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Summary 

The flow over wave shaped surfaces is studied using a Navier Stokes 

solver. Detailed comparisons with theoretical results are presented. 

including the stability of a laminar flow over wavy surfaces. Drag charac- 

teristics of nonplanar surfaces is predicted using the Navier-Stokes solver. 

Also discussed are the secondary instabilities of wall bounded and free 

shear flows. 



Section I 

Introduction 

At NASA/LaRC there has been an ongoing research program related to flow 

over wave shaped geometries. The primary objective of this program is to 

develop surface geometries that have lower aerodynamic drag compared to 

planar surfaces. This report is an outgrowth of an ongoing computer 

simulation study of flow over wavy surfaces. The details of the theoretical 

model and test results of the simulations for both laminar and turbulent 

flows have already been documented in two previous contractor reports (Ref. 

1, 2; NASA CR159305, 1980; NASA CR3408, 1981). Extensive simulation studies 

that were conducted since then are the topic of the present study. 

The problem of flow over wavy surfaces has been a major area of 

research in fluid mechanics for over a century. The mechanism of wave generation 

and growth of small amplitude waves in the sea(air-sea interaction)has been a 

subject of sustained study for many decades. The appearance of ridges in sand dunes 

is of interest in sediment transport technology (porous wavy surfaces). Small 

amplitude waviness of machined surfaces and their effect on the performance 

of aircraft (LFC aircraft for instance) is another application of 

wavy wall flow phenomena (transition). For sinusoidal wavy surfaces in a 

narrow band (a/?. - 0.03, 6/X - O(1)) it has been observed experimentally 

that the wave average skin friction drag in turbulent flow is substantially 

lower than that of a flat surface. However, the associated wave drag penalty 

for sine surfaces more than over-compensates for this drag reduction, 

resulting in a net drag increase for these surfaces. With the availablitiy 

of high speed computers it has heen possible in recent years to solve many 

intractable problems. Rather than a hit-miss experimental study for low drag 



wavy surfaces a reliable computer simulation program (which is economical 

and accurate) was developed to analyse the total drag properties of 

both,symmetric and asymmetric waveforms. Details.of the computer 

algorithm (Navier-Stokes solver) are given in Ref. 1. Application to 

turbulent flow and comparison with wind tunnel data are given in Ref. 2. 

The present work examines in detail the efficacy of the Miles-Benjamin 

theoretical model (3) for laminar flows. In Sec. 2, comparisons of laminar 

flow calculations with theoretical models are presented. In the presence of 

disturbances, a steady laminar flow undergoes transition at a certain 

critical Reynolds number. The presence of waviness on the surface can itself 

produce these disturbances when the wavelength of the surfaces (a ) fs in the 

critical range (Sec. 3 ). For the computer simulation to be effective in 

rating various geometries (based on their total drag) a proper comparision 

of methodology is required. Section 4 discusses this concept in detail. 

In Sec. 5, the results of laminar flow'over some low drag surfaces are 

discussed. The results of drag computations for turbulent flow over a 

variety of asymmetric and symmetric surfaces are discussed briefly in Sec. 

6 with the secondary instability of wall bounded shear flows considered in 

Sec. 7 . A brief discussion of the work carried out in the development 

of compressible SALLY program under the present contract and work on 

free shear flows is reported in Sec. 8. 



Section II 

Laminar Flow Over Wavy Surfaces 

Theoretical bbciels 

The simplest model of flow past a wave train is based on the classical 

Kelvin-Helmholtz theory (4). In this analysis, viscosity is neglected, 

and the prlmary flow Is uniform. Therefore the disturbance (waviness) 

can be studied through potential theory. The perturbation pressure on the 

wave is proportional to the square of the relative velocity between the wave 

train and the fluid flowing over it and is in antiphase with the wave 

elevation. Even though this model Is naive physlcalty, the pressure component 

predicted by Kelvin-Helmholtz theory is consistent with the results of a more 

realistic theory (3) valid for thin boundary layers. (Re +a or 6/X<<I.) 

Benjamin (3) shows that this pressure component is the only stress remaining 

in the limit as Re + Q) uniformly. 

Miles (5) presented an analysis of the wind wave problem considering the 

inviscid perturbations to a primary profile due to the disturbances. The 

primary profile has the effects of viscosity (profile curvature) in this 

analysis. For travelling wave forms where the critical point is away from 

the boundary a substantial component of pressure in phase with the wave slope 

(sheltering) may occur. Kendall (6) has experimentally obtained qualitative 

agreement with Miles theory. 

Benjamin's Theoretical Analysis 

Benjamin (3) d eveloped a uniformly valid asymptotic analysis of the flow 

past a wavy boundary. Benjamin's analysis is based on the following 

assumptions (i) the amplitude 'a' of the wave is much smaller than the wave 

number k (=&/A, where >. = wavelength). (ii) the primary flow is parallel; 
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i.e. the Reynolds number Re 
X 

is large so that the boundary layer 

growth over several wavelengths is miniscule, i.e., UCn,S) = U(n) 

where n,S are the normal and tangential coordinates of a point. 

Ihe total velocity field is assumed to be derivable from a stream 

function, i.e., 

Y(E, I:) =~&I) + a{F(n) + (U(n) - c) e-kn} eik< 

where Ye = lo" LU(o) - c] 6 and c is the wave speed of the surface. 

The perturbation due to the wave, F(q) is influenced by viscosity in a 

friction layer whose thickness can be evaluated for given flow conditions. 

This analysis yields expressions for perturbation stresses (pressure 

and shear stresses) for both laminar and turbulent flow over wavy 

surfaces. 
3 

Since Benjamin’s work a large number of experiments have been 

conducted over wavy surfaces (turbulent flows). Discrepancies noted 

between the experimental measurements and theoretical results prompted 

several workers to develop theoretical models which include perturbation 

Reynolds stresses (7,8) and solution of the full Navier-Stokes equations 

(9, IO, II, 12, 13). 

There are very few (reported) laminar flow experiments over 

wavy surfaces. However, laminar flow calculations serve to calibrate 

both theoretical and computational methods perhaps better than the 

turbulent flow case chiefly because of the turbulence closure problem, 
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Therefore we have performed a number of laminar calculations and 

compared them to the threoretical model of Benjamin (3). 

Nav i er-Stokes So I ver 

Our Navier-Stokes solver utilizes conformal mapping and periodic 

boundary conditions in the flow direction. An inverse stretching 

extends the computational lid in t 

condittons the unsteady solutions 

represent the proper physical evo 

he norma 

obtained 

I direction. Under these 

using this code 

the flow. A decided advantage ution of 

of the periodic code is that, compared to an inflow-outflow code, the 

periodic code is more economic for problems related to wave trains. 

Using a Rayleigh analogy concept, which is dlscussed in Sec. 4, the 

periodic.code has been utiliz.ed to study total drag characteristics 

of various wavy surfaces. Comparison with experiments are presented 

in Ref. 2. The agreement between the Navier-Stokes simulations and 

wind tunnel experiments has been satisfactory for the range of 

geometric parameters and flow parameters tested thus far. 

The two dimensional time dependent Navier-Stokes equations are: 

+ 
p(au/at + u l Pu) = -0p +v l T 

v l u=o 

(2.1) 

(2.2) 
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+ 
where Tij z aij, (which includes both laminar and turbulent stresses for 

turbulent flows). 

The domain of analysis and the appropriate boundary conditions are D: 

0 < x < aT, f(x,t) 5 y 5" 

where the wavy surface is 

Yw = f (x,t) 

Periodic boundary conditions apply in the flow direction. The boundary 

conditions appropriate for the normal direction are 

U(w,t) = u&w 

v(w,t) = VW (x,t) 

and U(x,m,t) = V(x,m,t) = p(x,m,t) = 0 

l-or a stationary wall 

u, = VW = 0 

For a wall with normal suction velocity VW and Uw are nonzero, related to 

the components of the suction velocity i.n the physical x, y coordinate 

direcions. Similarly nonzero components of velocity at the wall arise when 

the wall is moving with a phase speed. 

The domain bounded by the wavy surface (5) is mapped to a rectangular 

C-T-I coordinate system using conformal mapping techniques (1) i.e., to the ' 

domain D1: 

O<X<&, -1 < Y < +1 - - 

Initial Conditions 

At time t = to we prescribe a velocity field appropriate to a starting 

Reynolds number at the beglnnlng of the wave sectjon., i.e., 
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;(X,Y,t,) = +&(Y) (2.3) 

The solution algorithm then develops a quasisteady solution appropriate 

to the flow over wavy surface. 

l-or laminar flows U,(Y) will correspond to the Blasius profile 

appropriate for the starting length. For turbulent flows, a starting profile 

related to the virtual length of the flow is prescribed. In later sections, 

(3, 4) the properties of the time evolving flow solutions are related to 

relevant physical phenomena. For the present, we briefly state that whenever 

a stable solution for wavy wall flow exists, the solution obtained under 

these initial conditions and boundary conditions evolved In a fashion siml lar 

-to the sofution over a wave train(wlth a mean growth of boundary layer thickness 

due -to l-he downstream length). For Instance, the pressure dlstrIbutlon over -the 

first wave will not be quite the same as that a few wavelengths downstream because 

the flow has a mean boundary layer growth and therefore the surface has a 

smaller (x/6) or (a/s ). The quaslsteady solutions of the Navler-Stokes 

equation show these variations with time. In section 4, we present a detal: led 

discussion of the evolution In time of the pertodlc code described herefn 

and skin 

waveleng 

O( 10) 1 l 

(related 

For l-he test problems 

frlc-tlon show mln 

i-hs considered are 

Also, the time of 

to x in an inflo 

and evolution of flow over 

wavetrain. 

length for an Inflow-outflow code over a 

that are reported herein the resuli-s for pressure 

mal growth with tlme mainly because l-he 

quite small compared to thestartlng length (x/X - 

evolution where quasisteady state is reached 

-outflow code) is quite small for these cases and 

hence comparisons with Benjamin’s theory are appropriate. 
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Critical Examlna-i-ion of Benjamin’s Theoretical Result 

Benjamin develops results for rigid walls (c = 0) based on three 

special cases: 

(a) Assumption of a Ii near prof.i le U(Y) = GY; 

The perturbation stresses are given in (5.6) and (5.7) in Ref. (3) and 

are written down in nondimensional form (after algebraic manipulations) for a 

laminar boundary layer as, 

pressure: 

cp = WCJP k > = -.021308 kaRi/2(X/h)-2/3 Icos(kx - n/6) (2.4) 

shear stress: 

+ p cos (kx - r/3)} 

Cf = (h,/p#,) = 0.143806 ka(X/x)-213 Icos(kx 

f. = 3.818 (X/I,)~/~R,~/~ 

Admittedly, the linear profile suffers from a 

t T /6) + F cos kx) (2.5) 

lack of realism. 

However, when the wavelength of the wall 12 extremely short, the disturbance 

would be expected to penetrate only a very small distance away from the wall, 

where a linear approximation to the velocity profile is justified. 

(b) A sinusoidal profile approximating the Blasius profile; i.e., 

U = Ih, sin KY; 0 < Y < fi (2.6) 

U=lb,;Y>S (2.7) 

K = (n/26), fi = 5 X Rx1i2 (2.8) 

Benjamin derives expressions for pressure and shear stress, for the case 

K > k i.e., a/~ < l/4; the expressions are, 



cP = l?t [(2aK;!/a x (1 t k/a) x ei(kx ta )] 

Cf = Rs" 

LU - k/t cot o ) t 1.288 eia j6rn/fl x (1 t k/a)] 

[2aK2k/l?m ei(kx tn 3, x (1 t k/a)] 

C(l - k/a cot 0 ) t 1.288 eiTi /"m/L x (1 t k/a)] 

where m = (kKld,/v)li3 and 0 = 26 = ~/2 41 - (k/K)' 

When s/X > l/4 the analysis presented by Benjamin can be suitably modified to 

obtain the expressions for C 
P 

and Cf as 

cp = Re. [2K2a/a ((ltn/l-n) t e-3) ei(kx +")J 

[C (l+n/l-n) ( 1.288eir/6m/9, - 1) t ema (1 t 1. 288eiT/6m/R)} ] 

Cf = RJ? 2.746 ?ak/am (( ltn/l-n) t e-a ) ei (kx t II 13) 

[C (ltn/l-n) (1.288ei~/6m~/Y, - 1) + e-3 (1 t lo288e’~‘/6m/~ )}I 

where e = ~6 = T1/2 J(k/K)* - 1 ; n = k/a and m = (kKIL/v)1/3** 

(c) For the case of a Blasius profile or any general profile, when 

A = (km#,/U'(o)2) = (km/K2) < 1, Benjamin develops expressions for Cp 

and Cf as 

cp = Rc L2k'a ei(kx tm )(l - 1.28& eivj6) J”, Il'e-kYdYJ 

Cf = f& C2.744 pa/m ei(kx tr/6)~ 

**For a Blasius profile, 

K= 0.332 X 

and 

Rx1j2, m = 0.20336kRi/2 (X/x)-2/3 

9, = 0.332 Rij2/X J(358(X/+R$ - 1, 

0 = 1.57 J 358(X/x )L Ril - 1 

9 



The implication of these.various approximations Is now 

examined. 

(i) Assumption of small "ka" limits the accuracy of the solution to small 

amplitudes. 

Benjamin suggests ka should be = 0.02. 

(ii) Assumpt ion of parallel flow requ ires Rx to be large i.e. -to be of 

X the order of 10. (For x -=lO, the growth of boundary layer over a wavelength is 

of the order of 5%.) 

(111) Of the three sets of expression that Benjamin develops for a Blasius 

flow, case (b) seems to be the most appropriate one. Case (a) holds 

only for very short wavelengths. Case (c) lacks realism as Will be 

shown below. Case (b),where a sinusoidal profile is used to approximate the 

Blasius profile is a more realistic approximation in that the differences between 

a sinusoidal profile and a Blasius profile with the same wall slope 

(k=m/26; 6 =4.73 JL)x/Uco) are only minimal and should not cause an appreciable 

difference in the outcome of the results. 

The results obtained using case (c) may themselves be of little use. Here 

the basic requirement for the results to be valid is that the parameters 

mb =4.2 (KXo) ‘I3 >> 1 (2.17) 

and A =6.3 (KXo)4/3 Ri112 << 1 (2.18) 

The first of these conditions must per-force be met since assumption of parallel 

flow requires X,/X >> 1 and hence kXo=2n (k =27r/X). However the requirement 

that A << 1 may not be met for all flow condition. Indeed, an examination of 

the assumptions carried out to arrive at case (c) one may note that A cc 0.1 or 

at least of the order of 0.20 for the relation to hold reasonably well. Choosing 

10 



a value of A=O.2, we note that, 

for X/X=1, (m&=7.75, 4=0.2) RX=1.4 x lo5 

for X/X=2, (m6=9.8, A=O.2) RX =8.3 x lo5 

(2.19) 

(2.20 

(A choice of A = 0.2 already introduces an error of about 8% in the approxi- 

mation of the boundary condition (4.8) in Benjamin's paper.) 

A choice of X/X = 1 implies a boundary layer growth of 40s (X/A = 2 

implies a 22.5% change in 6 *)thus violating the assumption of parallel flow. 

According to our numerical experiments a 40% change in 6* introduces a change 

of similar order in the value of pressure due to nonparallelness of the flow. 

Thus for case (c) to be valid (X/X > 2) RX has to be an unaccepttibly high value 

(of the order of millions). 

11 



Comparison Of Navier Stokes Solutions with Benjamin Theory 

In order to verify the appropriatenesS of Benjamin theory, computer 

SinlUlatiOnS were conducted using the Navier Stokes solver. The results of 

these calculations are summarized in Tables l-1 through 1.3 (for a fixed x/), 

= 10). 

Table 1.1 presents results for a starting Reynolds number Rx = 100; 

for this case S/X = 5.0. Results are presented for sinusoIda wave amplitudes of 

10m4, 10m3, 102, 2 x lnJ, 5 x lo’, and 10-l . 

Comparison with Benjamin's theory indicates that both the linear profile 

and the sinusoidal profile approxima-tions show poor agreement with the 

present computational solution for pressure and shear stress, even for 

small amplitude waves. 

In Table 1.2 we give the results of computer simulations at Rx = 1000 

with X/x= IO. Here again Benjamin’s theory and i-he present Navier-Stokes 

results exhibit about a 30% difference in.pressure amplitude. The 

sinusoidal profile approximation appears -to agree better than the 

assumptionof a I inear prof i le in terms of pressure phase. 

In Table 1.3 results are given for Rx = 104. Here l-he agreement 

between theory and simulation is excellent for C . The linear profile 
P 

assumption seems to predict the shear stress distribution better than 

the sinusoidal profile approximation. This agreement may be for-l’uituous. 

12 
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A further aspect that needs to be checked regarding these comparisons is 

the role of (&/A) . Table 1.4 indicates comparisons for various ~/X'S 

to obtain a reasonably large 6, we have chosen hypothetical values of 

Rx 
= 104, U = 10’ In/set x = IO0 in, et-c In the slmulatlons, We have 

performed two sets of Navler-Stokes calculations here. For Rx = IO4 a 

Blaslus proflle 1s used as the stqrtlng profile In the first set of cqlculation 

and for the second set the oncomtng flow is taken as a shear flow wlth the 

same U’(O) at the wall as.the Blasius profile. [In the free-stream I.e., 

y> I/K (where K = Ur(0)/U~ 1 the velocity Is kept = U , and f6P yzl/~,U =u’(O)y.] 

It is seen that the Navier Stokes solutions differ from each other by 

10%. This is to be expected due to the difference of profile shapes. 

However Benjamin's theoretical predictions do not agree with 

the Navier Stokes solution. For &/A = 1.0 both the sine and linear 

approximation agree within 10% in amplitude. For larger values of 6 /A the 

di screpancy is greater. 

We conclude from these numerical s-tudles that the asymptotic 

theoretfcal results are evidently not accurate for moderate 

Re. 

Consideration of Couette Flow Assumption for Navier Stokes Solvers 

,4 number of works (theoretical methods and Navier-Stokes 

solvers) (Refs. g,!o, II) utlllze a shear flow assumption 

for the unperturbed flow. These computer algorithms 

use periodic inflow and outflow condition with a moving lid at the top. For 

this case it is well known that a true steady state is available. 

It is, therefore, interesting to examine how well these codes may 

perform in the prediction of developing flow over a wavy wall. 

13 



Since the flow is assumed to be a high Reynolds number flow, there should 

be no dependence on development length (X0). Thus the 

characteristic Reynolds number is Rx = Uxx/~ where L3, is chosen as a 

Velocity Scale at a distance 1. from the Wall (lJx = KX where K is the 

velocity gradient at the wall). We observe from Table 1.4 that a 

linear profile for the primary flow produces an error of about 10% In 

results when compared to the Blasius profile whenever the wall velocity 

gradient is chosen the same for both cases (see the Navier Stokes results of 

Table 1.4). Since the wall velocity gradient of a laminar flow at a Reynolds 

number Rx = l&X/v, is given as 

U'(0) = 0.332 &,JIb,/ux = 0.332 Lb,/x R;/2 (2.21) 

this must be equated to K in order to make an appropriate couette flow 

approximation of the developing boundary layer. 

Thus K = 0.332 k//x R;/2 (2.22) 

and Rx = K>r.2/y = 0.332 Lx'/ux R;1i2 

= 0.332 R;i2 (X/A)~ 

(2.23) 

Therefore a Couette flow Reynolds number RX corresponds to a Reynolds number 

Rx = 2.0856 F$\ 2/3 (x/x )4j3 (2.24) 

In Table 1.5,for a given Rx = 5000 and waveheight a/x = 10" *we have 

performed ca1cu1ation Of cpo and n for various (x/A)'s. [For Rx = 5000 

and x/?, = 1 Eqn. (2.24) gives Rx= 609.8; for X/A = 2.0 Rx = 1537; and 

for x/x = 4, Rx = 3872.1 

14 



If the couette flow results are to be meaningful, the Cp values 

should agree with one another. In realfty they vary widely dependlng on 

the value of Rx or X/A. The lmpllcation Is that It Is not the 

shear flow assumption itself that is at fault, but the denial of the memory 

to the fluid (development length) by virtue of defining Rr. 
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Influence of Surfac.e Wavinqss on Flow Stability 

Laminar flows are subject to instabilities and eventual 

transition to turbulence at large Reynolds numbers. At very low 

Reynolds numbers disturbances introduced into the flow decay with 

time. When the Reynolds numbers are above the critical Reynolds number 

(%* = 520 on a flat plate) small amplitude disturbances may grow in time 

depending on the nature of the disturbance (wavenumber or frequency). This 

is an eigenvalue problem i.e. 

F(a(,w) =0 (3.1) 

where u( is the wavenumber and 0 is the angular frequency (complex number). 

The initial growth of a small amplitude disturbance can be studied using the 

parallel flow assumption for the primary flow. The equation system governing 

the disturbances is the classical Orr-Sommerfeld equation 

(D2 - Ci2)2 @ =icXR [(U-c) (D2 - a2) @ - U"Q] (3.3) 

In general, Squire's theorem states that three dimensional disturbances 

are typically less disruptive than the two dimensional disturbances 

small amplitude fluctuation in incompressible flow, 

The linear growth regime of small distrubances had been studied 

exhaustively (6) for flat plates. In general, the source of the 

initial disturbance is very difficult to control even under rigorous 

laboratory conditions. Abrupt or drastic changes in surface 

geometry (trips, roughness) sound sources in the field or even 

freestream vorticity can provide the initial disturbance which 

causes the flow to undergo transition. 
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We next examine the subsequent distrubance growth behavior 

for a disturbance free stable laminar flow on a flat plate 

encountering a wavy wall of a given amplitude and wavelength. 

In section (2.4) we stated that the solution of the Navier- 

Stokes equations was obtained for flow over a wavy surface with 

a starting velocity profile, i.e. a Blasius profile at time 

t=t 
0' 

i.e., U(X,Y, to> = U,(Y&J (3.4) 

Once the calculations begin, a perturbation field is generated 

due to the change in geometry. For instance, the perturbation 

to u 
0 

at (to + At) is y:t most of the order (kaAt) where the 

wall has a wavenumber 'k' = 2ir/X. For the next few time units 

the flow has to undergo an adjustment towards the eventual 

velocity profile U(X,Y,t) appropriate for the wavy surface. 

We note that Benjamin , using asymptotic theory, has shown that 

the perturbations from a mean flow over a wavy surface with 

a<<l, and ka C-C 1 satisfies the Orr-Sommerfeld type 

equation ((see 3.1) of Ref. 3). The solution of the Navier- 

Stokes equation at early times can therefore be viewed as 

perturbations with the wavenumber 'k'. Therefore it is reasonable 

to expect that the solution at initial times of the unsteady 

Navier-STokes solver can be studied to get information regarding 

the stability of the flow. 
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Results of Computer Experiments 

When the Reynolds number of the oncoming flow is well below a critical 

value the presence of waviness does not affect the stability of the flow. As 

an illustration the plot of pressure at a point with time (non-dimensional 

with x/~~L) is shown in Fig. 3.1. The calculations were performed under 

the following conditions: X0 = 1000, x = 12, & = 10, a/x = 10-j. The 

initial adjustment time from the figure is roughly 24 units. 

Since small amplitude perturbations of the Orr-Sommerfeld equations travel at 

a speed of roughly 0.2-0.25 U at these low Reynolds numbers, this time 

corresponds to a traversed distance of one wavelength for the perturbation. 

[124 x (.25lL) x (x/hrIb,)= XJ 

After a time of 24 units the pressure shows a slight decay with time. 

This decay has been found to be strictly porportional to the growth of the 

boundary layer in all of our calculations, i.e., ~6*/6* = ~p/p. For the 

problem considered ~6*/6 * = 1.8% and A p/p = 41438 = 1%. 

In Fig. 3.2 a plot of the pressure at a point is presented for the case 

Rx = Id+, X = l# , x = 60. Again one can observe that the initial transient 

settles down by a time t = 30 units. The decay of the pressure for 

subsequent times can again be compared to growth of the boundary layer. From 

the figure we deduce that the boundary layer grows by A&* = 8.6%5* and the 

pressure decays by Ap = 11.7%~. 

When the Reynolds number of the oncoming flow is near the critical value 

the pressure transients show different patterns. Figs. 3.3 

through 3.9 show the behaviors of the pressure transient with time for an 

oncoming Reynolds number Rx = 16 (X0 = 10” Ib, = 216"/sec.) and various 

wall wave combinations. 
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Figure 3.3 presents results for a wall valve of amplitude a=5 x 10 
-4" 

with a wavelength X =2". 2x8* The nondimensional wavenumber CX=- x for this 

case is a=O.1709. The pressure transient contains a mean component which decays 

with time along with a Tollmein-Schlichting wave which behaves like a damped oscil- 

lator. Notice that the successive maxima are equally spaced in the time domain. 

The mean line dividing the envelope of maxima and minima for this case is the 

true mean pressure due to the wavy surface. The period of separation between 

successive maxima for this case is ~~=18 units. [to=-co A/2x U, and hence 

w r = 27T/tO= HIT' Uoo/hro.] Thus the nondimensional frequency wrS*/Uco=0.0596 

give Cr =w,la=O.349 Urn, the velocity of propagation of the T-S wave. The 

logarithm of the ratio of successive maxima yields wi~o. For this case 

lLys*/LJ, = -4.4 x 10-3. A separate Orr-Sommerfeld calculation for 

a linear perturbation to the flow at Rx=105 gives the value 

w,6" = 0.0590 ; Wi6" = -4.226 x N3 

UC0 %3 

Figures 3.4 and 3.5 show plots of pressure transient at two points separated in 

space by a distance X/8, for the case a=1 x 10 -3, x=l" (Rx=105, x = lo", Urn = 216"/ 

set) . The nondimensional wavenumber a=2~r6fi/X=O.34175 for this case. The suc- 

cessive maxima and minima are separated by a time period of 16 units. 

yielding wr =533 rad/sec or ~,~*/U~=O.1363; for this case wi&*/Uoo=-7.5 x 10 -3 . 

The velocity of propagation cr =0.399 Um. By comparing Figs. 3.4 and 3.5 it is 

seen that the pressure signalin(3.5)isshifted byatimeunit Tl=2 units from that 

in (3.4). Thus 

X/8 =crtl giving cr= IT/NJ, = 0. 3g3uo, 
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Solution of the Orr-Sommerfeld equation yields 

WrS*/Uoo =0.13743 ; wi&*/UoD =-2.1865 x 1O-4 

In fig. 3.6 a plot of pressure transient for a wall wave of amplitude 

a=5 x 10W3; A = 1" is given (Rx=105, x = lo", Ua,=216"/sec). From the figure 

wr=523 rad/sec ~~Cj*/U~=0.132 and lLp*/Q=-7.92 x 10 -3 and c r=0.386 Uo5 

For Fig. 3.7 the amplitude of the wave wall was increased to a=1 x 10 
-2 

in. 

The separation between successive maxima no longer display constancy in period, 

even though they are approximately equal. Indeed the nonlinear nature of the 

wave is barely observable (shorter fetch during rise and longer fetch during fall 

in the oscillation in the initial phases of the oscillations). 

In Fig. 3.8, the pressure transient for a wall wave of amplitude 

a=3xlO -2 in, X =l" (Rx=105, x = lo", U=216"/sec) is plotted. Notice the 

growth of the pressure perturbation with time. 

In Fig. 3.9 the pressure transient for a wall wave of a=5 x 10 -2 in 

(X=1, Rx=105)indicates the essentially nonlinear nature of the growth of the dis- 

turbances. For both (3.8) and (3.9) stable quasilinear solutions are not avail- 

able indicating the time unsteady separation of the flow in the wall region [the 

solutions indicate the growing nature of the separation bubble eventually leading 

to complete breakdown of the flow at a later time]. 

In Figs. (3.10) through (3.13) the flow conditionsare R =5 x 105; Uoo=108CP/ 
X 

set, X =lO". The wavelength of the wall wave is chosen as X=1.0". 
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Fig (3.10) shows plots of pressure for a wave amplitude a=1 x 10 -3 
. From 

the figure, a=O.1528; wra*/UW=0.04796; wiG*/Uoo=-2.9 x 1O-3 and c r=0.314. 

The Orr-Sommerfeld solutions yield ~~6*/U,=O.O46275; wi6*/u~=-2.097 x 10 -4 for 

this case. 

In Fig. (3.11) the amplitude of the wall wave is a=3 x 10W3. At this 

amplitude itself the nonlinear effects are barely visible. 

Fig. (3.12) depicts the situation for the case of wave amplitude a=1 x 10W2. 

The wave form now consists of a group of traveling waves. This is ob- 

tainable by considering Fig. 3.12 along with Fig. 3. 13 where the pressure 

signal at a point A/8 downstream is plotted. The constant phase shift can be 

converted to obtain the group velocity cc= 0.26 U . At higher amplitudes 

a total breakdown.of the flow is noticable in convective time scale of 

00) l 
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Methodoloqy for Evaluating the Drag Reduction Characteristics of Wavy 

Surfaces 

In a wind tunnel the drag reduction characteristics of various nonplanar 

surfaces may be wared by measuring the total drag forces on the surface 

and c0nparir-q these to a planar surface. When numerical simulations 

are used to evaluate the drag characteristic of various nonplanar surfaces, 

the followinq requirements must be satisfied: (1) The simulation should be 

highly accurate and capable of predictinq the skin friction and pressure drag 

cx-~ the surface accurately. (2) The simulation should be more economical 

than the experimental work. 

The Navier-Stokes alqorithm reported in (Refs. 1 and 2 ) 

satisfies both these criterions. The Fourier Spectral m&hod has been found 

to predict the total drag on wavy surfaces in turbulent flow in agreement 

with experiments (Ref. 2). The algorithm reported in (Refs. 1 and 2) uses 

periodic boundary conditions in the flow direction. While this has a decided 

advantage in terms of cost effectiveness as compared to an inflow/outflow 

steady state solver (spatial), there is a naqqing doubt with 

regard to the accuracy of the solution vis a vis the inflow-outflow 

codes. The results that are reported herein should provide some answers 

to these doubts. 

We note that the inflow-outflow codes can be a burdensome asset when flow 

over n-ore than one wave (nultiple waves) needs to be studied. For each wave 

a resolution of at least 30 points are needed in the wave-direction (in order 

to estimate phase of pressure distribution with an accuracy better than 5') 

thereby increasing computation time as well as storage requirements. 
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Secondly, conformal mappinq techniques become prohibitively expensive to 

employ for these problems because a flow over N waves increases the 

the computational labor N fold due to mappinq amplexity. A spatial code in 

these situations is less desirable than a properly constructed t-ral 

de. The Navier Stokes solver described in Sec. 2 is a temporal 

code. In order to aorrelate' the temporal evolution of solution to spatial 

evolution of a developing flow, we consider the following three 

illustrative exarr@es: 

1) Consider at time t = to, a flat plate which is set suddenly in notion 

with a velocity U = -zb, . By Galilean transformation this is eouivalent to 

the flow surging at U = & at t = to and the plate stationary at 

subsequent times (a classical Rayleigh problem.) For this problem the 

governing equation of motion is 

with, 

au/at =u au'/2y' (4.1) 

at t = 0: U=& y>o 

U = 0 at y = 0 

and u = 0 at y = 0 at all times. 

The solution for velocity, shear stress, etc. is 

and 

where 

U = & erf y/J4ut (4.2) 

TW = I.LDJIIPfit (4.3) 

erf(2) = 2/G erg erz * (4.4) 
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A Reynolds number can be constructed for the flow as, 

Rr = &%/4u 

The displacement thickness 6, for the flow is 

(4.5) 

61 = 1.99 (t.L&)/JR, 

and the skin friction 

Cf = 0.5624/JR, 

For a developing Blasius flow the relations are 

(4.6) 

(4.7) 

61 = 1.72 x/JR, (4.8) 

and Cf = 0.664/J% (4.9) 

Because of the difference in the numerical oxstants in (4.5) throuqh 

(4.9) a proportionality between X and T is not strictly correct. (An error 

of 10% occurs for skin friction values if the relation X = &t/2 = C&t 

is used for Rayleigh analoqy.) If, hOwever, a velocity scale is chosen such 

that kL = .664/.5624 cc, = .6L the Rayleigh solutions give reasonably 

accurate values for various profile parameters. %us even for this problem a 

meaningful analcqy can be constructed. 

In Fiq.4.1,a plot of [(C, /C )' - 11 vs T is shown. 
0 f 

The solutions 

were obtained using the periodic Navier Stokes Solver with amplitude of wave 

a = 0 and with the intial clondition given b/ (4.1).* Our calculations qive 

CCT, = 0.62tb, , in gQQd agreement with the exact solution. 

*The group velocity of computatioy can be determined by using the 
formula, C = [0.4409 Kv/(CfU,) 1 Uo3 
curve showg2in Fig. 4.1. 

where K is the slope of the 
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To investigate the nature of the solution with time the following 

initial conditions are prescribed 

t=t& u = U(Y), where U(Y) is the Blasius profile arresponding to some 

x Peynolds nmber s. 

Since the equation system (4.1) does not have an x dependence at t=t 
0’ 

the solution at all times will also be x-independent. Because of the parabolicity 

of (4.1) at large times the solution tends to the Rayleiqh solution. Of 

interest, hOwever, is the nature of the solution at ~~11 and intemiate 

times. In the small to intermediate times memory of the initial 

profile exists for the flow. 

We illustrate this behavior for the solution throuqh Fiq. (4.2) and 

(4.3),where RXoOf 200, 1000 are chosen in the examples. The group velocity 

of computation cG is equal to 0.21, which is the 

perturbation speed of propagation at these Reynolds numbers." The time domain 

in Figs. (4.2) and (4.3) is normally the time taken to obtain a quasisteady 

solution for a wavy wall of the same periodic length as the computational 

box. 

There is hardly any scatter of data points frcm the straight line in 

these figures. This means that the solution of the flat plate at different 

times (to + tl) can be related to the solution for a developing boundary 

layer at X. + x, where xl = C&. ?his concept is of crucial interest 

in developing a methology for rating the drag characteristic of various 

nonplanar surfaces. 

*The group velocity of computat' Y n can be determined by using the -- 
formula, CG = [O. 8818 KvAJCfUa. ) 
curves showt? in Figs. 4.1-4.3. 

] Uao where K is the slope of the 
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The approach that we have adopted for draq axparisons is to start a wavy 

wall calculation at time To with a Rlasius profile axrespondinq to an X 

Reynolds number R>6. At various time intervals (to + tit) the total draq 

of the wavy surfaaz is computed. These quasisteady values are cmyared to 

the local skin friction mefficient value at (X0 + r-C&t) in order to 

obtain a reasonable mnparison of the performance of various surfaces. 
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Nonplanar Surfaces for Drag Reduction in Laminar Boundary Layers 

Turbulent flow covers much of the surface area on CTOL aircraft. 

However, the residual areas of laminar flow (e.g., near nacelle leading edges 

and the fuselage nose region) can contribute large skin friction drag levels 

due to their initially low Reynolds number. Research reported herein 

indicates that certain nonplanar geometries can reduce net skin 

friction drag, even in laminar flows. Thus nonplanar waveforms may 

be a viable alternative to the more esoteric technique of 

laminar drag reduction through "supersmooth" ("slip" boundary) 

surfaces. A computer simulation technique (Navier-Stokes Solver) 

using high order numerical methods has already been developed for 

both laminar and turbulent flow wavy wall cases (Ref. 1,2) and 

it was found that the computer simulations accurately predict 

(for turbulent flows), within a 4 percent error margin, drag 

levels measured in the wind tunnel, 

In the laminar flow region the prediction capability of the present 

code is further improved due to the obvious absence of turbulence modeling and 

associated inaccuracies. Fig. 5.1 indicates four waveforms with a/X = 0.2. 

Calculations of total drag for these waveforms were conducted in the Reynolds 

number range R, = 100 to 1000. The variation of total drag as compared to 

flat plate drag is shown in Fig. 5.2. The unsymmetric V-groove of Figure 

5.la was found to have a net 17 percent drag reduction compared to a smooth 

flat surface with the same planform area. The sine waveform was shown to 

have a drag penalty starting with the lowest Reynolds number. 
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Our conclusions are that, at least at low Reynolds number, certain 

nonplanar asymmetric waveforms may perform better than a smooth flat plate. 

The mechanism of viscous drag reduction is the nonlinear effect of the 

pressure distribution over these waveforms. The asymmetric shape of the 

surfaicr i:; c.urcial in providing a-net drag reduciton. Ony in certain cases 

(Figs. 5.la,b ) is the associated pressure drag on the wave smaller than 

the skin friction reductions. These studies are ongoing, with emphasis upon 

higher Reynolds number and further surface optimization. 
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The Effect of Suction and Injection on. the. Total Drag of a Wavy Surfaces 

The increased cost of fuel has reemphasized viscous drag reduction 

research. The skin friction reduction obtained through surface mass 

injection is well known. However, the effect of spatially non-uniform 

surface injection on the amount of drag reduction (with fixed mass flow rate) 

has not been examined in detail. An interesting approach to providing local 

(passive) mass sources and sinks is the use of a porous wavy-wall 

configuration with its alternating pressure levels to provide self-induced 

mass transfer through the porous wall. In this case the pressure 

distribution over the surface wave can result in a non-negligible pressure 

drag which may be a significant part of the total drag on the surface. The 

purpose of the present study was to examine theoretically the effects of 

various spatial variations of suction and injection on the drag of both flat 

and wavy surfaces. 

Calculations have been made for two (four foot long) surfaces, one flat 

and the other sinusoidal with a wave length of one foot. In each case the 

undisturbed velocity was 50 fps, the initial boundary layer was turbulent 

at %I = 4500, and the initial boundary layer thickness was approximately 

1.8 inches. These conditions correspond to the experiment of Sigal for a 

wavy-wall with no suction or 14 injection . For the flat surface, a 

finite-difference boundary layer code described in Ref Q5) was used to 

determine if spatial variations in mass transfer for a fixed total flow rate 

could result in enhanced drag reduction. 16 This code was used previously to 

study the effect of Mach number on drag reduction due to uniform surface 
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injection. For the sinusoidal surface, calculations were made using the 

Navier-Stokes code for a sinusoidal distribution of suction and injection 

perpendicular to the wall. In both programs modelling constants of k = .41 

and @/6),ax = .085 were used in zero order (mixing length) turbulence 

closure schemes, and the wall damping factor, A+, was assumed to be the 

following function of V+ for low speed flow : 

A+ = 26 exp(-5.9 V+> (1) 

A number of works8 *13have suggested using A+ = f(P+) and k = f(p) 

corrections as a means of including the equilibrium effects of pressure 

gradient on turbulence. However, computations reported in Ref. 2 indicated 

that the pressure and skin friction distributions over Sigal's wave could be 

adequately predicted using zero pressure gradient constants (probably due to 

the nearly "frozen" nature of the turbulence structure); therefore, no 

corrections of the type proposed in Refs. 8 and l3were applied in the present 

calculations. 

The Navier-Stokes code was tested by comparing calculations on a flat 

surface with a sinusoidal distribution of injection and suction (v,/u, = 

.005 at maximum suction and injection) to similar calculations made with the 

boundary layer code. Results obtained for an impermeable wall, a flow with 

constant blowing, and the sinusoidal suction solution for one cycle of 

suction and blowing are shown in Fig. 6.1. The drag coefficient calculated 

for the surface element (four cycles of suction and injection) was 2.86 x 

10-3 from the boundary layer code and 2.81 x 10D3 from the Navier-Stokes 

code. Note that the integrated skin fricion drag over the region where the 

sinusoidal suction was applied is greater than the drag of an impermeable 

surface. 
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In Fig.6.2,the Navier-Stokes calculation for a sinusoidal wave (h = 

O.Ol", x = 12", 6 = 3") with suction velocity (vw/u,,,)max = .003 is 

presented. From the figure it is apparent that the self bleed situation (o = 

0") imposed a substantial drag penalty over that of a wavy surface with no 

mass transfer, mainly through an increase in pressure drag (phase shift). 

The opposite situation occurs for peak suction at the crest (I$ = 180"). Here 

the reductio; is mainly due to a pressure thrust. Calculations were also 

made with different peak suction rates for the same wave. All these 

calculations indicate similar trends with 0. However, there seems to be a 

critical (~~/h)~~x for a given wave and flow conditions for which the 

total drag reduction is a maximum when II = 180'. Above this critical value 

the total drag goes up for all 0. It may thus be possible to obtain a total 

drag reduction over the wavy surface by a suction distribution with C, = 

180". However, the associated penalty for collecting and ducting the flow 

(which is not considered in this analysis)implies that this is not a 

desirable option for drag reduction on sine waves. The original possibility 

which prompted the study, that of using passive bleed over the wave, is seen 

to be detrimental. 
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Drag Characteristics of Nonplanar Waveforms in Turbulent Flow 

The Navier Stokes solver discussed in Ref. 1 and 2 has been used to 

study the drag characteristics of various nonplanar waveforms in turbulent 

flow. For turbulent flows closure of the time average Navier Stokes 

equations is required. In Ref. 2, various closure models have been tested. 

It may be recalled here, that, based on the available experimental data, the 

zero equation model with equilibrium constants performs adequately in flow 

predictions for nondimensional amplitudes of ka up to -0.2. [The experiments 

against which comparions were made in Ref. 2 are (i) Kendall's experiment (ka 

= 0.19, b = 2000)) (ii) Sigal's experiment (ka = 0.17, s = 6000) (iii) 

LaRC inhouse experiments in the 7 x 11 tunnel (4 = 201)0, ka = 0.03- 

0.125, with sine waveforms and other nonplanar waveforms.)] The design 

studies that are given here, therefore, use the zero equation closure model 

(P/A )max = 0.09; K = 0.4; A+ = 26.0). The methodology discussed in Sec. 

4, is used to determine the drag characteristic of the nonplanar waveforms: 

i.e., the evolution of the solution over the nonplanar waveform is compared 

to the evolution over a flat surface. The design studies are purposely made 

for the 7" x 11" tunnel conditions of LaRC so that "promising" candidate 

surfaces can be tested at a later date. (These experiments are currently 

underway.) 

Based on the results of earlier experiments it was observed that 

symmetric sinusoidal waves have higher form drag penalties compared to other 

waveforms of the same wavelength and amplitude. The purpose of this study 

was to compute various asymmetrical surface shapes and study their overall 

drag characteristics. In the following we report the results of our 

investigation. It was noted in Sec. 4 that the convection speed of the 
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calculations (i.e., CC) for turbulent flows was approximately CC = 

0.8I-L. The initial (startup) transients decay at a time scale 

smaller than for laminar flows. In fact, we note that the skin fricion and 

pressure distributions settle down after 4 units of non-dimensional time 

(4(x/2rCb,)sec) i.e., in a time required for the box to float a distance = 

0.5A. 

In the following we briefly describe the surface waveforms drag 

characteristics. 

(1) Initial (Flat Plate)Results 

The results of computer solutions for a flat plate at 7" x 11" conditions 

(Lb, = 75"/sec, 6 initial = 0.375") at various time evolutions 

(non-dimensional time) are presented below. 

4.2 I 4.8 I 5.4 I 6.@ I 
I I I 

I Cf x 1t-f 1 3.707 I 3.675 I 3.643 I 3.614 1 3.587 I 3.563 1 
I I I- I I I I 
I- ~-- -r--.. -r 

I Re I 2687 I 2691 I 2694 1 2698 I 2702 I 2706 I 
I - ! I ! ! ! ! I 
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Entry 81 

Surface: sine wave, a = 0.03", x = 1" (ka = 0.188) 

Results of the simulations are 

Time 3.6 4.2 4.8 5.4 6.0 

CD x ld 3.645 3.585 3.528 3.475 3.428 
f 

CD x l@ 2.209 2.027 1.985 1.988 1.996 
p 

cDTx l@ 5.851 5.613 5.513 5.463 5.424 

% 59.2% 54.1% 52.5% 52.3% 52.3% 
Drag Change 

There is a drag increase of 52% for this wave which is mainly due to the 
pressure drag on the surface (form drag = 56% of the flat plate). 



Entry B2 

Surface: sine wave, a = 0.015", x = 

Results are tabulated below 

Time 

Drag Change 

1" (ka = 0.10) 

4.8 5.4 6.0 

3.590 3.556 3.524 

0.574 1 0.528 1 0.510 1 0.504 1 0.502 

4.239 1 4.154 1 4.100 1 5.060 1 4.026 

15.35 1 14.0 1 13.4 1 13.2 / 13.0 

Notice that once again the form drag on the surface is greater than 
frictional drag reduction on the surface. 



Entry 83 

Surface: symmetric V groove, a = 0.015", x = 1 

I Time 1 3.6 1 4.2 1 4.8 1 5.4 1 6.0 1 
I I I I I. I 

I 3.644 3.597 3.553 3.512 3.474 

CD x l# 0.432 0.400 B 1 0.388 ) 0.383 1 0..380 ) 

CD x ld 4.076 3.997 3.941 3.895 3.854. 
T 

% 10.9 9.7 9.05 8.59 8.17 
Drag Change 

L ! ! ! ! ! ! 

It is noted that the form drag is about 25% less than that for a sine wave of 
the same amplitude (compares to entry 82). 
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Entry B4 -_ 

Surface: symmetric V groove, a = 0.0236, A = 1" 

[,ThE V-groove has the same wall slope as the maximum slope on a sine surface 
. l , Case B2) for this case.) 

Time 3.6 4.2 4.8 5.4 

CD x l@ 3.600 3.-535 3.472’ 3.413 
n 

CD’ x ld 1.077 1.005 0.979 0.974 
n 

Cd x l@ 4.677 4.54 4.45 4.387 

T -. % 27.3 24:6 23.2 22.3 
Drag Change 

6.0 

I 3.357 

0.974 

4.331 

21.5 

Note that the pressure drag is proportional to 2 for a given k. Our 
simulation (compare B3 and 84; Bl and B2) attest to this. 



t 
I I I 

Entry B5 

Surface: unsymmetric V-groove, a = 0.015", X = 1" 

The unsymmetric V groove can be analytically described as; 

y = a(1 - 2.857 x/x ) 0 < x/x 5 0.7 

y = a(6.67 X/A -5.67) 0.7 5 xl>, 5 1.0 

Time 3.6 4.2 4.8 5.4 6.0 

CD x ld 3.649 3.604 3.561 3.521 3.484 
f 

CD x ld 0.446 0.409 0.388 0.376 0.366 
n 0 

CD x ld 4.096 4.013 3.950 3.897 3.850 

I % 1 11.45 1 10.20 1 9.30 1 8.64 1 8.05 

I Drag Change 
I 
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Entry B6 

Surface: unsymmetric V-groove, a = 0.03", x = 2" 

The surface has the same shape as Entry B5 

r Time I 3.6 4.2 4.8 5.4 6.0 
I I I I 

CD x l@ 3.499 3.455 3.418 3.386 3.359 
f 

CD x l@ 0.436 0.376 0.336 0.307 0.284 
n 

CD x lb 3.935 3.831 3.754 3.692 3.644 
T 

% Drag Change / 7.0 1 5.16 1 3.88 1 2.93 1 2.27 ) 

There is a 20% reduction in form drag solely due to S/x variation (compared 
to B5) 



Entry B7 

Surface: symmetric rounded and straight shape. 

Ihe surface can be described best as follows. The crests have a convex 
curvature K = 0.5/ine and the troughs have concave curvature K = l.O/in. The 
rounded protions are connected by straight line segments; a = 0.015" x = 1”. 

Time 3.6 4.2 4.8 5.4 6.0 

CD x ld 3.663 3.624 3.587 3.552 3.519 
f 

CD x ld 0.534 0.492 0.476 0.470 0.468 
n 

CD'X ld 4.198 4.117 4.063 4.022 3.986 
T 

% Drag Change / 14.2 1 13.0 1 12.4 1 12.13 1 11.88 1 



Entry 88 

Surface shape same as B7 except that convex curvature is K = l/in. and the 
concave curvature K = 0.5/in. (a = 0.015" x = l") 

Time 1 3.6 1 4.2 1 4.8 1 5.4 1 6.0 
L.-..-- I- ------.. 

3.622 3.584 3.549 3.515 

-(?.-5r yo.521 0.504 0.497 0.494 

% 14.9 13.7 13.1 12.8 12.5 Drag Change ) ) / 1 1 
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Entry B9 

Unsymmetric Rounded shape. 

This surface has a convex curvature (at the crests) K = l/in. and concave 
curvature K = 0.5/in. Crest to trough distance in downwind direction is 
0.75x . The curvature extends to 0.1x on either side of crest and trough 
followed by straight line segment (K = 0). The extent of straight line 
segment is 0.6~ from crest to trough and 0.2~ from trough to crest. 

lhere is a possibility of drag reduction for this case! 
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Entry BlO 

The surface shape is similar to B9 except that the curvature on the crest 
side is now 0.5/in. and at the trough side is l/in. 

I Time 3.6 1 4.2 1 4.8 1 5.4 1 6.0 

3.517 1 3.439 1 3.365 1 3.297 1 3.233 

0.465 
I 

0.395 
I 

0.357 
I 

0.335 
I 

0.323 

3.982 
I 

3.834 
1 

3.722 
I 

3.632 
I 

3.556 

8.3(3 5.24 2.98 1.25 -0.2 
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Entry Bll through B13 are sinusoidal surfaces that are asymmetric with a = 
0.015”, x = 1" 

Entry Bll 

Surface y = a cos (k,x) 0 < x/x < 0.75 k, = 2/3k 
y = a cos (k,x) 0.75 < x/x 5 1.0 k, = 2k. 

I Time 

1 Drag Change 
I 

3.6 1 4.2 1 4.8 

3.629 
I 

3.580 
I 

3.534 

0.522 
I 

0.451 
I 

0.412 

- 
II_ 
T 
T 

T 

T - 

5.4 

3.492 

0.388 

3.88 

8.17 

6.0 

3.453 

0.372 

3.825 

7.35 



!f 

Entry B12 

The surface shape is the same with the flow direction reversed. 
i.e. y = a cos kLx 0 < x/x < .75 

y = a cos k, (x - .25x) .75 < x/x Il.0 

I Time 1 3.6 1 4.2 1 4.8 1 5.4 1 6.0 1 
I-_--p I---- I 

CD x ld 3.675 3.632 3.595 3.563 3.533 
f 

CD. x lb 0.993 0.979 0.998 1.010 1.023 
nppm _. 

CD x lb 4.668 4.611 4.593 4.573 4.557 
Tp 

% 27.1 26.6 27.1 27.5 27.8 
Drag Change 

Notice the drastic increase in total drag compared to Bll. 



Entry 813 

Ihe surface can be described as 
y = a cos kx o<x/x <0.5 
y = -a(l+2coskx/2)- 0:5 5 x/x 5 1.0 

r Time ( 3.6 1 4.2 1 4.8 1 5.4 1 6.0 1 

r- CD x l# 3.642 3.598 3.557 3.518 3.482 c 1 1 1 1 1 1 

CD x l@ I .542 I 0.503 I 0.490 I 0.487 I 0.487 
n I 

I CD x l@ 4.184 4.101 4.047 4.005 3.969 -I- 1 1 1 1 1 1 

% Drag Change ) 13.9 1 12.6 1 12.0 1 11.7 1 11.4 1 
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Entry 814 through B17 are hybrid sine straight line surfaces 

Entry 814 
a = 0.015" 1.. = 1" 

y= a(1 - 2.66x/x) 0 < x/x < 0.75 
Y = a cos(4r(x-0.5)/A) 0.75 < X73. < 1.0 

I Time I 3.6 4.2 I 1 4.8 1 5.4 1 6.0 1 

c,, x l@ 
f 

CD x ld 
0 

c,, x ld 
T 

% 
Drag Change 

3.495 3.444 3.398 

0.382 0.360 0.344 

3.877 3.804 3.742 

7.28 6.05 5.0 



Entry t315 

Surface: 

a = 0.015" x = 1 

y = a (a - 4x/x) 0 < X/A < 0.5 
y = a cos &x/T. 0.5 < x/x < 1.0 

I Time I 3.6 4.2 4.8 I I I 5.4 I 6.0 
I 

(j) x l@ 3.667 3.628 3.591 3.557 3.524 
f 

$) x ld 0.484 0.442 0.424 0.414 -6.408 
n 

’ CDT x lf? 4.151 4.070 4.015 3.971 3.932 

% 12.99 11.7 11.1 Drag Change 1 T;al T-10.4 -1 
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Surface: 

where 

y = a(1 - 5.33 x/x) 0 < X/h < 0.375 
; =-y&(x + .25>, )k, I 0.375 < X/A < k, 

I” l 

Time 3.6 4.2 4.8 5.4 6.0 

CD x ld 3.676 3.638 3.602 3.568 3.536 
f 

c/j x ld 0.554 0.51’8 0.504 n. 500 0.500 
II I 

CD x ld 4.230 4.156 4.106 4.068 4.036 
T 

% 15.1 14.1 13.6 13.4 13.3 
Drag Change 



Entry 817 

Y = a(1 - 13.3X/?, ) 0 < x/r. < 0.15 
y = a cos (x + 0.70x) k, 0.15 < X/A < 1.0 

where kl = (l.l76t~/x) 

I Time 1 3.6 1 4.2 

I 

% 34.1 35.4 
Drag Change 

I I I 

4.8 5.4 6.0 I I I 



Entry 818 

Surface: y = a cos 2rrx/x 0 < X/A < 0.5 
y = a(4x/A - 3) 0.5 < x/x < 1.0 

. I Time I 3.6 4.2 4.8 5.4 6.0 I I I I 
1% x ld 

I 
3.654 I 3.612 

c I 3.572 I 3.535 I 3.499 
I I 

CD x 16 0.542 0.508 0.496 0.495 Il. 496 
n 

CD x ld 4.195 4.120 4.096 4.030 3.995 
T 

% 14.18 13.1 12.6 12.4 12.1 
Drag Change 

Notice the slightly larger pressure drag for this case compared to B15 where 
the flow encounters the straight segment first and the sinusoidal region 
later. 
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Secondary Instability of Wall Bounded Shear Flows 

The process by which a laminar shear flow undergoes transition to 

turbulence is of major interest in fluid dynamics. Here we study the initial 

transitional process that leads to eventual breakdown of wall bounded shear 

flows 

The process by which a laminar flow may become turbulent, i.e., the 

transition process,depends greatly on the geometry, initial conditions and 

other specific features of the flow. For flows like Benard Convection and 

Taylor couette flow a sequence of ordered states of transition may be 

discerned. With increasing Reynolds numbers, chaos results in these flows 

through either (i) infinitely many period-doubling bifurcations; (ii) inter- 

mittent chaotic states; or (iii) three incommensurate Hopf 

bifurcations. The choice of which route the flow undertakes in the 

transition process seems to depend on the specific details of the flow, the 

geometry and initial conditions. This sensitivity is probably due to the 

comparatively low Re numbers at which weak chaos appear in these flows. 

The situation in wall bounded shear flows is different. The transition 

to turbulence is violent in the sense that the flow snaps from a laminar 

state to a strongly chaotic state with no apparent intervening stable 

bifurcations from the mean flow. 

The instabiilty proces can be categorized into 

(i) Primary (linear instability) of the basic shear flow 

(ii) Nonlinear saturation of the primary instabiltiy and the eventual 

formation of the secondary flow. 

and (iii) the secondary instability i.e. linear instability of the secondary 

flow. 
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A rational analysis of the physics of the instability requires 

understanding the roles of each of these three stages in the growth of 

disturbances that leads to breakdown of flow. In this section a summary of 

the work in progress in the area of stage (iii) is presented. 

For analysis the primary instability was chosen as two-dimensional. The 

two dimensional primary f instability results in a periodic nonlinear flow 

whereas the secondary instability likely leads to chaos. The secondary 

instability is assumed three-dimensional. The choice of two dimensionality 

of the primary instabi lity is assumed with the understanding that though 

calculations of three-dimensional primary instabilities show an eventual 

transition to a chaotic state, the time and space scale of these 

instabilities do not bear connection to experimental 

observations. On the other hand the secondary instability considered here are 

inherently three dimensional, and have explosive growth rates (convective) as 

against primary instability (which grows in diffusive time scales). 

Method -- 

To study nonlinear saturation of the primary two dimensional instability 

in plane poiseuille flow the velocity is written of the form 

“V(2) = q, (2) -N X t 7 Vn(*) (z,r),eianX 

The two dimensional velocity field may be specified as 

$(*I = Q, (2) x + y t(2) (z,T) eia tx - ct) 
-N 
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where the time scale t is for the propagation of the nonlinear waves and the 

time scale 't is related to the attenuation of the travelling waves i.e. 

T = t/R (T is the diffusive time scale). The presence of the slow time scale 

in the evolution of general nonlinear two dimensional disturbances can be 

studied by perturbing the equilibria that are independent of T. In plane 

Poiseuille flow there are stable quasi-equilibrium states at sufficiently low 

Reynolds numbers i.e., R < 2900 and equilibrium states between 2900 < R < 

5000 suggesting the role of the slow time scale in this problem. On the 

other hand axisymmetric pipe flow is stable to all finite amplitude 

perturbations. Our calculations suggest that for pipe flows the 

diffusive scale T does not play a role in the evolution of axisymmetric 

perturbation of the pipe flow. 

Results for Plane Poiseulle Flow 

The flows to be studi-ed are assumed to be of the form of a general two 

dimensional velocity for which an infinite small three dimensional 

disturbance is superposed. 

i .e., 

t = U,i (Z) X t /in(') (Z,t) eianX t.V(3), & Cl 
-N 

t(3) = >y 
tN 
>; i/,,(3) (z ,t) e’fld eianX 

m=+In = -N 

i.e., the choice is of only one mode in the spanwise direction (due to linear 

separability). N modes are kept in the stream direction due to nonlinear 

effects. 
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Using the multiple (2 time) scales we write 

t = VI (Z) X n+ f T/n(*) (Z,r) eian(x-ct) t 
- - 

N 

N 
e{eUt f 

+ 

m '= + 1 n != -N 
Vnm(3) (Z,T) eipmy eian(X - Ct)> 

lhus u is the growth rate of then three dimensional secondary 

instability. 

The results of our calculations are briefly summarized a follows for 

plane Poiseuille flow. For Re = 2900, for B greater than a threshold value ( f3 

= a for maximum growth) the three dimensional perturbation grows in a time 

scale (0 = O(1)). 

For analysis of the secondary instability mechanisms at lower Reynolds 

numbers , a primary mode at a high Reynolds number is chosen (e.g. R = 4000). 

It is seen that the three dimensional disturbances turn off below R < 400: as 

R-t 00 the growth rate is independant of R and hence the instability is 

inviscid in nature. In particular for R = 1000 or less, viscosity significantly 

limits the growth rate. 
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Secondary Instabilities of Free Shear Flows 

The mechanism of secondary instability of free shear flows was 

investigated using the techniques discussed in the last section. The results 

for incompressible flows indicate that the secondary instabilities are 

convective in character, with a convective growth rate of 0.2. This is in 

agreement with Nishioka's experiments. The effect of compressibility on the 

secondary instabilities is also under current investigation. Work is also 

under progress on the Cyber 203 on compressible turbulent boundary layers. 

Black Box Version of Compressible Sally Code 

In recent years there has been attempts to design laminar flow control 

vehicles as a means of reducing fuel consumption of CTOL aircraft. The LFC 

technology has prompted renewed interest in the study of transition of both 

compressible and incompressible laminar boundary layers. The SALLY code was 

expressly developed as a design tool to perform efficient design calculations 

(eigen value calculations) of the stability of laminar boundary layers. The 

original version of the Sally code analyzes; incompressible flows where the 

eigenvalue problem is the fourth order Orr-Sommerfeld equation system. For 

compressible boundary layers the eigen value problem is eighth order for a 

general three dimensional boundary layer. When the flow is two dimensional 

to sixth absence of dissipation the eight order system reduces or in the 

order. 

The bas 

compressible 

ic equations for the linear stability analysis of parallel flow 

boundary layers are derived using the small disturbance theory. 

A set of five O.D.E.'s are obtained under the assumption of locally parallel 

flow (i.e. 3 second order momentum equations, 1 second order energy equation, 

and one first order continuity equations). This system of equations can be 
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reduced to a set of eight first order equations making the system aminableto 

an intial value numerical integration. 

However, previous work in this area (i.e., initial value approach) 

suffers mainly in that often they are computationally slow and they require a 

reasonably good initial guess. Thus, they are not attractive as a design 

tool. 

In the present work the original system of five equations are solved 

using finite difference matrix methods. The norm momentum equation is not 

converted to a first order equation for pressure since this generates 

unstable spurious modes when the problem is done using a global method. 

Two eigenvalue search procedures are provided - (i) Global, when no 

initial guesses are available (ii) local, when a reasonable guess is 

available and refinements are required. 

In the global approach care has to be taken to avoid the generation of 

spurious growing unstable modes that are physically not relevant. The 

spurious modes can be distinguished by refining the spatial discretisation; 

the number of true modes increase while the spurious modes remain the same. 

A key concept that was used to eliminate the generation of spurious 

results in this work is that one can eliminate the spurious mode by 

using a numerical method for the stability problem that gives numerical 

stability for the initial value problem also. In this situation no 

spurious modes appear. Details of this work are reported in Ref. (17). 
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Fig. 6.2- Plot of drag characteristic for a sinusoidal wave as a function of suction phase 
angle "@" relative to the wave crest. 
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