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Summary

The flow over wave shaped surfaces is studied using a Navier Stokes
solver. Detailed comparisons with theoretical results are presented.
including the stability of a laminar flow over wavy surfaces. Drag charac-
teristics of nonplanar surfaces is prediqted using the Navier-Stokes solver.
Also discussed are the secondary instabilities of wall bounded and free

shear flows.



Section 1

Introduction

At NASA/LaRC there has been an ongoing research program related to flow
over wave shaped geometries. The primary objective of this program is to
develop surface geometries that have lower aerodynamic drag compared to
planar surfaces. This report is an outgrowth of an ongoing computer
simulation study of flow over wavy surfaces. The details of the theoretical
model and test results of the simulations for both laminar and turbulent
flows have already been documented in two previous contractor reports (Ref,
1, 2; NASA CR159305, 1980; NASA'CR3408, 1981). Extensive simulation studies
that were conducted since then are the topic of the present study.
The problem of flow over wavy surfaces has been a major area of
research in fluid mechanics for over a century. The mechanism of wave generation
and growth of small amplitude waves in the sea(air-sea interaction)has been a
subject of sustained study for many decades. The appearance of ridges in sand dunes

is of interest in sediment transport technology (porous wavy surfaces). Small

amplitude waviness of machined surfaces and their effect on the performance
of aircraft (LFC aircraft for instance) is another application of

wavy wall flow phenomena (transition). For sinusoidal wavy surfaces in a
narrow band (a/» ~ 0.03, §/» ~ 0(1l)) it has been observed experimentally

that the wave average skin friction drag in turbulent flow is substantially
lower than that of a flat surface. However, the associated wave drag penalty
for sine surfaces more than over-compensates for this drag reduction,
resulting in a net drag increase for these surfaces. With the availablitiy
of high speed computers it has bheen possible in recent years to solve many

intractable problems. Rather than a hit-miss experimental study for low drag



wavy surfaces a reliable computer simulation program (which is economical
and accurate) was developed to analyse the total drag properties of

both symmetric and asymmetric waveforms. Details-of the computer

algorithm (Navier-Stokes solver) are given in Ref. 1. Application to
turbulent flow and comparison with wind tunnel data are given in Ref. 2.

The present work examines in detail the efficacy of the Miles—-Benjamin
theoretical model (3) for laminar flows. 1In Sec. 2, comparisons of laminar
flow calculations with theoretical models are presented. In the presence of
disturbances, a steady laminar flow undergoes transition at a certain
critical Reynolds number. The presence of waviness on the surface can itself
produce these disturbances when the wavelength of the surfaces (g ) is in the
critical range (Sec. 3 ). For the computer simulation to be effective in
rating various geometries (based on their total drag) a proper comparision
of methodology is required. Section 4 discusses this concept in detail.

In Sec. 5, the results of laminar flow over some low drag surfaces are
discussed. The results of drag computations for turbulent flow over a
variety of asymmetric and symmetric surfaces are discussed briefly in Sec.
6 with the secondary instability of wall bounded shear flows considered in
Sec. 7 . A brief discussion of the work carried out in the development

of compressible SALLY program under the present contract and work on

free shear flows is reported in Sec. 8.



Section I1I
Laminar Flow Over Wavy Surfaces
Theoretical Models

The simplest model of flow past a wave train is based on the classical
Kelvin-Helmholtz theory (4). In this analysis, viscosity is neglected,
and the primary flow Is uniform. Therefore the disturbance (waviness)
can be studied through potential theory. The perturbation pressure on the
wave is proportional to the square of the relative velocity between the wave
train and the fluid flowing over it and is in antiphase with the wave
etevation. Even though this model Is nalve physically, the pressure component
predicted by Kelvin-Helmholtz theory Is consistent with the results of a more
reallstic theory (3) valld for thin boundary layers., (Re =« or &/A<<|.)
Benjamin (3) shows that this pressure component is the only stress remaining
in the 1imit as Re » « uniformly.

Miles (5) presented an analysis of the wind wave problem considering the
inviscid perturbations to a primary profile due to the disturbances. The
primary profile has the effects of viscosity (profile curvature) in this
analysis. For travelling wave forms where the critical point is away from
the boundary a substantial component of pressure in phase with the wave Slope
(sheltering) may occur. Kendall (6) has experimentally obtained qualitative
agreement with Miles theory.

Benjamin's Theoretical Analysis

Benjamin (3) developed a uniformly valid asymptotic ahalysis of the flow
past a wavy boundary. Benjamin's analysis is based on the following
assumptions (i) the amplitude 'a' of the wave is much smaller than the wave

number k (=2r/x, where X = wavelength). (ii) the primary flow is parallel;



i.e. the Reynolds number Rex is large so that the boundary layer
growth over several wavelengths is miniscule, i.e., U(n,&) = U(n)

where n,§ are the normal and fangential coordinates of a point.

lhe total velocity field is assumed to be derivable from a stream
function, i.e.,
¥(€,n) =¥oln) +alF(n) + (Un) - c) ekn} elk
where ¥o(n) = [o" LU(n) - c] dy and c is the wave speed of the surface.

The perturbation due to the wave, F(n) is influenced by viscosity in a

friction layer whose thickness can be evaluated for given flow conditions.

This analysis yields expressions for perturbation stresses (pressure
and shear stresses) for both laminar and turbulent flow over wavy
surfaces.3

Since Benjamin's work a large number of experiments have been
conducted over wavy surfaces (turbulent flows). Discrepancies noted
between the experimental measurements and theoretical results prompted
several workers to develop theoretical models which include perturbation
Reynolds stresses (7,8) and solution of the full Navier-Stokes equations
(9, 10, 11, 12, 13).

There are very few (reported) laminar flow experiments over
wavy surfaces. However, laminar flow calculations serve to calibrate
both theoretical and computational methods perhaps better than the

turbulent flow case chiefly because of the turbulence closure problem.
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Therefore we have performed a number of faminar calculations and
compared them fo the threoretical model of Benjamin (3).

Navier-Stokes Solver

- Our Navier-Stokes solver utilizes conformal mapping and periodic
boundary conditions in the flow direction. An inverse stretching
extends the computational |id in the normal direction. Under these
condlttons the unsteady solutlons obtalned uslng this code
represent the proper physical evolution of the flow. A decided advantage
of the periodic code is that, compared to an inflow~outflow code, the
periodic code is more economic for problems related to wave frains.
Using a Rayleigh analogy concept, which is discussed in Sec. 4, the
periodic. code has been utilized to study total drag characteristics
of various wavy surfaces. Comparison with experiments are presented
in Ref. 2. The agreement between the Navier-Stokes simulations and
wind tunnel experiments has been satisfactory for the range of
geometric parameters and flow parameters tested thus far.

The two dimensional time dependent Navier-Stokes equations are:

p(2u/ot + U« Vu) = Ip 47 . 1 (2.1)

Veu-=290 (2.2)



where jij = 0ij» (which includes both laminar and turbulent stresses for
turbulent flows).

The domain of analysis and the appropriate boundary conditions are D:

0 <x <2, f(x,t) Cy K=
where the wavy surface is
yw = F (x,t)
Periodic boundary conditions apply in the flow direction. The boundary
conditions appropriate for the normal direction are
U(x,0,t) = Uy(x,t)
vi(x,0,t) =V, (x,t)
and U(xs ,t) = V(x,»,t) = p(x,°,t) =0
For a stationary wall
Uy = Yy = 0
For a wall with normal suction velocity V,, and U, are nonzero, related to
the components of the suction velocity in the physical x, y coordinate
direcions. Similarly nonzero components of velocity at the wall arise when
the wall is moving with a phase speed.

The domain bounded by the wavy surface (5) is mapped to a rectangular
£ -n coordinate system using conformal mapping techniques (1) i.e., to the
domain D :

0<CX< &, -1 <YL H+]

Initial Conditions

At time t = t, we prescribe a velocity field appropriate to a starting

Reynolds number at the beglnning of the wave sectlon., i.e.,



(X, ¥,t0) = Up(Y) (2.3)

The solution algorithm then develops a quasisteady solution appropriate

to the flow over wavy surface.

For laminar flows Ug(Y) will correspond to the Blasius profile
appropriate for the starting length. For turbulent flows, a starting profile
related to the virtual length of the flow is prescribed. In later sections,
(3, 4) the properties of the time evolving flow solutions are related to
relevant physical phenomena. For the present, we briefly state that whenever
a stable solution for wavy wall flow exists, the solution obtained under
these initial conditions and boundary conditions evolved In a fashlon simllar
to the solution over a wave train(with a mean growth of boundary layer thickness
due to the downstream length). For instance, the pressure distrlbution over the
first wave will not be quite the same as that a few wavelengths downstream because
the flow has a mean boundary layer growth and therefore the surface has a
smaller (A/8) or (a/§). The quaslisteady solutions of the Navier-Stokes

equation show these variations with time. In section 4, we present a detailed

discussion of the evolutlion In time of the periodic code described herein
and evolution of flow over length for an Inflow-outflow code over a
wavefraln..

For the test problems that are reported herein the results for pressure
and skin frictlon show minima! growth with time mainly because the

wave lengths consldered are quite small compared to the starting length (x/A ~

0(10)). Also, the time of evolution where quasisteady state is reached
(related to x 1in an inflow-outflow code) is quite small for these cases and

hence comparisons with Benjamln's theory are appropriate.



Critical Examination of Benjamin's Theoretical Result

Benjamin develops resultfs for rigid walls (¢ = 0) based on three
special cases:

(a) Assumption of a linear profile U(Y) = GY;

The perturbation stresses are given in (5.6) and (5.7) in Ref. (3) and
are written down in nondimensional form (after algebraic manipulations) for a

laminar boundary layer as,
pressure:

Co = (2Ps/p P )

it

-.021308 kaR}/2(x/x)=2/3 {cos(kx - 7/6) (2.4)

+r cos (kx -w/3)}
shear stress:
Cs = (2rs/plP) = 0.143806 ka(X/x)=2/3 {cos(kx +n/6) + g cos kx} (2.5)
£ = 3.818 (X/)\)2/3R)-(1/2

Admittedly, the linear profile suffers from a lack of realism.
However, when the wavelength of the watl Is extremely short, the disturbance
would be expected to penetrate only a very small distance away from the wall,
where a linear approximation to the velocity profile is justified.

(b) A sinusoidal profile approximating the Blasius profile; i.e.,

U=1 sin KY; 0<Y<s (2.6)
U=W; Y>6 (2.7)
K= (r/2s), s =5 X Rgl/2 (2.8)

Benjamin derives expressions for pressure and shear stress, for the case

K>k i.e., §/x < 1/4; the expressions are,




Cp = R [(2aK? /2 x (1 + k/s ) x el(kx +m)3

[(1 - k/e cot o) + 1.288 e /6mze x (1 + k/2)]
Cf = Re [2ak2k/em el (kx +7 3) x (1 4+ k/e)]

[(1 -k/2 cot 0) + 1.288 eI /6mje x (1 + k/2)]

where m = (kKU /v )1/3 and 8 =26 =7/271 - (k/K)?
When 6 /» > 1/4 the analysis presented by Benjamin can be suitably modified to

obtain the expressions for Cp and Cf as

Cp = R [2K%a/s ((1+n/1-n) + e-D ) ei(kx +m)y
[{ (1+n/1-n) (1.2881"/6mse - 1) + e=® (1 + 1.288e 17 /6n/e )3 ]
Ce = Re  2.746 Kak/am ((1+n/1-n) + e-B ) i(kx +n/3)

[{ (1+n/v1-n) (1.288;."’! /6m“/._0,7‘— 1) + 'e-3> (1 + 1.288e1/6n/g )} ]

where 6 = 26 =1/2 /(E7E72 -1 ;n=%k/ and m = (kKun/v)1/3**

(c) For the case of a Blasius profile or any general profile, when

A = (kmPu/U'(0)?) = (km/K®) < 1, Benjamin develops expressions for Cp
and Ct as

Cp = R L2k ef(kx +m)(1 - 1,288 ein/6) (= |2e-kYay)

Cr = R [2.744 K¥a/m el(kx +7/6)

**For a Blasius profile,

K = 0.332 X Rg1/2, m = 0.20336kR}/2 (x/1)-2/3
% = 0.332 R)l(/Z/x v (358(X/x )‘Ril) -1,

and 6 = 1.57 v 358(X/x )° R)‘(l -1

9



The implication of these various approximations Is riow

examined.

(i) Assumption of small "ka" limits the accuracy of the solution to small
amplitudes.

Benjamin suggests ka should be = 0.02.

(ii) Assumption of parallel flow requires R, to be large l.e. — to be of
the order of 10. (For §J=10, the growth of boundary layer over a wavelength is
of the order of 5%.)

(111) Of the three sets of expression that Benjamin dévelops for a Blasius

flow, case (b) seems to be the most appropriate one. Case (a) holds

only for very short wavelengths. Case (c) lacks reatism as will be
shown below. Case (b),where a sinusoidal profile is used to approximate the
Blasius profile is a more realistic approximation in that the differences between
a sinusoidal profile and a Blasius profile with the same wall slope
(k=mn/28; §=4.73 /bx/Uw) are only minimal and should not cause an appreciable
difference in the outcome of the results.

The results obtained using case (c) may themselves be of little use. Here
the basic requirement for the results to be valid is that the parameters

ms=4.2 (kx,) /3> 1 (2.17)
and 8=6.3 (kx) 3 R°VZ << 1 (2.18)

The first of these conditions must per-force be met since assumption of parallel
flow requires XO/A >> 1 and hence kX, =2n (k=2n/A). However the requirement
that A << 1 may not be met for all flow condition. Indeed, an examination of
the assumptions carried out to arrive at case (c) one may note that A << 0.1 or

at least of the order of 0.20 for the relation to hold reasonably well. Choeosing

10



a value of A=0.2, we note that,
for X/A=1,  (m§=7.75, 4=0.2) Ry=1.4x 10° (2.19)
for X/A=2, (ns=9.8, 4=0.2) R, =8.3 x 10° (2.20

(A choice of A = 0.2 already introduces an error of about 8% in the approxi-
mation of the boundary condition (4.8) in Benjamin's paper.)

A choice of X/A = 1 implies a boundary layer growth of 40% (X/A = 2
implies a 22.5% change in § *) thus violating the assumption of parallel flow.
According to our numerical experiments a 40% change in &* introduces a change
of similar order in the value of pressure due to nonparallelness of the flow.
Thus for case (c) to be valid (X/A > 2) Ry has fo be an unacceptably high value

(of the order of millions).

11



Comparison of Navier Stokes Solutions with Benjamin Theory
In order to verify the appropriateness of Benjamin theory, computer
simulations were conducted using the Navier Stokes solver. The results of
these calculations are summarized in Tables 1-1 through 1.3 (for a fixed x/x
= 10).
Table 1.1 presents results for a starting Reynolds number Ry = 100;
for this case 6 /» = 5.0. Results are presented for sinusoldal wave amptitudes of
107, 10, 10, 2 x 102, 5 x 102, and 10- .

Comparison with Benjamin's theory indicates that both the linear profile
and the sinusolidal profile approximatlions show poor agreement with the

present computational solution for pressure and shear stress, even for

small amplitude waves.

In Table |.2 we give the results of computer simulations at Rx = 1000
with X/XA= 10. Here again Benjamin's theory and the present Navier-Stokes
results exhibit about a 30% difference in. pressure amplitude. The
sinusoidal profile approximation appears to agree better than the
assumptionof a linearprofile in terms of pressure phase.

In Table 1.3 results are given for Rx = 104, Here the agreement
between theory and simulation is exceilent for Cp. The linear profile
assumption seems to predict the shear stress distribution better than

the sinusoidal profile approximation. This agreement may be fortuituous.

12



A further aspect that needs to be checked regarding these comparisons is
the role of (&8’\) . Table 1.4 Indlcates comparisons for various &/A's
+o obtaln a reasonably large 8, we have chosen hypothetical values of
Rx = 104, U= 102 in/sec x = 100 in, etc in the simulations., We have
performed two sets of Navier-Stokes calculatlons here. For Rx = l04 a
Blaslus profile ls used as the starting profile In the first seéf of calculation
and for the second set the oncoming flow s taken as a shear flow with the

same U'(0) at the wall as the Blasius profile. [In the freestream I.e.,

y> 1/k (where k = U'(0)/U_) the veloclty Is kept = U , and for y<I/«u =u'(0)y.]

It is seen that the Navier Stokes solutions differ from each other by
10%. This is to be expected due to the difference of profile shapes.
However Benjamin's theoretical predictions do not agree wi+th
the Navier Stokes solution. For 6/» = 1.0 both the sine and linear
approximation agree within 10% in amplitude. For larger values of &/n» the

discrepancy 1is greater.

We conclude from these numerical studies that the asymptotic
theoretlcal results are evidently not accurate for moderate

Re.

Consideration of Couette Flow Assumption for Navier Stokes Solvers

A number of works (theoretical methods and Navier-Stokes
solvers) (Refs. 9,10, 1) utilize a shear flow assumption

for the unperturbed flow. These computer algorithms

use periodic inflow and outflow condition with a moving 1id at the top. For
this case it is well known that a true steady state is available.
It is, therefore, interesting to examine how well these codes may

perform in the prediction of developing flow over a wavy wall.

13



Since the flow is assumed to be a high Reynolds number flow, there should

be no dependence on development length (XO). Thus the
characteristic Reynolds number is R, = Uy /v where U, is chosen as a

i+ 1
velocity scale

ct
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velocity gradient at the wall). We observe from Table 1.4 that a

Vinear profile for the

profile for the primary flow produces an error of about [0% In

results when compared to the Blasius profile whenever the wall velocity

gradient is chosen the same for both cases (see the Navier Stokes results of
Table 1.4). Since the wall velocity gradient of a lTaminar flow at a Reynolds
number Ry = U, X/v, is given as

U'(0) = 0.332 W/ U Ax = 0.332 U, /x R)l(/Z (2.21)

this must be equated to « in order to make an appropriate couette flow
approximation of the developing boundary layer.

Thus k = 0.332 U /x R)l(/z (2.22)
and R =x2?/n = 0.332 UA? fux R;l/z (2.23)
= 0.332 RY/2 (xpn )7
Therefore a Couette flow Reynolds number RA corresponds to a Reynolds number
Ry = 2.0856 R 2/3 (x/x)4/3 (2.24)
In Table 1.5,for a given R = 5000 and waveheight a/» = 10~ »we have

performed calculation of Cp and ¢ for various (x/x)'s. [For Ry, = 5000

and x/» =1 Egn. (2.24) gives Ry= 609.8; for x/» = 2.0 R, = 1537; and

for x/A 4, Ry = 3872.]

14
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If the couette flow results are to be meaningful, the Cp values

should agree with one another. In reallty they vary wldely depending on

the value of Ry or x/A. The Implication Is that I+ 1s not the

shear flow assumption itself that is at fault, but the denial of the memory

to the fluid (development length) by virtue of defining R,.

15



Influence of Surface Waviness on Flow Stability
Laminar flows are subject to instabillties and eventual

transition to turbulence at large Reynolds numbers. At very low

Reynolds numbers disturbances introduced into the flow decay with

time. When the Reynolds numbers are above the critical Reynolds number
(Rg% = 520 on a flat plate) small amplitude disturbances may grow in time
depending on the nature of the disturbance (wavenumber or frequency). This
is an eigenvalue problem i.e,

F(of ,w) =0 (3.1)
where ™ is the wavenumber and ® is the angular frequency (complex number).
The initial growth of a small amplitude disturbance can be studied using the
parallel flow assumption for the primary flow. The equation system governing
the disturbances is the classical Orr-Sommerfeld equation

(1)2 - a2)2 ® =iaR [(U-c©) (D2 - az) ® - U"9] (3.3)

In general, Squire's theorem states that three dimensional disturbances
are typically less disruptive than the two dimensional disturbances
small amplitude fluctuation in incompressible flow.,

The linear growth regime of small distrubances had been studied
exhaustively (6) for flat plates. 1In general, the source of the
initial disturbance is very difficult to control even under rigorous
laboratory conditions. Abrupt or drastic changes in surface
geometry (trips, roughness) sound sources in the field or even
freestream vorticity can provide the initial disturbance which

causes the flow to undergo transition,

16



We next examine the subsequent distrubance growth behavior
for a disturbance free stable laminar flow on a flat plate
encountering a wavy wall of a given amplitude and wavelength.

In section (2.4) we stated that the solution of the Navier-
Stokes equations was obtained for flow over a wavy surface with

a starting velocity profile, i.e. a Blasius profile at time

i.e., U(X,Y,t6) = Ug(Y,t,) (3.4)

Once the calculations begin, a perturbation field is generated
due to the change in geometry. For instance, the perturbation

to UO at (to + At) 1is gt most of the order (kaAt) where the
wall has a wavenumber 'k' = 2m/A. For the next few time units
the flow has to undergo an adjustment towards the eventual
velocity profile U(X,Y,t) appropriate for the wavy surface.

We note that Benjamin , using asymptotic theory, has shown that
the perturbations from a mean flow over a wavy surface with

a<< 1, and ka << 1 satisfies the Orr-Sommerfeld type
equation ((see 3.1) of Ref. 3). The solution of the Navier-
Stokes equation at early times can therefore be viewed as
perturbations with the wavenumber 'k'. Therefore it is reasonable
to expect that the solution at initial times of the unsteady

Navier-STokes solver can be studied to get information regarding

the stability of the flow.

17



Results of Computer Experiments

When the Reynolds number of the oncoming flow is well below a critical
value the presence of waviness does not affect the stability of the flow. As
an illustration the plot of pressure at a point with time (non-dimensional
with y/2x,) is shown in Fig. 3.1. The calculations were performed under
the following conditions: X, = 1000, » = 12, Y, = 10, a/x = 10~°, The
initial adjustment time from the figure is roughly 24 units.

Since small amplitude perturbations of the Orr-Sommerfeld equations travel at

a speed of roughly 0.2-0.25 U at these low Reynolds numbers, this time

corresponds to a traversed distance of one wavelength for the perturbation.
[24 x (.25U) x (A/2r ) = 2]

After a time of 24 units the pressure shows a slight decay with time.
This decay has been found to be strictly porportional to the growth of the
boundary layer in all of our calculations, i.e., A8*/8§* ~ Ap/p. For the
problem considered A§*/6* = 1.8% and Ap/p = 4/438 =~ 1%.

In Fig. 3.2 a plot of the pressure at a point is presented for the case
Ry = 10*, X = 10°, » = 60. Again one can observe that the initial transient
settles down by a time t = 30 units. The decay of the pressure for
subsequent times can again be compared to growth of the boundary layer. From
the figure we deduce that the boundary layer grows by Ad8* ~ 8.6%* and the
pressure decays by Ap = 11.7%p.

When the Reynolds number of the oncoming flow is near the critical value
the pressure transients show different patterns. Figs. 3.3
through 3.9 show the behaviors of the pressure transient with time for an
oncoming Reynolds number Ry = 10° (X, = 10" U, = 216"/sec.) and various
wall wave combinations.

18
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AL
Figure 3.3 presents results for a wall valve of amplitude a=5 x 10 4

*
with a wavelength A =2". The nondimensional wavenumber a==2£6 for this

case is @ =0.1709. The pressure transient contains a mean component which decays
with time along with a Tollmein-Schlichting wave which behaves like a damped oscil-
lator. Notice that the successive maxima are equally spaced in the time domain.
The mean line dividing the envelope of maxima and minima for this case is the

true mean pressure due to the wavy surface. The period oflseparation between

successive maxima for this case is T, =18 units. [t0==To Al2m U and hence

0
W = 2ﬂ/to== 4ﬂ2 Um/ATO.] Thus the nondimensional frequency wrG*/Uw==0.0596
give cr==wr/a==0.349 U_, the velocity of propagation of the T-S wave. The

logarithm of the ratio of successive maxima yields wiTO. For this case
wiG*/Uw==—4.4 X 10-3. A separate Orr-Sommerfeld calculation for

a linear perturbation to the flow at Rx==105 gives the value

w &% = 0.0590 3 w.8% = -h.226 x 1073
r

U Uy

o]

Figures 3.4 and 3.5 show plots of pressure transient at two points separated in
space by a distance A/8, for the case a=1 x 10-3, A=1" (Rx=105’ X=10", U_=216"/
sec). The nondimensional wavenumber o =278%/\ =0.34175 for this case. The suc-
cessive maxima and minima are separated by a time period of 16 wunits.
yielding u%_=533 rad/sec or wrG*/Um==0.1363; for this case wi6*/Uw==—7.5 X 10—3.
The velocity of propagation cr==0.399 U_. By comparing Figs. 3.4 and 3.5 it is

seen that the pressure signal in (3.5) isshifted by a time unit T1.=2 units from that

in (3.4). Thus

)\/8=crt giving c.= TT/8U°°= 0.3930_

1
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Solution of the Orr-Sommerfeld equation yields

= . = ~4
wra*/vm =0.13743 ; wiG*/Um =-2.1865 x 10

In fig. 3.6 a plot of pressure transient for a wall wave of amplitude

3 5

a=5x 10 ; A=1" 1is given (Rx=10 , X=10", Uoo=216"/sec). From the figure

w =523 rad/sec w §*/U_=0.132 and w 8%/0 =-7.92 x 10° and c_=0.386 U
o] r oo

For Fig. 3.7 the amplitude of the wave wall was increased to a=l x 10_2 in.
The separation between successive maxima no longer display constancy in period.
even though they are approximately equal. Indeed the nonlinear nature of the
wave is barely observable (shorter fetch during rise and longer fetch during fall
in the oscillation in the initial phases of the oscillations).

In Fig. 3.8, the pressure transient for a wall wave of amplitude
a=3x 10_2 in, A=1" (Rx=105, X= 10", U=216"/sec) is plotted. Notice the
growth of the pressure perturbation with time.

In Fig. 3.9 the pressure transient for a wall wave of a=5 x 10—.2 in
(A=1, RX==105)indicates the essentially nonlinear nature of the growth of the dis-
turbances. For both (3.8) and (3.9) stable quasilinear solutions are not avail-
able indicating the time unsteady separation of the flow in the wall region [the
solutions indicate the growing nature of the separation bubble eventually leading
to complete breakdown of the flow at a later timel].

In Figs. (3.10) through (3.13) the flow conditions are Rx==5 X 105; Uw==1080"/

sec, X=10". The wavelength of the wall wave is chosen as A=1.0".
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Fig (3.10) shows plots of pressure for a wave amplitude a=1 x 10_3. From
the figure, o =0.1528; wrﬁ*/Um==0.04796; wiG*/Um==-2.9 x 10_3 and cr==0.314.
The Orr-Sommerfeld solutions yield wré*/Um==0.046275; wiS*/U§)=-2.097 X 10-4 for
this case:

In Fig. (3.11) the amplitude of the wall wave is a=3 x 10_3. At this
amplitude itself the nonlinear effects are barely visible.

Fig. (3.12) depicts the situation for the case of wave amplitude a=1 x 10—2.
The wave form now consists of a group of traveling waves. This is ob-
tainable by considering Fig. 3.12 along with Fig. 3. 13 where the pressure
signal at a point A/8 downstream is plotted. The constant phase shift can be

converted to obtain the group velocity CG2 0.26 U . At higher amplitudes

a total breakdown .of the flow is noticable in convective time scale of

0(D).
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Methodology for Fvaluating the Draqg Reduction Characteristics of Wavy

Surfaces

In a wind tunnel the drag reduction characteristics of various nonplanar
surfaces may be compared by measuring the total drag forces on the surface
and comparing these to a planar surface. When numerical simulations
are used to evaluate the drag characteristic of various nonplanar surfaces,
the following requirements must be satisfied: (1) The simulation should be
highly accurate and capable of predicting the skin friction and pressure drag
on the surface accurately. (2) The simulation should be more economical
than the experimental work.

The Navier-Stokes algorithm reported in (Refs. 1 and 2 )
satisfies both these criterions. The Fourier Spectral method has been found
to predict the total drag on wavy surfaces in turbulent flow in agreement
with experiments (Ref. 2). The algorithm reported in (Refs. 1 and 2) uses
periodic boundary conditions in the flow direction. While this has a decided
advantage in terms of cost effectiveness as oompared to an inflow/outflow
steady state solver (spatial), there is a nagging doubt  with
regard to the accuracy of the solutidn vis a vis the inflow-outflow
codes. The results that are reported herein should provide some answers
to these doubts.

We note that the inflow-outflow codes can be a burdensome asset when flow
over more than one wave (multiple waves) needs to be studied. For each wave
a resolution of at least 30 points are needed in the wave-direction (in order
to estimate phase of pressure distribution with an accuracy better than 5°)

thereby increasing computation time as well as storage reguirements.
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Secondly, conformal mapping techniques become prohibitively expensive to
employ for these problems because a flow over N waves increases the
the computational labor N fold due to mapping complexity. A spatial code in
these situations is less desirable than a properly oonstructed temporal
code. The Navier Stokes solvér described in Sec. 2 1is a temporal
code. In order to correlate the temporal evolution of solution to spatial
evolution of a developing flow, we oonsider the following three
illustrative examples:
1) Consider at time t = to, a flat plate which is set suddenly in motion
with a velocity U = -1, . By Galilean transformation this is equivalent to
the flow surging at U = & at t = t, and the plate stationary at
subsequent times (a classical Rayleigh problem.) For this problem the
governing equation of motion is

s/t =v ad ey’ (4.1)
with, at t = 0: U= vyv>0

U=0aty=0

and U=0aty=0 at all times.

The solution for velocity, shear stress, etc. is

U=1U erf yVdt (4.2)
and Ty = /e /rt (4.3)
— 2
where erf(z) = 247 [Z et & (4.4)
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A Reynolds number can be constructed for the flow as,
R = W’ t/4v (4.5)

The displacement thickness §, for the flow is

8§, = 1.99 (Ut)/R, (4.6)
and the skin friction
Cg = 0.5624//?{ (4.7)

For a developing Blasius flow the relations are

§; = 1.72 X/ Ry (4.8)

and Cg = 0.664// Ry (4.9)

Because of the difference in the numerical oconstants in (4.5) through
(4.9) a proportionality between X and T is not strictly correct. (An error
of 10% occurs for skin friction values if the relation X = U.,t/2 = (‘Glt
is used for Rayleigh analoqy.) 1If, however, a velocity scaie is chosen such
that CG.: = .664/.5624 CG1 = ,6l, the Rayleigh solutions give reasonably
accurate values for various profile parameters. Thus even for this nroblem a
meaningful analogv can be constructed.

In Fig.4.1,a plot of [(Cf /Cf Y - 11 vs T is shown. The solutions
[}

were obtained using the periodic Navier Stokes Solver with amplitude of wave

a = 0 and with the intial condition given by (4.1).* Our calculations give

G, = 0.620, , in good agreement with the exact solution.
7

¥The group velocity of computatioa can be determined by using the
formula, C, = fo.4k409 Kv/(Cwa) ] U, where K is the slope of the
curve shown’in Fig. kL.1.
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To investigate the nature of the solution with time the following

initial conditions are prescribed

t = to: u = U(Y), where U(Y) is the Blasius profile corresponding to some

X Reynolds number Ry .

Since the equation system (4.1) does not have an x dependence at t = t_,
the solution at all times will also be x—independent. Because of the parabolicity
of (4.1) at large times the solution tends to the Rayleigh solution. Of
interest, however, is the nature of the solution at small and intermediate
times. In the small to intermediate times memory of the initial
profile exists for the flow.

We illustrate this behavior for the solution through Fig. (4.2) and

(4.3) ,where Ry c)of 200, 1000 are chosen in the examples. The aroup velocity

of computation CG is equal to 0.21, which is the

perturbation speed of propagation at these Reynolds numbers.* The time domain
in Figs. (4.2) and (4.3) is normally the time taken to obtain a quasisteady
solution for a wavy wall of the same periodic length as the ocomputational
box.

There is hardly any scatter of data points from the straight line in
these figures. This means that the solution of the flat plate at different
times (t, + t;) can be related to the solution for a developing boundary
layer at X, + x, where x, = Cgt;. This concept is of crucial interest
in developing a methology for rating the drag characteristic of wvarious

nonplanar surfaces.

¥The group velocity of computat%?n can be determined by using the
formula, C, = [0.8818 KvAVYC ] U, where K is the slope of the

U,
curves Showt in Figs. 4.1-4.3. T
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The approach that we have adopted for drag comparisons is to start a wavy
wall calculation at time T, with a Blasius profile corresponding to an X

Reynolds number Rxo At various time intervals (ty, + mdt) the total drag

of the wavy surface is computed. These quasisteady values are compared to
the local skin friction coefficient value at (X5 + nCqAt) in order to

obtain a reasonable comparison of the performance of various surfaces.

26



Nonplanar Surfaces for Drag Reduction in Laminar Boundary Layers

Turbulent flow covers much of the surface area on CTOL aircraft.
However, the residual areas of laminar flow (e.g., near nacelle leading edges
and the fuselage nose region) can contribute large skin friction drag levels
due to their initially low Reynolds number. Research reported herein
indicates that certain nonplanar geometries can reduce net skin
friction drag, even in laminar flows. Thus nonplanar waveforms may
be a viable alternative to the more esoteric technique of
laminar drag reduction through "supersmooth" ("slip" boundary)
surfaces. A computer simulation technique (Navier-Stokes Solver)
using high order numerical methods has already been developed for
both laminar and turbulent flow wavy wall cases (Ref. 1,2) and
it was found that the computer simulations accurately predict
(for turbulent flows), within a 4 percent error margin, drag

levels measured in the wind tunnel,

In the laminar flow region the prediction capability of the present
code is further improved due to the obvious absence of turbulence modeling and
associated inaccuracies. Fig. 5.1 indicates four waveforms with a/A = 0.2.
Calculations of total drag for these waveforms were conducted in the Reynolds
number range Ry = 100 to 1000. The variation of total drag as compared to
flat plate drag is shown in Fig. 5.2, The unsymmetric V-groove of Figure
5.1a was found to have a net 17 percent drag reduction compared to a smooth
flat surface with the same planform area. The sine waveform was shown to

have a drag penalty starting with the lowest Reynolds number.
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Our conclusions are that, at least at low Reynolds number, certain
nonplanar asymmetric waveforms may perform better than a smooth flat plate.
The mechanism of viscous drag reduction is the nonlinear effect of the
pressure distribution over these waveférms. The asymmetric shape of the
surface is curcial in providing a net drag reduciton. Ony in certain cases
(Figs. 5.1a,b ) is the associated pressure drag on the wave smaller than
the skin friction reductions. These studies are ongoing, with emphasis upon

higher Reynolds number and further surface optimization.
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The Effect of Suction and Injection on the Total Drag of a Wavy Surfaces

The increased cost of fuel has reemphasized viscous drag reduction
research. The skin friction reduction obtained through surface mass
injection is well known. However, the effect of spatially non-uniform
surface injection on the amount of drag reduction (with fixed mass flow rate)
has not been examined in detail. An interesting approach to providing local
(passive) mass sources and sinks is the use of a porous wavy-wall
configuration with its alternating pressure levels to provide self-induced
mass transfer through the porous wall. In this case the pressure
distribution over the surface wave can result in a ndn—negligible pressure
drag which may be a significant part of the total drag on the surface. The
purpose of the present study was to examine theoretically the effects of
various spatial variations of suction and injection on the drag of both flat
and wavy surfaces.

Calculations have been made for two (four foot long) surfaces, one flat
and the other sinusoidal with a wave length of one foot. 1In each case the
undisturbed velocity was 50 fps, the initial boundary layer was turbulent
at Ry = 4500, and the initial boundary layer thickness was approximately
1.8 inches. These conditions correspond to the experiment of Sigal for a
wavy-wall with no suction or injection;% For the flat surface, a
finite~difference boundary layer code described in Ref (5) was used to
determine if spatial variations in mass transfer for a fixed total flow rate
could result in enhanced drag reduction. This code was used previously16to

study the effect of Mach number on drag reduction due to uniform surface

29



injection. For the sinusoidal surfacé, calculations were made using the
Navier-Stokes code for a sinusoidal distribution of suction and injection
perpendicular to the wall. In both programs modelling constants of k = ,41
and (2/8)pax = 085 were used in zero order (mixing length) turbulence
closure schemes, and the wall damping factor, A*, was assumed to be the
following function of V' for low speed flow :

At = 26 exp(-5.9 V) (1)
A number of workés’l3have suggested using At = £(P*) and k = £(R)
corrections as a means of including the equilibrium effects of pressure
gradient on turbulence. However, computations reported in Ref. 2 indicated
that the pressure and skin friction distributions over Sigal's wave could be
adequately predicted using zero pressure gradient constants (probably due to
the nearly "frozen" nature of the turbulence structure); therefore, no
corrections of the type proposed in Refs. 8 and 13 were applied in the present
calculations.

The Navier-Stokes code was tested by comparing calculations on a flat
surface with a sinusoidal distribution of injection and suction (v,/u, =
.005 at maximum suction and injection) to similar calculations made with the
boundary layer code. Results obtained for an impermeable wall, a flow with
constant blowing, and the sinusoidal suction solution for omne cycle of
suction and blowing are shown in Fig. 6.1, The drag coefficient calculated
for the surface element (four cycles of suction and injection) was 2.86 x
1073 from the boundary layer code and 2,81 x 1073 from the Navier-Stokes
code. Note that the integrated skin fricion drag over the region where the -
sinusoidal suction was applied is greater than the drag of an impermeable
surface.
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In Fig. 6.2, the Navier-Stokes calculation for a sinusoidal wave (h =
0.01", » = 12", 8§ = 3") with suction velocity (vy/un)dpsx = -003 is
presented, From the figure it is apparent that the self bleed situation (¢ =
0°) imposed a substantial drag penalty over that of a wavy surface with no
mass transfer, mainly through an increase in pressure drag (phase shift).
The opposite situation occurs for peak suction at the crest (¢ = 180°), Here
the reduction is mainly due to a pressure thrust. Calculations were also
made with different peak suction rates for the same wave. All these
calculations indicate similar trends with ¢ . However, there seems to be a
critical (vw/um)max for a given wave and flow conditions for which the
total drag reduction is a maximum when ¢ = 180°, Above this critical value
the total drag goes up for all ¢. It may thus be possible to obtain a total
drag reduction over the wavy surface by a suction distribution with & =
180°. However, the associated penalty for collecting and ducting the flow
(which is not considered in this analysis)implies that this is not a
desirable option for drag reduction on sine waves. The original possibility
which prompted the study, that of using passive bleed over the wave, is seen

to be detrimental.
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Drag Characteristics of Nonplanar Waveforms in Turbulent Flow

The MNavier Stokes solver discussed in Ref, 1 and 2 has been used to
study the drag characteristics of various nonplanar waveforms in turbulent
fliow. For turbulent flows closure of the time average Navier Stokes
equations is required. In Ref. 2, various closure models have been tested.
It may be recalled here, that, based on the available experimental data, the
zero equation model with equilibrium constants performs adequately in flow
predictions for nondimensional amplitudes of ka up to =0.2. [The experiments
against which comparions were made in Ref. 2 are (i) Kendall's experiment (ka
= 0.19, Ry = 2000), (ii) Sigal's experiment (ka = 0.17, Ry =~ 6000) (iii)
LaRC inhouse experiments in the 7 x 11 tunnel (R, = 2000, ka = 0.03-
0.125, with sine waveforms and other nonplanar waveforms.) ] The design
studies that are given here, therefore, use the zero equation closure model
((#/8)pax = 0.09; K = 0.4; At = 26.0). The methodology discussed in Sec.
4, is used to determine the drag characteristic of the nonplanar waveforms:
i.e., the evolution of the solution over the nonplanar waveform is compared
to the evolution over a flat surface. The design studies are purposely made
for the 7" x 11" tunnel conditions of LaRC so that "promising" candidate
surfaces can be tested at a later date. (These experiments are currently
underway.)

Based on the results of earlier experiments it was observed that
symmetric sinusoidal waves have higher form drag penaities compared to other
waveforms of the same wavelength and amplitude. The purpose of this study

was to compute various asymmetrical surface shapes and study their overall

drag characteristics. In the following we report the results of our

investigation. It was noted in Sec. 4 that the convection speed of the
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calculations (i.e., Cg) for turbulent flows was approximately Cg =
0.8U,. The initial (startup) transients decay at a time scale
smaller than for laminar flows. In fact, we note that the skin fricion and
pressure distributions settle down after 4 units of non-dimensional time
(4(r/2n U, )sec) i.e., in a time required for the box to float a distance =
0.5\ .

In the following we briefly describe the surface waveforms drag
characteristics.

(1) Initial (Flat Plate)Results

The results of computer solutions for a flat plate at 7" x 11" conditions
(U = 75"/sec, & initial = 0.375") at various time evolutions

(non-dimensional time) are presented below.

T T T | I I ]
‘ Time l 3.0 | 3.6 | 4.2 | 4.8 | 5.4 | 6.0 |
I 1 | | | | |
| I | I | | ! 1
| C¢ x 10° | 3.707 | 3.675 | 3.643 | 3.614 | 3.587 | 3.563 |
I N | | | | 1
| I r T | | | |
| Rg | 2687 | 2691 ' 2694 ' 2698 | 2702 | 2706 |
L | | | | |

| !
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Entry Bl
Surface: sine wave, a = 0.03", » = 1" (ka =~ 0.188)

Results of the simulations are

Time 3.6 4.2 4.8 5.4 6.0
CDfX 10° 3.645 | 3.585 | 3.528 | 3.475 | 3.428
CDpX 10° 2.209 | 2.027 | 1.985 | 1.988 | 1.996
CDT'X 10 5.851 | 5.613 | 5.513 | 5.463 | 5.424

% 59.2% | 54.1% | 52.5% | 52.3% | 52.3%
Drag Change

There is a drag increase of 52% for this wave which is mainly due to the
pressure drag on the surface (form drag = 56% of the flat plate).
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Entry B2

Surface:

Results are tabulated below

Drag Change

sine wave, a = 0.015", » = 1" (ka = 0.10)
" Time | 3.6 | 42 | 48 | 54 | 6.0
_CDF x 16¢ | 3.665 | 3.626 | 3.590 | 3.556 | 3.524
A_CD,n; xr 10 707.7574 0.528 | 0.510 | 0.504 | 0.502
Cg;x 16° 4.239 | 4.154 | 4.100 | 5.060 | 4.026
% 15.35 | 14.0 | 13.4 | 13.2 | 13.0

Notice that once again the form drag on the surface is greater than
frictional drag reduction on the surface.
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Entry B3

Surface: symmetric V groove, a = 0.015", x» =1

Time 3.6 | 42 | 48 | 54 | 6.0
Cy, % 10 3.644 | 3.597 | 3.553 | 3.512 | 3.474
Cp_x 10 0.432 | 0.400 | 0.388 | 0.383 | 0.380
Cpx 100 | 4.076 3.997 | 3.941 | 3.895 | 3.854

% 10.9 | 9.7 | 9.05 | 8.59 | 8.17
Drag Change

It is noted that the form drag is about 25% less than that for a sine wave of
the same amplitude (compares to entry B2).
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Entry B4
Surface: symmetric V groove, a = 0.0236, » = 1"

(The V-groove has the same wall slope as the maximum s]ope on a sine surface
(i.e., Case B2) for this case.)

Time 3.6 4.2 4.8 5.4 6.0
G x 10 3.600 | 3.535 | 3.472 | 3.413 | 3.357
CD;\ x 10° 1.077 | 1.005 | 0.973 | 0.974 | 0.974
Cd; i3 4.677 | 4.5¢ | 4.45 | 4.387 | 4.331

% 27.3 | 24.6 | 23.2 | 22.3 | 21.5
Drag Change

Note that the pressure drag is proportional to & for a given k. Our
simulation (compare B3 and B4; Bl and B2) attest to this.

37



Entry B5
Surface: unsymmetric V-groove, a = 0.015", » = 1"

The unsymmetric V groove can be analytically described as;

y =a(l - 2.857 x/x) 0 < x/x < 0.7
y = a(6.67 x/x -5.67) 0.7 < x/» < 1.0
Time 3.6 4.2 ‘4.8 5.4 6.0

CDfx 10° 3.649 | 3.604 | 3.561 | 3.521 | 3.484
Cp X 10° 0.446 | 0.409 | 0.388 | 0.376 | 0.366
CD:X 10° 4.096 | 4.013 | 3.950 | 3.897 | 3.850

% 11.45 | 10.20 | 9.30 8.64 8.05
Drag Change
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Entry B6
Surface: wunsymmetric V-groove, a = 0.03", » = 2"

The surface has the same shape as Entry B5

 Time 3.6 4.2 4.8 5.4 6.0
CD; x 10° 3.499 | 3.455 | 3.418 | 3.386 | 3.359
CDer 10° 0.436 | 0.376 | 0.336 | 0.307 | 0.284
CDT x 10° 3.935 | 3.831 | 3.754 | 3.692 | 3.644

% 7.0 5.16 | 3.88 | 2.93 | 2.27
Drag Change

There is a 20% reduction in form drag solely due to 8§ /A variation (compared
to B5)
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Entry B7

Surface: symmetric rounded and straight shape.

IThe surface can be described best as follows.
curvature « = 0.5/in. and the troughs have concave curvature « = 1.0/in.
rounded protions are connected by straight line segments; a = 0.015" >

The crests have a convex

Time 3.6 4.2 4.8 5.4 6.0
CDfx 16° 3.663 | 3.624 | 3.587 | 3.552 | 3.519
CDle 10° 0.534 | 0.492 | 0.476 | 0.470 | 0.468
CD%_x 10° 4,198 | 4.117 | 4.063 | 4.022 | 3.986

% 14.2 13.0 12.4 12.13 | 11.88
Drag Change
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Entry B8

Surface shape same as B7 except that convex curvature is «
concave curvature ¢ = 0.5/in. (a = 0.015" » = 1")

1/in. and the

" Time 3.6 | 42 | 48 | 5.4 | 6.0
| cp x 1¢ | 3.662 | 3.622 | 3.584 | 3.549 | 3.515
Cp x 16 0.564 | 0.521 | 0.504 | 0.497 | 0.494
D_ . . .
Cpx 10 4.226 | 4.143 | 4.088 | 4.046 | 4.009
b7 B
9 14.9 | 13.7 | 13.1 | 12.8 | 12.5
Drag Change
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Entry B9
Unsymmetric Rounded shape.

This surface has a convex curvature (at the crests) « = 1/in. and concave
curvature x = 0.5/in. Crest to trough distance in downwind direction is
0.75.. The curvature extends to 0.1» on either side of crest and trough
followed by straight Tine segment (« = 0). The extent of straight line
segment is 0.6n from crest to trough and 0.2 from trough to crest.

Time 3.6 4.2 4.8 5.4 6.0
CD,_ x 10° 3.474 | 3.408 | 3.326 | 3.250 | 3.180
cDr') x 10° 0.453 | 0.383 | 0.344 | 0.324 | 0.314
cDT x 10 3.946 | 3.790 | 3.670 | 3.574 | 3.494

% 7.37 | 4.03 | 1.55 | -0.4 | -2
Drag Change

lhere is a possibility of drag reduction for this case!
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Entry B10

The surface shape is similar to B9 except that the curvature on the crest
side is now 0.5/in. and at the trough side is 1/in.

 Time 3.6 4.2 4.8 5.4 6.0
cDFx 10° 3.517 | 3.439 | 3.365 | 3.297 | 3.233
Can 10° 0.465 | 0.395 | 0.357 | 0.335 | 0.323
CDTX 10° 3.982 | 3.834 | 3.722 | 3.632 | 3.556

% 8.30 | 5.24 | 2.98 | 1.25 | -0.2
Drag Change
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Entry Bl1l through B13 are sinusoidal surfaces that are asymmetric with a
0.015", x =

Entry Bl1l

Surface

1"
y=acos (kx) 0<x/A <0.75 k;, = 2/3k
y =a cos (k,x) 0.75 < x/a < 1.0 k, = 2k.
Time 3.6 1.2 | 4.8 5.4 | 6.0
Cy x 10° 3.629 | 3.580 | 3.534 | 3.492 | 3.453
£ . N
¢y x 10 0.522 | 0.451 | 0.412 | 0.388 | 0.372
D — e
Cp._ ¥ 10° 4.151 | 4.031 | 3.945 | 3.88 | 3.825
% 13.0 | 10.7 | 9.16 | 8.17 | 7.35
Drag Change
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Entry B12

The surface shape is the same with the flow direction reversed.

t i.e. y = a cos k,x 0<x/a .75
e y =acos kj{x - .25.) .75 < xx» < 1.0
l’E.
's e — — —=-
Time 3.6 4,2 4.8 5.4 6.0
¢, x 100 | 3.675 | 3.632 | 3.595 | 3.563 | 3.533
f _
CD x 10° 0.993 0.979 0.998 1.010 1.023
D _
CD x 10° 4,668 4.611 4,593 4.573 4,557
T _
% 27.1 26.6 27.1 27.5 27.8
Drag Change

Notice the drastic increase in total drag compared to Bll.
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Entry B13

lhe surface can be described as

y = a cos kx 0 < x/A 0.5
y = —a(1l+2coskx/2) 0.5 < x/x £ 1.0
Time 3.6 4.2 4.8 5.4 | 6.0
Cp x 10 3.642 | 3.598 | 3.557 | 3.518 | 3.482
.F
Cp x 167 542 | 0.503 | 0.490 | 0.487 | 0.487
D
Cp, X 10° 4.184 | 4.101 | 4.047 | 4.005 | 3.969
9 13.9 | 12.6 | 12.0 | 11.7 | 11.4
Drag Change
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Entry B14 through B17 are hybrid sine straight line surfaces

Entry Bl4
R a = 0.015" » = 1"
y= a(l - 2.66x/x) 0 < x/» <0.75
Y = a cos(4T(x-0.5)/1) 0.75 < x/» < 1.0
Time 3.6 4,2 4.8 5.4 6.0
¢y x 10° 3.495 | 3.444 | 3.398
f -
CD x 10° 0.382 | 0.360 | 0.344
R -
CDT x 10° 3.877 3.804 3.742
% 7.28 6.05 5.0
Drag Change
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Entry B15

Surface:

a = 0.015" A =1
y=a (a - 4x/x) 0 < x/A <0.5
Yy = a cos Zx/x 0.5 < x/a < 1.0
Time 3.6 | 4.2 | 48 | 5.4 | 6.0
(:D1c x 10° 3.667 | 3.628 | 3.591 | 3.557 | 3.524
CDn x 10 0.484 | 0.442 | 0.424 | 0.414 | 0.408
CDT x 17 4.151 | 4.070 | 4.015 | 3.971 | 3.932
% 12.99 | 11.7 11.1 10.7 10.4
Drag Change

L8




Entry Bl6

Surface: y =a(l - 5.33 x/a) 0 < x/x < 0.375
y =acosf(x + .25 )k;] 0.375 < x/a < Ky
where k; = 1l.6n /2
 Time 3.6 4.2 4.8 5.4 6.0
Cb x 10° 3.676 3.638 3.602 3.568 3.536
.F
CH x 10° 0.554 0.518 0.504 0.500 0.500
n
CD x 10° 4,230 4,156 4,106 4,068 4.036
T
% 15.1 14.1 13.6 13.4 13.3
Drag Change
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Entry B17

where

y
y
ky

a(l - 13.3x/x) 0 < x/x <0.15
acos (x +0.700) k; 0.15 < x/x < 1.0
= (1.176n /2 )

non

Time 3.6 4.2 4.8 5.4 6.0
G, X 163 3.878 | 3.898 | 3.917 | 3.93 3.940
G, X 163 1.048 | 1.036 | 1.051 | 1.08 | 1.145
G, X 10% 4.927 | 4.934 | 4.967 | 5.011 | 5.054

% 3.1 | 35.4 | 37.4 | 39.7 | 41.8
Drag Change
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Entry B18
Surface: y = a cos Zrx/x 0 < x/x < 0.5
y = a(4x/x - 3) 0.5 < x/x < 1.0
Time 3.6 4.2 4.8 5.4 6.0
CD x 10° 3.654 3.612 3.572 3.5356 3.499
f
CD x 10° 0.542 0.508 0.496 0.495 0.496
D
Cy. x 10° 4.195 | 4.120 | 4.096 | 4.030 | 3.995
T
% 14.18 | 13.1 12.6 12.4 12.1
Drag Change

Notice the slightly larger pressure drag for this case compared to Bl5 where
the flow encounters the straight segment first and the sinusoidal region

later.
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Secondary Instability of Wall Bounded Shear Flows

The process by which a laminar shear flow undergoes transition to

turbulence is of major interest in fluid dynamics. Here we study the initial
transitional process that leads to eventual breakdown of wall bounded shear

flows

The process by which a laminar flow may become turbulent, i.e., the
transition process, depends greatly on the geometry, initial conditions and
other specific features of the flow. For flows like Benard Convection and
Taylor couette flow a sequence of ordered states of transition may be
discerned. With increasing Reynolds numbers, chaos results in these flows
through either (i) infinitely many period-doubling bifurcations; (ii) inter-
mittent chaotic states; or (iii) three incommensurate Hopf
bifurcations. The choice of which route the flow undertakes in the
transition process seems to depend on the specific details of the flow, the
geometry and initial conditions. This sensitivity is probably due to the
comparatively low Re numbers at which weak chaos appear in these flows.

The situation in wall bounded shear flows is different. The transition
to turbulence 1is violent in the sense that the flow snaps from a laminar
state to a strongly chaotic state with no apparent intervening stable
bifurcations from the mean flow.

The instabiilty proces can be categorized into
(i) Primary (linear instability) of the basic shear flow
(i) Nonlinear saturation of the primary instabiltiy and the eventual
formation of the secondary flow.
and (iii) the secondary instability i.e. linear instability of the secondary

flow.
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A rational analysis of the physics of the instability requires

understanding the roles of each of these three stages in the growth of
disturbances that leads to breakdown of flow. In this section a summary of
the work in progress in the area of stage (iii) is presented.

For analysis the primary instability was chosen as two-dimensional. The
two dimensional primary instability results in a periodic nonlinear flow
whereas the secondary instability likely leads to chaos. The secondary
instability is assumed three-dimensional. The choice of two dimensionality
of the primary instability is assumed with the understanding that though
calculations of three-dimensional primary instabilities show an eventual
transition to a chaﬁtic state, the time and space scale of these
instabilities do not bear connection to experimental
observations. On the other hand the secondary instability considered here are
inherently three dimensional, and have explosive'growth rates (convective) as
against primary instability (which grows in diffusive time scales).

Method

To study nonlinear saturation of the primary two dimensional instability
in plane poiseuille flow the velocity is written of the form
>, N, i
v(2) - W (z) x + L Vo(2) (z,r),elenX
The two dimensional velocity field may be specified as
N

V(2) . W (z) x +7 V(2) (z,7) el (x - ct)
-N
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where the time scale t is for the propagation of the nonlinear waves and the
time scale t 1is related to the attenuation of the travelling waves i.e.
v = t/R (v is the diffusive time scale). The presence of the slow time scale
in the evolution of general nonlinear two dimensional disturbances can be
studied by perturbing the equilibria that are independent of t. In plane
Poiseuille flow there are stable quasi-equilibrium states at sufficiently low
Reynolds numbers i.e., R < 2900 and equilibrium states between 2900 < R <
5000 suggesting the role of the slow time scale in this problem. On the
other hand axisymmetric pipe flow 1is stable to all finite amplitude
perturbations. Our calculations suggest that for pipe flows the

diffusive scale 1 does not play a role in the evolution of axisymmetric
perturbation of the pipe flow.

Results for Plane Poiseulle Flow

The flows to be studied are assumed to be of the form of a general two
dimensional velocity for which an infinite small three dimensional
disturbance 1is superposed.

i.e.,

N
> .
V=y (z2)x +)-MJ2) (z,t) elnX +ev(3), e €1

v(3) Von(3) (2,t) eifmy elen

)

+N
v
/
=i-1n =

=]

i.e., the choice is of only one mode in the spanwise direction (due to linear
separability). N modes are kept in the stream direction due to nonlinear

effects.
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Using the multiple (2 time) scales we write

N, '
Vosu() x 4T V(2 (2sr) elenlxct)
n = -N
NN N |
g{eO’t I\‘ )‘ Vnm(3) (Z,T) e]ﬁmy eian(x _ Ct)}
m = 1'1 n ‘= _N

lhus ¢ 1is the growth rate of then three dimensional secondary
instability.

The results of our calculations are briefly summarized a follows for
plane Poiseuille flow. For Re = 2900, for B greater than a threshold value ( B
~ a for maximum growth) the three dimensional perturbation grows in a time
scale (o = 0(1)).

For analysis of the secondary instability mechanisms at lower Reynolds
numbers , a primary mode at a high Reynolds number is chosen (e.g. R = 4000).

It is seen that the three dimensional disturbances turn off below R < 400: as
R + = the growth rate is independant of R and hence the instability is

inviscid in nature. In particular for R= 1000 or less, viscosity significantly

limits the growth rate.
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Secondary Instabilities of Free Shear Flows

The mechanism of secondary instability of free shear flows was

investigated using the techniques discussed in the last section. The results

for incompressible flows indicate that the secondary instabilities are
convective in character, with a convective growth rate of 0.2, This is in
agreement with Nishioka's experiments. The effect of compressibility on the
secondary instabilities is also under current investigation. Work is also
under progress on the Cyber 203 on compressible turbulent boundary layers.

Black Box Version of Compressible Sally Code

In recent years there has been attempts to design laminar flow control
vehicles as a means of reducing fuel consumption of CTOL aircraft. The LFC
technology has prompted renewed interest in the study of transition of both
compressible and incompressible laminar boundary layers. The SALLY code was
expressly developed as a design tool to perform efficient design calculations
(eigen value calculations) of the stability of laminar boundary layers. The
original version of the Sally code analyzes: incompressible flows where the
eigenvalue problem is the fourth order Orr-Sommerfeld equation system. For
compressible boundary layers the eigen value problem is eighth order for a
general three dimensional boundary layer. When the flow is two dimensional
or in the absence of dissipation the eight order system reduces to sixth
order.

The basic equations for the linear stability analysis of parallel flow
compressible boundary layers are derived using the small disturbance theory.
A set of five 0.D.E.'s are obtained under the assumption of locally parallel
flow (i.e. 3 second order momentum equations, 1 second order energy equation,

and one first order continuity equations). This system of equations can be
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reduced to a set of eight first order equations making the system aminabletg
an intial value numerical integration.

However, previous work in this area (i.e., initial value approach)
suffers mainly in that often they are computationally slow and they require a
reasonably good initial guess. Thus, they are not attractive as a design
tool.

In the present work the original system of five equations are solved
using finite difference matrix methods. The norm momentum equation is not
converted to a first order equation for pressure since this generates
unstable spurious modes when the problem is done using a global method.

Two eigenvalue search procedures are provided - (i) Global, when no
initial gquesses are available (ii) Tlocal, when a reasonable guess is
available and refinements are required.

In the global approach care has to be taken to avoid the generation of
spurious growing unstable modes that are physically not relevant. The
spurious modes can be distinguished by refining the spatial discretisation;
the number of true modes increase while the spurious modes remain the same.

A key concept that was used to eliminate the generation of spurious
results in this work is that one can eliminate the spurious mode by
using a numerical method for the stabiiity problem that gives numerical
stability for the initial value problem also. In this situation no

spurious modes appear. Details of this work are reported in Ref. (17).
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Fig. 3.5- Plot of pressure at point 2 (separated by A/8 from point 1) vs
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x/\ =10.

0.34175

o

.
2

time at a point for a wavy surface.

a/A=3x 10_2
Flow separation occurs for this case.

Fig. 3,8- Plot of pressure vs
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X/X =10.

t a point on a wavy surface.

o=0.34175

ime a

’

2.

5 x 10

a/\

=105;

X

Fig. 3.9- Plot of pressure vs t
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10-3;

x 10-%

a/\=

5 x 10°

R
X

t over a wave,

in
0.1528.

o=

X/A=10

. 3.10- Plot of pressure at a po
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a/A=2x 10—2;
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X/) =10;

Fig. 3.12- Plot of pressure at point 1,
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o =0.1528.

X/\ =10;

a/lA=2x 10~2

5 x 10°

X

Fig. 3.13- Plot of pressure at point 2 (A/8 downstream of point 1)
R

LIVl ipetiatl LLllIll AR ENE RN

Il|||l LllLllllll LIiid

™
R
AN

,
!

e,
[HHOR)

ot
Sulu

R

TR
KRR

RN
O vad, Py,
R

T
AR,

XX

AN

o
RO KR
RS

[IIIllIllJlIIIlIlIllIIlllllllllIlllLlJLL'IIIIIIILlLIIIIIIIIlIlIIlIIIllllllllllllilllllllld

(AN TNE AN E NN

~ [4e] w =
[=) [=) o o

(L] [a¥)
o o

*1dWY

76

ILIIIIII[I LIl
— o

o

-.01

-03t it

-.02

16 21 26 3t 36 41 46 51
TIME

11



o
Ov+ L

€+ 02+ L

o)
0T+ L

*SuoTINTos Y3TATABY JO UOTINTOAT -T*4 *Srg

Y4

o~
Y
(&)

o~
o



o
a7t L

° 0z+°1 0T+°L

(s}
X

«19ATOS 89015 I9TaBN OFporiad 9ay3 Sursn QQ0z= ¥
19qunu spToukay 1e o3eTd ey B UO UOTINTOS JO UOTINTOAD JO 3IOTd -¢°Y

*31a

0

$%0°0

S0°0

78



Qt74°lL

B aw: |
0zZ+°L

o)

‘dISATOS s9Y01g aaTaBN OTpoTaad 341 3ursn QoI = %

Isqunu spToudsy 3e 91etd 3BTy ® WO UOT3INTOS JO UOTINTOA® JO J07

|
d ~¢*% 311

Q9



*WIOJSABMA SUTS

*9A0018-A OTIoWmASU) -qT°C *B1g

\ /.If.(

-p1°¢ 814 1940018-4 dT1IPWULS v ~oT¢ -3yy

* 9A0013-A OTIAIaumAsuf -eI*G *3TJ

— )
(...ﬁala: Kﬁ\\u\’\ - /

L

* 5971391093 aeuetduou 3o 30Td -T°G *313

80



01

9 T'¢ ®an8rg ‘anco0ag—y dTazoumdsup AHV

B 1°¢ aanStg ‘940018 OTI3sumisup AV

° T°G 2an8Tg ‘anc0is-p dTaloumkg ﬁu

P 1°¢ @an81g ‘aaepM sutg A”v

*MOTF SuTwoouo
JO Iaqunu spyouday 9yl JO UOTIOUNF B SB MOTJ JPUTWE]
uy smioyoaem ieueTduou jo OTISTAL3IdEARYD FeIQ JO 3074 -7°G °STd

foo.ﬂ
40T
-1 01T

81T

-1 02T

T

dj‘a

3/

@

81

J



0°1 8’ 9° A A 0
r T Y T —
ll.ll».l\.ll“ll/’lll//
\ 200°
\
N\ y - ¥00°
\ /
%u
1 900°
9p0J S9YN0}S-JaIARN ‘JaJSueJ} SSBW |eplosnulg —--—
8poJ JaAe] Alepunoq ‘Jajsued) ssew [eplosnulg —-—
apod Jake| Asepunog ‘uoidalul snonuljuoy) —--—- i .
Jajsuel) ssew o —— 800

*23eTd JB]J B JI9A0 MOTF ® 10J UOTINGTIAISTP uot3o9fur
pue UOTIONS JO T0AD SABA B I9A0 UOTINGTIISTP UOTIDTAF UTAS JO jo7d uoT3eaAqITE) -1'9 *8Td

82



Fig. 6.2- Plot of drag characteristic for a sinusoidal wave as a function of suction phase
angle "Q" relative to the wave crest.
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