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I. SUT'YIR''!

The proposed research was to systematically investigate the effectiveness

of powdered semiconductor materials in photocataiyzing candidate redox reactions.

Initially, the rate of the photocatalyzed oxidation of cyanide (QV - ) at plati-

nized TiO,) was investigated. The extent of the cyanide reaction was followed

directly using an electroanalytical method (i.e., Di'ferential Pulse Polaro-

graphy). Experiments were performed in natural or artificial light.

A comparison was made of kinetic data obtained for photocatalysis at

platinized powders with rate data for non-platinized powers.

t.'



oRaNAL PAGE IS	 2

OF POOR QUALITY

11.  INTUL

Numerous solutions are used in the electroplating and other industries

that contain high concentiations of cyanide. On occasion, it becomes necessary

to discharge these solutions because of contamination or some other problem

that renders them ineffective. However, due to the extreme toxicity of free

cyanide, it is important to pre-treat these solutions before allowing them to

mix into environmental or community water supplies.

Various lire-treatment methods to destroy cyanide are now being applied to

industrial waste waters. Ma,y of these involve the addition of some strong

oxidizing agent such as chlorine, chronic acid, or potassium permanganate

Et
(1,2,3)-

By far, the most popular treatment is alkaline chlorination (10). The

reactions involved are:

L1 - 	+ 20H - 	+ C1 2 —>CNO - 	+ 2C1 -	+ H?O (1)

'CNO- +	 40H - +	 3C1,	 --> 2C0-) +	 6C1 - +	 N-)	 +	 211,0 (2)

These reactions are carried out at a pH above 8.S with agitation. Complete

oxidation of one pound of cyanide requires 8 pounds of chlorine and 7.3 pounds

of sodium hydroxide. Although these and other chemicals are effective in de-

stroying cyanide, in many cases their use results in additional volumes of

sludge for disposal. Storage and handling of these chemicals present further

difficulties.

Electrolytic oxidation of cyanide is also employed as a treatment method

(4-9). However, when the concentration of cyanide in the electrolyte falls

below 1000 ppm, the rate of the destruction of cyanide decrease significantly.

C	 Furthermore, this method requires several hours of electrolysis at high

1Ic
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3

current densities (35-100 ASF) and elevated temperature (80-100 0C) which may

result in the generation and evolution of poisonous hydrocyanic acid.

Rising costs of chemicals and energy present one other major consideration

and that is the cost effectiveness of the treatment.

The use of semiconductor materials as electrodes in photoelectrochemical

cells has received considerable attention in the past ten years. The principle

objective of this research has been to convert solar radiation to either storable

fuels (e.g., photoelectrolysis of water to H-, and 0 2 ) or electrical energy and

has been the subject of numerous reviews (see refs. 10-14). A large number of

semiconducting materials have been analyzed for their photoreponse charac-

teristics and stability (12,15). In general, the oxides of metals such as

SrTiO3 and Ti02 have been found to be stable in basic solutions but their band-

gab limits their response to the W portion of the solar spectrum.

The extension of the operating concepts of the photoelectrochemical cells

to semiconducting powders suspended in electrolytes in order to a^,.otccatalyze

or photosynthesize chemical reactions has been successful (16,18). The n!.oto-

3s sisted oxidations of a number of compounds including the halogens, CN - and

2 at semiconducting powders including Ti02 , ZnO, CdS, Fe203 and ^';^^- have503 

been reported (19). A significant enhancement of the oxidation of these com Ct_-.ds

has been observed in the presence of e.g., powderer' Ti0 2 (18,19).

In view of present high costs and other related problems encountered in

treating cyanide wastes via "conventional" methods, the development and subse-

quent implementation of a treatment method employing cheap semiconducting powders

and solar energy is desirable. These materials (e.g., TiO 2 , ZnO, Sn02, etc.)

are abundantly available at reasonable cost (e. g ., $0.26/Ti0i) and could

conceivably be used and reused with only minor preparation.
I 

IC
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The detailed understanding of the kinetics of the photo-induced reactions

at the interface between platinized-semiconductor powders and the electrolyte
i

are not yet known. It is, therefore, important that a systematic stud) be made

to determine the effectiveness of these materials in photocatalyzing anc photo-

synthesizing important reactions. A comparison of kinetic data obtained for the

photocatalysis of cyanide at platinized semiconducting powders with rate (ata

for :ion-platinized powders is expected to reveal a significant enhancement of

reaction rate.

The Chemistry Department of Southern University-Shreveport has studies the

catalytic effects of aqueous suspensions of powdered semiconductor material

on the photo-oxidation of cyanide. The purpose of this proposed research was to

investigate the effectiveness of powdered semiconducting materials such as Ti02

and others in photocatalyzing the oxidation of cyanide in industrial waste waters.

I I I. EVERIWAL

All chemicals used were of reagent grade quality purchased prom the following

companies: Sargent Welch, J.T. Baker Chemical Comp.my and Alfa, Venton Division.

The TiO, (325 mesh, 99.9%) was supplied by ti-e Materials Research Corporation and

was used without any pre-treatment other than photodepositing platinum.

%. PPOTODEPOSITIONO	 1	 .i

The method employed to photodeposit platinum was as per kroeutter and Bard ()0)

with some modifications in procedure. A solution of 0.1 M platanic acid (Aldrich

C)-ten:ical Company) was prepared by dissolving 5.18 grams of H2PtC16 .6E.20 in 25 ml,

of 0.U,1 HC1. The pH of this solution was first adjusted to 7 with a 0.N

Na7CO3 followed by acidification to a pH of with glacial acetic acid. The so-

lution was then placed in a 8.0 cm I.D. Petri dish containing approximately ?g

of the TiO2 powder. This suspension contained 2.Og of TiO2 per 10 ml of

solution. The suspension was subsequently carried Viroug!? several heating cycles

r•
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(i.e., gating to dryness followed by volume adjustments with distilled water) on

the surface of a hot plate (Nbdel PC-151, Corning). Throughout the heating period,

the suspension was magnetically stirred and illuminated with 1SOW Xenon lamp. The

surface temperature of the hot plate was later determined to be 95 0C. Platinization

of Ti02 was completed within 8-16 }ours.

B. MMMION OF CYANIDE SOLUMM9

A standard working solution of 0.1M CN - was prepared by dissolving 0.651g

KCN in 100 ml of deaerated O.lM NaOH. The pH of this solution rm.-ad between 12.89

and 13.00. The working solution was diluted with O.1N NaOH to cyanide concentrations

between 0.01M and 0.08M as required. Experiments were conducted in artificial

or natural light employing accurately measured aliquots (10-100 ml) of the

above cyanide solutions plus 1 gram of semiconductor powder per 10 ml of solution.

Artificial radiation was supplied by a 150-W Xenon lamp ('Model #6160, Orel)

with all experiments being conducted in a quartz cell to minimize the absorption

of W light. The powder was kept in suspension by bubbling 0 2 at a flow of 300

cc/min.

The amount of unreacted cyanide was determined by differential pulse po-

larography-,ith a PAR Model 384 polarographic analyzer (Princeton applied Research,

Princeton, N.J.) used with a PAR Model 303 static drop mercury electrode. All

samples were centrifuged to remove the semiconductor powder and deaerated prior

to analysis.

IV, RDITS AND DISCUSSION

The objective of this research was to determine the efficiency of some plati-

nized semiconductor powder (e.g., Ti02) on the photocatalysis of cyanide oxidation.

The rate of the overall reaction

(.'N	 + 0, + 11,0 - C'NO	 + fi3O,

was determined under carefull y controlled conditions.
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Mixtures of semiconductor powder and cyanide solutions at various concen-

tration levels were permitted to react in the presence of artificial or natural

light. Unreacted cyanide was determined by differential pulse polarography. We

anticipated that the platinized powders in the presence of light would show sig-

nificant enhancement of the reaction rate over that for non-platinized powders.

The rate of a photochemical reaction at semiconductor materials depends on	 ,

various parometers, two of which are the photogeneration of mir.nrity (i.e., elec-

t	 trons for n-Type) and majority carriers and the rate at which these are used pre-

venting recombination. In our experiments, oxygen was used as the so called

"scavenger" gas for photogenerated holes. For CN - the process occurred as

follows:

Pt-Ti02 + by -► Pt-Ti02 + 2p+ + 2e 	 (4)

CN - + 20H- + 2p+ + C- + H2O	 (S)

0-,+2e- + 2H-,0 -+ H7O 2 + 20H-	(6)

The overall rear.tion is represented in Equation 3.

Figure 1 briefly illustrates the mechanism involved in the oxidation process

at the surface of the semiconductor particle. Represented is a single particle

of platinized semiconductor powder with platinum sites appearing as shaded areas.

The particle might be considered as a short circuited photoa: =:1-ctrochemical cell

with the platinum sites serving as photocathodes and the base powder sites as

photoanodes. When light processing the appropriate band-gap energy (N3ev for

Ti02) strikes the suspended particle, electron/hole pairs are photogenerated.

Electrons, in n-Type materials, migrate toward the bulk of the particle, eventually

finding their way to platinum sites where oxygen is reduced with considerable

ease to HZO2. The positive holes migrate toward the surface (bare particle/

electrolyte interface) where cyanide is oxidized to cyanate (CNO - ). Cyannate is

a relatively benign substance which eventually hydrolysis according to Equatior. 7.
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FIG= 1: Platinized Semiconductor particle
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CNO- + 2H20 —4 rH4+ + 003-2	 (7)

t
A.

The moles of CN - reacting with time in artificial light (150W Xenon Lamp)

is plotted in F.gure 2. As indicated, the amounts of cyanide removed at the
r"

platinized powder were significantly higher than at the non-platinized powder.

There was a difference of more than 38% for one hour irradiated samples. However,

this decreased with increasing in irradiation times (dam to 81 for 7 hours

irradiated samples).

Table I and II list data used in plotting Figure 2 along with other pertinent

information. Column five (S) of each table list the calculated rates at each

type of powder. Notice that these show a decrease in reaction rate with irradi-

ation time. Although the slowing in cyanide oxidation is not clearly indicated

in Figure 2 for the non-platinized powder, it is somewhat appar:nt for the plati-

nized powder and is indicated by a break in the curve after six hours of irra-

diation and at a CN - concentration of approximately 0.034.

Figure 3, a plot of reaction rate versus time, further substantiates that

the rate of CN - oxidation at the platinized powder is much higher than at non-

platinized powder. rurthermore, it shows a decreEse in reaction rate with time

for both powders. Previous reports were that the rate of C.N - oxidation at levels

between 0.1 mM and .1M is concentration independent, however, this was not the

case in these investigations.

Several possible reasons were advanced to explain the decrease in rate with

time. Firstly, we suspected that it was due to a decrease in mass transfer effi-

ciency at lower 0A- concentration, thus allowing electron/hole recombination to

occur more frequently. However, all solutions were agitated vigorously with 02

(300 cc/min) during illumination assuring excellent mass transfer conditions.

Secondly, at low CN - concentrations, the decrease in the rate of oxidation
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Xenon Lamp while bibbling 02. Solution
initially 50 mil Cq in 0.1 H elec-
trolyte oontaining 1.0g of meting
powder. Solution volume 10 mL.
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Nom.

INITI,4L.	 FINAL t''1ED

TIDE	 RATE 9
..^'

1 2 3 4	 S

50.0 45.0 5.0 1.0	 13.9

50.0 41.3 8.7 2.0	 12.1

50.0 37.0 13.0 4.0	 9.0

50.0 32.0 18.0 6.0	 8.'

50.0 30.2 19.8 7.0	 7.9

50.0 30.0 20.0 8.0	 :6.9

TABLE II.	 CYANID OXIDA: ION AT IAN-Pr-TIOZ

tXI+ZS_	 TI

.^..

RATE

INITIAL FIN& 	 (Holm ^ SEC 1
1 2	 3	 4 5

50.0 46.4	 3.6	 1 10.0

50.0 43.3	 6.7	 2 9.0

50.0 41.2	 8.8	 4 6.1

50.0 ;5.0	 15.0	 6 6.9

50.0 31.6	 18.4	 7 7.0

E
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FIGM 3: Rate of Cyanide oxidation versus Time

Nonplatinized TiO2

Platinized TiO.,
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could have resulted from some other electroactive species competing for electron/

{ hole pairs.	 The concentration of cyanate (CNO-), product of CN oxidation, increases

with time and could possibly compete with CN- according to Equation 8.

2C O-	+	 40H -	2002	+	 N2	+	 2H2O+6e-	 (8)
t

resulting in low CN - oxidation efficiency. 	 Our attempts to investigate this

possibility, mandated the development of a reliable analytical procedure for low

levels of CNO - .	 We selected a specrrophotometric method (21) that involved the

formation of a Copper (II)-pyridine - GJ0 - complex, the absorbance of which, is

measured at 480 rm.	 However, the sensitivity of the method was insufficient and

r" our results were incoi ► aus ive .

Finally, the rate might also have been concentration dependent. 	 To examine

this possibility, six standard solutions of CN- (0.01M to 0.06M) were prepared and

tested at Pt-Ti02.	 TO milliliters of solution plus lg of platinized powder

were irradizted for two hours with 15OW Xenon Lamp. 	 The rate of oxidation. was

determined for each solution and plotted versus initial concentration of cyanide.

The result is shown in Figure 4.

Apparently, the oxidation rate was concentration dependent and increases

drastically above 0.034 CN-.

a

i

r
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FIGLTZ 4: Rate of Cyanide Oxidation vs Initial Concentration

Samples contained 1.0g Pt-TiO2 plus 10 ml
of a cyanide solution at one of the con-
centration indicated. Samples were irradiated
with a 150 W Xenon Lamp for 2 hours.
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B. NATURALLY ILLUNINIATID SAIPM§

A sample prepared for testing in natural sunlight consisted of 100 ml of

0.05 MIN plus lOg of Pt-TiO 2 powder. This mixture was placed in a large petri

dish and covered with Saran wrap to prevent volume loss by evaporation. The

petri dish was then placed on the roof of a building to maximize exposure to

sunlight. A control sample of 100 ml of 0.05 CN (No Ti02) was also prepared

and placed along side the test samples.

These experiments were conducted between late April and early May. Weather

conditions ranged between heavily overcast to hazily sunlit days with some rain.

Temperatures ranged from 4.4°C at night to 80°C at mid-day.

At various time intervals, aliquots were withdrawn and analyzed for cyanide.

Table III lists the results obtained which are also plotted in Figure S.

ME III. OXIDATION OF CYANID IN SRUGHT

DAY	 MME M- MW.XM (x10-5)	 mL C N- mAcrEpWO-5)

2.0 44.81 5.19

5.0 38.34 11.66

9.0 29.78 20.22

13.0 19.80 30.10

20.0 14.50 35.50

30.0 7.00 433.00

.j
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FIG= 5: Number of Mol of CN Peacbed vs Time

Number of mol CN - that reacted in an unstirred
solution of 100m, of 50mM CN' containing log
of Pt-TiO, illuminated with sunlight.
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The rate of oxidation over the first 12 to 13 days was relatively constant.

During this period, the concentration of cyanide dropped from 0.05M (1300 ppm)

down to 0.03M (780 ppm). Below this concentration level, the reate decreased

drastically by as much as 30 of its starting value. Again this seems to indicate

a definite concentration dependency of oxidation rate or possible competing

electrochemical reactions. Interestingly, the change in rate for naturally

illuminated samples occured at approximately the same concentration level as the

artificially illuminated samples (i.e., 0.03 CN- ), further substantiating a link

between the change in rate with this concentration of cyanide. After 30 days

exposure, the concentration dropped to a low of 0.007 (182 ppm).

The oxidation rate for the first 12 days of illumination was determined from

least squares fit analysis of both halves of the curve in figure S. The oxidation

rate calculated using the slope, yielded 4.49 x 10 -7 mol-day-cm-2 of irradiated

surface. On the other hand, the rate for the remaining 18 days of testing was

1.51 x 10 -7 mol-day-cm-2 . The overall '-ate of oxidation neglecting the two dif-

ference rates was 2.8S x 10 -7 mol-day-cm 2.

OWSION
A comparison of kinetic data obtained for the photocatalysis of cyanide at

platinized semiconductor particles with rate data for non-platinized particles

revealed a significant enhancement of reaction rate. Reaction rate at platinized

powder (i.e., Pt-Ti02) increased by as much as 40% in some cases.

Test performed with platinized powder in unfocused sunlight indicated that

solutions containing cyanide at levels below 1300 ppm can be effectively detoxified.

In fact, solutions with an initial concentration of 0.05M (1300 ppm) CN decreased

to 0.007M (182 ppm) after 30 days exposure in natural sunlight.
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This procedure could have possible industrial application, however, further

tests are warranted on actual industrial wastes samples.

Although important, the information ascertained from this study is relatively

limited, therefore, a detailed understanding of photo-induced processes at the

interface between platinized-semiconductor powders and the electrolyte still

remains a prime objective for future investigations.
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