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A bump-on-tail unstable reduced velocity distribution has been

constructed from data obtained at the upstream boundary of the electron

foreshock by the GSFC electron spectrometer experiment on the ISEE-1

satellite. This distribution is used as the initial plasma sate for a

numerical integration of the 1-D Vlasov-Maxwell system of equations. The

integration is carried through the growth of the instability, beyond its

saturation, and well into the stablized plasma regime. A power spectrum

for the electric field of the stabilized plasra is computed. The spectrum

is dominated by a narrow peak at the Bohm-Gross frequency of the unstable

field mode but it also contains significant power at the harmonics of the

Bohm-Gross frequency. The harmonic power is in sharp peaks which are split

into closely spaced doublets. The fundamental peak at the Bohm-Gross

frequency is also split, in this case into a closely spaced triplet. The

splitting is due to slow modulations of the stabilized electric field

oscillations which, it is thought, are caused by wave-particle trapping.

The wave length of the m'th harmonic of the Bohm-Gross frequency is given

by a u/m where au is the wave length of the unstable mode. The mechanism

for excitation of the second harmonic is shown to be second order wave-wave

coupling which takes place during that period in the evolution of the

instability which would otherwise be called the linear-growth phase. It is

conjectured that the higher harmonics are excited by the same mechanism.

It is further argued that harmonic excitation at the boundary of the

electron foreshock should be a common occurrence.
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The theory for the generation of electrostatic plasma waves near the

electron plasma frequency upstream of the Earth's bow shock, as presented
•:	 ^_1

by Scarf r& ga. (1971), Fredricks f& &L. (1971) and by Filbert and Kellogg

(1979), has been generally accepted. This acceptance developed regardless

of the fact that the unstable electron velocity distributions predicted by

the theory had never been observed (Feldman tj Al., 1973). Recently,

	

observations made on the ISEE spacecraft (An..,drson 	 1981) have

confirmed the presence of the necessary unstable distributions in the

electron foreshock at times when significant electrostatic plasma waves

were being detected. A further observation of an unstable velocity

distribution in the electron foreshock is presented here; it was obtained

by the GSFC electron spectrometer on the ISEE-1 spacecraft (Ogilvie &I Al.,

1978). Simultaneous measurements of the electrostatic wave intensity

obtained by the ISEE plasma wave investigation (Gurnett gj sI., 1978) and

the ISEE electron density experiment (Harvey VI al., 1978) are also

presented. These measurements indicate that the unstable distribution was

observed just as the spacecraft was passing through the upstream boundary

of the electron foreshock.

The ISM electron and plasma wave observations both motivate and enable

a more detailed study of the unstable plasma evolution in the electron

foreshock. The results of such a study are presented here.

A numerical code developed by Klimas (1982) has been used to integrate

the Vlasov-Maxwell equations for a one-dimensional electron plasma forward

in time from an assumed initial plasma state. The unstable velocity

distribution observed by the GSFC electron spectrometer was used for the

initial velocity distribution. The initial electric field was simply

"seeded" with very low amplitude wave modes. The results which are

presented show the evolution of the plasma from its initial "bump-on-tail"

unstable state through saturation of the instability and considerably

beyond.
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An unexpected featurs.of .the e14W^is field evolution has been

discovered. It was expected that the saturated  electric field would simply

oscillate at the Bohm-Gross frequency (essent'.ally the electron plasma

frequency) provided by the linearized electrostatic plasma dispersion

equation (Bohm and Gross, 1949). It was found that not only the Bohm-Gross

frequency but also all of its harmonics that could be included in the	 y

numerical code, given its present size, were excited to significant levels

in the saturated field. The resulting power spectrum for the saturated

electric field which is presented here shows a dominant peak at essentially

the plasma frequency plus peaks near the 2f p , 3fp and 4fp positions which

are further split into closely spaced doublets. The splitting is due to

low frequency modulations of the harmonic field components presumably

caused by wave-particle trapping effects. The peak at the plasma frequency

is also split, in this case into three closely spaced peaks, but the

central peak is so dominant that the other two are difficult to pick out.

An explanation of the harmonic excitation is given in section IV. A

simple verbalization of that explanation is as-follows: The initial plasma

evolution is qualitatively as predicted by linearized plasma theory Wall

and Trivelpiece, 1973). Field modes whose phase velocities lie on parts of

the initial electron velocity distribution with positive velocity and slope

are unstable and grow exponentially with time. Other field modes Landau

damp and therefore decay exponentially with time. All modes remain small,

but the growing modes become very large compared to the decaying modes. At

some point in the plasma evolution wave-particle coupling terms in the

governing Vlasov equation which are quadratic in the growing modes become

larger than other similar terms which are linear in the decaying modes. At

that point the linearized description of the plasma fails and non-linear

phenomena take over. Field modes which had earlier been decaying then are

pumped by the dominant unstable mode which continues to grow. These pumped

modes experience sudden shifts in their oscillation frequencies to
u

harmonics of the unstable mode frequency. Interestingly, all of this

occurs long before the saturation of the instability, during its "linear

growth" phase when non-linear phenomena are not expected. By that time

when the instability does saturate the pumped modes have grown considerably

and the field is left with significant power at the harmonic frequencies.
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The plasma model which is integrated numerically is a generalization of

•	 the usual Vlasov-Poisson system of equations obtained in the electrostatic

limit. Maxwell's equation for the displacement current is added to the

Vlasov (eollisionleas Boltzmann) and Poisson equations to provide a

complete description of the p.'43ma. The generalization and the motivation

for it are discussed in detail in section II. Section III contains a

discussion of various aspects of the numerical integration. First, the

initial electron distribution obtained from the ISEE-1 electron

spectrometer experiment is introduced. Through a comparison of electron

heat flux measurements and simultaneous plasma wave observations it is

argued that the bump-on-tail unstable initial distribution was obtained

just as the ISEE-1 satellite was passing through the upstream boundary of

the electron foreshock. Next some details of the calculated electric field

are presented and finally the electric field power spectrum discussed above

is presented. In section IV a calculation of the second harmonic

excitation is given which is based on a linear plasma theory with second

order wave-wave coupling included where necessary. A comparison of the

results of this calculation with the numerical results indicates that the

second harmonic excitation is due entirely to second order wave-wave

coupling which takes place during the otherwise linear growth phase of the

instability. It is conjectured that the higher harmonics are excited in a

similar manner.

II. The Plasma Model

The results which are presented in this paper have been obtained using

the following one-dimensional electron plasma model for the reduced

electron distribution function, F(x,v,T), and the electric field, E(x,T):

Ir	
)_E	 F

+ v ^x	 E dv	 0
00

x dv	 2.
-00
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00

These equations are dimensionless. In the following let the starred
e

quantities be the original dimensional ones. Then x = x /L where L is an
•

arbitrary length scale. Solutions which are periodic in x over the
f

interval -L < x < L will be considered. Therefore 2L is the longest

wavelength to be considered. Time is measured by T = w pt = 2%f t where

f  is the electron plasma frequency. Then v = v /wpL and _ E Aven0L

where no is the electron density averaged over the interval of perJjdicity;

it is a property of periodic solutions of equations 1-3 that n o is a

constant in T. The longest time scale of interest is approximately 10 ms

and the longest length scale is several tens to perhaps approximately 100

Debye lengths. Thus, the ion density ^s assumed constant and equal to no;

the one in equation 2 stands for the dimensionless ion density. The

magnetic f;^ld is also assumed constant in T and only weakly dependent on

position. The variable, x, measures position along tb ,^ local magnetic

field direction and the electric field is assumed linearly polarized in the

magnetic field direction. The evidence that is available is consistent

with the assumption that the electron plasma oscillations in the foreshock

are indeed polarized along the local magnetic field ( Anderson, .11. 21.1

1581). The weak spatial dependence of the magnetic field is ignored in

equation 1; this is equivalent to ignoring the electron drifts. Equation 3

is derived from Maxwell's equation,

+f T	 C-
If v x ^ were exactly zero then U, in equation 3, would be the

dimensionless ion velocity component along the magnetic field. Because of

the factor, c, in this equation, however, even small values of v x B might

be expected to contribute. Thus, in equation 3, U is the ion velocity

component modified by the component of c (o x B) along B. In any case U is

treated as a constant. The net result is a model for high frequency and

small wavelength electron plasma phenomena superimposed on a neutralizing

ion-magnetic field background which varies only very weakly on those small

scales. Solutions are sought subject to initial data F(x,v,0) with
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and ^o(0) where C0(T) is the spatial average (or zero th Fourier mode) of

the electric field.

It is perhaps more traditional when studying electron plasma phenomena

to study the electrostatic lint governed by the Vlasov-Poisson system of

equations, equations 1 and 2. But equations 1 and 2 do not determine

F'o(T). Within the Vlasov-Poisson tradition Eo(T) is normally set to zero
and ignored. It was felt that this assumption would be a poor one in the

foreshock which is strongly influenced by the bow shock and hardly contains

homogeneous plasma. It would certainly be a completely untenable

assumption when, as intended, non-periodic solutions are considered. Thus,

the additional equation 3 has been included to complete thm description of

the plasma, including its space -averaged electric field mode. kny solution

of equations 1-3 is also a solution of the Vlasov-Poisson system, but, with

its space-averaged electric field governed by another of Maxwell's

equations. Equations 1-3 will be referred to as the Vlasov -Maxwell system

of equaAons for a 1-D electron plasma.

Klimas and Cooper ( 1182) have shown that any periodic solution of the

Vlasov-Maxwell system of equations of the type discussed above can be

transformed into a similarly periodic solution of the Vlasov-Poisson system

with E0(T) = 0 for all T, and visa-versa. The numerical integration

results which are presented in section III are for solutions of equations

1-3 which are appropriate, as discussed above, for the foreshock region.

Ir section IV, however, where an analytical analysis of the numerical

results is given, the Vlasov-Poisson system (equations 1 and 2 with eo(T)

0) will be used in order to take advantage of the many techniques which

have been developed for analysis of that system. Then the transformation

of Klimas and Cooper will be used to transform the results of that analysis

to predictions for the behavior of the numerical solutions.

}
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III. Numerical Results

In this section a solution of equations 1-3 will be presented using an

initial dist ibution, derived from data obtained by th e ISEE- 1 Electron

Spectrometer Experiment, which is unstable to the bump-on-tail instability.

The numerical integration method developed by Klimas ( 1982) has been used

to obtain these results. This is a periodic solution which is presented

here as onlr a first step in a program of research leading to non-periodic

solutions which can include the _-fluence of the nearby bow shook in a more

cogent manner.

a). Electric Field

The numerical predictions for the electric field will be presented

here in terms of E(T) = ( L/Xp ) E(T). This scaling for the electric field

leads to the following useful rule: When E(T) = 1, then the energy density

in the electric field equals the total kinetic energy density in the

initial state of the plasma. Since the kinetic energy of the plasma does

not vary signifi , .antly it is true that w..en E(T) = 1 then the field and

particle energy densities are essentially equal. In thu foreshock, if this

plasma state were reached then the electric field intensity would be

roughly 1 V/m.

The output of the numerical integration scheme for the electric field

can be writen,

E(x,Y) = Eo(Y)

+ ^, IA,,,(N,,)  C o S m TT ^ A + U 'Y +- + B,( *11 W vmTI (X + u 4r

where

tc^ = X. ^. (0) Cos ^ + l uo(o) -u) S^1, y	 5).;O ^	 ') 0

r



vo

U^xr^	 dv v 1-
-00

The quantity, 1(T), is given by,

t^1 w
	 (is t^-^> ^o^S^ 	6).

0
The quantity, F.(0), is part of the initial data; it could be set to zero.

If' F (x,v,O) is such that uc (0) - U = 0, and if e' o(0) is set to zero, ;hen

k(s) _ +!t) = 0 and the expression for the electric field given by

equation 4 reduces to the electrostatic limit. The solution presented here

follows from an electron spectrometer observation for which ue(0) - U 0 0.

Thus, the electrostatic limit cannot be reached for this solution even if

it is assumed that E(0) = 0. The Am(c) and Hm(c) are obtained directly
from the numerical calculation. These coefficients will be presented here;

the total field can be reconstructed using equation 4. Only O ne field

modes have been included in the solution which will be presented. Of

course more modes are desirable and it is expected that more will be

included in the future. On the other hand various solutions have been

computed using varying numbers of modes and varying related phase

velocities tk) ensure that the interpretation of the results which will be

presented is not an artifact of the small number. It is i.ot expected that

an increased number of modes will lead to any significant ei.ange.

b). The Initial Deta

The dots in Figure 1 represent a reduced distribution function

which has been constructed from GSFC electron spectrometer data taken

aboard the IEEE-1 spacecraft on November 6, 1977 at 11:38:13-16 UT. The

construction of the reduced distribution function requires integration over

the velocity components perpendicular to the local magnetic field. The

spread in the dotted curves, where it occurs, is due to the difference in

i^
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integration results using two methods of integration. In principle the

integration should be carried to infinite perpendicular velocity but, of

course, the electron spectrometer has a finite upper energy limit. The

upper dotted curve was obtained by extrapolating the electron spectrometer 	 .

data smoothly to zero for very Large velocity and the lower curve by

setting the electron distributioA to zero for all high velocities where it

was not measured; in each case the integration over the perpendicular

velocity components was then carried out. From the results it appears that

at least in this case, the reduced distribution is very well deter mined by

the electron spectrometer data over the parallel velocity interval of

significance to the evolution of plasma wave phenomena; i.e., the velocity

interval containing the bump on the tail of the reduced velocity

distribution.

The data in Figure 1 were apprrently collected as tas spacecraft was

Passing through the boundary of the electron foreshock into interplanetary

space. Figure 2 shows the electron heat flux determined from the electron

spectrometer data over a one-hour interval which contains the time of the

observation in Figure 1. The upper panel shows the heat flux magnitude,

the middle panel the component of the heat flux vector in the #-direction

measured in the ecliptic plane from the Earth -Sitn direction, and the bottom

pan31 the component in the 0-direction measured from the ecliptic plane. 	
i

The horizontal dashed lines in the middle and bottom panels show the

directions parallel or anti-parallel to the nominal Parker spiral magnetic

field. The heavy horizontal line segments give one minute averaged

magnetic field data from the ISEE data pool tapes. The heat flux vector

can be seen to be either parallel or anti -parallel to the magnetic field

with abrupt transitions between. Figure 3 shows electric field data

obtained by the Iowa Plasma Wave Experiment aboard ISEE - 1 during the same
1

time interval. The electron plasma frequency lies in the 31.1 kHz channel 	
1

during this time. Figures 2 and 3 together show the high correlation	 1

between intense plasma wave noise in the vicinity of t'ie plasma frequency

and reversals of the heat flux vector away from its normal interplanetary

direction along the field and away from the sun. This correlation has been

known for some time ( Ogilvie BL al., 1971; Scarf j^,gl., 1971; Fredricks jt

Al., 1971; Feldman Al Al., 1973) and is generally interpreted as entry into
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the electron foreshock. The reduced distribution in Figure 1 was

constructed from data obtained during the heat flux reversal which can be

seen in Figure 2 at approximately 11:38. Probably because this short

reversal occurs just at the edge of a gap in the plasma wave data, it is

not clearly evident in that data. Figure 4 contains a more detailed

spectrogram obtained by the ISEE-1 electron density experiment over a

fifteen minute period starting at 11:30 Ind containing the time of the

electron observation. The frequency scale of the spectrogram rangea from

essentially 0 to 50 kHz and the grey scale indicated on the 1.3i't of the

figure is adjusted to cover from 16 to 72 dB above the 1 nV m -1 Hz-1/2

level. The short black bar on the top of the figure indicates a ti,,..

period during which the electron density sounder transmitter was on; this

is the cause of the coincident data gap in Figure 3 in the plasma wave

data. A scan of the heat flux data and the plasma wave data in Figures 2

and 3 showr that the satellite was in the electron foreshock at the start
of the spectrogram. The general increase in the level of noise in the

p:aama wave experiment 31.1 kHz channel at about 11:34 is clearly evident

in the spectrogram, and in all of Figures 2, 3 and 4 the exit from the

foreshock between 11:42 and 11:43 is very clear. The short heat flux

reversal which starts, aceceding to the electron spectrometer data, during

11:38:13-16 is also clearly evident in the spectrograw. The spectrogram

contains 128 frequency steps, each of 400 Hz bandwidth, which are swept in

a time period of 16 seconds starting at the lowest frequency and ending at

the highest. The arrows labeled start and stop indicate the positions in

two consecutive frequency sweeps at which the electron spectrometer

observation of the unstable velocity distributicn began and ended. About

six seconds before the electron spectrometer observation the satellite was

clearly imbedded in the foreshock. About six seconds after the electron

spectrometer observation the spectrogram indicates a quiet field exctpt for

an intense peak at the plasma frequency. Presumably, due to velocity

dispersion in the foreshock boundary, by the time at which this intense

peak is observed the satellite has passed out of the foreshock as defined

by the low energy electrons detectable by the electron spectrometer but it

remains in the foreshock boundary defined by the beam of higher energy

electrons arriving from the bow shook. This beam of higher energy

particles cont. ies to excite plasma noise at ;he plasma frequency. Thus,
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it is concluded that the !SEE-1 satellite passed out of the foreshook

shortly after 11:38, as the data for Figure 1 were being collected, and

soon after passed back into thi foreshock. It is assumed that this passage

is not clear in the plasma wave experiment data because of the da l sap.

The unstable bump-on-tail reduced distribution shown in Figure 1 is an

example of a phenomenon which has been presumed to exist at the bound.iry of

the foreshock for quite some time (Filbert and Kellogg, 1979). The

electron spectrometer onboard the ISEE-1 spacecra:t is the first experiment

with high enough time and velocity resolution to yield that result. A

search through the electron spectrometer data for other such examples is in

progress; detailed results will be presented later. Time Alining during

the electron spectrometer three sepond data collection interval is still a

Possibility. However, at this pW.nt it appears that many of the foreshock

boundary crossings have been resolved by the electron spectrometer and have

been found to coincide with bump-on-tail unstable reduced distributions.

The solid cure in Figure 1 is a three Gaussian fit to the electron

spectrometer data which has been used aj the initial velocity distribution

for the numerical solution to follov. This initial data contains a cold,

dense core, a high temperature halo, and a beam of approximately 150 eV

electrons moving away from the bow shock along the local magnetic field.

The electric field was assumed to initially con ,,;ain very low amplitude

waves with phase velocities at the positions of the thin vertical lines in

Figu-e 1. The wavelengths of the modes ranges from approximately 10 down

to 2.5 Lebye lengths (approximately 70 down to 18 meters). The modes with

the largest phase velocity magnitudes are those with the longest

wavelengths and the modes with phase velocities nearest the origin in

velocity it Figure 1 are the ones with the shortest wavelength. Other 	
s

solutions have been computed containing longer wavelength modes Mimes,

1982), whose phase velocities were outside the position of the beam

velocity. Those modes were found to simply damp away with increasing time

and tr. play no role in the evolution of the instability. From linear

plasma theory, field modes With phase velocity at the position of the far
right vertical line, on the rising portion of the bump, are expected to be

unstable and to, therefore, grow exponentially with time until the

W.
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instability saturates due to non-linear phenomena. All other modes are

expected to decay exponentially with time (to Landau damp). The actual

evolution of the field modes turned out to be considerably more complex.

c). The Solution

Figures 5a-d contain plots of the absolute values of B 1 (T) through

B
4
 W over more than one hundred plasma periods (approximately 3 ms. total

elapsed time) starting at the initial plasma state. The A-coefficients

differ from the B-ooefficients only in details and therefore space will not

be taken to present plots of them. A close examination of these figures

will reveal that the curves are made up of a sequence of peaks of slowly

varying amplitude. Each pair of peaks represents a single period of

harmonic oscillation on this semi-log plot of the absolute values. Figure

5a, for B 1 (T), shows a classic example of instability growth and

saturation. Following an initial transient the amplitude of B 1 (T) grows

exponentially at a rate which can be predicted very accurately using a

dispersion relation from linear plasma theory. The oscillation frequency

of this mode is also very accurately predicted by the Bohm-Gross relation

from linear plasma theory. (These issues wi' l l be discussed in detail in

the next section.) The instability saturates at T - 200 leaving this mode

oscillating at the Bohm-Gross frequency, very close to the plasma

frequency, with slow modulations of the amplitude which are due presumably

to particle trapping effects.

A detailed description of the computed electric field will be given in

the following subsection. At this point, however, a brief argument can be

given which shows that the dominant feature of the electric field is in

good agreement with the field detected by the plasma wave experiment: The

total field, following saturation, is dominated in the vicinity of the

plasma frequency by the contributions of B 1 (T) and A 1 (T). From this

numerical solution it would be expected that plasma wave noise near the

plasma frequency with amplitude ° 100 mY/m and wavelength close to 70

meters should be detected by the plasma wave experiment. The calibration

of the :plasma wave experiment is such that the plc.t of the 31.1 kHz channel

in Figure 3, which contains the plasma frequency, should reach full scale
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at several tens of millivolts/meter (private communication, D. A. Gurnett,

P.I., Plasma Wave Experiment). An examination of Figure 3 reveals that the

period just preceding and following the time of the electron speotroseter

observation is ch o-acterized by unusually strong plasma wave activity near

the plasma frequency. The 31.1 kHz channel appears full scale or near full

scale almost continuously. The 70 meter wavelength predicted by the

numerical solution is smaller by about a factor of three than the 215 meter

antenna used to obtain the data in Figure 3. Thus, the plasma wave
experiment would be expected to detect an electric field oscillating near

the plasma frequency with ampli,.ude roughly 30 mV/m, just about its full

scale field level %nd in agreement with the data presented in Figure 3.

The plot of B2(t) in Figure 5b provides the first evidence of quite

unexpected evolution for this bump-on-tail instability. Initially B20)

decays exponentially in time as expected with rate close to the Landau

damping rate predicted by linear plasma theory. The reversal of this decay

at t • 70, the subsequent exponential growth, and the simultaneous shift to

a higher oseillatlon frequency were not expected. After all, none of the

usual assumptions which one maxes to justify the accuracy of the linear

plasma theory appear violated during this reversal but it is clear that the

linear plasma theory ;(r even quasi-linear theory (Davidson, 1972)) would

not allow such behavior. This situation is made even more difficult by the

plots of B 3 (T) and B4 (T) in Figures 5e and 5d which show more d,-amatie 	 f

examples of the same kind of behavior. It would appear that the number of
i

modes involved in this behavior is limited here by the number of modes

included in the calculation and not by any feature of the physical

phenomenon involved. On the other hand it is important to realize t%at not

all possible field modes are involved. Other numerical solutions have been

computed containing electric field modes with wavelengths longer than that

of the unstable mode :n this run; those field modes did not experience a

reversal of their Landau damping. In addition, it has been found that

field modes with wavelengths shorter than the unstable mode which, however,

do not satisfy am 
= Xu

/m, where 
X  is the unstable mode wavelength and m is

any integer greater than one, also do not take part in the decay reversal

and frequency shift. The solution presented here has been arranged so that

tae unstable movie is at the longest wavelength, all other modes are at
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shorter wavelengths, and they all satisfy am = Au /a. Thus, in this

solution, only those modes that can reverse have been included because, in

addition to the unstable mode, those are the only modes which rise to high

enough amplitudes to make measurable contributions to the wlectric field.

d). The Electric Field Power Spectrum

The spectral distribution of the computed electric field is

considerably richer than was expected. The electric field is not limited

to plasma oscillations at (or very near) the plasma frequency. The decay

reversals and simultaneous shifts to higher frequencies discussed above

lead to a power spectrum with peaks at all the harmonics (limited only by

the numer of modes in the numerical calculation) of the fundamental

Bohm-Gross frequency. In addition these peaks are split into doublets or

triplets due to the amplitude modulations evident in Figures 5a-d following

saturation of the plasma instability at T a 200.

Figure 6 contains the electric field power spectrum computed from the

output of the numerical calculation and, also, a power spectrum of a model

electric field which is used to help interpret the numerical results. The

electric field was computed using equation 4 with U = 0; this is the field

in the reference frame moving with tha solar wind. It will be shown below

that the wavelengths in the electric field are quite small. As a result,

the Doppler shifts associated with the transformation from solar wind to

satellite frame of reference turn out to be very small corrections to the

frequencies of the important field modes and, in general, can be ignored.

The constant, to (0), 
nas been set to zero in order to present the simplest

case. The vertical tick marks at the top of the figure give the positions

of the plasma frequency and two, three and four times the plasma frequency.

The spectrum was computed from that portion of the solution following the

saturation of the instability, from T = 200 to T = 630. The field prior to

t • 200 is relatively much weaker and after 200 shows no evidence for

further qualitative evolution. Thus, it is felt that this portion of the

solution yields the electric field that the plasma wave• experiment should

detect when it detects peaks in the electric field at the foreshock

boundary. The heavy curve gives the power spectraan computed from the
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numerical solution. Because the time interval over which the electric

field was computed is short there is considerable leakage in this speotruM.

To evaluate this effect a power spectrum for a model of the num- ,%rieat field

was also computed. A model electric field with pure harmonics at the

Bohm-Gross frequency of the unstable mode and at two, three and four time

that frequency was constructed. The amplitudes of each of the harmonics

were chosen using the following reasoning: It was found that each of the

well separated groups of peaks in the power spectrum came from distinct

wavelengths in the field. The peaks in the vicinity of the Bohm-Gross

frequency corresponded to the longest wavelength, or the m ¢ 1 terms in
equation 4. The peaks in the vicinity of twice the Bohm -Gross frequency

come from the next shorter wavelength, half the longest, or the m = 2 terms

in equation 4. And so on. The following general rule seems to apply.

After the decay reversal and frequency shift at T s 70, each ,̂f the field

modes that satisfy X  = x u/m experiences a shift in oscillation frequency

such that its phase velocity, wm/xm , moves up to that of the unstable mode;

i.e., up to the rising portion of the bump on the reduced velocity

distribution. All of these modes then have the same phase velocity and

their oscillation frequencies are given by am = m w  where w  is the

Bohm-Gross frequency of the unstable mode. None of these modes with m > 1

satisfy a dispersion relation; they are not normal modes of the plasma.

Because each group of peaks in the power spectrum had its source in a

single m-value in the sum of equation 4 it became a relatively simple

matter to choose the amplitudes of the harmonics in the model electric

field. The electric field contributions of each of the m-values in the sum

were scanned for a maximum value. These maxima were then used for the

amplitudes of their respective ( same m-value) pure harmonics. The power

spectrum of this model field made up of pure harmonic oscillations was then

computed; the thin curve in Figure 6 is the result. The overall shift

upward from the heavy to the thin curve is due to the choice of the maxima

for the amplitudes of the pure harmonics. It is clear from the model field

spectrum that there is indeed considerable leakage. The true spectrum for

the model field, if 	 were computed over an infinite time interval, would

consist of spikes at the Bohm -Gross frequency and its harmonics with no

power in between. It is also clear from Figure 6 that the computed field

power spectrum is consistent with power in isolated peaks each of which are
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split into several closely spaced components. The second, third and fourth

harmonics are clearly split into doublets and the first harmonic appears to

be split into a triplet. This splitting of the peaks in the power spectrum

is due to the slow amplitude modulations evident in Figures 4a-d after T

200 which are due probably to particle trapping in the electric field.

IV. A Mechanism for Higher Harmonic Excitation

It is thought that the decay reversals and frequency shifts discussed

in the previous section can be explained in terms of a second order

wave-wave coupling mechanism. This mechanism allows the unstable plasma

mode to pump the stable ones to significant amplitudes with oscillation

frequencies that are narmonics of the unstable mode frequency. A specific

calculation of the amplitude, growth rate, and oscillation frequency of the

second harmonic is given in this section. The results of this calculation

are in excellent agreement with the numerical computation. It is

conjectured that the higher harmonics are due to the same mechanism

involving many more wave-wave couplings but a detailed calculation of the

higher harmonics has not been done.

The calculation of the second harmonic excitation is essentially a

linear calculation with second order coupling added where appropriate. As

discussed above, the calculation will be done in the electrostatic limit

(i.e., solutions of equations 1 and 2 with the constraint Eo (T) = 0 will be

studied) and the results will then be transformed to allow a comparison

with the numerical computation. Therefore, consider solutions of equations

1 and 2 with E o (T) = 0 which are periodic in x over the interval - 1 < x

1 and are subject to initial data F(x,v,0). As in the numerical

computation, let F(x,v,T) and E (x,T) be represented by truncated Fourier

series expansions in x with coefficients given by

and

^M(V)Y)

E (Y = d

1	 __

- W1 I' A

dx e	 tX^-Y
-1
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and C  = 0. Due to the truncation equations 7 and 8 govern those

coefficients which satisfy im! < M and in tLe summation in equation 7 Im-nj

< M and Inj < M where M is some integer greater than zero. In the

numerical results presented in the previous section and for the rest of

this calculation M = 4. All other coefficients are assumed zero.

To proceed assume that the plasma contains only very weak plasma waves,

i.e., assume that fm << f  for m 1 0 and assume further that the f m are

well behaved as jv) + m such that the Em calculated from equation 8 are

simil..:ly small. These are standard assumptions which one would make in
order to proceed with a linear theoretical treatment of equations 7 and 8.

This will be the approach taken here until an obvious contradiction to the•
linear theory is found. Since E-m = Em only m > 0 will be considered.

Thus, consider the linear approximation to equations 7 and 8 starting with

M = 0.

a).m=0

d-^o	 _	 9).4I
There are no linear terms in the summation of equation 7 because E o =

0. Thus, f0 (v,T) = fo ( v,0) __ g(v).

b). m = 1

This is one of the unstable modes. The linear approximation to

equation 7 is
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Of course the problem of finding a solution to equations 8 and 10 for f1

and f- 1  is a familiar one; the approach taken here is due originally to
Landau (1946). Let 1 1 (v,p) and &1 (p) be the Laplace transforms of f 1 and
E1 with the symbol, p, for the Laplace variable. Then,

N	
(	 \	

..r

+ ON	 P ^I.uV

and,

..J	 V	 °O	 ^, t V , 0)

P	 _00	 P

where,

11	
00	 11^(

 

=00

With fo(v,0) and f 1 ( v,0) given by the sum of three gaussians in v, as in

the case here, the method of Jackson ( 1960) can be used to find the zero in

D 1 (p) which leads to the simple pole in F- 1 (p)that dominates 6 1 (T) as T
grows large. With,

a
PQ	 14).

where p  x o + 1 W, the result of this calculation is c = .0481, a positive

growth rate and therefore an unstable mode, and w = - 1.07 (remember that in

these dimensionless units M = 1 corresponds to oscillations at the plasma

^"I
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frequency). Generally, the method of Jackson, when it applies, gives a

more accurate result for w than does the Bohm-Gross expression. However,

in this particular case, with m s 1, the two results are essentially

identical and therefore this frequency has been referred to everywhere else

in this paper as the Bohm-Gross frequency of the unstable mode. The lowest

frequency peak in the model field power spectrum (the thin curve) of Figure

6 is at this calculated Bohm-Gross frequency. The excellent agreement

between the position of this peak and that derived from the numerically

computed field (the heavy curve) indicates the accuracy with which the

linear theory predicts the oscillation frequency of this unstable mode.

Figure 7 shows the details of B 1 (T) during its linear growth phase. The

slope of the solid line drawn on that figure can be used to calculate the

actual growth rate of the instability; the result is .0530 as opposed to

the calculated a = .0481. Thus, the growth rate of the unstable mode is

also very well reedicted by the linear theory. Generally, the behavior of

the unstable modes during their linear growth phase is very well predicted

by the linear plasma theory.

c). m = 2

This is the first of the modes which experience the reversal of their

Landau dapping and the subsequent growth and frequency shift which are

?th in violation of the linear theory. It will be shown here that the

evolution of this mode during its decay and subsequent growth is governed

by

At T n 0, f2 and f 1 are equal in amplitude as are e 2 and E1 . All of these

quantities are very small. Thus, the last term in this equation, which is

quadratic in these small quantities, is initially completely negligible.

Wish the neglect of this lag. term, hol% f2 and E 2 ouey the came linear

theory discussed above in the m :. 1 case. A similar calculation of a and w

in this case yields a = -.151 and w = -1.27 in excellent agreement with the
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behavior indicated in Figure 8 of B2(T) during its initial decay. However,
the neglect of the last term in equation 15 cannot remain valid. While the

linear theory applies g1 and f 1 are growing exponentially in time and E 2
and f2 are decaying exponentially in time. At some point the last term
must dominate the right-hand side of this equation. In this subsection the

effects of the last term, when it dominates, are calculated. It .s shown

that the decay reversal and frequency shift of B 2(T) are thereby completely
explained.

Using equations 15 and 8, it can be shown that the Laplace transform of

(T) is given by,

	

E^	 = a 1T Q'( P)	 d v	 r:	 v	 1
-00

 16) .
1♦ aR^^^ d^(pt ^aTI O are dP E < < P' ^, ^^^^-P

	in which f ' 1 	af 1 /av and the path of integration, C, is from -im to +io,

with 1 (p') analytic to the right and f e 1 (v, p-p') analytic to the left of

the path on the complex p'-plane. The first term in this equation would be

the sole result if a linear calculation were being done; it predicts the

initial behavior of B2 ( T) while it is decaying. Let C ( p) = L(p) + 6(p)

where f ( p) is the linear first term in equation 16 and 6 ( p) is the
s

quadratic second term. With equation 14 for 91(p),

If equation 11 is used for f 1 , then it can be shown that d(p) contains one
term with a pole at p = 2p0 ; this term is given by,

5(Y1
Qa ( P1' (Q-a PolQ,, tP^ dv tpt• Ldtfv) (p- pd^- Lrv100
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Finally, the contribution of this pole to E 2 W is given by,

Ola	 d^ `^	 aI ^
^Fw (A	 d

o	 Otv, u,

?o^^n^

This expression gives a contribution to B2 0) which oscillates at exactly

twice w, the Bohm-Gross frequency of E 1 , and grows exponentially with twice

the growth rate, a, of B 1 . The amplitude of this contribution to B2 (T) is

completely determined by the fit, in Figure 7, to the amplitude of E 1(T)

which yields jal and a and by the calculation of w done in the previous

subsection; there are no free parameters available. The prediction from

equation 17 for the amplitude of B2 ( T) is given by the straight line in

Figure 8. The prediction from equation 17 for the oscillation frequency,

2w, is given by the position of the second peak in the model field power

spectrum in Figure 6 which lies just in the middle of the corresponding

doublet determined from the numerical solution. It would appear that this

contribution to E 20 ) accounts entirely for the decay reversal and

frequency shift to the second harmonic in B2 ( T) and thus, for the second

harmonic excitation in the electric field. The mechanism for this

contribution which has been examined above would normally be called second

order wave-wave coupling but this is, perhaps, somewhat confusing

terminology si ree it is actually the m = 1 mode interacting with itself

which produces this result; it is hard to imagine a wave interacting with

itself. Actually, the interaction is between the m = 1 wave in the

electric field and the m = 1 density fluctuations in the particles; the

terminology is simply inappropriate.

It is conjectured that the higher harmonies in the electric field are

produced by the same mechanism as that which produces the second harmonic

but, with more than just one mode doing the pumping. For example, after

its decay reversal the third mode shifts to the third harmonic of the

fundamental Bohm-Gross frequency and grows exponentially with a growth rate
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which is three times that of the first mode. It is conjectured that this

mode is governed by equation 8 and

air
	 1r„^3 	EaaV	 eX 	C I ^'

The first term on the right-hand side of this equation would provide the

initial linear decay of E 3 (z) and the last two would do the pumping. ti-

the index, m, increases the number of possible mode-mode couplings

responsible f,r the pumping goes up rapidly.

V. Conclusion

The essttitial element which allowed the excitation of the harmonics in

the example discussed in this paper was the large ratio of free energy in

the electron beam to the field energy prior to the growth of the

bump-on-tail instability. Thus, the unstable electric field modes grew by

several orders of magnitude before the free energy was exhausted thereby

leading to the important consequence that the linear growth phase of the

instability lasted for a long time. During this long linear growth phase

other shorter wavelength field modes which were Landau damping were able to

decrease their strengths by several orders of magnitude. The result was a

large imbalance between the strengths of the stable and unstable modes in

the plasma; so large, in fact, that the linear Landau damping of the stable

modes was eventually dominated by wave-wave coupling quadratic in the

unstable modes. Although a quantitative statement cannot be mi,de, it does

seem safe to say that the thermal electric field noise level in the

undisturbed interplanetary plasma at the frequencies and wavelengths of

interest here is very small, probably smaller than the approximately 10-5

`	 V/m which was used to seed the field modes in the numerical computation

(Meyer-Vernet, 1979; Hoang gI Al., 1980; Couturier gL Al., 1981). Thus,
.	 the free energy of an electron beam at the foreshock boundary should easily

dominate the undisturbed field energy. Certainlj the plasma wave

observations at the boundary of the foreshock are often consistent with a

growth of several orders of magnitude in the field strength during the

evolution of the instablity. It appears then that the excitation of

harmonics at the boundary of the electron foreshock should be a common

occurrence.
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The numerical results which have been presented have been eoigruted

using only a small number of discrete field modes. However, various

unreported numerical solutions have been computed to test the conclusions

which have been given. It has been found that field modes with wavelengths

longer than that of the unstable mode do not play any detectable role in

the evolution of the unstable mode or the pumped modes. It has also been

found that the same can be said of field modes with wavelengths shorter

than that of the unstable mode whose wavelengths, however, do not satisfy

the equation am a Iu/m. The solution which has bsen presented oontains

only field modes which do satisfy this equation with 1 < m < 4. It is

thought that only modes which satisfy this equation can possibly have a

significant part in the evolution of the instability. Thus, it is thought

that the solution which has been presented is essentially complete except

for the modes which satisfy 
lm 2 iu/m with m > 4. But the wavelengths of

those modes, according to this equation, would be even snorter than the

minimum 2.5 1D wavelength which is included here. It is not considered

likely that field nodes with wavelengths equal to 
1D or shorter would play

a significant role if they were included but this point will be checked in

the future when solutions with more field model will be computed.

It is further not considered likely that the transition from the

discrete modes appropriate for the numerical computation to a continuum of

modes more appropriate for an interpretation of the plasma wave data would

have any significant impact on the harmonic excitation. Following the long

linear growth phase of the instability the contribution to the electric

field from the continuum of unstable wavelengths should be dominated by

those wavelengthL which are very close to the most unstable wavelength.

Because the field would therefore be dominated by a narrow range of

wavelengths, and because the wavelength dependent Bohm-Gross correction to

the plasma frequency is small, all of the important unstable field modes

should oscillate at very nearly the same frequency, near the plasma

frequency. With the resulting sharply peaked wavelength and frequency

spectra for the unstable field modes it would be expected that the spectra

for the pumped harmonic modes would be similarly peaked. Thus, it is

expected that in the continuum, during the linear growth phase of the
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instability and while the harmonic pumping is occurring, the field would

evolve in a manner quite similar to that of the discrete mode calculation.

Than why have the harmonies of the plane frequency not been observed

at the electron foreshock boundary? The answer may be that they have been

observed but due to the nature of the plasma wave detectors it is di,ffloult

to determine that this is the case. An unfortunate side effect of the high

sensitivity of these detectors is their tendency to spill strong signals in

any one frequency channel over into other nearby channels. A good example

of this phenomenon can be seen in Figure 3 in which a very strong signal at
the plasma frequency in the 31.1 kHz channel may be exciting many of the

other frequency channels in the detector. There may also be harmonics of

the plasma frequency in that data but that would be very difficult to

prove. This is an extreme example; there my be other times when harmonics

In the plasma waves could be separated from spillover in the detector. On

the basis of the results of this paper it would appear that they are there

to be found.
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Wad of Figure Captions

Figure 1	 The dots indicate an electron reduced velocity distribution

constructed from data obtained by the electron spectrometer

experiment on ISEE-1 as it passed through the boundary of the

electron foreshock. The solid curve is a three gaussi&n fit

used for initial data for the numerical integration. The

thin vertical lines indicate the initial phase velocities of

the field modes incladed in the numerical integration.

Figure 2	 Electron heat flux determined through a moment fit to data

from the plectron spectrometer experiment on ISEE-1 over a

one hour ._nterval which contains the time of the observation

in Figure 1. The sudden shifts by approximately 18l° in the

angle # indicate passage through the boundary of the electron

foreshcck.

Figure 3	 Electric field measurements made by the plasma wave

experiment on ISEE-1 using the 215 m. antenna over the same

time interval contained in Figure 2. The plasma frequency

during this time interval is in the 31.1 kHz channel. Sudden

increases in the signal in this channel can be seen to be

very well cor,•elat d with the heat flux reversals in Figure

2. Tt,a periodic data gaps occur when the electron density

sounder experiment is turned on.

Figure 4	 Electric field spectrogram made from data obtained by the

electron density experiment on ISEE-1 over a fifteen minute

time interval containing the time of the electron

spectrometer observation in Figure 1. The spectrogram is

constructed from consecutive 16 second frequency sweeps

starting at the lowest frequency and ending at the highest.

The beginning and end of the electron spectrometer

observation are at the points indicated by the arrows labeled

start and stop.
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Figure 5	 Four of the electric field modes obtained from the numerical

integration of the 1-D Vlasov-Maxwell equations using the

bump-on-tail unstable reduced velocity distribution given in

Figure 1 for the initial plasma state. The mode labeled B1

contains the unstable fundamental. The other three modes are

initially stable but are later pumped by the unstable

fundamental. The pumped modes oscillate at frequencies which

are very close to the harmonics of the plasma frequency.

Figure 6

	

	 The heavy curve is a power spectrum constructed from the

computed electric field following saturation of the

bump-on--tail instability. The light curve is a power

spectrum constructed in a similar manner from a model

electric field containing power only at the Bohm-Gross

frequency of the fundamental unstable mode and its harmonics;

the power apparent in this curve between the peaks is due

solely to leakage. A comparison indicates that the computed

electric field contains power in isolated peaks, at the

harmonics of the Bohm-Gross frequency, which are further

split into closely spaced components.

Figure 7

	

	 The linear growth phase of the B 1 mode plotted in Figure 58.

The straight line is a fit which has been made to determine

the magnitude of the oscillations in this mode and their

growth rate. The growth rate determined in this manner is in

very close agreement to the growth rate predicted by linear

plasma theory.

Figure 8	 The B2 mode from Figure 5b during the linear growth phase of

the bump-on-tail instability. The initial decay is as

expected from linear plasma theory. The reversal of that

decay and simultaneous frequency shift are due to pumping by

the fundamental unstable mode through quadratic wave-wave

coupling. The straight line is a no-free-parameter fit to

the amplitude of this mode, during the pumping phase,

calculated using the wave-wave coupling mechanism.
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