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The long period variations of the first eight planets
in the sclar system are studied. First, the Lagrangian
solution is calculated and then the
long period terms with fourth order egcentricities and inclin-
ations are introduced into the perturbation function. A sec- |
ond approximation was made taking into account the short
period terms' contribution, namely the perturbations of
first order with respect to the masses. Special attention
was paid to the determination of the integration constants.
The relative importance of the different contributions
is shown. It is useless for example to introduce the long
period terms of fifth order if no account has been taken of
the short period terms. Meanwhile, the terms that have been
neglected wouid not introduce large changes in the integration
constants. Even so, the calculation should be repeated with
higher order short period terms and flfth order long periods.
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LONC PERIODIC TERMS IN THE SOLAR SYSTEM

P. Bretagnon

Bureau des Longitudes, Observatoire
17, rue E. Deutsch Ge la Meurthe

F-75014 Paris, France

Received June 27, 1973 /141*

SUMMARY [English language summary from the original text]

We have studied the long period variations of the eight planets
of the solar system (Pluto is excluded). We first calculated the
Lagrange solution. We then introduced the long period terms of
fourth order in excentricities and inclinations in the disturbing
function. In a second approximation we took into account the contrib-
ution of the short period terms which oprovide the perturbations of
the first order with respect to the masses. We have paid special

attention to the problem of the determinration of the integration

constants.

We began with the expansion of the disturbing function R [form-
ula (1)]. We used the variables h = e sin w, K = cos w, p = sin %
cos 2, q = 51n~%cosﬂ and obtained expression (3) for the disturking

function and the equations of Lagrange (4).

In the Lagrange method, one retains only the second order terms
of the quantities h, k, p, q of the so called long period part of
the disturbing function. The resolution of the system of differential
equations thus obtained gives the solution of Lagrange (5). The

corresponding integration constants are given in Tables 2, 3, 4 and 5.

We later introduced the long period terms of the disturbing
function, of fourth order in the quantities h, k, p, q. These terms
give rise to third order terms in the Eq. (6) for the variables h,»
for example. We then substitute rumerically the Lagrange solution

*Numbers in the margin indicate pagination in the foreign text.
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in these thir1 order terms and hence obtain the form (8) of the
equation for dh“/dt.

R

In a second approximation, we also irtroduced the short veriod
terms of the disturbing function. The masses are substituted@ numer-
ically and the terms thus found are indentical in form to those
arising from long period terms of fourth order of the disturbing
function and are directly added to the Eq. (8).

To solve the systems of Eg. (8) and (9), we used the Xrylov-
Bogolioubov method, which consists in seeking a solution of the
form (11) with a modification of the fregquencies given by (12).
Through (12) and derivation of (l11) we obtain (13). In addition, the
substitution of (11) into (8) and (9) gives (14), so that we get the
two expressions (13) and (14) for dhu/dt and dku/dt; their third
order parts are given in (15) by identification. It is then possiktle
to determine the quantities Mu,;,%, Nu,-,f. Bj and Cj introduced in
(11) and (12).

The soluticons are given by (16) and (17) and in Tables 8 to 13.

The comparison between Tables 3 and 8 shows that the integration
constants have been greatly modified, particularly for the planets
Mercury, Venus, Earth and Mars. This is due to the importance of
third order terms for these planets. Table 2 gives the modifications
Bi and Ci of the frequencies as well as the new values of these
frequencies: éi =g + Bi; éi =S5, + Ci' Tables 10 and 11 show the
amplitude of the Lagrange solution calculated with the new corstants;
Tables 12 and 13 show the amplitudes Mu . and N of the argu-

o 'L o0

ments of higher order.

This work displays the relative importance of the different
contributions: it is, for example, useless to introduce the long
period terms of fifth order if one has not taken into account the
short period terms. We have included the major contributions; the
neglected terms would not introduce large modifications of the
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constants of integration. However, the calculation should be repeated
including long perioc¢ terms of fifth order and short period terms of
higher order.

Key words: planetary theory, secular perturbhations

There have been several studies of long period terms in the solar
system- Stockwell, Harzer (1895), Hill (1897), and more recently
Brouwer and van Woerkcm (19250) and Anolik et al. (19€9).

Brouwer and van Woerkom calculated the Lagrange solution for the
eight planets and in particular investigated the Jupiter-Saturn case.
This was a continuation of the work of Hill, who had determined a

mean perturbation function on the basis of Le Verrier's findings.

N
-
>
N

Brouwer and van Woerkom used this perturbation function, which had
been extended to sixth order excentricities and inclinations, for
Jupiter-Saturn. It is difficult, however, to determine the accuracyv
of their result because Hill empirically established some of the co-
efficients.

Anolik et al. dealt with the eight planet case by introducing
all the perturbation function's long period terms up to fourth order

excentricities and inclinations.

Our goal was to evaluvate tne significance of the various long
period terms according to their origin. We too dealt with only the
eight planet problem. Pluto was neglected for several reasons. First
of all, the generally accepted mass of Pluto, which previously had
been 1/360,000 the solar mass, is now 1/1,8000,000 with a large
uncertainty:

Me 1800000 + 600000 .

m,,

Moreover, Pluto's radius vector can be less than Neptune's, with the
result that expansions in o, the ratio of semimajor axes, of the
perturbation function, are no longer convergent. Finally, the intro-
duction of Pluto's influence causes the appearance of very large

resonances between Neptune and Pluto whose physical character is
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unclear.

Lastly, we calculated the eight planet Lagrangian solution ané
then introduced the perturbation function's fourth order terms as
well as the contribution of the .-hort period terms of first order
with respect to the masses. In addition, we particulary concentrated
on the proktlem of determining the integration constants kecause of
the sigrnificance of the terms modifying the Lagrangian solution.

The expansions of perturbation function R that we used are those
constructed by Chapront at the Bureau des Longitudes. They take the
fomr of analvtical expansions in e and sin i/2, where e represents
the excentricity and i the inclination of the orbkital plane relative
to the plane of origin.

R= ¥ Q(:)e;e;:x(sin—'_;'-)x(sin'—:-) cos @, (1)
r.oatwj £

with
Py =jr 2y +Jarg 0y =g+ 2 + o Q.

A being the planet's longitude, & the argument of the perihelion, and
Q the argument of the node. The subscript I refers to the inside
planet and E to the outside one. The perturbation function's long

period portion is that part for which AI and A_ are absent, i.e. in

E
which j1 = j2 = 0. The summation with respect to the small quantities
eI, eE, sin 11/2, sin lE/Z is done starting with zero order terms

and then 2, 3,...

The orbit's descriptive elements (the semimajor axis a, the
excentricity e, theinclination i, the node argument 2, and the
perihelion argument = are those of Newcomb. These elements are
expressed relative to the 1850.0 ecliptic averaged over short periods,
which will serve as our point of departure (t = 0 for 1850.0) in
determining the integration constants of the sought after solutions.
Also, we used more recent values for the masses of Venus, Earth,

Mars, and Saturn than the ones Newcomb used.

The mean motions n, are the average observed values. The semi-
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major axes a, are related to the values of ny by the expression
nfai = constant. Now, we need for the mean motions values from
which the secular perturbations have been removed. We therefore
calculated the secular perturbations 4n on the basis of Chapront's
and Simon's work concerning the construction of planetary theorv with
secular terms.

In the end, we used for each planet the value n of the mean
motion defined by:

n=mn - Sn
and the value a of the semimajor axis obtained by
nza3 = constant.

We have assembled the elements adopted for the eight planets in
Table 1.

Table 1
Planetary Elements for 1850.0

g cem——
Cpeoi- @) ("/yr) a ("/yr) nj (AU) n- (AU) < n i Q
.‘"—"

¥

m m

) 5381016.3893 53810231732 03870986713 0.3870983460 0.20560396 75 0719737 7 000700
o~ wigus 210663413171 2106631.7631  0.7233322169  0.72332984K7 000684458 129 27345 3 233526
{’ Earth1295977.4496 12959756094  1,000000021  1.000000968 0.01677126 100 21 3630 0

46 3312724 600060
75194741 30K500

32X900
i Mars 6890509353  689039.2%17 15236914428 15236791387 009326685 333 175237 1 510242 €48 240340 3099000
- puprer 109256.63954 10926303033 5202803945 5202600424 OOHKB253KY 11 542672 1 184181 9K 555816 1047353
y 43996.20414 JINHIE211T 953WNJI6S3 9584827367 0.05606075 90 06 39.53 2293926 112 2051.38 RED
}’wm 15426.0928 13333031 190N2INI8S 09.21710613 00469055 16N 15469 0 46 20.54 314080 22809
< Neptune 7864.698 TRIZIR 30057242 20.011791 0.0085082 4319437 1 4701.81 130 0%00.2 19314

[Commas in tabulated material are equivalent to decimal points.]

We chose the following variables to analyze our problem:

h=esinm. p=sinisin®,

k=ecosm. g=sin}cosQ.

(2)

This choice was made in order to avoid the appearance of quantities
expressed in e and i in the denominators of the Lagrangian ecuations.
Such quantities could cancel each other out. In addition, this is
necessary for the resolving process because in this wav the solutions
are expressed formally through the use of these variahles and, in the

/143
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algorithm of solution's construction, the second members always re-
tain the same polynomial form.

The change in variaples defined by (2) yields in the perturbation
function in form (1) an expression of the form:

R=SShPhgky kg py PEQY gF cosliyzy + iy zg)

(3)
where the summation is extended to such exponential values that
r, +r,+s, t s, +t; + ty+u+u, <, where w 1is the order at
which it is desired to limit the calculations.
For the variables defined in (2) the Lagrange equations are
written:
dh_(-¢)'* R hu-e'* R kp R kg R
dt na ck nad[t+=0-e3'"] 72 mdi1-e3)'? ép 0 Mmal1-e€Y)'* éq
d __0-e? R ka-ey': R hp R hg R
de na* ch ~ na’N+=0=e7] &2 2ndt—-ed'? ép mat(1-e)'? dq
dp = cR P - R o pk- l fR" - _.’i__ i{!_‘
dt — 4ea*1-e'7 &g Ina*(t—-e3)'? ¢z dna*(1—e’)'? ¢h na*(1—e)'? ok
dq 1 cR q cR ak ¢R qh ¢R (4)

drt 4na*(1-¢)'? .('p
| da 2 (R

a dt  na® és

ey — 3T ae t i RIT A
Mmat(t—e ) é2 2na*(l—-e)'? éh o 2na*(1-e)'? ék

di _ 2 R (1—e)'? R 93_)#___’ 1 ( ‘R | r‘R_)
ot """ Tl (1= ( " h ck maiii—e) P ap 1
where e = h2 * k2

LAGRANGIAN METHOD

For a planet of subscript u perturbed by the seven other planets
of subscript v, the perturbation function is written:

R-= Z “ -'gi R‘HI' +> z ll ""— ﬁll

r<uy (] 1>w 1'I
The first summation is extended to the planets inside the one under
consideration, the second to the planets outside.

We use the follow-
ing notation:

Rij = aj/A (L = distance of the two planets)

: R - —

————
,
/

g,
T
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'l” |
i

- !
Limited to the second order, Ruv has the following expression: /144 |
|
|

R, =Co+ Ay(h:+ K2+ + kD —4A,(p] 4+ ¢i +pi +4))
+ B.l"klkl' + ,'I,'() + sAll'(qll‘lr + pﬁpl)
: : =. . .
where Cuv' Auv' Buv are functions of qu au/av, which is constant
here. We thus obtain, with the notation:

()= 22 5 e>u,

l+”
[u.r])= lﬁ e 1f r<u,
Ay Y )ALk + B,
dt *
d;( =~ ¥ [0)A,h,+B,h),
dp,
== ¥ [ue]24,0,- 24,4
dq,

-t = Y [w.r)24,.p,—24,.p).

This system is written in matrix form as:

dH dK
a3 “ExK. G-=—E&xH,
dP dQ
d ’ Q —d—-——’XP

where H is the column vector with compor.ents (hMe' hv, orete 7 hN), K

the column vector (kMe’ kv, oavsi iy kN)' P the column vector (p

Me’ Py’
orel ity pN), and Q the column vector (qu, Qyr === qN). The sub-
scripts Me, V, ..., N represent Mercury, Venus, ..., Neptune,
respectively. E and I are the matrices of the linear systems in

excentricities and inclinations respectively.

The conventional resolution of the two Lagrangian systems gives
the eigenvalues:

gi' i=1, 2, ..., 8 for the excentricities;

S, i=1, 2, ..., 8 for the inclinations. |
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One of the eigenvectors in the system of inclinations in zero.

We will assume s5 = 0.

We determine the eigenvalues Aij associated with gj, and uij

associated with sj' which gives the Lagrangian solution:

L

h,= Z /'.,-ijsin(gjt-f-ﬂj) W
=1
8 -
- » (5)
8

pi= Z u,-l-Nj Sin(ij+(sl-)

i=1

8
q = Z HijNjcos(s;t+4). |
i=1 ) |

Lastlv, we calculate the 32 constants of integration Mj' Bj,

Nj' Gj from the values of h, k, p, g a2t t = 0. »

We have assembled the eigenvalues g and s in Table 2, and
in Table 3 we show the 32 constants of integration M, R, N, ¢.
Lastly, Table 4 gives the amplitudes of the Lagrangian solution mul-

tiplied by 108: AijM, X 108 for the excentricities, and similarly

j
in Table 5, u N, X 108

1] ; .
are expressed in seconds per year. Aih’ Besy M., Nj are dimensionless
J

for the inclinations. Frequencies g and s

1)
numbers.

Table 2 Table 3 /145
Frequencies in "/yr Constants of Integration
(Lagrangian Solution) (Lagrangian Solution)

S

sie 9 s i M B N &

A. . -

ST+ 5461369 - 3199958 t 0.18141040 87 1111737 0.06274851 18 1528776
s + 1.346581 ~ 6571387 2 0.01909712 192 40 29,79 0,00506380 316 200481
3 +17.331295 — 18746205 3 0.01056860 332 56 51,67 001222166 254 1705.60

- + IR.004584 - 17636111 4 0.07300403 316 06 34.81 0.02519918 295 40 38.7%

"ﬁi‘ + 3711401 0 5 0.04319426 27 48 34,76 001383974 106 08 41.50

K3 + 212.\635: =237217e 6 0./483774% 127 310446 0.007567X9 126 19 31,43
1 + 2701787 — 290432 7 0.03140786 106 19 25.39 0.00580286 313 4255.4)
s + 0633116 ~ (677520 8 0.00923780 66 09 18.45 0.00588386 201 00 52.94

[Commas in tabulated material are equivalent to decimal points.]
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Table 4
8 . - .
Aiij x 10°. Amplitudes of Lagrangian Solution
. — !
" i
1 2 k) 4 s 6 7 8 |
Mercury 18141040 - 2318196 155897 — 170495 24140T) 11364 62612 »r ‘
Vénus 631873 1909712 — 1275337 1497153 1624499 ¥ 61654 105 i
Earth 405895 1490:40" 1056460 — 1492703 1624452 247593 65295 124 |
Mars 66283 264664 3017351 7300403 1870379 1617033 86626 2053 i
Jupiter 703 — 1055 N 95 = 55 4319426 — 1343040 218379 5968
Saturn 627 — 1088 - 750 - 840 3404356 4337743 199229 6736
Uranus 271 265 4 36 - 4384597 ~ 181906 3140786 14104
Neptune 4 10 3 3 160418 - 13361 - 338902 923740
8 Table 5
Uiij x 10. Amplitudes of Lagrangian Solution ‘
L ]
1 2 3 4 5 6 7 8
Mercury 6274851 — 1781583 204668 58171 1383974 13920 — 166549 - 236
Vénus 591896 506380 — 1241594 - 343391 1383974 6022 — 95883 — 66215
Earth 426404 408232 1222166 226117 1383974 140699 — 86614 ~ 6495
Mars 90534 90894 — 1794150 2519918 1383974 817 - 62850 - 6148
Jupiter - 1038 - 655 - 9 - 88 1383974 — 313878 — 47877 — 5849
Saturn -~ 1328 - 925 - 244 - 916 1383974 786799 - 39034 - 56388
Uranus 12 477 20 86 1383974 - 34790 880286 S4ns
Neptune 28 27 2 9 1383974 - 3888 - 103566 $883%
INTRODUCTION OF HIGHER ORDER TERMS

We are now going to introduce the perturbation function's long

period terms of fourth order h, k, p, g, as well as the perturbation

function's short order terms.

Fourth Order Lcng Period Terms

By differentiation,

these terms yield third order terms, and the

Lagrangian equation for variable hu’ for example, then has the follow-

ing form:

éh,

Y (w124, k,+ Bk, ~ P, (h.h k. k.p,.p.q,q))

7
ol ok

(6)
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where Pv is a homogeneous third degree polynomial.

Into polynomial Puv we substitute the Lagrangian solution (5),
whose numerical values are given in Tables 2, 3, 4, and 5:
s L)

[
k=Y igMsing;, k,= ¥, M cosy,,

L
i=1 j=!

8 R
P = El HN;sinG;, g,= ¥ « N cosb;,
i= i=1

where we have made s = gjt + Bj and ©_ sjt + éj. Therefore only
J
the numerical values of amplitudes ;uij and uuij appear in this

calculation.

Among the values of the i and j subscripts of arguments Vg
(i=1, 2, ..., 8) and "j (3 =1, 2, ..., 8), such a substitution
makes combinations appear in which at most only three values of sub-
scripts i and j are involved. For example, there will he combinations

of the type (wl + 62 - 64), (Zw5 - ¢6).

The expression 2 [wt]P, therefore has the form:

¥ e Pu= Y CuiienjeCOSU P+ Fiyp, +)0 - +,0) (7)
v, [ I is -
Jdreedds

where ¢§ is a numerical coefficient.

u,il...ie,jl...j8
The summation over integers i and j is such that:

$ [
Jlid+ ¥ U=t or 3

m=|
We will designate that:
Iv.6)= Wy tipya+ o rigyy =710, 4,0+ - + jiyfg
and hence equation (7) takes on the form:

2 ()P, = ¥ &, .o cosly. ().
- RS

We also make:

10
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[ s
e=+11f Y i.- ¥ j =41,

N
-
*»
o0

8
e=—11if Y i+ Y i,=-1.

Equation (6) is then written:

di
: d:' = ¥ ()24, k,+ Bk} + ¥ i\ ocos(y.0).
Ty \.0

(€)

Substituting the Lagrangian solution into the equation in
dku/dt similarly yields:

dk, o

= L )24, Boh) — Y ex 3, gsinly. ). (°)

L
("] v.0

We also calculate:

dp,

=== L [ne)24,9,- 24,9 + T n,, pcosty. ).
“ L2y v.0

dq, .

‘d-l = z [“‘ ‘-J{2'4u1pu—2‘4l‘(pl'} - Z EXMNyy0 -\in"l.‘ .

il v.0

Short Period Terms

Substituting the Lagrangian solution into the short period part

of the perturbation function yields only short period terms that are

first order with respect to the masses. It is only with the second

mass order that we come across long period terms again.

This time we have to consider for each planet the complete
system of Lagrange eguations

subscript u in the form:

/147

(4), which we will write for a planet of




(10)

We determine the short period effects argument by argument. For

a short period argument iku + jxv, i and j being given integers, the

functions F have the form:

——— e —

F.coslizy+jz )+ F sin(iz, —jz,)

where o and Fs are polynomials in hu’ ku, qy’ hv, kv' P,e Dy whose

coefficients are functions of S = au/av, n, and n,. (In the special
in the case

case in which one of the two integers i, i is zero, 1i.e.,
in which the short period argument takes on the form ilu, the ]

functions Fc and Fs depend on hv' kv' P,r 9y Ny for ve=1, 2, «c., 8

and on the seven quantities Ory = au/av for u # v.) ;

We therefore substitute the Lagrangian solution into eqguations |

(10), which after integration yield a short period increase in the

Lagrangian solution. Then by doing a Taylor exvansion of the second
members of equations (10), we obtain second order terms with respect
to mass after substituting the first order that we have just found.

We will retain only the second terms' long period parts.

Since the masses are always substituted for numerically, the
terms thus found in the second members of the Lagrangian equations
have the same form as those coming directlv from the perturbation

function's fourth order lony period terms.

In contrast to the case of the perturbation function's long
periods, for which we kept the fourth period terms, the criterion
for choosing short period terms is numerical. What we did was to
retain the beginning of the h, k, p, q expansion of all the arguments

‘*12—’ - — TR — :L
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causing changes in the Lagrangian solution frequencies of more than
-3
10 "/yr.

RESOLUTION OF THE SYSTEMS OF DIFFERENTIAL EQUATIONS

We saw that the contribution of the short period terms took on
the same form as the terms coming directly from the perturbation
function. We therefore have to resolve a system of differential
equations having the form:

d
Do o)Ak, + Bk} + T fevacosts. 0. (8)

l
==Y [wo){24,h,+ B, 0} — ¥ ex i, asinly.0) (9)

réy v.e

as well as a similar system for variables Py and q,-

For that, we are going to use the Krylov-~-Bogolyubov method. This
method consists of finding a solution of the form:

3

) M, siny; + Z M, gsin(y.0)

~.

"
M- nl\/j. HM-

[ (11)
) iM;cosy; + Z M, ,costy. @)

-~

-~
[

#,;N;sin; + T.I\“ » Sinty. 0)

-
@ M
-

‘.— Z u,;N;cosf, + 2_ N, ecos(y. ()
%

A

with

do (12)

By differentiating system (11) and taking account of (12),
we obtain:

13

N
-
o
[+ <]

I W Ml
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dh A
dr = Z 2uj ‘\’; cos ""‘ x (,‘I_, + B') + Z ‘q. S)A’._“. COS'!,'. 0)
.0

=1

' 8 (13)
—;I-r— Z £uiM, cmu,X(g,+B)— V(q SIM,  ¢sinlyy, 0)

t‘
where

(g.5)=1,9,+i9,+ Higgg )i +jasa+ o + Sy

Furthermore, equations (8) and (9) yield, by olugging in (11)
Jh

vEy

{-A,I[Z 7,Mcosy; + Z M, . gcosiy. 0)]

=1

+B,, { Y 2 Mcosy;+ Z M, acOS(y. 9)]} + ¥ 2, ecos(y.0)
(]
dk,

r (14)
= - Y (]{‘4..[2 fyM,sing, + ZMn@S'“W f”}

I‘M

11

Iy

J

M sing; + Z M, . osin(y. 1‘7)]l v sx,” o SIN(y, 0).
1

J

Hence, we have two expressions, (13) and (14), for dhu/dk and

dku/dt. We make equal their parts that are of third order with
respect to variables h, k, p, and q:

s
Y B;/. ;M cosy, + 7 (9. 5)M, , o cOS(y, 0)

ul

J
= Z [u.c] {’A V !“ sCOs(y,0)+ B,, ZM, .8 COs (1, 0!} + XW‘ s COS(y~. 6) s (15)

§: Bjy;M,siny + Z (g.5IM, o sin(y, )

=1

=Y [uw z]J"4m Z M, esin(y,0)+B,, ZM asin(y. 0)} + Y exE, osinly.0).
vt*y v.0

The method now consists of establishing argument by argument

identities within each order. Two cases arise:

1) The case in which the argument (.,%) is equal to wj' i.e. we
have:

|
2
5
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Here, we once again come across the Lagrangian solution argu-
ments, and establishing identities between coefficients makes it
possible to determine the new fregquency values. The solutions then
are expressed in Fourier series of these new arguments. Establishing
the identities yields:

rgMBi+g M, = 3 [wt]24,M,, +B. M, )=

u.w,
r¥uy

and
,.'i}"lIB] + ."j"lu.g, = z [ll. r](ZAur“lu.s, + Bm ‘wr.\,) + :u.w, .
For a given Wj' subtraction of these two eguations furnishes: /149
'_('): [1.6] X 24,04 ) (M., = Mo )+ T [ 61BuM; = M) =0.
‘\rep [
The fact that and [u,v]Buv are not zero means
N =M ' .
that “u,wj 1 u’wj whatever u and i are

We can then write: '

g—: [, 1] x 24, - g,) M.+ 3 Gc]BoM, =5, B, -G, ...
r=s ] .

In the first member of this expression, we once again come across
matrix E of the Lagrangian system. Subtracting the eigenvalue gj

from the principal diagonal means that the Mu .. values (u =1, 2,
I‘O_'J
., 8) will not be independent. We then let:
Mj . =0
"3

mhis is an arbitrary step in the Krylov-Bogolyubov method. It
reduces to changing variables over the integration constants Mj'

Nj' The choice of Mj - = 0 does not specify the solution but

l~] .
imposes the choice of a certain type of expansion for the coefficients
of arguments by

Having made this choice, we then have for each v,, j fixed, a

system of eight equations in eight unkowns: Bi and Mu e (u#J).
- A

i
i
: |
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2) Case in which the argument (,8) is random, i.e. such that:

ilLL+ i lal =3.
-z]

Establishing argument by argument identities in equations (15)

yields:
V [)2AM, o+ B M, ) -4 SIM, 0= =30
and
.‘.: [“' v](ZAM'Mn.u.O + Bm -"-.y.@' - ‘Q s"‘!;.u..= —&x :u.s.. L
By subtraction, we obtain M = =M’

A . whatever u and argu-
U, ,C Vot

ment (y¢,€) is.

We can then write:

:Z [“' l‘] X 2Aw - U(g, S)]‘ ~"m\'.0 + S ["' l']Bm A’r.\.. =

Gty J - E:.'“.-

This time there is no arbitrary step and the resolution of the
system of eight equations in eight unknowns gives

(v,8) the eight values M fu =1, 2, ::.,; B).
ulU'le

for each argument

We therefore have expansions of h, and ku:

8
h,= Z 4, iM;siny;

+ Y M, sing6)
j-l v.0
s (16)
k= Z ).__,»M,-COSV‘J"F z M, gcos(. )
J=1 \.0
And similarly we find:
8
b=} HyNjsin0,+ Y N, singy. )
e =1 v.e
(17)

ur 8
Th= ¥ HyN,cosO+ Y =N, ycosly. 0).
. i=1 V.0

le

s
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RESULTS AND DETERMINATION OF THE CONSTANTS OF INTEGRATION

In Tables 6 and 7 we give the integration constants and frequen-
cies of the solutions obtained solely from the second order h, k,
P, g long period terms. Comparison of tables 3 and 6 show how great
the contribution of the perturbation function's fourth order long
period terms is, especially for Mercury, Venus, Earth, and Mars.

Table 7 contains the frequency modifications Bi anc C., as well as
the frequencies' new values: éi

i
+ . B = . * .
9 Bl' g % cl
Table 6
Constants of Integration (According to the Solution Based
on the Perturbation Function's Second and Fourth Order Long Periods)

i M, B, N, 8,

1 0,18454%67 83 22006 0.05887664 1131462
2 001864278 191 26 15.44 0.00323843 302 392661
3 001204101 318 18 13.08 0.00967327 2383144
4 0,06311073 307 0146.20 003227762 273 365361
5 0,04297488 27 1743.13 001384057 106 07 3495
6 0.04842782 127 2949.50 0.00786457 12391116
7 0.032106%6 100 444397 0.00880119 216 00 16.25
8 000932559 64 5428.20 0.005920%9 201 1071

[Commas in tabulated material are equivalent to decimal points.]

Table 7
Modifications and New Frequencies in "/yr
(According to the Solution Based on the Perturbation Function's
Second and Fourth Order Long Periods)

i B, d. C. 3,

| —0,258373 + 520299 —0.4430n5 - 5643943
2 -0,000721 + 7,345860 ~0.220510 — 6.791897
3 —0,130032 +17.201263 -0,1527(4 — 13.598909
4 -0.169168 + 17835416 -0.231362 — 170673473
5 +0.018087 + 3.729488 0 0

6 +0322118 + 22608667 - 0.606907 — 26.345082
? +0.078361 + 2780148 -0.083203 — 293753
8 +0.009180 + 0.642296 -0.009126 - 0656656

[Commas in tabulated material are equivalent to decimal points.)

/150
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Table 8
Constants of Integration (Complete Solution)

i M, B N é,

1 0.17791613 &7 0302709 005962772 120817215
2 0.02104749 193 350497 0.00315338 03131719
3 0.00988829 319 43 16.64 0.0§002293 219 018907
4 0.06115173 307 48 39.56 003130279 27" 3606.16
5 0.4341616 28 30 11.60 0.01382939 106 W 11,57
6 004814727 ==== 127 4254.52 0.00785328 125 383423
7 0.03126134 114 46 31,55 0.00880088 316 173594
8 0.00899181 72 0525.03 0.00588506 200 17 15.59

R SIS

[Commas in tabulated material are equivalent to decimal points.]

Table 9
Modifications and New Frequencies in "/yr (Complete Solution)

i B, d. C, 3

1 ~0,262290 - 519907 ~ 0410979 - 36193

2 ~0,00049%0 + 7346091 ~0,199640 - 71027

3 —0.110749 +17,220546 ~0.083094 — 15829299

4 —0.14732( +17.857263 —0.182658 — 17518769

5 +0.495804 + 407205 0 0 >
6 +3.930206 +26.216758 ~0.525594 — 26.267070

7 +0,363394 + 3065181 ~0.095511 2699837

8 +0034747 + 0667863 —0.013911 — 0691431

[Commas in tabulated material are equivalent to decimal points.]

Tables 8 and 9 give the constants of integration and the frequen-
cies for the complete solutions, i.e. the solutions that take the
short periods into consideration. By comparing tables 6 and 8, we
can see that the integration constants are once more greatly altered. /151
Comparison of Tables 7 and 9 show that while the short period terms
hardly change the frequencies related to the inside planets, the 9g
and 9 frequencies on the contrary are changed to a much greater
extent by the short period terms than by the perturbation function's
fourth order long period terms.

The modification of the constants of integration originates in
the magnitude of the nonlinear terms found in particular in the

m |
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expressions of the elementsrelated to the inside planets. Of course,
we began by calculating these terms by numerical substitution of the

Lagrangian solution in Tables 4 and 5. We then determined an analytic

!
‘
]
|
|
|
i
!
i
:
i
i

form of the expressions found so as to calculate the new integration /153
constants. With the help of this analytic form and by making a first
order Taylor expansion about the first values of the integration con-
stants, we obtained integration constants of sufficient accuracy after
several iterations. i
g Table 10 }
k_ij x 10°. Lagrangian Solution Amplitudes |
i 3
i
1 : 3 4 5 6 7 8 i
5
Mercuny 17791613 - 2554951 145862 — 132815 2426473 11310 62320 2
vénus v19702 2104749 - 1193243 1254088 1632845 — 55183 61366 1076 !
Farth 398077 1642622 988829 — 1250360  ——1632798 246415 64990 1250 :
Mars 65007 291694 2823123 6115173 1879988 1609341 86222 1998
Jupiter - 689 -~ 1163 - 89 - 46 4341616 ~ 1555604 217360 5809
Sawm, - 615 - 1200 - - 703 3421845 4814727 198300 6557
tranus 266 293 4 38 -4407122 - 181041 3126134 137298
Neptupe 3 " 3 2 161243 - 13497 - 3373 899181
8 Table 11
“iij ¥ 10 . Lagrangian Solution Amplitudes
1 2 3 4 5 6 7 8
Mercury 5962772 - 1109434 167847 60 T (383939 13893 -166511 ©  ~ 728
Vénus 362458 315338 ~ 1100237 ~ 426565 1383939 6010 ~ 95861 ~ 66262
Earth 205197 354218 1002295 280886 1383939 140436 ~ 86594 - 64951
Mars £6031 36602 - 1471377 3130279 1383939 482015 ~ 62835 - 61532
Jupiter - 986 - 408 - 7 - 109 1383939 - 315287 ~ 47806 - 58541
Saturn 1262 - 5% -y - 1138 1383939 785328 - 39025 — 56429
Uranus 1057 297 16 107 1383939 - 34725 880088 54753
Neptune 7 16 1 12 1383939 ~ 3851 - 103543 588806
Lastly, we give the totality of our solution in Tables 8 to 13. /154

Hence, Table 8 contains the 32 integration constants.

Table 9 gives

the Bi and C; frequency modifications as well as the frequencies' new

values:

9; * g

i

+ B.; s,
i i

= S,
1

+ C,..
1

The amplitudes of the Lagrangian

solution corresponding to the new constants are given in Table 10 for
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My 10% and in Table 11 for gy X 108, Finally, Tables 12 and
13 contain the amplitudes M 5 and N, 6°f the higher order argu-
v

Ny
ments (¢,6). When computing these terms, we retained only the argu-

4 for the planets Mercury,

ments whose amplitudes are higher than 10
Venus, Earth, and Mars, and 10"6 for Jupiter, Saturn, Uranus, and
Neptune. The zeros found in Tables 12 and 13 are amplitudes less

than the retained percisions.

Table 12

M . X 106
U,y,v
Arcument Mercury Vénus Earth Mars Argument Mercury Vénus Earth Mars
1 151 0 0 0 we-- 0y 8, 0 0 0 -
V0, + 8, 0 0 0 - 199 we—0y +8, 0 0 0 - 20
Va0, +8, 0 0 0 453 Ve=0, 46, 0 ~ 536 276 6177
Vo= 0, +6, 0 0 0 287 ve 26, 0 0 0 176
Ve 0 981t ~ 1064 - 13379 wo—0, + 1, 0 0 0 370
- Ve85 -0, 0 0 ‘0 762 Vs - 120 456 ~ 503 0
Vs s — i, 0 0 0 134 Vot 0, =0, 0 0 0 ~ 354
¥s-29, 254 0 0 0 Vet0; -6, ~ 519 4126 - 13367 — 14852
vs~0, -6, - 114 0 0 0 v+ 0y -8, 0 0 0 pi}
V=0, +0, 102 0 \] 0 Vet Vs —ys 0 0 0 118
¥s=8, +0, - 275 0 o 0 20— Ve 0 0 0 ~ 286
¥s~0, +0, 150 0 0 0 V3= 2% 0 465 — 378 - 7%
Vs 14547 2918 2280 1092 Vs Ve —Va 0 0 [V - 133
¥i40, -0, -~ an 0 0 0 V3 Ve Ve 0 0 0 184
¥s+8, -4, 0 - 216 182 S03 vy-- 0, +0, 196 0 0 0
¥s+py~y, 0 0 0 105 yy— 8, + 0 312 0 0 0
‘ryﬁ'V“? - 118 0 0 0 vy — 0, +0, - 23 0 0 0
Vamps+y, 0 0 0 - 180 Wy Hy 40, ~ 275 2457 --2154 8864
_"'4"0,4-04 1644 0 0 0 vy -0, +0, 0 0 0 148
Fo~0, +0, - 598 0 ] 0 Vs 0 0 0 -
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Table 12 (cont.)

Mars

Argument Mercury Vénus Earth
v+, -0, 0 0 0 - 162
ya+Hy — 0, 1s - 901 887 - 422
Va0, -0, 0 0 0 102
Vit =y, 0 0 0 137
Vata—y, 0 0 0 - 144
2=y, 0 ~ 691 599 s
Vo =20, - 0 0 0
va=t -0, 175 0 0 0
w8, +0, - 137 0 0 0
ve-0, +0, - 41t - 261 - 17 0
U 2947 0 - 151 0
vyt fly =0, 0 t 0 0
a4 @, -0, - 87§ 0 0. 0
vasll, -0, 105 0 0 0
yo+t -0, 355 0 0 0
Wity 205 0 0 0
V- 2y, - 36t 0 0 0
LRl P Y - 3340 - 131 0 0
Wi=Wrtyy - 194 0 0 0
Vit g, - 59 0 0 0
vy- 28, 224 0 0 0
v, -8, -0, - 1022 0 0 0
V=0, -0, 350 0 0 0
v, -0, -6, 147 0 0 0
v, -0, +0, 399 0 0 0
-0, +0, - 146 0 0 0
v, — 0, +8, 212 0 0 0
v, -8, +0, 480 0 0 0
vi-0, +0, - 8302 0 0 0
-8, 1y 0 0 0
v, -0, +8, - 13y 0 0 0
vi-0;+8, - 605 0 0 0
(R 0 - 812 - 650 0
w40, -0, 603 0 0 0
Wy +0, -0, 147 0 0 190
Vv, +0, -8, 6786 1372 1007 173
vy~ 0, -8, - 508 164 - 124 138
o+, -0, - 209 0 0 - 1087
v+ 8, -6, 146 0 0
o+, —8- - 316 0 0
Vit 645 0 0
LTl I Bl Y 258 Y 0
20—y 1544 0 0
2y -y - 109 0 0
:, oy 107 0 0
-y - 84 - 438 337
Argument Jupiter Saturn Uranus Nep-
tunc
Ve oo g, 2 - 2 kT %
AN 0 - 3 27 [V}
ve+ 0. -0, 0 0 1 1
4 - 2y 0 0 0 - 1
y-—Ug +0, 0 0 3 0
yv---0, +6, 0 - 2 2 [
V=24, 0 0 4 - 1
Yot - 0 0 4 2
Wt 40, 0 0 K -4
- 24, 0 0 ! 0

D OVO0COO OO -

Argument

Jupucr

Saturp

Uranus

Nl‘pu
tuned

Vet -8,
Vet ey
st We — 4
Vet e 1Y)
2'&‘5 il '¥S
2yecy-

. .
AN [N

USRI
ity ~ 0,
LN

¥, "‘" BN
Y 3'0 v
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10
Nu PR x
G;en—l Mercury  Vénus  Earth Mars Argument Jupiter Sitturn Uranus Nep-
- fune
" 0 0 0 - 1% —
A, 06 -1138 997 0 6, -2 -2 12 0
8y -0, 0 0 0 1105 0. 0 2 0 - 12
0 215 0 0 - K3 20. -8, 0 0, I 0
o, -9, 0 457 - 37 - Ay ()} 0 -9 0 1
iy -0, +0, 178 0 0 o & o8 ! 0 z
14, - 3095 Q 0 0 W o by - U- 0 0 2 1
0, -20, 172 0 0 0 Ve = kg =t - - 33 - 2
9, ~0, +08, 166 0 0 0 Vo vty 0 0 - 1 1
s 0 2637 19\8 429 Ya- g+ B - 3 - 3 5 k]|
2, -8 - 8’79 0 0 o w0 0 0 o=
ve—ve—f -~ 108 0 Q 0 2yl 0 0 - 1 1
Y X 0 0 0 - % g6, 0 o - 0
vamVe— 8,y 0 0 ] - 416 Ve — V- —0- - 1 3 2 0
Ve- Ve =0, 0 0 0 537 Vo~ Y-+ 0- 0 0 3 0
va- Ve —fe 0 0 0 - aas Vemwekfo = 0 v
RIS LA o 0 0 608 Vo =Yy + 0, 0 0 2 0
Ve~ Vet 0y 0 0 0 - 25 Yot e -0, 0 - 1 0
v-ve— - 33 0 0 U Yot y-—8- 0 0 - 0 E
v-ve—0, 0 280 - 399 7947 iy — O - 10 26 - 0 |
N 0 0 0 s AW -6 0 0 2 0
VeVt 320 -0 "4 1136 Vs = Ve — O, 1 - n 16 0 {
Vi bat By - 206 1392 -1192 0 - 0 - 9 0 3
vimva o, - 0 0 ] Vs = Yo+ Hy 0 ] 1 0 f
vy Vs + 0, - 0 0 0 Yo - ye+ - ~ 3 7 9 0 [
Vimve =0 0 0 0 - 1 Vs Vet le § - " - 4 0 ‘
Vi-Ve—8, 0 0 0 19% [ s - 13 - 3 4]
Vi—Ve+ 8, 0 0 0 4 Ve —y-—0- - 1t - R 228 - 3
V- g8,y - 114 (O n - 0 R - .2 - 2 12 16 !
Vims =8, 170 0 0 0. e — e+ Ay - 1 - 1 - 2 1R
\':‘\‘9*91 117 0 0 0 'q'_q’u'f“‘g- —_ 13 - 11 20 - 15
iy -6, - 3777 0 0 0 Ve — o+ 60, 5 - 14 5 0
Vi - 8y 3170 176 124 0 Ve—Yg- On 0 0 - 1 1
i—vr- 6, 17 0 0 0 Vs Yy —fly 0 0 8 - 1
1oy +0- - 2 0 0 0 Voo ety 0 0 I 0
Vimyr+ 0 7§87 0 0 0 VsTVeie 0 0 0 8
Vimva+ 0, - 9% 1062 N3 206 Vet y- 0 0 1 1 0
Vi-yy- 8, "n? 0 0 0 Vet oy 0. 0 0 - 1 5
Vimyy -0y - 413 0 0 0 Vet 4 -0y 0 0 3 - 3
Vi~ -6, - 229 0 0 0 Vet Ve — B 10 - 23 - 0
f-v+d, 126 0 0 0 Vitve-# o - s 0
Vicva-f8, - 1S 0 0 0 2y, - 8 v - 2 0
Vi~ -0, 277 0 0 0 Jypg -1 0 - 1 2 3
Vi-va-0, - 102 0 0 0 2y,-8, 0 0 0 3
V- +0, - 1M 0 0 T s - Ve — By 0 -2 0 0
Vovy-f, - 083 an e 0 VaTVert o - 0 0
Ci-ye- 6, 2R2 0 0 0 V- et i, 0 - 1 0 0
Fi-vy4 8, 1387 0 0 0 Wy =y - ) 0 0 - 0
Fi-ye+ 8, - 1358 0 9 0 iy e 0,y ! - 1 0 0
Vityy—-8, 196 Q 0 0
Vite, -8, - 59 0 0 0
,"n V-0, 138 0 0 Q
-9, 1746 0 0 0
Wi-0, - a0t 0 0 0
+,- 8, 140 0 0 ]
———— —— i ———— -
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CONCLUSION

In this study of the long period variations of the planetary
elements, we added to the Lagrangian solution the terms of third
order excentricity and inclination arising from the long period
portion of the perturbation function calculated for the planets as
a whole. We also took into consideration the influence of short
period terms of second order mass. We particularly concentrated on
determining the integration constants that make the solutions agree

with the mean elements when t = 1850.0 is used as time zero.

The terms calculated with these constants are grouped tngether
in Takles 8 to 13. Notice in these results the very strong coupling
that exists, for a long period problem, in the planetary system. The
magnitude of the terms arising from the short periods shows that
there is no point to extending a theory to the fifth order on the
basis of the perturbation function's long periods if the short periods

are not taken into account.

This work's essential task was therefore the comparison of the
various effects according t¢ their origin so as to have an overall
view of this problem and to be able to embark on the complete construc-
tion of a long period theory. Our solution is in fact still incom-
plete. Even so, we should take into account the direct terms of fifth
order that must have an influence, especially forMercury, Venus,
Earth, and Mars. We have yet to calculate the influence of short
periods of higher orders of excentricity and inclination, and maybe
even part of the third order with respect to masses in the case of
the resonant argument ij - 5‘-S between Jupiter and Saturn. Such an
investigation would be very important. However, since the largest
contributions have already been considered, it would no longer present

any great difficulties for the determination of integration constants.
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