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ABSTRACT

The basic approaches to image registration are surveyec.
Three image models are opresented as models of the subpixel
orohlem, A variety of approaches to the analysis of subpixel
analysis are presented using these models,
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eRELACE

This report summarizes studies conducted on Research
relative to Automated Multisensor Image Renistration, during the
rericd april 1971 - april 19052 by Dr, Laveen N. k3pdL (Princioal
Investicator), “r, David Lavine, Mr, Charles pNerman and pr, Eric
Stur, This work was supported in oart by NASA Grant NAGS=154 to
the University of Maryland ard in part hy L.N.X, Corporation,
stlver sSprina, ™y, The main purpos® of these ttudies was to
review current approaches to image registration vreleyany o
Landsat images with emophasis on feature matchino and subpixel
4CCUracYy and to recommend research which should be pursued in
the area ot registration error and subpixel accuracvy analysis and
estimation,

Ore HoX. Ramaprivan, 1Information gxtracction Branch, Code
932s NASA wuwoddard Space Flight Center, Greenbelt, w0 served as
technical officer tor the NASA grant,., The princival investigator
IS arateful to Pr. Raumanriyan for helptul aiscussion and for the
reterences oroyided by Dre. Ramapriyan on Langsat image orocessing

irocedures.,
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1. introduction and Summary
This report deals with two aspects of image registration
enccuntered in the processing of Landsat images: feature matching

and sub=gixel accuracy, ™any recent research efforts in the area
of rezistration have considerea the need to transform images into
a torm more suitable for accurate registratione. These
transformations ranje from simple Linear filters to <complicated
procecures Dbased on knowledge pased 1image segmentatione The

icn of optimal transformations is difficult due to the wide

des
rance of tyres of transformations under consideratione.

Certain classes of transformations yield highly simplified
inaces which may be registered either as rectangular arrays of
pixels or as sets of features. Examoles of such simplified
imaces are binary ecge and sparse point images. Registration of
edse and ooint ima,es aprears to be robust in comparison with
many urey—-level <correlation methoos. gdge and point image
r2;istration are important, In Section Il we briefly review
basic methoas in this area, We also include a description of
work we have done «ith one type of feature matching procedure,

S5ection II! is a brief review of work on estimation of the
errors inherent in image matching., This material is particularly
inpertant, since Llarge errors in a matching scheme preclude the
possinility of extracting suopixel information from that scheme,
Included in this section is 3 aiscussion of a paper describing
the s2lection of control points to minimize matching errors.

Analyticel studies in the area of sub-pixel accuracy have
seen Llinited, In Section 1V we give an overview of some basic
igeas in the area. Though the analysis of this section is
limitec, we feel that a more detailed analysis of these model
situctions is teasible.

Section Y contains & yescription of the research we are
recomnencing on edge-based image matching ana the analysis of
sucpixel accuracy. Three distinct approaches are describet,
rancing from o selection of "test" edge features to a theoretical
analysis of the maximum accuracy attainable in a mathematical

mouel o the image. The last section, the bibliography, incluces

(2)
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some items not cited in the body of the report. For the sake of
completeness, we have included many articles on image matching
which have indirect bearing on feature matchina or sub=-pixel

sccuracy since they do contain potentially usefull $information on
filtering and image modelina.

(3)
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1.7 apstract Yector Matghing

The pecent deve Lopment of various renistration algoritnms
em,leyiny some type of feature matching emphagizes the need gor
more detailed analysis of the capabilities of feature matching,
In tnis section we describe a feature matchina nethod, called the
Abstract Vector Matching “ethod (AV), which has performed well in
simulation as well as experimentation with aerial imagery. The
Landsat registration accuracy requirements reacuire high accuracy
on 3 large percentage of the images procegsede Tp ensure thise a
reiastration method must bpe insensitive to many sources of
yrev=level variation such as crop growth, soil noisture and very
\0cal scene charaess Feature matchinao methoos otffer consicderable
gromise in precviding this robustness. A variety of studies
cerformed cy L."«Ke Corporat ion have led us to believe that the
AsVe method captures many of the desirable croperties of other
testure matchina methods while incorporatino some new approaches
to tne croplen,

Tne basic 2,V. method can te stated briefly. First, fijnd a
set of points of dnterest in the dmage, such as road
intersections or points of high curvature on curves such as
rivers, Seconc¢d, select certain pairs of ¢those points to te
joined by vectors. The vectors may bte real image edges or
arcsitrary oairings of points, «hich we call abstract vectors.
Thirde carry out the same procedure on a map or a control 1image,
Fourthy for each vector in one image, determnine which vector in
the other imace coyld align with jt on the basis of Lenath and
+0ossibly other factors such as image intensity on the two sideg
cf the vectors, tach possible matching pair leads to an affine
transformaticn taking one image to the other, such a
transformation is civen by a set of rotation, translation, and
+v0ssible scale factors. The parameters definino a transformation
may be thougcht of as a ooint in tuclidean space, Clusterinag is

performea in this space on the set ot transformations

(4)
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corresponding to matching vectors. The cluster centers are
recarded as potential registration transformations, cach such
trcnsformation is then apolied to the vectors in the sensed imane
une a fijure ct matching merit is computed, The transformation
with the hiakest merit is taken as the correct transformation.

Twe features of this alcorithm deserve further comment,
Firsty, the selection of intersections ana abstract vectors 3dds
robustness to the detection processs Matchina procedures based
upcn ecdges vperfoem poorly if the edaes become fraamented during
the cetection rrocess, since the ends of the edgeg become
ditficult to locate, In spite of this fraomentatiorn, the
intersection of edge secoments is often preserved. Wwhile matching
coula be performed directly on the set of intersections, the
matching could be performed faster by imoosing additional
structure on the doint sets Selectina pairs of ooints, joining
them by vectors and matching vectors is considerably faster than
investigating all possible matchinas of ooints, Since
intersections may pe reliable even when edge endpoints are not,
we 40 not reguire pairs of endpoints tg Correspond to endooints
ot a real edge,

The second feature of interest in the alageithm 35 the
clusterinn of transformations. €fach matchina of a vector in the
sensed imacge with 3 vector in the reference image gives rise to a
feasible reaistration transformation, Cflustering transformations
corresponds to finding those transformations approximately
maximizino the nuwter of vectors matched. Clustering enables the

alyorithm to ayoid examipnation of many incorrect transformations.

(5)
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1II.2 Ihe Rockyell Pagttern Maigher

An 1image vregistration algorithm developed at Rockwell
International Cforporation is described in [Belsher et al. 19791,
The technicue s based on matching high contrast edgese
cxperiments have been performed in both the infrared and ootical
portions of the spectrum. Since the opattern matcher was not
testea on Landsat data, it s diffizult ¢to extrapolate the
numerical results to Landsat registration accuracy. In spite of
this; the methods of analysis and the experimental results give
some insight into the possible benefits of subpixel
interpolation.

The feature extraction algorithms were designed to maximize
the peak ¢to sidelobe ratio, defined as the number of matching
features at the correct offset divided by the maximum number over
all incorrect offsets. In order to carry out ¢this maximization
the probability of the existence of a reference feature given a
sensed feature was determined and wmaximized for each feature
extraction algorithm, The expected number of matchina features
at tne correct offset is:

N Prob(S(R)
where Prob(SAR) is the prooabilty of a match betueen a sensed ()
anc corresponding reference (R) feature at the correct offset,
ang N is the number of features in the reference. At incorrect
offsets, sensed features are independent of corresponding
reference features., Thus the expected match at incorrect offsets
is given by:
N Prob(S)Prob(R)}

where Prob(S) and Prob(R) are the sensed ang reference feature
densities, Thus the ratio of the expected peak to the exnected

sice lobe is

Prob(SMR) 1
(P/S) = Prob(s)Prob(R) ~ Prob(R) Prob(R/S)

where Prob(P/S) is the probability of a reference feature given a
sensed feature, The reason for choosina the fezature extractor
maximizing P(R/S) 1is that Prob(R) can be comoputed from the

reference image.
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Edge features were tbtained by median filtering to remove
ncise spikes, followed by the application of a gradient operatore
Further processing {is done to vremove the effects of local
variations 1in grey scale density, and finally a template
extractor §s wused tc opotain the endprointse Spot features are
also extracted.

Each \V~ature matching leads to a possible matching of a
reference to a sensed image. For N such possible matching we
denote the a oosteriori probability of offset {1 being correct
given the sensed image bty p(i/S)) 1=1seee9Ne ysing Bayes theorem
it is seen that

p(i/s) = p(S)
In general flight information can be used to estimate p(i), and
p(S) 1is common to the evaluation of all offsets, so it suffices
to compute p(S/1).
The sensed features, S., at the correct offset are assumed

J
to take the form

S5 2Rt Y

whe re Rj is the reference measurment and N is noise. The
measured features are mostly Lengths, From the above
decomposition of Sj. the following expressions for p(s/1)
results:

p(S/3) = p(n) = p(S - R)

where NoSy, and R are vectors with coefficients ajs S5 and Ry
respectively. Finally, assuming the errors are independent the
following expression for p(i/S) may be derived:

. I . -
Loglp(i/S)) = Llogp(i) + 3 logo(% Rj)

Some modifications are required to handle proplems with very
small probabilitiege A distributjonal form for p must be assumed
with vreasonable choices including the Gaussian, Laplacian and
Cauchy densitiese

de may think of p(i/S) as a correlation surface which is a
function of offsets i, The surface is approximated by a




quadratic surface using interpolation on a 3Ix3 pirel area or o
ox5 pixel area. Registration was performed on 3=D imagery using
tifteen imaces. The root-mean-square registratfon error with no
interpolation was c.3 pixelss Using subpixel interpolation the
«verace error was reduced to 1,% pixels. In only one case was
the error increased using subpixel $nterpolatfon,
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II.? Hyhelg Correlation

The traue-offs Detween correlation and feature matchinn have
not reen studfed adequately. Ratkoyfc [1v¥76] outlines basic
issurs in Gsssessing this trade=-off and describes a hybrig
correlator combining desirable features of hoth methods. Feature
cefiritions are siven and the relevance of feature
charscteristics to correlation performance are described,

Rccuracy, as described in Ratkovic’s work, refers to the
wicth arouna the true correlation peak §n which a correlation
point is likely tv :%e, rather than the accuracy attafnable
through 3dnterpolation of the correlatfon Tunction. Three basfc
fssucs are discusseds How cvoes one auantify accuracy? What
tacters affect it? Yhat methods improve it? 1. ig agsumed that
s tWwo stune matchina crocess is available in which the {irst
stece determines an aperoximate match, wnile the second stuge
improves local accuracy of the registration,

Based on Limited experiments, it appears that the three
Lrimary factors affecting registration accuracy are the nuaber,
size, and meun intensity of nomogeneous recions in the image, A
homo,eneoys reaion is defjned to be a set of spatially connected
+Jxmls which posses the Lroperty of at Llease first=order
stationarity and possible second-order stationarity. Several
cxgeriments were concucted to determine the sianificance of
homo,eneous recions, First, a 20 x 7 retference scene was
yenerated using a vaussian distrioution w«ith zero mean and
variance one, The center ‘0 x 10 imaane was cdesfgnated 3 sensor
scene and correlated againge the ceference scenee To dntroduce
the effect of nonhomogeneity, a bias value was added to all
values in the Left halft of the scene, Correlations were
verformed for oftsets u = 7,1,10,170., as the pias Level

jncressed, the correlation tunction became proaressively flatter
neor its ceake.

further experiments were condycted with ERTS satellite data
trom several tyoes of areas (acricultural, mountain, suturban,
une cesert)s The images were dividea 1dnto homogeneous regicns

dnu  correlations were perforwed in two ways, First the ordinary

%)

H
H
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correlation of *he sensor an¢ reference image was computed,
next, each pixe! ¥n a homogeneous region w3 replaced by the wmean
value ot oixel intensity $n the region, and correlation was
performecgs Little dJiffterence was observed using the two types of
torrclations, from the ahive experiments, as well as others,
tatkcocvic infers that the resence of Large homooeneou.s reatons ot
sf:nificantly varying mean intensities are the major scurce of
+eak spreaging ¥n the correlation function,

A "pure”™ feature matching algorithm was employed usirg edae
cetectors to determine region boundarfes. Intersection points of
regfcn pouncaries were then extracted together and the number of
Lines mecting at such intersections was recorded. A matching
$rocedure was then aoplieag to the vertices, weighted by the
rumher cf intersecting Lines to determine the registration
transformation,

A feature matching correlation procedure wvas developed, The
images were aecomposed into nomogeneous regfons and each region
x3s indepenaently normalized to 2zero mean and the resulting
imaoes were correlated, The oprimary difference between this
metho? anc the ‘'"pure®” fegature matching aethod is that in the
former, renfon ratches are weighted by their size, while they are
not in the lutter.

The final matching aloorithm groposed by Rytkovic s a
nycrid betseen correlation and feature matching, In ¢hig
sl_orithm the reference image is segmented into homogeneous
regicns, 8t each displacenent between the reference and the
sensed imaye, the sensed image is segmentea fdentically to the
reference tmage, and corresponding reqgfons are normalized and
worrelated., The correlatigns in the jndividusl regifons are added
anc the registration transformatfon i5 computed from this
corrclation function. *he hybrid ccrrelaticn alaorithm avoicds
the yifficulties of reliable feature extraction in the sensor
mage, while retaining the advantaae of correctina for
noro_®neous regions,

reature matching and the hybeid a(Qorithm both essentially
nich-oass filter the imace to remove the eftects of varyinn mean
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intensities totween rejionss This high=pass filtering, which has
received considerakbtle attention in recent years, s still not
well ungerstood with respect 1to its role in the correlation
Srocess,

8 conclusion ot the Ratkovic study yas thaty in the presence
of ourely Local npise, orcinary correlation prrformed best among
the alaorithms, For reaional noise, such as a bias value added
to an entire recion, resulting from such tactors as soil moisture
ulr crop gevelopment, the ocure feature extraction method performed
Leste The ®hyrrig correlator 52ve somewhat less accurate
registration informagion than the pure feature extractors, but at

less coste.
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alls frror Estimption Revicw

ill.1 lmage Correlatiop with Geometric 2istortion

The e=stimation ot tranglatiogn parameters in imane
recistraticn it a special case of the image registration ,ith an
oftire distortion, Ltocal registration ang false acguisition
rrobabilities in this more oeneral case were studied by Mostafayi
an¢ Smith [19?7B2, They determined the optimal reference image
shape and size correspondina to a aiven rotation and scaling
tetween tne reference and the sense® jm3ges The rotation and
scaling parameters are determined, prior to registration  yusing
knowledge of the sensor pasition and attitude. In the presence
of ruotation and scaling changes, two reference window oOroperties
rust be opalanced. First the window shculd te large enough to
ohtain a reliable estimate cf the registration parameters,
Second, the window should be small enough to oprevent the
seomttric uistortion from degyrading registration quality, which
can be caused by poor alignment of pixels that are far removed
frcm the center of rotation,

“ostatavi and 3Smith draw further conclusions Javout the
structure nf 3deal reference imanes, Ffor a fixed rotation and
scaling changes they show there is an ideal reference image size
und shape which wninimized the orobability ¢t selecting the wrong
\oue in the correlation function, Theere is an $deal refasrence
imsoe size and shape which minimizes the error in registration,
siven that the correct tobe is selected. the ideal window Size
in the latter case is smaltler than the ideal window size in the
former casee. B8cth the orobability of false acquisition and the
tocal recistration error cgepend cn the difference matein 1-A
whure I aenotes the identity matrix and A defines a rotation and
scale <cranoe, 3efore dircussing ¢the significance of these
conclusionsy we present the assumptions of the model,

The reference imwage, I, (x) = P(x), where x = (11,12) is a
function of two yariableg Lhere the origin is 3ssumed to be the

reference point. The sensed imagesy, 1, (x) is given by

Ig(x) = Py(x) + N(x)

(12)
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where P3(x) is a geometrically distorted version of the reference
inane and N(x) is additive noise., It is assumed that P(x) and
#(x) are uncorrelatedy zero-mean Gaussian random processes which
ave cnatijally chift-invariant, second-orger statistics., In
adcition the cross-correlatign 1is assumed to pe Gaussiane The
patterns are assumed to he differentiable in the mean-square

sense, The ceoretric distortion is given by

Py(x) = P(A.x + to)

where A represents a rotation ang a scale change and to is a
translation,. The basic measure of correlatign a3cquisition
accuracy s the expected value of the correlation process of the
true transtatien divided oy the standard deviation of the
correlation process far from this point. The local recistration
accuracy 1is ga function of the gradient of the correlation
function at to. For a correct regjstrations this gradient should
te zeroe

A basic difficulty in applying this work (ies in the
assumptiors mace in the ganalysise. The expected value of the
corretation function at t_y and the standard deviation of the

0

correlation far from t. are computea independentglye Thus a more

0
reclistic cut Lless tractahle croblem is to took at the value of
C(to) and ( = { max Cct) | t far from t, } for each realization

¢f the Gaussian picture process and determine the probability of
the event c1 > c(to). Simitarly, the value of the gradient of
C(t) as a measure of registration accuracy is difficult to relate
directly tc the expected regigtration error in Dixelse

(13)
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The variance of the translation errer §in registration is cne

measure of recistration performance, Two procedures top
estimating this wvariance [%cGillem and svedlow 157 J will be
deseriteog in this sectione while the variances compared using
these methods may pe ltless than a pixel, the authors assume that
the log likelihcod function for the image to imaoce displacement
can be modelled by a second order polynomial, This assumption

coes not agpear to be derivable from more fundamental properties

of their =odel, nor 1ig any experimental evigence for its
ptausibitity providea. Ae a result of this assumption, the role
of various correlation function interpolation schemes in
registration accuracy is bypassed, thus Limiting the
2ffectiveness of these models for error variance, Though the
relevance of these variance estimation scheames 1is currently
Limited by the quadratic model, the basic iageas of these methods
will be presented due to the possibijity of future improvesents
on the methoce

i1n toth methods, it is assumed a model for the wupderiying
image s known, wethod 1) makes the following additional

assumptions:

1) The sensed image consists of additive noise
which is independent of the model,

Z) The joint probability density function of the
noise s Gaussian,

2) The a priori distribution of the translation
parameters is uniform over the range of
interest,

4) The variance in the x and y directions may
pe modelled separately,

5) The tinal result is dependent upon a large
signal to noise ratio,

The Likelihood function of the displacement paraseters is given

(14)
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vy
Pm(Ty» T,) ()
Py(E)

A(T_, Ty) = pm(Tx’ Ty)
where

A(g‘,?y) = Likelihood function ot the

the displacement parameters tx and FY

pm(gt,Ty) gensity function of the parameters.

Tx and Ty. ciyen the knowpn sfanat
pm(g(,?y)(f) = conditional density of f(x,y)
given n(x,y.tx,Ty) is present
potf) = conditional density of the f(x,y) given
m(x,y,Tx,Ty) is absent
m(x.y,Tx.Ty) = known signal as a function of
the spatial coordinates andc the
displacement parameters
Fix,y)

ni{x,y) = additive noise

alxn,y) + nlxe,y) = received signal

The variance of the error in the x direction transtation
will 1ou be estimatea. Denoting the estimates of T, and Ty by %x
and Ty.
Tx, and then , se ¢he fact that at a maximum of the Likelihood

first expanoc the log-likelihood in a Taylor series about

function, the first order derivatives are zero., The following

expression is ottained:

A A A ézln A(% % ) A
In A(Tx, Ty)z»‘ln A(Tx, T)') + 1/2 p- zx’ DAk (Tx - Ty)
x

The variance in the x direction is then given ty

2 A A
A 2 [ 9" 1In A(Tx, Ty) -1
X = 3Tx‘

cxpanding A(Tx,’y) it :an be shown that

A A
3_1? -, oy (3, ’fy) 8mh(Tx’£y)
x b 8 3T, 3T,
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Here, the Gs
vf the noise, g and h represent index pairs g=(ni.yj). h=(xx.yl).

p are terms in the inverse of the covariance matrix

and the sum is taken over all indices, The atove expression can
ve simplifiec tc yield a3 variance estimate in termas of the
cffective bandwidth ano signat to noise ratios in the x and y
directions,

the second method assumes the noise Fg aaditive ang
independent of the signal; the noise spectrum is known and a
matched filter is useds The basic model assumes the received
signal is a sum of tso output signals; the model convelved with a
filter and the noise convolved with the same filter, First the
tunctions representinc the filtered model and the composite
tiltered output signal are expanded in Taylor series about the
true registration position, It is assumed that the filtered
cutputs are maximized at ¢the true registration position,
Applying the corresponding constraints on the derivatives, an
expressifon for the error variance is obtained in terms of the
tiltered output noise and the filtered model output, By
selecting a matched filter, a variance estimate similar to that

of methou one is ottained.
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ITl.2 Control Pgoing selegtipgn

The sgatial distribution ot ground control points (GCP) can
affect the accuracy of imace registration, Clearly the number
anc lacation c¢f G5(CP°s is constrained by the scene undcer
considerationy btut subject to this -onstraint, a registration
Lroagram must still select 3 set of around control points. This
selection orocedyre shgpuld choos® control points so as to
minimize the reonistration ervor. In a study of ¢thig problems
orti [1901Y developed an expression for the mean sauare Landsat
“SS registration error as a function of GCP locationg,. A
minimization procedure 1is then applied to determine the ootimal
GCP cistripution,

Orti“s procedure estimates the attituce and altitude of the
satellite ¢rom a3 set of GCP“s, AlLL other mapoing functions
relating the raw and corrected images are assumed to be known. In
adajtion it s assumed that within a Landsat frame the three
attitude ancles can be adeauate|y described by cubic polynomials
of tine ara the altitude by a linear functione. Thus there are
fourteen coefficients to wue estimated., The error criterion is
the sveragae error in these coefficients,

The neometry 0of the transformation probtlem will now be
descritegc, All deviations are assumed to be small. The attitude

onNc altituce “eviations from the nominal values are 3iven by

x = ¢ + ktanG(p)
y = w[l + tan2G(p)] + htanG(p)

where p is the CC?”s oixel numnber within the scan line measured
from its center, G{p) ¥s the corresponding scan angley zero at
the center of tre scan line; o +ny and «k are the ateity-e
oneoles, citch, roll, and yaw and n is the relative altituce
ceviationy all measured at the t ime when the GCP was seen by the
satellites Here x and y reoresent the GCP control differences in
position alony an3d acrposs the orbijtal track on a n~lane tanmgent to
the earth through the nadir point of the image. The x and y

cooruinates represent differences in positions betwemen the GCP in

(17)
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map coordinates and the GCP position obtained from transforming
the raw imagce coordinates without consideration of attitude or
altitude deviations from tne nominal vatlues,

The attitude an,iles are then approximated by thirc deqgree
golynomials using orthonormal Lecendre polynomials and the
altitude s sporoximated by a first degree polynomial, The
expressions for x and y togather with the Legendre polynomial
expansions vielcd the followina matrix equations for deviations

(x, 4%, J: (i=1,eee9n) corresponaing to GCP”s ¢ and ¢,
1" Xy y
x-wx-cx+cx
= 'C +t
Y W& y y

e 3
Ex and £y

control points,. LI and dy are matrix functions of F and the

are vectors reoresentinoc the errors associated with the

Lecendre polynomials enterinc in the expansions, From the abgye
matrix equations, lLeast-mean-square estimation of cx and cy can
e computed. These estimates can then be wused to compute the
variaonce of the oropagated registration error, After a somewhat
involved derivation of the registration error as a function of
GCF location it is determined that GCP“s should Lie near the four
corners o0f ¢the dimage and in some areas o0¢ the left anc right
edces of the image where the positions ..re a function of the

number of control points,
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IVs Subcpixel Agguracy Reyieyw

Ivel Subz-pixel Edae Estimagign

Three approaches to the estimation of edge Llocations to
sub-pixel accuracy are presentead in a recent paper of Hyce and
Davis (1982]. In tuo of the approaches, the image is assumed to
be a "grey Llevel™ image 1in which the intensity at each image
point can take on a range of valuess A set of pixels is assumed
to have been identified as belonging to an edge which is assumed
to separate two regions. The regions are assumed to have either
constant, but cifferent, grey levels, or grey lLevels given by two
different but known cistributionse

For each pixel ana each possible Line passing through the
pixel, the area on each side of the Line §s computed, The grey
level of an edge pixel 1is assumed to be a weighted Llinear
combination of the random variatles giving the grey Levels in the
two regions. The weighting is by the relative area of the pixel
belon3zing to each regicn, The edce rixels” grey Llevels are
assumed to be ingependert, 1f we parameterize the edges by polar
coordinate (pyQ)y then the probavility density function for the
observed grey level in an edge pixel can be calculated. This
density 1is parameterized by (1@ since we get a different grey
level mixture depending on how the edge intersects the pixele

The estimation of the edge parameters, (pyO), can now te set
up as a maximum Llikelihood or least squares procedure. This is
straightforwarc to set up since the intensities are independent
random variables with known densitiess The Likelihood estimate
is ditficult to compute numerically and no tests were performed
using this approach,

A simpler 2pproach to the protlem was also investicated.
The ecge was estimated to be the best least squares fit to the
centers of the edge pixelss NO use was made of grey Llevels in
this approach, and no optimality was claimede A refinement of
all the above methods was also studied. In this refinement,
edges were fit to each of three consecutive points on a line,
rather than glotally fitting as described aboye.

(19)
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Yhe methods were tested on ten Landsat images in which the
edges consfsted of agricultural field boundaries, The edge
pixels were selected using ground truth rather than an edge
detector, as would be necesgary in praceice, PRands 1 and & were
selected, sfnce they tend to be different and {ndependent.
Results are reported for least squares fitting using grey tevels
and least squares fitting using pixel centers. Both Local (three
point) and global fitting experiments uere performed. For global
fits, ground truth and estimation results for p and were given.
for Llocal fits the rms errors in gand p were reported. The rms
errors ¥in p were less than one in all cases and the ras errors in
0(in degrees) ranged from about 3 to (2, with results clustering
about 1.5, The fitting to pixel centers yag ag accurate as Ath.
edge fitting using grey levels. Thus the use of grey levels did
not appear advisable, due to the additional computational
complexity.

The experimental results of this work are difficult to
assess because the accuracy is given in terms of p and O rather
than in terms of pixels, 6lobatl weasures of registration
eCCUracy are not readily computable from the given data, This is
not a criticism of their methods, but rather indicates the need
tor further work before their study can be adegquately assessed,
No analysis of the probabilistic properties of the estimated
registration transformations are given in this work, We believe
that an analysis of this type is feasible for methods similar to
those used in this study. Such an analysis could provide a
useful basis for the evaluation of algorithas for registration
with subpixel accuracy.
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1v.2 Cyrrent Sub-pixel Methods

Two hasic approaches to sub-pixel registration accuracy are
uiscussed in a recent survey [Wolte and Juday 1982] on
re,fstration. In the tirst approach, the correlation between two
imoges §is interpolated and its maximum is taken to be the offset.
In the second approach, patches in the two images are matched to
the nearest pixel wusing correlation, and a mapping function is
tit to these matches. The success of this method is based on the
sssumption that the errors ir local patch fits are random and
tend to cancel.

Various approaches have heen taken to the interpolation of
the correlation function. Fitting of lower order _olynomials to
the correlation function is one common amethod. Both bivariate
and fourth-order polynomials have been used for this purpose.
Fitting is commonly cdone over a small neightorhood, up to 5x5.
the order of the p...romial can be allowed to vary. The quality
of the peak in an interpolateg correlation function can be
evaluatea in terms of the curvature at the peak and the heicht at
the peak.

Several variations to the above approaches have been tried.
civariate gaussians rather than polynomials have been used ftor
titting; elliptical cones have also been studied. The centroid
of the correlation surtface has also been considered as an
estimate of imaae offset. As a final approach, the image offset
can be estimated by the ophase function in the correlation
trensform. The offset can be directly calculatea from the phase
+f the correlation function is symmetric, which unfortunately may
not ve the case.

The above methods are not based on any theoretical model of
the correlation process, As a result, the accuracy of
interpolation depends largely on the surface fitted to the
correlation, rxperimental studies do not provide an adeguate
basis for a clear comparison of these methods at this time.
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Ve Researsh Recospepndations

Vo1 Geoometric Registration

Interest in performing fdmage registration using feature
matching methods s growing in the image proucessing comaunitye.
The temporal stability of edge locations §is considerably better
than that of grey Llevels for a wide variety of gcenes,
Correlation of {images filtered for edge enhancement say be
regarded as an fintermediate step betueen traditional correlation
methods and more symbolic feature matching. In this section we
examine some issues in edge based fmage matching., uWe think work
along these djrections could shed considerable Ulight on the
nature of sub-pizxel accyracy and the desjon and evatuation ot
algorithms to achieve it,

The study of sub-pizxel accuracy in registration nay
profitably be divided 1into two areas of research, First, how
auch information about sub-pixel accuracy ¥s contained in a pair
of imagese. Secondy hLow algorithas can be designed to achieve
sub-pixel accuracye. In part A of this section ve deal with the
first topicey and in part B yith the second.

Py ey
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VeleA Jnformation Congtenrt 9f Edog Pixels

The information content of edye pixels §s of consideratle
impcrtance for several reascns, Knowledge of the maximum
rezistration accuracy atteinable gives a benchmark by which to
evaluate algorithms, it c¢an reveal situations in uwhich it is
fruitless to pursue the suo-pixel problem, and it may give rise
to more accurate registration algorithms,

The desiqn of models for feature based matching $s at & much
more orimitive leval than is ths modeling of grey scale {images,
A variety of random field modcols are currently in use in the
study of qgrey scale 1images., Though there is ccnsicerable
question as to the usefulness nf these models, they nave proved
useful as a stucdy point in the analysis of the reigstration
process.

we confine our modeliny discussion to binary edge imagese
Various arguments can te mace for and acainst such a restriction.
On the positive sice, such images are easily attainable through a
variety of ecae detection techniqguess The simplicity cft the
imace greatly recuces the informaticn content of the picture,
thus allowing more extensive processing to match imajes. This
sim2licity also offers tope that tne situation can tbte analyzec,
Cn the nenative sice, the relationship between ths binary imasce
and the orizinal imagce Js no Lloncer clear, inless reliable
information on the accuracy of edge detectors is available, it is
4it+icult to evaluate the accuracy of the tinary imsce
registration,

The objection raised above to the use of binary images for
registration can be softened by several factors present in the
Lan7sat context. Registration procedures currently wused with
Lan?sat imiges can recister to within a cixel on 2 Large numter
of scenes., Current attempcts at sup=-pixel accuracy separate the
registration grocedure finto rough and fine registration, where
rou:zh registration is ccne ty correlation and fine registration
is <done ty interpolation, 4 similar aprroach can be acopted with
geometric matching.

The exvense cf reliable ed;e detection can te reguced

(23)
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considerably it prior knowledye o+ aporoximate edge Location is
availatle. To wusc such knowledje, a rough registraticn is
recessary, Ore approach to rezis ration along these Lines is to
cerform a reush registration wusine correlation, anc an ecge
database tn gerform edge Llocaticn 4n a small number of areeas
where edges are known to be presernt, Knowledge of ecge
prrocerties, such a5 spectral si,nature, together with the ecdge
ltocation information availatle froms the rough registration, could
greatly enhance edge .ccuracy, Edge points such as roads could
alsc be scughte In this constrained ecge searching environment,
estimat ion of edge location accuracy may be plausible.

The prior edge knowiedze allows us to restrict ourselves to
a very small numbter of reliable edges. In this section we
restrict ourselves to a single eoge or a pair of paralliel
straight edges. This restriction is imposed because it is the
natural first step in the analysis of binary edge images. In
practice, tnis concgition is enforceable by throwing away all
vther edges,

we now come to the fundamental auestion of this section,.
Given a set of pixels representinc the dicitization of an ecge,
to «hat extent is the exact Llocaticn o¢f the edge ceterminec?
This question reguires some amplification before it can te
for~ulated nreciselys DPo w2 view @ real world ecze as Paving
thickness cr as an iceal !Line segment? Wwhich pixels represent an
edge? 1f an ideal Lline segment intersects 3 pixel very rear a
corner, should that pirxel inafcate an ecdge point? Should false
edge points te allowed? Though these considerations are somewhat
obvious, the specific model adopted can greatly affect the course
of analysis.

ie first consider the noise¢ free models Irn this case, each
pitxel which is set to one must contein at least part of an edge,
ALl cther pixels are set to 2ercs ‘ote that we have not said
that each gixel which contains rart of an edge must be set to
ore, only its converse, Thus we allow ‘or the possibility that
our sampling mechanism requires that an edge Le at least a

certain distance into a pixel before tne pixel is set to one,

(24)
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As a first step towaryd a more careful formulation of our
tasic gquestion, we ask what it means for two Line segments to te
close. There are many cefinitions which could be usea, but we
must recall that whatever deftinition is adoptec must b2 useful
far registrations Viewing line sejments os setsy the standaro
cdefinition of c¢istance o<tween sets (minimum aistance between
pairs of points, one in each set), appears useless, opecause cf
the possible wide variation in lLine position among lines clcse in
this sense. Similarly, viewing lLines as parameterized by polar
or cartesian cocrdinates, we can define closeness in terms Of
nearness c¢f the corresponding parameters, This also -an result
in considerable separation betw.een Lires wuniess Lline segment
tencths are ~xplicitly considered.

Sevweral feasiole cefinitions of Lire segment clogeness can
be givens we now “describe one appealirg measure., Let L1 and L2
denote tw0 continuous (not digital) Line segmentse fFor each
pixal xelyy let dl(x) cenote the fuclidean distance from x to the
nearest point in Lae Similarly, for ¥Ly, let as(y} Zenote trhe

distanc> frnm y to the nearast roint in L Let

1.
Dl = Mmax dl(x) ’

lel_l

Dz = max dz(y) ’

¥e L,

ang P = max (Dlpoz) o

Then 0 is & measure of line closeness whicn guarantees that lines
never cet tar anart in the sensc tna: no pcint on either Line s
very far from the cther Line, For a p2air of Line seagments 3iven

in cartesian coordinates, formulae for this measure can be easily

derivea,

Several gfpossible definitions of closeness have been
presented, Jt these the last was characterized ac feasible feor
recistration. This statement vreauires some justitication.,

(25)
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~uippocse we have opserved o set of pixels representing an edge.
nssume furthermore ti..: any two real edges, which could have
caused this set of pixels to he set to one, can be proven to be
cluese in the above sense. ¥hat can we say about the true
locaticn o¢* tte (ine in the imace? FRecall that the seament we
are chserving dinitally is known to correspondi to a straight
seementy, P,,y & s€Ctign of road betueen two intersections,

Wwe wish to cetermine a rigid mapping from the egad segment
into the image, Suprose we reaquire the mapoping to send the road
se;ment center into the center of one of the possible lines going
throuch the observed pixels, Suppose we further require the
marping to send a whole interval surrouncdine the road center to
an interval surrounding the line seament center, Then it can be
shewn that it any two feasible lines are sufficiently close by
cur cistance measyre Ny, then the maximum registration error can
ve mecde less thanm a pixel and in fact the error can be boynded.

tven in the simple situation described above, the hard bpart
of the task remains. Given a set of oixels how does one
cete.mine the maximun distance tetueen feasible Lines. A related
wuestion which is of wvital importance in this area s the
folloygying, 1lec¢ it true that for most line seuments which could bhe
rluced on a sampling grid, the resulting set of pixels is riaid?
ty rizid, we mea2n that the set of feasihle tines for that segment
ore closes A further question of greater practical importance is
whut Llenoth and directional prooerites of a Lline segment
cuarantee rioidity? Finally, how can 3 set of tine segments be
selected to cuarantee rigidity if sinale segments are unreliable?

The answers to tre above gquestions are not yet available,
tut we are currently investigating these guestions under another
research orant TnASa Subcontract 12000811, we briefly decceribe a

wethcd of attack whichk we consider to be feuitful, A Lline s
ri_i. it slight changes in its location will re<ult in 3 chanqae
in the set of pixels takiag the value one, We are currently

sttemcting to show that certain relations between the line lencoth
cne the Lline anale guarantee rioidity. FRouahly speakina, the

conditions guarantee that the Line runs near ¢he copeners of

(26)
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several pinels, Furthermore, the pattern 1is aoproximately
alternating in that the Line goes near a lower corner of a pixel,
then near an upcer cornery, then near a tower corner, etc, These

corners mdy Le senarated hy several pixels,
lower

o

1T

)
lower upper

This conciticn can ne formulated in terms of certain basic

tfunctions occurina in elementary number thecry, The statement
that the congition holds most of the time is vrelated to sonme

basic results in probabiligtic number theorye

(27)
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The gsub-pixe| ecge Location information present in a binary
edce has been disucsseds Ye no, consider the question of how to
extract this information, ~vhe problem may be subdivided into two
nartse Firsty tor a given binary edge, how <¢c2n the set of
feasible ¢andidates for the true edae be determined., Second, how
shculd one candidate be sejected ¢rom this set as an ootimal
estimate., The detailed study of these questions 1is currently
uncderway as part of a NASA agrant [NASA Subcontract LZ0030811.

The determination of the set of feasible edge Llocations
pased on an observed binary edge is a complex geometric problem,
even in the optimal case where ali observed edoge pixels really
relongs to an edge. In this case, one coula rouahly fit an edge
1o the pixels ysinc scme metnod such 3s least stuaress and then
serturt the ecdae till it passes throuqh the desired pixels, If
~ixel errors are allowed, then the edge might be constrainea to
ao through at Least a certain percentage of the pixels.,

Cnce a sinale feasible Lline is Llocated, the Line can be
perturbeg to estimate bounas on the edge lccation. The precise
manner in which these perturbations shoulc be done must be
cetermined by a detailed ceometric analysis of the oroblem, which
is currently under way. It reliable bounis can be found on the
variation in edge Llocation, then several approaches to the
selection of an ootimal edge can be adopted, First, one can
define a distritution on edge locations, and compute the exvected
edce tocation. Due to the lack of information as to a reasonable
distribution, a second aoproach may be opreferable. In this
approachy the "most central®™ Lline is located. This line is that
feasible line which has the smallest maximum distance to the
ctrer feasible Lineg, Thigs can te made precise in several ways,
cut the comoutational crocecure for locating this Lline wily
cderend heabily on the geometry of the set of feasible lines.

The feasibility of these geometric methnds cannot te
assessed at this time., They offer promise because they are based
on a model of the relationship betuween binary imaaes and edge

tocations., The major experimental study necessary to tune the

(28)
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mouel is an apa|ysis of the relationship between observed edae
#ixels and real edues. The primary quantity to be estimated s
the rcercentioe of detecteu edce opixels which are true ecge
r+ixelse This guantity mioht be estimated as a function of egqe
ancles lencth and content (road, field, etc.).

The stugy of edge location coulu be extendea to more complex

ticures such as intersections, or strips such as wide roads.
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A. Lagkjroung

In analyzirg the grotiam of attainina sub=vixel accuracy, we
must ‘irst ask whether, under gerneral conditions, sub=-pixel
Aaccuracy 1is actievacle with a reasonavle cegree of confidence; a
neyitive answer rencers all othar cuestions mcot, Assuming a
positive answer, thke analysis can be divided intc two parts: a
stu~y of existing algorithms, and the developrent of new
slocrithms which satisfy certair concditions of optimalitys

'n pertorming the atove analysisy one of three (not
necessarily 3Jisjoint) methods can bte applieds The first is a
triil-and=~erpor=-Ly=-experimantation apprcach, in which "real" data
are usec for the experinentse Thic methoa is the least
satisfyinz, since without a ceeper un-erstanding of the protlenm
(which is exemglified tv a model) vreal analysis is bhardly
possible, However, it is reasonatle to test alaorithms on such
real Catae

‘n the secon? methaly, o accel s hyrotnesized. The
conseguences c¢*f the rmocel are derived yia simulationse #n
imgcrtant é“vantace cof this metnod is that relatively complicatea
moae=ls can re stuliea.

The tnir1 methoa also involves a mcdel, however thijs time
all results are cerivec anialyticallys ~0 guarantee tractability,
only simple moaels can bte considerecd. Sometimes *he model must
re simplifiec to the extent that the very aqualities of the
proclem which Lead tc fundarmentsl coifficulties are assumed out ct
existences agt if cone feels that the model does capture the
essential features of the problem, then this analytic methco is
suc2rior tec the others. 1t car Llead to deeper insinhts sand
sugp=ricr 3tlicrithms,

The work currently teing cone is restricted to the Last two
methods, with an emghasis on the last ones, The model used, and
the analysis performed, are extensicns cf the work cone by Novak
(15713, Wwe ccnsiderec tne prcblem of finding an edge, of xkNoOwWN

shaze, in a yrey level gpicture, Tnis is essentially the sare as

(30)
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matching a2 binary image to a grey Level images Novak assumed the
pixel grey Llevels are statistically independent, and within the
homogeneous regions separated by the edge, are icentically
distributed.

To determine the location of the edge within the pixel,
Novak assumes that the edje pixels have the same distribution as
the other pixels, but with a mean which is a convex combination
of the means of the pixels in the two bomogeneous regionse. The
weijhts reflect the percentage of the edge pixel residing within
each homogeneocus region, Using this model Novak finds the m_LE of
the weights, which determine the location of the edge.

2ecause this method requires a knowledge of the means within
each homogeneous region = these means are wunknown = Novak
recommends fitting a bigquadratic surface to the nine correlation
points centerec at the roint with maximum correlation. The peak
of this surface determines the sub=-pixel match pointe

8. Regommengeg work

Jsing comguter simulations we recommend determining whether
sub=-pixel accuracy is attainable, Gecause this problem would be
studied via simulations, rather thar analytically, 3 complicated
underlying model <can be assumed., Rather than two nomogeneocus
regicns, we coula allow many such reqgions, with grey Llevels
varying Llinearly over each region. Edge pixels would be assumed
to be convex comtinations of the grey tevels of the neighboring
pixels, rather than simply their meanse. We would also allow
statistical dependence of pixel grey values within regions,
maintaining incependence from region to region. Note that we are
allowine only translation errors between the two images,

Assuming favorable results from the simuylation experiments,
we would prcceed to analytically study current matching
algorithms,s The model used 1is similar to the one described
above, the difference teing that the covariance between pixels of
a region will take a simpler form in the present case,

The algorithms would be analyzed asymptotically for four
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reasons, First, asymgtotics are easier to deal with, hence more
complicated mocels can te treateds Second, images contain enough
pirxels to make asymptotics reasonably valid = although how many
are "“enough™ shculd be looked into. Third, asymptotics are often
independent of underlying distributions (eegey the Central Limit
Theorem), hence results are valid for a large class of
distributions, And fourth, it ds an axfom of statistics that
estimates should behave properly in the Limit, hence the results
of matchina algorithes should approach the correct point as the
size of the image increases,

Lastly we would seek to devise new algorithms based on the
insights gained 1in the above work., It is clear that in general
biquadratic interpolation does not tehave properly in the limit =
in fact this remark protably applies to any polynomial surface,
The apgpropriate interpolating surface stould be determined by the
autocorrelation structure of the image, and in fact should peak
at the same point as the Likelihood surface over the image. It
should be kept in mind that implicitly we are assuming that we
can only see the (continuous) correlation surface at a discrete
numter of points, and that a second order Taylor series expanced
about the maximum point ¥s valid over the entire 2x? neighborhood
of that point.

This assumption is not alwyays valid, and in fact there has
been some confusion in the field abcut the relationship among
least squares estimates, maximum Q\likelihood estimates, and
correlation when the underlying distritution is Gaussian, 1t is
assumed they are the same, This is not true in general, and we
recommend a thorough study of their relationships uncer various
conditions.

(32)
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we no, agegcrive a general stOChbstic model unagerlying and
extending the framework of vwostafavi and Saith (78] and allowing
mathematical formulation of one ftorm of the problem of sub=-pixel
accuracy ot imace rejistration. We suppose that over a region of
interest there exists 2 reference agrey level fietd ZR (:) (x is
s point (x,y) in the cla3ne)y including noise, which may be
mocelled as a (strictly) stationary random field, V.e., a
collection of random variables all of whose joint distributions
remain invariant under translation of the olane origin, The
remotely sensed grey level field is modelled as the sum ZS (x) =
Zp (x) + M(x), where i, (x) s a distorted fora of Tk(l)
(vostafavi and <mith considered the case of affine ‘'gegmetric®
cistortion Zp(x) = 2p(Ax + D) where * is a gx2 matrix) and N (x)
ijs a stationary noise field assumecd independent of (ZD(i)'zR(l)"
-2 further assume that ZD and ZR are jointly statjonary (have
jointly translation-invariant statistics) and that the fieds ipy
g M hsve means 5 (i.,e,, means haye been subtracted away) ang

known C(or estimable) covariance functions

% {E) = Cov{ZR(:).ZR(: + t)) (for x4t in the plane)
e ( = covfZ_(x) (x + t)

li) OVZD:'ZD!- _t_)

o = 2 ;

01._9 Cov{ R(i), “D(f- + 1))

% (t) = CoviN(x),N(x + t))

(which do not depend on x because of stationarity).

Moreover, :S(-) is (due to the diaital transmission of
senscr imaces) for practical purposes only observed at lattice
coints (x0+ jho Yot khy in the rclane, where (:O,yo) is an unknown
cftset from the origin of the reference images h is the width of

one gixely and j and k are inteaders. In this setting the problem

cf imace renistragion is tg recover (estimate) (xo,yb) from the
cbservations cof ZR(I) over a2 large reference area and of % (x)

over 3 much smaller area ™ in the plane, The statistics most

often used for this estimation are the offset empirical
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correlations
¢ = 1 Z2g(1h,mh)Zp ((1 + 1)h, (m +k)h)

35k (l,m)eMo #(1,m) points in window M,

where ¥y is a sutset of ¥, (Mostafavi and Smith assume all fields
Gaussiany, which we do ncoty and co not deal with the discrete
aspects of pixels).

There is extensive probability Literature (see references)
showing that for very Large windows M (i.esy in the Limit of
infinite window size), sum=statistics of the form E fﬁnsidered as
processes on the integer Lattice in the plane are asymptotically
Gaussian (as processes, anad not simoly as random variables) unager
various assumpt fons on the rate of cecay of dependence among grey
levels in groups of pixels which are widely separated, For this
reason, cur model problem is to recover (xo,yo) as best we can
from knowledge of RO'ROI l'R and obtservation of S i?' all jek in

(some supset of ) W Note that we seek not simply to detect the

"best” (j,k)-offsetoapprOximating (xd .yo) by but to estimate (x
,yo ) itself, Cur criterion of performance will therefore be the
probapility that an esyimated gffset (x.V) differs from the true
(xo 34 ) by more than a distance (expregsed for example as a

fraction of a pixel wiath),

(34)
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CONCLURING REMARKS

From the survey of published work on the analysis of
registration accuracy, presented in the preceeaing pages, it may
be seen that Little has been written on the analysis of subpixel
registration accuracyes We recormend research be performed on the
following aspects of sutpixel accuracy:

® A study of the feasible registration accuracy
attainable using binary edges for matching.

® A study of subpixel accuracy in itmages consisting
of regions with Linearly varying mean grey levels
using correlation methods.

® An extension of the random field model of Mostafavi
and Smith to the non-Gaussian subpixel case.
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