
exclusive nor complete: computer technology problems, design and manufacturing
engineering technology problems, design/manufacturing technical communication
problems.
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COMPUTER TECHNOLOGY

We consider here in particular computer operating systems, graphics, data
base mamagement systems, distributed processing, integration of IGDS's.

At the outset we point to a major IPAD contribution. Note that an early
IPAD objective was a kind of "super operating system" for CDC and IBM
computers which would permit the construction of an integrated interactive
CAD/CAM system by the user. In this connection, the Boeing IPAD team
systematically and thoroughly assembled a set of basic requirements--an
essential step but one which had never previously been done.

The only computer operating system which came close to meeting require-
ments for I.I. CAD/CAM was an IBM system, VM/CMS, which had relatively little
support within IBM itself, and found its principal proponents, other than one
or two U.S. aerospace companies, located in Western Europe. This system is
excellent with respect to simplicity of use and "friendliness" for the
engineer—-user, time sharing, virtual memory providing each user with the
equivalent of a large computer, communication between users, and a data base
capability certainly adequate for starters. While other systems had many,
if not all, of these capabilities nominally, the '"feel" of these systems was
not right for I.I. CAD/CAM.

Now the outlook is decidedly more promising. Spurred on in part by IPAD's
findings, Control Data, Digital Equipment, UNIVAC, and others are improving
their time-sharing operating systems to the point where they will probably be
competitive. IBM, moreover, has decided not to abandon VM/CMS and is giving
it a fundamental role in its approach to distributed processing.

Graphics technology is moving ahead rapidly and appears not to impede
the development of integrated CAD/CAM, at least in respect to hardware. The
increasing use of microcomputers to provide "intelligent'" scope terminals is
beginning to reduce the burden upon the host computer. Color graphics are
becoming more common.

Three~dimensional graphics subsystems, supported by mini-computers, have
been available for some time with which continuous translation, rotation,
and zooming in 3D space can be smoothly carried out. These have applications
in providing a 3D viewing of a design and in permitting inspection of NC
(Numerical Control) cutter paths in 3D, as well as in many other areas.

Graphics software for the user lacks standardization, but this fact is
more a nuisance than a technological block to I.I. CAD/CAM. There is a group,
under the auspices of the National Bureau of Standards and the Air Force ICAM
program, working on this problem: IGES (Initial Graphics Exchange Specifica-
tion). There is a long way still to go, however.

(There is a potential health problem developing associated with the use

of interactive graphics and cathode-ray displays generally, the long-term
impact upon I.I. CAD/CAM of which remains to be evaluated. Some people who are
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exposed for long periods of time to this type of radiation seem to be
developing cataracts.)

The need for an effective data base management system (DBMS) for
scientific/engineering computing is a major technology obstacle. Existing
systems have been designed to handle data bases for information systems rather
than design/manufacturing engineering technical systems. Here the data,
especially geometric data, is heavily hierarchical in nature, a characteristic
not effectively accommodated by earlier systems. We have set forth elsewhere
(Reference 1) both design and manufacturing requirements of a DBMS for
engineering technical data as they are perceived at this time. Both ANSI
(American National Standards Institute) and CODASYL (Committee on Data Systems
Languages) have come to grips with the problems of establishing specifications
for such a DBMS.

Here, with the DBMS, IPAD is currently making a major thrust, concen-
trating much of its effort upon a relational-type data structure, not too
dissimilar, perhaps, from the IBM's System R which is still in the development
stage.

ITAB, the Industry Technical Advisory Board of IPAD, took the initiative
in 1979 of establishing with the Air Force a joint IPAD/ICAM workshop to
consider DBMS requirements, problems, solution. This workshop was held in
Dallas on April 24, 25, 1979, in a series providing continued communication
on this critical subject. (See ref. 2.)

IPAD is also currently concerned with distributed processing and high-
speed networking. Distributed processing will impose additional requirements
upon both computer operating systems and DBMS's. Local data bases may well be
established at computing nodes in a network, and the user—--engineer or
programmer--must not have to worry about the location of particular blocks of
data. In a related requirement, a user with a terminal into one computing
node should be able to use a computing system in another node and be free as
to the disposition of results.

Distributed processing technology presents no serious obstacle to the
implementation of I.I. CAD/CAM at its present stage of development, and seems
to be moving steadily ahead with computer vendors. Total integration of
equipment of several vendors, however, will present problems.

There is a situation which appears to be developing into a major obstacle
to integrated interactive CAD/CAM. This arises out of the proliferation of
mini-computer-based interactive systems, including interactive graphics
drafting systems (IGDS's). IGDS's designed and marketed by ComputerVision,
Applicon, Gerber, CALMA, and others are intended to capture the lead time and
labor reduction advantages at the design/manufacturing interface. They offer
an interactive drafting capability with a certain NC programming capability;
in addition, there is usually some structural analysis possible.

These systems are frequently advertised as providing the basis for an
integrated interactive CAD/CAM system, and many companies are introducing them
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for this reason. Networks generally exist for connecting severdl of these
together, and the mini~computers seem gradually to be growing into maxi-
computers. The CAD/CAM technology which they offer is developing fairly
rapidly.

They have some serious disadvantages. As turnkey systems, they are
difficult to adapt to, or conform to, an existing design/manufacturing
engineering philosophy. They are generally inflexible, and the vendor keeps
tight hold upon the software. It is not feasible to try to build into such
systems additional aspects of the design function which are essential to the
design process. Further, they will not fit simply into the distributed
processing systems which the large computer vendors are developing for
themselves although they appear to be on the threshold of moving into their
own distributing processing mode.

Companies with large numbers of IGDS's and other systems currently face
the problem of integrating these systems. Integration of computing facilities,
data bases, and other functions is a very formidable task. On the other hand,
the IGDS is in many situations the answer to interactive CAD/CAM for the small

manufacturer.

DESIGN/MANUFACTURING ENGINEERING TECHNOLOGY

Here there are several problem areas, for the most part related to the
function and needs of the process planner. Computer—-aided process planning
is in its infancy with major obstacles ahead. Many of these are associated
with group technology, or parts classification, and the latter, indeed, in
itself, represents an engineering technology problem.

Advanced NC programming techniques, especially NC graphics, are already
in extensive use and have a dramatic effect on reducing lead-time-to-
production in NC. These also have an important relation to computer-aided
process planning.

At the core of most, if not all, of these problem areas is the technology
of geometric modeling which is not only in need of standardization at its
current level of development but will require a major breakthrough before truly
natural and effective tools are available to the process planner. We
consider these probelms in reverse order.

There are two major problems in geometric modeling, one short-term and
one long-term.

The short—-term problem is the need for good geometric modeling/interactive
drafting systems for large-scale computers. With a few exceptions, like the
Lockheed's CADAM system currently marketed by IBM and the McDonnell Douglas
CADD system as distributed by McDonnell Automation, there is a dearth of such
systems for large computers. There are a few encouraging signs. Control Data
Corp., Digital Equipment Corp., and UNIVAC are making significant efforts to
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to adapt Hanratti's AD2000 system to their computers, IPAD is following a
similar path. Improvements in CADAM may be forthcoming from Lockheed, and
there are some signals that IBM may be working on such a system.

The availability of such systems would open up new alternatives to users
who have been more or less restricted heretofore to mini-computer-based
systems.

The major long-term problem is solid geometry modeling. The central
figure is the process planner who requires a clear and unambiguous communica-
tion from engineering design, and who needs an effective means of describing
the changing configuration of a block of metal as the machining process
progresses. The conventional orthographic and isometric projections fall
seriously short of the mark.

We begin to see something of the nature of the change which will appear
in what Voelker of University of Rochester has developed with PADL (Part and
Assembly Description Language) or Fuchs' work at Technische Hochschule Aachen.
Here a solid is described and a machining process spelled out by the addition
and subtraction of a relatively small number of "primitive" solid shapes:
rectangular parallelepipeds, wedges, circular cylinders, cones, etc., which
are added and/or subtracted to form the desired part shape. Drilling a hole,
for example, is equivalent to subtracting a circular cylinder.

Other organizations in East Germany, Hungary, and Japan have developed
similar systems. Two conclusions can immediately be drawn: (a) PADL-type
3D geometric modeling is not the final answer--a continuous deformation of a
PADL shape is usually outside the system; (b) even where PADL-type languages
are effective, either the designer must be coerced to change his way of life,
or there must be provided sophisticated translation procedures to bridge the
gap between designer and process planner. (See ref. 3.)

A wholly different approach is that of the American National Standards
Institute Committee Y.14.26 wherein an arc is swept out by the continuous
movement of a point, a surface by the movement of an arc, and a solid by the
movement of a surface. Any effective approach to solid geometric modeling
will transcend both of these approaches.

Interactive Process Planning is dependent for its development upon all
of the other technologies: group technology, NC graphics, geometric modeling.
A parts classification system which groups parts with similar process plans is
essential to the retrieval, and subsequent modification or refinement of such
a plan. For the special case of parts with rotational symmetry, interactive
process planning is very much simplified (the cross-section profile is 2D):
thus, both G.,E. and P&WA have systems which are about ready to go in this
area--G,E. has its Rotating Parts Operation (RPO), P&WA has its Computer-
Monitored Process Planning (CMPP).

NC Graphics, viewed by many companies as the route to shorter lead-time-

to-production and higher NC machine tool utilization through reduced number of
tape tryouts, for example, provide the process planner with an interactive
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means to choosing cutter paths and other machining characteristics. Although
subject to the limitations imposed by conventional geometric modeling, NC
Graphics will go far toward advancing the state of the art in process planning.
In 2D (i.e., 2-axis machining or turned parts), the geometry represents no
block.

In those areas of machining in which a PADL-type language is applicable,
significant savings in lead-time-to-production are realized. There are
obvious problems, however, in having two such radically different geometric
modeling systems existing side by side in a manufacturing business.

Group technology has its application to design, where it has important
uses in the classification and retrieval of drawings or design processes. 1In
manufacturing, its applications range from the classification and retrieval of
machining/fabrication processes which are part-oriented to the classification
and retrieval of tools and fixtures in fabrication and assembly which may
require classification on the basis of function as well as part.

Fundamental conflicts arise between requirements of design and those of
manufacturing. Design's classification based upon geometric configuration and
Manufacturing Engineering's use based upon machining/fabrication process do
not coincide. For turned parts—-parts with rotational symmetry—--these
conflicts are a minimum,

For aircraft engines, there is a natural parts classification based upon
location of the part in the engine: we employ an "Engine Area Code" specifying
the component, subcomponent, in which a part is located, down to the individual
part.

DESIGN/MANUFACTURING TECHNICAL COMMUNICATION

In integrated interactive CAD/CAM techmology, the shared data base
provides the means of communication within and between groups in design and
manufacturing as well as between design and manufacturing. The description of
a part is developed in design in the data base, and those elements of data to
be transmitted to manufacturing are "signed off" or "released" in the
computer. Manufacturing does its process planning, tool design, NC
programming, etc., interactively against this data using the geometric
algorithms already employed in design. Quality Assurance, using computerized
inspection, interacts with the design data base to determine deviation from
design specifications.

In a more highly developed stage of integrated interactive CAD/CAM,
manufacturing, can, by accessing the design data base early on the viewing a
part on a scope, evaluate such issues as cost and problems of manufacture
before a design becomes finalized. 1In a related fashion, the designer can have
access to machinability, machining processes, tooling requirements when he
- faces design altermatives.

254



We have alluded earlier to the limitations imposed upon design-manufac-
turing communication by the conventional use of geometry in describing a part.
The three dimensional concept in the mind of the designer is reduced to the
traditional set of orthographic and isometric projections—-two dimensional--
which require the process planner to reconstitute that 3D concept in his own
mind. It may occur, indeed, that this representation is not unambiguous.

This deficiency of the traditional drawing is actually accentuated on the
scope face, unless the picture is very large, for it is difficult to display
simultaneously the three orthographic and one isometric projections which on
a large drawing do serve to convey special relationships with some degree of
effectiveness. 3D graphics would help alleviate this problem; otherwise, some
of the gain to be realized in interactive N/C programming is lost.

Mini-computer-based IGDS systems have some temporary advantages over large
scale integrated interactive systems in respect to design/manufacturing
communication arising out of the interactive drafting facility itself, which
should be offset to some extent in the near future by effective geometric
modeling/drafting software for large-scale computers.

One aspect of design/manufacturing communication calling for a fresh new
approach in view of the computerization of the design/drafting process is the
handling of dimensions and tolerances. At Pratt & Whitney Aircraft we find
ourselves confronted by a variety of tolerancing problems arising out of the
transfer from our traditional unbounded geometry to the bounded geometry of
the IGDS. Beyond these, however, in consideration of the computing facilities
now available, an effective mathematics of tolerances is needed to replace the
tolerance manipulation from gage point to gage point which the process planner
or tool designer finds necessary.

The IPAD project, concerned initially with the requirements of integrated
interactive computer~aided design and with not much more than a glance at
manufacturing requirements, has turned to consider CAM seriously, for the
software under development is as applicable to CAM as it is to CAD. TIPAD is
currently planning to set up, in collaboration with ICAM, through the COCAM
board, a joint ITAB/COCAM workshop on Problems of Engineering/Manufacturing
Communication for late 1980 or early 1981. This should go far as a first step
to establish the present status of this aspect of CAD/CAM together with the
various routes along which the technology is developing.

We should like to close this discussion with some remarks about the
difficulties of establishing an integrated system apart from the obstacles
imposed by these technology problems.

" There are presently available sufficiently effective hardware and software
to carry an integrated interactive CAD/CAM system a considerable distance, and
the technology gaps cited above are not severe enough to block the development
of a fairly effective system. There are, however, other resources which are
essential to such a development.

(a) a top-rate computer systems staff.
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(®)
(c)

(@
(e)

a top-rate applications programming staff.

engineers with vision and perspective in both design and manufacturing
engineering,

management support.

a catalyst (an individual or small team) which will get the process
going and continue to sustain it.

We would note also the need for guidance on the part of a company seeking
to establish an integrated interactive CAD/CAM system. For many of those
companies represented on ITAB or seated as observers at ITAB meetings, the
concept has become steadily clearer over the past four years. Because this
technology is still young, there are very few organizations in a position to
advise and provide guidance. Some companies like A. D. Little, Inc., are
attempting to do this, and perhaps the computer vendors or software houses will
step up to this problem of assisting with such guidance and leadership--when
they have fully accepted the concept themselves.
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SUMMARY

Nearly a decade ago, Rockwell International's (Rockwell) North American
Aircraft Division (NAAD) established a long-range development plan for inte-
grating applications software used in the aircraft design process. These plans
have been continually revised as a function of computer technology emergence,
business environment, productivity requirements, and competition in the
aerospace industry. The overall applications program integration activities
and planning have relied upon the NASA-Boeing Integrated Programs for
Aerospace-vehicle Design (IPAD) development to produce the necessary software
for the data base management system and the executive controller. This paper
contains a discussion of the relationship of federally sponsored computer—
aided design/computer-aided manufacturing (CAD/CAM) programs to the aircraft
life cycle design process, an overview of NAAD's CAD development program, an
evaluation of the CAD design process, a discussion of the current computing
environment within which NAAD is developing its CAD system, some of the
advantages/disadvantages of the NAAD-IPAD approach, and CAD developments during
transition into the IPAD system.
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INTRODUCTION

CAD/CAM Requirements

United States industry will be faced with a serious productivity problem
in the 1980's. Industrial competitors such as Germany and Japan are improving
the industrial productivity output of their manpower by more than 4 percent per
year. At the same time, productivity in the United States is declining. The
aerospace industry and other industrial concerns already have been and will
continue to be faced with a situation where competition for skilled manpower
will increase. For example, next year 100,000 engineering positions will be
competing for 70,000 graduates from our engineering institutions.

An obvious solution to this problem is to increase the productivity of the
current work force to provide lower product cost, decreased manpower require-
ments, and reduced time in designing, manufacturing, and testing of products.
The key to improvement is the intelligent automation of design, manufacturing,
fabrication, and testing tasks. The technology areas of CAD, CAM, and
computer—aided test (CAT), and the proper tools available to support these
technology areas, are central to productivity improvement. Although this
paper primarily addresses CAD, the interaction to CAM and CAT are critical
parameters to be considered in the overall integrated automated efforts.

It is appropriate to consider how and where CAD developmental programs fit
into the overall acquisition process for major defense systems. Figure 1 dis-
plays the major acquisition milestones and correlates the related defense system
development activities, managerial functions,’ and relationship that major Govern-
ment-sponsored CAD developmental programs have within the overall acquisition
process. Note that major defense system acquisition proceeds in stepwise
phases and therefore sets the stage for the tools development process. The
proposed Air Force ICAD program is more oriented toward activities associated
with program initiation (DSARC Milestone 0) and demonstration and validation
(DSARC Milestone 1) than is the Air Force's ICAM program. Both programs could
appropriately be supported by objectives set forth by NASA's IPAD program. In
addition to these relationships as the major defense system proceeds through
its evolutionary cycle, there also evolves a requirement to involve more and
more depth of design and analysis. This requirement dictates a need for
computer—aided systems that are responsive to a given design phase that a
particular system is currently entering or moving toward. Figure 2 presents
the disciplinary and technical skills associated with an aircraft system as it
proceeds into each of the design phases. Not shown are the numerous functional
groups that must be part of the full-scale development, production, and
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deployment activities. Although this paper emphasizes CAD activities, consi-
deration of design manufacturing interactions is necessary to properly develop
CAD/CAM systems responsive to the aircraft system acquisition process.

CAD is considered to be an integrated process embodying the complete flow
of computerized data, from conceptual design through the completed engineering
drawings and the equivalent sets of stored data that describe the product to
manufacturing system users. The basic goal of CAD is the development of a
computerized design process to significantly reduce labor costs, reduce calen-
dar time, and to ensure that the system is viable and ready for production
application. The ultimate objective is the development of a full-scale and
totally integrated CAD system to support the entire aircraft life cycle design
process, including aircraft design, production, deployment, and operations.

NAAD Background

NAAD has been intimately involved in the development of CAD techniques for
the conceptual, preliminary, and detail design of aircraft systems. This
development activity, initiated in the early 1970's, was organized to utilize
existing analytical and newly developed modules, within a framework of support
to disciplinary functions within NAAD. At the same time, new developments in
interactive graphics, distributed computer systems, and analytical procedures
were continuously being integrated into the planned CAD activity. This paper
discusses NAAD's plan for integrated aircraft design, its evolutionary devel-
opment, and its relationship to the NASA IPAD program.

Tn the early 1970's, Rockwell's computing technology had evolved from
computing systems at divisional levels to a centralized corporate computing
center concept. All of the main frame systems which serviced NAAD were at
Rockwell's Information System Center, at Seal Beach, California, with various
Rockwell divisions being serviced by a distributed network. Other centers
serviced divisions in the Midwest, East, and South. By the mid-1970's,
advancements in minicomputers and telecommunications made distributed process-
ing an attractive approach, with interactive graphic packages placed on the
local processors, communications protocol established with the main frame
hosts, and extensive computing allocated to the main frames. This was the
computing environment in which NAAD evolved its CAD plans.

Application software, to help analyze aircraft designs, had been developed
or was being developed to satisfy the technical requirements of each functional
group in aircraft design. As this software became more sophisticated in
analytical depth, the size of input and output data grew accordingly. Initial
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efforts to integrate analysis of separate software modules resulted in
stand-alone preprocessors and postprocessors to enable data transfer between

modules.

Until the late 1970's, computer costs were regarded by NAAD management as
a high-expense item. However, the trend of decreasing computer costs, for both
hardware and processing units, coupled with increasing engineering rates, had
become apparent to NAAD management. Accordingly, more emphasis was placed on
integrating the entire aircraft design process to improve engineering produc-
tivity, reduce design throughput time, and improve quality of designs.

It was in this environment of computing hardware and software capabilities
that NAAD made a thorough evaluation of the increasing complexities, costs,
and schedules required for aircraft system design. The aircraft system design
life cycle which governed these considerations is shown in figure 3. The
increased use of technically oriented computer programs required extensive
manual processing of data to transfer data to other programs during the
synthesis or analysis of the design. Emerging from this study was a long-
range plan for the integration of application programs used in the aircraft
design process. This continually updated development plan considered the NASA
IPAD program which originated from the same common requirement to integrate the
application programs for improved productivity.

The NAAD CAD plan recognized that the IPAD development would produce a
data management system and an executive controller as well as other user func-
tions. With this in mind, the approved CAD plan directed the development
effort toward the evaluation and implementation of available CAD modules, where
possible. 1In those areas where suitable application programs were lacking,
NAAD proceeded to develop the computerized capabilities. These CAD modules
were being integrated through a series of preprocessors and postprocessors
developed specifically for aircraft system design. These preprocessors and
postprocessors were designed for easy modification to the IPAD format so that
NAAD could utilize the technical data management system and executive control
system being developed by the NASA-Boeing IPAD team.

Rockwell was an early entry into CAD analytical tools for design of air-
craft, space vehicles, and large boosters. 1In addition to in-house development
of these capabilities, Rockwell has supported the IPAD program through active
participation in the Industry Technical Advisory Board (ITAB). Rockwell has
conducted a continuous review of IPAD technical developments, starting with the
initial feasibility studies. Some of the NAAD CAD planning effort and study
activities were found to parallel the IPAD-conducted studies with similar
results. The aircraft design life cycle (figure 3) is similar to that identi-
fied by IPAD. <Critical problem areas were identified such as data management,
executive control, and front-end geometric data processing, which were also
similar to IPAD findings.
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EVALUATION OF THE CAD PROCESS

A number of major engineering disciplines, as shown in figure 2, are
involved in the design of aircraft systems. These disciplines include those
involved in conceptual, preliminary, and detail design activities. Critical to
all design tasks is the capture of three-dimensional geometry and the evolu-
tion of master lines and dimensions for the vehicle. This task is critical for
the configuration design process illustrated in figure 3 and design levels II
through V for the verification of the selected configuration. Technical dis-
ciplines such as configuration development, vehicle synthesis, aerodynamics,
propulsion, performance and control, etc. (figure 2), all require computer-
aided tools to conduct their design task.

Many of the available tools were in the form of batch processed computer
programs with little, if any, interactive capability. Since the order of
required design cycles was never known for certain, the easiest approach was
to handle each computer program (module) in a somewhat independent fashion.
This led to the development of preprocessors and postprocessors of data to
enable linkage of modules. Typical modules are summarized in table I.

‘ Data derived from the preprocessors were listed in files in standard
80-column format for input to the next module. Postprocessors data were listed
in similar files except that various output formats were organized for data
printout and for batch-type graphics display. During the 1975-78 time frame,

a significant amount of study was devoted to applying data base management
techniques to handling these data. A number of data base management systems
(DBMS) which were investigated for their usefulness included IMS, TOTAL,
INQUIRE, and ADABAS. Use of the business—oriented DMBS's did not meet engi-
neering requirements due to the complex organization of the engineering data,
the size of the data base, and the inherent limitations of the DBMS. At the
same time, command and control syntax for a "friendly" user interface was
investigated. These user functions resulted from requirements of the technical
disciplines, use of technical modules in some type of sequence, intermediate
display of decision data, and network organization of the design process.

It became apparent to NAAD investigators that a new DBMS approach was
required to provide an "envelope" in which to insert the technical modules,
and that this "envelope" must include executive control syntax, data base
management, and versatile user functions. IPAD developments during the latter
part of this period were being directed with emphasis on development of IPIP
(the IPAD information processor), IPEX (the IPAD executive control), and IPAD
user functions and interfaces. NAAD's CAD plan was then based upon the success-
ful development of these IPAD capabilities which could help satisfy NAAD CAD
system requirements.
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NAAD established some general goals that were required to remain competi-
tive in the aircraft industry. During the conceptual design phase, it was
determined that NAAD needed to evaluate 10 times as many concepts during the
same allocated period of time. 1In the preliminary design phase, the depth of
the analysis and definition of design characteristics must be improved for the
same cost and schedule constraints. In the detailed design phase, the engineer-
ing cost and schedule must be reduced to improve productivity. These three
phases are shown in figure 4 where virtually thousands of concepts must be
evaluated during conceptual design. A few configurations are evaluated in some
depth during preliminary design. During the detail design phase, a single con-
figuration is engineered in great depth to produce a product that can be fabri-
cated economically.

Similar to the early IPAD tasks, NAAD delineated the aircraft design
process, defined the system requirements, identified the software/hardware
needed, and conducted evaluations/development of application programs to sup-
port the design process. The Rockwell description of the design process was
similar to the IPAD definition. Similar to IPAD, Rockwell chose to utilize
locally dinstalled minicomputer systems in conjunction with its large IBM, CDC,
and Univac mainframes centrally located at the Information Systems Center in
Seal Beach. Figure 5 schematically displays the distributed computing system
network philosophy currently being employed.

Since the NASA-Boeing IPAD development of the data base management system
and executive controller was underway, NAAD proceeded to use file management
techniques and technical module preprocessors to circumvent the data base
management system that was expected to be available from the TIPAD development.

Results of the aircraft design process delineation tasks (figure 4) identi-
fied a number of CAD functions for the design activity levels involving con-
ceptual, preliminary, and detail design. These functions were identified as
critical elements in developing the NAAD CAD capability (i.e., design retrieval,

design, geometric modeling, synthesis/analysis, etc). (See figure 6.) Con-
centration of NAAD resources were then placed into the following areas:

(1) Synthesis and analysis
(a) Vehicle sizing
(b) Aerodynamics/fluid dynamics/thermodynamics
(¢) Vehicle performance

(d) Loads/structures/mass properties
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(2) Geometric modeling
(a) Configuration development
(b) Internal/external packaging
(¢) Finite elements
(d) Wiring schematics
(3) Design and drafting
(a) Two-dimensional mechanical design
(b) Three-dimensional mechanical design
(¢) Orthographic and isometric drawing
This approach, along with developments in computer technology and CAD/CAM
application technology, established a particular development path for NAAD.

Tasks requirements were to accomplish the following:

(1) Defer expensive development of DBMS techniques to IPAD and
concentrate on using file management techniques

(2) Bring on-line, as soon as possible, specialized interactive graphics
capability to support configuration development, aerodynamic analysis, vehicle
lofting, element modeling, and interfaces to structural analysis programs

(3) 1Install, test, and implement a two- and three-dimensional design and
drafting capability to interface with the interactive graphics capability and
key technical modules

(4) Apply critical developments, in a timely fashion, to ongoing projects
to access their value in the CAD environment

In 1979, CAD development had evolved to the point where additional plan-
ning was required to define an approach for integrating the detail design task
for structural analysis into the total concept. Over 40 technical modules
required integration to satisfy the structural design and analysis task.

These programs included the following capabilities:

(1) Configuration development

(2) Structural weight estimation
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(3) Computer-—aided lofting

(4) Flutter optimization

(5) Vibration and flutter analysis

(6) Aeroelastic tailoring

(7) Strength optimization

(8) Finite-element modeling

(9) Finite-element analysis
(10) Fracture analysis

(11) External/internal loads

(12) Mass modeling

(13) Stiffness modeling
(14) Others

These modules were on dissimilar computers using file management tech-

niques for data management. The structural plan increased the demand for

IPAD-type capability at the division (i.e., data management, executive control,

user functions).

COMPUTING ENVIRONMENT

Rockwell was an early entrant into interactive graphics. However, costly
computing resources required to drive the refresh terminals tended to dis-
courage extended use. The early CAD/CAM computing environment is illustrated
in figure 7. Other companies (namely, Lockheed and McDonnell Douglas) con-
tinued the development of CAD software to drive the IBM refresh terminal. The
major breakthrough came in the early 1970's when low-cost storage terminals
were introduced. NAAD interactive graphics activity followed close by the
storage tube technology.

At the same time, a number of vendors were supplying turnkey systems
structured around minicomputers and storage terminals. The NAAD CAD plan took
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advantage of these developments in concepting a hardware plan to support the
integration of aircraft design technical modules. Key to this plan were the
following elements:

(1) Corporate mainframe computers (IBM, CDC, Univac)

(2) Front-end processors (turnkey CAD/CAM system, specialized
minicomputer)

(3) Distributed processing protocol (telecommunications, communications
software)

The CAD plan initially was structured around a Sperty Univac minicomputer
to provide the rapid response needed in conceptual design. During the ensuing
development, a second Sperry Univac minicomputer and a six-station Computer-
vision system for three-dimensional design was installed. 1In addition, six
Tektronix 4014 terminals, one Megatek refresh terminal, and 18 alphanumeric/
raster scan graphics CRT stations were installed. The computers are supported
by tape drives, disk drives, card readers, printers, pen plotters, and electro-
static printer-plotters. A schematic of this minicomputer is shown in fig-
ure 8. Additional graphic terminals, Computervision systems, and minicomputers
are in the planning process.

Key to the plan was a logical distribution of functions between the dis-
tributed node at NAAD and the more powerful computing resources at the cor-
porate Computing Center. Limitations included restricted storage capability at
the local site and communications speed and accuracy. In order to effect a
proper balance, the plan identified interactive graphics as a local responsi-
bility, with a number of these tools placed on IBM-TSO time-sharing. Where the
size of the data bases permitted local storage, they were compiled on the
distributed minicomputer. Otherwise, principal data bases were allocated to
storage on the corporate Computing Center mass storage facilities.

The corporate Computing Center, at Seal Beach, is about 40 km (24 mi.) from
the NAAD facility. The center contains four IBM 370/3033's, two IBM 370/168's,
one CDC CYBER 176, and one Univac 1100-83. These mainframe hosts are supported
by literally dozens of printers and disk and tape drives. 1IBM's latest mass
storage device is available to users of the 3033's. Over 200,000 tapes are
maintained to support various divisions of the corporation.
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Communications between NAAD and the Center are supported by wide-band
multiplexers which can provide dedicated line speeds of up to 56,000 baud.
However, most direct access terminals to machine parts are driven at speeds of
9,600 baud or slower. Rockwell is now working on a telecommunications network
which will provide direct satellite communications between computing centers
and high-speed transmission from the centers to distributed subhosts at the
divisions. ©NAAD is now served by a subhost which provides remote job entry
access to the Center hosts.

The NAAD CAD program provided specific user requirements to the planning
activity for upgrading the Corporate Computing Center. This resulted in an
expansion of communication controllers for the IBM and CDC mainframes. The
program also resulted in a recognition that interactive graphics computing
techniques for CAD require a local subhost for adequate support.

The major problem with the distributed computing concept (figure 5) is in
allocating data storage. It should be noted that the distributed network shown
in figure 5 includes existing facilities (solid lines) and planned expansions
(dashed lines). The planned "analysis" computers will actually be subhosts
with 32~bit architecture -and fairly large random-access storage capability.
Data bases required for daily activity should reside on these storage devices,
while security backup to all data bases, program source files, etc, should
reside on the Center hosts. Local data include those associated with an
ongoing project, disciplinary modules, and drawings. Data bases are classified
into geometric, numerical, and textual categories, and again subdivided into
additional categories associated with projects, disciplines, and individual
engineers. IPAD's IPIP is aligned to handle this type of data segregation.

APPROACH

The current NAAD approach to the integration of CAD modules has been the
development of preprocessors and postprocessors that reformat the data from
one module to a format acceptable for the next application program. The data
have been maintained through file management, with verbal or written communi-
cation notifying the subsequent user that the data are available. These
specialized preprocessors and postprocessors are designed to efficiently pre-
pare the data needed for specific application programs. Although this approach
may result in less computer costs, the availability of the data is limited to
those specified application programs. However, in the environment that NAAD
CAD capabilities were developed, this was the most appropriate approach. The
preprocessors and postprocessors developed for specific scenarios in the air-
craft design process may be readily modified to reformat the data suitable for
a generalized data management system such as IPAD.
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The NAAD view of IPAD is that it will provide a common and consistent data
base extending from conceptual, preliminary, and detail design through manu-
facturing. The data would be accessible in various formats by a large number
of users. This data base may extend beyond a single project to provide data
for several ongoing projects. NAAD's initial intent is to capture the advan-
tages on separate projects. These advantages include improved management con-
trol of the engineering data being used in the design. It is anticipated that
the aircraft systems definition manuals will be reduced to indexes of data
stored, thus reducing the manual preparation of hard-copy manuals and the
associated delays in releasing the data for design. The IPAD executive control-
ler will allow the user to request data in English, rather than restrict the
user to skilled programmers. The ability to ask for data in general terms
reduces the probability of error as compared with current methods that require
specific data requests. The IPAD system is expected to have automated communi-
cation features available to the data base administrator for notifying users
of the data availability or changes made to the data. These readily available
data in acceptable formats are expected to reduce labor costs and design
schedule requirements, resulting in improved engineering productivity and
reduced design costs. The IPAD data base is further expected to interact with
the CAM system to reduce the design change impact on manufacturing.

IPAD SYSTEM TRANSITION

Rockwell corporate management views IPAD as a major technical development
that may be adapted to the needs of the various divisions of the corporation.
With a view toward an economical implementation and exploitation of the IPAD
system and IPAD released products, NAAD has been assigned the lead division
role, with the Space Systems Group and Information Systems Center the support-
ing role, in the adaptation of IPAD at Rockwell. Several implementation plans
are under consideration. Each plan requires the full cooperation of CAD
development engineers and computing center systems programmers to successfully
integrate IPAD into the design system.

Initially, IPAD would be installed on the mainframe computer system at the
central computing facility. The installation of IPAD and the testing and
verification of the delivered capabilities would be accomplished jointly by
computer systems programers and IPAD development engineers.

Secondly, installation of IPAD on a minicomputer system at the local
division facilities with network communication to the large mainframe computer
would be accomplished. Testing and verification of the TPAD distributed com-
puter system capabilities would be accomplished through close cooperation with
local system programmers and the centralized computer system programmers.
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During the final verification tests conducted on both the mainframe IPAD
system and the distributed IPAD system, evaluations will be made of the capa-
bilities and efficiencies of each configuration. These studies are intended to
provide information relative to the advantages of each configuration, and where
possible, to identify regions where technical and efficiency enhancements may
be made. Special considerations should be addressed to the unique features of
the host computer operating system that complements the IPAD system.

Concurrent with these IPAD installation and verification tasks, pre-~
processors and postprocessors for proprietary programs and public domain pro-
grams not included in the IPAD release must be modified or developed. The
prioritization of these tasks will vary with each company, depending on their
current needs. At NAAD, the largest data base is generated through the Struc-
tural Design and Analysis System (SDAS) by the multiple technical modules it
employs. Since Rockwell is an extensive user of NASTRAN, it is likely that the
modification of Rockwell NASTRAN preprocessors and postprocessors would be
accomplished early in the development phase. Certainly, the incorporation of
a more recent version of AD2000 three-dimensional design and drafting graphics
into IPAD is warranted. The development of preprocessors and postprocessors
for NAAD's configuration geometry and dimensional control system of programs
to provide vehicle moldline data is a high-priority task. There are other
technical modules that would subsequently be integrated into Rockwell's IPAD
installation.

Another mode of operation that may be explored is accessing the mainframe
IPAD system via TSO or INTERCOM programs. This approach may be suitable for
divisions whose facilities do not warrant a distributed IPAD system. This
capability would offer these remote facilities the benefits of IPAD without
incurring the capital outlay for a minicomputer.

The incorporation of IPAD into the design system is a long-term develop-
ment effort that encompasses several planned phases. An IPAD configuration
control board (CCB) is recommended to assure that IPAD has been tested and
verified after each phase of development. The CCB would be comprised of repre-
sentatives of each participating division who could provide liaison with their
organization and assist in the implementation of IPAD throughout the

corporation.

As noted, the initial thrust of IPAD will be in the structural design and
analysis disciplines. It is expected that the aerodynamic technologies would
then be incorporated. After the technical modules are functioning within the
IPAD system, it would be appropriate to integrate the project management

systems.

The IPAD level I system is expected to be released for use on the CDC com-—
puter systems in the spring of 1981. It is anticipated that this same
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capability will be available for the IBM computer systems by the end of 1981.
Although the IPAD level I releases are considered to be functional prototypes

of the production systems planned for the level II and III releases, significant
developments in technical data management have been completed and may be

adapted for use in the near term. Additional IPAD products which will be
released as the development progresses may be integrated into the CAD system

in a transition phase. It is expected that the current CAD system may function
independent of IPAD or in a mixed mode using the IPAD product capabilities as
this transition progresses.

Certainly, the real test of the system is in the application to a major
project. At Rockwell, it is anticipated that IPAD will be applied to subsets
of the project prior to committing the system to the entire project. As appli-
cations for IPAD are extended to entire project designs and subsequently to
multiple projects, the scope of IPAD must be extended to assist in productive
interactions between engineering and manufacturing.

It is with a great deal of anticipation that Rockwell addresses the imple-
mentation of IPAD for technical data base management. It is reasonable in the
near term to have IPAD operational on both CDC and IBM computer systems as
stand-alone mainframe systems and as distributed computer systems with locally
installed minicomputers complementing the centralized mainframe computers.
These capabilities may be utilized by the various divisions of Rockwell
involved in aircraft, spacecraft, propulsion, automative, telecommunications,
graphic systems, and energy systems. The IPAD technical data management devel-
opment may be used in the Integrated Computer-Aided Manufacturing (ICAM) and
Integrated Computer-Aided Design (ICAD) projects. The appropriate combination
of these capabilities into a totally integrated system is expected to provide
significant productivity improvements.
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Discipline

Vehicle synthesis

Vehicle dynamics

Aerodynamics

External loads

Structural
analysis

Structural
optimization
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TABLE TI.

Acronym
VSPEP
SWEEP
SWAIP
DWGRD
RASCAL
COMET
STAR 6
FUDP
ADELS
XLOADS
NASTRAN
FASTOP

AC-5
AC-11

AC-31
AC-32
AC-33

AC-120

RIFEM
RASSP

SPARS
AC-88
TS5-0

- SUMMARY OF TYPICAL TECHNICAL MODULES

Program Description
Vehicle Sizing and Performance Evaluation
Structural Weight Estimation Program
SWEEP/Production Cost Model Interface Program
Grid/Air Vehicle Mass Properties Program
Rockwell Automated System for Computer-Aided Lofting
Structural Flutter Optimization Program
General Vibration and Flutter Analysis Program
Flexible Unified Distribution Program
Advanced Design External Loads Program
External Structural Loads Program
NASA Structural Analysis Program
Flutter and Strength Optimization Program

Honeycomb Sandwich Panel Stability Under In-Plane
Biaxial Loads and In-Plane Shear Loading

Laminate Design for Strength and
Stiffness-Multiple Lead Condition,
Upper Boundary Optimal Design, and
Biaxial In-Plane Loading

Minimum Weight Design Advanced Composite
Panel Strength and Stability

Rockwell Finite-Element Model Pre and Post Processor

Rockwell Automated Stress Spectrum Program for
Fatigue and Fracture Mechanics

Multispar Box Optimization Program
Aeroelastic Taloring Structural Sizing Program

Aeroelastic Taloring Structural Optimization

Program

Design
Level

IT - III
I1I -V
IITI -V
IIT -V
II1

III -V
III - V
III - IV
Iv -V
II1 -V
Iv - VI
IV -V
IV - VI
v - Vv
IV -V
III - VI
IV -V
IIT -V
IIT - IV
Iv -V
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Figure 4.- Conceptual/preliminary/detail design phase characteristics.
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275



2rao>~0po

Figure 6.~ Product activities and CAD/CAM functions overview.
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Figure 7.- CAD/CAM history overview.
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IPAD: A COMPUTER VENDOR'S PERSPECTIVE

Harley D. Feldman
Control Data Corporation

Control Data Corporation has been associated with the IPAD concept since
1970. It has been our pleasure to provide knowledge, learn the technology,
prarticipate in decisions, and generally support the IPAD effort. Drs. Miller
and Fulton reserve much credit for sticking to a concept as long as they have
over some difficult times. Now that the IPAD concepts are reaching fruition
in the engineering world, I would like to reflect somewhat on a computer
vendor's view of the IPAD program as it has evolved, a perspective of the
decisions made as the program moved forxrward, a current view of the development,
and a look into the future of IPAD concepts.

Control Data became involved in the IPAD concepts in 1970. Working with
NASA, Boeing, and General Dynamics, we sensed two ingredients necessary in
engineering computing systems: first that the state-of-~the-art of engineering
and computing, at that point in time, had been unable to economically utilize
the large amount of existing application software which existed in the govern-
ment and industry communities and second that the key ingredient in the imple-
mentation of an integrated design and analysis system would be the monitor
program to control the task flow and perform the clerical functions associated
with the design process. By implementing an integrated system to take advantage
of existing and future application programs, it was thought that more productive
design could be achieved. The computer would become a tool to support the
entire design process rather than a resource utilized by individual engineers
to support individual work processes.

Many issues had to be considered when designing such an integrated system.
First the scope of the system had to be defined. What product could be
designed upon it? What technical disciplines should be represented? Second,
analytical requirements had to be determined in terxrms of levels of analysis and
what the flow of this analysis might be. Next system performance had to be
considered to ensure that the system was usable by the appropriate engineering
users. Finally requirements for computer hardware and software needed to be
specified. This included topics such as utilizing pre-existing code, program
and data integrity, utility functions, and management of data. These issues
were presented to NASA which sought to search out some of the answers through
a feasibility study approach.

During the feasibility study period, CDC was asked for technical opinions
on many of the issue topics. We presented to Boeing and General Dynamics an
overview of trends in hardware development and specific plans for CDC equipment.
We gave opinions on the impact of hardware changes on IPAD, evaluated hardware
configurations, looked at supporting existing codes, and consulted on design of
a centralized data base to support engineering data. We also completed a

279



comprehensive study on migration of IPAD codes from the 6600 to the STAR
computer to aid an analysis of IPAD and application portability between
different mainframe architectures.

In addition, because of a government desire not to have operating system
modifications be a part of IPAD, CDC designed two features required by IPAD
design but not existent in the Network Operating System (NOS). These two
features, Pause and Omit, were designed to augment existing NOS capabilities
and to provide the engineer with facilities to make his job on the computer
oriented toward the way he did engineering design.

Control Data then participated in a critique of the two feasibility
studies. We concurred with the results which concluded that the IPAD software
should be a framework under which a company's operational modules (application
programs) should run. This would allow each company to customize IPAD soft-
ware for its own way of doing business while taking advantage of integration
technology. Our other conclusions were that (1) a single user interface
language was desirable; (2) operational modules should be easily integrated into
the IPAD framework; (3) the development schedules and costs were underestimated;
(4) IPAD software should be as host independent as possible and yet be able to
take advantage of host operating system capabilities; (5) the system must be
cost effective for acceptance; and (6) it should be an extension of the design
process; not a major "leap of faith" for a corporation.

There were two main recommendations to NASA from the people at the IPAD
critique sessions: first that a prototype system should be developed and
given to each aerospace company for evaluation in the aircraft design process
and second that a computer manufacturer might be the best place to develop the
IPAD framework software. NASA came to their senses by acknowledging the first

recommendation and ignoxing the second.

In late 1974 NASA began formation of ITAB, Industry Technical Advisory
Board. This organization was to provide recommendations to the IPAD contractor
on direction and priorities within the IPAD development. We elected to become
members at time of formation, and ITAB has proven to be one of the most success-
ful advisory groups ever collected to monitor a major government program.

In 1975, CDC supported the proposal efforts of both major bidders to the
IPAD development contract, Boeing and McDonnell Douglas. The topics we
attempted to address were as follows:
1) Operating systems - what capabilities existed then and where
were they going in the future?
2) Data base management
o What data elements were needed?
o Development of a subcontractor's work statement to implement
the proper data management system
o Study of state-of-the-art data base managers, especially relational
and set~theoretic
3) Development configurations
o Hardware and software
o Availability
o Cost
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o Support utilities needed
o Site management

The recommendations were to implement IPAD on a central computer, support
geometry and graphics data in the data base, and develop IPAD using a higher
level language.

In 1976 when Boeing was awarded the development contract for IPAD, Control
Data participated in some of the early studies in support of IPAD design issues.
In the data base area, IPAD requirements were mapped against our DMS-170 product
for closeness of fit. We also helped Boeing design and evaluate the SUSPEND/
RESTORE feature under NOS to support the task interrupt requirements. Then in
1977 Control Data exposed the IPAD staff to our three-schema data manager
developments in order for Boeing to evaluate the latest in data base technology.

One final historical note was our participation in the Audit Committee in
August 1978. Recommendations were made at that time to have Boeing spend less
effort on a first level IPAD containing a subset of all IPAD capabilities and to
concentrate on the data manager, use of geometry and graphics, and to provide a
basic yet distributed executive. This approach is still in effect.

I will now assess the current IPAD technology versus the state-of-the-art
in computer technology. The assessment will cover the issues of engineering
data management, distributed architectures, and user interfaces.

In the area of engineering data management, IPAD specified four fundamental
requirements not met by today's data management systems: engineering and
scientific data types, distributed data bases, dynamic scheme definition, and
extensive security and automatic recovery from failure. After reviewing the
CDC data management products, we came to the same conclusion as IPAD; i.e., no
commercial data manager could be used. However, our three-schema data model
appeared to have the most promise. After consultations with the IPAD staff,
the three-schema architecture was selected as the model from which the IPAD
N-schema data manager was designed.

The main data element to be managed for mechanical design is the part
geometry. Today's data managers do not understand that two points each consist
of a three data element record of floating point numbers and that these points
form a line in space. Therefore the geometric intelligence has to be put into
each application, precisely the situation to avoid. If the data manager could
supply geometric data sufficiently rich to adequately describe the physical
object, much of the drudgery of writing new applications could be avoided. The
data manager would provide a clean interface for the storage and retrieval of
geometry.

Even without the data manager to store and retrieve geometry, a require-
ment exists to exchange geometry between CAD/CAM applications. IPAD had chosen
the ANSI Y.14.26.1 geometry protocol to provide this geometry movement.

A current attempt at this exchange problem has been the Initial Graphics
Exchange Specification (IGES). IGES specifies a neutral geometric definition
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which all application systems could address and thereby communicate geometry
amongst themselves. This situation does alleviate some of the problems in
moving geometric descriptions from one application to another; but it also
ignores others which the IPAD developments attempt to solve. While IGES
presents a neutral definition of geometry, it is done at the file level,
necessitating a processor to both absorb and create IGES data from each appli-
cation. IPAD's geometry definition is at the lowest level, thereby requiring
the simplest application calling sequence. Secondly, IGES does not have much
in the way of associativity, even though this may evolve overtime. Without
associativity between geometric entities, object description is inadequate.

But the main benefit to be realized from IPAD over the IGES structure is
IPAD's ability to recognize changes in individual geometric entities. With
IGES, an entire new file must be created to record any changes in the object
geometry. This environment is not unlike the situation with drawings today.
IPAD technology should take us into the next era where configuration control
of the part geometry is done on the individual entity level where it would be
the most efficient.

I believe that the transition from where the manufacturing industry is
today to the future data management capabilities is through the IPAD concept
of flat files. Flat files are those with an undefined data structure as far as
IPAD formats are concerned. This environment allows the storage and retrieval
of data from existing applications under control of the data manager. As the
new applications are written or older applications modified to the new inter-
faces, structured data will then be under control of the data manager.
Utilities could be written, if desired, to move data from the structured format
to the unstructured, although the converse is usually not possible.

Distributed architectures have become a necessity in all areas of the
computing industry because of geographical dispersion and lowering communica-
tions costs. This situation is especially txrue in the manufacturing area, as
the engineering and manufacturing of corporate products are spread across many
divisions and geographical locations. As this situation occurs, the problem of
communicating information between sites in a digital form is more critical, and
the management of the data becomes a necessity. Hence two problem areas must
be solved: that of remote communications cf human or application understandable
data and distributed logical data bases supporting each geography.

In the area of communications, the computer vendors have in the past gone
their own directions and have only been able to communicate to like systems.
With the advent of protocols like X.25 and bit-serial channel devices the
machine-to-machine communication problem has become easier. However the
problem of application-to-application communication is still there, as
mentioned above with geometry.

The area of distributed data bases is now getting attention because of user
requirements. However, each vendor has one or more different data manager
products, making the distributing of data problem very large. The IPAD design
where the same logical data manager is distributed to all nodes in the network
appears to be the earliest viable solution. ILinking differing data managers
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would require a neutral data request format resulting in mapping problems
similar to those encountered with IGES.

Finally in the area of user interface, today's operating systems and
applications for the most part each present the user with a different set of
commands, language syntax, and output reports. Major expenditures are made
to train people to move from one system or application to another. IPAD's
attempt to build a single user interface is a major step forward in alleviat-
ing this expensive problem. Only when standard interfaces are defined and

~developed will this problem be solved.

As to the impact of IPAD on Control Data, we recognized the CAD/CAM
marketplace as a viable business opportunity. IPAD has provided guidance in
many difficult areas not understood by computer technicians. Rather than
develop CAD/CAM oriented products in a vacuum, our involvement with IPAD has
provided valuable information and requirements to aid us in developing viable
solutions to part of the engineering or manufacturing problem.

As to the future of CAD/CAM technology, I feel that the progress to date
is only scratching the surface of the full potential in computers supporting
engineering and manufacturing to increase productivity. I can visualize major
advances in several key areas including those being addressed by IPAD today.

One of these areas of impact is in definition of the product model. The
CAD/CAM systems utilized today, including AD-2000 within IPAD, use two- or
three-dimensional wire frame geometry and create two-dimensional wire frame
drawings. These systems essentially automate the drawing process which is in
practice with draftsmen today. Drawings can be generated and modified at a
faster rate than a piece of drawing paper. However these systems do not help
the designer visualize his designed product in a three-~dimensional solid sense;
they cannot represent inside or outside points to a surface, etc.

Once the product geometry is defined, the next logical step would be to
communicate the definition to othexr applications, e.g., structural analysis
and numerical control machining. But each application has a different defini-
tion of geometry built into its data structures. So constant messaging of the
geometry is done by each new application or a neutral geometry definition is
used (a la IGES) to which each application can communicate. Even under the
neutral definition, the geometry communicated may not be rich enough in
information to be useful to the receiving application.

The research being done today in the area of three-dimensional modeling
systems will provide the vehicle for solving these problems. The engineexr
will define his product in three-dimensicnal simplistic solid primitives. He
will work in a medium for which visualization and accurate definition are
possible. The geometry definition will most likely be calculable from the
topological description made by the user.

Once the geometry exists, then the other application areas can be

appended directly to this definition. Because of the solid nature of the
geometry definition, its information content will be sufficiently rich to
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support any application area whether existing applications are interfaced or

new areas are written. Eventually only new applications will exist, as they

can take direct advantage of the richness of the product geometry. Therefore
the lessons learned by IPAD in the area of geometry definition and management
will be extremely valuable.

Another area of extreme impact will be in the engineering/manufacturing
interface. Today the "fence" between engineering and manufacturing is not only
counterproductive but results in extra cost and time during the product
development cycle. As was concluded during the recent IPAD Workshop on
Engineering/Manufacturing Interface, this intexface must become much less formal
and more interactions must take place. However, these interactions will neces-
sitate changes in organizational structures, the way companies do business,
and the computer technology required to support the processes.

In the computer area, data will need to be communicated from engineering
to manufacturing, e.g., part geometry and materials properties. Also data will
flow from manufacturing to engineering, e.g., manufacturing costs and tooling
data. Engineering and manufacturing applications will need to communicate,
store, and retrieve data from a common repositoxy. This will dictate the use
of a common data base manager across engineering and manufacturing. Each area
will need a different view of the data base, but the data base must be suffi-
ciently rich to support all applications. This situation presents a healthy
challenge to the developers of data base management systems. The IPAD and ICAM
programs will go a long way in developing requirements for the vendors of these
systems.

It is possible to visualize at some date in the future where the entire
product development cycle becomes somewhat automatic. The design engineer
would define his product with three-dimensional visualization, the geometry
would be communicated to the proper analysis programs, results returned, design
changes made, the part descriptions communicated to the manufacturing engineer,
and the parts manufactured by direct numerical control. The whole process from
design to manufacture would be modeled in the computer prior to manufacturing
the first part. Assurance of fit and tolerance adherence would occur because
of the extensive modeling performed.

Much as this may seem far-out today, I believe that this result is desir-
able and achievable. It will not be reached in one revolutionary way; rather,
by evaluation in a piecemeal fashion over time. I believe that IPAD especially
has shined the light in the proper direction to guide manufacturing companies
and the computer industry down the correct path to achieve the desired end.
Control Data is proud to have been involved with IPAD over the past ten years
and continues to support this outstanding program.

284



IMPLEMENTING AN INTEGRATED ENGINEERING
DATA BASE SYSTEM
A DEVELOPER'S EXPERIENCE AND THE APPLICATION TO IPAD
Everett A. Bruce

Digital Equipment Corporation

1. Introduction

The software developed by the IPAD project will provide a new and very
powerful tool for the implementation of integrated Computer Aided Design
(CAD) systems in the aerospace engineering community. It must be kept in
mind, however, that the IPAD software is only a tool and, as such, can be
well applied or misapplied in any particular environment. The many benefits
of an integrated CAD system are well documented, but there are few such
systems in existence, especially in the mechanical engineering disciplines,
and therefore little available experience to guide the implementor.

Electronics design, because its object space is generally more
constrained and better defined, has generally had more advanced CAD tools
than mechanical design. Thus one finds more examples of integrated
electronic CAD systems currently in use. Although the mechanical and
electronic disciplines themselves may be quite different, the fundamental
issues of implementing an integrated CAD system are very similar. This
paper will present a set of maxims derived from experience in implementing
an 1integrated electronic CAD system at Digital Equipment Corportion. We
believe these maxims apply equally well to anyone contemplating an
integrated CAD system built around IPAD.

2. Background

In 1973 the CAD systems Engineering Group at Digital Equipment began
the design and implementation of the Integrated Design and Engineering
Automation {IDEA) System, an integrated electronic CAD system for use within
Digital's own engineering groups. At that time Digital had in use a number
of computer aided design and analysis tools, each of which was independent
or coupled to other tools by way of special purpose transfer files. IDEA was
designed to replace this loosely coupled and uncontrolled set of
applications with an integrated and contolled hardware/software system for
CAD. The hardware environment included a network of DECSystem-10 time-shared
computers, each of which supported a number of alphanumeric and GT62 refresh
graphics terminals. The basic software system included a general purpose
device independent graphics system, a data base for electronic design
implemented using DBMS-10, a CODASYL data base manager, and the necessary
data base support utitilies.

285



The design of the data base and the implementation of the data base
support software were the major activities in the IDEA project. The data
base itself consisted of four major components:

(1) A large parts library (>30,000 parts)
(2) A library of design standard shapes and parameters

(3) A set of electronic design modules containing all electrical,
logical and physical data for a part, stored in a complex network
data structure

(4) Directory and access control information for the entire
data base.

The data base utilities consisted of a set of sub-routines for accessing the
data base and programs for maintaining and updating the libraries and
directories.

On top of the IDEA foundations of graphics and data base a set of
electronic design and analysis programs were implemented, each of which drew
its input data from the IDEA Data Base or provided output to it. These
applications included logic design input, printed circuit board data entry
and layout, parts library input and maintenence and manufacturing data
output. Some of these applications manipulated the data base directly,
while others interfaced via an extract/update file mechanism. In the latter
case, system integrity was assured by always requiring an extract/update
pair and not allowing another update of a given design module until the
first update was performed., Applications users spanned the range from
engineers to technicians to drafters.

As with many large development projects, IDEA took somewhat longer and
delivered somewhat less functionality than originally planned. IDEA began
user testing in 1976 and went into production use in 1977. The system has
continued to expand and evolve since then, based on user feedback,
technology needs and the developers' increasing awareness of the system's
strengths and weaknesses. Although at times difficult, this system
evolution has been valuable in both making IDEA more effective and also
focussing on the techniques needed to design and implement future integrated
CAD tools,

3. Some Maxims

The process to evolve the IDEA System has been both very difficult and
very enlightening. Many of the problems encountered in IDEA originally
surfaced as specific user issues of an apparent minor nature or as
unquantified user discomforts. Given the broader perspective of time and
experience, however, these individual problems coalesced into a relatively
small number of global systems design issues. We refer to 'systems' here in
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the normal EDP sense, that is, a collection of interrelated hardware,
software, data, processes and users. A fundamental premise is that systems
analysis and design are very different disciplines from hardware or software
design. Problems have tended to arise in those areas where the developers
were not sufficiently cognizant of system issues., On the other hand, those
areas in which the systems aspects were specifically taken into account
were among the most successful parts of IDEA.

The following maxims are derived from reflection on the IDEA
experience. While they may appear to be somewhat obvious, many of them were
overlooked or not considered sufficiently important by the tool-oriented
developers of the system. They are presented here as points on which those
contemplating the development of an IPAD system might reflect. A few
minutes of such reflection may save many painful hours of correction.

1) Never attempt to automate that which you don't understand how to
do manually.

This is probably the fundamental rule of all systems design and yet one
which 1is frequently violated in the design of CAD systems. Most CAD
applications in companies start out as sets of unrelated +tools created to
solve specific design problems. As the collection of tools gets large
enough, the implementation of an integrated CAD system may be attempted.
But the tools themselves form only a small part of the system. Far more
important are the processes, the way the tools fit together, and the data
with which the tools and processes operate. Far too few engineering
organizations have a complete understanding of their own process flows.
Typically much of the process 1is informal and undocumented. Fewer
organizations still are in a position to quantize those processes into an
integrated design system. Most engineering data today exists in a myriad of
forms, much of it analog (e.g. drawings, purchase specs, models). In order

to create an integrated CAD system, this data must be quantized, and even

before that it must be explicitly identified.

The major design efforts of the IDEA System were the identification of
all of the information about an electronic design required to form a
complete data base and establishment of the appropriate relationships among
those data items. Far less time was spent understanding the engineering
process., This led to a few situations where the data and the process were
not in phase. Users either did not have access to needed data or could get
it only with great difficulty. For example, during printed circuit board
layout, a user could change a feed-through hole size only by putting the
design back 1into the data base and invoking the standard shapes editor.
This was a very slow process for what appeared to the user to be a trivial
change.

CAD developers have traditionally been oriented toward tools,
technology and techniques. CAD tools automate a particular step in a design
process. To build a successful integrated CAD system, one must look beyond
the individual steps and build a system to aid the overall engineering
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process. To do this, one first has to understand that process. Probably
the greatest benefit to an organization which arises from an integrated CAD
system project is this understanding. Even 1if the system were never
actually implemented, great benefit would accrue to any engineering
organization which made the effort to understand and quantize its own
processes and data. On the other hand, any attempt to integrate a set of
CAD tools without this understanding will probably cause more harm than

good.

2) The system users are your most important resource.

Too often CAD system developers, as tool-oriented people, focus all
their attention on the technological problems to be solved (how to define 3D
geometry, how to structure the data, etc.) and forget the fact that to be
successful their system must be used. But CAD systems, as all DP systems,
must start with a set of users. Indeed, one of the most important first
steps in the system design is to explicitly identify who the user community
will be. Only when this is done will the systems' purpose and direction be

clear.

The user community is the ultimate source of information about both the
engineering process and the requisite data. The users should be involved
from the inception of any CAD system design as both consultants and
reviewers. The IPAD project at Boeing has shown the way in this regard.
The engineering group is separate from the system design group and has been
instrumental in aiding and validating the system design through the
development of a set of scenarios and demonstrations. Companies planning an
IPAD implementation should plan a similar activity. Although the Boeing
effort points the way, each company will need to tailor IPAD for its own
environment and the people to do this are the system's users, not the

developers.

Whether an integrated CAD system is successful ultimately depends, of
course, on whether it is used, and that in turn depends on whether it is
acceptable to its user community. The users then must be the final review
authority for both system design and individual application interface
design. It is also very important that the users and developers negotiate
system and application performance goals early in the design process.
Performance is every bit as critical as functionality to system success.
IDEA System performance goals were never explicitly stated. Users!
expectations were higher than the developers' and this became a constant
source of contention after the system was released.

When identifying system users, it is important to distinguish between
those who supply data and those who use it or benefit from it. The former
are obviously vital to the overall system success, but unless they are
brought into the process at a very early stage, they may fail to see the
value of the system. Indeed, an integrated CAD System may add to the work
of such a group without producing any direct benefit to them. An example of
this could be a purchase specification group or components engineering group
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which has the data needed to populate a standard parts library.
Incorporating such a group into the system after it 1is designed and
implemented can be very difficult and frustrating.

3) Data base administration is the key to successful implementation.

Most literature on data base systems describes a function called the
Data Base Administrator (DBA). The DBA is usually described as being
responsible for understanding the data needs of the corporation, defining
the relationships among the data, structuring the data bases and then
overseeing the day-to-day operations of the data base system. In almost
any significant data base system this function will be too large and demand
too great a variety of skills for one individual. However, it is very
important to the success of the system that the function be recognized by
the corporation and performed by a set of people explicitly chartered for,
and dedicated to, data base administration.

Minimal DBA functions will always be performed, whether recognized or
not. When one is going to build a data base, the data it will contain and
the data relationships must be defined. This is often done by system
implementors. In the IDEA System, for example, the person who researched
the data needs also defined the data base schemas and led the software
engineering team which developed the data base software. Frequently the
other DBA role, that of dealing with daily operations, is assigned to the
EDP operations staff as another of their routine functions.

The danger of this implicit approach to data base administration is
that it tends to focus on the details and overlook the total system. It is
the data base which integrates an integrated CAD System. The high level
design of that data base must be done by people with an overview of the
corporation's business, data needs and processes. Too often the CAD
developers lack this overview and deal only with the data needs of
individual CAD tools. CAD developers also generally lack the visibility
and "clout" with top management to organize the data resources and resolve
the inevitable conflicts which will arise regarding data needs and
structures among the myriad of user organizatons.

A second problem which arises with the implicit DBA approach is that a
data base 1is not statiec. As it is wused, there will be a need for
continuous evolution of the data base. New data requirements will arise.
New relationships and structures will be needed. This evolution must be
controlled and performed with the same skills as the initial data base
definition. The system implementors will usually not have the time nor the
charter to monitor this evoluton. But the pressure for system changes from
the users will be continuous. Unless someone is explicity chartered to
manage the evolution, necessary changes will not take place or will be
accomplished only with great difficulty and a large impact on development
schedules. This can severely impact system effectiveness and potentially
even render the system ultimately useless.
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Finally there will arise in the daily operation of a data base system
many problems which are beyond the scope of responsibility of an EDP
operations staff. These include questions of ownership of data,
responsibility to populate the data base, security issues and the setting
of priorities. Resolution of this type of issue requires a corporate wide,
long range perspective. The operational management of a data base system,
just 1like the system definition, must occur at an organizational level
consistent with both the scope and importance of the system to the
corporation as a whole.

In summary, a Kkey factor in the successful implementation of an
integrated CAD system is the highly visible, dedicated administration of
the data base from the very beginning of the effort. Unfortunately this is
an aspect of systems design which is all too often overlooked by
technologically oriented CAD developers. But unless an integrated CAD
system is effectively administered it will surely fall apart because of
its own weight.

4) Don't overcontrol,

One of the primary reasons for implementing an integrated CAD system
is for a company to get control of its engineering data. The integrated
data base allows the company to have access to all the data, to control
access to that data and to track and control the revisions to that data as
a design evolves. The risk is that in attempting to gain control of its
engineering data and process, the implementors of an integrated CAD system
can easily go too far and make the system too rigid and therefore
ineffective.

One potential control problem centers around the freedom the user of
the system is given. A balance must be struck. On one hand the system's
users must be constrained to adhere to corporate or department standards.
This type of control is probably already in place, but the effect of it
will seem much more dramatic when computer based systems are introduced,
since such systems generally demand data in more precise and standardized
forms than engineering personnel are accustomed to give. On the other
hand, the users must be given enough freedom to be able to perform their
assigned tasks in as creative a fashion as possible. The users should feel
that they control the system, that it is an aid to them, not that they are
controlled by it. The system designers must take care that the processes
embodied in the data base and the applications built around it don't become
so rigid or stylized that they restrict engineering creativity.

Another potential problem is controlling data at too low a level. For
example, access and revision controls could be applied to data for an
entire project, to data for each sub-assembly or to each data item in the
entire design. Experience has shown that it is better to control to no
lower than the scope of responsibility of a single individual. 1In the IDEA
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System, a fundamental decision was made to force the 1logical design of
printed circuit boards to be always in agreement with the physical design
and to lock these two together in the data base. However the printed
circuit layout desighers are often called upon to make changes to the logic
design. The decision to control logic and physical design together forced
the layout designers to make all logic changes by putting the layout data
back into the data base, editing the logic and re-extracting the physical
data. This becomes a very time consuming process, even for trivial
changes. A much better approach might have been to allow logic changes
during layout and then give tools to the designer for finding discrepencies
between the logical and physical implementations after the fact. Within
the scope of his responsibility, the designer would then have the freedom
to do his entire job efficiently. It should also be noted that system
design decisions of this sort are very fundamental, they tend to propagate
into many of the system utilities and applications, and are therefore very
difficult and expensive to correct after the initial implementation.

5) Recognize differences between step efficiencies and process
efficiencies.

Many of the companies contemplating the imlementation of an IPAD
system will already be using some CAD tools. In general these CAD tools
will have been built to automate some particular step in the engineering
process with a concomitant improvement in time and cost for that particular
step. For example, turnkey Computer Aided Drafting systems have become
quite popular in the manufacturing industries becuse they can be shown to
improve drawing costs and times varying from 2:1 to 10:1 or better
depending on the types of drawings being produced.

A first level of integration can be achieved by tying together a set
of individual CAD tools with transfer files of data. This in turn provides
some improvement in the overall process by eliminating some manual steps.
However the IPAD approach of using an integrated design data base goes well
beyond the transfer file approach. It has been estimated that an
integrated Computer Aided Design system, such as one based on IPAD has the
potential to provide savings of up to 30% of the overall engineering
effort. While 30% may seem a much smaller number than 1000%, it should be
kept in mind that 30% of the cost of an entire new airplane engineering
project is a very substantial figure, as opposed to 1000% of the cost of
creating a particular type of drawing

The risk is that in order to achieve the large process improvements of
an integrated system, it sometimes becomes necessary to de-optimize or add
overhead to certain individual process steps. For example, if a
stand-alone CAD program is already in use, integration of that program will
cause a new step, data base extract and update, to be added to the user's
tasks. Also control mechanisms, such as replacing a generic parts library
with a standard parts library in an application, may add to the information
a user must supply and limit his freedom and flexibility somewhat. It 1is
imperative that both system developers and users understand very early in
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the system design the trade-offs made to galn process efficiencies at the
cost of process step overheads. If the user community does not understand
and agree to such trade-offs, system acceptance will inevitably be much more
difficult to obtain.

6) Top management commitment is required.

The impetus for most Computer Aided Design efforts generally comes
from the 1lower levels of engineering management. That is where the
individual design problems must be solved. But an integrated CAD system
can be successfully implemented if the highest levels of engineering
management and beyond are not only aware of the system, but committed to
it. There are at least three reasons for this. First, an integrated CAD
system will be an expensive project and will inevitably require top
management sign-off. Second, the resources needed and the people affected
by such a system will span all of the engineering organization. Generally
the drive to obtain those resources will have to come from the top. Third,
the overall engineering process and major functions will be changed by an
integrated CAD system. Compromises will have to be made between process
efficiency improvements and process step de-optimization. Organizational
charters will change and some groups may have to be reorganized. Changes
at this level can only come from top management, who understands the entire
system and cannot be driven by CAD developers.

One word of warning: don't oversell the system. It is all too easy
for a group of CAD developers to allow their enthusiasm for their project
give top management an unrealistic set of expectatons. The vision of the
pot of gold may make it easier to obtain the necesary resources to get the
project started. But in the long run it is far easier to face (and help) a
user disappointed with the performance of his application than it is to
face a vice-president disappointed in the performance of his system.

7) Don't forget the operational requirements.

For an integrated CAD system to be effective and worthwhile, it must
not only be well designed and well implemented, but also well run. This
implies a great deal of planning and effort both before and after the
system is first released.

As the system is being built, appropriate hardware will have to be
procured and facilities prepared. Operating procedures for that hardware
will have to be developed. The wunique aspects of an IPAD system - a
distributed network of dissimilar processors, heavy use of interactive
graphics, very 1large distributed data bases, a high proportion of
compute-bound tasks - mean that standard EDP operations procedures will not
apply. Is the network sufficiently redundant? 1Is tape drive performance
sufficient to provide daily backup? How do users Jjob priorities get
assigned?. The answers to these types of questions will be different for
an integrated CAD system than for a normal business-type data processing
system. But CAD people are typically not used to asking such questions and
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EDP people may not realize the uniqueness of this type of application
system. The system managers will have to develop a new set of backup and
recovery plans, contingency plans, maintenence plans, performance analysis
procedures, ete., to assure that the system runs smoothly with adequate
response time and a minimum of downtime and lost data.

Another important part of day-to-day operation of an integrated CAD
system 1is user +training. Since both the individual CAD tools and the
overall system will tend to be complex, it is very important that the users
be well trained to take maximum advantage of the power they have available.
In the IDEA System, a training plan was derived about midway through the
development cycle. High level users were brought in to learn the system
and then develop the courses to be given to the rest of the user community.
Courses 1included both system overviews as well as in-depth training on
individual applications. When the system was first released there were
trained users ready to go. Training courses have continued on a regular
basis since then to train both new personnel and those at sites Jjust
starting to use the system.

The use of design and engineering personnel (as opposed to the
developers) to write and teach the courses proved very effective. Not only
were they more capable of translating the system capabilities into the
users' 'language', but also they were able to develop techniques for using
the system by putting together combinations of individual simple commands
or functions to solve particular design problems and then teaching these
techniques as well. The course development during system development also
provided another very effective system test and design improvement feedback
mechanism.

A final point to keep in mind is that a CAD system will be constantly
changing because the technology with which it deals is constantly changing.
System evolution will go most smoothly 1if the interaction between
developers and users which was established during system design and
development is maintained. One appropriate way of accomplishing this 1is
setting up applications oriented users groups. Such groups can provide an
excellent source of ideas for system enhancements, for setting priorities
and for exchanging techniques and experiences. To make such groups even
more effective, they can be given the final approval authority for all
system enhancements in their particular discipline areas.

4, Summary

The interest in and pressure to develop an integrated CAD system
almost always comes from a combination of CAD tool users and CAD tool
developers, Far too frequently, however, such individuals are not
particularly knowledgeable in the development of applications systems and
the types of issues raised by the maxims we have presented are often
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overlooked. If we have any single recommendations to give the potential
IPAD developer, it would be to be sure to include systems professionals,
even though they have no CAD or engineering expertise, on the development

team.

This paper has dealt with the potential problems of an integrated CAD
system., It is intended to be taken in the spirit of preventative medicine.
For all of the problems, difficulties and mistakes in IDEA, there has been
a tremendous benefit to Digital Equipment from the IDEA project. We would
expect a similar benefit for any aerospace company implementing an IPAD
system. We hope that consideration of the maxims we have presented will
make that implementation a bit easier.
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IPAD: AS IT RELATES TO THE UTILIZATION OF CAD/CAM IN GENERAI MOTORS
SYNOPSIS

Betsy Ancker-Johnson
Environmental Activities Staff
General Motors Corporation

GM has held a leadership position for over 20 years in the development and
application of computer-aided design/computer-aided manufacturing. Design
graphics and related tooling computer software development alone have received
upwards of $50 million in funds, and major new activities are operating or under
development today.

The return on this investment, in terms of over 600 computer graphics con-
soles in daily operation on product and tooling engineering applications, has
been realized several times over; and there is no doubt in the minds of GM
management that these computer applications are among the most successful ever
undertaken. The fact remains, however, that GM's needs are only partially met
by internal development; and we are a major purchaser of turnkey graphics
systems, approximately $10 million annually, with about half of our consoles
being of this type. The seeming contradiction between a completely successful
internal GM program and a voracious appetite as a consumer in the marketplace
is the subject of this paper.

The pressure to utilize the productivity of computers starts, of course,
with the unprecedented need to design and manufacture new automotive products
on a scale never seen before. GM has stated recently that it will spend
$40 billion over the next five years on its product program and facilities to
retain its transportation leadership. As all of you have read in the newspapers
recently, the U.S. automotive business is battling to remain viable and compete
favorably with other world automotive centers.

The other world automotive centers do not have a technological lead on the
U.S. industry. GM has every intention to see that this foreign competition does
not become the technological leader, especially in the engineering activities.
The goal of IPAD is to increase productivity through the total integration of
computer-aided engineering functions, and we are very supportive of this
activity. A system that will integrate and manage product design data, program
management information, technical computation, and other engineering data man-
agement is essential to our success at maintaining this leadership role.

Returning to the role of CAD/CAM, the automotive business has many require-
ments similar to aerospace, but some major differences also. Manufacturing
volume is totally different, hundreds of thousands vs. hundreds, so consequently
the CAM portion of CAD/CAM is mainly directed toward automotive tooling and
rarely toward the production of actual parts. Therefore, the comparison of
aerospace and automotive becomes more direct when you substitute the production
of automotive tools with the production of product parts in aerospace.
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The CAD portion of CAD/CAM in automotive product engineering spans the
original part definition, analysis and test of prototype parts, and part models.
Part definition and physical models are given to manufacturing engineering in
order to design and produce actual tooling. This subject is discussed later.

The success of CAD in product engineering starts with the ability to rep-
resent the geometry of parts within the computer. Since the early 60's, GM has
successfully used "wire frame" models (lines with surface interpolation between
the lines) to represent free form shapes which comprise the bulk of automotive
body parts. Representations of the more analytic shapes found in engines and
chassis components are handled partially by commercially available mechanical
design systems. A large number of analytic shapes require representation as
solids and GM is actively developing this capability. Ultimately, as in aero-
space, our needs will not be completely satisfied until computer data bases are
fluent in all forms of data. We strongly support the IPAD efforts to develop,
demonstrate, and promote requisite data base capability in all commercial com-—
puter systems.

Design, analysis, and the testing of prototype parts and complete auto-
motive vehicles have become much more complementary with the types of analysis
that can be performed today. Structural analysﬁé, in particular, which came to
the automotive business largely through NASTRAN and transplanted aerospace
engineering, has been responsible for much of our savings(éP weight. Approxi-
mately 300 GM engineers are now intensively using NASTRAN through
GM-developed graphic aids for making finite element models, interfacing to
NASTRAN , and reviewing results.

Other design analysis techniques are not used as extensively as struc-
tural analysis which has been so basic to our current mass reduction program.
The problem is that automotive product cycles are considerably tighter than
those in aerospace, and time is available for a limited amount of analysis
generally when an absolute need is demonstrated. In the case of structural
analysis, both the need and the technical ability to process jobs quickly
{(graphics, NASTRAN’Ga , etc.) arrived simultaneously so that product schedules
were not greatly compromised. The awareness of need for many other forms of
analysis (aerodynamics, fatigue, kinematics, statistical simulations, etc.) is
growing in the automotive industry, but the current tools are usable by only a
relatively few experts, and these results are often not responsive to product
schedules. The IPAD program through the standardization of data forms and
accessing methods will increase the utility of these analysis tools. The U.S.
automotive industry needs these improvements to gain and maintain a significant
lead in technology over our foreign competition.

Automotive product engineers pass part definition to manufacturing engi-
neers through physical part models, traditional drawings, and increasingly
through computer data transfer when the part originates within the computer
systems. Between one-~quarter to one-third of GM parts are aided by the com-
puter in the design stage and this number grows continually. When the parts
are developed through computer-aided design, models are produced through N/C
machining and drawings produced through automated drafting machines. The
economics of today's computers allows GM to effect a cost reduction on the part
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design alone but the automated models and drawings represent 80-90% of the
total savings in dollars and, Jjust as importantly, in lead time in the manufac-
turing process.

The manufacturing engineering function for GM, responsible for tool design
and tool production, is characterized by

1. Existing approximately half within GM and half outside
2. Possessing a large component of mechanical design in their work
3. Attracting turnkey graphics systems to automate their work

4., Being frustrated that computer-designed part data is not more readily
usable.

These concerns are similar to those of an aerospace subcontractor which IPAD
includes within its specification.

The immediate data transfer problems to/from subcontractors with turnkey
graphics systems are being approached through the Initial Graphics Exchange
Specification (IGES) through the cooperation of the National Bureau of
Standards and industry. GM officially supports IGES as does IPAD, and we
encourage IPAD to deal with the data exchange issue on a long-term basis.

In the panel discussion, a member of GM's Guide Division details the use
of CAD/CAM from the point of view of a subcontractor to our car divisions
(see paper 27 of this compilation). Guide is a supplier of all lamps and some
soft facia bumper systems in the Corporation and is both a user of our Corporate-
developed graphics system and purchased turnkey systems. We are confident that
Guide's extensive experience as a CAD/CAM user will illustrate advantages and
possible pitfalls.

In summary, GM has realized extensive benefits from CAD/CAM technology
even though at this time our systems are not fully integrated. GM and the
rest of the U.S. automotive industry, as well as the aerospace industrial com-
plex, must be able to implement the basic concepts of IPAD in order to take
full advantage of the expansion of CAD/CAM into every phase of our engineering
business. These concepts must include

® A fully integrated data base

® A communications package for distributed systems in our own shops as
well as with our suppliers

® Encouragement for the development and application of a solid modeling
system to supplement the wire frame technology .
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Appreciating the similarities and the differences between the automotive
and aerospace businesses, we at GM realize that the scope of this project takes

the implementation outside of the range of a company even as large as GM. We
join industry as a whole in supporting IPAD and related activities which will

bring the promises of increased productivity to reality.
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TURNKEY CAD/CAM SELECTION AND EVALUATION

TED MOODY
THE CESSNA ATRCRAFT COMPANY

SUMMARY

This paper deals with the preliminary determination of candidate integrated
design systems, benchmark evaluations, and ultimate selection through an evalu-
ation matrix.

INTRODUCTION

When it becomes apparent to Engineering Management that methodology changes
must be made in order to stay competitive in the manufacturing business, one of
the considerations in that methodology is immediately identified as computer
aided interactive graphics. Early on, one of the questions that must be asked
and answered in these considerations is the question involving mini-computer
systems or main-frame based systems. Another question that must be asked and
answered in these considerations is the question of user integrated or turnkey
systems. The initial investigation generally can be done by analyzing individ-
ual company needs and expectations and comparing those needs with existing sys-
tems in place at either compatible or competitive companies. 1In the case of
Cessna, most of this initial evaluation was done by way of telephone contacts
with existing user companies. Additionally, in the case of Cessna one of the
early-on requirements established was that of being able to directly convert
the engineering data base to data usable by the Tooling Department for the pur-
pose of manufacturing production tools. With the preponderance of both mini-
computer and main-frame systems in existence, and proliferation of computer
aided graphic systems that has taken place in recent years, it is important to
identify company requirements so that they can be matched with a general generic
type of interactive graphics system such as user integrated main-frame, turnkey,
mini-computer and so on. In the Cessna Pawnee Division case, it became apparent
when considering our requirements that the turnkey, mini-computer system should
be the area on which our search and evaluation concentrated. As a result, our
initial investigation turned towards mini-computer systems, however, because of
rapid developments that came along this evaluation was expanded to consider
specialized main-frame interactive systems at various points in the evaluation.
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SYSTEM EVALUATION
Sales Literature

Sales literature is one of the initial sources of information about a par-
ticular system and offers the first opportunity to narrow the field of conten-
ders to a manageable number. This assumes the evaluation team is already some-
what knowledgeable about the field. For the uninitiated, the plethora of
brochures and technical descriptions leaves the team in the rather muddled state
of 1liking best that system described last. However, if the applications areas
are reasonably well laid out and the requirements created by those applications
are kept in mind, enough information can be gleaned from the marketing efforts
of the competing companies to recognize obvious deficiencies in major applica-
tions areas. For example, our requirement that a CAD/CAM system be useful both
in design and manufacturing of our product placed a high premium on a three-
dimensional data base and Numerical Control software. We deemed these a neces-
sity for the layout and design function and for the generation of N/C tool paths
for part tooling. Therefore systems whose sales information indicated weakness
in these areas could be dropped from further consideration with an acceptable
risk.

Demonstrations

Once the apparent match of system requirements and capabilities by sales
literature has been carried as far as practical and a number of candidates have
survived the weeding out process, the evaluation can move to the next phase.

The number of candidates in this phase depends on how effective the evaluation
team finds the sales literature in narrowing the field and on the organization's
travel budget since this phase calls for visits to live demonstrations of the
system operation. There are two types of these demonstrations, 'dog and pony"
shows by the vendor's marketing organization and observation of production sites
in the field. The marketing efforts come in two varieties, district sales
offices with demonstration systems installed and trade shows such as the

CAD/CAM VII show in Detroit last fall. There are two avenues to the user sites
as well, the relatively informal visit to a users installation or a possible
invitation to a formal users group meeting. Each of these areas has its own
advantage. They all give the opportunity to verify or negate the impressions
obtained from the sales contacts. The vendor demonstrations are quite polished
and flashy and will tend to gloss over shortcomings in performance and accen-
tuate the stronger points. The user demonstrations on the other hand quickly
get away from the system performance and tend to concentrate on the vendors
support performance. The users group meetings can yield a great deal of
exposure to the general attitude and specific complaints that exist in a partic-
ular vendor's user community. This is all valuable information to the would-be
purchaser and must be reliably obtained before an intelligent procurement
decision can be made.
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Benchmark Evaluation

After all the demonstrations have been attended, and the information di-
gested, an impression will be left as to how well each vendor matches the
advertising claims. Any with obviously large shortfalls are cut from further
congsideration and some means of head to head comparison between the remaining
contenders must be found. Since the demonstrations by the vendors are all
defined by them and well rehearsed, there is too little in common for a mean-
ingful comparison.

One obvious approach to obtain a comparison is for the evaluation team to
design a benchmark problem that is simple enough to be performed rapidly by
the vendor's operations and yet exercise the system in each of the anticipated
applications. Since Cessna produces airplanes, applications in lofting aircraft
surfaces, drafting predominately sheet metal components, developing N/C tool
paths necessary to produce form tools, and performing NASTRAN analysis of the
aircraft structure were selected as possible applications and addressed in the
benchmark.

A two day period was allotted to each vendor to perform identical tests.
During this period, each contender was asked to generate the defining lines
for an aircraft wing and fuselage, determine the surface intersections, extract
the envelope for a detail part defined by the surface contours, produce an
engineering drawing of the part, generate APT source and CL file outputs of
tool paths to fabricate the form die, create a finite element mesh, and produce
data suitable for NASTRAN analysis. This very tall order was not completely
filled by any of the vendors but did provide a more than adequate amount of
data by which the technical evaluation of the various systems could be completed.

SYSTEM SELECTION

Technical Evaluation

As soon as all the benchmark examinations have been completed the evaluation
team is faced with reducing a preponderance of data to a form usable for gener-
ating a procurement recommendation. On occasion, perhaps, the team will dis-
cover that one of the competitors carries an advantage in all areas. In this
happy instance, a recommendation can be made almost immediately. However, in
general, the strengths and weaknesses of the individual systems will not coin-
cide but will instead, overlap. The sharp contrast of the ideal situation is
blurred into a grey homogeneous mass with no apparent reason to select one
vendor over any other. This howeveriis not without advantage to the evaluatorx.
This does cause difficulties in arriving at a correct conclusion, but there is
also little risk of an incorrect conclusion. Virtually any of the vendors who
reach the benchmark stage can provide a system with capabilities that will
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enhance the operation of the prospective buyer. At this stage, however, not
only system capabilities are important but also the support capabilities of the
vendor become a prime factor in the decision to purchase that vendor's system.

Just as a system with deficient or mismatched capabilities is little more
than an expensive toy, so too is one with excessive maintenance downtime or with
poorly trained operations personnel or with a management whose implementation
and application plans are not well prepared. Therefore, along with the tech-
nical evaluation of the system must also be evaluations of the hardware and
software maintenance support and reliability, training programs and procedures
for both operators and managers, and the availability of consulting services to
help get the new user up the learning curve as quickly as possible.

So even though any of the benchmarked systems will offer advantages, there
is probably one which will best meet the needs of the anticipated applications.
Since most people are familiar and comfortable with numerical rankings, the
evaluation team decided to generate for each of the competitors a numerical
score which would indicate the proper choice. Or, in short, to generate an
objective measurement of what was to a large extent subjective data.

The technique used was a multi-tiered evaluation matrix or tree as indi-
cated in the figure. The final score for each system was derived as a weighted
average of the score in each of three evaluation areas. As can be seen from
figure 1, these areas are manufacturing applications, engineering applications
and overall system management. Each area has several application categories
unique to the area. The engineering categories are shown. As before, the area
scores are a weighted average of the category scores for that area. This scheme
holds throughout the evaluation tree. The score for each block is the weighted
average of the applicable blocks in the next lower tier. Each category is made
up of unique items and each item of unique elements, the lowest tier. Element
scores are assigned on a scale of zero to ten based on how well the system
appeared to meet the needs of that category's item for that element. A conscious
effort was made to avoid ranking the systems relative to each other at all levels
of the evaluation. The intent was to obtain an absolute rating for each system
rather than a relative ranking. The evaluation team felt important consideration
was not how one system compared relative to another, but rather how each system
would perform in our operation on our applications.

As might be expected, no system obtained a perfect score. Of the four sys-
tems evaluated by this process, the high was 91 and the low was 72 out of a
possible 100. This should not be interpreted to mean that there is in fact a
20% difference in capability but rather that the lower score indicates the sys-
tem strength did not match our needs as closely as did the other systems. Both
the high and low scores are from systems which are very popular and have a large

user base.

These final scores from the technical evaluation were used by the contract
negotiators as background information in the negotiations that followed. The
negotiations were performed by different individuals from those who were in-
volved in the technical evaluations and benchmark performances.

302



Contract Negotiation

Once the candidate systems have been identified, evaluated, benchmarked
and technical evaluation completed, the contract negotiation phase begins.
In most companies there are several prime considerations in the purchase of
any piece of capital equipment. One of those certainly is a technical eval-
uation and the other the capital outlay required for the equipment. Generally,
it is desirable during the technical evaluation to qualify at least two systems
as having the necessary requirements for the applications intended. Once the
fundamental systems are established in terms of their capabilities, a system
definition in terms of the various components and peripheral equipment must be
established. These obviously vary with respect to each company's present com-
puter capability and peripheral equipment but generally a system definition
must be established. In the case of Cessna, this was done with two competitive
but equally acceptable vendors. One of the next considerations in the contract
negotiations involves determination as to whether or not equipment should be
outright purchase or lease. Consideration must be given to maintenance con-
tract and service support. Once these are done, a formal quote is requested
with a clear cut decision date established. During the evaluation of these
quotes, the competition reaches a high level and many times suggestions for
reconfigurations are made to optimize the capability and cost parameters. But
in general, the equipment with the strongest technical capabilities, best main-
tenance and service organization, and total cost that is compatible with bud-
geted figures must be selected. There is a potential for significant cost
reductions with two qualified vendors operating on a bid basis for complete
interactive systems.
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OBSERVATIONS BASED ON DEVELOPMENT OF A
COMPUTER AIDED DESIGN SYSTEM
Howard Best

Vought Corporation

INTRODUCTION
VOUGHT'S CAD EFFORT

We are all aware that use of the computer for design is not new. The
technical specialties have had their NASTRAN's for years and have used them
effectively in support of design. Flutter analyses which took six months on
an electric calculator, are done in less than a day. So what's new that makes
us take a new look at computers in the design process?

1) Graphics is reaching a state of maturity that makes it attractive for
design definition.

2) Basic computer capability and capacity has attained a cost and size
that makes stand above systems practical for the many designers
needed to handle a project.

3) The transfer of information from one techunology area to another using
traditional paperwork 1s taking longer than the develoment of the

information itself.

It is in light of this situation that Vought, like many other companies,
developed a plan for implementation of a far reaching CAD program.

Our CAD program has four major thrusts:
1) Development of graphics for design definition.

2) Computerizing the transfer of information from one engineering
discipline to another, 'untouched by human hands'.

3) Computerizing the transfer of design definition information from
Engineering to Manufacturing.

4) Development of a system for management of the design process and
information flow.

Some aspects of our development parallel the IPAD program. Nevertheless, a
preponderance of the tasks are required regardless of whether IPAD is
eventually implemented or not. Our expectationm is that, if and when we
implement IPAD, little or no reprogramming will be required.
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The development and implementation of this program has surfaced many
management related issues. As one might expect, there are more questions than
answers.

Five areas will be discussed.

1) Productivity Improvements

2) Effect on Organizational Structure

3) User Training

4)  Make-or-Buy Consideration

5) Transition Away from Hard Copy

PRODUCTIVITY IMPROVEMENTS

WE ARE ALL CONVINCED THAT THEY ARE REAL - ARE THEY?

Most of us have started with a single item, such as the interactive
graphics scope, and developed beuchmarks to prove savings. These savings were
then extrapolated a long way, from the measured thousands of dollars to the
projected millions in savings, to justify full systems hardware and software
costs. Of course, we make full use of our company's 5-year development plan
to show that improvements are not only real, but also apply to our planned
business mix. However, in transition from "laboratory" to production status,
we come face to face with certain truths; the optimism of developers and
realism of the day to day functional organization user don't match.
Reconciliation of actual savings to expectations is a must to maintain
credibility.

Even interim developments such as ours represent millions of dollars in
expenditures. Management is entitled to feedbacks that demonstrate the
benefits. So far, we are successful. New benchmarks are developed
regularly. We are looking at percent utilization of scopes for graphics
verification. Records of the number of times used for each of the integrated
activities, and comparison to predictions, validate at least part of our
savings formula. As specific new improvements are implemented, new benchmark
tests are conducted. In addition, we are providing management visibility
through a series of demonstrations of developments as they occur, and have
scheduled at least 4 demonstrations per year. These keep management abreast
of progress. Providing management visibility keeps the program sold.
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EFFECT ON ORGANIZATIONAL STRUCTURE

ORGANIZATIONS WILL CHANGE BY EVOLUTION, NOR REVOLUTION, BUT CHANGE THEY WILL

Our CAD program is already breaking down barriers between Engineering
technologies and between Engineering and Manufacturing. Several trends are
emerging. The true technical specialists remain as technology computer
program developers, while the hardware design engineer utilizes the technology
that is available to him in the computer to synthesize and finalize his
designs. This suggests a movement of the technical specialist to the computer
departments. The design oriented engineers will broaden their activities
across discipline lines, i.e. aerodynamics, structural loads, thermal, stress,
dynamics, and product design, all handled by a single individual using
available interactive programs. The era of the helmet, goggles, and silk
scarves may be returning to the design room.

Traditional design type releases will begin to include more information in
line with Manufacturing Planning. This raises the question of whether we move
the traditional designer to Manufacturing, or move the Manufacturing Planner
to Engineering. The same can be said for Purchasing, Processing, Quality
Planning, etc. These organizational trends are appearing already. No longer
do we talk about interface with Manufacturing, as though there were a wall
between us. It is now integration of Engineering and Manufacturing.

USER TRAINING

TRAINING IS A KEYSTONE TO CAD/CAM USEAGE AND BENEFITS GENERATION

Training must proceed in concert with CAD/CAM development and hardware
acquisition. Without it, there will not be anyone prepared to "reap the
benefits'". We are already asking where we can get training materials. Since
the developers are all at different stages of development with different
systems, each will generate his own material for the time being. Fitting
training in with productive operations and still reaping the benefits which
sold our system in the first place is difficult. Full dedication of hardware
to training, use of split and double shifts, as well as on the job training
are necessary expedients to come up to speed. With the age of aerospace
engineers increasing, we wonder if we can teach 'old dogs'" new tricks.
Fortunately, our experience to date is that the '"old days" are pushing the CAD
developers, not the other way around. A planned program of training must
parallel CAD/CAM development if we are to gain the benefits, and maintain
management confidence.

What about the academic world? My concern is that we will stop teaching
fundamentals in order to conform to the CAD world. Familiarity of the student
with computers and CAD type systems is 0.K. as long as he knows what he 1is
doing and why.
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MAKE-OR-BUY CONSIDERATIONS

COMPUTERS AND CAD/CAM SOFTWARE AND HARDWARE SYSTEMS ARE DEVELOPING AND
CHANGING AT THE SPEED OF LIGHT. OPPORTUNITIES ABOUND FOR FALSE STARTS.

Examples of "Buy'" items are numerous and represent hundreds of millions of
dollars invested. 1IPAD itself is well into development. Air Force ICAM is
rolling along. Air Force ICAD is now in the wings. Mini~turnkey graphics
systems with software included are floodiung the market. Main frame computer
companies are now on board as well. Programming houses are on the market with
significant software that fits many of our needs.

This raises two significant questions:

a) Why not wait and buy off-the-shelf for a fraction of the development

cost?
b) If we go ahead, will we be compatible with the developing technology?

The answer to the first is intuitively obvious. Competition forces us to go
ahead, and the lure of benefits in productivity make our mouth water. The
answer to the second is not so obvious, and presents a challenge not only to
those of us who are moving ahead in parallel with our industry counterparts,
but also to the major developers, whether IPAD, ICAM, Mini turnkeys, software
or main frame systems, to provide and maintain compatibility. The applier of
these wares 1s king, and compatibility is mandatory.
o

In the long run, we will be integrating the home grown system into larger,

more powerful CAD/CAM store bought systems. Therefore, we will be both making

and buying.

TRANSITION AWAY FROM HARD COPY

THE USER MUST UNDERSTAND HIS DATA AT EVERY STEP IN THE DESIGN
AND MANUFACTURING PROCESSES, REGARDLESS OF WHAT FORM IT IS IN.

Hard copy, as a goal, will disappear, or at best, be subordinate to the
computerized data base. However, the questions raised by this approach are
the same as in the cashless society many foresee. They're just not as
personal, but perhaps they should be.

a) Can we see visually in an understandable way what our situation is
during the design and manufacturing processes?

b) Will we have adequate access to the information?
c) Can we provide adequate security to data? Who can change it? How

will we know it is being changed?
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d) Will we know whether schedules are being met? What management
" controls and visibility are necessary?

e) If difficulties occur, can we adequately trace root causes?
) Is redundancy required for safety of the investment?
The challenge is to provide the safeguards that will give us confidence to

move ahead. We are struggling with these aspects now, and only know that we
must come up with satisfactory answers.

CONCLUDING REMARKS

Productivity improvements are real, provided we are astute enough to
recognize high payoff applications and not let our organization clog the works
with marginal tasks.

The central organization of the future will be a coalescence of design and
manufacturing planning, supported by Engineering Technology specialists on one
side and Manufacturing and Processing specialists on the other side.

True design engineers, capable of utilizing the tools at their command,
will need to be properly trained, and continue to be honed, if they are to be
effective.

Heads-up decisions concerning IPAD, ICAD, ICAM, etc. implementation are a
necessity if we don't want to re-plow our ground several years hence.

We will eventually overcome our addiction to hardcopy, and develop

reliable digital storage of data subject to instant recall in a format
suitable for use in a multitude of ways.
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INTERACTIVE GRAPHICS

Dale Christensen
Naval Weapons Center
China Lake, CA

ABSTRACT

Interactive graphics is a broad subject having many different meanings to
many different people. The Navy is presently exploring a variety of uses for
interactive graphies. This paper explains how the Navy Laboratories are using
and planning to use interactive graphics to do engineering related tasks, and how
this interactive graphies technology will impact the way the Navy Laboratories
conduct business.

INTERACTIVE GRAPHICS

This paper defines the different types of interactive graphics systems
available and the capabilities of one type - the minicomputer turnkey engineering
interactive graphics system. In addition, the Navy's requirements and needs for
minicomputer turnkey engineering interactive graphics systems will be discussed
as well as the role of the Navy Laboratory Interactive Graphics Program in
bringing this new technology to the Navy.

DEFINITION

Interactive graphics can be best understood by examining separately the two
words "interactive™ and "graphics."™ First, interactive denotes some type of
interaction between two entities. 1In reference to interactive graphics, these
two interacting entities are the man and the machine. Each entity brings
capabilities which complement the other. The machine is composed of a digital
computer and some form of visual display. The computer has the capability to
perform calculations with great speed and accuracy. The visual display allows
these data to be shown almost instantaneously. The man takes these data, and
based on his purpose, creativity, and experience, he is able to make business or
technical decisions.

The second word is graphics. Large quantities of data on a display may be
overwhelming and virtually meaningless. If these data are turned into simple
graphical presentations, they become readily meaningful. Thus, interactive
graphics is man and a machine working together to make decisions. As always, the
man is the key element.
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INTERACTIVE GRAPHICS SYSTEM TYPES

Interactive graphics systems are composed of hardware (equipment) and
software (programs). There are basically three types of interactive graphics
systems. The first type of interactive graphics system manipulates and displays
business data. This includes, but is not limited to, preparing bar charts, pie
charts, graphs, and other graphical business information. The second type of
interactive graphics system manipulates and displays information for real-time
applications. Aircraft simulators are an excellent example of this type. The
third type of interactive graphics system manipulates and displays engineering

data.

There are two subtypes of engineering interactive graphics systems. The
first subtype utilizes a large host or mainframe digital computer referred to as
a host computer engineering interactive graphics system. This type of system is
very powerful and capable of solving very sophisticated engineering and design
problems. It is traditionally very expensive to use, primarily because it
requires the dedication of a large mainframe computer to the task. The second
subtype utilizes a digital minicomputer. This is referred to as a minicomputer
engineering interactive graphics system. These minicomputer based systems are
also called turnkey systems. A turnkey system is one in which a manufacturer
supplies the hardware and software as an integrated system. This type of system
can be useful for doing such tasks as engineering documentation, electronics
design, printed circuit board design and layout, and mechanical design layout and
arrangement. It is much less expensive to use than the host computer based
system and is significantly more productive than manual methods. The gross sales
of the leading manufacturers of these systems have grown from $20M in 1973 to an
estimated $400M in 1980. It is estimated that the annual sales by 1983 will be

$1.5B.

ENGINEERING PROCESS

Before looking at how the minicomputer turnkey engineering interactive
graphics system works, the engineering process should be examined. Presently,
there are basically four engineering functions. They are design, analysis,
documentation, and fabrication. Each function is dependent on the previous
function and all are interrelated. Normally, the data required for each function
is manually transferred between functions by the engineer.

MINICOMPUTER TURNKEY ENGINEERING INTERACTIVE GRAPHICS SYSTEMS

Minicomputer turnkey engineering interactive graphics systems utilize a
digital data base to store information. Previously entered information in the
digital data base can be used by the following functions of the engineering
process. For example, geometric data entered during the design phase can be used
in the analysis phase, the documentation phase, and the fabrication phase. The
source of the geometric data is the same for each function. This eliminates
duplication of effort between the engineering functions and serves to eliminate
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manually introduced error. The digital data base is controlled and manipulated
by the engineer at the interactive graphics work station.

CAPABILITIES

Presently, the minicomputer turnkey engineering interactive graphics
systems have limited capability. In designing, they can be used effectively for
2 and 2} dimensional mechanical design layouts and for arrangement drawings.
There does exist some software to transfer geometric data to some standard stress
analysis programs. These systems are also very effective in preparing mechanical
and electrical military standard drawings. Also, the capability to design,
document, and provide manufacturing data for printed circuit boards is
available. Two and three axes numerical control (N/C) software exists to
generate machine control tapes for N/C milling, drilling, and lathe machines.

Increased design, analysis, and fabrication capabilities are presently
being developed. These capabilities will mature as more software is written and
as more sophisticated hardware is developed.

NAVY NEEDS

Before the Navy can effectively utilize this interactive graphics
technology, it must first understand the capabilities and limitations of the
technology. The Navy must also be aware of how it will change the engineering
process. Three areas which will be affected are the Navy-contractor interface,
the efficiency of the engineering process, and engineering personnel
productivity.

The use of these minicomputer turnkey engineering interactive graphics
systems will provide better and faster communication and data exchange between
the Navy and its contractors. Since the engineering information in these systems
is in a digital format, it can be transmitted quickly over telephone lines
between any two points. Most files can be transmitted in less than 15 minutes.
The ability to pass engineering data and drawings quickly between the Navy and
the contractor will reduce the time needed to resolve engineering problems and to
approve engineering changes.

The acquisition process will also be affected. Traditionally, Navy
contractors provide as deliverables of a contract engineering specifications and
drawings on paper or on vellum master drawings. Using these systems, magnetic
tape will be the exchange medium. The amount of space required to provide a
complete documentation set will be significantly reduced when engineering data
are provided by a contractor in a digital format on magnetic tape. Storage and
retrieval will also be easier.

The use of the minicomputer turnkey engineering interactive graphics system
will increase also the efficiency of the engineers involved in the engineering
process and will reduce the cost of fabricating the Navy's systems. Two of the
most time consuming portions of a manually designed part or parts are accurately
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drawing the parts and manipulating and/or changing them to evaluate new design
ideas. The computational power of the computer and the speed to accurately
display the parts allow the engineer new flexibility in manipulating the parts
and evaluating new design ideas quickly. The design of a part will improve as
more design ideas are evaluated. As the design of a part improves, the number of
changes in the design decreases. The relationship of design changes to system
cost was investigated recently by a large aerospace company. 1t was determined
that design change was the cost driver in the engineering process. This company
estimated that the use of interactive graphics systems could reduce the number of
engineering changes by approximately 15 percent, which resulted in a significant
reduction in cost to design, document, and fabricate their products. The
utilization of these systems will increase the efficency of the engineers who
design, document, and fabricate the Navy's products and decrease the cost of the

Navy's products.

The productivity increases associated with these systems are well
documented. Productivity increases of 2:1 to 6:1 are not uncommon in the
industrial community in mechanical and electronic design applications. The
utilization of these systems in the Navy Laboratories will increase engineering
personnel productivity, reducing cost and more importantly reducing the time
that it takes to develop and produce an item for the Fleet.

NAVY LABORATORY INTERACTIVE GRAPHICS PROGRAM

The Naval Weapons Center, China Lake, CA, has been designated by the
Director of Navy Laboratories as the lead Navy Laboratory for interactive
graphics. The Naval Weapons Center has had a minicomputer turnkey engineering
interactive graphics system for over 33 years. The system is used to do
mechanical design layouts and to create electrical/electronic and mechanical
drawings. The capability to design, document, and generate art work and N/C
drill tapes for printed circuit boards will be available shortly.

The Interactive Graphics Program Office at the Naval Weapons Center has been
tasked to justify, specify, acquire, and integrate minicomputer turnkey
engineering interactive graphics systems at 7 Navy Research, Development, Test
and Evaluation 1laboratories at 10 locations within the continental United
States. This program is divided 1into three phases: development plan
formulation, acquisition, and integration. The development plan was completed
in the summer of 1978. The Navy Laboratory Interactive Graphiecs Study Final
Report (NWC TP 6083) was published in March 1979. The Navy Laboratory community
has requested 115 work stations at an estimated cost of $10M (FY 81 dollars).
The cost savings over a five-year period (FY 82-87) have been estimated at $16.3M
(FY 78 dollars). The acquisition phase is well under way. Delegation of
procurement authority was received from the General Services Administration in
January 1980. The Request for Proposal is scheduled for release this fall. The
indefinite quantity contract award is scheduled for late FY 81. Delivery and
integration will take place in the time frame from FY 82 to FY 85.
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SUMMARY

The installation of minicomputer turnkey engineering interactive graphics
systems at the Navy's Laboratories will provide the capabilities which will allow
the engineer to more quickly resolve engineering problems and approve
engineering changes, and to increase the efficiency of the engineers who design,
document, and fabricate the Navy systems. This will increase the engineering
personnel productivity in the Navy and in industry. This new technology will
allow the Navy and its contractors to design and produce better engineered
systems more quickly at a reduced cost.
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DATA BASE SYSTEMS IN ELECTRONIC
DESIGN ENGINEERING

Del Williams
Information Display Division
Tektronix, Inc.

Abstract

This paper covers the concepts of an integrated design data base
system as it might apply to an electronic design company. Data
elements of documentation, project specifications, project track-
ing, firmware, software, electronic and mechanical design can be
integrated and managed through a single DBMS.

Combining the attributes of a DBMS data handler with specialized
systems and functional data can provide users with maximum
flexibility, reduced redundancy, and increased overall systems
performance. Although some system overhead is lost due to redun-
dancy in transitory data, it is believed the combination of the
two data types is advisable rather than trying to do all data
handling through a single DBMS.

Introduction

The invasion of computers into the Engineering discipline has
brought with it a multitude of opportunities. Using the computer
to increase productivity, solving problems too complex for the
human mind, performing simulations, and maintaining large data
bases are just a few of these opportunities. Although not being
used to the maximum limits, computers are effective in increasing
productivity and solving large complex problems today. In solving
many of these problems, large amounts of data are needed and
collected. Also, expanding into new engineering processes creates
increasing amounts of data which must be managed. As the amount
of data increases, the need to correlate and manage the data in
an effective manner becomes a problem. A concern over the
management of engineering data has surfaced within the past ten
years and will continue to grow.

The end is not obvious. However, within the next decade, we will
see emerging an integrated design data base concept. This will

allow engineering data to provide information to various levels
of both project- and management-oriented decision makers.
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In electronic design alone, it is not uncommon to find many of
the following elements: '

Schematic or circuit information
Documentation

Simulation modeling information

Design specifications

Firmware

Software

Project tracking and management information
Reliability information

Mechanical specifications

General management information

CO0O0O00O0000O0

This information is required during the R & D segment of most
electronics projects. Once a project has been productized, mar-
keting, information sales data, profit and service costs can also
be added to the informational data base. The process of managing
and correlating all this data has become a monumental task.

The need to manage and correlate this information has been a big
problem. Although it is possible to provide such correlation with
currently existing DBMS systems, the processing efficiency and
time delays have been unacceptable to resource managers. If we
emphasize efficiency rather than flexibility, data bases must be
maintained individually, and the ability to correlate data is
lost. Redundant information would also be encouraged.

The goal then is to implement an integrated design data base
system which provides the flexibility necessary to manage various
segments of Functional Data while allowihg maximum data
correlation. It should require minimal data duplication to do
this while delivering maximal processing efficiency to various
engineering subsystems.

Integrated Design Data Base Systems

Elements of the integrated design data base include:
ECB information !
Schematic circuit information

Project Documentation/manuals

Modeling and simulation

Project specifications

Firmware

Software

Project tracking and management information
Mechanical drawings

Reliability information

O O0O0OOCOODOOCOO
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This information is required in the research and development
stages of all projects. If the results of the R & D are to
produce a productizable output, then various marketing, sales,
service, customer profile, and other post-development information
will also be required. To integrate this through a single DBMS
system requires extensive indexing and massive amounts of stor-
age. Processing would require extensive data searches and CPU
resources for even the simplest tasks. Also, each data subsystem
would need functional as well as project indexing.

Figures 1 and 2 illustrate the concept of the integrated design data

base with specialized task information and both functional and
project/product slices. Since the integration of the design data
base contains the various subsystemal data elements (requiring
sophisticated indexes), it was decided to purchase a standard
DBMS package to perform the physical management of the data.

Data Interface

To supplement and simplify the functions of the DBMS package, a specialized
data base interface system was envisioned (fig. 3). The function of this
interface is to bridge the gap between function systems and the conventional
DBMS package. Verification of all inquiries, retrievals, and update requests
is also a function of the Data Base Interface.

Working in conjunction with the data base interface is a data
dictionary, which is also maintained by the interface. This
dictionary contains the contents of the integrited data base
along with pertinent information for the specific data sets, such
as who owns the data, the frequency of updating, specific content
of the various fields, security conditions of the data, and
archival processes. This information is needed to provide the
desired flexibility and control to make the integrated data base
more efficient. A major advantage of the interface is in estab-
lishing a common communication language for all users of the
integrated data base. This also allows the flexibility of
replacing the current DBMS package with future and more flexible
systems while having a minimal impact on all users of the
integrated data base. The only modifications necessary for such a
change are in the junction between the interface and the new DBMS
package. The requirement for users to learn a complete new
language would be alleviated.

Functional Data System

The limitation imposed by most DBMS packages circumvents their
use in normal functional systems of most electronics companies.
The system overhead required for even the smallest amount of data
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handling is very high and precludes general use in the normal
day-to-day activity. To overcome this loss in efficiency a small
functional data set is created to interface directly into the
specialized systems. The specialized systems include those men-
tioned above such as ECB, documentation, simulation and modeling.
The functional data are first generated by the specialized
systems and maintained in functional form until ready for inclu-
sion into the integrated data base. The functional data structure
is designed around the needs of the specialized systems. This
provides the maximum efficiency to systems and user interactions.
Each specialized system is designed with three thoughts in mind:

1) The human interface
2) User flexibility
3) Minimal systems and data overhead

In short, each specialized system is designed with the user in
mind. Using functional data in this manner allows rapid response
time and greater systems flexibility. This allows the best of
both worlds: data flexibility and systems performance.

Once the functional data is ready, it is integrated into the
design data base to allow its cross-referencing and correlation
with other data. The integrated data base is updated daily to
keep the information as current as possible. Data in the transi-
tional state (not finalized) is flagged as incomplete during the
updating process,.

It is recognized and accepted that data in the functional data
sets is usually redundant with data in the integrated data base.
We believe that the increased efficiency in response time
warranted by the functional data more than offsets the duplica-
tion, At any one time, the amount of functional data generally
makes up less than 10% of the total data stored. The uses of
functional data in the documentation, ECB, software, firmware,
and project management systems have increased the effectiveness
of those systems tremendously over systems working directly from
the integrated design data base.

A general archival system which saves all functional data on a
daily basis would also be implemented. Data would be updated and
condensed weekly and monthly and eventually consolidated into a
yearly archival system. It would be possible to retrieve any
functional data modified within the previous twelve months. All
permanent archiving and tracking would be done from the integrat-
ed design base. This archiving is also done daily with weekly and
monthly condensation.

320



Management Information and Special Data Base Inquiries

Once the data has been integrated into the design data base,
there are two methods of retrieving information.

1) Simple requests can be made directly into the IDDB (via
the DBIF). Ad hoc and special requests are handled this
way. Usually as a 24 hour turnaround basis

2) Routine management information reports (programs) would

extract and reformat data from the IDDB. These tasks are
usually predictable and can be scheduled.

Current Systems Status

At the present time, most of the specialized systems using
functional data are in full operation. New systems are being
considered with the planned implementation of one or two per year
over the next four to five years. Many of the specialized systems
are feeding their data into the integrated design data base. We
expect to have 100% conformity to this process within the next
eighteen months. The specialized systems and the integrated
design data base are currently operational on a DECSystem 10 and
DECSystem 20. These systems are loosely coupled via a shared disk
drive. All data are completely sharable and accessible from
either system. The commercial DBMS package used in handling the
physical storage and retrieval of the data was purchased from
National Information Systems, Inc. (NIS). The package name is
DPL®,

During the evaluation phase of the concept described, we were
able to determine that the efficiency and usability of the
function and integrated data systems was about four times that of
going with the DBMS concept alone. Also, the flexibility which
allows processing ad hoc requests on an overnight basis has
proved to be extremely valuable. We believe the concept, as
described in this paper, gives us the best alternative in
providing systems flexibility and efficiency while imposing mini-
mal systems overhead. The largest single problem is in obtaining
a "buy-in" from the authors and owners of each specialized system
in allowing their data to be integrated into the central data
base. Along with this integration comes certain rules which
govern accuracy, integrity, and updating procedures.
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SYSTEMS ARCHITECTURE FOR DISTRIBUTED APPLICATIONS

Richard Peebles

Digital Equipment Corporation
Corporate Research Group
Maynard, Massachusetts 01754

SUMMARY

This paper describes the kernel of a distributed operating system called
ADAPT. The system runs on top of existing single host operating systems that

are networked together. It's purpose is to transform this network of
individual systems into a single system that will be easier for application
programmers to use. This single system need not be monolithic; ADAPT

facilitates the construction of both integrated and modular distributed
systems. Note that the ADAPT system is a research project; DEC has no plans
to make this a product.

1.0 INTRODUCTION

Currently a large engineering enterprise must use Computer Aided Desighn
tools effectively in order to survive. The complexity of the design problems
far exceeds the scope of the human mind. This is as true for computer
vendors, who must deal with VLSI, as it is for aerospace engineers working on
giant transports and missile systems. The size of these problems further
dictates that the human teams working on them will be large and will represent
a broad spectrum of technical skills. Most large corporations have
distributed their technical staff and the result is that CAD tools to support
a single large project must run on a collection of several computers networked
together.,

Despite the elegance of modern CAD tools (we can draw gorgeous pictures
on a screen) and despite enormous strides in networking technology, the
computing support environment is far from satisfactory. 1In fact, it borders
on disaster; CAD tools have been developed as isolated pieces. To use the
output of a synthetic aid in some analytic tool typically requires data
conversion efforts that dwarf Hercules!'! cleansing of the Aegean stables.
Furthermore, tools are only occasionally transportable from one type of
computer to another so that there may well be five different CAD tools in use
that all do the same thing.

From the viewpoint of the design engineers and project managers the
situation is disastrous because they are "damned if they do and damned if they
don't". The complexity of the engineering design problem demands the use of
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CAD tools but the user must learn to thread them together and must know how to
deal with multiple, diverse tool interfaces, with computer networks, and with
multiple operating systems. All of this intellectual effort is diverted from

the principal design task.

In order to simplify life for the design engineer and project manager
many organizations have developed some software to help integrate the design
tools. There may be a file transfer system that will reliably move data from
one computer to another or there may be some form of network command language
that unifies the "JCL" of the various host systems. They address only the tip
of the iceberg. What is needed is an integrated system architecture, like the
IPAD system, that turns the hodgepodge into a truly integrated collection of
tools. We should recognize that we are still in our infancy in the space of
distributed system architectures. The situation is analogous to that of data
base management in the mid to late 60's; IMS and Codasyl Systems are not the
whole answer. They were designed with a focus on file systems and enrich the
relationships between records. It was not easy then to see the higher levels
of abstraction that 1lead to more elegant data base management architectures.
Likewise, we do not see the more elegant distributed system architectures, or
if we do we cannot see how to make the transition to them. We need to examine
many alternatives. The research group at DEC has considered the design of one
alternative: ADAPT (Advanced Distributed Application Programming Tools). 1In
the following sections we give a brief overview of the ADAPT approach with
special focus on its kernel (IPEX equivalent).

2.0 MOTIVATION FOR ADAPT

ADAPT stands for Advanced Distributed Application Programming Tools. It
is a collection of software intended to simplify the construction of
distributed systems. Currently the ADAPT system 1is being designed and
implemented by the Computer Systems Research Group at Digital Equipment

Corporation.

Programming is recognized as a difficult task and the difficulties have
been compounded with the development of computer networks. An application that
uses resources on several machines must be structured as a network of
cooperating processes. In consequence, a programmer must now think about this
process structure in addition to thinking about the application logic (i.e.,
create processes,design the protocols, and recover from failures).
Application programs are littered with statements for managing the network and
process protocols that have nothing to do with the application. Debugging such
process networks promises to border on impossibility unless some simple
programing methodologies can be designed. This situation is analagous to the
early days of data management when each programmer wrote his own I/0 code and
dealt with physical disk (tape) structures that had no relation to his
application data structures.

In addition to the problems of constructing application process networks,
it 1is necessary to ensure that processes in a net can synchronize their
actions and that separate process networks can serialize their behavior. The
latter simply means that the result of the concurrent execution of separate
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process networks is equivalent to the result of executing them serially (Ref.
1. Several authors have described synchronization algorithms that can be
used. Whichever algorithm is chosen, synchronization should be provided as a
system level service and should not be embedded in a data base manager since
coordination must be achieved over all resources, not just data.

The ADAPT system consists of four principal elements: the distributed
operating system kernel, system synchronization, data management services, and
application specification services. The kernel is the subject of this paper;
the other three elements are mentioned only briefly. System synchronization is
not in the kernel because it is an expensive service (in terms of message
traffic and time delays). We wish to leave it as an option to the application
programmer. Data management is such a fundamental part of any application that
it must be provided as part of the operating system services. We give a brief
"sketch of how data management fits into the architecture in section 4.
Application specification in a distributed system is 1largely a wide open
research issue. At present the ADAPT system provides a utility called the
Creator that helps programmers to set up process networks. The Creator is also
discussed briefly in section 4.

Traditionally, operating systems play a dual role -- multiplexing system
resources and furnishing a simpler virtual machine to the programmer. In
loosely coupled networks multiplexing is largely a static or local issue. It
is not feasible to dynamically adjust the workload across processors, as the
time to re-adjust the load is much longer than the time constant of the load.
Our interest is in trying to design a network operating system that will
provide a simpler virtual machine.

The approach taken in ADAPT and other distributed operating systems
(Refs. 2, 3, 4, 5) is to assume that all applications will be structured as
networks of cooperating processes whether they are distributed or not.
Interprocess communication (IPC) is designed to be independent of location.
That is, inter-host IPC is done in exactly the same way as intra-host IPC.
Programmers deal with only one communication interface and are able to ignore
the assignment of processes to hosts when they write code. As we will see in
the next section, the ADAPT model also minimizes the process network aspects
in the application code. Distributed applications cannot ignore the
performance aspects of process location but that is much simpler to do when it
is factored out of the problem of coding the application logic. The ADAPT
kernel encourages this separation.

Current network architectures do part of the job. In DECnet (Ref. 6), for
example, it is possible to send messages locally and remotely with exactly the
same syntax. It is still the case, however, that the programmer must deal with
low level process operations. At a minimum error recovery is difficult. We
believe that programming can be simplified through the use of the ADAPT
kernel.

*
bandwidth between hosts measured in the tens or hundreds of kilobits
per second

327



3.0 THE ADAPT KERNEL

Network operating systems may be designed to be the only operating system
running .in a host or as guest systems running on top of an existing host
operating system (Ref. 4). Examples of guest systems are the NSW system (Ref.
7) and the IPEX system being designed by Boeing (Ref 8). The ADAPT kernel is a
guest system layered on DEC's VAX/VMS (Refs. 9, 10, 11). This is described
further in section 5 where the current implementation plans are sketched.

The ADAPT kernel is a direct descendent of the WEB system designed by Jim
Hamilton (Refs. 12, 13). WEB is a host kernel that supports the object model
(Ref. 14). The basic concept in both WEB and ADAPT is that the programmer's
environment consists of a collection of typed objects each with a limited set
of operators (functions) that can be applied to it.

The ADAPT kernel approximates the WEB model as a layer on top of VAX/VMS
and DECnet-VAX (Ref. 6).

In its "pure" form the object model structures everything in the system
as an object. Numbers, character strings, and records in files are all
represented in this way. However, objects in the ADAPT system will have
coarser granularity. Typically they will be things like files and data base
segments, This 1is because we wish to exploit existing software wherever
possible, a basic motivation for guest systems. If we were to set up records
as ADAPT objects, for example, it would be necessary to re-implement VAX/VMS's
record management system, RMS-32. We may eventually reconstruct file system
softhare, but the existing software must be usable as well. This leads to a
certain lack of aesthetic beauty; the system does not have the security
properties that one would 1like and application structures are often more
complex than they would be in a host system built using a common model.
Despite these drawbacks, it is our contention that the ADAPT architecture
represents a major advance in ease of application development.

3.1 The Virtual Machine

3.1.17 ObJjects and Types. Each object has a type that is defined by the set
of operators that can be applied to it. Every object has an associated type
object that supplies the definition of its operators. Specifically, the type
object leads the kernel to a list of all the operators for the type. Each
operator entry has a corresponding execution descriptor that provides the
kernel with a specification of the process that will execute the operator. A
simple case 1s shown in figure 1. This figure shows the object control block
and associated data structures that are used in accessing an object. Object
control blocks are collected into a (distributed) object control table that is
used to find a referenced object. These are not part of theprogrammer's
model, however (see section 5). The type object defines what functions must
be specified and the object control block leads to the function definitions
specifiec to a given object. This permits variant representations of a type.
The code that executes the operators for a given type is called the type
subsystem. The kernel does not implement these operators; it accepts requests
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for operations on objects, locates the objects, and 1initiates the execution
of the operator. The type subsystem is a user written application program.

Objects are not replicated in the system.,. That is, the kernel does not
allow a user to create multiple copies of an object. If information is to be
replicated for performance gains then it must be stored in separate objects.
Replication for fault tolerance will occur but will not be externally visible
as multiple object copies. A discussion of fault tolerance 1is a paper in
itself and cannot be addressed here.

New types can be defined and instances of a given type can be created by
users with authority to do so. The creation of a new type requires access to a
kernel object called the root that defines the operations on type objects.

3.1.2 Addressing. Objects are referenced with capabilities consisting of an
identifier and a rights vector (Refs. 15, 16). The identifier of each object
is unique across all hosts and over all time. The rights vector portion of a
capability specifies which of the operators on that object can be applied by
the holder of the capability. Capabilities are stored in the normal address
space of a program in encrypted form. The kernel decrypts them before use.
Because the capability is in the user's address space he can alter it, but
capabilities are over 100 bits long and the probability of producing a valid
identifier or of increasing the rights on the same object is low. Given the
implementation as a layer on an existing operating system there are
undoubtedly easier ways to gain access to objects in the system. The intent of
the capability rights vector and of encryption in this guest kernel
architecture is to protect against accident more than to protect against
malice,

3.1.3 Operator Invocation. A program requests an operation on an object in
much the same style as a function call: f(o,p). Here, f is the operation to be
executed, o is the object, and p is a parameter list. The semantics, however,
more closely resembles stylized message passing (Refs. 2, 17). The invocation
<f,o0,p> is packaged up in an ADAPT object called an invocation segment(i-seg),
the object, o, is located by the kernel, and the invocation segment 1is
queued for the process that implements operations on that object (the type
subsystem mentioned above). The calling process is given a capability for the
invocation segment. When the called process dequeues the invocation it too
obtains a capability for the invocation segment. The called process will
execute a 'complete' function on the invocation segment when it 1is done. The
caller can execute a 'wait' or 'test' function on the invocation segment at
any point in time. A 'wait' will block further execution of the caller until
the type defining system executes a corresponding 'complete'. Figure 2
illustrates the relation of the calling process, called process, invocation
segment, and the execution descriptor. The data structures of figure 1 are
the vehicle for locating the execution descriptor.

Invocation segments are objects like any other., Capabilities for them can
be passed between processes and it need not be the original caller that
executes 'wait' and 'test' operations. This permits very flexible structuring
of the application process networks.
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3.1.4 Encapsulation, The ADAPT kernel isolates a programmer from the
implementation of an object type: the type is encapsulated. The programmer
may be aware of the underlying process structure but he does not really have
to deal with the complexities of process nets. Rather, he thinks of requesting
function execution and being able to test completion. The implementation of an
operation is hidden by the type subsystem. It is possible that an operation on
an object is implemented in part by operations on other objects.

3.1.5 Primitive Types. There are certain object types that are implemented
by the kernel and are needed to "bootstrap" the system. These include the

following:

O processes
o type objects
o invocation segments

o execution descriptors: these are part of the type
definition and specify information about the process that
will execute the requested operation. Not all operators for
a given type need be executed by one process. In principle,
there can be one process per operator per object instance.

In practice, it will be common for there to be a separate process for
each instance of a type but that process will implement all operators of the
type. The latter model is the wusual notion of a resource monitor or

controller.

3.2 Programming with ADAPT

3.2.1 Type Subsystems. In order to define a type a programmer must create
the type object, the execution descriptor(s) and the operators. This is done
by invoking the 'create-type' operator on the root, passing the execution
descriptor(s) and the operators as parameters. The operators are programs
written in any 1language. (The kernel makes no attempt to deal with
inconsistencies of representation in various 1languages. A Cobol program that
passes an array parameter to a Fortran written type subsystem will likely get
surprise results. Such problems are handled by ADAPT components that are

external to the kernel.)

The type subsystem program obtains invocations by executing the
'get-next-call' operator on its corresponding execution descriptor. If one
process implements several operators of a type then the invocation segment
will need to be parsed to determine which function is requested.

There will be standard library routines available to do this. Typically,
a programmer will set up his operators as multiple entry points in a
subroutine; the library code will be linked in as the "main program" and will
call the relevant operator after parsing an invocation segment. All operators
will return to the main program at the end of processing a request. This is
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illustrated in figure 3.

3.2.2 Invoking & Completing Operators. A program that wishes to invoke an
operation on an object will call the kernel 'invoke' operator. This too is
implemented as a 1library routine that knows how to deal with the "real"
kernel; see figure U, The operand capability, the operator, and the
parameters are input parameters and a capability for the invocation segment.
Errors in the execution of the operator and return parameters will be placed
in the invocation segment itself. This information is obtained for the caller
when he executes a 'get-response' function on an invocation segment that is in
the complete state. It is possible to issue an 'abort' operation for a given
invocation. This will succeed if the type defining system has not yet dequeued
the invocation.

An additional kernel service is the 'restrict' operation that takes a
capability and a function list as parameters and turns off the rights for the
listed functions (if they were on) and then returns the new capability.

4,0 OTHER ADAPT ELEMENTS

As was noted 1in the introduction, the kernel provides a relatively
primitive environment for programming; it is not a complete distributed
operating system. System synchronization primitives and data management
" services are layered on top of the kernel. We will skip over the
synchronization primitives and briefly describe how data management services
can be constructed using the object model.

4,1 Data Management

Data Management services in an ADAPT system will be provided by defining
data types as object types. At a primitive level we can define conventional
services such as sequential files, indexed files, and the like. At a higher
level a programmer can create types such as "inventory data base" with
operators specific to that data structure. Then instances can be created at
various sites in a network. The operators of these type subsystems contain
the logic for dealing with distributed data structures such as store
optimizations and search strategies.

First, suppose that the goal is to provide a distributed file system in
which each file is wholly contained at a host. The objects then are the files
themselves and possibly directory objects. The types will be sequential file,
random file, indexed sequential file, and directory with the obvious
operators. The code that implements these object types can be standard file
system code with the exception of directory objects. The latter must
understand that they are part of a collection of directory objects and contain
search algorithms that will find the remote files. Also they must ensure that
processes executing on separate hosts don't deadlock when trying to open files
for exclusive use. That 1is, the directory or 'file-open' processes must
utilize the system synchronization mechanism.
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Note that there is no intention to use the object location algorithms of
the kernel to find a file in the system. The kernels cannot exploit knowledge
of applications to select efficient search structures. This will be typicalj;
search strategies will often reside in data management logic, especially when
the more elaborate operators of higher 1level data models are to be
implemented. What the kernel does provide is a simpler programming model and
correct operation on those rare occasions when a file object has been moved
but is not recorded correctly in the directory. (Possibly because the move is
temporary.) This is because the directory entries translate file names into
capabilities; not host addresses.

Now if one wished to implement a distributed file system in which a
single file can be spread across several hosts then the basic file operators
must be re-~implemented. An example of a useful file structure of this sort is
a simple key file. Given a key, a read command returns (the set of) record(s)
with that key value. This could easily be implemented as a multi-segment
distributed object consisting of sub-objects for each segment. These would
presumably be direct access files. The operators for reading and writing such
a key file would have to manage the problems of concurrent access if they
permitted concurrent use.

A distributed DBMS would similarly be constructed from a set of objects,
each with its associated access process that implements local operations but
that understands its role as part of a collection of similar objects. A
distributed Codasyl set, for example, could be implemented using the index
records described by Frank Germano, Jr., and representing the data locally
using the local Codasyl DBMS software., The logic for implementing distributed
set operations must be written by the author of the type subsystem. The DDL
for such a system would have to include statements for assigning records to
hosts (or the schema processor must be given assignment heuristics).
Presumably the schema processor would be able to construct the required local
schemata with the added index records for distributed sets. Thus the object
types would be global schema, local schema, and local data base segment. The
details of the operators are too lengthy to examine here.

4,2 The Creator

The Creator is an interactive utility for adding type objects to the
ADAPT system. The kernel allows users to create types and object instances
but this requires a detailed understanding of the structure of type objects,
execution descriptors, and the structure of code for a type subsystem.
Furthermore, when an object is created the kernel returns a capability for it
and nothing else. It is the responsibility of the user to remember what each
capability refers to. This is not terribly convenient. The Creator understands
the low level structures and is designed for interactive use in creating new
object types. It prompts users for information, sets up kernel data structures
and maintains a type dictionary that keeps track of the external character
string names for each object type and operator. It will also assist users to
arrange that instances of objects are recorded in an instance dictionary
(analog of a file directory). This can only be done by including appropriate
logic in the code that creates instances for the type. It will be so common,
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however, that we can expect 1library routines to be available. The type
dictionary and instance dictionaries are objects and can use the Kkernel
mechanisms in their implementation.

5.0 IMPLEMENTATION OF THE KERNEL

The kernel is implemented as an application module since it is a guest
system. Depending on the underlying operating system primitives it may need
some special privileges not available to normal application programs: for
example, to be able to block and unblock other processes. The first
implementation is on a VAX/VMS -~ DECnet system and is coded in portable BLISS
(Ref. 18).

The kernel is responsible for moving user function invocations from the
calling process to the process that will execute it. There are several
possible alternatives with respect to that execution environment. It may be at
the same host as the caller or it may be remote; it may be an on-going process
or it may require activation. It may not be known to the caller's kernel and
require a search through the object location mechanisms, In addition the
kernel checks the rights of the caller to execute the invoked operation. All
of this is done through data structures maintained by the kernel.

The kernel at each host is implemented as a set of eight processes with
the following roles:

o The Executor 1is the "master" process that controls the flow of
invocation through the kernel. The Executor does the rights
checking, searches the object control table for the proper
execution descriptor, determines when an invocation must be
processed on a remote node, transmits it, and hands it off
finally to the Execution Manager. In doing all of this the
Executor calls on the services of the other modules 1listed
below.

o The Invocation Segment Manager accepts invocation data from a
user process, selects an available invocation segment or creates
a new one, packages the data in the i-seg and returns a
capability for the i-seg with the ‘'wait', 'test',
'get-response', and 'abort' rights on but the 'complete' right
off.

o The Object Manager maintains the table of object control blocks
(the object control table). When the Executor has an invocation
packaged in an i-seg it next issues a 'get-copy' request to the
object manager to obtain the information in the object control
block, i.e., the reference to the type object, the function
list, and the pointer to the underlying object.

o The Location Manager retains information concerning function
invocations 1locally referenced ¢that are being processed on
another host. This 1is not strictly necessary since the
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invocation segment could be located through the object control
table but this is an obvious optimization (not visible outside

of the kernel).

The Namer creates new object names that are globally unique. To
do this it uses the local host id. as a prefix but none of the
object location mechanisms use this for finding an object. (We
may later discover that trying first at the host indicated by
these bits is a powerful optimization, but again that would not
be known outside the kernel.)

The Detective is responsible for finding objects that are not
local and that are not known to the 1location manager. It
contains the distributed table search algorithm.

The Network Manager provides the mechanism for inter-host
communications between kernel modules. It understands the
translation from logical host name to physical machine address.

The Execution Manager creates and interacts with type
subsystem. It understands the execution descriptors, that is,
how to fire up processes when necessary. It then queues
invocations on the execution descriptor that is indicated. This
may require unblocking an execution environment that is waiting
on a 'get-next-call', When the type subsystem issues a
'get-next-call' it receives the invocation function code,
parameters, and a capability for the invocation segment with the
'complete' right on and all others off. The type subsystem also
gains full access to the underlying object. If it is an ADAPT
object this means a capability with all rights turned on.

These eight processes constitute the current version of the kernel.
communicate with one another using the mailbox mechanisms of VMS and the

Executor orchestrates all of the activity.
the object control table, invocation queues, and various lists associated with

processes awaiting completion notifications.

The object control table is a distributed index of known objects.
entry is an object control block as shown in figure 1,

the underlying object in one of three ways:
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If the object is local and primitive then the pointer is a name
that can be used by the type subsystem to identify the VMS
representation (for example a filename).

If the object is remote and primitive then the pointer is a
"location hint" that indicates where the underlying object was
when this entry was created. (See more on this below.)

If the object is non-primitive then the pointer is a capability
for the underlying ADAPT object.

The principal data structures are

This block points to

T =t



The "location hint" in number 2, above, need not be correct. If the
Detective follows the hint but does not find the object at the suggested host,
it will inititate a full network search. We have not yet chosen a specific
search algorithm. Rather, we plan to experiment with several. It seems
appropriate to leave this algorithm somewhat flexible since the best choice
will depend on network size and usage patterns., The latter are not 1likely
predictable bult one can surely exploit size information.

6.0 CONCLUSIONS

The goal of ADAPT is to simplify the problem of writing applications in a
computer network environment. Since the system is just now being built we
have no experience yet to confirm or deny the value of the kernel and other
tools; we can only state the ways in which we hope it will help. In the
introduction we identified several problems that face a programmer who must
deal with a network of operating systems. These were managing process
networks, doing network I/0, location dependent forms of process interaction,
and error recovery. We discuss each of these points briefly.

The application programmer who uses typed objects does not structure
process networks; his view of programming is very much more 1like the
conventional view of today. The programmer who creates a type must be aware
of the process stucture since he 1is responsible for creating the execution
descriptors. Further, if the type 1is itself a distributed object the
interaction between processes managing the different segments of the object
must be programmed by the creator of this type. Such 1s the case for a
distributed DBMS, for example. When the segments of a distributed object are
themselves ADAPT objects, even this interaction will be simplified. Finally,
we note that programmers who are enamored of process networks can easily
construct them using the kernel; servers can be objects.

Network I/0 is hidden completely by the kernel. The kernel manages all
the issues of virtual circuit establishment and of message transfer.

Process interactions are not location dependent. If a programmer uses
the kernel primitives he is totally unaware of where an object is.

We have not said anything about error notification and recovery. This is
a difficult topic and we cannot do Jjustice to it here. Briefly, we must
distinguish failures in the execution of an operation from a failure of an
invocation. The former is reported in much the same way as a successful
execution, passing error analysis information back in the invocation segment.
Whatever is provided is the responsibility of the implementor of the type
subsystem. Failures in invocations can occur because rights are not present
in the capability, the object is unknown, the object is inaccessible, the
object is known to be damaged, or the invocation takes too long. We observe
that none of these need to introduce location dependencies - we can treat the
errors uniformly. This is important to keeping the programmer's model simple.

The ADAPT kernel does not specifically address CAD issues. Rather, it is
a base on which a whole distributed CAD environment can be built, providing
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for project management and interpersonal communication as well as for CAD
specific tools, It is certain, however, that neither ADAPT nor IPAD represents
a tinal solution; they are efforts to glue together disparate pieces. Today
this is the only reasonable approach; the future promises to be much more
exciting - if we can survive in the interim!

10.

11.

12.

13.
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procedure main ()
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procedure type-x ()

entry fl: —
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entry £,: __
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Figure 3.- A type subsystem implemented as one process.

procedure main ()

_ = ==~1invoke (f,0,pP);

s '

s [
[
|
) procedure get-response (i-seg)
] .
]
' procedure abort (i-seg}
' :
\ .

1]

* | procedure invoke (x,Y,2) kernel

(code for ipc
with kernel) 7'y

Host Operating System ipc

Figure 4.- Invoke library function for communication with kernel.

o bl
P '




A REMOTE COMPUTER GRAPHICS USER
AT GENERAL MOTORS

Harry S. Murphy
Product Engineering Computer Graphics
Guide Division, General Motors Corporation
Anderson, Indiana

For Presentation at the
1980 Integrated Programs for Aerospace-Vehicle Design
National Symposium
Brown Palace Hotel — Denver, Colorado
September 17, 18, 19, 1980

ABSTRACT

Guide Division will discuss its successful use of automotive body surface
design data that has been originally created elsewhere in GM's two large computer
graphics systems of CADANCE and Fisher Graphics. As a supplier of exterior
lighting components, radiator grilles, energy-absorbing soft-faced bumper systems,
and other associated items, Guide has become most dependent on the corporate com -
puter graphics systems to supply accurate car body styling and sheet metal surfacing
information for the design of their products. The presentation includes the origin
and transfer of design data to a remote user site; its use in the design of their pro-
ducts; and the ultimate production of detailed drawings, N/C punched tapes, and
subsequent downstream transfers of detailed part data to a turnkey system for tool
design purposes.

COMPUTER GRAPHICS PRESENTATION
FOR 9/18/80 IPAD NATIONAL SYMPOSIUM

This presentation will consist of three basic sections:

1) a description of Guide Division's function within the General Motors
Corporation,

2) an explanation of some of the problems that have led us to the incorpo-
ration of computer graphics, and

3) how Guide utilizes graphics design data that has been created else-
where in GM's two large computer graphics systems.
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Guide Division of General Motors Corporation, headquartered in Anderson,
Indiana, is the world's largest producer of automotive lighting equipment and a leading
molder of plastic parts for motor vehicles. We normally employ approximately 6,500
persons at our home plants in Anderson and 1,000 more at our relatively new manufac-
turing facility in Monroe, Louisiana. These plants total over 324,000 m2 (80 acres) of
working floor space in producing a myriad of automotive and truck exterior lighting
devices. Guide manufactures a mix of a half-million product units per day in consum-
ing 34 metric tons (75 million pounds) of over 100 different plastic formulations in a

year's time,

Although automotive lighting is a large portion of our product line, Guide also
produces numerous energy abserbing soft-faced bumper systems, rear view mirrors,
lighted vanity mirrors, chrome plated plastic grilles and other plated, as well as un-
plated special function plastic parts; Sealed Beam Headlamp Units for both domestic
and foreign customers; plus automatic lighting controls such as the Twilight Sentinel
and Guide-Matic, and many other items.

Whereas most of our products do affect the cosmetic appearance of a vehicle,
as well as serving functional purposes, they are generally directly affected by Federal
Motor Vehicle Standards with many being integrated as a part of the basic vehicle
structure such as a soft-faced bumper system.

These cosmetic features are among the final items for each body style to be
released from GM's Styling Studios and due to the number of new design items involved
each year, it is understandable that design lead times are often very crucial. Even on
a so-called "carryover car" which might be scheduled for little yearly overall appear-
ance change, it is these particular products that normally undergo revision to permit
at least some annual new car distinction. Therefore, it has not been unusual for
Guide's entire product line to be revised by as much as 80% for a single model year.

Timely engineering agreement on the styling and physical aspects of each new
product with GM's Design Staff (which performs the Corporation's vehicle styling func-
tion), Fisher Body Division (which furnishes the majority of the body sheet metal), and
the respective car and truck divisions, is therefore quite important to enable meeting
scheduled product design release dates, followed by eventual prototype, production
tooling, and product delivery timetables.

With the advent of the new downsized vehicle concepts, the available real estate
for the required lighting functions on the car body surface has diminished considgrably.

The former styling luxuries and simplified tooling facilities offered by sepa-

rated lighting functions such as individual backup, sidemarker, and rear lamps are
now quite often very difficult to achieve.
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With the decrease in available body surface area, the vehicle stylist is being
forced into many more single integrated multi-function lighting designs. The com-
plications involved in the designing and tooling of these concepts most often result in
increased design evaluation time along with creating nightmares for the toolmaker
in the form of numerous slides, lifts, compound die parting angles, and other tooling
complexities. Some designs require new and quite exotic fabrication and body mount-
ing concepts as well. All of this must be accomplished with lighter materials to
realize minimum vehicle weight goals and with legal and structural standards kept in
mind.

Guide utilizes as many as 120 different outside tool sources in the course of
a model year to produce the tooling for our various product components. With tooling
requirements becoming more complex, these sources are requesting more lead time
for tool completion, which is in direct contrast to our customer's continual request
for compression of design and tooling lead times.

Therefore, Guide has turned to computer graphics in an attempt to realize
lead time savings in the areas of design and tooling.
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Our investigation into the capabilities of the various available graphics
systems began in the spring of 1977. As the normal design progression of our
products is generally quite dependent on original input from Design Staff's styling
concepts plus associated sheet metal body surfacing and mounting requirements
from Fisher Body and the respective car divisions, the GM CADANCE System
(Computer Aided Design And Numerical Control Effort) was ultimately chosen over
GM's other 1 large computer graph1cs system — called Fisher Graphics — and various
turnkey systems as that which best met our requirements and offered somewhat
ready-made data communication links to our necessary engineering design contacts.

DESIGN
PROGRESSION
(MANUAL)

DESIGN STAFF—~| MANUAL

FISHER BODY —™| DESIGN
CAR DIVISION —~| STUDIES

DESIGN STAFF
FISHER BODY TOOLS
CAR Dnvnsxou-l t
* | |
FINAL DIE TOOL
LAYOUT MODELS  DWGS.
DETAIL
DWGS.

L RELEASED DWGS.
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GM's CADANCE System is based at GM's Research Laboratories at the
General Motors Technical Center in Warren, Michigan, which is located 19 km
(12 miles) north of downtown Detroit. It is hosted on two IBM 3033 computers
and interfaces with the various corporate divisions and staffs by either coaxial
cable or telephone, depending on their respective proximities to the GM Research
Labs. Over 100 graphics terminals are currently supported on the system. The
largest user in the system is Design Staff which currently is operating over
40 graphics design terminals of a mix of DEC, IBM, and ADAGE devices.

CADANCE
SYSTEM
(GMR)
CAR T%%*:JNT'SQL COMPONENTS| | FISHER
DIVISIONS STAFFS DIVISIONS BODY
Y L 4 ] - I
CHEVROLET DESIGN GUIDE | FISHER |
PONTIAG RESEARCH INLAND E:R_Aﬂ!_l_glﬁ,l
OLDSMOBILE ENGRG. CADILLAG
BUICK MFG. DEV. TRUCK/COACH
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Operational interfaces between the CADANCE system and a number of
commercial turnkey systems have been accomplished for sometime as well as with
the Fisher Graphics System. Fisher Graphics is hosted on IBM 370's at Fisher
Body Engineering, which is also located in Warren, Michigan adjacent to the GM
Tech Center Complex. At present this system supports an additional 120 graphics

terminals.

| FISHER
CADANGE |~ | GRAPHIGS
TURNKEY TURNKEY
SYSTEMS SYSTEMS

GM is now developing a common graphics system which is a merger of
CADANCE and Fisher Graphics with expected completion in about two years.
This single graphics system will then replace the two existing ones.

GOMMON

FISHER
GADANCE + = GRAPHICS
GRAPHICS SYSTEM
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GM RESEARCH
LABS

'HOST
COMPUTER

DATA
TRANSFER
TO SITE.

REMOTE GRAPHICS
TERMINAL

NETWORK
STATION

Required CADANCE produced data may be teleprocessed from the GM
Research host computer to Guide or any comparably equipped outlying division
via a 4800 baud phone line to a mini-computer in what GM labels as a "Network

Station"'.
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Various on-site peripherals are connected to this Network Station which can
perform a variety of functions and most of them simultaneously without interruption
to other Network Station user activities. This includes normal drawing production,
digitizing, magnetic tape 1/0 for data exchange to various turnkey systems, floppy
disc 1/0, N/C tape punch and reader, local programming and line printer service,
as well as N/C cutter tape development utilizing GM developed N/C programming

on local graphics.
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Guide's formal entry into computer graphics began by sending two selected
designers to Manufacturing Development Staff at the GM Technical Center in November
of 1977 to begin formal training and both remained until the following September of
1978 to evaluate Guide's design applications using the CADANCE system. During their
stay they contributed to a dozen of our more complicated product design projects for
the 1980 model year and supplied N/C die models for four major lamp components
utilizing Manufacturing Development Staff's CNC milling machine.

In addition, the expertise obtained from their on-the-job activities at the Tech
Center was invaluable in realizing a very smooth on-site startup with our own hardware
the following December. This preliminary production atmosphere permitted the estab-
lishment of normal operating procedures, familiarity in the operation of the various

a1ecessary peripherals, and a core of reliable support personnel before the subsequent
suide facility was readied.

Four more Guide designers were sent to the Tech Center for six weeks for
ormal CADANCE operator training in November of 1978. The timely completion of
heir "User" training was also dove-tailed with the receipt of our initial two computer
rraphics design consoles and accompanying Network Station, drawing machine, and
ther peripherals. This planning and the effectiveness of our subsequent hardware
itartup enabled our new computer graphics facility to make an immediate contribution
9 our 1981 Product Design Program. Two more design consoles were added in October
f 1979, #5 and #6 in June of 1980, and #7 and #8 are scheduled for an October 1980
elivery. We now train our own console operators, which currently number about 20.

When work loads demand, these qualified users operate on a two eight-hour
hift arrangement which enables our six design consoles to be in constant use for 16

ours/day. This schedule permits increased productivity without the expense of over-
me while reducing costs per console hour of use.

The design progression of a typical Guide product begins identically whether
is to be completed in computer graphics or by conventional manual methods. A
3sign study is manually created from preliminary drawing information received from
¢ appropriate combination of Design Staff, Fisher Body, or the respective car divi-
on. This design study drawing, along with ultimate design agreement and cost accep-
nce from the customer, is a prerequisite to eventual hardline mylar or graphics data
leases from the required sources. The finalization of these studies often requires

eeks of constant negotiation by our contact engineers with the corporate activities
volved.

Upon finalization of the design study and receipt of the required styling and
rface data, the Guide designer can immediately begin the production design of the
toduct. Considerable time is saved at this point over manual methods as graphics
iminates much of the tedious chore of tracing the required lines from the various
ntributing sources onto a single Guide drawing before the actual design can proceed.

'
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Upon completion of the design data for the Guide layout or final assembly, the
detail of a component part can then be created in a short time by making a data copy of
the entire original layout and deleting all information in that data copy except that
which is required to describe the selected part. This procedure is then repeated for
each individual component in the assembly.

Drawings of both the layout and subsequent details that are produced by this
method are normally at least 75% complete and are then sent back to the drafting room
to be manually completed. The manual tasks remaining are generally elementary and
are primarily those pertaining to labels, notes, dimensioning, etc.

While these tasks are also possible to complete in the CADANCE system, our
current graphics design work load has yet to permit the extra terminal time to more
thoroughly complete the output drawing.

However, the current procedure has resulted in an average of 4-6 weeks
savings in design time per project with up to ten weeks savings on our more compli-
cated projects. Although our on-site graphics facility has only been active since
January 1979, it will have aided in some manner in the design progression of over a
third of our total 1981 model year projects and over half of our 1982 projects.
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The design of products is only a single utilization of our present computer
graphics installation. Four different Product Engineering areas are also using the
mini-computer of our Network Station in running present non-graphics computer pro-
grams, re-writing, or writing new ones.

These consist of various forward planning, optical lens approval, material
analysis, and electronic performance programs that were formerly run by our divi-
sion's data processing facility. These activities are proceeding simultaneously with
the required daily data transmission and drawing output design functions of our Net-
work Station mini-computer,

Our Materials Engineering Department is also using finite element modeling
features that are available within the CADANCE system in performing structural beam
analysis for our Guide-flex soft-faced bumper systems. These analyses have resulted
in considerable cost and time savings in the prototype phase of evaluating the effects
of simulated impacts on each new bumper system.

In addition, Guide's Tool Engineering Department acquired a 4-console turn-
key computer graphics system in the fall of 1979. This system is being utilized for
mold design purposes and interfaces by mag tape with Product Engineering's Network
Station to further utilize the part description data that has been originally developed in
the CADANCE system.

The pronounced benefits of N/C related spinoffs from computer graphics
developed data that are being enjoyed by our car divisions and Fisher Body in the de-
sign of car body sheet metal surfaces are not readily available to Guide at this time
due to the intricate surface detail of most of our body mounted products. Although
we are dedicated to develop our N/C capability to a production status, the normal sur-
face complexity of the majority of our products has to date resulted in minimal cost/
time savings and made project feasibility quite selective. Therefore, N/C is expected
to remain in experimental category for yet sometime.

The utilization of computer graphics and computers for Engineering is just
beginning for Guide. However, we are quite confident that the computer will play an
ever-increasing role in the future of our engineering communications, our design pro-
gression and procedures, and in the ultimate tooling and manufacture of our products.
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MANUFACTURING COST/DESIGN SYSTEM:
A CAD/CAM DIALOGUE

Henry H. Loshigian and Bernard I. Rachowitz
Grumman Aerospace Corporation

David Judson
Integrated Computer Aided Manufacturing (ICAM) Office
Wright-Patterson Air Force Base

SUMMARY

The development of the Manufacturing Cost/Design System (MC/DS) will
provide the aerospace design engineer a tool with which to perform heretofore
impractical design-manufacturing cost tradeoffs. The Air Force Integrated
Computer-Aided Manufacturing (ICAM) Office has initiated the development and
demonstration of an MC/DS which, when fully implemented, will integrate both
design and manufacturing data bases to provide real-time visibility into the
manufacturing costs associated with various design options. The first
release of a computerized system will be made before the end of 1981.

BACKGROUND

In recent years the cost of manufacturing has continued to escalate in
all industries. The aerospace industry has been no exception. This fact
coupled with a shrinking defense budget has made cost reduction and automa-
tion to reduce cost a high priority activity. In order to achieve maximum
return on investment the Air Force Materials Laboratory has embarked on a
coordinated Integrated Computer—-Aided’ Manufacturing (ICAM) Program to
achieve increased productivity and thereby reduce production cost. The
Manufacturing Cost/Design Guide initiated in 1975 by the Air Force provides
the basic techniques and formats to allow the design engineer to perform
trade studies during the early phases of a program's design activity and
thereby establish an optimum design considering the cost to manufacture as a
key element in the decision making process.

Figure 1 shows how important it is to conduct these trade-offs early in
the design process, as it is this point in the development of a program when
most of the costs are locked in, not only for production but development and
operations and support as well. It is early in the program's life cycle that
the economic leverage to reduce cost is the greatest.
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Before proceeding too far into a discussion of the Manufacturing Cost/
Design Guide (MC/DG) Computerization program, let's take a few minutes to
review the ICAM program and where the MC/DG and this computerization program
fit.

Figure 2 shows the "basic ICAM roadmap'". Some revisions are currently
being made to incorporate composite programs earlier in the schedule but the
wedges shown are essentially those currently being pursued by the Air Force.
The "Design Interaction" bar, shown in the first wedge, is where the MC/DG
program is located. ICAM is a major effort in the Manufacturing Technology
Division of the Wright Aeronautical Laboratories, covering all aspects of
manufacturing including the development of Manufacturing Architectures,
automated planning, simulation, language development, fabrication, automated
cell/center and factory design, assembly and manufacturing interaction with
the design area, etc. Current funding levels are in excess of 100 million
dollars with participation of many industrial firms and universities around
the country.

Figure 3 is a matrix showing many of the organizations currently in-
volved in the Air Force ICAM program. With growing competition around the
world and the need for increased productivity, Integrated Computer-Aided
Manufacturing is an important area for the future of the aerospace industry.

With that very brief description of the overall program and its
language, let us now look at the area of Manufacturing/Design interaction and
more specifically at the Manufacturing Cost/Design Guide Computerization pro-
gram. To begin with, the development and formatting of the basic costing and
design data is not part of this particular program but is the subject of a
Separate program headed by the Battelle Laboratories under contract to the
same ICAM Program Office in the Air Force Manufacturing Technology Division.
Therefore this paper will not specifically address that area but will outline
the computerization of the outputs of that program and the interaction of the
computerized MC/DG with other ICAM manufacturing systems.

INTRODUCTION

Today's design engineer does not have tools that will provide him with
quick visibility of manufacturing costs associated with his various design
approach options. Too often the design engineer, under the pressure of
program schedules, is forced to select a design option and release layout
drawings without having the opportunity to properly evaluate the impact of
his decisions on the manufacturing cost of that design.

In 1975, the Air Force initiated development of a Manufacturing Cost/
Design Guide, a tool to provide the design engineer with assistance in per-
forming design trade-offs with respect to manufacturing cost. The guide was
developed by a coalition team of aerospace companies headed by the Battelle
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Laboratories of Columbus, Ohio. However, its usefulness was limited by the
data available and the manual effort required to use it. To remove these
limitations and enhance its utilization, the development of an automated
system for the MC/DG was begun. A coalition team headed by Grumman Aerospace
Corporation was selected for the MC/DG Computerization program. In order to
accomplish this task, the MC/DS coalition team will specifically make use of
data and methodologies developed under the following ICAM Projects:

o Project 511, Manufacturing Cost/Design Guide, will provide both
demonstration data and baseline requirements for the computeriza-
tion of the MC/DS.

o Project 112, ICAM Architecture, will provide the current Architec-
ture of Manufacturing as well as a standardized and approved ICAM
Definition Language (IDEF) to permit the construction and analysis
of MC/DS models which are such an important part of the ICAM soft-
ware system life cycle development strategy.

o Project 522, Group Technology Characterization Code (GTCC), will
provide the methodology for sheet metal classification required
for the unique identification of manufactured items and the re-
trieval of information relative to these items.

The MC/DS coalition includes the responsible leaders of these ICAM

Projects and their involvement is structured to optimize the transfer of data
and methodologies.

PROGRAM OBJECTIVE

The MC/DG Model was created by the Air Force/Industry Coalition with the
following mission requirements:

o Provide structural designers with a tool to quickly and simply
obtain relative and quantitative cost comparisons of manufacturing
processes

o Increase the emphasis on cost as a vital design parameter for use

at all phases of the design process by emphasizing a design
orientation of data presentation

o Enable more extensive structural performance/manufacturing cost
trade-offs to be conducted by designers on airframe components and
subassemblies
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o Emphasize potential cost advantages of emerging materials and
manufacturing methods, thereby accelerating the transfer of these
technologies to production hardware

o Put the designer on the lowest cost track early in the design
phase.

The primary thrust throughout these requirements is the consideration
of manufacturing cost during the creative design process. This is different
from the concept of estimating the cost to manufacture after a design has
been completed. MC/DG is not a tool for the cost estimator; it is not a Cost-
Estimating Manual (CEM). A CEM will not illustrate or emphasize cost-drivers
since no design trade-offs are conducted using a CEM. Performance/ cost
trade-offs must be done by the design engineer since the integrity of a
performance compromise can only be evaluated by the engineer. The format of
a CEM is not suited for use by design engineers, and results in time-
consuming calculations which create conflicts with design schedules.

The MC/DG Model has been created and the Air Force has undertaken the
task of providing a data base which will eventually include all parts that
comprise the airframe as well as all manufacturing processes. It is obvious
that the sheer volume of information required will become self-defeating from
a variety of standpoints. Thus the need for the development of a
computerized MC/DG is apparent. The concept for developing a computerized
MC/DG has been evolving during current and previous MC/DG contracts and a
concept validation study has recently been completed in which a prototype
implementation was undertaken. An MC/DG systems analysis was not performed as
part of the prototype development; rather, a series of assumptions were made
based upon a limited survey of user requirements. This is in contrast to the
ICAM approach of using IDEF methodology to obtain a total system model prior
to the identification of a system mechanism or user, with subsequent analysis
on the user level. A complete model analysis will show more readily how a
computerized MC/DG might be constructed for the aerospace industry from
presently available computer software components, and integrated into
company CAD/CAM systems. Any long range plan for a full-scale computerized
MC/DG system must allow for this type of integration within each aerospace
company's facility in order to permit the future growth of the MC/DG data
resource through access to other CAD/CAM data bases.

The prototype computerization has shown, without qualification, that a
computer is required in order to avoid a variety of practical problems
inherent in a hardcopy MC/DG. Some of the more obvious benefits of this

effort are:

o Computerized data-base updates are more practical than the
publication of updated hardcopy guides. This improves the
accuracy and therefore the believability of the system.
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o Designer productivity is increased because he will have more rapid
access to required data using representations friendly to his
requirements.

o An additional benefit will be the ability to interface with other
CAD tools and data used to support the designer's tasks. It is
therefore required that cost-estimating information be inter-
actively available while the designer is using his CAD system
rather than having to manually refer to handbooks after a design is
completed.

DEVELOPMENT PLAN

The ICAM software system life cycle development strategy represents a
four-stage process in which each stage is further divided into two steps.
Phase I of the MC/DG computerization corresponds to the first of these life
cycle stages, with the additional requirement for an evaluation of existing
software and for a conceptual design. Phase II of the MC/DG computerization
encompasses the remaining three stages of software system life cycle develop-
ment. Figure 4 shows the ICAM software system life cycle and compares it
with the MC/DG computerization plan.

Phase 1 is the MC/DG Systems Analysis and Conceptual Design Development.
It will define the MC/DG environment and determine the requirements for and
specify a conceptual design of the computerized MC/DG system and interfaces.
Phase I will result in an MC/DG System Model and a conceptual design for the
computerized MC/DG. The system model not only provides a basis for the
creation of the conceptual design but it also provides a view of MC/DG
relative to a total ICAM architecture. The IDEF methodologies will be used
to develop models of the MC/DG and the design engineer which satisfy system
requirements established from surveys and previous MC/DG studies. These
models are independent of any implementation solution and will also serve as
the basis for understanding all of the MC/DG interfaces with other ICAM sub-
systems. Several implementation strategies will be developed as conceptual

designs or system solutions for computerization and be evaluated for potential

implementation. These system solutions will include consideration of
existing public domain software to meet the MC/DG needs. The development of
the computerized MC/DG is part of an overall ICAM development activity, and
lines of communications will be established to assure integration of the
MC/DG into the ICAM architecture. The Phase I activity will conclude with
the presentation of alternative conceptual designs which best meet the
requirements defined during this phase.
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Upon the completion of Phase I, the Air Force may exercise an option to
proceed with Phase II which is the Conceptual Design Implementation of the
computerized MC/DG. This will require the MC/DS coalition to establish the
preliminary and detailed designs, develop software, and test, implement and
demonstrate the computerized MC/DS in the aerospace design/manufacturing
environment on two host computers (IBM and CDC). It is important to em-
phasize at this point that the intent of the host computer demonstrations is
a demonstration of the MC/DG as a corporate tool in the engineering environ-
ment and not only a validation of computer code on the mainframe products of
two different computer manufacturers. This represents a far greater
challenge than the creation and checkout of computer code and is the reason
that the team includes five airframe manufacturers. We, the end users, have a
very special interest in the success of this program since it represents a
technology advance in the design process.

SYSTEM USAGE

In order to describe the program and how it fits into the overall scheme
of Integrated Computer Aided Manufacturing in the short space allotted,
Figure 5 was prepared as a summary. The lower portion of this figure depicts
the MC/DG spanning both the Design and Manufacturing Architectures.

An example of the Manufacturing Architecture is shown in the Figure 6
node diagram "ICAM Composite View of Aerospace Manufacturing'. The triangle
that depicts the Manufacturing Cost/Design Guide overlaps both Architectures
demonstrating that the Guide plays a definite role in both Manufacturing and
Design. The computerized Guide will allow the design engineer access to
manufacturing information relative to production cost for performing trade
studies. Once integrated with other manufacturing systems, such data as
material and machine availability, etc., will provide the design engineer
with the information required to make the optimum design decision earlier,
thereby reducing the need for changes. The upper portion of Figure 5 very
simply shows some of the events that will take place in developing the part
cost and performing the computerized trade-offs. The MC/DG System will
eventually be provided with the part shape (geometry) and description from a
Computer-Aided Design system. This description will be provided via the ICAM
Group Technology Characterization Coding (GTCC) system which will fully
describe the part. Utilizing the data developed as part of the MC/DG or
company data development activities, the computerized MC/DS will display an
output format for the design engineer. Depending on the independent variable
(in this case part length) the lowest cost to produce will be calculated and
noted. As stated previously this is a very simple example of one of the
possible outputs and how the system will use other ICAM subsystems to develop
a required output. '
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Figure 7 is a node diagram showing at a very high level the ICAM sub-
system interfaces with the MC/DG program. As can be seen, the MC/DG will
interface in many of the major ICAM program areas, having a major impact in
the Application Systems activity. As a key element in providing manufac-
turing information to the design engineer relative to planning, manufactur-
ing control, material handling, etc., the MC/DG will provide the Design/
Manufacturing real time interface that is so important in reducing costs.

AEROSPACE SURVEY

A key task in structuring the overall system is in making sure that the
requirements of the user and his or her supexvisors are accounted for in
generating a system that will be both accepted and useful. Therefore, a
survey has been prepared and distributed to 57 companies, representing small,

edium and large manufacturing organizations.

Figure 8 describes the composition of the survey package. Each survey
dministrator is given a complete package describing why and what the survey
is all about, stating the purpose and viewpoint as well as questions tailored
or each of three types of individuals: (1) Design Engineer, (2) Design
ngineering Manager and (3) Data Processing Manager.

Figures 9 through 11 show sample question pages from each of these
urvey areas. A computerized survey analysis is being performed as of this
riting and will be used to establish and prioritize MC/DS requirements.

IDEF MODELS

In order to insure successful development, one must first establish an
ntegrated model of the MC/DS. Required are models that define in a very
ecific manner the following:

o What we are doing
o What is needed to do it
o How we do it

These three general representations have been formalized with the
velopment of the IDEF methodologies and provide, through conventions
ilored to the needs of each, a solid baseline for their construction and
alysis. The existence of a Function Model (IDEF_.), an Information Model
DEF.) and a Dynamics Model (IDEF,_) provides a complete definition of any
stem. The Function Model provides the static representation of the
stem’'s activities and performer relationships, and the Information Model
ovides a static representation of the information required and its logical

ructure.
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The primary purpose of the Dynamics Model is to capture the precedent
relationships and the dynamic properties of the system. The dynamic prop-
erties are important time-oriented elements of the system. A secondary
application of the Dynamics Model is to provide control properties of a
system. These control properties define when an activity can begin and end,
which have precedence and which can be conducted in parallel.

Figures 12 and 13 are example Composite View IDEF, drawings. Further
decompositions have been made which break down these activities to very
specific tasks. This model together with the corresponding IDEF12 models
under development will be used to generate MC/DS conceptual designs.

IPAD/ICAM IMPLICATIONS

The current long range NASA roadmap for IPAD shows the integration of
the computerized MC/DS into an IPAD environment. This milestone will be one
of the first such planned links between IPAD and ICAM. The importance of
building these bridges has been formalized by ICAM through a group of roadmap
projects identified as the Design-Manufacturing Interactions Thrust. It is
within this thrust area that the MC/DG efforts are being funded. Joint
AF/NASA efforts are now underway to identify and evaluate the criticality of
key IPAD/ICAM interaction points.

The computerized MC/DS must accomplish interfaces with CAD geometric
modeling systems as well as with manufacturing information systems. Fortu-
nately MC/DS will not bear the burden of this requirement alone since the
success of many CAD/CAM systems also depends upon this multiple interface.
The result of the initial IPAD integration of the computerized MC/DS will be
to further demonstrate the need to create standards/conventions for
geometric modeling and manufacturing information management. Once such
conventions are established within a company/industry, the MC/DS can
function as a real time design-manufacturing cost optimization tool.
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9. What percentage of your design work comes with cost targets?

a. 100% b. 75% c. 50% d. 25% e. 0%5.
10. If vour design work comes with cost targets, what is the source of these targets? (Indicate
more than one, if applicable.)

Design Engineer (Using Design Procedures, Design Cost, Guide, etc.)

a.
b. Conceptual Design Dept. (Using statistical or parametric models)
c. Project Management (Based on available funding)
d. Corporate Estimating Dept.
e. Engineering Support Function (DTC/Value Engineering)
f. Other (specify):

11. What percentage of your design assignments are defined with specific schedule/time constraints?
a  100% b. 75% c. 30% a. 25% e. 0%

12. In what percentage of your design assignments do vou perform manufacturing cost design trades?
a. 100% b. 75% c. 50% d. 25% e. 0%

13. When you do not perform a manufacturing cost design trade for a design assignment. it usually

is because: (rank with 1 = most frequent. Use NA if choice does not apply.)

Schedule does not allow adequate time

No management directive (not the common procedure)
Special assignment (cost trade not nccessary)

Lack of appropriate data

Performed by others

Don’t know how

mo a6 oo

Figure 9.- Sample survey page - design engineer questionnaire.

To what extent are you involved in the ICAM Program?

a. Contractually involved

b. Keep up to date (conferences, reading)
c. Heard about it

d. No knowledge or involvement

2. What percentage of your company's contracts are:

a. Prime b. Subcontracts

To what extent is your company interested in carrying out computer-aided manufacturing cost/design trade-offs?
. Extremely interested

Interested

Not under consideration

Definitely not interested
If not interested, please state reasons:

SbQ.OU'N

Do you currently impose cost targets or guidelines on design engineers?

a. Always

b. Usually

c. Occasionally
d. Rarely

e. Never

Were you familiar with the concept of Manufacturing Cost/Design Guide (MC/DG) before you received this questionna

a. Yes b. No

Figure 10.- Sample survey page — design engineering manager gquestionnaire.
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What level of experience does your company have in installing/maintaining software systems with on-line interactive
applications?

a. Very experienced b. Somewhat experienced c. Very little experience d. No experience

What levels of experience does your company have in installing/maintaining software systems with graphics-intense
applications? :

a. Very experienced b. Somewhat experienced c. Very little experience d. No experience

What types of experience does your company have in computer-aided manufacturing/design support? (Indicate more
than one if applicable)

a. Have developed and maintained our own systems
b. Have acquired externally developed systems

c. Have investigated the use of such systems

d. Have no active experience

Does your company use CADAM (Computer Aided Design and Manufacturing) or CADAM-like software systems in
support of Design and/or Manufacturing activities?
a. Yes b. No c. Don't know

Indicate the degree of difficulty you envision in supporting anautomated MC/DG.

1. 2. 3.
Extremecly Somewhat No
Difficult Difficult Problem

Maintain the software

Train uscrs

Procure/configure equipment

Monitor usage of system

Provide increased computer operations staff

o0 ow

Figure 1l.- Sample survey page - data processing manager questionnaire.

Program requirements/budget/schedule

Design requirements Stds./mfg. capability
Requirement to
Candidat }———————————> consider additional
andidate alternatives
: — ]
design(s) PERFORM
Suggested design
> changes
MANUFACTURING COST/DESIGN
Recommended
Manufacturing design(s)
cost-estimating—— TRADE-OFFS
data |, Request(s) for
mfg. cost analysis
$
()] ) (4)
Purpose: To perceive, understand,
and record the "as is"
environment of
aerospace design/manufacturing Producibitity Cost evaluation
Viewpoint: Design engineer working group ] tools
in either preliminary or Design
detail design engineer

Figure 12.- Example of Composite View IDEF model.
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TURNKEY CAD/CAM SYSTEMS' INTEGRATION
WITH IPAD SYSTEMS

Robert E. Blauth
Computervision Corporation

ABSTRACT

Today's commercially available turnkey CAD/CAM systems
provide a highly interactive environment, and support many
specialized application functions for the design/drafting/manu-
facturing process. This paper presents an overview of several
aerospace companies which have successfully integrated turnkey
CAD/CAM systems with their own company-wide engineering and
manufacturing systems. It also includes a vendor's view of the
benefits as well as the disadvantages of such integration efforts.
Specific emphasis is placed upon the selection of standards for
representing geometric-engineering data and for communicating
such information between different CAD/CAM systems.

INTRODUCTION

During the last decade, a number of turnkey Computer Aided
Design and Computer Aided Manufacturing (CAD/CAM) systems have
evolved which provide highly developed and cost-effective tools
for increasing industrial productivity. They support many spe-
cialized application functions which automate the engineering
design, drafting, and manufacturing processes. One of the largest
users of these turnkey systems today is the aerospace industry.
Some of the applications in the design and manufacture of airplane
products which are supported by the various turnkey CAD/CAM
systems are listed below:

Geometric definition of aircraft surfaces

Structural layout of internal aircraft parts

Calculation of mass properties such as weight
and center of gravity

Generation of finite element mesh data for
structural analysis

3D kinematic visualization

Layout of fuel and hydraulic tubing systems

Cockpit instrumentation layout

Layout of passenger facilities

Wire harness design and fabrication
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Antenna pattern design

Cockpit visibility studies

Creation of layout, detail and assembly drawings

Generation of operation sheets and process planning
drawings

Technical publications for maintenance manuals

Generation of N/C toolpath data for drilling,
milling, routing and turning operations

3D flat pattern unfolding

Nesting of flat patterns for flame-cutting

Tool and fixture design

Derivation of input for computerized inspection
systems

Throughout the next decade, turnkey CAD/CAM systems will
play an increasingly important role in the design, engineering,
and manufacture of aerospace vehicles. During the next few
years, however, turnkey systems will tend to continue to address
specific segments of the product development process rather than
becoming systems which totally integrate all of a company's
CAD/CAM technologies. Thus many aerospace companies, as well as
the industry as a whole, have recognized the need to address the
integration of their various CAD/CAM activities themselves.

INTEGRATION OF TURNKEY CAD/CAM SYSTEMS
WITH AEROSPACE SYSTEMS

By the second half of the 1970's, the benefits of using
turnkey CAD/CAM systems and their contributions to improving the
overall development cycle for aerospace vehicles were well recog-
nized by the aircraft industry. Many companies such as Boeing,
General Dynamics, Grumman, Lockheed, McDonnell Douglas, Northrop,
and Rockwell began to use turnkey systems as part of major new
engineering development programs. Having realized the need to
integrate these turnkey systems with their own existing in-house
CAD/CAM facilities, several of the above companies began to
develop their own integrated systems.
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Grumman Aerospace Corporation

One of the early efforts to integrate a turnkey system
with a computerized air vehicle design system was accomplished
by Grumman Aerospace Corporation (ref. 1). They developed a
system called GEMS (Grumman Engineering and Manufacturing System)
which utilized the Lockheed CADAM system for design, drafting, and
N/C together with their own software for configuration contour
development, structural design and modeling of 2D and 3D space
frames, and master dimensioning for sectionalized conic surface
generation of aerospace vehicles. A block diagram of the GEMS
system is shown in figure 1.

Several design/drafting projects in which the GEMS system
was used included the structural drawings for the Louvered Scarfed
Shroud System, an infra-red suppressor, and the pod adaptor struc-
ture for the F-14 TARPS (Target Acquisition and Reconnaissance Pod
System). N/C machining of an EF-111 bulkhead and longeron were
also accomplished using GEMS.

Current plans at Grumman include extending GEMS by develop-
ing interfaces to other internally developed corporate systems
such as RAVES (Rapid Aerospace Vehicle Evaluation System) and
General Engineering Programs, as well as to another turnkey
CAD/CAM system which they subsequently had acquired from
Computervision Corporation.

Northrop Corporation

Northrop Corporation is another example of a company which
has developed an integrated CAD/CAM facility by interfacing sev-
eral turnkey systems with its own internal capabilities (ref. 2).
Northrop's system was used to build the main structural box skin
for the vertical tail of the F-18 aircraft. Generation of loft
data, 3D layouts, 2D detall and assembly drawings, finite element
modeling data for structural analysis, tool and fixture design,
interactive N/C toolpath generation, and quality assurance data
are all supported within the Northrop system.

Boeing Commercial Airplane Company

One of the most ambitious and more recently publicized
(ref. 3) programs to integrate all aspects of CAD and CAM for the
product definition, analysis, and manufacture of airplane products
has been accomplished by the Boeing Commercial Airplane Company.
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Boeing has developed a system called CIIN (CAD/CAM Integrated
Information Network) which 1s currently being used to support

the development of two new airplanes, the 757 and the 767. The
CIIN system integrates: (1) several different turnkey design
systems including Computervision, Gerber, and AD-2000,

(2) Boeing's internally developed Batch CAD and Interactive

Design Analysis systems, and (3) other systems for plotting and
APT processing. Figure 2 shows the CIIN system's configuration.
The various systems which comprise the network are geographically
distributed both in terms of processors, terminals, and resident
software. The key to the CIIN system, however, is that a standard
form of geometry resides on a centrally located mainframe computer
which 1s accessed and shared by all users and terminals.

The current CIIN system primarily serves to provide inter-
active design tools to Boeing's engineers for CAD and CAM appli-
cations. Future developments will include the integration of the
planning and design retrieval activities within Boeing with the
existing CAD/CAM applications.

IPAD

The most significant development currently underway to
integrate CAD/CAM software and hardware technology for company-
wide management of engineering data is the IPAD (Integrated
Program for Aerospace-Vehicle Design) program, sponsored by NASA.
The integration of turnkey CAD/CAM systems with IPAD systems will
ultimately provide the most capability and flexibility to users
of such systems. )

BENEFITS OF INTEGRATION WITH TURNKEY

CAD/CAM SYSTEMS

Several major benefits are available to those companies
which have already accomplished some degree of CAD/CAM system
integration. First, they can exploit the specialized features
and capabilities of a given turnkey system instead of having to
re-invent them. Second, they don't necessarily have to lock
themselves in to one turnkey vendor if they can develop the appro-
priate database interfaces within their integrated system. As
such, they have the ability to utilize the unique strengths of
different turnkey systems for different applications within their
development process. For example, one system (A) might be used
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for 3D design purposes, a different system (B) used for creating
finite element mesh data, and even a third system (C) could be
used for generating the detail drawings. Thus, the user of such
an integrated system has the flexibility to choose between devel-
oping certain functions internally, using a turnkey system which
already has such capabilities, or choosing different turnkey
systems which each provide unique application features.

An additional benefit is derived by the integrated user in
that geometric data can be transmitted to and from the company's
subcontractors if they also are users of turnkey CAD/CAM systems.
Use of this geometric database can dramatically reduce the errors
inherent in interpreting (and often misinterpreting) drawings, as
well as the time often spent in re-creating the engineering data,
e.g. for manufacturing engineering purposes.

PROBLEMS OF INTEGRATION WITH TURNKEY

CAD/CAM SYSTEMS

Three major problems arise for any company which does
develop or acquire an integrated system today: maintenance/
service, training, and unique sub-system functionality. Once any
system becomes composed of different hardware and/or software from
different external (or even internal) suppliers, the question of
responsibility for maintenance and service becomes important.
Clear-cut responsibilities must be assigned in a top-down fashion
for maintaining each "module" within the system. Interface
standards and test procedures must be completely defined so that
problems can be quickly isolated, and '"'finger-pointing" can be
thereby avoided.

Training is another problem which will occur when different
systems are integrated. Most turnkey CAD/CAM systems today have
their own unique command languages, operating procedures, and
hardware input/output devices. Although '"standardization' is not
possible in these areas in the short term, a concerted effort to
make these systems friendlier, i.e. easier to use, 1is appropriate.
If turnkey systems are to become part of IPAD or industry-
developed integrated systems, they must provide much simpler user
interfaces and more self-teaching aids than they do currently.
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Finally, loss of specific sub-system functionality is
going to be the largest problem within integrated CAD/CAM systems.
Many of the unique CAD/CAM features developed by users
(e.g. Grumman, Northrop, Boeing, etc.), supplied by vendors
(e.g. Computervision, Gerber, Lockheed, etc.), and supported by
integrators (e.g. IPAD) can't be fully exploited on any integrated
system today. The reason for this is that no database system
currently exists for CAD/CAM applications that can support all the
features of every such system. For example, in Boeing's CIIN
system described earlier, the '"standard form" of geometry com-
pletely defines the 3D model data of a part. However, many of
the relationships between the model and its associated drawings,
as well as other non-geometric information, are lost when the
data from a turnkey system is converted to CIIN format and then
re-converted back to the same turnkey system. Thus, in fact, the
inherent functionality of any integrated system may become the
"lowest common denominator' of the functionalities of each of its
sub-systems. :

TURNKEY CAD/CAM SYSTEMS' INTEGRATION
WITH IPAD SYSTEMS

In order to achieve the maximum benefits from an integration
of turnkey systems with IPAD, two areas must be addressed. First,
it has recently been recognized by the ANSI Y14.26 subcommittee,
that a multi-levelled standard should exist for geometric data
representation which includes data formats similar to those in use
by today's turnkey systems, together with formats for more sophis-
ticated geometric models. As such, the Initial Graphics Exchange
Specification (IGES) (ref. 4) prepared by the NBS together with
both CAD/CAM users and vendors has been accepted as Sections 2,

3, and 4 of the new ANSI Y14.26.X-198X (ref. 5) proposed standard.
IPAD's support of this new ANSI standard will greatly facilitate
the integration with turnkey systems. 1In addition, the current
IPAD program has focused primarily on the design, drafting, and
N/C aspects of aerospace-vehicle development. In the future,

IPAD should consider extending its geometry format, which is
currently mechanical design oriented, to include electrical and
piping applications as well.
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Secondly, interface standards for communication protocols
must be defined to efficiently support communication between IPAD
systems and turnkey CAD/CAM systems. Standards should be estab-
lished for disk, cassette, and magnetic tape formats, as well as
for direct data communication links between such systems. A coop-
erative effort, using the collective experience of the turnkey
system vendors, users, and IPAD personnel, would help to effect
the development of compatible interfaces between IPAD and non-IPAD
systems.

SUMMARY

During the next decade, turnkey CAD/CAM system vendors will
invest between $500 million and $1 billion dollars in developing
new and improved CAD/CAM system capabilities. The ability for
IPAD users to interface their systems with turnkey CAD/CAM systems
will provide the basis for major improvements in industrial pro-
ductivity throughout the 1980's. The key to accomplishing this
integration is through the use of standard file structures and
-standard communication formats for transmitting geometric, engin-
eering and manufacturing data between different systems. CAD/CAM
is a dynamic technology for aerospace applications in the 1980's.
In order to remain competitive, these companies will have to be
able to combine turnkey, IPAD, and in-house facilities in a
totally integrated system.
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GLOSSARY

ACT
Acceptance Criteria for Testing

AD 2000
A commercially available product of Manufacturing and Consulting Services
for computerized designh drafting/N.C. programming functions.

AGDM
Agent Directory Manager

ANSI
American National Standards Institute

ANSI/SPARK THREE SCHEMA DATA MODEL
A data model described in an ACM SIGMOD FDT Bulletin which first
recognized the need for external, conceptual, and internal data base
descriptions.

Access Primitives

. APIL
Application Program Interface Language

APT
Automatically Programmed Tools — A manufacturing application computer
program.

APU
Auxiliary Power Unit

ART
Average Response Time

ATTRIBUTE
Representation of the use of a domain within a relation. BAn attribute can
be thought of as a column in a table whose values are drawn from a domain.

B-TREE

Hierarchical indexing method that always maintains a balance between the
number of entries in the branches of the hierarchy.

JBAL

ATCH

A group of jobs to be run on a computer at one time with the same program.

Basic Assembly Language

CD
Binary Coded Decimal
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CAD
Computer Aided Design

CADAM
Computer—Graphics Augmented Design and Manufacturing (Lockheed System)

CAM
Computer Aided Manufacturing

CCL
Conceptual Command Language - Language used in IPIP to perform operations
on tuples at the conceptual level record level.

CCLD
Conceptual Command Language Driver

CCLPR
Conceptual Command Language Processing Routines

CCp
Conceptual Constraint Processor

CCR
Configuration Change Request

CDR
Critical Design Review

CHUNK
An unstructured data set that exists outside the bounds of the formally

defined data bases. It has no definition of format, nor does IPIP know
what data elements are in it.

CIT
Conceptual Internal Translator

CITRTS
Conceptual~-to-Internal Translator Run-Time Subsystem

CITT
Conceptual Internal Tuple Translator

CNC
Computer Numerical Control

COCAM
Committee on Computer Aided Manufacturing

CODASYL
Conference on Data System Languages - a group of computer vendors, users,
and government agencies formed in 1959 to recommend a common high-level

language.
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CODASYL DBTG MODEL
A network data base model. The fundamental data structure is the record,
and records are related into logical structures using the notion of sets.

CONCEPTUAL COMMAND LANGUAGE
Language used in IPIP for performing operations on tuples at the conceptual
record level. This is the means by which the external-to-conceptual run-
time subsystem communicates with the conceptual-to-internal run-time
subsystem.

CONCEPTUAL SCHEMA
A description of all data known to the data management system and
independent of any user views (external schemas) or physical storage
considerations (internal schemas). The conceptual schema is compiled
into tables and used by the external schema compiler, the internal
schema compiler, and the run-time subsystems.

CONCEPTUAL SCHEMA COMPILER
The component of IPIP that compiles a conceptual schema source and
produces conceptual schema object tables which are stored by DIMS.

CONCEPTUAL-TO-INTERNAL RUN-TIME SUBSYSTEM
A set of routines and processors within IPIP using the tables set up by the
conceptual-to-internal translator to perform the transformations between
conceptual schema records and internal schema records. Also processes keys
by using and maintaining the files created for keyed attributes.

CONSTRAINT
A condition or set of conditions specified by the conceptual schema author
for establishing rules of integrity that must be satisfied by data within
the data base, including range checks, unigqueness reguirements, and subset
conditions.

CPU
Central Processing Unit

CR
Conceptual Relation

CRI
Conceptual Relation Instance

CRT
Cathode Ray Tube

CRV

Curve

Conceptual Schema - A description of all data known to the data management
system. It is independent of the users' view or the physical devices.
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CSA
Common Service Area

CsC
Conceptual Schema Compiler

CSN
Conceptual Schema Name

Css
Conceptual Schema Source

CT
Conceptual Transaction
DATA AREA
A logical grouping of data sets based on configuration control permissions
of the data set. Data areas relate to each other in a hierarchical
manner that generally follows the structure of the user's organization.
DATA BASE

A data base is all user data logically associated with a single conceptual
schema as well as its associated undefined data sets.

DATA DEFINITION LANGUAGE
Language used by the data base administrator to describe the content of

the conceptual, external, and internal schemas.

DATA MANTPULATION LANGUAGE
Data manipulation language used by the application programmers to
manipulate data in the data base from within an application. There is a
unique data manipulation language for each type of external schema
supported by the data base management system.

DATA SET
An arbitrary collection of records as grouped by the user. A data set may

be a defined data set (i.e., as defined by the three schemas) or an
undefined data set.

DBA
Data Base Administrator - An individual or organization having

responsibility for data bases.

DBMS
Data Base Management System - A generalized software system for managing
data bases and making interrogation, maintenance and analysis of data

available to users.
DCS

Distributed Computing System - A network of computer systems whose control
is usually distributed throughout the system.
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DDL
Data Definition Language - A language for defining a data model together
with part of its mapping to storage.

DDS
Data Definition Subsystem

DOMAIN
A universal set of values from which the actual values appearing in a
column (attribute) of a table (relation) are drawn.

DPT
Distributed Processing Table

DRTS
Distributed Run-Time Subsystem

DS
Data Set

ECM
Executive Command Mode

.ES
External Schema - A description, prepared by a data base administrator, of
the user's view of the data and data relationship contained in the
conceptual schema.

ESC
External Schema Compiler

ESN
External Schema Name

S0
External Schema Object

ESRN
External Schema Record Name

LSS
External Schema Source

ST
External Schema Translator

XTERNAL RUN-TIME SUBSYSTEMS
Subsystems that process run-time requests from user application programs
and query users to the internal run-time subsystem via the conceptual
command language (CCL).
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EXTERNAL SCHEMA
A description of the user's view of data and data relationship contained
in the conceptual schema. The data base administrator writes an external
schema for a particular user view describing types of data the user can
view and relationships existing within that data.

EXTERNAIL SCHEMA COMPILER
The component that converts a user's source external view of the data base
into a set of object tables used by the external-to-conceptual
translator. One compiler is required for each different external data
model used (relational, network, geometric, etc.).

EXTERNAL-TO-CONCEPTUAL SCHEMA TRANSLATOR
A processor which maps external records into conceptual records, and vice
versa, for the purpose of satisfying user requests upon IPIP.

FEDD
For Early Domestic Dissemination - A constraint concerning foreign
distribution placed upon most IPAD documentation.

GEOMETRIC EXTERNAL SCHEMA
An external schema written in a geometry data definition language
describing the structure of engineering objects.

GPGS
General Purpose Graphics System

GPGS~F
General Purpose Graphics System - A commercially available product of
University of Trondheim, Norway, which is a FORTRAN library of graphics
subroutines.

GRTS
Geometry External-to-Conceptual Translator Run-Time Subsystem

HEADER DATA
Specific data stored in the DIMS data bank consisting of data set name,
version, owner ID, creation date and time, security, retention
information, processing histories, etc.

HLGR
Higher~-Level Graphics Related Software

HYPERCHANNEL
A commercially available product of Network Systems Corporation which is a
high speed data bus capable of transfer rates of 50 megabits.

IcaM

Integrated Computer-Aided Manufacturing - A large CAM system being
developed with Air Force support and industry cooperation.
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IDR
Intermediate Design Review

IF
IPEX Function

INF
IPIP Navigational Facility

INFORMATION BANK
The total accumulation of data known to IPAD, consisting of data within
the data base as well as chunks. (Data is considered to be known to IPAD
if there is header data in the IPAD system bearing information about the
data.) The information bank is complete and self-describing.

INTERNAL RUN-TIME SUBSYSTEM
A set of routines and processors within IPIP that use the tables set up by
the conceptual-to-internal translator to actually perform the data
transfers between conceptual schema records and internal schema records.
Also processes keys by using and maintaining the files created for keyed
attributes.

INTERNAL SCHEMA
A tabular description of how the data corresponding to a conceptual schema
physically resides on the mass storage devices. It describes to the data
management system what data fields are to be treated as keys, how large
the physical records are, as well as other details needed by the run-time
system to store and retrieve data from the devices.

INTERNAL SCHEMA COMPILER
A translator that produces an internal schema object (ISO) consisting of
tables containing essential data items from the internal schema source
(IsS). These tables are stored in the metadata base by the data inventory
management subsystem (DIMS). The compiler checks syntax and performs
validation checks with conceptual schema information in the metadata
base. Output also includes diagnostics and listings of the ISS.

1/0
Input/Output

IPAD
Integrated Programs for Aerospace Vehicle Design

IPEX
IPAD Executive

IPLIP
IPAD Information Processor - The data base management system of IPAD.
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IPIP PRECOMPILERS
Programs that process application programs containing embedded data
manipulation commands that are translated into source language
communication areas and subroutine calls for communication with the IPIP
run-time subsystems. :

IPO
IPAD Project Office (NASA Langley Research Center)

IPSR
IPEX Service Routines

IRBN
Internal Relative Block Numbers

IRQL
IPIP Relational Query Language

ISsC
Internal Schema Compiler

IS0
Internal Schema Object

ISS
Internal Schema Source

ITAB
Industry Technical Advisory Board -~ A group giving advice and guidance to

the IPAD development.

JEQ
Job Execution Queue

For conceptual or external schemas, an attribute or combination of
attributes that uniguely identify the tuples of a relation. For internal
schemas, a key is one or more attributes having a special access structure,
such as B-trees or hashing.

LDB
Local Data Base

LNCP
Local Network Control Program

MCP
Message Control Point

MENS
Mission Element Needs Statement
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METADATA BASE ’
An instance of a DIMS conceptual schema including the tables produced by
the schema compilers, precompilers, and translators.

MIF
Migration Interface Feature

MSGRTNG
Message Routing

NA
Network Adapter

NAVIGATIONAL DATA MODEL
A data model representing data as a collection of records where
relationships between records which are known to the data management
system are represented in terms of name connectors called non-information
bearing sets. The navigational data model is a subset of the CODASYL DBTG
model.

NC

Numerical Control - Control of machines by computer output.

NERTS
Navigational External-to-Conceptual Translator Run-Time Subsystem

NOS
Network Operating System (Control Data Corporation)

NPC
Navigational Pre-Compiler

OAST
Office of Science and Technology (NASA)

OM
Operating Module

0os
Operating System

OSI
Operating Systems Interface

PCC
Program Control Center

DB
Process Distributor Block
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PDF
Pseudo Display File

PDR
Preliminary Design Review

PE
Processing Element

PIN
Program Item Number

PMD
Post Mortem Dump

PNR
Partitioned With No Redundancy

Pg
Pre-Compiler Subsystem

PWR
Partitioned With Redundancy

OLS
Query Language Subsystem

ORTS
Query External-to-Conceptual Translator Run-Time Subsystem

QUERY LANGUAGE
A self-contained language allowing users access to an IPAD data base using
relational external schemas to represent the user's view of the data base.

RELATION
A table where each column heading (or domain) is a member of the collection
of sets Dy, Dy, ..., D, and each row is member of the set of n-tuples or
Cartesian product on Dy, Dy, ..., Dn. Given a collection of sets
D1, Dy, ..., D, (not necessarily distinct), R is a relation of these n sets
if it is a set of n-tuples (d;, d2, ..., dp) such that dj belongs to Dj,
d2 belongs to D3, ..., d, belongs to D .-

RELATIONAL DATA MODEL
A data model representing data as a collection of relations where
relationships between relations are represented in terms of comparable
fields. (There are no predefined relationships - these are carried in the

data.)

RELATIONAL INFORMATION MANAGER
A prototype data base management system based on the relational data model.
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RIMS
Relational Information Management System - A prototype of a proposed IPAD
data management system.

Request Processes

RUN-TIME SUBSYSTEMS
Components of a data base management system invoked at the time of
execution of process user DML commands.

SAMM
Systematic Activity Modeling Method (Boeing Computer Services)

SCHEMA
A description or definition of a data base

SCL
Scalar

SGA
Shared Global Area

SM
Source Module

SP
Server Processes

SPR
Software Problem Report

TCP
Transport Control Program

TDF
Transformed Display File

TIGS
Terminal Interactive Graphics Systems

TPE
Technical Program Element

TUPLE
A ryow of a relation, also referred to as an n-tuple. 1In IPAD documents

the terms "n-tuple" and "record" are used interchangeably.

ucc
Utility Command and Control
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UF
User Function

U1
User Interface

VDB
Versioned Data Base

VDBP
Versioned Data Base Processor

VMCF
Vertical Machine Communication Facility

WBS
Work Breakdown Structure
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