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ON THE RADIATION IMPEDANCE OF A RECTANGULAR PISTON

by

Harold Levine

Department of Mathematics

Stanford University

Single integral representations for the resistive and reactive components

of the radiation impedance appropriate to a rectangular piston are established,

thereby enabling a systematic refinement of estiNates at both short and long

wave lengths. Comparisons with previous analyses are made explicit as well as

extensions and corrections thereto.

§i. Introduction

Acoustical literature contains numerous theoretical analyses pertaining

to the characteristics of planar pistons which encompass both time-periodic

and transient states of motion. The circular shape has been dealt with in the

fullest manner, given the most favorable hypothesis from the standpoint of a

boundary value problem, namely that the piston is set in an infinite rigid

baffle; and the particularly difficult task here, typical of most radiation or

scattering problems, involves the development of precise details at very short

wave lengths. Analogous considerations (of a more recent date) bearing on

the rectangularly shaped piston differ somewhat in matters of derivation and

presentation, without leading to a genuinely efficient or practicable scheme

of analytical estimation in the short wave length limit. Thus, if the piston

sides are of lengths a , b respectively and its uniform normal motion is
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time-periodic at the (angular) frequency _ = kc , Chetaev (1951) obtains (by

an indirect and complex reduction of multiple integrals) the resistance and

reactance formulas (omitting normalization factors)

!

"1_14
0

(l)
I

_vl @

where

(2)

b

specifies the geometrical aspect ratio and

designates the slne/cosine integral functions. Burnett (1969) recasts the

formulas (I) through an integration by parts which eliminates the latter func-

tions, yielding (in a modified notation)
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and (3)

where

Burnett writes: "Despite the deceptively simple appearance of the integrals

in (3), this author was unable to further reduce them in terms of known tab-

ulated functions. They can be expressed in terms of confluent hypergeometric

functions but the various forms investigated do not correspond to any known

functions. Since Chetaev enjoyed the assistance of two very able mathematicians,

Tikhanov and Samarskii, yet left his solution in the form of (i), it might be

construed that there is no easy reduction of these integrals." In keeping with

such observations he proceeds to a numerical evaluation of the representations

(3) on the basis of an accurate quadrature technique (further explained in

Burnett and Soroka, 1972) and to develop an analytical technique, suitable for

large 6 , which "becomes prohibitively tedious" in its execution; no specific
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estimates of the q_ntities R and X applicable when 6 >>i are furnished,

however. Stepanishen (1977) deduces the radiation impedance by complex Fourier

transformation of the (previously known) impulse response function of the

piston (which is itself a Fourier transform of the impedance); and notes that

the ensuing representation can be brought into full accord with the one due to

Burnett. He relates the impedance to particular (parameter-dependent) values

of a complex integral

and connects the asymptotic behavior of C , as x-_ _ , with those of R

and X for ka >> i . The given estimate

e . 0 >>1

(attributed to an elementary application of stationary phase techniques)

should involve a (lower order) term, namely O(x -I) , and this necessitates a

change in the stated versions of R and X at high frequencies (which is made

explicit in §3). Stepanishen also obtains a general series expansion for

C(x,y) in terms of Bessel functions and notes that the corresponding repre-

sentations for R , X which follow are conveniently approximated at low fre-

quencies. A like degree of reduction which leads to integral expressions for

the mutual radiation impedance of square and rectangular pistons in a rigid in-

finite baffle has been achieved by Arase (1964), although the nature of theoret-

ical estimates at short wave lengths is not considered.
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It is the purpose of this paper to show that the radiation impedance of a

rectangular piston admits a representation with single integrals which are

related to cylinder functions and are appropriately constituted for purposes

of systematic analytical estimation at both high and low frequencies. The

straightforward manner of arriving at this representation is detailed in §2

and estimates obtained therefrom are recorded in §3; a separate account is

intended for the analogous handling of impedance functions pertaining to rec-

tangular panels or beams, whose prescribed normal velocities have a non-uniform

modal form.

§I. Formulation and Transformation of the Impedance Function

The half-space radiation impedance, Z , of a piston with a coplanar

rigid baffle, as inferred from the integral of the time-average product of

the fluctuating pressure and (uniform) normal velocity over its finite surface

area S , takes the form

- _ &_4_'_'(6_

where p , c designate the equilibrium density and sound speed, respectively,

-ikct
of the adjacent medium and a complex time factor e applies. If S

has a rectangular shape and

__< _,_,< _ B _,l I' -T <_' < Z

the quadruple integral (6) can be reduced, via the transformations
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I

to the double integral

S'_-b o.b o o

that is usefully resolved into a pair spanning the triangular subdomains of

the rectangle 0 < _ < a , 0 < _ < b whose specifications in polar coordinates

are

0<.9:_,f'_< _" _'0<_'=,]_'+¢<__.9, x _.
and

after affecting the elementary o-integration this yields

0

with only single integrals remaining.
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In the limit b + oo the above representationimpliesthat

: ,_ + _ d_ ._:
_c_ _ _ o

and

A T[[%

on invoking the change of variable _ = sec @ . It is evident that the latter

result describes the radiation resistance for an infinite strip piston of width a

given by the analogue of (6), namely

= (t)(

pcm %m _q_

in terms of a Hankel function or, alternatively, by

when use is made of the representation
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with a contour that passes above/below the branch points at _ = + k , re-

spectively, so that

J

_j_,,_-_:
_/Z, I_1_'_

The equivalence of (9) and (i0) is affirmed on noting the relation

- '_ _" 4_
I

which expresses the consequence of displacing the original integral into the

upper half of the G-plane and allowing for the pole singularity at _ = 0 .

When a,b # _ , the respective changes of variable _ = sec 8 and _ = csc @

convert the integrals in (8) to the forms

0

I+(_

and



-,+(_j,_ ) -_0.f +_-i-__<_.
_ence

_-"_ = I 2,:P:_b - _ (q+6)

and thus, Utilizing the relation

d_

_.,., _'>j

(.14)

+_ <,t_+_
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It is verifiableat once that the representationsfor Re(Z/0cab) and

-Im(Z/pcab) inferredfrom (14) correspondexactlywith the Burnettforms (i)

of the (unnormallzed)piston resistanceand reactance. Furthermore,the proto-

type integralin (13),

I _ I o "-

duplicatesthe one which Stepanishen defines and employs in an equivalent im-

pedance representation. A straightforward derivation of the hitherto available

formulas which constitute the basis for theoretical and numerical predictions

relating to the rectangular piston impedance is thus completed; and a different

manner of handling same, with patent advantages at short wave lengths, now

merits description.

§3. Conversion and Estimation of the Impedance Function

Let the integral

I<_,_) C(_,_-' _ _, _l
i i

which enters into (13) be rewritten in the composite fashion

I_,_)=_ ,_ _ -S _'l_'-i _
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and consider the one-variable function that figures,

with the initial value

Sequential differentiations with respect to x yield the relations

S

where H_l)(x)t is the Hankel function; thus, on integrating
(20)and taking

note of the condition dF/dx + 0 , x _ _ , it followsthat

I_ Z o

Another integration supplies the original function, viz.



0

I" }_ .€,_C c,_)

=T "X _;

_here the versions (21a) and (21b) are particularly apt. Thus, the former

leads, in conjunction with t:he relations

o

and

{ , ..,,,}o
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to the generally valid result

FC_)=_-_ I+H,_ )-_ o_C_)

•_ 11(i) (i). 1

involving Hankel, H_l)(x) , and Struve, S0,1(x) , functions of the zero th

and first orders.

For large values of x it is expedient to utilize (21b) and write

----_ I

-_ (23)
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with the evident capability of securing additional terms that contain higher

reciprocal powers of x .

Repeated integration by parts yields, as regards the two-variable function

of (16),

_ _ _( )

and the number of explicit terms which involve (higher and higher) reciprocal

powers of x (y > i) can be readily found.

Accordingly, the impedance integral (15) is realized in terms of a single

variable component, with alternative and explicit cylinder function forms, and

a two-variable 'incomplete' cylinder function component; the former, which takes

into account the full singularity of the original integral at its lower limit,

can be estimated on the basis of (extensive) cylinder function asymptotics

while a numerical evaluation of the latter is furthered by writing

- +)

. + ....
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and expressing 7_ -n eiX_d_ in terms of tabulated sine/cosine integral functions.
Y

When the simplest asymptotic developments of the Hankel function

H_ l)(x) , x >> 1 , are employed in (23) and the latter combined with (16) and

(24) the result is

. (,-)

i _ _ l 3_-_ I l _>> I (25)

_c¢-,,t7 _ , u,f ,'
only the leading term, 0(x-112) , appears explicitly in the estimate (Sa) pro-

posed by Stepanishen. Applying (25) to deduce a short wave length character-

ization of the impedance from (13) it follows that

(26)

whence _,_l

_r_ "c"='('_'"_r/_') r'='_'(_'_''/'/} 'L

(27)
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and

in the same limit.

These expressions for the radiation resistance and reactance of a rec-

tangular piston incorporate two orders of magnitude, namely k-5/2 and k-3 ,

beyond those previously given and correct, in the terms of order k-2 the

analogous approximations of Stepanishen; thus, his contributions

in R and X , respectively, are eliminated by taking into account an order

i/x term missing from (Sa) and present in (24) [cf. Appendix].
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Appendix

In a paper published subsequently to that concerning the rectangular

piston, Stepanishen (1978) cites the theorem: Let _(_) be N times con-

tinuously differentiable in _ < _ < B . Let 0 < % < i , 0 < _ < 1 ; then,

as x-++ oo ,

N-I

y ix_
As regards the integral l(x,y) = I e d_ , in particular, where the

i _2_2__ 1identifications
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apply, it is found that

N-I

_o T'(,_+I_ _ ¢t._ l )

+0c)
and the expected agreement with (24) obtains.






