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SUMMARY 

. The objectives of this program were to evaluate and advance 

the performance capabilities of the 8-cm-diameter mercury ion 

thruster. .The design of thiscthruster is highly similar to that 

used in the Ion Auxiliary Propulsion Subsystem (lAPS). To 

accomplish these objectives, the following tasks were performed: 

(1) The performance capabilities_of the unmodified baseline 8-cm 

thruster were measured, (2) the baseline thruster was modified to 

extend its performance, and (3) the performance capabilities and 

lifetime of the modified thruster were measured. 

In the unmodified baseline thruster configuration the 

performance limits were high-voltage electrical breakdown and 

loss of control of propellant flow rate. In this configuration 

the performance capabilities were raised from the initial (lAPS) 

values of thrust, T = 5 mN: specific impulse, Isp = 2,900 s; 

and ion beam current, IS = 0.072 A, to the values thrust, 

T = 17 mN: specific impulse, Isp = 2,300 s: and ion beam 

current 18 = 0.215 A. 

To further increase the performance, the thruster was 

modified and tested in configurations that included the following 

design modifications: heat-sunk vaporizers, improved high-voltage 

insulators, increased diameter electron baffles of various 

propellant transparencies, increased discharge-chamber magnetic­

field strength, operation with the discharge-chamber shell at 

keeper potential, and accel grids of different transparencies. 

As a result of these modification, the thruster performance 

was increased to the levels of thrust, T = 25 mN, specific 

impulse, Isp = 4,300 s, and ion beam current, 

18 = 270 mAe 

Measurements of the surface erosion rates, at the performance 
level of thrust, T = 17 mN and specific impulse, Isp = 

3,800 s, revealed that the most significant threat to thruster 

lifetime is erosion of the accel grid (as a result of charge­

exchange ion bombardment). This limitation may be overcome 
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through component redesign or the addition of a third grid. At 

these performance conditions, the estimated lifetimes of the 

discharge components do not appear to have decreased substantially 

below those reported for the baseline lAPS conditions. Therefore, 

lifetimes approaching 20,000 hr are reasonable expectations for 

these components. 

Overall, these test results demonstrate the potential of the 

8-cm thruster to operate at performance levels which greatly 

exceed those of the baseline lAPS thruster. This demonstration 

emphasizes the durability of the lAPS subsystem and suggests 

further gain in performance and lifetime through continued 
development. 
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SECTION 1 

INTRODUCTION 

Recently, Hughes Aircraft Company, under contract with NASA 

Lewis Research Center (LeRC), completed development of the a-cm 
Ion Auxiliary Propulsion System (lAPS). This space-flight­

qualified propulsion system is well suited for satellite station­
keeping and satisfies the on-orbit propulsion requirements of 

existing satellites. However, space technology is about to enter 
a new era in which the size and mass of satellites will be dramat­

ically increased. In this era large space structures (LSS) will 
be transported routinely to earth orbit using the Space Shuttle. 

The on-orbit propulsion requirements of these future LSS will be 
greatly increased over those of present satellites and will 

require an increase in the performance capabilities of existing 

ion-propulsion systems. Anticipating future needs, NASA LeRC has 

contracted with Hughes Research Laboratories (HRL) to increase the 
performance of the a-cm ion thruster accordingly. The present 

performance of the lAPS is: thrust, T = 5 mN; specific impulse, 

Isp = 2,900 s; thrust-to-power ratio, TIP = 3 x 10- 2 mN/w; 
and lifetime, L = 2 X 10 4 hr (Refs. 1 and 2). The present program 
addresses these future needs of ion propulsion through the 

following tasks: (1) characterization of the performance capa­
bilities of the baseline a-cm ion thruster, (2) implementation of 

modifications to the thruster design that increase the performance 

and reduce the cost of on-orbit operations on LSS and, (3) 

characterization of the performance and lifetime of the modified 
8-cm thruster. This report summarizes results obtained in 
conducting these tasks. 

1 
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SECTION '2 

BASELINE 8-CM THRUSTER PERFORMANCE CHARACTERIZATION 

This section summarizes the results obtained in 

characterizing the performance capabilit{es of the baseline 8-cm 

lAPS thruster. These performanc~ capabilities were determined by 
varying thruster operating parameters over a wide range of oper­

ating conditions to achieve iric~eased thrust and specific impulse. 

The upper limits of these performance parameters were imposed by 

the capabilities of specific thruster components. As demonstrated 
in Section 3, performance beyond these limits is possible by 

implementing modifications to the thruster component hardware. 
The following discussion describes the experimental apparatus 

used in 8-cm thruster testing and then presents the results of the 

baseline thruster performance characterization. 

A. EXPERIMENTAL APPARATUS 

The thruster used throughout this program was an 8-cm thrus­
ter of lAPS design modified to. facilitate laboratory testing. 

Specifically, this thruster did not possess the standard lAPS beam 

shield, gimbal, and wiring harness but instead was mounted onto a 

305-mm~diam vacuum flange that contained vacuum feedthroughs that 

permitted power to be applied to the thruster components. 

Testing was conducted in a 1.2-m-diam by 3.66-m-long stain­

less steel vacuum chamber that was evacuated by a 250-mm-diam oil 

diffusion pump. Liquid nitrogen cryopumping maintained a chamber 
pressure of 3 to 4 X 10- 4 Pa (2 to 3 x 10- 6 Torr) during testing. 

The thruster and' vacuum flange were mounted to one end of the 

vacuum chamber so that the thruster axis coincided with the 
chamber axis. 

An ~x~-type velocity analyzer was used for doubly charged 

ion-current mea~urements. The entrance aperture to the ExB probe 
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was approximately 250-mm downstream of the accel grid; the probe 
was mounted on a swing arm that permitted probe translation across 

the chamber axis (and hence, the full ion-beam diameter). In 

addition, the probe axis could be rotated about two orthogonal 

axes intersecting the probe center. 

Electrical power was supplied to the thruster by laboratory 

power supplies mounted in multiple relay racks. These power 
supplies were connected to the thruster according to the schematic 

shown in Figure 1. Throughout the duration of thruster testing 
the laboratory power supplies were operated in an open-loop 

fashion and all adjustments were made manually. 

B. PERFORMANCE CHARACTERIZATION 

The performance of the baseline a-cm thruster was 

characterized by incrementally increasing the thruster control 

parameters - discharge current, propellant flow rate, and beam 

voltage - and by recording the corresponding thruster performance 
parameters - beam current, anode voltage, keeper voltage, and 

doubly charged ion fraction - until performance limits were 

encountered. These performance limits were reached when 
adjustment of the control parameters failed to restore acceptable 

thruster operation (i.e., without modification of thruster 

components). Computation of the thruster performance parameters 
follows the notation and equations listed in the appendix. 

Thruster performance parameters were measured over the range 

of discharge current, 10 = 0.5, 1.5, 2.5, and 3.5 A. Figure 2 

displays the performance parameters: beam current, IB' and 
anode-to-keeper voltage, Vo, as a function of discharge 

propellant flow rate for this range of discharge current. For a 

fixed value of 10' the flow rate is varied over a limited range 

and the corresponding values of IB and Vo are recorded; curves 
of IB are peaked, while curves of Vo display minima. At 

increasing values of 10 and, hence, increasing discharge power, 

the following trends are apparent: (1) the peak beam current 

4 
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increases, (2) the location (with respect to flow rate) of the 

peak of the IB curve and the minimum of the Vo curve shift 

relative to each other to occur at approximately the same value of 

IDHg' (3) the widths of the IB curves near their maxima and 

the Vo curves near their minima decrease, indicating the trend of 

these curves toward becoming less sensitive functions of flow rate. 

These performance trends are characteristic of the baseline thruster 

operation and will be used to evaluate modifications to the thruster 

that further improve performance (see Section 3). 

The thruster performance at increased discharge current is 

further displayed in Figure 3, where the maximum measur~d beam 
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Figure 3. Maximum measured beam current and corresponding 
discharge specific energy as a function of 
discharge current. 
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current, IBlmax, and discharge specific energy, L~, are 

plotted as a function of 10. The parameter IBlmax is the 

maximum value of beam current obtained at fixed 10 by adjusting 

the propellant flow rate. This value corresponds to the peaks in 

the IB versus IOHg curves, indicated by small arrows in 

Figure 2. 

As shown in Figure 3, the value of IBlmax increases 

with increasing discharge current. However, the slope of this 

curve decreases as 10 increases, indicating reduced ion­

generation efficiency. This trend is reflected in the slope of 

the correspqnding curve of £1 as a function of 10. The slope 

of this curve increases with increasing 10 from the baseline 

value of approximately 240 W/A to greater than 425 W/A at 

extended-performance conditions. Thus, as the beam current and 

hence, thrust, are increased, the efficiency of the ion generation 

process, as measured by £1, decreases. 

At the extended-performance conditions of Figures 2 and 3, 

two performance limits were encountered. The first limit occurred 

at 10 = 3.5 A and resulted from loss of discharge vaporizer 

control (see Figure 2). This operating mode is not acceptable, 

since the value of propellant flow rate is determined by 

relatively uncontrolled thermal characteristics and would not be 

stable in the range of thruster operation where discharge power 

increases with vaporizer flow rate. This performance limit was 

overcome by removing heat from the vaporizer body by suitable heat 

sinking. The next performance limit was encountered when the 

screen voltage, VS' was increased to approximately 3 kV. This 

limit was the result of electrical breakdown occurring at the 

high-voltage feedthroughs located on the thruster rear shield. 

Replacement of these feedthroughs with ones of a superior design 

eliminated this problem (Section 3). 

The dependence of the ratio of doubly to singly charged ion 

currents, Ia~/Iag, on the value of Va was investigated 

using the ExB probe. The value of this ratio is useful in calcu­

lating a number of thruster performance parameters (see the 
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appendix) and plays a major role in the lifetime of the thruster 

components (Section 3). In Figure 4 this ratio is plotted as a 

function of Va for the range of discharge current 10 = 0.5, 

1.0, 2.0 A. These data were obtained by varying the propellant 

flow rate to cause a decrease or increase in Va (while holding 

the discharge current constant). The data shown in this figure 

indicate that the result of increasing the value of Va is to 

cause the ratio of 1~~/I~g to increase. - Note the-
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relative lack of dependence of Ia~/Iag on ID' The 

thruster operating parameters for the data of Figure 4 are listed 

in Table 1. 

ID(A) 

0.5 

0.5 

0.5 

0.5 

1.0 

1.0 

1.0 

1.0 

1.0 

1.0 

1.0 

2.0 

2.0 

2.0 

Table 1. Thruster Operating Parameters for the 
Data of Figure 4. 

VD(V) Va (V) Ia(mA) Va kV) n I 

Hg E:I(W/A) 

40.7 23 74 1.2 0.69 289 

38.4 22.6 72 1.2 0.81 280 

41.3 24.3 83 1.2 0.92 261 

49.3 33.5 75 1 • 2 1 • 1 5 341 

30.6 21.5 110 1 .5 0.71 283 

31.5 22.2 125 1.5 0.68 252 

33 25.2 110 1 .5 0.83 307 

36.9 29 105 1.5 0.95 359 

42 34.5 98 1.5 0.96 437 

43.8 35.8 98 1.5 0.96 455 

45.1 37 100 1.5 0.97 460 

29.1 21 159 1.2 0.96 370 

29.3 22 145 1.2 0.74 404 

42.5 36.3 118 1 .2 1.10 720 

-

10 

1++/1+ 

0.04 

0.02 

0.05 

0.19 

0.03 

0.04 

0.09 

0.13 

0.22 

0.25 

0.26 

0.00 

0.02 

0.25 



SECTION 3 

MODIFIED 8-CM THRUSTER PERFORMANCE CHARACTERIZATION 

This section summarizes the results obtained in 

characterizing the performance of the modified 8-cmthruster under 
. . 

extended-performance operating conditions. The performance data 

presented below are the results of tests conducted on a series of 
thruster configurations that reflect design approaches to 

achieving extended-performance operation. These configurations 
consist of modifications that eliminate the performance 

limitations encountered during baseline thruster testing and, in 

addition, modifications that have demonstrated the potential for 

improved performance in other thruster experiments. As such, 
these are referred to as hardware- and performance-related 

modifications. Hardware-related modifications involve a change in 

the physical characteristics of the thruster component hardware to 

increase the durability of specific thruster components or their 
ability to withstand the increased stresses imposed by extended­

performance operation. Performance-related modifications also 
involve changes to thruster components but are specifically 

implemented to alter physical operating characteristics of the 

thruster. An example of this latter type of modification would be 

to increase the diameter of the electron baffle to raise the 

discharge impedance. 

The following sections describe (1) the thruster modification 

approach, (2) performance characterization of the modified 

thruster, and (3) evaluation of the thruster component lifetime 

and durability. 
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·A. HARDWARE-RELATED DESIGN MODIFICATIONS 

The following two modifications were implemented to overcome 

performance limits encountered during baseline thruster testing: 

• Decreased thermal coupling between both the main and 
neutralizer vaporizers and the thruster body components. 

o The use of high-voltage insulators with increased 
voltage-stand-off capability, particularly at the 
thruster endplate and ion optics. 

1. Heat-Sunk Vaporizers 

Thermally conducting heat sinks were attached to both the 

discharge and neutralizer-vaporizer bodies to eliminate loss of 

vaporizer' control at increased discharge power. Loss of vaporizer 

control occurred during baseline thruster testing at the perform­

ance level corresponding to the values PD = 110 W, Vs = 1,500 

V, and IS = 0.175 A (see Figure 2). In a flight thruster 

design, the vaporizers would be thermally decoupled from the 

thruster body to avoid the feedback of dissipated discharge power. 

Thermal attachment to the discharge vaporizer was made by clamping 

one end of a braided copper wire around the vaporizer body and 

attaching the other end to one of four 9.5-mm-diam aluminum rods 

that support the thruster assembly from the vacuum-tank flange. 

Thermal attachment to the neutralizer vaporizer was made by 

inserting a flat spring, fabricated from tantalum, between the 

neutralizer-vaporizer body and the neutralizer~assembly support 

bracket. Heat sinking the vaporizers in this fashion enabled 

thruster testing to a 6-A discharge current without loss of 

control of the vaporizer flow rates. 
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2. Improved High-Voltage Hold-Off Capability 

The performance limitation imposed by shorting of the rear­

shield high-voltage feedthroughs occurred as the screen voltage 

was increased above Vs = 3.0 kV. In part, this limitation is a 

result of thermal effects, since application of screen voltages 

above this value are possible when the thruster is at room 

temperature. 

This modification was implemented by replacing the baseline 

thruster high-voltage insulators, located on the tnruster rear 

shield, with ones of increased vo1tage-holdoff capability. The 

baseline insulators are a "captured" design (Figure 5(a» which 

did not hold off high voltage under extended-performance con­

ditions. These insulators were replaced with ones of a "re­

entrant" design (Figure 5(b» which performed satisfactorily at 

extended-performance conditions. With these insulators installed, 

screen voltages of 3.5 kV could be applied between the electrical 

feed through and rear shield at rear-shield temperatures in excess 

of 350°C. 

B. PERFORMANCE-RELATED MODIFICATIONS 

The following modifications were implemented to improve the 

performance of the a-cm thruster: 

• Increase the relative discharge impedance level (and, 
hence, the ionization efficiency of primary electrons) 
by increasing the diameter of the electron baffle, 
diverting propellant away from the baffle-aperture gap, 
and/or increasing the discharge cha~b~r magnetic-field 
strength. 

Operate the thruster with the shell maintained at 
discharge-keeper potential to reduce the sputtering 
energy of ions incident on discharge-chamber surfaces. 

13 
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Figure 5. Comparison of rear-shield high-voltage feed through 
designs. 
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• Decrease the open area of the accel-grid electrode to 
improve the discharge propellant utilization efficiency. 

1. Increased Diameter Electron Baffle and Propellant 
Diversion 

The thruster was tested with three different baffles 

installed: the baseline-thruster baffle 2.064 cm in diameter, and 

two baffles 2.381 cm in diameter, one of which is 16%' optically 

transparent. The increased diameter baffles were installed to 

increase the value of the discharge impedance at extended­

per.iorman<;:e conditions. The optically transparent baffle, shown 

in Figure 6, improved propellant diversion by reducing neutral 

mercury-vapor density in the baffl~-aperture gap. 

11394-28 

Figure 6. Propellant diversion electron baffle. 
The photograph shows the three propel­
lant diversion holes covered with 
No. 100 tantalum mesh. The baffle 
diameter is 2.381 cm and is approxi­
mately 16% optically transparent. 
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2. Increased Discharge Chamber Magnetic Field 

The effect of increased discharge chamber magnetic field on 

thruster performance was investigated by replacing the baseline 

thruster permanent magnets with electromagnets that permitted the 

discharge chamber magnetic field to be varied over a wide range of 

values. However, for a modest increase in the discharge chamber 

magnetic-field strength, the cathode polepiece reached magnetic 

saturation. During actual testing the electromagnets were not 

used, since the thermal environment of the thruster proved 

excessive for the electromagnets, even when they were fabricated 

using Kapton insulation and high-temperature wire. These problems 

were overcome by reinstalling the eight permanent magnets of the 

baseline-thruster configuration and adding two additional perma­

nent magnets which increased the discharge chamber magnetic field 

to approximately the magnetic saturation value of the cathode 
polepiece. This modification permitted the thruster performance 

to be compared at two different magnetic-field strengths (measured 

at the downstream end of the cathode polepiece): the baseline 

value of 11.4 mT, and the increased value of 13.4 mT. 

3. Shell-at-Keeper Potential 

The thruster was modified to operate with the shell held at 
the potential of the discharge keeper to investigate the 

anticipated decrease in the erosion of discharge-chamber surfaces. 

Operating the thruster with shell-at-keeper potential reduces the 

energy of ions striking keeper-potential surfaces (such as the 

screen electrode, baffle, and polepieces) and has been shown to 
substantially reduce sputter-erosion of these critical thruster 

surfaces. This configuration was achieved by installing a 1-mm­
thick mica washer between the discharge chamber shell and the CIV 

mounting flangei this washer electricaily isolates the shell from 
the cathode assembly. A switch external to the vacuum chamber 

permitted the shell bias to be selected during thruster operation. 
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4. Accel-Grid Transparency 

Two·accel grids of different transparency permitted the 

thruster to be tested with grids of different perveance and 

neutral propellant loss rates. The low-transparency grid, 19% 

transparent, was a standard lAPS accel grid. The high­

transparency grid, 27% transparent, was the one removed from the 
thruster following many hours of testing at ~ncr~ased beam 

current. This latter grid was operated at low total voltage 

during this period, and direct beam interception by the accel grid 

caused the accel-grid apertures to be enlarged over their original 

small-hole accel grid (SHAG) aperture diameters. 

C. MODIFIED THRUSTER PERFORMANCE CHARACTERIZATION 

The performance of the modified thruster was characterized by 
testing a series of configurations comprised of the modifications 

described in Sections 3-A and 3-B. As a result of these 
modifications, the performance of the 8-cm thruster was increased 

beyond that described in Section 2 for the baseline thruster. The 
performance of these configurations is described in more detail 

below. 

1. Increased Diameter Electron Baffle and Propellant 
Diversl.on 

The thruster operating characteristics were compared for 
three configurations with different baffles. The result of 

increasing the baffle diameter was to increase the value of the 
anode-to-keeper voltage, Vo, for discharge currents in the 

range, 1.0 A ( ID ( 4.0 A. This effect is important, since the 
energy of primary. discharge electrons is .related to the value of 
Vo. Too Iowa value of Vo results in reduced ionization 
efficiency of neutral propellant atoms. 

Figure 7 displays the measured values of Vo as a function 

of ID for the three baffles tested. The values of· Vo shown 

are measured at the point of maximum screen curr~nt that is 
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obtainable at fixed discharge current by adjusting the propellant 

flow rate. Increasing the baffle diameter from 2.064 cm to 2.381 
cm results in approximately a 2 V increase in the value of Va 

over the entire In range tested. 
The propellant-diversion baffle also increased the value of 

Va compared to the baseline baffle. However, in this 
configuration the relative increase in Va was not as great as 

without propellant diversion. 

For both configurations with increased-baffle diameters, the 

direct result was to increase the maximum value of beam current 
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Figure 7. Effect of electron-baffle diameter on anode-to-keeper 
voltage (measured at maximum beam current) as a 
function of discharge current. 
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over that obtainable in the baseline configuration. Figure 8 

displays the values of IBlmax as a function of discharge 

power, PO' for these three configurations. with the data 

plotted in this fashion it is apparent that the relative value of 

81 is improved (decreased) as a result of these configurational 

changes. 
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Table 2. Thruster Operating Parameters for the Data of 
Figure 8 

Quantity ID(A) VD(V) Vo(V) IB(mA) VB(kV) Il Hg €I(W/A) 
(Units) 

2.064-cm-Diam Baffle 

0.5 34.8 23.8 73 1.2 0.85 247 

0.75 33.5 22 102 1.2 0.82 253 

1.0 30.5 21 120 1.2 0.83 260 

1.5 28.1 20 147 1.2 0.7 288 

2.0 26 18 157 1.2 0.7 328 

2.5 26.4 18 184 1.2 0.73 359 
3.0 26.9 19 197 1 • 2 0.76 410 

3.5 25.5 19 210 1.2 0.7 417 

2.381-cm-Diam Baffle 

1 .0 32.7 24.5 127 1.2 0.84 264 

2.0 27.5 21 180 1.2 0.73 309 

3.0 26.3 20 225 1 .2 0.64 353 

4.0 26.2 20 273 1.5 0.61 386 

5.0 24.8 19.8 310 1.5 0.55 450 

2.381-cm-Diam 16% Optically Transparent Baffle 

1.0 33.2 23 125 1.2 0.9 275 

2.0 30.5 23 175 1.2 0.85 308 

3.0 26 19 210 1.2 0.75 357 

4.0 27 19.5 268 2.0 0.74 405 
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2. Increased Discharge Chamber Magnetic-Field Strength 

Increasing the dischage chamber magn~tic-field strength 
increases the discharge impedance and hence, Vo, in much the 

same way as increasing the baffle diameter •. Figure 9 demonstrates 
the effect of increased magnetic-field strength for the two 

configurations tested. In this figure, IB\max is plotted as 

a function of PO. The increase in IB\max that results 

from the increase in magnetic-field strength improves slightly as 
the value of Po is increased. At PD = 83 W, the value of 

IBlmax is increased approximately 5% from 0.20 to 0.21 A. A 
further increase in the discharge chamber magnetic-field strength 
would require the thickness of the cathode polepiece to be 
increased to prevent magnetic saturation. 
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Figure 9. Effect of discharge chamber magnetic 
field on maximum beam current, as a 
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3. Thruster Performance with the Shell at Keeper Potential 

Thruster operation with the shell at keeper potential also 

affects the thruster performance. In Figure 10 the maximum beam 
current is plotted as a function of discharge power for both shell 

bias configurations. Data shown in this figure indicate that the 
shell-at-keeper-potential configuration results in decreased 

values of beam current at fixed discharge power: at ID = 120 W 
this difference exceeds 10%. 
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Figure 10. Effect of discharge chamber electrical bias 
on maximum beam current as a function of 
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Data shown in Table 3 further characterize the change in 

thruster performance for both shell-bias configurations. The data 

in this table differ from those shown in Figure 10, in that they 

were obtained by switching the shell from cathode potential to 

keeper potential while the thruster was operating at a fixed 

propellant flow rate. The result of switching the shell to keeper 

potential is to simultaneously cause the discharge voltage to 

increase and the discharge-keeper. voltage to decrease, resulting 

in a net increase in the value of the keeper-to-anode voltage, 

Vo. The data in Table 3 show that the change from cathode­

potential shell bias to keeper-potential shell bias is accompariied 

by higher discharge specific energy and no change in the discharge 

propellant utilization efficiency. Therefore, the shell-at­

keeper-potential configuration is associated with reduced thruster 

performance. The impact of this configuration on sputter erosion 

of the discharge-chamber surfaces will be evaluated in the next 

sUbsection. 

4. Effect of Accel Grid Transparency 

The beam-handling capability of two accel grids with 

different transparencies was measured. The higher 

transparency grid had an accel grid transparency of 

LA ~ 27%, and the low-transparency grid had a transparency 

of LA ~ 19%, which is the same as the standard SHAG optic. 

The beam-handling capability was determined by recording the 

accel grid current, lA' for decreasing values of the total 

voltage, VT' with the discharge power and propellant flow 

rate held constant and R = VB/VT variable. Below a 

critical value of VT, the accel current begins to increase 
rapidly, indicating the onset of direct accel interception 

of the beam. The onset of this interception defines the 

perveance limit of the ion-beam extraction system. 

In Figure 11 data are plotted showing the accel current 

as a function of total beam voltage at various beam-current 

23 



Table 3. Comparison of Thruster Performance with Shell-at-Cathode 
Potential and Shell-at-Keeper Potential 

Discharge 
Cathode- Anode-to- Discharge Propellant 

Discharge Discharge Keeper Beam Keeper Specific Utilization 
Shell Current, voltage, Voltage, Current, Voltage, Energy, Efficiency, 
potential ID,A VD' V VDK ' V I B, A Vf" V E1' W/A 11 8g 

Cathode 
Potential 1.0 34 8.7 0.110 25.3 314 0.82 

Keeper 
potential 1.0 36 7.5 0.110 28.5 331 0.82 

Cathode 
Potential 1.5 31 8.2 0.138 22.8 340.5 0.8 

Keeper 
Potential 1.5 32.1 6.6 0.138 25.5 352 0.8 

Cathode 
Potential 2.0 31.3 9.3 0.162 22 390 0.76 

Keeper 
Potential 2.0 32.5 8.5 0.159 24 412 0.75 

Cathode 
Potential 3.0 30 6.2 0.180 23.8 502 0.9 

Keeper 
Potential 3.0 30.5 3.0 0.180 27.5 509 0.9 

*The following quantities were held constant: 

propellant flow rate, IDK = 60 mA, Vs = 1,200 V, VA = 300 V and all 
neutralizer quantities. These data are uncorrected for the presence of doubly 
charged ions in the beam. 
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levels. The critical value of VT corresponds to the "knee" in 

the IA versus VT curve. By measuring the screen current and 

total voltage at the knee of the curve, the perveance curve of the 

accel grid is determined. This is obtained by plotting this value 

of IS as a function of Vf/2, as shown in Figure 12, where 

the perveance curves for both accel-grid transparencies are 

plotted. This figure demonstrates the increased perveance 

obtainable with the 27% transparent accel grid. 
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Thruster performance with the SHAG accel grid is shown in 

Figure 13 where €I is plotted as a function of nHg for 

increasing values of discharge current. These data were obtained 

by testing the thruster in the configuration with the baseline 

electron baffle installed and the discharge chamber magnetic-field 

strength increased. The performance curve for the unmodified 

baseline thruster at nominal baeline-thrust qonditions is also 

shown for comparison. This figure indicates the trend to 

increasing values of €I at increased values of beam current. 

However, installation of the increase~-diameter electron baffle 
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'with propellant diversion would have improved thruster performance 

over that indicated in this figure. 

D. THRUSTER COMPONENT LIFETIME AND DURABILITY 

The lifetime and durability of the modified thruster component 
hardware were evaluated at extended-performance operating 

conditions. Component lifetime was estimated by conducting a 

sputter-erosion survey of critical thruster surfaces. In this 

survey the surface erosion rates were estimated* through the use 
of a laminar thin-film technique (Ref. 3). Component durability 

was inferred from the failures of specific thruster components 
that occurred during the entire program of both baseline and 

modified thruster performance characterization. These component 
failures should be adequately addressed in an engineering model 

thruster design. 

1. Sputter-Erosion Survey 

The lifetime of critical thruster surfaces was evaluated for 

both shell electrical bias configurations. During this survey the 
thruster was operated continuously at the approximate performance 
level: thrust, T = 17 mN and specific impulse, Isp = 3,800 
s for approximately 41 hr. Throughout this survey the vacuum 

chamber pressure was maintained below 3 to 4 X 10- 4 Pa to minimize 

the effects of chamber pressure on measured erosion rate (Refs. 4 

and 5). 

*Recent 30-cm thruster test results obtained under NASA Contract 
NAS 3-18914 at Hughes Research Laboratories, indicate that the 
erosion rate determined by this technique is approximately 
a factor of 1.8 to 2 times greater than the rate measured in 
actual thruster life tests. 
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The erosion rates of the thruster surfaces were measured at 

the specific locations shown in Figure 14. These surfaces were 

covered with strips of laminar thin-film material which were 

removed at the completion of the test period and evaluated to 

determine the respective surface erosion rates. 
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Figure 14. Locations of thin-film erosion monitors. 
Shaded areas denote thin-film monitors. 
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Table 4 displays the results of these tests which support the 
following conclusions: 

o Decreased sputter erosion occurs in the shell-at-keeper­
potential configuration, particularly at the screen grid 
and cathode polepiece end. 

Highest erosion occurs at the downstream surface of the 
electron baffle and at the downstream surface of the 
accel grid. 

Lower limits on the component lifetime of the accel grid 
and baffle cannot be determined from these data because 
of the wide band of uncertainty that is associated with 
the discrete nature of the measurement technique. 

The sputter-erosion rate of the upstream surface of the 

screen electrode was calculated for both configurations by an 

alternative technique (Ref. 3) using published sputter-erosion 

rates (Ref. 6) and measured doubly charged ion fractions (see 

Section 2). Under the performance conditions given in Table 4, 

the calculated screen grid erosion rate is 4.1 nm hr- 1 with the 
shell at cathode potential, and 1.7 nm hr- 1 with the shell at 
keeper. These values are well correlated with the measured 
values, illustrated in Table 4. 

The results of these sputter-erosion surveys indicate that 
erosion of the discharge-chamber surfaces has increased over 
values that were previously measured in an 8-cm thruster operating 

at the baseline 5-mN thrust level (Ref. 3)~ However, these 

erosion rates are still sufficiently low that erosion-produced 
changes in the geometry of thruster components is unlikely to be a 
critical lifetime-limiting factor. Accel grid erosion also 
proceeds more rapidly under extended-performance conditions than 
under baseline conditions; this increased erosion may require a 
revised accel grid geometry (Ref. 7) or a third (decel) grid to 

achieve long lifetime. 

30 



w 
I-' 

Table 4. Results of the Sputter-Erosion Survey 

Component Lifetime Estimated from Laminar Thin-Film Measurements 

Shell at Cathode Potential Shell at Keeper Potential 

Surface 

Endplate 

Cathode pole (outside) 

Cathode pole (inside) 

Cathode pole (end) 

Baffle (downstream) 

Baffle (upstream) 

Screen pole 

Screen grid 

r = 0 

r = 3 cm 

Accel grid 

Erosio~ Rate,C 
nm-hr- , ±0.7 

0.7 

0.7 

2. 1 

3.6 

9.4 

Not Measured 

0.7 

3.6 

2.0 

)10.8 

Estimated 
Lifetime, 

Hr 

>20,000 

>20,000 

>20,000 

>20,000 

>20,000 

>20,000 

>10,000 

>10,000 

2,200 < L < 
44,000 

Erosio~ Rate,C 
nm-hr- , ±0.7 

0.7 

Not Measured 

Not Measured 

0.7 

10.0 

3.8 

0.7 

0.7 

0.7 

) 11.6 

Estimated 
Lifetime, 

Hr 

>20,000 

>20,000 

>20,000 

>20,000 

>20,000 

>10,000 

>10,000 

2,200 < L < 
44,000 

a IS = 186 ± 12 rnA, V
R 

= 30.5 ± 1.5 V, VOK = 7.4 ± 0.2 V, 
I oHg = 200 ± 1 rnA 

T = 43:5 hr, 10 = 3 ± 0.1 A, 

b IS = 176 ± 10 rnA, V
R 

= 30.8 ± 2 V, VOK = 9.5 ± 0.6 V, 
I oHg = 200 ± 1 rnA 

T = 40.5 hr, 10 = 3 ± 0.1 A, 

cRecent te~t results obtained under NASA Contract NAS 3-18914 at Hughes Research 
Laborator1es on a 30-cm thruster indicate that the erOS1on rate determined by 
this technique is approximately a factor of 1.8 to 2 times greater than the 
rate measured in actual thruster life tests. 



2. Thruster Component Lifetime and Reliability 

During the program of baseline and modified thruster 
performance characterization, three component failures were 

encountered: (1) shorting of the high-voltage feedthroughs 
located at the thruster rear shield, (2) blockage of the 

downstream cathode orifice, and (3) peeling of the tantalum flame­
spray coating on the cathode polepiece. 

The first component failure was discussed earlier in this 
section. This failure was corrected by installing high-voltage 

feedthroughs of improved capability (Figure 5). The second 
component failure consisted of a blockage inside the 250-pm-diam 

(O.010-in.-diam) orifice at the downstream cathode tip. This 

failure appeared to have progressed to the point of restricting 

both propellant flow and electron transport from inside the 

cathode into the discharge chamber. 

The cathode orifice blockage was examined with a scanning 
electron microscope which is equipped with an EDAX x-ray 

spectrometer for material identification. Figure 15 is a 
photomicrograph of the cathode orifice at two different 

magnifications. The high-magnification view clearly shows the 
extent of this blockage. Using the EDAX material-identification 

capability of the microscope, the blockage material was identified 
as consisting primarily of tungsten with a trace of tantalum. 

Apparently, porous-tungsten material was eroded from either the 

cathode insert or cathode tip and became lodged in the cathode 

orifice. 
Peeling of the tantalum flame-spray coating was evident on 

the cathode polepiece. This problem may have resulted from 

repeated thermal cycling of the thruster components. Figur.e 16 is 

a photograph of the tantalum flame spray that has separated from 

the cathode polepiece. 
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Figure 15. Scanning electron micirographs of the 
blocked cathode orifice at two different 
magnifications. 
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Figure 16. Photograph of the cathode polepiece and electron 
baffle showing separation of the tantalum flame 
spray coating. 
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SECTION 4 

CONCLUSIONS 

This contract has addressed the on-orbit propulsion needs of 

future large-space-structure(LSS) missions by characterizing the 

performance capabilities of the 8-cm mercury ion thruster. This 

task was accompl{shed by (1) characterizing the performance 

capabilities of the baseline 8-cm lAPS thruster, (2)" incorporating 

design modifications to extend the performance capabilities of the 

baseline 8-em lAPS thruster, and (3) characterizing the 

performance capabilities and lifetime of the modified 8-cm 

thruster. 

To characterize the performance of the baseline thruster, the 

thruster operating parameters were increased until performance 

limits were encountered. In the baseline thruster configuration 

the performance limits were high-voltage electrical breakdown and 

loss of control of propellant flow rate. For the unmodified 

baseline thruster the performance achieved was: thrust, T = 17 

mN; specific impulse, Isp = 2300 s; and ion beam current 

IB = 0.215 A, compared to the baseline performance of thrust, T 

= 5 mN; specific impulse, Isp = 2,900 s; and ion beam 

current, IB = 0.072 A. 

The performance of several modified configurations was 

characterized, achieving the most satisfactory overall 

performance of thrust, T = 25 mN and specific impulse, 
Isp = 4300 s. This level of performance is similar to that 

achieved in tests conducted at NASA LeRC (Ref. 8). 

Measurements of the surface erosion rates, at the performance 

level of thrust, T = 17 mN and specific impulse, Isp = 

3,800 s, revealed that the most significant threat to thruster 

lifetime is erosion of the accel grid (as a result of charge­

exchange ion bombardment). This limitation may be overcome 

through component redesign or the addition of a third grid. At 

extended-performance conditions, the estimated lifetimes of the 

discharge components do not appear to have decreased 
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substantially below those reported for the baseline IAPS 
conditions. Therefore, lifetimes approaching 20,000 hr are 

reasonable expectations for these components. 
Overall, the test results of this program demonstrate the 

potential of the a-cm thruster to operate at performance levels 
greatly exceeding those of the baseline IAPS thruster. This 

demonstration emphasizes the durability of the present IAPS 
subsystem and suggests further gains in performance and lifetime 
through continued development. 
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APPENDIX 

FORMULAE FOR THRUSTER PERFORMANCE AND DERIVATION OF EQUATIONS 
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Table A-I. Formulae for Calculating Thruster Performance 
Parameters (SI Units) 

Thrust, T (N) - 2.0391 x 10-3 IS JV;. Y 

Specific Impulse (effective), Isp (sec) - 100.02 'IHg JV; y 

Exhaust Velocity (effective), vii (M sec-I) - 980.82 "Hg .;v;-y 

Total Input Power, PT(W) - ISVS + lAVA + (Is + I D) VD + IDK VDK + IDHVDH + IDV VDV + INKVNK + INHVNH + INVV
NV 

+ Others 

(All inputs are positive) 

Output Beam Power, PB(W) - IS VB 

T I g 
Power Balance, P (W) -~ 

2 
Total Thrust Efficiency, n - 'IE 'IHgY 

IS VB 
Electrical Efficiency, n

E 
- T 

IS 
Propellant Utilization Efficiency, il - -

Hg I
Hg (Uncorrected for doubly charged 

ions) 

Discharge Propellant Utilization Efficiency, il
Hg 

(Uncorrected for doubly charged ions) 

Total Propellant Flowrate Equivalent, I
Hg 

(A) ~ I
DHg 

+ I
NHg 

True Propellant Utilization Efficiency, nHg ··'[1 \\:] il
Hg 

(Corrected for doubly charged ions) 

True Discharge Propellant Utilization Efficiency, nHg - [~: ~6] ~Hg 
(Corrected for doubly charged ions) 

Discharge Power, PD(W) • ~ V
D 

Ion Generation Energy, <I(eV/ion) - (I
D 

V
D 

+ ~K VDK)/I
S 

Accelerator Drain Power, PA(W) = IA (IVAI + IVNI) 

Neutralizer Coup line Power, PN(W) - (IIsl - IIAI) IvNI 

Y • af II; a • I + 1. 4146 
I + 2 6 

F = 
T 

Vr 
~....:....---------------- Ground -I 
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Table A-2. Derivation of Thruster Characterization 
Equations 

= 

. 
m = 

110 

IS 

T 

T 

m 
e 

= 

= 

= 

Mass Flowrate 

In Amperes Equivalent 

~g In Kilograms per Second 

m = 

.0 .+ .++ 
1 

m m m = -+-+-ill ill m 

.0 .+ .++ m m m 
111 = -.- 112 = -.-m m m 

(n
1 

+ 211
2

) I Hg = TlHg I Hg 

Thrust 

= 

.0 0 .+ + +.++ ++ 
m v + m vII m vII 
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Table A-2. Derivation of Thruster Characterization 
Equations 

Thrust (Continued) 

[ 1 ( 
zeVB) l/Z 

T m n1 + J2 nZ, -m- F II 

/ (2em )1/2 T = I (V )1 2 
S B 

Beam Exhaust Velocity (Singly Charged Ions) 

Exhaust Velocity (Effective) 

a. 
= 

T 
= 

til 
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Table A-2. Derivation of Thruster Characterization 
Equations (Continued) , 

Exhaust Velocity (Effective) (Continued) 

I sp 

= 

= 

I sp 

Specific 

~ 
go 

= 

Impulse 

m = 

e = 

go = 
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'" (V )1/2 v nHg B . I 

(Effective) 

3.3309 x 10-27 kg 

1.6022 x 10-19 C 

9.8067 ms 
;"1 

(v ) 1/2 Y 
B 
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